
MULTIPATH PROBABILISTIC EARLY RESPONSE TCP

A Thesis

by

ANKIT SINGH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2012

Major Subject: Computer Engineering

MULTIPATH PROBABILISTIC EARLY RESPONSE TCP

A Thesis

by

ANKIT SINGH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, A. L. Narasimha Reddy
Committee Members, Riccardo Bettati

Srinivas Shakottai
Head of Department, Costas N. Georghiades

August 2012

Major Subject: Computer Engineering

iii

ABSTRACT

Multipath Probabilistic Early Response TCP. (August 2012)

Ankit Singh, B.Tech., Indian Institute of Technology, Guwahati

Chair of Advisory Committee: Dr. A. L. Narasimha Reddy

Many computers and devices such as smart phones, laptops and tablet devices are now

equipped with multiple network interfaces, enabling them to use multiple paths to

access content over the network. If the resources could be used concurrently, end user

experience can be greatly improved. The recent studies in MPTCP suggest that im-

proved reliability, load balancing and mobility are feasible. The thesis presents a new

multipath delay based algorithm, MPPERT (Multipath Probabilistic Early response

TCP), which provides high throughput and efficient load balancing. In all-PERT en-

vironment, MPPERT suffers no packet loss and maintains much smaller queue sizes

compared to existing MPTCP, making it suitable for real time data transfer. MP-

PERT is suitable for incremental deployment in a heterogeneous environment. It also

presents a parametrized approach to tune the amount of traffic shift off the congested

path.

Multipath approach is benefited from having multiple connections between end hosts.

However, it is desired to keep the connection set minimal as increasing number of

paths may not always provide significant increase in the performance. Moreover,

higher number of paths unnecessarily increase computational requirement. Ideally,

we should suppress paths with low throughputs and avoid paths with shared bottle-

necks. In case of MPTCP, there is no efficient way to detect a common bottleneck

between subflows. MPTCP applies a constraint of best single-path TCP throughput,

iv

to ensure fair share at a common bottleneck link. The best path throughput con-

straint along with traffic shift, from more congested to less congested paths, provide

better opportunity for the competing flows to achieve higher throughput. However,

the disadvantage is that even if there are no shared links, the same constraint would

decrease the overall achievable throughput of a multipath flow.

PERT, being a delay based TCP protocol, has continuous information about the state

of the queue. This information is valuable in enabling MPPERT to detect subflows

sharing a common bottleneck and obtain a smaller set of disjoint subflows. This

information can even be used to switch from coupled (a set of subflows having in-

terdependent increase/decrease of congestion windows) to uncoupled (independent

increase/decrease of congestion windows) subflows, yielding higher throughput when

best single-path TCP constraint is relaxed. The ns-2 simulations support MPPERT

as a highly competitive multipath approach, suitable for real time data transfer, which

is capable of offering higher throughput and improved reliability.

v

To my parents.

vi

ACKNOWLEDGMENTS

I thank my research advisor, Dr. A. L. Narasimha Reddy, for his continuous

guidance, feedback and support. His immense knowledge and key inputs were piv-

otal for the smooth and successful completion of my research objective. I heartily

appreciate his cooperation, compassion and patience during my acute knee injury. I

thank former group members Bin Qian and Kiran kotla for their valuable inputs and

help in getting me started with the research. I am grateful to my elder brother Amrit

for the encouragement and guidance that streamlined my academic and professional

career. Above all, I thank my parents for their unconditional love, encouragement

and support, through thick and thin, that helped me achieve my goals. Last but not

the least, I thank Almighty God for giving me wisdom and strength to overcome my

limitations.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Motivation . 1

B. Related Work . 1

II BRIEF DESCRIPTION . 4

III NEW MP-PERT ALGORITHM 9

A. Algorithm . 9

B. Analysis : Two Subflow MPPERT 13

IV EVALUATION OF MPPERT 15

A. Experiment Setup . 15

B. Flappiness . 15

C. Throughput Distribution 18

D. Total Throughput Constraint 19

E. Incremental Deployment of MPPERT 21

F. Resource Pooling . 22

V MPPERT PATH SELECTION 25

A. Detection of Bottleneck Link 25

B. Experiment Setup . 27

C. Homogeneous Environment 28

D. Heterogeneous Environment 31

E. Suppressing Shared Subflow 32

VI PERFORMANCE COMPARISON MPPERT AND MPTCP . . 39

A. Queue Management . 39

B. Packet Loss . 42

C. Throughput and Subflow Traffic Distribution 43

D. Resource Pooling . 44

VII RESPONSIVENESS OF MPPERT 49

VIII CONCLUSION AND FUTURE WORK 56

viii

CHAPTER Page

REFERENCES . 58

VITA . 61

ix

LIST OF TABLES

TABLE Page

I Resource pooling comparison of cascaded links for MPPERT k=0

and independent subflow multipath 23

II Resource pooling comparison of MPPERT and independent sub-

flow multipath with competing PERT flows 24

III Coupled with correlation based suppression 35

IV Coupled with correlation based suppression with 2 disjoint path . . . 36

V Coupled/Decoupled switch with correlation based suppression 37

VI Coupled/Decoupled switch with correlation based suppression 2

disjoint path . 38

VII Performance comparison MPPERT, MPTCP for tail drop queue

management . 41

VIII Performance comparison MPTCP, MPPERT for RED active queue

management . 41

IX Total throughput and subflow distribution comparison 45

X Resource pooling comparison MPPERT and MPTCP for figure 19 . . 48

x

LIST OF FIGURES

FIGURE Page

1 Resource pooling . 5

2 MPTCP TCP/IP stack . 8

3 Experiment setup for two multipath flow 15

4 Flappiness of MPPERT for equal/unequal path loss with varying

k . 17

5 MPPERT throughput distribution with varying k 18

6 MPPERT throughput with varying number of background flows . . . 20

7 MPPERT (k=-1/2) throughput in heterogeneous 50-50mix envi-

ronment with varying number of background flows 21

8 Resource pooling for cascaded configuration 22

9 Resource pooling MPPERT (k=-1/2) with competing PERT flows . . 24

10 Experiment setup for three multipath flows 28

11 Correlation of MPPERT subflows sharing a common bottleneck . . . 29

12 Correlation of MPPERT subflows with disjoint paths 30

13 MPPERT disjoint/shared path subflow congestion window variation . 30

14 Correlation for MPPERT shared bottleneck subflow in heteroge-

neous 50-50 mix environment . 31

15 Correlation for MPPERT disjoint bottleneck subflow in heteroge-

neous 50-50 mix environment . 32

16 MPPERT and MPTCP pathloss comparison at bottleneck 1 and 2 . 42

xi

FIGURE Page

17 Throughput comparison for 2-MPPERT and 2-MPTCP compet-

ing in heterogeneous environment . 46

18 System resource utilization comparison for 2-MPPERT and 2-

MPTCP . 47

19 Experiment setup MPPERT, MPTCP resource pooling compari-

son . 48

20 MPPERT throughput vs time for long duration subflow 50

21 MPPERT responsiveness to increase in background traffic for high

BW path . 52

22 MPPERT responsiveness to decrease in background traffic for low

available BW path . 53

23 MPPERT responsiveness to decrease in background traffic 54

1

CHAPTER I

INTRODUCTION

A. Motivation

TCP faces several challenges to ensure fair and efficient share of the network resources

[1]. Today, demand for bandwidth and reliability is much higher for real time appli-

cations such as VOIP, IPTV etc. The general approach to provide better reliability

is to provide multiple redundant paths through the network. Many devices now come

with both Wifi and 3G capabilities. These capabilities can be used collectively to

improve both reliability as well as total throughput for the end user. These interfaces

could be used to establish multiple connections between the end hosts, using multiple

paths, to add the desired redundancy. Thus, even if there is a failure in one of the

paths, other paths may be used to maintain the connectivity. This facilitates reliable

mobility of the end hosts.

Delay based TCP algorithms can be quite efficient. Algorithms such as PERT(prob-

abilistic Early Response TCP), provide high throughput, minimum loss rates and

maintain low queue sizes that makes them suitable for real time applications.

B. Related Work

Simultaneous use of multiple end-to-end paths between two end-hosts is becoming an

increasingly important problem as growing number of end-hosts are now multihomed.

Multihoming can improve the performance and resilience by using multiple simulta-

neous paths [2].

This thesis follows the style of IEEE Transactions on Automatic Control.

2

Several solutions for multipath problem have been suggested. mTCP [3] stripes data

packets across parallel, independent TCP subflows. It integrates a bottleneck detec-

tion mechanism to identify and suppress the subflows that traverse the same congested

link. It maintains a sequence of fast retransmit intervals for each of the subflows

and computes correlation to infer a shared link. mTCP takes upto 15 seconds to

detect the shared bottleneck which may not be acceptable. Parallel TCP (pTCP)

[4], Concurrent multipath Transfer (CMT) over SCTP [5] send data packets inde-

pendently using uncoordinated congestion control algorithms. These protocols don’t

handle/detect common bottlenecks and do not fairly share the available bandwidth.

R-MTP [6] targets wireless links. It probes the bandwidth availability periodically for

each of the subflows and adjusts the rates accordingly. It uses packet’s inter-arrival

times and jitter information to detect congestion. Increase in jitter is used as an

indicator of the mounting congestion.

Kelly [7] has shown that congestion control at endsystems can be thought of as a dis-

tributed control system for solving a network wide optimization problem. Fluid-flow

modelling [8, 9] was used to show that not only can multipath transport give robust-

ness, but with a right coupled congestion controller, it can balance congestion in a

stable manner in the internet. Although the fluid model provided insight and assured

stability, algorithms behaved erratically, flipping almost all traffic on one path to

another with non-periodicity [10]. Fully-coupled multipath algorithms [10] offer high

traffic shift capability but they suffer from the traffic flips. Ability to shift traffic off

congested path provides resource pooling [11] capability, which promotes fair distribu-

tion of network resources among the competing flows. BMC [12] adaptively changes

the contributions of subflows to achieve resource pooling. BMC assigns weights to

individual subflow so that a bundle of subflows can have the same aggressiveness as

3

one TCP flow. When sending rates of flows are different, BMC increases loss event

rates [13] on subflows by being less aggressive. An alternative solution for balancing

traffic is to use a centralized scheduler [14]. The scheduler assigns large flows to a

lightly loaded path and reassigns existing flows such that the overall throughput is

maximized [14]. With the arrival of new flows, the scheduler is required to collect

flow level statistics and perform placement computations during the scheduling period

which raises serious scalability concerns. Recently proposed MPTCP algorithm [15]

takes into account these issues and presents a window based congestion algorithm,

which aims at distributing traffic inversely proportional to path loss. It compensates

for RTT variability among the multipath subflows and takes as much throughput as

it would get with single-path TCP on the best of its paths.

Presently, we are not aware of any delay based multipath algorithm that supports

multihoming. Congestion oriented protocols such as TCP depend on packet loss as

the sole indicator of congestion. The corresponding multipath algorithms use these

loss signals to adjust the traffic distribution among the subflows. On the other hand,

delay based algorithms use RTTs to estimate queue dynamics. These continuous

delay signals provide better opportunity to detect the onset of congestion. The cor-

responding multipath algorithms can use the increase in queue size as an indicator of

congestion, to shift traffic from more congested to less congested paths. Continuous

queue dynamics present better opportunity to efficiently detect a shared bottleneck.

This can be used to ensure fairness at the bottleneck link. Thus, delay based algo-

rithms have the potential to provide fair, responsive multipath algorithms.

4

CHAPTER II

BRIEF DESCRIPTION

Today, demand for internet resources are ever increasing but due to protocol con-

straints, network resources are underutilized. Even when the end devices are con-

nected to the network through multiple paths, the realized throughput can be im-

pacted by the congestion on both the paths, if the transport protocol does not manage

the resources well [16]. One approach to increase the utilization of entire system is

to make a collection of resources behave like a single pooled resource. This is called

Resource Pooling [11, 17]. As per Fig. 1(a), three different multipath flows are con-

nected to their respective destinations using two subflows each. The principle argues

that even though all the multipath flows may have different connections, the complete

network resource of 36Mbps should get distributed equally (12Mbps each), treating

it as a single pool of 36Mbps resource that is getting shared by 3 multipath users.

Conceptually, it is similar to max-min fairness, if we treat the entire network resource

as a single pool of resources available for the competing flows. The two goals that

resource pooling aims to realize are

• Increase the resilience of the connectivity by providing multiple paths, protect-

ing end hosts from the failure of one.

• Increase the efficiency of the resource usage, and thus increase the network

capacity available to end hosts.

Multipath TCP allows a single data stream to be split across multiple paths. A

connection consists of set of subflows R, each of which may take a different route

through the internet. Each subflow r ∈ R maintains its own congestion window Wr.

5

Fig. 1.: Resource pooling

An MPTCP sender stripes packets across these subflows as space in the subflow win-

dows becomes available. There are a number of window based congestion algorithms

for multipath TCP. Some of them are as follows:

Equally-Weighted TCP

• For each ACK on path r, increase window Wr by a/Wr.

• For each loss on path r, decrease window Wr by Wr/2.

Here, Wr is the window size on path r and ’a’ is a scaling constant. Throughput of a

TCP flow can be given as

T =
s

R
√

2p
3a

+ t(3
√

3p
8a

)p(1 + 32p2)

In order to scale subflow throughput by a factor D, one can select a = D2 [12].

By choosing a = 1/n2 (n is the number of subflows used by a multipath flow) and

6

assuming equal RTTs, multipath flow gets the same throughput as a regular TCP at

the bottleneck link. Here, each subflow gets 1/n times the throughput of single-path

TCP. However, EWTCP does not shift traffic from more congested to less congested

paths.

COUPLED

• For each ACK on path r, increase window Wr by 1/Wtotal .

• For each loss on path r, decrease window Wr by Wtotal/2.

COUPLED [8, 9] provides the traffic shift and coupling required for a multipath

algorithm. In steady state, the total window size is proportional to the path with the

minimum loss.

1

Wtotal

=
pWtotal

2
=⇒ Wtotal =

√
2

pmin

Since COUPLED tries to send traffic only to path with the least path loss, it results in

rejection of alternate paths with higher path loss. Moreover, if congestion in alternate

paths improve over time and the main path degrades, there is no way to determine

the change due to lack of traffic signals from the alternate paths. Thus, it is desirable

to always keep sufficient traffic on all the paths, as a probe, to efficiently respond to

the change in congestion.

MPTCP

MPTCP [10] aims to keep moderate amount of traffic on each path while having

bias towards less congested paths. It thus strikes a balance between the aggressive

traffic shift of COUPLED and no traffic shift of EWTCP. Some of the design goals

for MPTCP are as follows:

7

• A multipath flow should give a connection at least as much throughput as it

would get with single-path TCP on the best of its paths. This ensures there is

an incentive for deploying multipath algorithm.

• A multipath flow should take no more capacity on any path or collection of

paths than if it was a single-path TCP flow using the best of those paths. This

guarantees it will not unduly harm other flows at a bottleneck link, no matter

what combination of paths passes through that link.

MPTCP Algorithm can be given as :

• Each ACK on subflow r, increase the window Wr by min (a
Wtotal

, 1
Wr

)

• Each loss on subflow r, decrease the window Wr by Wr/2.

The steady state distribution for Wr can be given as

2a

Wtotal pr
= Wr

MPTCP [10] offers coupling of paths and distributes traffic inversely proportional to

path loss. This helps in maintaining probe traffic in high loss paths. The issue of RTT

mismatch [18] may lead to decrease in overall throughput. The factor ’a’ provides a

scale to the window increase to achieve total throughput equal to at least the best

single path available throughput.

The basic TCP/IP stack architecture [15] is given in Fig. 2. This requires a wrapper

layer, MPTCP, over the normal TCP layer which stripes packets across these subflows

for transmission. It uses two levels of sequence space. One is the connection level

sequence number (MPTCP level) and the other for each subflow at TCP level. This

8

Fig. 2.: MPTCP TCP/IP stack

permits connection-level segmentation, reassembly and retransmission of the same

part of connection-level sequence space on different subflow-level sequence space.

9

CHAPTER III

NEW MP-PERT ALGORITHM

A. Algorithm

Multipath PERT adopts PERT to employ multiple paths in the network. PERT

measures delays in a path and responds early to perceived congestion before a packet is

dropped. In the homogeneous environment, PERT is shown to offer zero packet losses.

A natural question is how should PERT respond to different levels of congestion when

it utilizes multiple paths through the network.

Multipath PERT allows a single data stream to be split across multiple paths. A

multipath connection consists of a set of subflows R, each of which may take a different

route through the internet. Each subflow r ∈ R maintains its own congestion window

Wr. An MPPERT sender stripes packets across these subflows as space in the subflow

windows becomes available. The new MPPERT algorithm can be given as:

• Each ACK on subflow r, increase window Wr by min (aαr

Wk
r
, αr

Wr
)

• Each early response/packet loss on subflow r, decrease the window Wr by βWr.

Here ’a’ is the scaling factor which scales the window increase to meet the total

throughput requirement. By treating early responses and responses to packet losses

similarly, we minimize the complexity in adopting PERT to multipath scenarios. In

order to promote resource pooling, similar to MPTCP, it is desired that MPPERT

flow should take throughput equal to the single-path TCP throughput available on

the best of its paths. Differential equation for PERT can be given as :

f(W,Wr, Tq, P) =
α

R
− βW (t)Wr(t)P (t)

R
(3.1)

10

g(W,Tq) =
NW (t)

RC
− 1 (3.2)

In steady state, setting equations 3.1 and 3.2 to zero gives us

Wtcp =

√
α

βP
=
RC

N
(3.3)

Equation 3.3 gives steady state window size for PERT. In steady state, each MPPERT

subflow would have equal increase and decrease in its window size. This can be given

as follows:

Assuming 1− Pr ≈ 1

aαr
W k
r

= βrPrWr

aαr
βrPr

= W k+1
r

a1/(k+1)W
2/(k+1)
tcpr = Wr (3.4)

Now aplying the throughput constraint of single-path TCP on the best available path,

we have ∑
r

Wr

RTTr
= max

r

Wtcpr

RTTr
(3.5)

using equation 3.4 ∑
r

Wr

RTTr
= max

r

W
(k+1)/2
r

RTTra1/2

11

a =

max
r

W
(k+1)
r

RTT 2
r

(
∑
r

Wr

RTTr
)
2 (3.6)

Thus, scale parameter ’a’ ensures that the total throughput of MPPERT flow is at

least equal to PERT throughput on the best of its available paths. Equation 3.4

provides window size relationship between a MPPERT subflow and a PERT flow

competing on the same path. The resource pooling parameter ’k’ controls the sensi-

tivity of MPPERT flows to path loss. As k is varied from +1 to -1, the sensitivity to

path loss increases, which promotes traffic shift from more congested to less congested

paths.

subflow Throughput ∝
W

2/(k+1)
tcpr

RTTr

Parameters Adjustment: Homogeneous/Heterogeneous Environment

Homogeneous environments use only one flavor of TCP. Thus, PERT homogeneous

environment would require all the competing background flows to be PERT flows.

Internet is highly diverse and numerous flavors of TCP are available. The environment

where multiple flavors of TCP compete is termed as heterogeneous environment.

MPPERT ensures that it atleast receives throughput equal to single-path PERT on

the best of its available paths. In order for MPPERT to compete with TCP, it is

desired that its PERT subflows be able to compete with TCP flows. Thus, enabling

PERT subflows in MPPERT to individually compete with TCP will enable MPPERT

to compete in heterogeneous environment. Steady state throughput of a PERT flow

is given by

1

RTT

√
α

βp

12

PERT’s response to congestion can be broken into two probabilities [19], p and p′,

which corresponds to early response and observed congestion loss probability respec-

tively. PERT’s throughput is controlled by the combined early response and con-

gestion response probabilities and is given by 1− (1− p)(1− p′) = p+ p′ − p p′ . If

PERT has to roughly get an equal share when competing with TCP, comparing the

steady state throughput equations of the two protocols, we eventually arrive at

αPERT = p+ p′ − p ∗ p′

p
≈ 1 +

p′

p

In summary, parameter α may take different values depending on the mode in which

PERT operates [20]. It uses amount of queue build-up/observed queuing delay as an

indicator for depicting the type of competing environment (homogeneous/heterogeneous)

and its available link B.W.(high speed links).

High speed : When the observed queuing delay is less than some minimum threshold,

PERT infers that the bandwidth is being underutilized and increments α (starting at

1) linearly till it reaches a threshold of 32. This enables PERT to fill up high speed

links quickly.

Safe Mode : When queuing delay is greater than the minimum threshold, but less

than half the maximum observed queue length, PERT assumes that all the competing

flows are PERT flows and decrements α till it reaches 1.

Compete Mode : If the observed queuing delay is larger than half the maximum queue

length, PERT infers that it is competing in a heterogeneous environment, and incre-

ments α till it reaches αPERT = 1 + p′

p
.

Parameter β determines the factor by which a PERT flow will reduce its congestion

window in case of early response. The probability of packet loss increases with in-

13

crease in the queue size. Thus, it is desired to reduce the congestion window by a

larger amount as the queue size progresses towards the maximum queue length. Thus

β is given by

β =
qcurr

qcurr + qmax

where qcurr and qmax are the smoothed values of the queue sizes.

B. Analysis : Two Subflow MPPERT

In the present analysis, MPPERT stripes packets across two subflows which maintain

their own congestion windows wr. MPPERT flow sends packets across these subflows

as space in the subflow windows becomes available. For simplicity, we consider equal

RTTs for all the subflows. Using equation (3.4), the ratio of congestion windows, in

steady state, of single-path PERT flows can be given as

wtcp1
wtcp2

= (
w1

w2

)(k+1)/2 = n(say)

a =

max
r

W
(k+1)
r

RTT 2
r

(
∑
r

Wr

RTTr
)
2

Assuming RTT1=RTT2, we can rewrite

a =
n2w

(k+1)
2

(w2 + n2/(k+1)w2)2

a =
n2w

(k−1)
2

(1 + n2/(k+1))2
(3.7)

The increment for each subflow is given as :

(
aα1

wk1
,
aα2

wk2
)

14

or

(
n2 n2(1−k)/(k+1)α1

(n2/(k+1) + 1)2w1

,
n2α2

(n2/(k+1) + 1)2w2

)

The common factor in addition to normal tcp increase of α
w

is

n2 α

(n2/(k+1) + 1)2w

In order to provide higher increase to the subflow with higher available bandwidth, we

maximize factor n2(1−k)/(k+1) and keep n2(1−k)/(k+1) >= 1. Solving these constraints

we have

(1− k)

(k + 1)
>= 0 =⇒ −1 < k <= 1

The constraint suggests that varying k from +1 to -1 will increase the amount of

traffic shift by increasing the sensitivity of a subflow to the corresponding path loss.

In order to atleast provide traffic shift equivalent to single-path TCP throughput

distribution, we have

(
w1

w2

) = n2/(k+1) >= n, where n >= 1

or

2

k + 1
>= 1 =⇒ −1 < k <= 1

The constraint also holds true for n-MPPERT flow (MPPERT flow with n subflows)

for n>=1. Selection of parameter ’k’ affects the amount of traffic shift achieved

by MPPERT subflows off the congested path. However, performing floating point

operations in the kernel is generally avoided. This would suggest choosing k=0 would

present a trade off between the computational requirement and amount of traffic shift

achieved by the subflows.

15

CHAPTER IV

EVALUATION OF MPPERT

A. Experiment Setup

We use ns-2 simulations to test and evaluate MPPERT algorithm. The experiment

setup is shown in Fig. 3. There are two bottleneck links which connect (two subflow)

MPPERT sender to its destination MPPERT receiver. In the homogeneous environ-

ment, all the background flows are of PERT flavor. Background flows carry FTP

traffic with a packet size of 1000 bytes. The start time of the traffic is uniformly

distributed on the interval (0, 20) sec with RTTs set to 40ms. In PERT-TCP 50-50

mix scenario, total number of background flows contain 50% of PERT and 50% of

TCP Reno flows.

Fig. 3.: Experiment setup for two multipath flow

B. Flappiness

Flappiness [10] occurs when one of the two paths having the same drop probability,

due to fluctuations, suffers from time to time, a few extra drops and looks momentarily

more congested. Thus, depending on random occurrences of loss, either subflow

16

windows can reach zero. Another issue could be that if one flow experiences a couple

of drops, the other subflow needs to experience many more drops to get the traffic

rates back into balance.

We monitor the congestion window distribution between two subflows to analyze the

flappiness induced by various algorithms. Fig. 4 shows that when both subflows

experience same path loss, there is no flappiness observed in the congestion windows

of the subflows. When path 1 experiences lower loss than path 2, congestion window 1

(path 1) dominates the traffic distribution. This shows that with change in path loss

one can change the distribution of total throughput among the available paths. As

we vary k from 1 to -1, we observe that the amount of traffic shift increases. However,

this may also accentuate the variations in congestion window based on momentary

fluctuations in path loss.

Flappiness is usually observed when there is no per subflow steady state distribution of

traffic and the coupling constraint only involves the total per flow congestion window.

For instance, COUPLED multipath TCP algorithm requires the total window size

(per flow) to be inversely proportional to the least path loss. This does not provide

a unique throughput distribution for the subflows and may even lead to complete

rejection of the higher loss paths. Simulations suggest that MPPERT does not suffer

from the issue of flappiness. Moreover, it settles down to a steady state distribution

much faster with low variations. Fig. 4 shows flappiness comparison of MPPERT

algorithm with varying k=1,0,-1/2. As expected, it shows that traffic shift increases

as we progress from k=1 to k=-1/2.

17

Fig. 4.: Flappiness of MPPERT for equal/unequal path loss with varying k

18

C. Throughput Distribution

It is desired that MPPERT be capable of efficiently shifting traffic off the congested

path. In order to precisely compare the amount of traffic shifts, we compare the

performance by varying the number of background traffic while keeping the link

bandwidths constant. The decrease in the number of background traffic increases

the available BW for MPPERT subflows. The configuration is same as in Fig. 3 with

both bottleneck links having capacity of 40Mbps. We maintain 40 background flows

on one path and vary the other from 40 to 10. The notation used for simplicity is

given as path 1 B.W. (number of background flows on path1) + path 2 B.W. (number

of background flows on path2).

Fig. 5.: MPPERT throughput distribution with varying k

For instance, case 40(40)+40(20) suggests two 40Mbps bottleneck links with 40 and

20 background flows on path1 and path2 respectively. Fig. 5 shows traffic distribution

with variation in available BW. When both links have the same available B.W, case

40(40)+40(40), traffic is distributed equally for all values of k. The results suggest

19

that as we move from k=1 to -1, the amount of traffic shift increases. For k=-1/2, we

observe the traffic shift to go from 50% to 93% with the variation in available BW.

D. Total Throughput Constraint

To have an incentive for MPPERT deployment, it should at least provide throughput

equal to (single-path) PERT throughput on the best of its available paths. Fig. 6

shows throughput comparison of the MPPERT flow with average throughput of the

background flows. For the MPPERT flow, we observe an increase in throughput

share of subflow 2 (path2) as we change the number of background flows on path2

from 40 to 10, keeping the number of background flows on path1 constant. The

results suggest that MPPERT flow also maintains total throughput close to the best

single-path throughput of the background PERT flows.

20

Fig. 6.: MPPERT throughput with varying number of background flows

21

E. Incremental Deployment of MPPERT

We further test the feasibility of incremental deployment of MPPERT in 50-50 PERT-

TCP mix environment. Experiment setup is same as in the homogeneous case. In

Fig. 7, we observe that MPPERT maintains its total throughput more than the

single-path TCP throughput on the best of its paths. Here, PERT tries to pump

in packets early in the queue and decreases the amount of traffic when the queue

becomes large, to minimize packet loss. TCP on the other hand, continuously sends

packets till a packet gets dropped.

Fig. 7.: MPPERT (k=-1/2) throughput in heterogeneous 50-50mix environment with

varying number of background flows

22

F. Resource Pooling

We compare MPPERT with independent multipath PERT (uncoupled flows), to an-

alyze the performance of resource pooling. The configuration is shown in Fig. 8. The

B.W. of links are 5Mbps each with bottleneck delay of 20ms. The RTT is set to 80ms

and the bottleneck buffer to 1BDP. The throughput distribution for flows A,B,C are

given in Table I for both independent multipath PERT and MPPERT(k=0). Inde-

pendent multipath PERT competes fairly on all the paths. Thus, flow A, B and C

get throughput close to 7.5Mbps, 5Mbps and 7.5Mbps. We observe that the over-

all throughput of MPPERT (k=0) is higher than the independent multipath PERT.

Moreover, for MPPERT, the distribution is quite fair and close to the ideal Resource

Pooling distribution of Throughput A = Throughput B = Throughput C = (20/3)

Mbps.

Fig. 8.: Resource pooling for cascaded configuration

We take another similar scenario as shown in Fig. 9. Here, S2 is a multipath capable

flow. Bottleneck links 1,2 are 12Mbps and 18Mbps respectively. RTT is set to 40ms.

Ideally, the resource pooling should distribute the total capacity of 30Mbps equally

23

Table I.: Resource pooling comparison of cascaded links for MPPERT k=0 and in-

dependent subflow multipath

MPPERT Throughput Independent Multipath Throughput

Flow A1 4723231 4699947

Flow A2 1239600 2206109

Flow A Total 5962832 6906057

Flow B1 3664999 2648762

Flow B2 2846471 1916552

Flow B Total 6511470 4565314

Flow C1 2015261 2699072

Flow C2 4302408 4462613

Flow C Total 6317669 7161686

Total 18791971 18633057

among the 3 flows (10Mbps each). We perform experiments with independent multi-

path PERT and MPPERT flows. We observe from Table II that MPPERT achieves

higher system throughput with distribution closer to the ideal share of 10Mbps each.

24

Fig. 9.: Resource pooling MPPERT (k=-1/2) with competing PERT flows

Table II.: Resource pooling comparison of MPPERT and independent subflow mul-

tipath with competing PERT flows

Independent MPPERT MPPERT

Multipath Throughput (K=-1/2) (K=0)

Throughput S1 6800789 9416288 8902788

Throughput S2 path 1 5082264 2555420 3051184

Throughput S2 path 2 8306036 7400033 6840525

Throughput S2 Total 12967781 9955453 9891709

Throughput S3 13388301 9650701 10324615

Total System 28889432 29022442 29119112

25

CHAPTER V

MPPERT PATH SELECTION

Multipath goal is not to harm or take unnecessary bandwidth advantage over normal

single-path TCP. It tries to get as much throughput as it would get with single-path

TCP on the best of its paths. Increasing the number of paths improve the chances of

getting better throughput. However, having large number of multipath subflows may

not produce any significant benefit over a minimal set of efficient subflows. Thus, one

may suppress the subflows that do not add significantly to the throughput improve-

ment and select only those subflows that offer reasonable bandwidth advantage.

Another approach could be to promote resource pooling and avoid the shared bot-

tleneck link. This would avoid subflows competing with each other at the shared

bottleneck. So, if MPPERT can successfully detect the shared bottleneck, it can be

used to suppress the self competing subflows. It would help in maintaining a smaller

set of subflows which lower the computational requirements. When MPPERT flow

has more paths, the probability of getting a higher BW path increases. This would

increase MPPERT’s chances of getting better throughput without compromising the

BW share of the competing flows. Thus, there is a need to detect common bottleneck

successfully to be able to promote disjoint subflows and obtain a smaller, efficient set

of multipath subflows.

A. Detection of Bottleneck Link

PERT continuously monitors queue sizes based on RTT values and accumulates im-

portant data for detection of the shared bottleneck. As internet is highly dynamic,

probability of different routers having same queue dynamics at a given instant is

26

highly unlikely. The likelihood is further reduced if the set of routers are reduced to

the ones used by a multipath flow. Thus, correlation among the measured queue sizes

for subflows having a shared bottleneck should be higher than with disjoint queues.

Although the idea is quite apparent, we may face issues realizing it. Some of the

issues are as follows :

• Rate at which a subflow receives queue information may not be sufficient.

• Queue sizes could get subjected to some random changes.

• Determining time stamp for the queue signal.

• Two different subflows sharing a bottleneck can have different sending rates.

A large time difference between the signals of different subflows may lower the

correlation.

Smoothed RTT provides reliable control over the dynamics of the queue. It may

increase the response time required to determine shared bottlenecks, but helps in

countering random variations in queue estimates. In order to compare signals of sub-

flows having different throughput, we take average over frequently occurring samples

between two consecutive timestamps of the slower subflow. It is important not to

take average over samples which are far apart in time, to avoid large fluctuations in

queue sizes.

We collect a series (qi) of queue samples for each subflow. We use averaging to reduce

the mismatch between the number of available samples. We then calculate cross-

correlation between the pair of subflows using perason’s correlation coefficient given

27

by

rq1,q2 =

∑
i

(q1i − q̄1)(q2i − q̄2)√
(
∑
i

(q1i − q̄1)2
∑
j

(q2j − q̄2)2)

This gives us instantaneous cross-correlation between the two subflows. We take

moving average over these instantaneous values to obtain average cross-correlation

between the subflows. Allow (t) sec to collect sufficient samples to measure average

correlation and use thresholding to detect shared bottleneck subflows. Larger time (t)

would provide better shared link detection. Choosing a higher threshold value would

reduce false positives (disjoint subflow as shared). However, it may also increase false

negatives (shared subflow as disjoint). Thus, depending on the system requirement,

suitable choice of threshold value would enhance its performance.

B. Experiment Setup

The setup uses 3-MPPERT (MPPERT with 3 subflows) with PERT as the back-

ground traffic for the homogeneous case as shown in Fig. 10. In the experiment,

Subflow1 and 3 share a common bottleneck whereas subflow 2 is disjoint. Back-

ground flows carry FTP traffic with their start times uniformly distributed on the

interval [0-20] sec. Each bottleneck link has a capacity of 40Mbps. The RTT is set

to 80ms. In the 50-50 PERT-TCP mix case, we use 50% of total background flows as

PERT and the other 50% as TCP Reno. Each link carries 20-20 PERT-Reno back-

ground flows giving available bandwidth of approximately 1Mbps. The experiment

maintains similar background conditions for both links. We perform shared bottle-

neck link detection test and distinguish shared/disjoint subflows. We decouple(make

independent) the disjoint subflows while keeping the shared ones as coupled. A few

highlights of the experiment are as follows :

28

Fig. 10.: Experiment setup for three multipath flows

• Illustrates the correlation comparison for shared/disjoint paths.

• Provides a comparison for coupled subflows sharing a bottleneck link and dis-

joint subflows under similar condition. (subflow 2 uses disjoint path (bot2) but

experiences similar background traffic as in bot1 having both subflows 1 and 3

sharing the link.)

• Measures the time required to correctly estimate the shared links.

C. Homogeneous Environment

We analyze the correlation for both shared and disjoint subflows. The correlation

in Fig. 11 and 12 shows that subflows with a shared bottleneck have much higher

correlation compared to the ones that are disjoint. Usually, for all-PERT flows, the

correlation is higher compared to 50-50 mix case. In the present case, we have chosen

threshold = 0.5. This successfully separates the shared bottleneck from a disjoint

one. This information can be used to decide which subflows share a link and can be

suppressed to achieve a smaller, efficient set of subflows.

29

Fig. 11.: Correlation of MPPERT subflows sharing a common bottleneck

The result of congestion window variation for the three subflows as per experiment

are shown in Fig. 13. Initially all the subflows start as a coupled system which

later results in subflow2 becoming independent and subflow 1 and 3 experiencing the

coupling. We also observe that congestion windows for both subflows 1 and 3 sharing

bottleneck 1 are equally distributed because of coupling and achieve a total window

size close to subflow 2, which experiences similar background traffic. It took close to

10 secs for the correlation metric to decide whether the subflows shared a bottleneck

link or are disjoint. This information can be used to suppress shared link flows and

is advisable to keep the threshold low to boost the true positives (ones indicating

shared bottleneck link).

30

Fig. 12.: Correlation of MPPERT subflows with disjoint paths

Fig. 13.: MPPERT disjoint/shared path subflow congestion window variation

31

D. Heterogeneous Environment

In order for PERT to compete with TCP, it has to operate in compete mode. It

changes its aggressiveness factor α proportional to the ratio of early response proba-

bility and drop probability. In order to make smooth changes, one needs to increase

alpha gradually. Increasing alpha steeply, may result in poor correlation as the queue

sizes undergo drastic changes. In TCP-PERT 50-50 mix case, keeping aggressiveness

factor increase of 0.1 and αmax constraint of 16, yield decent performance for PERT.

The correlation for shared and disjoint links are shown in Fig. 14,15. Suitable choice

of thresholding is important for the correct detection of shared and disjoint links.

Fig. 14.: Correlation for MPPERT shared bottleneck subflow in heterogeneous 50-50

mix environment

Correlation of subflows sharing a bottleneck link with high probability of loss is lower

than the case when probability of loss is much lower. This may sometimes delude in

32

Fig. 15.: Correlation for MPPERT disjoint bottleneck subflow in heterogeneous 50-50

mix environment

concluding shared bottleneck subflows as being disjoint. This may lead to false -ve

detection of the shared bottleneck. In order to lower such cases, one can change the

threshold from a fixed value to a set of values proportional to the available BW. As

the available BW increases, correlation shoots up and detection of shared bottlenecks

become easier.

E. Suppressing Shared Subflow

Multipath approach improves reliability and throughput share by providing multiple

concurrent connections between the end hosts. One of the key concerns is fairness.

The idea is that a multipath flow should not take higher BW than a single-path TCP

at the bottleneck. This can be ensured by coupling only subflows sharing the bottle-

33

neck link. Resource pooling strives to turn internet into a single pool of resources and

multipath flows facilitate single path flows by shifting traffic off the congested paths.

This idea forces all multipath subflows, having shared/disjoint bottleneck links, to

be coupled under the best single-path TCP throughput constraint. Raising the re-

source pooling restriction would allow multipath to couple only the shared subflows

and make the disjoint subflows independent. This would allow multipath flows to

achieve total throughput equal to the aggregate of single path TCP throughputs on

the disjoint paths. Suppressing subflows with shared bottleneck links help in reducing

the total number of paths.

We analyze two approaches to utilize shared subflow suppression technique. For com-

pletely coupled case (like MPTCP), it can be used to supress the shared subflows

and maintain complete coupling over the set of disjoint subflows, to promote resource

pooling. For coupled/decoupled case, it can be used to supress shared subflows and

allow disjoint subflows to become independent (like m-TCP, p-TCP which provide

throughput aggregation). For this kind of system, one can start with all-coupled

multipath flow and based on shared/disjoint subflow information, creates subsets

of coupled/independent subflows. It then suppresses shared subflows with smaller

throughput to obtain a set of disjoint subflows. In the experiment, we start with

6-MPPERT subflows and depending on the number of available disjoint paths, sup-

press the subflows sharing a bottleneck link. Each disjoint path uses 20Mbps link

with 10 background flow configuration (20(10)). The network has one shared bot-

tleneck link. So, for 4 disjoint path configuration, it puts subflows 1,2,3 on path1

and the remaining subflows 4,5,6 on the disjoint paths 2,3 and 4 respectively. Table

III and IV show the performance of coupling with correlation based supression. We

observe that the bottleneck detection technique successfully classifies the shared sub-

34

flows from disjoint subflows. For 6 disjoint path configuration, we observe that none

of the subflows get suppressed whereas 4 and 2 disjoint path configurations suppress

1 and 3 of its shared subflows (subflows with throughput ≈ .12Mbps) respectively.

Table V and VI show performance of coupling/decoupling with correlation based sup-

pression approach. MPPERT again detects the shared links efficiently and sets the

disjoint subflows independent. For the 6 disjoint path configuration, it sets all the

subflows independent whereas 4 and 2 disjoint path configurations suppress 1 and

3 of its shared subflows (subflows with throughput ≈ .12Mbps) respectively. This

provides throughput aggregation over the available disjoint paths.

35

Table III.: Coupled with correlation based suppression

Starting 6-MPPERT 6 disjoint 20(10) path

Avg Background Throughput path1 1965398

Avg Background Throughput path2 1989003

Avg Background Throughput path3 1966071

Avg Background Throughput path4 1953238

Avg Background Throughput path5 1977550

Avg Background Throughput path6 1941901

Multipath subflow 1 503688

Multipath subflow 2 265142

Multipath subflow 3 497288

Multipath subflow 4 626451

Multipath subflow 5 383667

Multipath subflow 6 733090

Multipath total 3009329

Starting 6-MPPERT 4 disjoint 20(10) path

Avg Background Throughput path1 1935559

Avg Background Throughput path2 1939981

Avg Background Throughput path3 1930198

Avg Background Throughput path4 1952365

Multipath subflow 1 120768

Multipath subflow 2 120768

Multipath subflow 3 555636

Multipath subflow 4 754368

Multipath subflow 5 844301

Multipath subflow 6 631854

Multipath total 3027615

36

Table IV.: Coupled with correlation based suppression with 2 disjoint path

Starting 6-MPPERT 2 disjoint 20(10) path

Avg Background Throughput path1 1884309

Avg Background Throughput path2 1927330

Multipath subflow 1 834576

Multipath subflow 2 120187

Multipath subflow 3 120270

Multipath subflow 4 120270

Multipath subflow 5 120270

Multipath subflow 6 882036

Multipath total 2197610

37

Table V.: Coupled/Decoupled switch with correlation based suppression

Starting 6-MPPERT 6 disjoint 20(10) path

Avg Background Throughput path1 1834381

Avg Background Throughput path2 1831131

Avg Background Throughput path3 1839459

Avg Background Throughput path4 1835652

Avg Background Throughput path5 1838786

Avg Background Throughput path6 1835869

Multipath subflow 1 1806212

Multipath subflow 2 1839958

Multipath subflow 3 1764238

Multipath subflow 4 1801059

Multipath subflow 5 1770140

Multipath subflow 6 1797568

Multipath total 10779179

Starting 6-MPPERT 4 disjoint 20(10) path

Avg Background Throughput path1 1833616

Avg Background Throughput path2 1827141

Avg Background Throughput path3 1838188

Avg Background Throughput path4 1835736

Multipath subflow 1 1579553

Multipath subflow 2 120103

Multipath subflow 3 120103

Multipath subflow 4 1884758

Multipath subflow 5 1774379

Multipath subflow 6 1800976

Multipath total 7279875

38

Table VI.: Coupled/Decoupled switch with correlation based suppression 2 disjoint

path

Starting 6-MPPERT 2 disjoint 20(10) path

Avg Background Throughput path1 1842909

Avg Background Throughput path2 1834281

Multipath subflow 1 120103

Multipath subflow 2 120103

Multipath subflow 3 120103

Multipath subflow 4 1249412

Multipath subflow 5 120103

Multipath subflow 6 1811698

Multipath total 3541527

39

CHAPTER VI

PERFORMANCE COMPARISON MPPERT AND MPTCP

Multipath TCP provides improved reliability, load balancing and mobility by provid-

ing multiple concurrent connections between end hosts. It promotes pooling of the

network resources into a single logical resource to promote better utilization. This sec-

tion provides performance comparison and analysis of our new multipath algorithm,

MPPERT, with MPTCP [21]. The key criteria for comparison are given below.

1. Queue Management

2. Packet Loss

3. Throughput and subflow traffic Distribution

4. Resource Pooling

A. Queue Management

Drop Tail/Tail Drop Queue management algorithm allows router to buffer maximum

possible packets before any packet gets dropped. Congestion occurs when buffer re-

mains continuously full. Tail drop algorithm may not distribute buffer uniformly

among the competing flows but maximizes the available resource at the router. RED

(Random Early Detection) is an AQM (Active Queue Management) algorithm which

monitors queue sizes and drops packets based on statistical probability. RED algo-

rithm provides fairer distribution of queue share to the competing flows. However, by

dropping packets early, it may be unable to fully utilize the buffer resources available

at the router.

MPPERT is a delay based multipath algorithm that performs AQM at the end hosts.

40

It proactively responds to an increase in queue size to avoid congestion. This relaxes

the need for AQM capability at the routers and provides greater control to the end

hosts. MPPERT performs decently with both RED and Tail Drop queue manage-

ment in all-PERT environment. In a heterogeneous environment, MPPERT pushes

most of its packets early in the queue and avoids sending packets when the queue

gets full. This helps MPPERT in maintaining the desired throughput and reducing

the number of packets lost. We employ experiment setup similar to Fig. 3 with

RTT 40ms, buffer size 1BDP and each bottleneck link of 10Mbps capacity carrying

10 background traffic each (case 10(10)+10(10)).

Table VII shows performance comparison of MPTCP and MPPERT flow in a ho-

mogeneous environment using Tail Drop Queue Management. We observe that the

total throughput of MPTCP flow is considerably less than the average throughput of

background TCP Reno. MPTCP also maintains higher average queue length of 65%

of the total buffer size in comparison with 26% for MPPERT. MPPERT maintains

throughput close to 1Mbps, which is the best single-path background PERT through-

put. It also offers higher total system throughput in comparison with MPTCP. Both

MPTCP and MPPERT(k=0) flows offer similar throughput distribution for multi-

path subflows.

MPTCP performs much better with RED queue management as per Table VIII. In

RED, routers perform AQM and randomly drop packets to lower average queue size.

For RED queue management, PERT and MPPERT flows may mistakenly get pushed

in compete mode. This unnecessary shift from safe to compete mode may lower the

total system throughput in a homogeneous environment.

41

Table VII.: Performance comparison MPPERT, MPTCP for tail drop queue man-

agement

10(10)+10(10) MPTCP MPPERT

Avg Background Throughput path1 982949 949191

Avg Background Throughput path2 981918 947665

Multipath subflow 1 158832 523066

Multipath subflow 2 167892 538326

Multipath total 326724 1061392

Avg Queue Size path 1 32.3946 13.209

Avg Queue Size path 2 32.4967 12.7726

System Throughput 19975394 20029952

Table VIII.: Performance comparison MPTCP, MPPERT for RED active queue man-

agement

10(10)+10(10) MPTCP MPPERT

Avg Background Throughput path1 931540 859483

Avg Background Throughput path2 928359 864797

Multipath subflow 1 498711 625143

Multipath subflow 2 528379 638032

Multipath total 1027090 1263176

Avg Queue Size path 1 5.08194 4.97659

Avg Queue Size path 2 4.95652 4.84448

System Throughput 19626080 18505976

42

B. Packet Loss

MPPERT is a delay based protocol which pro-actively responds to congestion to

avoid packet losses. On the other hand, TCP is a loss based protocol which requires

packet loss to perform congestion control. In an all-PERT environment, after initial

congestion, MPPERT quickly achieves stable state and avoids any further packet loss.

MPTCP on the other hand, continuously introduces large number of packet losses and

retransmissions which decreases total throughput of the system. Fig. 16 shows packet

loss at the two bottleneck links for MPTCP with TCP background and MPPERT

with PERT background flows for 10(10)+10(10) configuration. The result suggests

that after initial stabilization, PERT environment suffers no packet loss whereas TCP

environment continuously keeps on loosing packets at the bottleneck link.

Fig. 16.: MPPERT and MPTCP pathloss comparison at bottleneck 1 and 2

43

C. Throughput and Subflow Traffic Distribution

We compare total throughput achieved by MPPERT and MPTCP for the cases

10(10)+10(10), 10(10)+10(5) and 10(10)+10(2) as shown in Table IX. Here, both

the flows operate in their homogeneous environments with MPTCP using RED and

MPPERT using Tail Drop queue management schemes (both using favorable queue

management schemes). The results in Table IX suggest that in a homogeneous en-

vironment, in comparison with MPTCP, MPPERT flow maintains throughput much

closer to the throughput of the best single- path background flow. Moreover, in all

the experiments, the MPPERT network consistently maintains higher total system

throughput than the MPTCP network. The traffic distribution is quite similar for

both MPTCP and MPPERT, which ranges from equal distribution of 0.5 to 0.9 for

10(10)+10(2) configuration. Here, traffic distribution is given by the ratio of higher

throughput subflow and the total multipath throughput.

Fig. 17 shows performance of 2-MPPERT (two subflow MPPERT) and 2-MPTCP

(two subflow MPTCP) competing together in a 50-50 mix (50% PERT and 50% Reno)

environment. We set RTT to 160ms and buffer size to 1BDP. We observe that the

MPPERT flow acts more aggressively and aquires higher total throughput compared

to the MPTCP flow, which is much closer to the throughput of the best-single path

background flow. Fig. 17(b) suggests that both MPTCP and MPPERT flows can

shift traffic from more congested (path 1) to the less congested (path 2) path. The

simulation results suggest that a MPPERT flow, though slightly more aggressive, is

able to compete and successfully shift traffic off the congested path in a heterogeneous

environment.

We observe, from results in Fig. 18, that the total system resource utilization is

44

lower when all the flows employ TCP. It is observed with MPTCP that when the

available BW is high, the total achieved system throughput is low. To analyze the

performance, we perform experiments with 2-MPPERT and 2-MPTCP systems hav-

ing available BW of 5 Mbps and above. We start with 15(1)+20(1) (15Mbps and

20Mbps link with 1 background flow each) and 10(1)+20(1) (10Mbps and 20Mbps

link with 1 background flow each) configurations. We then scale the link bandwidth

and the background traffic proportionally, maintaining the same available BW, to

monitor change in system resource utilization. Fig. 18 shows that the MPPERT sys-

tem maintains much higher system througput, close to 100% utilization, compared to

MPTCP system which obtains 80% system utilization. MPPERT system, on account

of low packet loss, attains higher total system resource utilization.

D. Resource Pooling

To analyze the resource pooling performance of MPPERT and MPTCP, we compare

both algorithms for scenario shown in Fig. 19. Here S2 is a multipath capable flow.

Bottleneck links 1,2 are 12Mbps and 18Mbps respectively. Here RTT is 40ms. Ideal

resource pooling should distribute the total 30Mbps capacity equally (10Mbps each)

among the 3 competing flows. Table X shows that in homogeneous environment,

the traffic distribution of flows S1,S2,S3, for MPPERT (k=-0.9), is 99.1%, 95.4%

and 95.4% of the ideal 10Mbps each distribution in comparison to 67.4%, 88.75%

and 85.04% for MPTCP. Total throughput of the system is about 20% higher for

MPPERT (k=-0.9) than with MPTCP. MPPERT (k=0) distributes traffic inversely

proportional to path loss, similar to MPTCP. However, it performs slightly better on

account of PERT’s properties of lower packet losses and smaller queue lengths.

45

Table IX.: Total throughput and subflow distribution comparison

10(10)+10(10) MPTCP MPPERT

Avg Background Throughput path1 931540 949191

Avg Background Throughput path2 928359 947665

Multipath subflow 1 498711 523066

Multipath subflow 2 528379 538326

Multipath total 1027090 1061392

Multipath throughput distribution 0.485 0.492

System Throughput 19626080 20029952

10(10)+10(5) MPTCP MPPERT

Avg Background Throughput path1 936039 952168

Avg Background Throughput path2 1714053 1762334

Multipath subflow 1 457491 493171

Multipath subflow 2 1116690 1170704

Multipath total 1574181 1663875

Multipath throughput distribution 0.709 0.703

System Throughput 19504836 19997225

10(10)+10(2) MPTCP MPPERT

Avg Background Throughput path1 950425 967880

Avg Background Throughput path2 3482633 3317438

Multipath subflow 1 310018 336126

Multipath subflow 2 2500000 3242388

Multipath total 2810018 3578514

Multipath throughput distribution 0.889 0.906

System Throughput 19279534 19892190

46

Fig. 17.: Throughput comparison for 2-MPPERT and 2-MPTCP competing in het-

erogeneous environment

47

Fig. 18.: System resource utilization comparison for 2-MPPERT and 2-MPTCP

48

Fig. 19.: Experiment setup MPPERT, MPTCP resource pooling comparison

Table X.: Resource pooling comparison MPPERT and MPTCP for figure 19

MPTCP MPPERT k=0 MPPERT k=-0.9

Throughput S1 6739865 8451906 9910109

Throughput S2 path 1 3044750 3481350 2055812

Throughput S2 path 2 5830170 6861631 7489080

Throughput S2 Total 8874920 10342981 9544893

Throughput S3 8503904 10241246 9541485

System Throughput 24118689 29036133 28996487

49

CHAPTER VII

RESPONSIVENESS OF MPPERT

In order to comprehensibly assess the performance and traffic shift of MPPERT algo-

rithms, we need to monitor the performance in various scenarios such as (a) rapid in-

crease/decrease of available BW, (b) high and low link bandwidths, (c) with small du-

ration flows. We categorize these scenarios into four major test cases, for 2-MPPERT

flow in a configuration similar to Fig. 3.

1. Available BW of one subflow is 4 times the other.

2. Available BW of one subflow is 2 times the other. Decrease available BW on

path1 (without changing path2) by increasing the background flows, to make

available BW on both the paths equal at T=300s.

3. Available BW of one subflow is 2 times the other. Increase available BW of

path2 (without changing path 1) to make both of them equal at T=300.

4. Available BW of path1 equals path2. Increase available BW on one path, at

T=300s, while keeping other the same.

Case 1

Configuration : Bottleneck link capacity 40Mbps, path1 :10 PERT background flow,

path2 : 40 PERT background flows.

For the given configuration, one subflow has 4 times the available BW of the other.

We observe from Fig. 20 that the throughput for both k=-1/2, 1 is higher for the

less congested path1 but the traffic shift is more in case of k=-1/2. This happens

because changing k values from k=1 to k=-1, increases the rate with which lower

50

path loss (higher available BW) window grows. Thus, as we decrement k, window

increase factor becomes higher and even with the same number of acknowledgements,

window grows faster to achieve higher throughput.

Fig. 20.: MPPERT throughput vs time for long duration subflow

51

Cases 2

Configuration : Bottleneck link capacity 40Mbps, path1 :15 and 30 PERT background

flows at T=0 and T=300 respectively, path2 :30 PERT background flows.

As per the configuration, we start subflow1 with twice the available BW of subflow

2. We increase the background traffic on path 1, at T=300s, to make available BW

of both the subflows equal. We try to analyze how quickly the subflow settles down

to the ideal distribution. In the present case, it takes less than 10 sec to settle down

to the steady state value. The simulations in Fig. 21 suggest that as we vary k from

1 to -1, the amount of traffic shift increases towards the higher available BW path.

In effect, it also becomes more sensitive to small fluctuations in the traffic.

Cases 3

Configuration : Bottleneck link capacity 40Mbps, path1 :15 PERT background flow,

path2 :30 and 15 PERT background flows at T=0 and T=300 respectively.

Earlier scenario increased traffic on the less congested path, to equalize available BW

of both the flows. On the other hand, the following test decreases the congestion

on the more congested path (path2), to equalize available BW of both the flows.

This would require the path having higher throughput share, subflow 1, to give up

throughput and push more traffic on subflow 2. This is apparent in the result shown

in Fig. 22.

52

Fig. 21.: MPPERT responsiveness to increase in background traffic for high BW path

53

Fig. 22.: MPPERT responsiveness to decrease in background traffic for low available

BW path

54

Cases 4

Configuration : Bottleneck link capacity 40Mbps, path1 :30 PERT background flow,

path2 :30 and 15 PERT background flows at T=0 and T=300 respectively.

Here, we analyze how fast a subflow adjusts to the increase in available BW. Fig.

23 suggests that for k=-1/2, the steady state traffic shift is much larger compared

to k=1. MPPERT (k=-1/2) also increases its window size faster (as per two flow

analysis) compared to MPPERT(k=1), making it more responsive to congestion.

Fig. 23.: MPPERT responsiveness to decrease in background traffic

Selection of parameter ’k’ affects the responsiveness of MPPERT. As we vary param-

eter ’k’ from 1 to -1, the sensitivity to congestion increases. This improves both rate

55

and amount of traffic shift achieved by a MPPERT flow. However, performing float-

ing point operations in the kernel is generally avoided. This would suggest choosing

k=0 would present a suitable trade off between the computational requirement and

amount of traffic shift achieved by a MPPERT flow.

56

CHAPTER VIII

CONCLUSION AND FUTURE WORK

In this thesis, we have proposed a new multipath algorithm MPPERT adopting PERT

to multipath environment. The algorithm offers granular control by providing pa-

rameteric adjustments over the amount of traffic shift desired from the multipath

subflows. Through ns-2 simulations, we have analyzed the performance of MPPERT

based on properties like flappiness, resource pooling, system throughput and packet

loss etc. Simulations suggest that MPPERT provides performance boost from single-

path PERT. It moreover provides higher connection reliability by using multiple sub-

flow connections between end-hosts.

A comparative study of MPPERT and MPTCP is provided. The results reflect that

MPPERT in homogeneous environment outperforms MPTCP in terms of throughput

and resource pooling. It suffers no packet loss after initial stabilization and results

in higher total system throughput. It also maintains smaller queue lengths offering

smaller delays to real time applications. MPPERT can also be incrementally deployed

in heterogeneous environment where it helps achieve higher system throughput. This

makes MPPERT deployment quite attractive.

Increasing the number of subflows in MPPERT would increase the computational

requirements. The thesis suggests methods to detect shared bottleneck link subflows

of a MPPERT flow. This then can be used to supress shared link subflows and pro-

mote lower number of disjoint paths. This reduces computational requirements while

providing similar througput gains.

In the future, it is desired to deploy MPPERT in various datacenter topologies to

57

monitor performance enhancements over single path TCP. It will also be helpful in

predicting suitable number of subflows for large scale networks. As internet has

evolved over the decades, it is also desired to study interactions between middleboxes

and end hosts in terms of multipath connection negotiations, additions/deletions of

new subflows etc. which are pivotal in commercial deployment of any algorithm.

58

REFERENCES

[1] M. Handley, “Why the Internet only just works,” BT Technology Journal, vol.

24, no. 3, pp. 119-129, 2006.

[2] C. Raiciu, D. Niculescu, M. Bagnulo, and M. Handley, “Opportunistic mobility

with multipath TCP,” in Proc. 6th ACM International Workshop on Mobility in

the Evolving Internet Architecture, 2011, pp. 7-12.

[3] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson and R. Wang, “A transport

layer approach for improving end-to-end performance and robustness using re-

dundant paths,” in Proc. USENIX’04 Annual Technical Conference, 2004, pp.

99-112.

[4] H.Y. Hsieh, and R. Sivakumar, “A transport layer approach for achieving aggre-

gate bandwidths on multihomed mobile hosts,” in Proc. 8th Annual International

Conference on Mobile Computing and Networking, 2002, pp. 83-94.

[5] J. R. Iyengar, K. C. Shah, P. D. Amer, and R. Stewart, “Concurrent multi-

path transfer using SCTP multihoming over independent end-to-end paths,”

ACM/IEEE Transactions on Networking, vol. 29, no. 10, pp. 951-964, 2006.

[6] L. Magalhaes and R. Kravets, “Transport level mechanisms for bandwidth ag-

gregation on mobile hosts,” in Proc. IEEE International Conference on Network

Protocols, 2001, pp. 165-171.

[7] F.P. Kelly, A.K. Maulloo, D.K.H. Tan, “Rate control in communication networks:

shadow prices, proportional fairness and stability,” Journal of the Operational

Research Society, vol. 49, no. 3, pp. 237-252, 1998.

59

[8] F.P. Kelly, T. Voice, “Stability of end-to-end algorithms for joint routing and

rate control,” ACM SIGCOMM Computer Communication Review, vol. 35, no.

2, pp. 5-12, 2005.

[9] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley, “Multi-path

TCP: a joint congestion control and routing scheme to exploit path diversity

in the Internet,” IEEE/ACM Transactions on Networking, Vol. 14, no. 6, pp.

1260-1271, 2006.

[10] D. Wischik, M. Handley and C. Raiciu, “Control of multipath TCP and opti-

mization of multipath routing in the Internet,” in Proc. NetCOOP, 2009, pp.

204-218.

[11] D. Wischik, M. Handley and M. B. Braun, “The Resource Pooling Principle,”

ACM SIGCOMM Computer Communication Review, vol. 38, no. 5, pp. 47-52,

2008.

[12] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda, “Multipath

Congestion Control for Shared Bottleneck,” in Proc. 8th International Workshop

on Protocols for Future, Large-Scale Diverse Network Transports, 2009, pp. 19-

24.

[13] I. Rhee and L. Xu, “Limitations of Equation-based Congestion Control,”

IEEE/ACM Transactions on Networking, vol. 15, no. 4, pp. 852-865, 2007.

[14] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang and A. Vahdat. Hedera,

“Dynamic Flow Scheduling for Data Center Networks,” in Proc. 7th USENIX

Symposium on Networked System Design and Implementation, 2010, pp. 281-296.

[15] A. Ford, C. Raiciu, and M. Handley, “TCP extensions for multipath operation

60

with multiple addresses,” Internet Engineering Task Force, Internet Draft, draft-

ietf-mptcp-multiaddressed-06, October 2010.

[16] P. Key, L. Massoulie, D. Towsley, “Combining multipath routing and congestion

control for robustness,” in Proc. IEEE Conference on Information Sciences and

Systems, 2006, pp. 345-350.

[17] Laws, C.N, “Resource pooling in queueing networks with dynamic routing,” Ad-

vances in Applied Probability, vol. 24, no. 3, pp. 699-726, 1992.

[18] P. Key, L. Massoulie, D. Towsley, “Path selection and multipath congestion

control,” in Proc. 26th IEEE International Conference on Computer Communi-

cations, 2007, pp. 143-151.

[19] K. Kotla and A. L. Narasimha Reddy, “Making a Delay-based Protocol Adap-

tive to Heterogeneous Environments,” in Proc. 16th International Workshop on

Quality of Service, 2008, pp. 100-109.

[20] S. Bhandarkar, A. L. Narasimha Reddy, Y. Zhang, and D. Loguinov, “Emulating

AQM from End Hosts,” ACM SIGCOMM Computer Communication Review,

vol. 37, no. 4, pp. 349-360, 2007.

[21] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, implementation

and evaluation of congestion control for multipath TCP,” in Proc. of 8th USENIX

Symposium on Networked Systems Design and Implementation, 2011, pp. 8-8.

61

VITA

Ankit Singh received his B.Tech. degree in electronics and communication en-

gineering from Indian Institute of Technology, Guwahati in 2008 and his M.S. in

Computer Engineering from Texas A&M, College Station, Texas, in 2012. His re-

search interests are in the areas of network congestion protocols and wireless ad hoc

networks. He has been a recipient of a merit scholarship from the Reserve Bank of

India during 2004-2008. Prior to arriving at Texas A&M, he worked in the Networx

group, CenturyLink, India 2008-2010. He can be contacted at the following address:

Department of Electrical and Computer Engineering, Texas A&M, 52B WERC, Col-

lege Station, TX 77843-3128.

The typist for this thesis was Ankit Singh.

