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ABSTRACT

Novel Atomic Coherence and Interference Effects in QuantumOptics

and Atomic Physics. (August 2012)

Pankaj Kumar Jha, B.Sc. ; M.Sc., Indian Institute of Technology Kanpur

Chair of Advisory Committee: Dr. Marlan O. Scully

It is well known that the optical properties of multi-level atomic and molecular system

can be controlled and manipulated efficiently using quantumcoherence and interference,

which has led to many new effects in quantum optics for e.g. lasing action without popula-

tion inversion, ultraslow light, high resolution nonlinear spectroscopy etc. Recent experi-

mental and theoretical studies have also provided support for the hypothesis that biological

systems uses quantum coherence. Nearly perfect excitationenergy transfer in photosyn-

thesis is an excellent example of this.

In this dissertation we studied quantum coherence and interference effects in the tran-

sient and the continuous-wave regimes. This study led to (i)the first experimental demon-

stration of carrier-envelope phase effects on bound-boundatomic excitation in multi-cycle

regime(∼ 15 cycles), (ii) a unique possibility for standoff detection of trace gases us-

ing their rotational and vibrational spectroscopic signals and from herein called Coherent

Raman Umklappscattering, (iii) several possibilities forfrequency up-conversion and gen-

eration of short-wavelength radiation using quantum coherence (iv) the measurement of

spontaneous emission noise intensity in Yoked-superfluorescence scheme.

Applications of the obtained results are development of XUV(X-Ray) lasers, con-

trolled superfluorescent (superradiant) emission, carrier-envelope phase effects, coherent

Raman scattering in the backward direction, enhancement ofefficiency for generating ra-

diation in XUV and X-Ray regime using quantum coherence withand without population

inversion and to extend XUV and X-Ray lasing to∼ 4.023 nm in Helium-like carbon.
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CHAPTER I

INTRODUCTION

A. Motivation and Objectives

Interaction of light with matter is one of the major areas of research in quantum optics and

atomic physics. Quantum coherence and interference1 have led to many novel effects[2]

for e.g. coherent population trapping [3], amplification orlasing without population in-

version(LWI) [4, 2, 5, 6, 7], ultraslow light [8], enhancement of refractive index with-

out absorption [9], yield high-sensitivity magnetometry [10], high resolution nonlinear

spectroscopy[11], efficient solar cells[12] etc. Recent experimental and theoretical stud-

ies have also provided support for the hypothesis that even biological systems use quantum

coherence[13, 14, 15]. Nearly perfect efficient excitationenergy transfer in photosynthe-

sis is an excellent example of this. Furthermore, during thepast decade study of quantum

interference(QI) effects has been extended to tailored semiconductor nanostructures like

quantum wells and dots due to coherent resonant tunneling owing to their potential appli-

cations in photo-detection [16, 17], lasing [18, 19], quantum computing and quantum cir-

cuitry [20, 21], optical modulator[22]. On one hand quantumcoherence effects in quantum

optics and atomic physics is a subject of intense theoretical and experimental investigation

while on the other hand its effect in human brain has been a topic of debate and discussion2.

Coherence effects in two-level system was first studied by Mollow[23] who discov-

ered interesting features in the resonance fluorescence spectrum of a two-level atom driven

by a strong electromagnetic field. This was later confirmed bya beautiful experiment[24].

This dissertation follows the style ofPhysical Review A
1One of the first experiments to demonstrate the role of atomiccoherence was done by Hanle[1]
2The authors are encourage to read a nice review article by Mavromatos[27]
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Recently a counterpart of the Mollow triplet[23] was obtained for the case of incoherent

excitation in a cavity by Valle and Laussy[25] where they showed that the strong-coupling

between the cavity and the emitter generates the necessary coherence required. For multi-

level system the coherence can be easily generated by coupling the upper-level to an adja-

cent level by a coherent electromagnetic field which has led to intriguing coherence effects

in three-level systems. Recently Scully[12] extended the idea of coherence effects to solar

photovoltaic cells and showed that the quantum interference can enhance the photovoltaic

thermodynamic power beyond the limit of a system, which doesnot posses quantum co-

herence. Infact this coherence can be generated by an external source like microwave

radiation source or by noise-induced quantum interferencewhich is essentially different

from the former which costs energy.

Although numerous theoretical and experimental studies ofcoherence effects have

been performed, there are still open areas to be explored. For example, quantum coherence

and interference which plays a key role in LWI as shown extensively in the literature, can it

be used as a tool for enhancing the gain in the X-Ray/XUV regimes for e.g recombination

lasers. A realistic approach in this area will open the door for the development of powerful

lasers in the wavelength down to “water window” . Generationof XUV radiation has been

a focus of intensive research in the past decade. One approach was proposed by Scully[26]

in which it was shown that intense short pulses XUV radiations can be produced by cooper-

ative spontaneous emission from visible or IR pulses. Here we have proposed one approach

to accomplish the gain enhancement by applying a strong driving field on the adjacent tran-

sition to the lasing (XUV) transition and showed that gain can be substantially enhanced.

We also investigated a unique way to accomplish effective unidirectional excitation using

bi-directional source in four-level model.

Another area in which we want to study interference effects is in the regime of excita-

tion by ultra-short few and multi-cycle pulse. We want to address and investigate its role in
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carrier-envelope phase(CEP) effects on atomic excitationthus shining light on a fundamen-

tal question: “How many oscillations of the field within the pulse is sufficient to neglect

the CEP effect?” Till date most of the research in the CEP effects has been performed in

the ionization regime. Here we present an experiment in which we observed CEP effect

by multi-cycle pulses. To the best of our knowledge this is the first demonstration of CEP

effects by multi-cycle pulses on atomic exception between bound-bound states.

The research in my dissertation will also cover coherent Raman Umklappscattering,

quantum interference controlled resonance profiles, usinglaser induced atomic desorp-

tion(LIAD) technique to optically control the alkali-metal vapors and picosecond ultravio-

let Yoked superfluorescent (YSF) emission from optically pumped rubidium vapor.

B. Outline

The outline of the present dissertation is summarized here.

Chapter II. In this chapter, we have discussed briefly the mathematical framework

used to study the interaction of matter with radiation in semiclassical approximation. We

discuss the absorption and dispersion profile of two and three-level (Lambda) system ex-

plicitly. To understand the concept of atomic coherence we have addressed two examples

namely electromagnetically induced transparency and lasing without inversion.

Chapter III. In this chapter, we have discussed an efficient way of generation coher-

ence in two-level system excited by far off-resonant stronglaser pulses. Exact analytical

solution for two-level system interacting with a class of pulses (chirped and unchirped) is

presented and the solutions are given in terms of Heun Function Hl, which is a generaliza-

tion of Hypergeometric functions, and Confluent Heun Function Hl(c). We also present a

unique way of enhancing the excitation by introducing a phase jump in the pulse and the

enhancement factor can be as large as106 for a judicious choice of parameters. Using the
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results obtained here we estimated a possibility for generating 10nJ − 1µJ of energy in

XUV regime.

Chapter IV. In this chapter we have discussed a quantum interference mediated con-

trol of the resonance profiles in a generic three-level system and investigate its effect on

key quantum interference (QI) phenomena. Namely in a three level configuration with

doublets in the ground or excited states, we show a precise control over enhancement and

suppression of the emission (absorption) profiles by manipulating the strength of QI and

the energy spacing of the doublets. We analyze the application of such QI induced control

of the resonance profile in the framework of lasing without inversion and photo-detection.

Chapter V. In this chapter, we have focused on lasing in He and He-like ions that

utilizes advantages of the recombination XUV/soft X-ray lasers and the effects of quantum

coherence. The latter, for example, is the key for LWI, wherein quantum coherence created

in the medium by means of strong driving field helps to partially eliminate resonant absorp-

tion on the transition of interest and to achieve gain without population inversion. Such an

effect holds promise for obtaining short wavelength lasersin the XUV and X-ray spectral

domains, where inverted medium is difficult to prepare due tofast spontaneous decay. We

have performed numerical simulations on neutral Helium as our gain medium and showed

that a respectable pulse of109 photons at 58.4nm of radiation can be generated. We also

explored the connection between gain swept superradiance and transient Raman LWI.

Chapter VI. In this chapter, we have proposed how to integrate the basic idea of re-

combination lasers with quantum coherence effects. We havediscussed a possibility of

enhancing the gain in XUV/X-Ray regime of electromagnetic radiation assisted by an ex-

ternal, longer wavelength (in optical domain), coherent source readily available in labs. We

estimated at least an order of magnitude enhancement in the output energy in the presence

of the coherent drive field. To envision the proof of principle experiment, we applied this

technique of coherence enhanced lasing in Rubidium and theoretically estimated similar
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enhancement factor atD1 transition thus showing promise of the approach.

Chapter VII. In this chapter, we have experimentally and theoretically shine light

on a “fundamental question” related to CEP effects. It is well know that CEP effect is

pronounced for few cycle excitation and this has been thoroughly studied theoretical and

experimentally. Infact the number of oscillations/cyclesof electric field in the pulse which

are sufficient to neglect the CEP effect is still an intriguing question. Here we present an

experiment in which we observed CEP effects on bound-bound atomic excitation (Zeeman

sub-levels) in the radio-frequency(RF) domain by multi-cycle pulses (∼ 13 cycles). Our

experiment is the first step in the field of CEP effects by multi-cycle pulses.

Chapter VIII. In this chapter, we identify the conditions for coherent Raman scat-

tering to enable the generation of phase-matched, highly directional, nearly-backward-

propagating light beams. Our analysis indicates a unique possibility for standoff detection

of trace gases using their rotational and vibrational spectroscopic signals. We demonstrate

spatial selectivity of Raman transitions and variability of possible Umklappscattering im-

plementation schemes and laser sources.

Chapter IX. In this chapter, we have extended the idea of LIAD to control the alkali-

metal vapors. Earlier work in this field has been mainly focused on control of concen-

tration of atoms. Here we performed the proof of principle experiment on cesium and

demonstrated that LIAD can be used a powerful tool to optically control and monitor the

cesium dimers. We also combined LIAD and with resonance Raman technique to explore

a possibility for remote sensing.

Chapter X. In this chapter, we have discussed an experiment on triggered YSF emis-

sion from optically pumped rubidium vapors. We have experimental observed the effect of

injected pulse on the delay and thus quantifying the spontaneous emission noise intensity

in YSF scheme. We also studied the effect of weak drive pulse of power 10nW-100nW on

the directionality of the generated YSF signal. The effect of pulse shape and the angle be-
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tween the pump and injected pulse on direction of the YSF signal generated and the noise

intensity is under progress.

Chapter XI. In this chapter, we have summarized the key results presented in this

dissertation.
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CHAPTER II

ATOM-FIELD INTERACTION: SEMICLASSICAL THEORY

In this chapter, we will discuss the frame work frequently used in quantum optics to study

the interaction of matter with radiation. We will treat the atom as a quantum mechanical

system and the field is treated classically. The readers are encouraged to read[2, 28, 29] for

detailed analysis.

A. Two-Level Atom

Let us consider a two-level atom (TLA), located at~r = ~r0, with lower levelb and an

upper levela [see Fig. 1], interacting with a linearly polarized monochromatic classical

field ~E(~r, t). In dipole approximation, the Hamiltonian for the interaction between a TLA

and the radiation field is given as1

H = H0 + H1, (2.1)

with

H1 = −e~r · ~E(~r0, t), (2.2)

where~r is the position of the electron from the nucleus. HereH0 andH1 represent the

unperturbed (free) and interaction Hamiltonian. The free Hamiltonian of the TLAH0 is

given as

H0 = ~ωa |a〉〈a|+ ~ωb |b〉〈b| . (2.3)

1Recently we also analyzed the symmetry between two problems(a) interaction of a two-level
atom with a classical field and (b) position dependent mass Schrodinger equation (PDMSE). Ana-
lytical solution to PDMSE in one- and later generalized to three-dimension is discussed extensively
in[30, 31]
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a

b

 
!

Fig. 1. Interaction of a two-level atom with a single mode radiation field of frequencyν.

The atomic transition frequency isω.

The lower levelb and the upper levela are the eigenstates of the free HamiltonianH0 with

eigenvalues~ωb and~ωa respectively. Let us consider that the wavefunction corresponding

to the levelsa andb have definite parity i.e〈a|~r|a〉 = 〈b|~r|b〉 = 0 . Using the completeness

relation|a〉〈a|+ |b〉〈b| = 1, the interaction HamiltonianH1 is given as

H1 = −e(〈a|~r|b〉|a〉〈b|+ 〈b|~r|a〉|b〉〈a|) · ~E(t). (2.4)

Let us define dipole moment as

~℘ab = e〈a|~r|b〉. (2.5)

Substituting Eq.(2.5) in Eq.(2.4) and assume (~r0 = 0) yields,

H1 = −(~℘ab|a〉〈b|+ ~℘ba|b〉〈a|) ·
[

ǫ̂

2
Eb

(

e−iνt + eiνt
)

]

. (2.6)

Without the loss of generality we shall consider that the field is polarized along the x-

direction i.e.~r · ǫ̂ = x. Now from Eq.(2.6) we get

H1 = −
[

℘abEb

2
|a〉〈b|+ ℘baEb

2
|b〉〈a|

]

(

e−iνt + eiνt
)

. (2.7)

The total Hamiltonian is now given as

H = ~ωa |a〉〈a|+ ~ωb |b〉〈b| − ~Ω|a〉〈b|
(

e−iνt + eiνt
)

− ~Ω∗|b〉〈a|
(

e−iνt + eiνt
)

. (2.8)
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whereΩb = ℘abEb/2~.

1. Probability Amplitude Method

The wave function of a two-level atom can be written in the form

|ψ(t)〉 = Ca(t)|a〉+ Cb(t)|b〉. (2.9)

whereCa andCb are the probability amplitudes of finding the atom in levelsa andb re-

spectively. The wave function obeys the Schrödinger equation

i~ ˙|Ψ〉 = H |Ψ〉 , (2.10)

and the equation of motion for the amplitudesCa andCb may be written as

Ċa = −iωa + iΩb

(

e−iνt + eiνt
)

Cb, (2.11)

Ċb = −iωb + iΩ∗
b

(

e−iνt + eiνt
)

Ca. (2.12)

In order to solve forCa andCb, we first write the equations of motion for the slowly varying

amplitudes

Ca = cae
−i[ωat+φa(t)], (2.13)

Cb = cbe
−i[ωbt+φb(t)]. (2.14)

From Eq.(2.11-2.14), we obtain

ċa − iφ̇aca = iΩbcb
{

e−i[νt+ωbt+φb−ωat−φa] + ei[νt−ωbt−φb+ωat+φa]
}

, (2.15)

ċb − iφ̇bCb = iΩ∗
bca
{

e−i[νt+ωat+φa−ωbt−φb] + ei[νt−ωat−φa+ωbt+φb]
}

. (2.16)
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a a

a a

b b

b b

Energy conserving

Energy non-conserving

   a+   a+

  a    a++

Fig. 2. Pictorial representation of matter-field interaction frequently used in quantum op-

tics and atomic physics where the energy non-conserving terms are dropped while

making rotating wave approximation(RWA).

From Eqs.(2.15-2.16), we see that proper choice ofφa andφb can eliminate the fast oscil-

lating exponentials. For example, we consider

νt + ωbt+ φb − ωat− φa = 0. (2.17)

Substituting Eq.(2.17) in Eqs.(2.15-2.16) yields

ċa − iφ̇aca = iΩb

[

1 + e2iνt
]

cb, (2.18)

ċb − iφ̇bcb = iΩ∗
b

[

e−2iνt + 1
]

ca. (2.19)
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In Fig. 2 we have shown a pictorial representation of matter-field interaction which includes

both energy conserving and non-conservation process. Nowe±2iνt is a rapidly oscillating

term, so in rotating wave approximation(RWA), we neglect such terms2. Thus we get

ċa − iφ̇aca = iΩbcb, (2.20)

ċb − iφ̇bcb = iΩ∗
bca. (2.21)

Before we move further let us draw some conclusions based on some simple scenarios.

If the single mode radiation field of frequencyν is resonant with the atomic transition

frequency i.e.ωa − ωb = ν then from Eq.(2.17) we getφb − φa = 03.

(1) For off-resonant interaction, let us start withφa = 0. From Eq.(2.17) we get

φ̇b = ∆b, where the detuning∆b = ωa − ωb − ν. Thus Eqs.(2.20, 2.21) yields,

ċa = iΩbcb, (2.22)

ċb = i∆bcb + iΩ∗
bca. (2.23)

The equivalent Hamiltonian can be written as

H = −∆b|b〉〈b| − Ωb|a〉〈b| − Ω∗
b |b〉〈a|. (2.24)

(2) Let us consider another choiceφb = 0. From Eq.(2.18, 2.19) we geṫφa= −∆b.

Thus Eqs.(2.20, 2.21) yields,

ċa = −i∆bca + iΩbcb, (2.25)

ċb = iΩ∗
bca. (2.26)

2It is worth mentioning here that when we are working with strong few cycle pulses then RWA
is not a good approximation. Details of few and multi-cycle pulse excitation is presented extensively
in chapter III section D and chapter VII

3Here the simplest choice would be to takeφa = φb = 0
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The equivalent Hamiltonian can be written as

H = ∆b|a〉〈a| − Ωb|a〉〈b| − Ω∗
b |b〉〈a|. (2.27)

(3) At last we assumėφb = ∆b/2 andφ̇a = −∆b/2. Now Eqs.(2.20, 2.21) yields,

ċa = −i(∆b/2)ca + iΩbcb, (2.28)

ċb = i(∆b/2)cb + iΩ∗
bca. (2.29)

The equivalent Hamiltonian can be written as

H = (∆b/2)|a〉〈a| − (∆b/2)|b〉〈b| − Ωb|a〉〈b| − Ω∗
b |b〉〈a|. (2.30)

2. Density Matrix Approach

We now consider the two-level atomic system again where the state of the system is a linear

combination of levelsa andb as given by Eq.(2.9). Then the density matrix operator can

be written as

ρ = |Ca|2|a〉〈a|+ CaC
∗
b |a〉〈b|+ CbC

∗
a |b〉〈a|+ |Cb|2|b〉〈b|. (2.31)

Taking the matrix elements, we get,

ρaa = 〈a|ρ|a〉 = CaC
∗
a , (2.32)

ρab = 〈a|ρ|b〉 = CaC
∗
b , (2.33)

ρba = 〈b|ρ|a〉 = CbC
∗
a = ρ∗ab, (2.34)

ρbb = 〈b|ρ|b〉 = CbC
∗
b . (2.35)
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The evolution of the density matrix elementsραβ is governed by the Liouville or Von Neu-

mann equation of motion for the density matrix

i~ρ̇ = [H , ρ]. (2.36)

In Eq.(2.36) we have not included the decay of the levels due to spontaneous emission,

collisions and other phenomena. These terms are added to Eq.(2.36) phenomenologically.

To illustrate this let us consider the Hamiltonian Eq.(2.8).The equation of the motion for

the density matrix elements are now given as

ρ̇aa = −γbρaa − i
[

Ω∗
b

(

e−iνt + eiνt
)

ρab − Ωb

(

e−iνt + eiνt
)

ρ∗ab
]

, (2.37)

ρ̇bb = γbρaa + i
[

Ω∗
b

(

e−iνt + eiνt
)

ρab − Ωb

(

e−iνt + eiνt
)

ρ∗ab
]

, (2.38)

ρ̇ab = − (γab + iω) ρab − iΩb

(

e−iνt + eiνt
)

(ρaa − ρbb) , (2.39)

whereγb is the spontaneous decay rate froma→ b andγab is the decay rate of the coherence

ρab. Similar to the probability amplitude method, we will writeρab in terms of a slowly

varying envelope as

ρab = ̺abe
−iνt. (2.40)

Using Eq.(2.40) in Eqs.(2.37-2.39) and invoking the RWA yields,

ρ̇aa = −γbρaa − i [Ω∗
b̺ab − Ωb̺

∗
ab] , (2.41)

ρ̇bb = γbρaa + i [Ω∗
b̺ab − Ωb̺

∗
ab] , (2.42)

˙̺ab = − (γab + i∆b) ̺ab − iΩb (ρaa − ρbb) . (2.43)

Let us solve Eqs.(2.41-2.43) in steady state, which gives the coherence term as

¯̺ab =
γbΩb (∆b + iγab)

4γabΩb + γb∆2
b + γbγ2ab

, (2.44)
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Ω

1.0 2.0-1.0-2.0 0.0
Detuning ( !!)

b

Fig. 3. (a) Interaction of a two-level atom with a off-resonant single mode radiation field

of frequencyν. (b) Steady-state real and imaginary part of̺ab as a function of

normalized detuning∆b/γb. For numerical simulation we took,γb = 1,Ωb = 1 and

γab = γb/2 = 0.5

and the population of the upper level is

¯̺aa =
2γabΩ

2
b

4γabΩ2
b + γb∆2

b + γbγ2ab
. (2.45)

In Fig. 3, we shown the plot of real and imaginary part of¯̺ab which governs the dispersion

and absorption of the fieldΩb. We see that in steady-state the two-level system will exhibit

absorption (ℑ[ ¯̺ab] > 0) which is maximum at resonance and dies off∝ 1/∆2
b for far

detuned excitation i.e∆b ≫ Ωb, γb. Later this chapter we will show that in the presence

of a third level (Lambda configuration), the system exhibitszero absorption on the probe

transition at resonance.

B. Maxwell-Schr̈odinger Equation

Till now we have considered an interaction of a single mode field with one TLA. However

in many problems in quantum optics, we are interested in the interaction of the electro-

magnetic field with a medium of large numbers of atoms. In thissection we will derive
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the equations to describe the propagation of a field through amedium in semi-classical ap-

proximation. Classical electromagnetic radiation is governed by Maxwell’s Equations [2]:

∇ ·D = 0, ∇× E = −∂B
∂t
, (2.46)

∇ ·B = 0, ∇×H = J+
∂D

∂t
, (2.47)

where,

D = ǫ0E+P, B = µ0H, J = σE. (2.48)

HereP is the macroscopic polarization of the medium. Combining Eqs.(2.46, 2.47) and

using simple vector algebra, we obtain the wave equation,

∇× (∇× E) + µ0σ
∂E

∂t
+

1

c2
∂2E

∂t2
= −µ0

∂2P

∂t2
, (2.49)

whereǫ0µ0c
2 = 1. Now the polarizationP can be regarded as the source term for the radi-

ationE. To simplify the mathematical structure let us consider that the field is propagating

along thez−axis and polarized along thex−axis,

E = E(z, t)x̂. (2.50)

If the variation of the laser field intensity transverse to the laser axis is slow on the length

scale of the optical wavelength, we can neglect thex− and y−contribution. Eq.(2.49)

reduces to

−∂
2E
∂z2

+ µ0σ
∂E
∂t

+
1

c2
∂2E
∂t2

= −µ0
∂2P

∂t2
. (2.51)

The field of frequencyν is given by

E(z, t) = 1

2
E (z, t) exp[i(kz − νt)] + c.c, (2.52)
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whereE (z, t) is slowly varying function of position and time. Neglectingthe higher har-

monics, the polarization is given by,

P (z, t) =
1

2
P(z, t) exp[i(kz − νt)] + c.c, (2.53)

whereP(z, t) are slowly varying functions of position and time. Here we can write

P(z, t) = 2℘baρab exp[−i(kz − νt)] + c.c. (2.54)

Substituting Eq.(2.53, 2.54) in Eq.(2.51), and applying the following approximations

∂E

∂t
≪ νE ,

∂E

∂z
≪ kE ,

∂P

∂t
≪ νP,

∂P

∂z
≪ kP, (2.55)

we obtained the field amplitude equations to be,

∂E

∂z
+

1

c

∂E

∂t
= −κE + i

(

N℘baν

ǫ0c

)

̺ab, (2.56)

whereκ = σ/2ǫ0c is the linear loss coefficient and

ρab = ̺ab exp[i(kz − νt)]. (2.57)

Let us rewrite Eq.(2.56) in the form which is has been most commonly used here4. We

transform Eq.(2.56) in terms of the Rabi frequencyΩ = ℘abE /2~ as

∂Ω

∂z
+

1

c

∂Ω

∂t
= i

(

N |℘ab|2ν
2ǫ0c~

)

̺ab. (2.58)

The spontaneous decay rate froma→ b is given as

γb =
1

4πǫ0

4ω3
ab|℘ab|2
3~c3

. (2.59)

4In the most part of this dissertation we have neglected the linear loss term
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Here γb is the radiative decay rate of the atom in free space5. Combining Eq.(2.58),

Eq.(2.59) and using the definition2πc = λν and assumingω = ν we obtain

∂Ω

∂z
+

1

c

∂Ω

∂t
= iη̺ab, (2.60)

where the coupling constantη = (3/8π)Nλ2γb. Hereλb is the wavelength corresponding

to the transitiona→ b. When the field is off-resonance thenη is given as

η =
3

8π
Nλ2γb(1−∆/ω). (2.61)

To study the evolution of a field, propagating through a medium of two-level atoms, we

numerically solve Eqs.(2.41, 2.42, 2.43, 2.60) with properinitial conditions. One example

could be the evolution of a weak probe field through a highly inverted medium of two-levels

atoms. In chapter VI, we have considered this problem extensively.

C. Three-Level Atom

In the previous section we observed that in steady state two level system always exhibit

absorption. Here we will show that in the presence of a third level which is coupled to

the upper levela drastically changes the absorption and dispersion profile of the transition

a ↔ b. Let us consider a three-level atom as shown in Fig. 4 in Lambda and Cascade

configurations. In this section of the chapter we will in detail discuss the Lambda config-

uration where the transitiona ↔ c is coupled to a strong drive fieldΩa and the transition

a ↔ b is coupled to weak probe fieldΩb. The off-diagonal decay rates forρab, ρac andρcb

are denoted byγab, γac, andγcb respectively.

5Recently Vladimirovaet.al. presented a detailed analysis of the modification of resonance
fluorescence spectra of a TLA placed near a metal sphere[32]
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Ω

Ω

(a) (b)

Fig. 4. Three level system in (a) Lambda and (b) Cascade configuration.

1. Electromagnetically Induced Transparency

The interaction Hamiltonian for the system in the RWA can be written as [2]

H = −~Ωce
i∆ct|a〉〈c| − ~Ωbe

i∆bt|a〉〈b|+ c.c, (2.62)

where∆c = ωac − νc and∆b = ωab − νb. Using the evolution equation for the density

matrix elements i.e Eq.(2.36), we obtain for the coherence termsρij as

ρ̇ab = −γabρab − iΩbe
i∆bt(ρaa − ρbb) + iΩce

i∆ctρcb, (2.63)

ρ̇ac = −γacρac − iΩce
i∆ct(ρaa − ρcc) + iΩbe

i∆btρ∗cb, (2.64)

ρ̇cb = −γcbρcb + iΩ∗
ce

−i∆ctρab − iΩbe
i∆btρ∗ac. (2.65)

Let us now make a transformation defined as

ρab = ̺abe
i∆bt, (2.66)

ρac = ̺ace
i∆ct, (2.67)

ρcb = ̺cbe
i(∆b−∆c)t, (2.68)
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and̺ii = ρii. Substituting inEqs.(2.63-2.65) we obtain,

˙̺ab = −Γab̺ab − iΩb(̺aa − ̺bb) + iΩc̺cb, (2.69)

˙̺ac = −Γac̺ac − iΩc(̺aa − ̺cc) + iΩb̺
∗
cb, (2.70)

˙̺cb = −Γcb̺cb + iΩ∗
c̺ab − iΩb̺

∗
ac. (2.71)

Solving for̺(1)ab where we keep the probe field termΩb to its lowest order but keepingΩc

to all orders we obtain

̺
(1)
ab = −iΩb

[

ΓcaΓcb(̺
(0)
aa − ̺

(0)
bb ) + (̺

(0)
cc − ̺

(0)
aa )|Ωc|2

Γac(ΓabΓcb + |Ωc|2)

]

. (2.72)

To make the analytical approach simple, let us assume∆c = 0 i.e we drive the transition

a↔ c at resonance. As the atoms are initially in the ground levelb,

̺
(0)
bb = 1, ̺(0)aa = ̺(0)cc = 0. (2.73)

Substituting Eq.(2.73) in Eq.(2.72) we obtain,

̺
(1)
ab = iΩb

[

γcb + i∆b

(γab + i∆b)(γcb + i∆b) + |Ωc|2
]

. (2.74)

Using the relationP = ǫ0χE and the definition Eq.(2.54), we obtain the complex suscep-

tibility as

χ = i
N |℘ab|2
ǫ0~

[

γcb + i∆b

(γab + i∆b)(γcb + i∆b) + |Ωc|2
]

, (2.75)

whereN is the number density of atoms. We know that the real and imaginary part of the

complex susceptibility are related to the dispersion and absorption, respectively. Thus we

obtain

χ′ = ℜ(χ) = N |℘ab|2∆b

ǫ0~

[

γcb(γab + γcb) + (∆2
b − γcbγab − |Ωc|2)

(∆2
b − γcbγab − |Ωc|2)2 +∆2(γcb + γab)2

]

, (2.76)
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Fig. 5. Real (solid line) and imaginary (dashed line) parts of the complex susceptibility as a

function of the normalized detuning∆b/γb.

χ′′ = ℑ(χ) = N |℘ab|2
ǫ0~

[

∆2
b(γab + γcb)− γcb(∆

2
b − γcbγab − |Ωc|2)

(∆2
b − γcbγab − |Ωc|2)2 +∆2(γcb + γab)2

]

, (2.77)

whereχ = χ′ + iχ′′. In Fig. (5) we have plotted the real and complex part of the

susceptibilityχ versus the detuning∆b in the units ofγab. For numerical simulation we

tookΩ = γb, γcb = 10−4γab. We see that when the probe field is resonant with the transition

a ↔ b i.e ∆b = 0, χ′ = 0 andχ′′ ∼ 0. Thus the medium becomes transparent under the

action of the drive fieldΩc. It is important to mention that this transparency is sensitive to

γcb which is the decay of the coherence of the dipole forbidden transitionc↔ b.

2. Lasing Without Inversion

In the closedΛ−system [as shown in Fig. 6] the lasing and the driving fields couple the

upper levela and two lower levelsb andc respectively. The spontaneous decay rates from

a→ b is γb, and froma→ c is γc, andγ = γb + γc. Pumping rates fromb → a is rb, from

c → a is rc. Population exchange rate (for e.g. collisions) areγ1 from c → b, andγ2 from
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Fig. 6. Three-level system in lambda configuration. The lasing and the driving fields couple

the upper levela and two lower levelsb andc respectively. The spontaneous decay

rates froma → b is γb, and froma → c is γc, andγ = γb + γc. Pumping rates from

b → a is rb, from c → a is rc. Population exchange rate (for e.g. collisions) areγ1

from c→ b, andγ2 from b→ c.

b→ c. The interaction Hamiltonian is given as

H = − (Ωb|a〉〈b|+ Ωc|a〉〈c|+ c.c) . (2.78)

The density matrix equations can be written as

ρ̇bb = −(γ2 + rb)ρbb + γ1ρcc + γbρaa + i (Ω∗
bρab − Ωbρ

∗
ab) , (2.79)

ρ̇cc = −(γ1 + rc)ρcc + γ2ρbb + γcρaa + i (Ω∗
cρac − Ωcρ

∗
ac) , (2.80)

ρ̇ab = −Γabρab − iΩb(ρaa − ρbb) + iΩcρcb, (2.81)

ρ̇ca = −Γcaρca + iΩ∗
c(ρaa − ρcc)− iΩ∗

bρcb, (2.82)

ρ̇cb = −Γcbρcb + iΩ∗
cρab − iΩbρca, (2.83)

1 = ρaa + ρbb + ρcc. (2.84)
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where,

γab =
γ + rb + γ2

2
, γac =

γ + rc + γ1
2

, γcb =
rc + rb + γ1 + γ2

2
. (2.85)

We solve Eqs.(2.79-2.84) in the steady state by setting all the time time derivative equal to

zero. We obtained the steady-state coherences in terms of the populations as

ρ̄ab = −iΩb

[

(ρ̄aa − ρ̄bb)(ΓcaΓcb + |Ωb|2) + (ρ̄cc − ρ̄aa)|Ωc|2
D

]

, (2.86)

ρ̄ca = iΩ∗
c

[

(ρ̄aa − ρ̄cc)(|Ωc|2 + ΓcaΓab) + (ρ̄bb − ρ̄aa)|Ωb|2
D

]

, (2.87)

ρ̄cb = ΩbΩ
∗
c

[

(ρ̄aa − ρ̄bb)Γca + (ρ̄aa − ρ̄cc)Γab

D

]

, (2.88)

where,

D = ΓabΓcaΓcb + Γab|Ωb|2 + Γca|Ωc|2. (2.89)

In the limit of weak probe field, we will keepΩb to its lowest term but all the terms forΩc

then Eq.(2.86, 2.87) takes the form,

ρ
(1)
ab = −iΩb

[

(ρ
(0)
aa − ρ

(0)
bb )ΓcaΓcb + (ρ

(0)
cc − ρ

(0)
aa )|Ωc|2

Γca (ΓabΓcb + |Ωc|2)

]

. (2.90)

ρ(1)ca = iΩ∗
c

[

ρ
(0)
aa − ρ

(0)
cc

Γca

]

. (2.91)

Next we solve for the population termsρ(0)ll by solving Eqs.(2.79, 2.80) supplemented by

Eqs.(2.84, 2.90, 2.91). Further we assume that the Rabi frequencies corresponding to the

probe and the drive fields are real. The populations are givenas

ρ(0)aa =
Brb + rbrc + γ1rb + γ2(B + rc)

M′ , (2.92)

ρ
(0)
bb =

Bγb + γbrc + γ1(B + γb + γc)

M′ , (2.93)

ρ(0)cc =
Brb + γcrb + γ2(B + γb + γc)

M′ , (2.94)
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whereM′ is the sum of the numerators in the above expressions. From these expressions

we obtain the condition for population inversion on the lasing transitionρ(0)aa > ρ
(0)
bb as,

rc(rb + γ2 − γb) + γ1(rb − γb − γc) + (rb − γ1 + γ2 − γb)B > 0. (2.95)

If we use the definition of population inversion asρ̄aa + ρ̄cc > ρ̄bb, we obtain the condition

as

B(2rb − γ1+2γ2− γb) + rc(γ2− γb + rb) + rb(γ1+ γc)− (γ1− γ2)(γb + γc) > 0. (2.96)

In the absence of any incoherent pump on the drive transitiona↔ c i.e. rc = 0, Eqs.(2.95,

2.96) gives,

B(rb − γ1 + γ2 − γb) + γ1(rb − γb − γc) > 0, (2.97)

B(2rb − γ1 + 2γ2 − γb) + rb(γ1 + γc)− (γ1 − γ2)(γb + γc) > 0. (2.98)

The condition for gain can be obtained by using the expression for populations in Eq.(2.90)

which gives,

B [rb(rb − γ1 + 2γ2 − γb + γc)− γ1(γ1 + γb) + γ2(γ2 + γc)]

+γ1(rb + γ1 + γ2)(rb − γb − γc) > 0.

(2.99)

Interestingly for symmetric bidirectional pumping i.eγ1 = γ2, strong drive andrb = 0, we

never observe inversion on the lasing transition but the system is invertedρ(0)aa + ρ
(0)
cc > ρ

(0)
bb

if γ2 > γb. The condition for gain from Eq.(2.99) gives

γc > γb. (2.100)

Thus to observed lasing without inversion the spontaneous decay rate on the decay tran-

sition should be greater that the decay rate on the lasing transition6. Further more if we

6In the case of three-level atom in the cascade configuration the condition is reverse i.eγb > γa
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assume that purely phase decayγpcb = (γ1 + γ2)/2, we obtain the condition for gain as

B
[

rb(rb + γc − γb + 3γ2) + 2γ22 − 2γ21 + γ2(γb + γc)− 2γb(γ1 + γ2)
]

+γ1(rb − γb − γc)(rb + 2γ1 + 2γ2) > 0.

(2.101)

If we consider pumping in both the directionsγ1 = γ2, strong drive andrb = 0, we obtain

the necessary condition for gain as7

γc > 3γb. (2.102)

Thus we can see from Eq.( 2.99-2.102) that even when small amount of population is in

the excited state still we can observe gain on the probe transition. Physically in the lasing

without inversion the essential idea is the cancellation ofabsorption on the probe transition

via atomic coherence and interference8. In fact this is also the essence of electromagnetic

induced transparency.

To conclude, in this introductory chapter we laid the foundation for the mathematical

analysis used in the dissertation. We used semiclassical approach to quantify the interaction

of radiation with matter. We extensively derived the Hamiltonian for two-level atom with a

single mode field9. We also discussed two simple examples which are the manifestation of

quantum interference phenomena namely electromagnetic induced transparency and lasing

without inversion.

7For detailed analysis on V scheme also, read the conference paper by Nikonov[33]
8For simple and rigorous analysis of lasing without inversion and electromagnetic induced trans-

parency readers are suggested to go through sections 7.3 and7.4 of Scully and Zubairy[2]
9The extension to three-level system is derived in appendix A. In Appendix B, we present a

brief discussion of the symmetry of the evolution of identical seed pulse at the boundaryz = 0 and
z = L in the forward and backward direction respectively
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CHAPTER III

EFFICIENT EXCITATION OF UV AND XUV COHERENCE BY FAR

OFF-RESONANCE STRONG PULSES∗

A. Introduction

The two-level system (TLS)[2, 28, 29] is a very rich and useful model that helps to un-

derstand physics of many problems ranging from interactionwith electromagnetic fields to

level-crossing[34, 35, 36]. For example, interaction of a beam of atoms in Stern-Gerlach

apparatus[37] and Bloch-Siegert shift[38] can be understood using TLS. Recently TLS

has been extensively studied as a quantum bit (qubit) for quantum information theory[39].

Two-level atom (TLA) description is valid if the two atomic levels involved are resonant or

nearly resonant with the driving field, while all other levels are highly detuned. TLS can

be realized exactly for a spin-1/2 system, and, approximately, for a multi-level system in a

magnetic field when all other magnetic sub-levels are detuned far-off resonance.

When the frequency of the driving field is in resonance with the atomic transition

frequency, the Schrödinger equation for the time evolution of state amplitudes is exactly

solvable for any time dependence of the fieldΩ(t). For off-resonance excitation several

exactly solvable models for the TLS have been proposed in thepast[40, 41] where solutions

to the Schr̈odinger equation are expressed in terms of known functions like Hypergeomteric

functions. Several approximate solutions have also been proposed based on perturbation

∗Part of this chapter is reprinted with permission from “Coherent excitation of a two-level atom
driven by a far-off-resonant classical field: Analytical solutions” by P. K. Jha and Y. V. Rostovtsev,
2010. Phys. Rev. A 81, 033827(1)-033837(8); “Analytical solutions for a two-level system driven
by a class of chirped pulses” by P. K. Jha and Y. V. Rostovtsev,2010.Phys. Rev. A 82, 015801(1)-
015801(4); “Coherent control of atomic excitation using off-resonant strong few-cycle pulses” by
P. K. Jha, H. Eleuch and Y. V. Rostovtsev, 2010.Phys. Rev. A 84, 045805(1)-045805(4), Copyright
[2010] by American Physical Society
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theory and the adiabatic approximation[42, 43].

Recently, the topic has been in a focus of research related togeneration of short wave-

length radiation[26, 44]. A two-level atomic system under the action of a far-off resonance

strong pulse of laser radiation has been considered and it has been shown that such pulses

can excite remarkable coherence on high frequency far-detuned transitions; and this coher-

ence can be used for efficient generation of UV and soft X-ray (XUV) radiation[44].

To describe excited coherence, we are interested to understand the mechanism of

breaking adiabaticity that leads to excited coherence in the system when the laser pulse

has already passed. Thus we are interested going beyond classical electrodynamics[45].

Indeed, an electric field causes polarization of dielectrics is given by

P (t, r) =

∫ t

−∞
dt′χ(t− t′)E(t′, r), (3.1)

whereχ(τ) is the dielectric response function. It is important to notethat once the field is

removed, the polarization adiabatically returns to practically zero. Breaking of adiabaticity

is especially difficult when the frequency of the applied field is far from the atomic res-

onance. Finding exact analytical solutions for such a problem will not only supplement

numerical simulations but will also be useful in understanding the underlying physics.

In this chapter, using a proper variable transformation, wefind a class of pulseΩ(t)

for which the Schr̈odinger equation for the time evolution of the state amplitudes can be

transformed into the well known Heun equation[46, 47]. The solutions are given in terms

of the Heun function which is a generalization of the Hypergeometric function. Using the

degeneracy of Heun to Hypergeometric equation, Bambini-Berman model can be general-

ized to this model. Later we introduce a phase jump in the pulse and study its effect on the

population transfer and coherence generated in TLS system.
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Fig. 7. (a) Two-level atomic system, atomic transition frequencyω = ωa − ωb, detun-

ing ∆ = ω − ν and Rabi frequencyΩ(t) = ℘E(t)/2~. (b) Unchirped classical

electromagnetic field E(t)= sech(αt)cos(νt). (c) Quadratic chirped electric field

E(t)=exp(−α2t2) cos(νt + κt2). (d) Few-cycle sine (dashed line) and cosine (solid

line) pulse with Gaussian envelope.

B. Multi-Pulse Excitation

The equation of motion for the probability amplitudes for the statesa andb [see Fig. 7(a)]

of a Two Level Atom (TLA) interacting with a classical field isgiven as

Ċa = i
℘E(t)
~

cos(νt)eiωtCb, (3.2a)

Ċb = i
℘∗E(t)

~
cos(νt)e−iωtCa, (3.2b)

where~ω is the energy difference between two levels,℘ is the atomic dipole moment;

E(t) = E(t)cosνt [see Fig. 7(b)]. In the Rotating Wave Approximation (RWA) wereplace
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cos(νt)e±iωt → e±i∆/2 where∆ = ω − ν1, is detuning from resonance. Introducing

Ω(t) = ℘E(t)/2~2, Eq.(3.2) reduces to

Ċa = iΩ(t)ei∆tCb, (3.3a)

Ċb = iΩ∗(t)e−i∆tCa, (3.3b)

which have an integral of motion|Ca|2 + |Cb|2 = 13. There are a variety of ways to

approach the problem of solving forCa(t) . One method is to definef(t) = Ca(t)/Cb(t).

For the functionf(t), Eq.(3.3) yields the following Riccati Equation[44]

ḟ + iΩ∗(t)e−i∆tf 2 − iΩ(t)ei∆t = 0. (3.4)

Then|Ca(t| = |f(t)|/
√

1 + |f(t)|2. Alternatively, we can get a second order linear differ-

ential equation forCa(t), from Eq.(3.3)

C̈a(t)−
[

i∆+
Ω̇

Ω

]

Ċa(t) + |Ω|2Ca(t) = 0. (3.5)

The general solution for Eq(3.5) has not been found yet, however there are solutions for

several cases in terms of special functions. To find a solution for Eq.(3.5) we introduce a

new variable

ϕ = ϕ(τ), (3.6)

1Here we use the convention that all frequencies are circularfrequencies so that~ν (nothν) is
the photon energy.

2In this section we have defined the Rabi frequencyΩ(t) = ℘E(t)/2~ rather than the usual
definitionΩ(t) = ℘E(t)/~.

3Here we consider a two-level atom with stable levels (or neglect any kinds of decay due to
spontaneous emission, collision etc on the time scale of thepulse) interacting with a classical exter-
nal electromagnetic field
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subject to the condition thatϕ(τ) is real, positive and monotonic function ofτ andϕ0 ≤

ϕ ≤ ϕ1. In terms of the variableϕ and the dimensionless parameters

τ = αt, β =
∆

α
, γ =

Ω0

α
, (3.7)

one may write Eq.(3.5), for realξ(τ) in the form

C
′′

a +

[

ϕ̈/ϕ̇− iβ − ξ̇/ξ

ϕ̇

]

C
′

a +
γ2ξ2

ϕ̇2
Ca = 0, (3.8)

where a prime indicates differentiation with respect toϕ andΩ(τ) = γξ(τ). Let us deter-

mine the condition under which Eq.(3.8) has the form

C
′′

a (ϕ) + P (ϕ)C
′

a(ϕ) +Q(ϕ)Ca(ϕ) = 0. (3.9)

Using Eq.(3.8,3.9) and some trivial algebra we get,

τ = − 1

iβ

∫
(

P +
Q

′

2Q

)

dϕ. (3.10)

1. Heun Equation

Bambini-Berman studied the case in which Eq.(3.9) has the form of a Gauss Hypergeo-

metric equation which includes Rosen-Zener Model as a special case. Now let us consider

when Eq.(3.9) is of the form of Heun equation4[46, 47] with the independent variableϕ.

d2Ca

dϕ2
+

(

u

ϕ
+

v

ϕ− 1
+

w

ϕ− c

)

dCa

dϕ
+

(abϕ− q)Ca

ϕ(ϕ− 1)(ϕ− c)
= 0, (3.11)

4Heun Equation: For realΩ(τ), we get an additional constraint for our asymmetric parameters
q < 0, ab/q < 1, if q 6= 0,or ab > 0, if q = 0. Confluent Heun Equation:q < 0, p/q > −1, if q 6=
0,or p < 0, if q = 0.
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Fig. 8. Pulse shapes given by Eq.(3.17). (a) Pulse shapes with varying λ and

c = 2, q = −1, ab = 0. (b) Pulse shapes with varyingc andλ = 2, q = −1, ab = 0.

wherea,b,c,q,u,v,w are parameters withc 6= 0, 1.(c > 1). The parameters are constrained,

by the general theory of Fuchsian equations, as

u+ v + w = a+ b+ 1. (3.12)

From Eq.(3.11) and Eq.(3.9) and some algebra we get

ϕ̇ = 2ϕ(1− ϕ)/(µ+ λϕ). (3.13)

Equivalently the parameters of the Heun Equation Eq.(3.11)are given as

u =
1

2
− iβµ

2
, v =

1

2
+
iβ(λ+ µ)

2
, w =

1

2
, a = 0, b =

1

2
− iβλ

2
. (3.14)

For ϕ(τ) to be a monotonically increasing function ofτ , ϕ̇ must be real and positive i.e

µ > 0, λ/µ > −1. The time variableτ as a function ofϕ is obtained by integrating

Eq.(3.13) which gives,

2τ = ln[ϕµ/(1− ϕ)µ+λ]. (3.15)

The general solution for Eq.(3.11), which has regular singularity atϕ = 0 is given in terms
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of the Heun local solutions, Hl(ϕ) as,

Ca = P1ϕ
1−uHl[c, q + (1− u)((c− 1)v + a+ b− u+ 1);

a− u+ 1, b− u+ 1, 2− u, v;ϕ] + P2Hl [c, q; a, b, u, v;ϕ] ,
(3.16)

where the constants, P1,P2 can be found using the initial conditions of the system. In the

limit τ → ∞, the population left in the levela can be obtained by substitutingϕ → 1 in

Eq.(3.16). The form of the pulse can be obtained by equating Eq.(3.8) and Eq.(3.11) which

gives

Ω(τ) =

[

4ϕ(1− ϕ)(abϕ− q)

(c− ϕ)

]1/2(
1

µ+ λϕ

)

, (3.17)

whereϕ(τ) is given by Eq.(3.15). In Fig. 8 we have plotted the pulse envelopes’ of the

classical field, given by Eq.(3.17), for which the two-levelatom problem can be exactly

solved. They also show the effect of the asymmetric parametersλ andab respectively, for

µ = 1, on the symmetry of the shapes. Pulse shapes showing the effects of other parameters

can also be plotted easily from Eq(3.17).

There are three kinds of solutions to the Heun equation Eq.(3.11). Local Solutions Hl ,

Heun functions Hf and Heun Polynomials Hp[48, 49, 50]. The series solution Eq.(3.16) is

written as[47]

Hl [c, q; a, b, u, v;ϕ] =
∞
∑

j=0

sjϕ
j = 1 +

q

uc
ϕ+

∞
∑

j=2

sjϕ
j, (3.18)

wheresj obeys the three term recursion relation

(j − 1 + a)(j − 1 + b)sj−1 − {j[(j − 1 + u)(1 + c) + vc

+ a+ b+ 1− u− v] + q}sj + (j + 1)(j + u)sj+1 = 0,

(3.19)

with the initial conditions

s0 = 1, s1 =
q

uc
, and sj = 0, if j < 0. (3.20)



32

The solution Eq.(3.18) is valid only within a circle centered at the originϕ = 0 whose

radius is the distance from the origin to the nearest singularity ϕ = 1 or ϕ = c. For

c > 1, the radius of convergence is 1[47]. From Eq.(3.19), we can say that Heun function

remains the same with the exchange of the parametersa andb. It can be easily verified

that the Heun equation Eq.(3.11) can be reduced to the Hypergeometric equation in several

ways[47]. They are

c = 1, q = ab, (3.21a)

w = 0, q = cab, (3.21b)

c = 0, q = 0. (3.21c)

Let us now consider the simplest case ofc = 0, q = 0. Then fora + b = 0 and1/2− v =

−iβ/2, Eq.(3.11) reduces to standard form of the Gauss Hypergeometric equation

d2Ca

dϕ2
+

[

r − (1 + a + b)ϕ

ϕ(1− ϕ)

]

dCa

dϕ
− abCa

ϕ(1− ϕ)
= 0. (3.22)

wherer = 1/2− iβ/2. The general solution for Eq.(3.22) is

Ca(ϕ) = P1ϕ
1−rF[b− r + 1, a− r + 1; 2− r;ϕ] + P2F[a, b; r;ϕ], (3.23)

where the constants, P1,P2 can be found using the initial conditions of the problem. We

write the hypergeometric series F(2,1)[a, b; c;ϕ] as F[a, b; c;ϕ]. The population left in the

statea is given as

Caf = P1F[b− r + 1, a− r + 1; 2− r; 1] + P2F[a, b; r; 1]. (3.24)

Subsequently if(a+b) = λiβ andv−1/2−(a+b) = µiβ, we have the generalized Rosen-

Zener Model as discussed by Bambini and Berman. One can summarize the degeneracy of
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the Heun to Hypergeometric model as follows

Hl [1, ab; a, b, u, v;ϕ] = F[a, b; u;ϕ], (3.25a)

Hl [c, cab; a, b, u, a+ b− u+ 1;ϕ] = F[a, b; u;ϕ], (3.25b)

Hl [0, 0; a, b, u, v;ϕ] = F[a, b; a + b− v + 1;ϕ]. (3.25c)

2. Confluent Heun Equation

The Confluent Heun Equation is one of the four confluent forms of Heun’s equation which

is obtained by merging the singularity atϕ = c that atϕ = ∞. Now we have a regular

singularity atϕ = 0, 1 and an irregular singularity atϕ = ∞. In this paper we will consider

the following non-symmetrical form of the Confluent Heun equation:

d2Ca

dϕ2
+

(

u

ϕ
+

v

ϕ− 1

)

dCa

dϕ
+

pϕ+ q

ϕ(ϕ− 1)
Ca = 0. (3.26)

Similar to the Heun case, we have the same differential equation for ϕ̇ i.e Eq(3.13). For the

Confluent Heun Equation, the possible values of the asymmetric parameters are

u =
1

2
− iβµ

2
, v =

iβ(λ+ µ)

2
, p = −q, (3.27a)

u =
1

2
− iβµ

2
, v =

1

2
+
iβ(λ+ µ)

2
, p = 0. (3.27b)

The general solution of the Confluent Heun Equation Eq.(3.26) is given as

Ca(ϕ) =P1Hl
(c)[0, u− 1, v − 1, p, q + (1− uv)/2, ϕ]+

P2ϕ
1−uHl(c)[0, 1− u, v − 1, p, q + (1− uv)/2, ϕ],

(3.28)

where P1, P2 can be found using the initial condition of the system. It is worth mentioning

here that, the general solution to the Gauss Hypergeometricdifferential equation Eq.(3.22)
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Fig. 9. Pulse shapes given by Eq.(3.30). (a) Pulse shapes with varyingλ andp = −q = 1.

(b) Pulse shapes with varyingq andλ = 2, p = 0.

can be expressed in terms of the Heun functions Hl(c) as

Ca(ϕ) =P1(ϕ− 1)−aHl(c)[0, a− b,−1 + r, 0, ((r − 2a)b− r + ra+ 1)/2, 1/(1− ϕ)]+

P2(ϕ− 1)−bHl(c)[0, b− a,−1 + r, 0, ((r − 2a)b− r + ra+ 1)/2, 1/(1− ϕ)].

(3.29)

The form of the pulse can be obtained by equating Eq.(3.8) andEq.(3.26) which gives,

Ω(ϕ) =
[4ϕ(ϕ− 1)(pϕ+ q)]1/2

µ+ λϕ
, (3.30)

whereϕ(τ) is given by Eq.(3.15). The constraint ofλ andµ is also the same as for the

Heun case discussed earlier. Fig. 9 shows the pulse shapes for which the two-level atom

can be reduced to the Confluent Heun equation. It also qualitatively shows the effect of the

asymmetric parametersp andq on the symmetry of the pulse shapes.λ = 0 corresponds to

the symmetric pulse.
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3. Exactly Solvable Pulse Shapes

In this section we will consider some specific examples of pulses corresponding to Heun

and Confluent Heun equations. Interestingly we will also finda better approximation for a

box pulse by introducing a parameterδ which takes care of non-analyticity of the pulse at

the edges.

Ωδ(t) = Ω0sech(αt)/
√

δ − tanh(αt), δ > 1

For this pulse, using the scaling parameters Eq.(3.7), Eq.(3.5) gives

C̈a(τ)−
[

iβ +
1

2

(

1− 2δtanhτ + tanh2τ
δ − tanhτ

)]

Ċa(τ) +
γ2sech2τ
δ − tanhτ

Ca(τ) = 0. (3.31)

Let us now define a new variable as

ϕ(τ) =
1 + tanhτ

2
. (3.32)

In terms of the variableϕ, Eq.(3.31) reduces to the Heun equation

C
′′

a +

[

u

ϕ
+

v

ϕ− 1
+

w

ϕ− c

]

C
′

a +
abϕ− q

ϕ(ϕ− 1)(ϕ− c)
Ca = 0, (3.33)

where,

u =
1

2
− iβ

2
, v =

1

2
+
iβ

2
, w =

1

2
, (3.34a)

q = −γ
2

2
, a = 0, b =

1

2
c =

δ + 1

2
. (3.34b)

From Eq.(3.31) we see asτ → −∞, ϕ→ 0 andτ → ∞, ϕ→ 1. The initial conditions for

our system are

Ca(τ → −∞) = 0, |Cb(τ → −∞)| = 1. (3.35)
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Fig. 10. (a) Pulse shapes for different value ofδ. (b) The time dependence of the population

in the statea for Ωδ(τ) pulse for different values ofδ > 1. For calculation we take

α = 0.08ωc, varyingδ.

The complete solution to Eq.(3.33), satisfying the initialconditions Eq(3.35), is

Ca(ϕ) =
γ
√
2

(i− b)
√
c
ϕ1−uHl[c, q + (1− u)((c− 1)v

+ a+ b− u+ 1); b− u+ 1, a− u+ 1, 2− u, v, ϕ].

(3.36)

wherea, b, c, q, u, v, w are given be Eq.(3.34). Let now consider a case in whichδ = 1. So

the pulse has the form

Ω1(t) = Ω0

√
1 + tanhαt. (3.37)

Now for this pulse, using the scaling parameters Eq.(3.7), Eq.(3.5) gives

C̈a(τ)−
[

iβ +
1

2
(1− tanhτ)

]

Ċa(τ) + γ2(1 + tanhτ)Ca(τ) = 0. (3.38)

In terms of the variableϕ, Eq.(3.38) reduces to

C
′′

a +

[

u

ϕ
+

v

ϕ− 1

]

C
′

a +
q

ϕ(ϕ− 1)2
Ca = 0, (3.39)
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Fig. 11. (a) Pulse shapes forΩ±(t) = Ω0sechαt(
√
1± tanhαt). (b) Time dependence

of population in the statea for the Pulse shapes in (a). In calculation we take

Ω0 = 0.02ωc, α = 0.08ωc,∆ = 0.2ωc

where,

u =
1

2
− iβ

2
, v = 1 +

iβ

2
, q =

γ2

2
. (3.40)

The general solution to Eq.(3.39) is

Ca(ϕ) =P1(ϕ− 1)ξF[ξ, ξ − 1 + u+ v; u;ϕ]+

P2ϕ
1−u(ϕ− 1)ξF[ξ + v, ξ + 1− u; 2− u;ϕ],

(3.41)

where,

ξ =
1− v

2
+

√

(

1− v

2

)2

− q, (3.42)

andq, u, v are given be Eq.(3.40). Using the initial conditions Eq.(3.35) we getP1 = 0 and

P2 =
γ√

2(u− 1)(−1)(ξ+1/2)
. (3.43)

Figure 10 shows the plot of population in the statea corresponding to the pulseΩδ satisfy-

ing the initial condition.

Ω+(t) = Ω0sechαt(
√
1 + tanhαt)
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For this pulse, using the scaling parameters Eq.(3.7), Eq.(3.5) gives

C̈a(τ)−
[

iβ +
1

2
(1− 3tanhτ)

]

Ċa(τ) + γ2sech2τ(1 + tanhτ)Ca(τ) = 0. (3.44)

In terms of the new variableϕ, Eq.(3.44) reduces to the Confluent Heun equation.

C
′′

a +

[

u

ϕ
+

v

ϕ− 1

]

C
′

a +
σ

ϕ− 1
Ca = 0, (3.45)

where,

u = −iβ
2
, v =

1

2
+
iβ

2
, σ = −2γ2. (3.46)

The complete solution to Eq.(3.45) satisfying the initial conditions Eq.(3.35) is

Ca(ϕ) =

(

2
√
2γ

2i− β

)

ϕ1+ iβ
2 Hl(c)[0, 1 + iβ/2,−1/2 + iβ/2,−2γ2, 1/2− β2/8− iβ/8, ϕ].

(3.47)

Ω−(t) = Ω0sechαt(
√
1− tanhαt)

For this pulse, using the scaling transformation Eq.(3.7),Eq.(3.5) gives

C̈a(τ)−
[

iβ − 1

2
(1 + 3tanhτ)

]

Ċa(τ) + γ2sech2τ(1 − tanhτ)Ca(τ) = 0. (3.48)

In terms of the new variableϕ, Eq.(3.48) reduces to the Confluent Heun equation.

C
′′

a +

[

u

ϕ
+

v

ϕ− 1

]

C
′

a +
η

ϕ
Ca = 0, (3.49)

where,

u =
1

2
− iβ

2
, v =

iβ

2
, η = 2γ2. (3.50)

The complete solution to Eq.(3.49), satisfying the initialconditions Eq.(3.35), is

Ca(ϕ) =

(

2
√
2γ

β − i

)

ϕ
1
2
+ iβ

2 Hl(c)[0, 1/2 + iβ/2,−1 + iβ/2, 2γ2,

1/2− 2γ2 − β2/8− iβ/8, ϕ].

(3.51)
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Fig. 12. (a) Box Pulse forδ−1 = 10−9. (b) Time dependence of population in the statea for

the Box PulseΩδ(τ). In calculation we takeΩ0 = 0.02ωc, α = 0.08ωc,∆ = 0.2ωc

In Fig. 11 we have plotted the pulse shapesΩ±(τ) and the corresponding time evolution of

the probability amplitude for statea. One of the simplest and exactly solvable pulse shapes

is a Box Pulse. Indeed it is a non-analytical pulse but it gives information about the basic

oscillatory nature of solution (probability amplitude). Let us define our pulse as

Ω(t) = Ω0Θ(t)Θ(t0 − t), t0 > 0, (3.52)

where,Θ(t) is a unit step function. The solution for Eq.(3.5) corresponding to the box

pulse is

Ca(t) =
iΩ0

√

∆2/4 + Ω2
0

ei(∆/2)tsin(
√

∆2/4 + Ω2
0)t, t < t0. (3.53)

The oscillatory nature of the solution|C(t)| is evident from the sine function. Let us con-

sider the pulse shape of the form

Ωδ(t) =
Ω0sechαt√
δ − tanhαt

, δ = 2c− 1. (3.54)

where c is one of the singularities of the Heun Equation. Assuming c > 1 givesδ > 1. A

pulse shape of the form Eq.(3.54) is positive definite and it vanishes atτ = ±∞. Let us see
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what happens whenδ approaches but never reaches to 1. We see from Figs. 10(a) and12(a),

that asδ approaches to 1, the pulse become more and more broad there bymaking it a better

approximation for a box pulse (taking care of non-analyticity at the edges). The general

solution for the pulse of the form Eq.(3.54), is given by Eq.(3.16) where the asymmetric

parameters are given by Eq.(3.34).

C. Multi-Cycle Chirped Pulse Excitation

It is well know that the chirped pulses [51, 52] are used to produce maximal coherence in

atomic and molecular systems. Maximal coherence can be usedfor generation of short-

wavelength of radiation molecular spectroscopy, for example, time-resolved coherent Ra-

man spectroscopy, to obtain molecule-specific signals frommolecules, which can serve as

a marker molecule for bacterial spores [51].

In this section we will present two class of chirped pulses for which the problem can be

solved exactly in analytical form. Using the appropriate chirping parameters, the population

transfer, after the the pulse is gone, can be optimized and for the pulse considered here,

four-order of magnitudes enhancement was obtained. Unchirped pulse corresponding to

Heun and Confluent Heun equation has been recently investigated extensively [53] where

we have included an estimate of energy of emission of soft x-ray and ultraviolet radiation

via excited quantum coherence in the atomic system. The estimate shows good potential

for a source of coherent radiation based on the discussed mechanism.

The equation of motion for the probability amplitudes for the statesa andb of a TLA

interacting with a classical field (under rotating-wave approximation RWA) with non-zero



41

chirping [54]. is given as

Ċa = iΩ(t)eiϑ(t)Cb, (3.55a)

Ċb = iΩ∗(t)e−iϑ(t)Ca, (3.55b)

whereϑ(t) = ∆t + φ(t). Here∆ = ω − ν andΩ(t) = ℘E(t)/2~. To solve forCa, we can

get a second order linear differential equation forCa(t) from Eq.(3.55), which in terms of

the dimensionless parameters Eq.(3.8) is given as

C̈a −
[

iβ +
Ω̇(τ)

Ω(τ)
+ iφ̇(τ)

]

Ċa + Ω2(τ)Ca = 0. (3.56)

In order to find analytical solution for Eq.(3.56), We introduce a new variableϕ = ϕ(τ)

defined by

τ = (1/2)ln[ϕµ/(1− ϕ)µ+λ], (3.57)

and make an ansatz for the pulse envelopeΩ(τ) and the chirping functionφ(τ) as

Ω(τ) =

[

2ϕ(1− ϕ)

(c− ϕ)

]1/2(
γ

µ+ λϕ

)

, (3.58a)

φ̇(τ) =

{−2c ζ + 2[(ζ + ξ) + c(ζ + η)]ϕ

(ϕ− c)(µ+ λϕ)

}

. (3.58b)

In terms of the variableϕ(τ) and the definition ofΩ(τ), φ̇(τ) from Eq.(3.58), Eq.(3.56)

takes the form

C
′′

a +

[

ρ

ϕ
+

σ

ϕ− 1
+

υ

ϕ− c

]

C
′

a +
abϕ− q

ϕ(ϕ− 1)(ϕ− c)
Ca = 0, (3.59)

where(c > 1) and

ρ =
1

2
− i

(

ζ +
βµ

2

)

, σ =
1

2
+ i

[

β(µ+ λ)

2
− η

]

,

υ =
1

2
− iξ, q = −γ

2

2
, a = 0, b =

1

2
+
iβλ

2
, c =

δ + 1

2
.

(3.60)

The parameters of a Heun Equation[46, 47] are constrained, by the general theory of
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Fuschsian equations as,ρ + σ + υ = a + b + 1 which provides us a the first constraint

relation for the chirping parametersζ, η, ξ as

ζ + η + ξ = 0. (3.61)

The quantityν+ φ̇ is the instantaneous pulse frequency; thusφ̇ should vanish for maximum

of Ω(τ). From Eq.(3.58a), we get the correspondingϕ0 which satisfy the equation

λϕ3 − (2λ+ µ)ϕ2 + c(λ+ 2µ)ϕ− cµ = 0. (3.62)

Thus the second constraint relation for the chirping parameters is given as

−2c ζ + 2[(ζ + ξ) + c(ζ + η)]ϕ0

(ϕ0 − c)(µ+ λϕ0)
= 0. (3.63)

The general solution for Eq.(3.59), which has regular singularity atϕ = 0 is given in terms

of Heun local solutions, Hl(ϕ) as,

Ca(ϕ) = P1ϕ
1−ρHl[c, q + (1− ρ)((c− 1)σ + a + b− ρ+ 1);

a− ρ+ 1, b− ρ+ 1, 2− ρ, σ;ϕ] + P2 Hl [c, q; a, b, ρ, σ;ϕ] ,
(3.64)

where the constants,P1,P2 can be found using the initial conditions of the system. In the

limit τ → ∞, the population left in the levela can be obtained by substitutingϕ → 1 in

Eq.(3.64). Let us consider a simple case ofµ = 1, λ = 0 in Eq.(3.57) and Eq.(3.58a) gives

ϕ(τ) =
1 + tanh(τ)

2
, (3.65a)

Ω(τ) = γ

[

2ϕ(1− ϕ)

(c− ϕ)

]1/2

. (3.65b)

From Eq(3.65) the pulse takes the form

Ω(τ) =
γ sech(τ)

√

δ − tanh(τ)
, δ = 2c− 1. (3.66)

This pulse shape serves as an excellent model for a smooth boxpulse, by taking care of
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non-analyticity at its edges with the help of the pulse parameterδ. Using Eq.(3.62) we get

ϕ0 = c ±
√
c2 − c. From one of our earlier assumptionsc > 1 only one of the possible

values is allowed forϕ0 as0 ≤ ϕ0 ≤ 1. Subsequently usingϕ0 = c−
√
c2 − c in Eq.(3.63),

we get the constraint equation as

ζ − η

ξ
= δ −

√
δ2 − 1. (3.67)

The defining equation for the chirping function takes the form

φ(τ) = ξ
{(

δ −
√
δ2 − 1

)

τ + ln[δ cosh(τ)− sinh(τ)]
}

. (3.68)

For the pulse defined by Eq.(3.66), using the scaling parameters Eq.(3.7) and the chirping

function Eq.(3.68), Eq.(3.56) gives

C̈a(τ)−
[

1

2

(

1− 2δtanhτ + tanh2τ
δ − tanhτ

)

− iξ
(√

δ2 − 1

− δ2 − 1

δ − tanh(τ)

)

+ iβ

]

Ċa(τ) +
γ2sech2τ
δ − tanhτ

Ca(τ) = 0.

(3.69)

Let us define the initial conditions for our system as

Ca(τ → −∞) = 0, |Cb(τ → −∞)| = 1. (3.70)

Solution for Eq.(3.69), satisfying the initial conditionsis give as

Ca(ϕ) = Pϕ1−ρHl[c, q + (1− ρ)((c− 1)σ + a+

b− ρ+ 1); a− ρ+ 1, b− ρ+ 1, 2− ρ, σ;ϕ],

(3.71)

whereϕ(τ) is given by Eq.(3.65a) and the Heun parameters as .

ρ =
1

2
− i

(

ζ +
β

2

)

, σ =
1

2
+ i

[

β

2
− η

]

,

υ =
1

2
− iξ, q = −γ

2

2
, a = 0, b =

1

2
, c =

δ + 1

2
.

(3.72)
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Fig. 13. (I) Heun Equation case: Chirping functionφ(τ) given by Eq.(3.68) forξ = 10 and

(a) δ > 1, (b) δ ≈ 1 (c) The Electric field E(τ) for varying ξ andδ = 1.01. (d)

Probability amplitudes for the upper level|a〉 for the corresponding fields in (c).

|Ca(τ)| is given by Eq.(3.71).

The chirping parametersζ, η and the constant P are given as

ζ = −ξ
2

(

1− δ +
√
δ2 − 1

)

, (3.73a)

η = −ξ
2

(

1 + δ −
√
δ2 − 1

)

, (3.73b)

P= iγ

[

2(1−iξ)(1 + δ)iξ−1/2

1 + i(2ζ + β)

]

. (3.73c)

Here we have keptξ as a free parameter for the chirping functionφ(t). In Fig. 13, we

have considered some forms of the chirping functionφ(τ) [see Figs. 13(a,b)] forδ > 1

andδ ≈ 1 respectively, given by Eq.(3.68). Influence of chirping on the evolution of the
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Fig. 14. (II) Confluent Heun Equation case: (a) Profile of the Electric field E(τ) for varying

ζ . (b) Probability amplitudes for the upper levela for the corresponding fields in

(a). The pulse envelopeΩ(τ) andφ̇(τ) is given by Eq.(3.80).

probability amplitude for the upper levela in shown in Fig. 13(d) for the corresponding

pulses in Fig. 13(c)

In this section we will discuss another class of pulse and thecorresponding chirping

function. Let us define the pulse and the chirping function as

Ω(τ) =
2
√
2 γ(1− ϕ)

√
ϕ

µ+ λϕ
, (3.74a)

φ̇(τ) =
2ζ − 2(ζ + η)ϕ

µ+ λϕ
. (3.74b)

In terms of the variableϕ(τ) and the definition ofΩ(τ), φ̇(τ) from Eq.(3.58), Eq.(3.56)

takes the form
d2Ca

dϕ2
+

(

u

ϕ
+

v

ϕ− 1

)

dCa

dϕ
+

(pϕ+ q)Ca

ϕ(ϕ− 1)
= 0. (3.75)

where

u =
1

2
− i

[

ζ +
βµ

2

]

, v = i

[

β(λ+ µ)

2
− η

]

, p = −q = 2γ2. (3.76)

The critical point which corresponds to the peak ofΩ(τ) is given by

ϕ0 = −
[

λ+ 3µ−
√

(λ+ µ)(λ+ 9µ)

2λ

]

, (3.77)
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ulation left for the Heun case. For calculationsβ = 2.5, γ = 0.25, δ = 1.01 (c)

Chirping function for the Confluent Heun caseφ̇(τ).

and the correspondingτ0 can be found using Eq.(3.57). At this pointφ̇ = 0 which gives a

constraint relation as

3ζ(λ+ µ)− ζ
√

(λ+ µ)(λ+ 9µ) + η
(

λ+ 3µ−
√

(λ+ µ)(λ+ 9µ)
)

= 0. (3.78)

The general solution of the Confluent Heun Equation Eq.(3.75) is given as

Ca(ϕ) =P1Hl
(c)[0, u− 1, v − 1, p, q + (1− uv)/2, ϕ]+

P2ϕ
1−uHl(c)[0, 1− u, v − 1, p, q + (1− uv)/2, ϕ],

(3.79)

where P1, P2 can be found using the initial condition of the system. In thelimit τ → ∞,

the population left in the levela can be obtained by substitutingϕ→ 1 in Eq.(3.79).
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influence of the phase jump timet0 is symmetric as shown in (a). The parameters

used areΩ0 = 0.875ω, ν = 0.75ω, γ = 1.25ω, t0 = 0, andα = 0.331ω as required

appropriately. For (c) we usedα = 0.110ω.

Let us consider a simple case ofµ = 1, λ = 0. Thus the new variable is given by

Eq.(3.65a). From Eqs.(3.77, 3.78) we getϕ0 = 1/3 andη = 2ζ . Pulse shapeΩ(τ) and the

chirping function can be written as

Ω(τ) = γ sech(τ) [1− tanh(τ)]1/2 , (3.80a)

φ̇(τ) = −ζ [1 + 3tanh(τ)] . (3.80b)

For the pulse defined by Eq.(3.80a), using the scaling parameters Eq.(3.7) and the chirping



48

function Eq.(3.80b), Eq.(3.56) gives

C̈a(τ)−
{

iβ − 1

2
[1 + 3tanh(τ)]− iζ [1 + 3tanh(τ)]

}

Ċa(τ)

+ γ2sech2(τ) [1− tanh(τ)]Ca(τ) = 0.

(3.81)

Let us define the initial conditions for our system as Eq.(3.70). Solution for Eq.(3.81),

satisfying the initial conditions is give as

Ca = Pϕ1−uHl(c)[0, 1− u, v − 1, p, q + (1− uv)/2, ϕ], (3.82)

whereϕ(τ) is given by Eq.(3.65a) and the Heun parameters as .

u =
1

2
− i

[

ζ +
β

2

]

, v = i

[

β

2
− η

]

, p = −q = 2γ2. (3.83)

The constant P is given as

P= γ

[

2(3/2+3iζ)

(2ζ + β)− i

]

. (3.84)

Here we have keptζ as a free parameter for the chirping functionφ(τ) given by Eq.(3.80).

Influence of chirping on the evolution of the probability amplitude for the upper level|a〉

in shown in Fig. 14(b) for the corresponding pulses in Fig. 14(a). To see the effect of

chirping on the population left in the upper levela, we have plotted in Fig. 15,|Ca(∞)|

as a function of the free chirping parameter for the Heun and the Confluent Heun case for

a particular choice of the detuningβ and the peak Rabi frequencyγ. We see that|Ca(∞)|

ranges from4 · 10−3 ∽ 6 · 10−1. In Fig. 16 we have plotted population a contour plot of

the population left in the upper levela as a function of detuningβ and the free chirping

parametersξ, ζ for the Heun and the Confluent Heun case respectively.
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D. Few-Cycle Pulse Excitation

Modern pulsed lasers produce bursts of light that are both ultra-short and ultra-strong, ex-

hibiting durations comparable to those of molecular vibrations, and electric fields rivaling

those near an atomic nucleus [55]. Attosecond lasers, emitting pulses with only a few op-

tical cycles per pulse [56], hold the promise of controllingthe phase difference between

the carrier wave and its envelope[57]. Interaction of such ultrashort pulses with a two-level

atom under rotating-wave approximation does not give us thecomplete picture since the

variation of the atomic polarization and population withinthe optical cycle is not slow.

Thus we should not neglect the contribution of the counter-rotating terms in the Hamilto-

nian while studying few cycle pulses interaction with atomic systems [58, 59, 60, 61, 62,

63, 64, 65]. On the other hand if the fields are not too strong and the variation of the atomic

polarization and population within the optical cycle is slow, RWA appears to be a good

approximation.

In this section we study the interaction of few-cycle pulses, in contrast to many cycle

pulses [66, 67, 68], with two-level system. These pulse havea phase jumpφ att = t0. Thus

they can be characterized by the parameters peak Rabi frequencyΩ0, pulse widthτ , carrier

frequencyν, phase jumpφ and jump momentt0 along with the pulse envelope ( which we

have considered gaussian for the numerical simulation). Wepresent an analytical solution

for this problem. Using the appropriate characterizing parameters, the population transfer,

can be optimized and for the pulse considered here, enhancement of106 − 108 factor was

obtained.

The equation of motion for the probability amplitudes for the statesa andb of a two-

level atom (TLA) interacting with a classical field is given by Eq.3.2. In this section we

will work without RWA, hence the Riccati Eq.(3.4) takes the new form as

ḟ + iΩ∗(t)cos(νt)e−iωtf 2 − iΩ(t)cos(νt)eiωt = 0. (3.85)
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The approximate solution for Eq.(3.7), in terms of the tip angleθ is given as[44]

f(t) = i

∫ t

−∞
dt′
{[

dθ(t′)

dt′
− θ2(t′)

dθ∗(t′)

dt′

]

exp

[

2

∫ t

t′
θ(t′′)θ̇∗(t′′)dt′′

]}

, (3.86)

where the tip angleθ(t) has been defined as

θ(t) =

∫ t

−∞
Ω(t′)cos(νt′)eiωt

′

dt′. (3.87)

To see how well the approximate solution works, we have plotted the probability amplitude

|Ca(∞)| for a complex pulse shape given byΩ(t) = Ω0[sech(αt) + sech(αt− 3)] [see Fig.

17]. Numerical simulation (dashed) and analytical solution (solid) shown in Figs.17(a) and

17(b) are nearly identical.

1. Pulses With Arbitrary Phase Jump

In this section we will investigate the dynamics of a two-level atom subjected to few-cycle

pulse with a phase jump at an arbitrary timet = t0. Let us define the Rabi frequencyΩ(t)

for our model as

Ω(t) =















Ω−(t) if t < t0,

Ω+(t) if t ≥ t0,

(3.88)

whereΩ+(t) = eiφΩ−(t) andφ is the phase jump introduced to the electromagnetic field

at t = t0. Equivalently the tip angle define by Eq.(3.87) takes the form

θ(t) =















θ−(t) if t < t0,

θ+(t) if t ≥ t0.

(3.89)

From the definition of the Rabi frequency Eq.(3.88), we can easily see thatθ+ = eiφθ−.The

time evolution of our system is divided into two regimes(−∞, t0) and(t0,∞). In both
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Fig. 17. Population left in the upper levela after applying Ω(t) = Ω0[sech(αt)
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solution of Eq.(3.2) (dots) and using our approximate analytical result Eq.(3.86)

(solid line). In calculations we takeΩ0 = 0.04ω andα = 0.075ω. In (a) φ = 0

while in (b)φ = π, t0 = 0.

these regimes, the functional form of the solutions remainsthe same. We can write

fφ(t) =















f−(t) if t < t0,

f+(t) if t ≥ t0.

(3.90)

Eq.(3.86) is the solution forφ = 0 for the initial conditionf(−∞) = 0. Using the same

initial condition we can safely write

f−(t) = i

∫ t

−∞
dt′Φ−(t

′)exp

[

2

∫ t

t′
ζ−(t

′′)dt′′
]

, (3.91)

where

Φ−(t
′) =

[

dθ−(t
′)

dt′
− θ2−(t

′)
dθ∗−(t

′)

dt′

]

, (3.92a)

ζ−(t
′′) = θ−(t

′′)θ̇∗−(t
′′). (3.92b)

As the functional form off+(t) andf−(t) are the same, we can write

f+(t) = i

∫ t

t0

dt′Φ+(t
′)exp

[

2

∫ t

t′
ζ+(t

′′)dt′′
]

+ c, (3.93)
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Fig. 18. Effect of jump timet0. (a) Here we have plotted the probability amplitude|Ca(∞)|
against the phase jumpφ. Phase jump is introduced at the peak of the gaussian

envelope. (b) The symmetric influence on the degree of excitation with respect

to the position oft0. The symmetric response is lost for shifted gaussian input

pulse (c) and (d). For numerical calculations we choseΩ0 = 0.875ω, ν = 0.75ω,

α = 0.331ω andγ = 1.25ω.

whereΦ+(t
′) = eiφΦ−(t

′) andζ+(t′) = ζ−(t
′) The constantc can be obtained by demand-

ing the continuity offφ(t) at t = t0 which gives

c = i

∫ t0

−∞
dt′Φ−(t

′)exp

[

2

∫ t0

t′
ζ−(t

′′)dt′′
]

. (3.94)

Population transferred to the levela during the interaction is given as|Ca(∞)|2 = |fφ(∞)|2
/

(1+

|fφ(∞)|2). In order to study the effect of the phase jumpφ let us define a relative change

in the amplitude

rφ(t) =

∣

∣

∣

∣

fφ(t)− f(t)

f(t)

∣

∣

∣

∣

. (3.95)
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Fig. 19. Effect ofα. (a) Probability amplitude|Ca(∞)| varies in the range from10−5 ∽ 0.7.

(b) We have plotted|Ca(∞)| against normalized pulse widthγτ for fixedω, ν,Ω0

and three combinations of the phase jumpφ = 0, π/2, π. (c) Shows the temporal

evolution for the three combinations used in (b). For numerical simulation we chose

Ω0 = 0.875ω, ν = 0.75ω, γ = 1.25ω andα = 0.331ω.

Using Eq.(3.91), Eq.(3.93) and Eq.(3.86) we get,

rφ(t) =

∣

∣

∣

∣

∣

∣

(eiφ − 1)
∫ t

t0
dt′Φ−(t

′)exp
[

2
∫ t

t′
ζ−(t

′′)dt′′
]

∫ t

−∞ dt′Φ−(t′)exp
[

2
∫ t

t′
ζ−(t′′)dt′′

]

∣

∣

∣

∣

∣

∣

. (3.96)

The asymptotic valuerφ(∞) can be obtained byt → ∞ in Eq.(3.96). We can easily see

from the Eq.(3.96), thatrφ(∞) attains its maximum value forφ = π.
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Fig. 20. (a) Temporal behavior of|Ca| for difference combination ofφ. (b) Plot of|Ca(∞)|
againstν/ω. For numerical simulation we choseΩ0 = 0.875ω, t0 = 0, γ = 1.25ω

andα = 0.331ω.

2. Effect of Pulse Parameters

In this section we will discuss the effect of the pulse parameters like phase jump timet0,

pulse witdthτ , detuning∆ and peak Rabi frequencyΩ0 on the degree of excitation of

the upper levela. For the computational purpose we have considered a Gaussian pulse

of the formΩ(t) = Ω0e
−α2t2 whereα = 2

√
ln2/τ (τ is the FWHM of the pulse). The

main result showing the effect of relative position oft0, with respect to the peak of the

pulse, on the atomic excitation is shown in Figs. 18 and 22(a)where we have shown the

dynamics of the two-level atom interacting with few-cycle pulse with a phase jump. In

Fig. 18(a) we have one such scenario ofφ = π/2. Here the phase jump is introduced in the

field at the peak of the gaussian envelope i.et0 = 0 and plotted the probability amplitude

|Ca(∞)| against the phase jumpφ. Interestingly the difference in the maximum and the

minimum value corresponds to∆φ = π. The symmetric nature of the atomic excitation

is observed in Fig. 18(b) and in the contour plot Fig. 22(a). With the shifted Gaussian

pulseΩ = Ω0e
−α2(t±ts)2 [see Figs. 18(c) and 18(d)] the symmetry is lost. Also the effect

of the phase jump becomes significant fort0 within the FWHM of the pulse and gradually
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Fig. 21. (a) Temporal behavior of|Ca| for difference combination ofφ. (b) Plot of|Ca(∞)|
againstΩ0. For numerical simulation in (b), we chose a shifted gaussian pulse with

ts = 1, ν = 0.75ω, t0 = 0, γ = 1.25ω andα = 0.331ω. Ω0 = 0.875ω for Fig. (a).

decreases whent0 is close to the tail of the pulse. Identical response of the system, for

γt0 ≈ 10, is observed for three combinations of the phase jumpφ = 0, π/2, π.

While investigating the effect of few-cycle pulses on atomic systems, the parameter

α plays an important role for a given value of the carrier frequencyν. It determines the

number of cycles of the field in the pulse. The main results showing the effect ofα or the

pulse widthτ is given in Fig. 19 and in the contour plot in Fig. 22(b). If we look at the

inset of Fig. 19(a) we see that the probability amplitude|Ca(∞)| varies in the range from

10−5 ∽ 0.7. In Fig. 19(b) we have used three combination of phase jumpφ (φ = 0, π/2, π)

to study the effect ofα on the degree of excitation. For lower pulse width (2 ≤ γτ ≤

15)φ = π/2 creates more excitation thanφ = 0 or π.

In order to study the effect of detuning∆ we have plotted the response of the system

in terms of|Ca(∞)| for the three combination ofφ. Fig. 20(a) shows the temporal behavior

while Fig. 21(b) gives the information about steady-state population. The probability am-

plitude|Ca(∞)| varies in the range from4.4 × 10−4 ∽ 0.4 for φ = 0 and5 × 10−5 ∽ 0.9

for φ = π. When|Ca(∞)| is ∽ 4.4 × 10−4 for φ = 0 we have|Ca(∞)| ∽ 1 for φ = π,
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Fig. 22. Contour plot sowing the effect of the pulse parameters such ast0, τ, ν, andΩ0 on

the population left in the excited statea in (a), (b), (c), and (d) respectively. The

influence of the phase jump timet0 is symmetric as shown in (a). The parameters

used areΩ0 = 0.875ω, ν = 0.75ω, γ = 1.25ω, t0 = 0, andα = 0.331ω as required

appropriately. For (c) we usedα = 0.110ω.

thus we have an enhancement of106 − 108 factor in the population transfer by introducing

a phase jump ofπ at the peak of the envelope function.

The effect of the peak Rabi frequencyΩ0 on the degree of excitation of the upper level

in shown in Fig. 21 and in the contour plot Fig. 22(d). While Fig. 21(a) shows the temporal

behavior of|Ca| on the other hand Fig. 21(b) gives the information about the population

left in the upper level after the pulse is gone. We see that forsome choice ofΩ0 φ = 0 has

the maximum effect while for someφ = π/2 is dominant.
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Fig. 23. Field configuration and level structure of H or He+. All population is initially in

the ground stateb. First, the strong short far-off resonant pulse with frequency ν1
is applied to the system to excite coherence between levelsb = 1s andc = 2s,

and then the second pulse with the frequencyν3, which is close to the transition

between levels2s and2p, is applied to generate XUV pulse with higher frequency

ν4.

E. Generation of X-ray and UV(XUV) Radiation

The obtained results can be applied to the generation of X-ray and UV (XUV) radiation,

which is one of the main topics in modern optoelectronics andphotonics [69]. Recent

progress in ultrashort, e.g. attosecond, laser technologyallows searchers to obtain ultra-

strong fields [70]. Interaction of such strong and broadbandfields with a two-level atomic

system, even under the action of a far-off resonance laser radiation is of current inter-

est [71, 26, 72, 73, 44]. Strong short laser pulses can exciteremarkable coherence on high

frequency transitions; and this coherence can be used for surprisingly efficient generation

of XUV radiation [26, 72, 73, 44]. In the first step we excite the atoms (e.g., from the1s

to 2s states of or He+, etc.) via a short pulse of femto- or attosecond radiation e.g., from a
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conventional Ti-sapphire laser system). The excitation occurs due to the coherent coupling

between1s and 2p and then 2p and 2s. In the second step, we apply another pulse which

scatters off the Raman coherence (prepared in the first step), generating short wavelength

anti-Stoke radiation as depicted in Fig. 23. The generationof radiation is a coherent process

that (contrary to conventional superfluorescence) does notrequire population inversion (see

Appendix C). The higher efficiency of coherent process has been demonstrated in various

spectral regions[74, 75, 76, 77, 78, 79, 80, 81].

We have analytically calculated above that the level of excited coherence when a two

level atom is driven by a ultra-short intense pulse. The coherence is sufficiently large that

this can be used for nonlinear generation of XUV radiation, i.e, see Figs.10(b),11(b) and

12(b), coherence can be of the order of0.1. It is instructive to estimate the level of XUV

field that can be generated by using this coherence. After an ultra-strong and short pulse,

we apply a strong resonant and relatively long pulse. The applied probe pulseΩ3 and

generated signalΩ4 are coupled to each other via coherence excited in the medium(Rabi

frequencies are defined asΩ3,4 = ℘3,4E3,4/~). Hence, the propagation equation forΩ4 is

given by
∂Ω4

∂z
= −iη4ρab, (3.97)

whereρab is the appropriate atomic coherence (see Fig. 24), andη4 = k4℘
2
4N/2~, where℘4

is the dipole moment at the transition between. The corresponding equation for the density

matrix coherenceρab is

ρ̇ab = −Γabρab + iΩ4(ρaa − ρbb)− iΩ3ρcb, (3.98)

and, for short pulses,ρab ≃ −iΩ3τρcb. Then, we can estimate the intensity of the signal

field, by

Ω4 =
k4L℘

2
abN

2~
ρcbΩ3τ, (3.99)
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Fig. 24. Two-stage generation scheme for X-ray generation.(a) Applying a strong pulse al-

lows one to excite an atomic system by transferring population to electronic excited

states. (b) Coherence is then induced by applying a resonantfield.

wherek4 is the wavenumber for signal radiation,L is the length of the active medium,℘ab

is the dipole moment at the transition betweena andb levels,τ is the time duration of the

pump laser pulse. Using the parametersN ≃ 1016−19 cm−3, ℘ab ≃ 1D, L = 100 µm,

ρcb = 10−1, Ω3τ = 1 − 103, τ = 1 ps,λ = 10 nm, we obtain energy≃ 10 nJ − 1 µJ .

This estimate shows the promise of the approach. This estimate is valid on the time scale

when the collisions in the plasma destroy the coherence. It occurs at the times of order

δt = 1/σcN ≃ 1 ps, whereσ is the atomic cross-section for atomic collisions that destroy

the excited coherence.

F. Conclusion

In this chapter we have found several analytical solutions for a two-level atomic system un-

der the action of a far-off- resonant strong pulse (chirped,unchirped and few-cycle) of laser
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radiation. The solutions are given in terms of the Heun function, which is a generalization

of the hypergeometric function. The Rosen-Zener and Bambini- Berman models belong

to this class of pulses as special cases. A better approximation for the box pulse is also

obtained here, which takes care of nonanalyticity at the edges by introducing a parameter

δ. We also analyzed pulse shapes with phase jump at an instant of time t0 and showed a

unique way of enhancing the excitation. The enhancement factor can be as large as106 for

a judicious choice of parameters. The results obtained herehave applications to the gener-

ation of XUV radiation and the estimate reported here shows good potential as a source of

coherent radiation.
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CHAPTER IV

QUANTUM INTERFERENCE CONTROLLED RESONANCE PROFILES∗

A. Introduction

Study of quantum interference (QI) had led to the discovery of numerous fascinating phe-

nomena in various type of systems ranging from atoms to biomolecules [2, 83, 84]. In

atomic systems for example, one of the earliest known effectof QI is the modification of

the absorption profiles that comes about due to interferenceamong the bound-bound and

bound-continuum transitions, a phenomenon now called Fanointerference [85]. Agarwal

[86] later showed how QI among decay pathways can lead to generation of coherence and

population trapping in a multi-level atomic configuration.A counter-intuitive application

of suchAgarwal-Fano QI was discovered by Harris in the form of inversion-less lasing

(LWI) [87]. This non-energy conserving phenomena had thereof lead to several theoretical

investigations [88, 89, 90] and experimental demonstration [5, 6, 7]. Furthermore, during

the past decade study of QI effects has been extended to tailored semiconductor nanos-

tructures like quantum wells and dots due to coherent resonant tunneling owing to their

potential applications in photo-detection [16, 17], lasing [18, 19], quantum computing and

quantum circuitry [20, 21].

In the seminal work of Scully [12] it was shown that coherenceinduced by external

source can break the detailed balance between emission and absorption and enhance, in

principle, the quantum efficiency of a photovoltaic cell. Ref [12] demonstrated the role of

quantum coherence in a simple way. In a recent work we showed that coherence induced

by QI can enhance the power of the Photocell and Laser QuantumHeat Engines [91, 92]

∗Reprinted with permission from “Quantum-interference-controlled resonance profiles from
lasing without inversion to photodetection” by K. E. Dorfman, P. K. Jha and S. Das, 2011.Phys.
Rev. A 84, 053803(1)-053803(8), Copyright [2011] by American Physical Society
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following the earlier work on Photo-Carnot Engine enhancedby quantum coherence [93].

The main idea is that the quantum coherence induced by eitheran external drive or QI

among the decay paths alters the detailed balance between emission and absorption and

can enhance the efficiency of the system compared to that without quantum coherence.

In the case of photovoltaic cells quantum coherence leads tosuppression of radiative re-

combination [12] or enhancement of absorption [92] and thus, increase of the efficiency.

Furthermore, the results of the Ref. [12] have initiated debates about the principle issues. In

his article [94] Kirk attempts to investigate the limits of Ref. [12] and, in particular, argues

that Fano interference does not break detailed balance of the photocell. Note, that noise

induced coherence via Fano interference was later shown to indeed enhance the balance

breaking in photovoltaics where it leads to increase in power [95, 96, 91, 92].

These investigations have hence generated renewed interest in the fundamental ques-

tion of noise induced interference effects on the emission and absorption profile of an atom

or atom like system (excitons in quantum wells or dots) [97].As such, we in this paper

undertake a thorough theoretical investigation of the vacuum induced interference effects

on the resonance line profiles of a three level system with doublets in ground (excited) state

configuration (see Fig. 25). Our analysis is quite general and applies to atoms, molecules

as well as quantum wells and dots. We study the time profile of absorption and emission

probabilities and derive its close form expression in the steady state regime. In the present

work we use a simple probability amplitude method to calculate the resonance profiles

since the states involved in calculation have zero photon occupation number. The latter is

equivalent to the density matrix formalism usually used in this type of problems [91, 92].

The probabilities of emission and absorption are found to have strong functional de-

pendence on the the energy spacing between the doublets (2∆) and interaction strengthp.

In the case of atomic systemp is governed by a mutual orientation of dipole moments. In

semiconductor systemsp has a meaning of the phase shift acquired by the wave function
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Fig. 25. The scheme of the three level system with the doubletin the ground state (a) and in

the excited state (b). Radiative decay from the doublet states to the reservoir is2γ

while the excited (ground) state to the reservoir is2Γ.

between two interfering pathways. This thus provides us with two different parameter by

which we can regulate the QI in the system. For example, we show that depending on the

choice of energy spacing between the doublets compared to spontaneous decay rate we

can use destructive interference to achieve either LWI by enhancing the emission or pho-

todetectors and interferometers by reducing emission and enhancing absorption. Moreover

depending on thepwe can manipulate the interference type from destructive toconstructive

which can significantly alter the resonance profiles [see Fig. 27]

B. Theoretical Model

In order to investigate the effect of QI on the emission and absorption profile of an atomic,

molecular or semiconductor system we consider a three levelconfiguration with a ground

state doubletv1,2 and excited statec [see Fig. 25(a)]. The three level system is excited by

coherent field with the central frequencyν so that the energies of statev1,2 are related toc

asν±∆, where∆ half of the energy spacing between the ground state doublet.The ground



64

state doubletv1,2 decays to the reservoir stateRv with the rate2γ1,2 respectively and the

excited state decays to the reservoir stateRc with the decay rate2Γ. Furthermore, states

v1,2 can represent either Zeeman sub-levels in atoms, vibrational levels within electronic

band in molecules or intrasubband in semiconductor. Since the typical relaxation rate of

electronic (intersubband) transition is much smaller thanthat of vibrational (intrasubband),

we neglect direct decay process between levelc andv1,2. Note that the decay of ground

state doubletsv1,2 to the same stateRv leads to a vacuum induced coherence among them.

The physics of this coherence is attributed to theAgarwal-Fano QI of the transition am-

plitudes among the decay pathways. Note that analysis presented below is valid for the

system with excited state doubletc1,2 and single ground statev (as per Fig. 25b, see discus-

sion). We will show later that such QI plays a major role in theline profiles of an atomic

system [87, 98]. The time dependent amplitudes of the statesv1,2 andc essentially exhibits

the effect of coherence on the dynamics of the system. The probability amplitude method

can be applied in the present system since statesv1,2 andc have zero photon occupation

number. Solving the time dependent Schrödinger equation,the dynamical evolution of the

probability amplitudesv1,2 andc of finding system in corresponding statesv1,2 andc (i.e.

states with zero photons) in Weisskopf-Wigner approximation is given by

v̇2(t) = −(γ2 + i∆)v2(t)− p
√
γ1γ2v1(t)− iΩ2c(t), (4.1)

v̇1(t) = −(γ1 − i∆)v1(t)− p
√
γ1γ2v2(t)− iΩ1c(t), (4.2)

ċ(t) = −iΩ2v2(t)− iΩ1v1(t)− Γc(t), (4.3)

whereΩ1,2 = ℘1,2E0/2~ and℘1,2 are the respective Rabi frequencies and dipole moments

of the corresponding transitionsv1,2 ↔ cwith E0 being the amplitude of the applied electric

field. The termp
√
γ1γ2 arises due to QI of the decay pathways of the ground state doublet.

It is clearly seen from the above set of equations that this term for p 6= 0 couples the
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amplitudes of the statesv1 andv2. Such a coupling is known asAgarwal-Fano coupling

in the literature [99] and have several implications ranging from superradiance [100, 101]

and entanglement [101] to quantum solar cells [12, 91, 92]. The interference strength is

typically determined in terms of the relative orientation of the dipole moments of the decay

transitions and is given by coefficient ap as,

p =
~℘v1Rv · ~℘v2Rv

|~℘v1Rv ||~℘v2Rv |
(4.4)

where~℘v1Rv and~℘v2Rv are the dipole moment corresponding to the transitionv1 ↔ Rv and

v2 ↔ Rv respectively withp = ±1 exhibiting the maximal interference among the decay

paths. Herep = 1 corresponds to the two dipole moment vectors parallel to each other

on the other hand when they are anti-parallelp = −1. Non-orthogonal dipole moments in

optical transition have been generated using superposition of singlet and triplet states due

to spin-orbit coupling in sodium dimers [102]. More generally, interference strengthp is a

phase shift acquired by wavefunction between initial and final states. Equations (4.1)-(4.3)

can be written and solved in the dressed basis using the approach developed by Scully [103]

as discussed in Appendix E for generalp and in the presence of additional decay ratesΓ, γ.

The probability of emissionPemiss defined as a sum of population of the doubletv1, v2

and of the reservoir stateRv due to conservation of probability, can be written in terms of

populations of statesc andRc as

Pemiss(τ |c) = 1− |c(τ)|2 − 2Γ̃

∫ τ

0

|c(τ ′)|2dτ ′. (4.5)

In the long time limit,τ ≫ 1, 1/Γ̃ and assumingγ1 = γ2 = γ for simplicity, the probability

of emission defined in Eq.(4.5) (derived in Appendix E) yields

Pemiss(∞|c) = (Γ̃ + 1)(Ω̃2
1 + Ω̃2

2)− 2pΩ̃1Ω̃2

Γ̃
[

(Γ̃ + 1)2 + ∆̃2 − p2
] . (4.6)
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where the tilde signifies that all the parameters are now dimensionless as they are normal-

ized byγ. The probability of absorption from levelv1 can be evaluated in a similar manner.

For the initial conditionsv1(0) = 1,v2(0) = 0 andc(0) = 0 the probability of absorption

Pabs is given by the sum of population on statesc andRc:

Pabs(τ |v1) = |c(τ)|2 + 2Γ̃

∫ τ

0

|c(τ ′)|2dτ ′ (4.7)

that yields the following expression in the long time limit,τ ≫ 1, 1/Γ̃ (see Appendix E)

Pabs(∞|v1) =
1

D
{[

2(1 + ∆̃2)(1 + Γ̃)− Γ̃p2
]

Ω̃2
1 −2(Γ̃ + 2)pΩ̃1Ω̃2 + (Γ̃ + 2)p2Ω̃2

2

}

(4.8)

whereD = 2(1 + ∆̃2 − p2)
[

(Γ̃ + 1)2 + ∆̃2 − p2
]

. The probability of absorption from

level v2 can be derived in the same way as for the levelv1 by interchangingv1 ↔ v2 in

Eq. (4.7) and̃Ω1 ↔ Ω̃2 in Eq. (4.8). Comparison of Eq. (4.6) with Eq. (4.8) yields that

probability of emission and absorption can vary substantially in the presence (p 6= 0) or

absence (p = 0) of interference.

So far we have discussed a model with doublet in the ground state. Let us now con-

sider doublet in the excited state [as shown in Fig. 25(b)]. In practice this configuration is

commonly used in semiconductor systems like quantum wells and dots. The expression for

the probability of emission and absorption in case of excited state doublet can be obtained

as follows. If we start with|c1〉, the probability of emission is given by

Pemiss(τ |c1) = |v(τ)|2 + 2Γ̃

∫ τ

0

|v(τ ′)|2dτ ′ (4.9)

Similarly the probability of absorption from|v〉 yields

Pabs(τ |v) = 1− |v(τ)|2 − 2Γ̃

∫ τ

0

|v(τ ′)|2dτ ′. (4.10)

The expression for the emission and absorption probabilitycan be calculated by following
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a procedure similar to that outlined in appendix E for the ground state doublet. In the

long time limit t ≫ γ−1,Γ−1, we find that the expression for emission and absorption

probabilities obtained from Eqs.(4.9)-(4.10) reduces to Eqs.(4.8) and (4.6) respectively.

C. Discussion

1. Lasing without Inversion and Photodetectors

The model discussed in the previous section is relevant for the design of the systems with

nonrecpirocal relation between emission and absorption. For instance, suppressed absorp-

tion or/and enhanced emission in the laser systems allows for operating without population

inversion. On the other hand enhanced absorption with suppressed emission can results in

the photodetector or photovoltaic/solar cell system with enhanced power output[91, 92].

Both LWI and photodetector schemes can be realized in atomicmolecular and semicon-

ductor systems. In atoms Agarwal-Fano type QI can arise between decay channels from

magnetic sub-levels. In molecular systems on the other hand, decay pathways of different

vibrational/rotational levels lead to asymmetric absorption/emission profiles due to inter-

ference. In the case of semiconductors, Agarwal-Fano interference comes about quite nat-

urally in a system of two quantum wells or dots grown at nanometer separations [18, 19].

The tunneling/Förster interactions among the wells/dotsrenormalizes the bare energies and

bare states of the system thereby creating new eigenstates which then reveals the interfer-

ence in decay channels through tunneling to the same continuum [104, 103]. Note that

QI and coherence effects in semiconductors are strongly effected by the presence of de-

phasing environment and hence experiments in these systemsare carried out at very low

temperatures (10 K). This thereby restrict their practicalfeasibility for various applications

involving QI. However, recently quantum dot photodetectorenhanced by Fano-type inter-

ference assisted with metallic hole array was reported operating at 77 K [17]. Hence in
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Fig. 26. Steady state (a,d) and temporal evolution (b,c,e,f) of the emission and absorption

probability for the three level model with the doublet in theground state. (a,d)

shows the effect of the parameter ’p’ on the steady state values of the probability

of emission and absorption. (b,e) shows the temporal behavior of the probaility of

emisison for three choices of ’p’. (c,f) shows the temporal behavior of the probabil-

ity of absorption for the same choices of p as in (b,e). For numerical simulation we

took,γ = 1, Ω1 = Ω2 = 0.3γ, Γ = 0.4γ and∆ = 10γ for (a,b,c) and∆ = 0.01γ

for (d,e,f).

near future realization of Fano like QI effects in nanostructure and its various applications

might be achievable even at room temperatures.

To put the above ideas to prospective, we discuss the functional dependence of the of

emission and absorption probabilities on the interferencestrengthp and the level spacing

∆ in the steady state and transient regime. We show in Fig. 26 the steady state behavior

and temporal evolution of emission and absorption probabilities for different values ofp

and∆. Figures in the upper panel 26(a, b, c) correspond to large level spacing compare to
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spontaneous decay rate∆ ≫ γ (∆̃ ≫ 1). The steady state emission profile is seen to be

strongly influenced by the strength of QI. It varies from its minimum atp = 1 to maximum

at p = −1 (see Fig. 26a). The enhancement in emission is found to be almost 10 fold.

However for absorption the effect of interference is not significant asp varies from−1 to

1. Therefore, forp = −1 one can achieve regime with largest emission, which can be

useful in inversionless lasing schemes. On the other hand atp = 1, as emission reaches its

minimum, it is attractive in realization of photo-detectors and photovoltaic devices. Note,

that in semiconductor double quantum well system, control over p can be achieved by

manipulating of the width of the shallow well [19]. The time evolution of the resonance

profiles shown in Figs. 26b and 26c exhibits oscillatory behavior in the emission and

absorption probabilities. Period of oscillations is determined by the frequency
√

∆2 − γ2

and thus strongly depend on the level spacing. We see furtherthat the oscillations gets

damped with time and the probabilities eventually reaches the steady state.

For small level spacing∆ ≪ γ (∆̃ ≪ 1), the situation becomes less trivial. In this

case the behavior of emission and absorption profiles is depicted in the lower panel of

Fig. 26(d, e, f). In the steady state the both the probabilities varies significantly with the

interference strengthp [see Fig. 26(d)]. We find that while absorption probability increases

monotonically fromp = 1 to p = −1, emission is seen to first increase until aboutp =

−0.5 beyond which it rapidly decreases to reach the minimum valueat p = −1. This

is in sharp contrast to the behavior of the emission probability for large∆. In the time

dependent profiles [Fig. 26(e), 26(f)] we find that in comparison to the case of large splitting

both emission and absorption probabilities show no oscillations and reach their steady state

values that depend strongly on the interference strength. Furthermore, interesting case

arise atp = −1 where emission profile first reaches its maximum and then drops down to

the steady state that has the smallest value compare to otherp 6= −1. In the same time

absorption profile atp = −1 reaches its maximum value at steady state. Note that in
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Fig. 27. Ratio of the probability of emission to absorption for two combinations of cou-

pling ∆ as a function of the parameterp. For numerical simulation we took,

Ω1 = Ω2 = 0.3γ, Γ = 0.4γ.

contrast to that, for large splitting atp = −1 emission has its maximum [see Fig. 26(b)].

Therefore, not only interference strength determines the emission and absorption profile,

but the level spacing itself has strong impact. Namely, for fixed value ofp, for examplep =

−1, large level spacing∆ yields the strongest emission [see Fig. 26(b)] which is in favor of

lasing process. In the same time for small level spacing the emission is strongly suppressed

while absorption reaches its maximum [see Figs. 26(e,f)], which is perfect situation for

photo-detection and photocell operation. Furthermore, itis worth noting, that despite the

asymmetry between curves forp = ±1 in Fig. 26, result forp = 1 can be derived from

p = −1 case by changing the sign of the Rabi frequency, for instance: Ω1 → −Ω1.

To study further the effects ofp and∆ and to understand the special case of antiparallel

alignmentp = −1 consider the ratio of emission and absorption given by Eq. (4.6) and

(4.8):
Pemiss

Pabs
=

2(1 + Γ̃− p)(1 + ∆̃2 − p2)

Γ̃[∆̃2(1 + Γ̃) + Γ̃(1− p) + (1− p)2]
, (4.11)

where for simplicity we assumeΩ1 = Ω2. Fig. 3 shows the ratio in Eq. (4.11) as a function

of interference strengthp for the case of small and large level spacing. If the spacing is
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Fig. 28. Probability of emission in the three level model lower doublet for different

choices of ∆. For numerical simulation we took,Ω1 = Ω2 = 0.3γ,

Γ = 0.4γ, γ = 1, τ = γt, p = 1.

small,∆ ≪ γ, then the ratio in Eq. (4.11) monotonically increasing fromp = −1 to

p = 1, while for large spacing∆ ≫ γ, the behavior is essentially the opposite, i.e. it is

monotonically decreasing function as we mention above. Furthermore, in the limit of weak

field Ω1 = Ω2 = Ω ≪ 1 Eq. (4.11) yields forp = 0, 1 result that is independent of∆.

Namely for no interference, i.e.p = 0 Eq. (4.11) yields2/Γ̃, while for parallel alignment

p = 1 it yields 2/(1 + Γ̃). On the other hand the case of antiparallel alignment (p = −1)

is special. In particular, for small spacing∆ ≪ Γ ≪ γ Eq. (4.11) gives∆̃2/Γ̃ ≪ 1,

while for ∆ ≫ γ andΓ ≪ γ the result is4/Γ̃ ≫ 1. Therefore, the present analysis not

only confirms that destructive interference can alter the detailed balance but also exhibits

that by controlling two parameters. Namely by adjusting theinterference strengthp and

energy spacing∆, one can regulate the ratio between emission and absorptionprobabilities

in the system. This possible manipulation ofp and∆ hence also suggest that in the same

system with two lower (upper) levels one can induce either suppression of emission [91, 92]

or absorption [18, 19], respectively. The later choice governed by level spacing∆ can

be also controlled externally either by adjusting the current through the junction, or by
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Fig. 29. Probability of emissionPemis as a function of dimensionless timeτ for three-level

system with doublet in excited state - (dashed line) and for three level system with

doublet in ground state - (solid line) calculated numerically according to Eqs. (4.5)

and (4.7) based on the solution of Eqs. (4.1)- (4.3). For numerical simulations we

tookΩ1 = 0.1γ,Ω2 = 0.08γ,Γ = 10γ,∆ = 0.1γ.

manipulating the magnetic field in hyperfine splitting [105,106]. In Fig. 28 we have plotted

the effect of∆ on the temporal evolution of the probability of emission. The results show

that the oscillations in the probability varies with the increase of∆. Furthermore, for

fixed∆ andγ the number of oscillations is governed by rateΓ since probability decays as

exp(−Γt). For interference strengthp, control can be achieved by a tailored variation of

the quantum well widths [19]. Summarizing the proposed scheme with lower doublet can

be applied to the system that requires emission (absorption) suppression or enhancement

and thus is very attractive for both: light emitting devices, such as LWI and light absorbing

photodetector systems.

2. Quantum Beats in Semiclassical Picture

Besides broad range of applications, interference effectsand in particular its sensitivity to

the level spacing discussed in the present work are related to fundamental question about
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the applicability of semiclassical theory in quantum problems. Semiclassical description

(SCT) can predict self-consistent and physically acceptable behavior of many physical sys-

tems and explain almost all quantum phenomena. However It isnot always correct. For

instance, the phenomena of quantum beats has substantiallydifferent result if considered

in the framework of quantum electrodynamics (QED)[2]. Namely, for different configura-

tions of three-level systems: for instanceV andΛ schemes [see Fig. 29] that are initially

prepared in a coherent superposition of all three states SCTdescription predicts the exis-

tence of quantum beats for both schemes, whereas QED theory predicts no quantum beats

in the case ofΛ scheme. The explanation of the phenomenon is quite straightforward and

based on quantum theory of measurements. In the case ofV scheme the coherently excited

atom decays to the same final statev starting fromc+ andc− and one cannot determine

which decay channel was used. Therefore this interference that is similar to the double-slit

problem leads to the existence of quantum beats. However in the case ofΛ scheme that

has also two decay channels:c → v+ andc → v−, after a long time the observation of

the atom’s final state (v+ or v−) will determine which decay channel was used. In this case

we do not expect quantum beats. Three-level systems with doublet in the ground state or

excited state is in a way similar to theΛ andV types of atom respectively. Therefore we

can also study the quantum beats effect in those systems. Note that in the model of Fig.

25 we have additional radiative decays of states which guarantees that system can reach a

steady state within finite amount of time.

Figure 29 illustrates that in the case of doublet in excited state (V scheme) with large

spacing between levelsc+ and c− ∆̃ >> 1, the probability of emission oscillates as a

function of time and reaches the steady state at the time scale determined by radiative

decay1/Γ̃ >> 1. However, for the case of doublet in the ground state (Λ scheme) with

small spacing∆̃ << 1 the probability of emission does not process any quantum beats

and smoothly reach the steady state. Therefore, phenomenonof Fano interference has a
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potential to resolve the fundamental question about an applicability of the semiclassical

description to the problem of quantum beats.

D. Conclusion

To conclude, in this chapter we investigated the effect vacuum induced QI on the emis-

sion(absorption) profile of a three-level system with a doublet in the ground or excited state

[see Fig. 25(a)]. We show that QI can enhance the balance breaking between emission

and absorption. We use probability amplitude method, sincethe states involved in calcula-

tion have zero photon occupation number. Furthermore, our findings are in full agreement

with the results obtained by density matrix formalism. We observed that the interference

strengthp governed by the phase shift between the decay pathways play acrucial role on the

emission(absorption) dynamics of the system. For the closely spaced doublet(∆ ≪ γ), for

which the vacuum induced QI becomes important, the behaviorof the emission(absorption)

profile of our model appears counterintuitive. Forp ∼ −1, the ratio of probability of emis-

sion to probability of absorption is very small, a conditionfavorable for applications like

photovoltaics. On the other hand forp ∼ 1, the ratio is large thus favorable for amplifi-

cation without population inversion in steady-state [see Fig. 26(b,e)]. In addition to these

applications we found that Agarwal-Fano QI can also predicts the occurrence of fundamen-

tal phenomena like quantum beats in the semi-classical framework, that fully agrees with

the QED description.
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CHAPTER V

USING QUANTUM COHERENCE TO GENERATE GAIN IN THE XUV AND

X-RAY ∗

A. Introduction

Gain-swept superradiance (GSS) in an ensemble of two- levelatoms was extensively stud-

ied in the 1970s in connection with laser lethargy and coherence brightening in the X-ray

laser[107, 108, 109]. In GSS, the inversion is created by injecting a short excitation pulse

that produces a gain-swept medium. Among other things, it was found that GSS can yield

intense pulses without population inversion. This is closely related to Dicke superradi-

ance1[110] in which the maximum emission rate occurs when there are equal number of

atoms in the excited and ground states, i.e., when the population inversion is zero [see Fig.

30(a)].

Lasing without inversion (LWI) in an ensemble of three- level atoms, with a coupling

laser driving two of the levels was demonstrated in the 1990s[see Fig. 30(b) and (c)]2.

Those studies involved continuous pumping and were largelyin the visible and IR spectral

regimes. Most recently, we have been investigating lasing in the extreme ultraviolet (XUV)

using gain-swept excitation together with transient LWI[121]. In this paper, we have ex-

∗ Part of this chapter reprinted with permission from “Using Quantum Coherence to Generate
Gain in the XUV and X-Ray: Gain-Swept Superradiance and Lasing Without Inversion” by E. A.
Sete, A. A. Svidzinsky, Y. V. Rostovtsev, H. Eleuch, P. K. Jha, S. Suckewer, and M. O. Scully, 2012.
IEEE J. Sel. Topics Quantum Electron. 18, 541-553, Copyright [2012] by The Institute of Electrical
and Electronics Engineers, Inc.

1Recently, the GSS has been applied to the stand-off detection of trace impurities[111]
2The first suggestion of LWI in a three-level system was given in[112]. For more recent LWI

theoretical work, see[113, 114, 115]. For the first LWI oscillator demonstration, see[116, 117].
The first clear explanation of transient behavior in LWI was given by Harris and Macklin[118]; see
also[119]. The papers of Braunstein and R. Shuker on X-ray LWI in a ladder system also include
time-dependent effects (see, e.g.,[120])
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Fig. 30. Excitation pulse traveling at the speed of light prepares atoms in an excited state, so

that the spontaneous emission from atoms excited earlier can be simultaneous with

excitation by the pump pulse. (a) For the case of two-level atoms, this can yield

GSS. (b), (c) Three-level atoms inΛ or Ξ schemes can yield transient LWI under

swept gain conditions.

plored connections between GSS and transient Raman LWI in Heatom (ladder scheme),

where we have initial Raman inversion yet the system operates without inversion in the

lasing transition. Moreover, we have shown a pure transientLWI using He-like ion B3+

operating at 6.1nm.

Typical results are shown in Fig. 31(a) for the case of ladderRaman lasing in He as

sketched in Fig. 31(b). Here, we see that there is no population inversion on the lasing (a→

b) transition if we start with a little bit of Raman inversion,ρcc(0) = 0.56, ρaa(0) = 0, and

ρbb(0) = 0.44. However, as per the analysis sketched in Section II, a respectable laser pulse

of ∼ 109 photons at 58 nm is emitted. As illustrated in Fig. 31(b), theinitial population

ρcc(0) derives from the transfer of population from23S to 31D. This is discussed in some
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Fig. 31. (a) Plots of the square of output fieldΩl (solid curve) and scaled inversion between

a to b transition (dashed curve) versus retarded timeµ = t−z/c for initial condition

ρcc(0) = 0.56, ρaa(0) = 0, andρbb(0) = 0.44. The dashed curve shows that the

inversion is always negative. The unit of time isτ1 = 0.55ns which is the|a〉 → |b〉
spontaneous transition lifetime. The energy output is a respectable few nanojoules

compared to the input energy∼0.01 pJ, other parameters are given in Table I. (b)

XUV lasing scheme in He. Initial population in23S is driven to level31D via a

counter intuitive pair of pulses in which the 587nm pulse is followed by the 1.08µm

pulse. Once the atom (or ion) is in the31D state, it is driven by a strong pulse at

668 nm to the state21P . This results in Raman lasing action yielding short pulses

at 58 nm. Energy levels of He4and transition rates are taken from [124].

detail in Section III. The experimental discussion of Section III focuses on XUV generation

via transient Raman lasing in He (at 58 nm) using well-developed technology of population

excitation via cold laser plasmas and transfer of population via dark state stimulated Raman

adiabatic passage (STIRAP). The use of an RF Paul trap to confine an extended cloud of

charged He-like ions and produce transient LWI in, e.g.,Li+ andB3+ (at 6.1 nm) naturally

follows the He example. Such traps could store more than108 ions in a small diameter[122,

123]
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B. Theoretical

In order to clarify the physics and establish the connectionwith GSS, we next briefly sum-

marize the analysis behind ladder Raman lasing as in Fig. 30(c). The laser fieldΩl and the

atomic density matrixρ are determined from the coupled Maxwell-Schrödinger equations.

Maxwells equations yield

∂

∂z
Ωl(z, t) +

1

c

∂

∂t
Ωl(z, t) = iηρab(z, t) (5.1)

whereΩl = ℘abEl/~ is the Rabi frequency of the laser℘ab andEl being, respectively, the

dipole matrix element fora → b transition and the coupling field strength. The atomic

polarization is governed by the off-diagonal element of thedensity matrixρab timesN ,

whereN is the density of the atoms,η = 3Nλ2γ/4π with λ being the wavelength of the

radiation on thea→ b transition andγ the radiation decay rate between these levels.

Turning to the dynamics of the atom, we note that the transitions fromc to a and from

a to b are dipole allowed, while the transition fromc to b is dipole forbidden making our

system a cascade scheme. The transitionc → a is driven by a strong coherent field of

Rabi frequencyΩ, while a weak probe fieldΩl is applied to thea → b transition. The

Hamiltonian describing the interaction between a three level atom and the two classical

fields in the rotating wave approximation and at resonance isgiven by

H = −~Ω|c〉〈a| − ~Ωl|a〉〈b|+ h.c. (5.2)

and the master equation for the atom density matrix can be written as

d

dt
ρ = − i

~
[H , ρ]− Γ

2

(

σ†
1σ1ρ+ ρσ†

1σ1 − 2σ1ρσ
†
1

)

− γ

2

(

σ†
2σ2ρ+ ρσ†

2σ2 − 2σ2ρσ
†
2

)

(5.3)

in which σ1 = |a〉〈c|, σ†
1 = |c〉〈a|, σ2 = |b〉〈a|, σ†

2 = |a〉〈b|. Without obtaining explicit
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Fig. 32. Plot of the square fieldΩl/γ, whereγ is thea→ b decay rate, versus retarded time

µ = t− z/c for z = 13 and initial conditions (a)ρcc(0) = 0.75, ρaa(0) = 0.00, and

ρbb(0) = 0.25 and (b)ρcc(0) = 0.00, ρaa(0) = 0.75, andρbb(0) = 0.25. The dashed

curves in both figures represent the population inversion between|a〉 and|b〉.

steady-state solutions, some general conclusions can be drawn from the equations of motion

of the density matrix elements on the condition of gain without inversion. For instance, the

steady-state solution ofρab yields

ℑ(ρab) =
2Ωl

γ
(ρbb − ρaa) +

2Ω

γ
ℜ(ρcb) (5.4)

It follows from (5.4) that for sufficiently large negative values ofℜ(ρcb), amplification

(ℑ(ρab) < 0) can be obtained without population inversion. The problem with such a

steady-state operation is that it requires continuous pumping from b to c. This can be

achieved by incoherent optical driving when flash-lamp sources are available. For XUV

transition, this is a problem, and the most common pumping isvia electronatom collisions

in plasma. However, the quantum coherenceρbc is wiped out by electron impact. Hence,

we prefer transient lasing that does not require continuouspumping. To introduce transient

lasing, we note that one can write a condition for amplification of the lasing field in terms
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Table I. Numerical values of parameter used in Figs. 31(a) and 32

Fig. c
γL

N(cm−3) Size Input Lasing field Input drive field Energy(J)

31(a) 16.5 1015 13 0.01 t2

t2+0.01
9.9e−[(t−0.4)/0.1]2 4.16× 10−9

32(a) 16.5 1014 13 0.01 t2

t2+1
5.0e−[(t−0.4)/0.1]2 1.18× 10−8

32(b) 16.5 1014 13 0.01 t2

t2+1
0 1.28× 10−10

of the populations only. From the equation forρ̇bb we have

ℑ(ρab) = (γρaa − ρ̇bb)/2Ωl (5.5)

Then, the amplification conditionℑ(ρab) < 0 implies ρ̇bb > γρaa. This shows that there is

no amplification in the steady state yet it is possible to realize a transient lasing gain. This is

the basis for this paper, which combines several unconventional aspects of laser and atomic

physics in order to produce transient Raman LWI in various regimes. To demonstrate the

feasibility of transient lasing, we focus on He and He-like ions as indicated in Fig. 31(b).

Numerical solutions to the coupled MaxwellSchrodinger equations with initial pumping

to thec ladder state, together with theΩ coupling toa and lasing tob are shown in Figs.

31(a) and 32. In numerical simulations, we have normalized time and distance such that the

equations become dimensionless. We choose the unit of time to beτ1 = 0.55 ns and the unit

of length isL = 1 cm. For our system,Γ = τ−1
2 = 6.4× 107s−1, γ = τ−1

1 = 1.8× 109s−1,

andλ = 58.4nm. A summary of parameters used in each figure is given in Table I.

We send in a very weak lasing fieldΩl and let it propagate through the medium along

the z-axis. We plot the output lasing field squareΩ2
l versus retarded timeµ = t−z/cin Fig.

31(a); please note thatρaa − ρbb < 0 for all time. Fig. 32(a) shows outputΩ2
l as a function

of µ for a 13cm long sample. The inset shows population inversionas a function ofµ in

the lasing transitiona → b. The system starts to lase with inversion; however, after a short
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Fig. 33. Laser intensities required for an ionization rate of 1012s−1 versus ionization po-

tential of H-like ions (from[126]); solid line: Keldysh theory [125]. Correspond-

ing quiver energyǫq = e2E2/4meω
2 is shown on the right for laser wavelength

λ = 0.8µm.

time, it operates without inversion on thea→ b transition. This is due to a combination of

build up of the coherenceρbc between levelsb andc and the macroscopic dipole going as

ρab. Note that the latter has much in common with the effect of laser lethargy[107] and the

build up of superradiance.

One can demonstrate the connection with superradiance by pumping directly into the

a state, so that the problem is essentially the two-level atomproblem of Fig. 30(a). Most

of the emission takes place well after time whenρaa = ρbb which is the earmark of GSS.

This is further discussed. Note, however, that the output energy associated with Fig. 32(b)

is now decreased by two orders of magnitude compared to the transient LWI case of Fig.

32(a).
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C. Experimental Details

In order to make clear the experimental viability of the present scheme, we next discuss the

two key points of excitation of23S and subsequent transfer to31D in He, specifically

1) we first inject an ultrashort high-power laser pulse to ionize the He gas. We then

turn off the laser and rapid recombination and de-excitation follow such that the lowest

states of He atoms are prepared according to their statistical weights. Hence, for the sake

of simplicity, we take the relative population of the23S and11S states to be 3 to 1, as in

Fig. 31(b);

2) the population in the23S state is then transferred to the31D state via the23P levels

by a combination of optical pumping and dark state adiabatictransfer.

Let us first consider the physics of the laser plasma as produced in our Princeton

X-ray laser facility. We envision a laser plasma created by Keldysh tunneling with a non-

Boltzmann distribution of neutral excited atoms. This involvesHe+ → He electron cap-

ture via three-body recombination. Three-body recombination for H-like ions is approx-

imately proportional to the fourth power of the principal quantum numbern4 and to the

square of the electron density asNe2. Hence, for sufficiently high initial electron density,

three-body non-radiative recombination will dominate two-body radiative recombination

and radiative decay.

However, the collisional ionization from highly excited states is also fast; thus, in

order for three-body recombination rates to dominate ionization rates, the recombining

plasma should have a low electron temperatureTe, if its electrons have Maxwellian energy

distribution; otherwise, average electron energy should be low. In order to create a fully

ionizedHe+ plasma at low temperature, we consider the example of a plasma capillary

10− 100µm in diameter and a few centimeters long. The tunneling ionization can be used

to generate the plasma[125, 126, 127, 128]. In this way, we can strip one electron from He
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Fig. 34. (a) Atoms geing uniformly distributed in all the three magnetic sub levels of the

23S1 state. (b) Optical pumping by broadband left circularly polarized light to the

23P2,1,0 states result in the transfer of all the population of the spin state↓↓

atoms without significantly heating the plasma, especiallyfor ultrashort laser pulses. The

laser intensity needs to be in the order of1015W/cm2 for efficient tunneling ionization of

He toHe+ according to Keldysh theory[125] (see [[126], Fig. 33]). For needle like plasma

column, such intensities can easily be obtained from a Ti/Sapphire laser at wavelength

λ = 0.8µm and∼ 1m J energy per pulse in pulses of 50-100 fs duration with ionization

pulse propagating in plasma channel. Use of such short pulses is crucial to minimize plasma

heating. In the right-hand side of Fig. 33, the vertical axisshows the quiver energyǫq (in

keV), which electrons are gaining in a laser electric field E.If electrons do not collide,

then their quiver energy disappears with termination of thelaser pulse. Therefore, it is

important to use laser pulses shorter than collision times of electrons in order to minimize

plasma heating during the ionization process.

It should also be noted that quiver energy,ǫq goes asλ2; hence, shorter wavelength
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laser beams are advantageous for creating cooler plasma as heating is proportional to quiver

energyǫq[125, 126]. Therefore, it is often beneficial to use the second or even third har-

monic of Ti/Sapphire laser even at a cost of several times less pulse energy than fundamen-

tal pulse energy. Additional plasma cooling is provided by its rapid radial expansion, for

which the use of a small plasma column diameter is very important, as well as beneficial

from the point of view of required laser pulse energy.

The bottom line is that we can create a cold laser plasma that recombines to produce

an excited neutral gas. In particular, the metastable23S (8000-s radiative life time) state

will be formed with a statistical weight of around 3 comparedto the11S state.

D. Robust Population Transfer And Level Degeneracy Problem

Let us proceed to consider the transfer of population from the three23S spin states to

one particular magnetic sublevel of the31D manifold. At time t = 0, the population

resides in the three spin sublevelsχ1,−1, χ1,0, χ1,1 as per Fig. 34(a). We first optically

pump the atoms into one of the23S spin states, say theχ1,−1 state as indicated in Fig.

34(b). Robust population transfer from the triplet23S to singlet31D is then made possible

by STIRAP[129]. In this technique, one subjects the system,whose state is23S at t = 0, to

a so so called counter intuitive pulse sequence with Rabi frequenciesΩ2 andΩ1 in which

the Ω2(2
3P → 31D pulse precedes theΩ1(2

3S → 23P pulse [see Fig. 31(b)]. This

pulse sequence ideally results in a complete transfer of population to the desired state31D

without necessarily populating the23P state in the process. The mechanism of STIRAP

is best understood in the dressed state basis in which we introduce bright and dark states.

Beginning with the dark state

|0〉 = Ω2|23S〉 − Ω1|31D〉
√

Ω2
1 + Ω2

2

(5.6)
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Fig. 35. Plots of probabilities for finding the system in different levels versus scaled time

Ω2t. With the help of a third laser field, the population is transferred to the

desired statec. The inset shows the level scheme used for the STIRAP pro-

cess, which in this involves three Gaussian pulsesΩ1(t) = 2 exp[−(t − 0.3)2/2],

Ω2(t) = 2 exp[−(t− 0.4)2/2] andΩ3(t) = 150 exp[−(t− 1)2].

we applyΩ2 beforeΩ1 so that|0〉 ∼ |23S〉 during the early stages of transfer. Then, we

adiabatically turn onΩ1 while turning offΩ2, such that|0〉 ∼ |31D〉 for large times. The

condition of adiabaticity implies the following estimate of the required pulse energy:

W > 1000
~cS

λ3γτpulse
(5.7)

where S is the cross-section area of the pulse,τpulse is the pulse duration,λ andγ are

the wavelength and the rate of the transition. For the weakest 31D → 23P transition,

λ = 587nm andγ = 1.23× 104s−1. Then, for a plasma capillary of radius∼ 0.1 mm and

pulse durationτpulse = 1ps, (7) yieldsW > 0.4mJ. Currently, compact picosecond lasers

are commercially available with much greater energy, i.e.,a few millijoule per pulse just

from oscillator-regen amplifier (front-end) is well withinthe state of the art.

We next proceed to calculate the population transfer from23S to 31D via STIRAP
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technique. First, we send in a strong resonant pulsed laserΩ2 to couple the23P to 31D

transition. It is worth to note that31D and33D are essentially degenerate states (only 0.2-

nm splitting), and thus, the applied laser inevitably couples the23P to 33D which is 1000

times stronger than the23P to 31D transition. The Rabi frequencies of the two transitions

are related bỹΩ2 =
√

λ3deτce/λ
3
ceτdeΩ2 ∼ 76Ω2. If one uses input pulses shorter than

the spontaneous decay time of these transitions, the population will be transferred to the

undesired state33D. To overcome this problem, it is necessary to apply pulses that are

wider than the spontaneous decay times. For an optimum delaybetween the probe and

driving pulses, it is indeed possible to transfer all the initial population in23S to 31D.

However, in plasmas, due to collision of electrons with atoms, the collisional decay time

can be shorter than the duration of laser pulses, and thus, STIRAP may not work.

To overcome this difficulty, we suggest to use an additional laser pulse that couples

the33D to the higher energy state43P . This essentially cancels absorption by the33D and

enhances the transition to31D. The equivalent scheme is sketched in the inset of Fig. 35.

For sufficiently strong driving fieldΩ3 the population in23S can be transferred completely

to the desired state31D (see Fig. 35). The optimum population transfer is exhibitedwhen

the Rabi frequencyΩ3 is approximately twice stronger thañΩ2.

Results shown in Fig.35 are obtained by numerically solvingequations forCh, Cd ,

Cc, Ce andCf which are probability amplitudes to find the system in the statesh, d, c, e

andf respectively, and for initial conditionsCh(0) = Cd(0) = Cc(0) = Ce = 0 and
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Cf = 1. For resonant driving field, the evolution equation read

Ċh(t) = iΩ3(t)Cd(t), (5.8a)

Ċc(t) = iΩ2(t)Ce(t), (5.8b)

Ċd(t) = iΩ̃2(t)Ce(t) + iΩ3(t)Ch(t), (5.8c)

Ċe(t) = iΩ2(t)Cc(t) + iΩ̃2(t)Cd(t) + iΩ1(t)Cf(t), (5.8d)

Ċf(t) = iΩ1(t)Ce(t), (5.8e)

whereΩ̃2 ∼ 76Ω2 Rabi frequenciesΩi(j = 1, 2, 3) given in the figures are dimensionless,

so that the unit of time is the inverse of the amplitude ofΩ2.

Once the population is transferred to the singlet31D state, a strong driving field is

applied on the31D to 21P transition. This generates coherence between31D and21P

which in turn makes possible transient gain between21P to 11S [see Figs. 31(a) and 32]

E. Discussion

In order to better understand the key results of Section II, we next consider the old prob-

lem of swept gain in short-wavelength (two-level atom) laser systems. For example, the

following quote from[108] adopted for the present purposes, summarizes the physics.

“In considerations involving short-wavelength lasers, itis clear that in view of the very

short spontaneous lifetimes, one would like to sweep the excitation in the direction of lasing

in order that the atoms be prepared in an excited state just asthe radiation from previously

excited atoms reaches them.... We find that the small-signalregime of the amplifier is

highly anomalous, and that superradiance plays an important role in the non-linear regime.”

A coherent evolution of an ultra short pulse can be describedby the coupled Maxwell
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-Schr̈odinger equations. For a pulse whose electric field is given by

E(z, t) = El(z, t)ei(kz−ωt) (5.9)

with El(z, t) being its amplitude, and an atomic polarization having an amplitudeP and

population inversion∆N = ρaa − ρbb Maxwell-Schrodinger equation read

∂

∂z
Ωl = αP (5.10)

∂

∂z
P = Ωl∆N (5.11)

∂

∂z
∆N = −ΩlP (5.12)

In the above, the Rabi frequency isΩl = ℘El/~ with ℘ being the atomic dipole matrix

element,µ = t− z/c is the retarded time. The solutions for (23) and (24) are given by

P = sin

[
∫ µ

−∞
Ωl(µ

′)dµ′
]

(5.13)

∆N = cos

[
∫ µ

−∞
Ωl(µ

′)dµ′
]

(5.14)

and therefore
∂

∂z
Ωl = α sin

[
∫ µ

−∞
Ωl(µ

′)dµ′
]

(5.15)

In particular, for a thin region of thickness∆z and a step function input pulse, we have

Ωl(z +∆z, µ) = Ωl(z, µ) + α∆z sin[Ωl(z)µ]. (5.16)

Thus, the output pulse is given by the input step function with an additional emitted field

whose envelope oscillates at a frequencyΩl. It should be noted that this emitted field is not

governed by the population inversion∆N . We have here a simple example of laser gain

without inversion. The pulse is gaining energy at a maximal rate whenΩlµ = π/2 at which

point the population inversion∆N = cos(Ωlµ) vanishes.
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Fig. 36. Plot ofΩl(µ, z) versusµ for α =0.06 andz = 5cm and for an initial input pulse

Ωl(µ, 0) = 0.1 exp(−t2/0.4)

If we consider the case whereΩl is slowly varying inµ, one can write5.16 as

d

dz
Ωl = α sin [µΩl(µ, z)] (5.17)

which can be written in the form

∫ Ωl(µ,z)

Ωl(µ,0)

dΩl

sin(µΩl)
=

∫ z

0

αdz (5.18)

Performing the integration, we obtain

ln

[

tan

(

µΩl(µ, z)

2

)]

− ln

[

tan

(

µΩl(µ, 0)

2

)]

= αµz (5.19)

This yields,

Ωl(µ, z) =
2

µ
arctan [tan(µΩl(µ, 0)/2)e

αµz] (5.20)

As an example, if we takeα = 0.06, z = 5cm, and input pulseΩl(µ, 0) = 0.1 exp[−(t/0.2)2],

the output pulse is amplified approximately by a factor of oneorder of magnitude as shown

in Fig. 36.
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F. Conclusion

To put the present XUV scheme in context, we note that there are several methods for

producing extreme ultraviolet and soft X-ray lasing: for example, using a capillary dis-

charge [130], a free-electron laser [131], optical field ionization of a gas cell [132], or

plasma-based recombination lasers [133]. Coherent XUV andsoft X-ray radiation can also

be produced by the generation of harmonics of an optical laser in a gas or plasma medium.

Our goal here is to investigate the extent to which (transient) LWI might be useful in this

problem.

Electron excitation has been the mechanism of choice for thepumping of a wide va-

riety of XUV lasers. Alternatively, high-intensity ultrashort (with pulse duration less then

100 fs) optical pulses can be used to pump recombination lasers[126]. In this method, in-

tense circularly polarized light ionizes atoms via tunneling process. Then, atoms recombine

yielding species in excited electron states.

The three-body recombination scheme is attractive due to its potential of achieving

lasing at XUV- soft X-ray wavelengths with relatively moderate pumping requirements.

Several experiments have demonstrated gain and lasing in such scheme[134, 135, 136].

Recombination mechanism relies on obtaining ions in a relatively cold plasma which is pos-

sible due to short duration of the pump pulse. Then, rapid recombination and de-excitation

processes follow during which transient population inversion can be created.

In this chapter, we focused on lasing in He and He-like ions that utilizes advantages

of the recombination XUV soft X-ray lasers and the effects ofquantum coherence. The

latter, for example, is the key for LWI, wherein quantum coherence created in the medium

by means of strong driving field helps to partially eliminateresonant absorption on the

transition of interest and to achieve gain without population inversion. Such an effect holds

promise for obtaining short wavelength lasers in the XUV andX-ray spectral domains.
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CHAPTER VI

COHERENCE ENHANCED LASING∗

A. Introduction

In 1905 Einstein showed that the entropy of light displayed both wave and particle aspects

which led him to introduce the concept of a photon [137]. Later in 1917 he discovered

stimulated emission by using detailed balance [138] and considering a beam of two-level

atoms with ground stateb and excited statea (Ea −Eb = ~ω) interacting with electromag-

netic field. Assuming that atomic populations in the excitedNa and the groundNb states

satisfy the rate equations [139]

Ṅa = −ANa − BU(ω)(Na −Nb), (6.1)

Ṅb = ANa +BU(ω)(Na −Nb), (6.2)

whereANa is the rate of spontaneous emission andBU(ω)(Na−Nb) is the corresponding

rate of stimulated process, we obtain that in equilibrium

[A+BU(ω)]Na = BU(ω)Nb. (6.3)

This condition is referred to as detailed balancing. In equilibrium at temperatureT relation

between atomic populations is given by the Boltzmann distribution

Na

Nb

= exp(−~ω/kBT ). (6.4)

∗Part of this chapter reprinted with permission from “Coherence Enhanced Transient Lasing in
XUV Regime” by P. K. Jha, A. A. Svidzinsky and M. O. Scully, 2012. Laser Phys. Lett 9, 368-376
Copyright [2012] by Astro Ltd.
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Combining Eqs. (6.3) and (6.4) and using the Planck formula for the photon energy density

per unit frequency

U(ω) =
~ω3

π2c3
1

exp(~ω/kBT )− 1
(6.5)

yield the ratio of the spontaneous and stimulated emission coefficients

A

B
=

~ω3

π2c3
. (6.6)

When we deal with transitions in the XUV or X-ray regimes, thefast spontaneous decay

rates, which are given by Einstein’sA coefficient, make it difficult to create population

inversion. In the late 80’s it was proposed and demonstratedexperimentally that lasing

can be achieved without population inversion if more than two levels are involved. This

technique allows lasing even when a small fraction of population is in the excited state.

Recently there is much interest in developing XUV and X-ray coherent sources [140,

141, 142] which are useful tool for high resolution microscopy of biological elements [143],

crystallography and condense matter in general. There are several methods for producing

extreme ultra-violet lasing: for example, using a capillary discharge [144], a free-electron

laser [145], optical field ionization of a gas cell [146] or plasma-based recombination

lasers[147, 148]. Coherent XUV radiation can also be produced by the generation of har-

monics of an optical laser in a gas or plasma medium [149, 150,151].

The quest for compact “table-top” XUV and X-ray laser sources that can be used in in-

dividual research laboratories has motivated explorationof various excitation mechanisms,

e.g., collisional [152, 153], recombinational [147, 148],etc. Ionization-recombination ex-

citation technique holds promise for making efficient lasers at shorter wavelengths and has

been successfully implemented [154]. In particular, a portable X-ray laser utilizing such

excitation mechanism and operating in transient regime at13.5 nm has been demonstrated

by Princeton group [155, 156, 157]. The laser uses H-like Li ions [see Fig. 37(b)] as an
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active medium which are excited by ionization-recombination process. The basic idea of

recombination lasers is that atoms are stripped off electrons in the initial step and then

ions recombine by a three-body non-radiative recombination process which requires high

density of electrons and prepares atoms or ions in highly excited states. By collisional de-

excitation the population is transferred to lower excited states on a time scale of a few pico-

seconds. For proper density, population inversion can be achieved on the probe-transition

on a time scale of10− 100 ps. We call this “Inversion-Window”.

Other than collisional recombination, schemes involving electron impact collisions

were also proposed to create inversion in Ne-like ions [158,159, 160, 161]. Such schemes

were later used for Ni-like ions as well [see Fig. 37(a)]. Here the lasing transition is

3d94d → 3d94p. The two lasing levels are populated by electron collisions. While the

radiative decay from the upper lasing level (3d94d) to the ground state (3d10) is dipole

forbidden, the fast radiative decay from the lower lasing level to the ground state makes

it possible to achieve population inversion on the lasing transition and yield lasing in the

“Inversion-Window”.

Our goal is to investigate the extent to which coherence effects can help to make
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shorter wavelength lasers. Here we study how presence of a coherent drive at optical fre-

quency, during the inversion window, can enhance radiationgenerated in the adjacent XUV

or X-ray lasing transition and, thus, utilize the advantages of the recombination excitation

technique and the quantum coherence effects. We consider a three-level scheme and, as an

example, will have in mind gas of He atoms or He-like Carbon ions as an active medium.

The corresponding energy levels of He and C4+ and their decay rates are shown in Fig. 38.

We assume thata ↔ c optical transition is driven by a coherent resonant field with Rabi

frequencyΩc while short wavelength transitiona ↔ b is coupled to a weak probe laser

field Ωb. We disregard contributions to decoherence caused byT2 processes.

B. Gain Enhancement by Coherent Drive

We consider three-level atomic system in Lambda (Λ) configuration where the transitions

a ↔ c anda ↔ b are dipole allowed but the transitionc ↔ b is forbidden [see Fig. 39].

We assume that at the initial moment of time the population isdistributed between all three

levels which can be achieved, e.g., by the ionization-recombination excitation. Transition
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a ↔ c is driven in resonance with the Rabi frequencyΩc. We investigate how a weak

laser seed pulse at thea↔ b transition evolves during its propagation through the medium.

Evolution of the atomic density matrix̺ij is described by the set of coupled equations [2]

˙̺ab = −Γab̺ab + iΩb(̺bb − ̺aa) + iΩc̺cb, (6.7)

˙̺cb = i(Ω∗
c̺ab − Ωb̺

∗
ac), (6.8)

˙̺ac = −Γac̺ac − iΩc(̺aa − ̺cc) + iΩb̺
∗
cb, (6.9)

˙̺aa = −(γc + γb)̺aa − i (Ω∗
c̺ac − c.c)− i (Ω∗

b̺ab − c.c) , (6.10)

˙̺cc = γc̺aa + i(Ω∗
c̺ac − c.c), (6.11)

̺aa + ̺bb + ̺cc = 1, (6.12)

whereΓab = Γac = (γc + γb)/2 are the relaxation rates of the off-diagonal elements of the

atomic density matrix,γc andγb are the spontaneous decay rates into the levelsc andb, Ωc

is the Rabi frequency of the laser field.

Next we discuss two regimes, namelyγc ≫ γb which can be treated analytically and

γc . γb which we investigate numerically.
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1. Steady-State Approximation

Here we assume thatγc ≫ γb and populations in the levelsa and c reach approximate

steady state (that is1/γb ≫ t ≫ 1/γc). To find analytical solution we assume that

Ωc =const (a real number) andΩb is very small. Under these assumptions equations de-

scribing evolution of levelsc anda decouple and become

˙̺cc = γc̺aa + iΩc(̺ac − c.c), (6.13)

˙̺aa = −(γc + γb)̺aa − iΩc(̺ac − c.c), (6.14)

˙̺ac = −Γac̺ac − iΩc(̺aa − ̺cc). (6.15)

The steady state solution (¯̺ij) of these equations is (we putγb = 0)

¯̺aa =
4Ω2

c

γ2c + 8Ω2
c

[̺cc(0) + ̺aa(0)], (6.16)

¯̺cc =
γ2c + 4Ω2

c

γ2c + 8Ω2
c

[̺cc(0) + ̺aa(0)], (6.17)

¯̺ac =
2iγcΩc

γ2c + 8Ω2
c

[̺cc(0) + ̺aa(0)], (6.18)

where̺cc(0) + ̺aa(0) is the net population of the levelsc anda. Evolution of the weak

laser pulseΩb is described by the Maxwell equations which in the slowly varying amplitude

approximation can be written as

∂Ωb

∂z
+

1

c

∂Ωb

∂t
= iηab̺ab, (6.19)

whereηab = (3/8π)Nλ2abγb is the coupling constant,N is the atomic density andλab is the

wavelength of thea ↔ b transition. This equation must be supplemented by the equation

for ̺ab

˙̺ab = −Γab̺ab + iΩb(¯̺bb − ¯̺aa) + iΩc̺cb (6.20)
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which couples to the equation forρcb

˙̺cb = i(Ωc̺ab − Ωb̺
∗
ac). (6.21)

Here we took into account that̺bb, ̺aa and̺ac are approximately constant. Let us look for

solution of Eqs. (6.19-6.21) in the form of a plain wave

Ωb(t, z) ∼ eiωt−ikz (6.22)

̺ab(t, z) ∼ eiωt−ikz (6.23)

̺cb(t, z) ∼ eiωt−ikz (6.24)

which yields the following dispersion relation

(

ω2 − Ω2
c −

iγcω

2

)

(ck − ω) + cωηab(¯̺bb − ¯̺aa) + cηabΩc ¯̺ac = 0, (6.25)

hereω is the detuning of the laser pulse frequency from thea ↔ b transition frequency. If

in Eq. (6.25) we treatω as real then imaginary part ofk gives gain (absorption) per unit

length as a function ofω

Im(k) = ηab
γcω

2(¯̺aa − ¯̺bb)/2 + Ωc (Ω
2
c − ω2) Im(¯̺ac)

(ω2 − Ω2
c)

2 + γ2cω
2/4

. (6.26)

In particular, for the mode resonant with thea↔ b transitionω = 0 and we obtain

G = Im(k) =
ηab
Ωc

Im(¯̺ac). (6.27)

Eq. (6.27) shows that if Im(¯̺ac) > 0 there is positive gain no matter what are the popu-

lations of the levelsa andb. Thus, one can have gain without population inversion. This

is the case for theΛ− scheme in the approximate steady state for which, accordingto Eq.

(6.18), Im(¯̺ac) > 0. However, in the transient regime the steady state approximation is

valid only for γc ≫ γb. If γc . γb the time evolution of atomic populations must be taken
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Ωb

Fig. 40. Weak laser probe pulseΩb propagates through the atomic medium of lengthL gain-

ing or losing its energy.

into account. In this regime we found no gain without population inversion. However,

presence of the coherent drive fieldΩc can enhance lasing with inversion. We discuss this

next.

2. Transient Lasing with Population Inversion

As before, we consider a three-level scheme having in mind gas of He atoms or He-like

Carbon ions as an active medium. The corresponding energy levels and their decay rates are

shown in Fig. 38. We are interested in evolution of a weak laser pulseΩb(t, z) propagating

along thez−axis through the atomic medium [see Fig. 40]. First we discuss theΛ-scheme

shown in Fig. 39. We assume that driving fieldΩc =const, however, populations of the

levelsa, b andc depend on time (transient regime). We use semiclassical approach in which

evolution ofΩb(t, z) is described by the Maxwell’s equation (6.19) which is supplemented

by the quantum mechanical equations (6.7)-(6.12) for the atomic density matrix.

For a weak probe fieldΩb one can putΩb = 0 in Eqs. (6.9)-(6.11). Then Eqs. (6.9)-

(6.11) for the density matrix elements̺ac, ̺aa and̺cc decouple from the other equations.
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In calculations we takeγc = 1.83× 10−5γb and the initial condition̺ aa(0) = 0.9,

̺bb(0) = 0.1, ̺cc(0) = ̺ac(0) = ̺ab(0) = 0

In particular, forΩc, γb ≫ γc and̺ac(0) = 0 we obtain (assumingΩc is real)

̺aa = e−γbt/2̺aa(0)

{(

1 +
̺cc(0)

̺aa(0)

)

sin2(Ωct) + cos(2Ωct)

− γb
4Ωc

sin(2Ωct)

}

,

(6.28)

̺cc = e−γbt/2̺aa(0)

{(

1 +
̺cc(0)

̺aa(0)

)

sin2(Ωct) +
̺cc(0)

̺aa(0)
cos(2Ωct)

+
γb
4Ωc

̺cc(0)

̺aa(0)
sin(2Ωct)

}

,

(6.29)

̺ac = ie−γbt/2̺aa(0) sin(Ωct)

{(

̺cc(0)

̺aa(0)
− 1

)

cos(Ωct)

+
γb
4Ωc

(

1 +
̺cc(0)

̺aa(0)

)

sin(Ωct)

}

.

(6.30)

Using Eq. (6.12) for conservation of the net population we find that population difference
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between levelsa andb, defined asW (t) = ̺aa(t)− ̺bb(t), is given by

W (t) =
̺aa(0)

2
e−γbt/2

[

3

(

1 +
̺cc(0)

̺aa(0)

)

+

(

1− ̺cc(0)

̺aa(0)

)

cos(2Ωct)

− γb
2Ωc

(

2− ̺cc(0)

̺aa(0)

)

sin(2Ωct)

]

− 1.

(6.31)

In Fig. 41 we plot the population differenceW (t) as a function of time for initial

conditions̺aa(0) = 0.9, ̺bb(0) = 0.1 and̺cc(0) = 0. Solid line is obtained forΩc =

6.625γb while for dashed lineΩc = 0. Driving thea ↔ c transition yields oscillations in

the population difference betweena andb levels.

a. Helium-Like Carbon

Next we solve Eqs. (6.7)-(6.12) and (6.19) numerically and obtain evolution of the probe

laser pulseΩb(t, z) when thea↔ c transition is driven by a constant coherent fieldΩc or by

a constant incoherent pumpΦ. We perform simulations for the initial condition̺aa(0) =

0.9, ̺bb(0) = 0.1, ̺cc(0) = 0 and takeη/γb = 19353 cm−1 andγc = 1.83× 10−5γb. As an

example, we consider He-like Carbon ions for which states 21S0 (c− level), 21P1 (a−level)

and the ground state 11S0 (b−level) formΛ−scheme [see Fig. 38]. For C4+ ions the model

parameters areλab = 4.027 nm,λac = 352.5 nm,γc = 1.67×107 s−1 andγb = 9.09×1011

s−1. Then for ion densityN = 1018 cm−3 we obtainη/γb = 19353 cm−1. We assume that

input probe laser pulse has a Gaussian shape

Ωb(t, z = 0) = 0.01 exp

[

−
(

γbt− 0.15

0.05

)2
]

γb. (6.32)

During propagation of the weak laser pulse through the medium the atomic population

spontaneously decays into the ground state. After a certaintime the medium is no longer

inverted and the laser pulse begins to attenuate. Thus, there is an optimum length of the

atomic sample which yields maximum enhancement of the pulseenergy. For the optimum
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Fig. 42. Ratio of the output energy to the input energy of the probe laser pulse as a func-

tion of sample lengthL with no external drive. In numerical simulations we take

γc = 1.83× 10−5γb, η/γb = 19353 cm−1 and assume Gaussian initial probe pulse

shape given by Eq. (6.32). Initial populations are̺aa(0) = 0.9, ̺bb(0) = 0.1 and

̺cc(0) = 0, while initial coherences are equal to zero.

length the pulse leaves the medium at the onset of absorption. In Fig. 42 we plot the ratio

of the output pulse energy to the input energy as a function ofthe sample length assuming

there is no external drive. We find that optimum length corresponding to maximum output

energy without any drive isL = 0.102 mm. At this optimum length the ratio of the output

to the input probe field energy is∼ 2.7× 104.

Next we turn on the coherent driving fieldΩc, but keep the sample length to beL =

0.102 mm. This length does not corresponds to the maximum gain for three-level system

and chosen as a demonstration that coherent drive can enhance the gain for a fixed sample

size. In Fig. 43(a) we plot the ratio of the output laser pulseenergy (atz = L) to the

input energy (atz = 0) as a function of strength of the driving fieldΩc. One can see that

in the presence of coherent drive the output pulse energy oscillates as a function ofΩc.

Such oscillations appear because coherence̺ac averaged over the pulse propagation time
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Fig. 43. (a) Ratio of the output energy to the input energy of the probe laser pulse as a

function of the driving field Rabi frequencyΩc. The ratio is∼ 2.7× 104 atΩc = 0.

(b) Square of the output probe pulseΩb/γb as a function of time for optimal sample

lengthL = 0.102 mm with (solid line) and without (dashed) coherent drive field

Ωc. In numerical simulations we takeγc = 1.83 × 10−5γb, η/γb = 19353 cm−1

and assume Gaussian initial probe pulse shape given by Eq. (6.32). The length

of the sample isL = 0.102 mm, while the initial populations are̺aa(0) = 0.9,

̺bb(0) = 0.1, ̺cc(0) = 0 and̺ac(0) = ̺ab(0) = 0.

depends onΩc. At Ωc ∼ 6γb the enhancement factor is7 as compared to the case with no

drive field. The enhancement factor increases upto14 for Ωc ∼ 12γb. Thus, coherent drive

can increase the laser pulse output energy more than an orderof magnitude as compared to

the pulse energy with no drive. Fig. 43(b) shows the shape of the output pulseΩb(t, z = L)

for the optimum length in the absence of the external drive (dashed line) and optimum

coherent driveΩc = 12γb (solid line).

If we replace the coherent drive by an incoherent pumpΦ, which does not induce

coherence, the gain becomes smaller whenΦ increases [see Fig. 44]. The enhancement

due to coherence can also be obtained for He gas as an active medium at much lower

densityN = 1013 cm−3 with lasing at58.4 nm. Now the model parameters are given in the

left side of Fig. 38 which yieldsη/γb = 40.75 cm−1.
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Fig. 44. Ratio of the output energy to the input energy of the probe laser pulse as a function

of the incoherent pump rateΦ. The ratio is∼ 2.7× 104 atΦ = 0

b. Neutral He as Active Medium

Next we considerΞ−scheme formed by the 31S0 (c− level), 21P1 (a−level) and the ground

state 11S0 (b−level) of the Helium atom (see Fig. 38 right side). For this scheme the model

parameters areλab = 58.4 nm,λca = 728.3 nm,γc = 1.83× 107 s−1 andγb = 1.82× 109

s−1. Then for atomic densityN = 2 × 1013 cm−3 we obtainη/γb = 81.50 cm−1. We

assume that the input probe laser pulse has a Gaussian shape

Ωb(t, z = 0) = 0.01 exp

[

−
(

γbt− 0.28

0.10

)2
]

γb, (6.33)

while the drive pulse is also Gaussian with a broader width

Ωc(t, z = 0) = Ωc0 exp

[

−
(

γbt− 0.28

0.40

)2
]

. (6.34)

Similar to theΛ-scheme we first optimize the length of the sample for the given initial

population distribution and obtain that the optimum lengthcorresponding to maximum

output energy without drive isL = 5.19 cm. Then we turn on the driving fieldΩc, but keep
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Fig. 45. (a) Ratio of the output energy to the input energy of the probe laser pulse as a

function of the driving field Rabi frequencyΩc0. (c) Square of the output probe

pulseΩb/γb as a function of time withΩc0 = 15γb (solid line) andΩc = 0 (dashed

line). In numerical simulations we takeγc = 0.01γb, η/γb = 81.50 cm−1 and

assume Gaussian initial probe laser pulse (Eq. (6.33)) and Gaussian driving field

(Eq. (6.34)). The length of the sample isL = 5.19 cm, while the initial populations

areρaa(0) = 0.9, ρbb(0) = 0.1, ρcc(0) = 0 andρca(0) = ρab(0) = 0.

the sample length to be the same. Fig. 45(a) shows the ratio ofthe output laser pulse energy

(atz = L) to the input energy (atz = 0) as a function of strength of the coherent drive. One

can see that, similar to theΛ configuration, the output pulse energy oscillates as a function

of Ωc and the laser pulse output energy can be increased more than an order of magnitude

as compared to the pulse energy with no drive. Thus, coherence can help to extract more

energy from the inverted medium and convert it into coherentlaser radiation for bothΛ and

cascade configurations. Fig. 45(b) shows the shape of the output pulseΩb(t, z = L) for

Ωc0 = 0 (dashed line) and optimum coherent drive ofΩc0 = 15γb (solid line).

C. Backward Vs Forward Gain

Till now we have considered the evolution of the injected seed pulse atz = 0 in the forward

direction. In this section we will briefly discuss the evolution of an identical see pulse
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injected at the end of the sample i.ez = L. We will consider the three-level system in

Lambda configuration in the limitγb ≫ γc as shown in Fig. 39 and we drive the transition

a↔ b in the forward direction. We write the electric field as,

~Ec(z, t) =
ǫ+c
2

[

E+
c (z, t)e

iθ+c + c.c
]

, (6.35)

~E±
b (z, t) =

ǫ±b
2

[

E±
c (z, t)e

iθ±c + c.c
]

, (6.36)

where

θ+ = kz − νt, θ− = −kz − νt (6.37)

Here (+) and (-) sign as the superscript means forward and backward direction respectively.

We can write the off-diagonal term as

ρ̇ab = −ωabρab − i~℘ab · ~Eb(ρaa − ρbb) + i~℘ac · ~Ecρcb (6.38)

ρ̇ac = −ωacρac − i~℘ac · ~Ec(ρaa − ρcc) + i~℘ab · ~Ebρ
∗
cb (6.39)

ρ̇cb = −ωcbρcb − i~℘ab · ~Ebρ
∗
ac + i~℘ca · ~Ecρab (6.40)

Let us make the following transformation

ρab = ̺+abe
iθ+1 + ̺−abe

iθ−1 , (6.41)

ρac = ̺+ace
iθ+c , (6.42)

ρcb = ̺+cbe
iθ+3 + ̺−cbe

iθ−3 , (6.43)

where

θ±1 = θ±b ; θ
+
2 = θ+c ; θ

+
3 = θ+b − θ+c ; θ

−
3 = θ−b − θ+c (6.44)

Using the transformation Eqs. (6.41-6.44) in Eqs. (6.38-6.40) we obtain for the backward

direction:

ρ̇−ab = −Γabρ
−
ab − iΩ−

b (ρaa − ρbb) + iΩcρ
−
cb (6.45)
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ρ̇−cb = −Γcbρ
−
cb − iΩ−

b ρ
+∗
ac + iΩ∗

cρ
−
ab (6.46)

and for the forward direction we obtain

ρ̇+ab = −Γabρ
+
ab − iΩ+

b (ρaa − ρbb) + iΩcρ
+
cb (6.47)

ρ̇+cb = −Γcbρ
+
cb − iΩ+

b ρ
+∗
ac + iΩ∗

cρ
+
ab (6.48)

ρ̇+ac = −Γacρ
+
ac − iΩc(ρaa − ρcc) + iΩ+

b ρ
+∗
cb (6.49)

The evolution of the population is given as

˙̺aa = −(γb + γc)̺aa − i(Ω+∗
b ̺+ab − Ω+

b ̺
+∗
ab )− i(Ω−∗

b ̺−ab − Ω−
b ̺

−∗
ab )− i(Ω+∗

c ̺+ac − Ω+
c ̺

+∗
ac )

(6.50)

˙̺bb = γb̺aa + i(Ω+∗
b ̺+ab − Ω+

b ̺
+∗
ab ) + i(Ω−∗

b ̺−ab − Ω−
b ̺

−∗
ab ) (6.51)

˙̺cc = γc̺aa + i(Ω+∗
c ̺+ac − Ω+

c ̺
+∗
ac ) (6.52)

From Eqs. (6.50-6.52) we see that the population equations are symmetric under the trans-

formation+ ↔ −, hence the evolution of the injected (identical) seed pulseat the respec-

tive ends of the sample will be the same.

D. Rubidium Laser

In this section we will briefly review coherence enhanced Rubidium laser1. The level struc-

ture for the Rubidium laser (D1line) is shown in Fig. 46. Contrary to last section where

we discussed coherence enhanced lasing in Helium and Helium-like Carbon in the tran-

sient regime, here we will show that in the presence of the drive fieldΩa gain on the lasing

transition (D1) transition can be enhanced substantially.

1For detailed analysis of Rubidium laser, and the conditionsunder which lasing action can be
achieved on (D1) transition, please read[162]
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Fig. 46. Energy level diagram of atomic Rubidium. Here we have the dipole allowed transi-

tions52S1/2 ↔ 52P1/2 (D1)line and52S1/2 ↔ 52P3/2 (D2)line. The population

between the levelsP1/2 andP3/2 are exchanged due to collisions by buffering the

alkali vapor with other gasses like helium, ethane etc.

One important condition to achieve population inversion onthe lasing transition is that

the rate of population exchange between52P3/2 and52P1/2 should be much faster than the

rate of spontaneous decay from the level5P → 5S. Here in this section we have assumed

He as the buffer gas. The excitation transfer cross-sectionfor Rb induced by collisions with

rare gas atoms and alkali metals can be found in[163].

1. Steady State Gain

The equation of motion for the density matrix elements̺ij are given as,

˙̺ab = −Γab̺ab − iΩb(̺aa − ̺bb) + iΩ∗
a̺cb − iΩe̺

∗
ea, (6.53)

˙̺ca = −Γca̺ca − iΩa(̺cc − ̺aa)− iΩ∗
b̺cb, (6.54)
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˙̺eb = −Γeb̺eb − iΩe(̺ee − ̺bb)− iΩb̺ea, (6.55)

˙̺cb = −Γcb̺cb + iΩa̺ab − iΩb̺ca − iΩe̺ce, (6.56)

˙̺ce = −Γce̺ce + iΩa̺
∗
ea − iΩ∗

e̺cb, (6.57)

˙̺ea = −Γea̺ea + iΩe̺
∗
ab − iΩ∗

b̺eb − iΩa̺
∗
ce. (6.58)

The population terms is given as

˙̺aa = −(γb +Rae)̺aa +Rea̺ee + γa̺cc + i(Ω∗
a̺ca − Ωa̺

∗
ca)− i(Ω∗

b̺ab − Ωb̺
∗
ab), (6.59)

˙̺bb = γb̺aa + γe̺ee + i(Ω∗
b̺ab − Ωb̺

∗
ab) + i(Ω∗

e̺eb − Ωe̺
∗
eb), (6.60)

˙̺cc = −γa̺cc − i(Ω∗
a̺ca − Ωa̺

∗
ca), (6.61)

˙̺ee = −(γe +Rea)̺ee +Rae̺aa − i(Ω∗
e̺eb − Ωe̺

∗
eb), (6.62)

where,

Γca =
γa + γb +Rae

2
, Γcb =

γa
2
, Γce =

γa + γe +Rea

2

Γea =
γe + γb +Rae + Rea

2
, Γeb =

γe +Rea

2
, Γab =

γb +Rea

2

(6.63)

Let us assume that all the fields are real and we keep the probe fieldΩb to the lowest order

while we consider all orders for the drive fieldsΩe andΩa [see Fig. 47(a)]. In this limit, we

obtain the coherence̺(1)ab as

̺
(1)
ab = −iΩb

[

(̺
(0)
aa − ̺

(0)
bb )A+ (̺

(0)
cc − ̺

(0)
aa )B − (̺

(0)
ee − ̺

(0)
bb )C

D

]

, (6.64)

where,

A = ΓcaΓeb

[

Γcb(ΓceΓea + Ω2
a) + ΓeaΩ

2
e

]

(6.65)

B = Γeb

[

ΓceΓea + Ω2
a − Ω2

e

]

Ω2
a (6.66)

C = Γca

[

ΓcbΓce + Ω2
e − Ω2

a

]

Ω2
e (6.67)
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Fig. 47. Four-level model for coherence enhanced rubidium laser. Here couple the drive

transition with a coherent field of Rabi frequencyΩe. The bidirectional population

exchange between the upper levelse anda is denoted byR. In (a) we have shown a

drive field of Rabi frequencyΩa while in (b) we substitute the coherent drive field

with an incoherent pumpΦ

D = ΓcaΓeb

[

(ΓabΓcb + Ω2
a)(ΓceΓea + Ω2

a) + (ΓcbΓce + ΓabΓea − 2Ω2
a)Ω

2
e + Ω4

e

]

(6.68)

It can be easily verified that we can obtain the know results̺
(1)
ab for cascade and Vee

scheme. The zeroth order population obtained from Eqs. (6.59-6.62) as

̺(0)aa =
2Rea(ΓaΓca + 2Ω2

a)Ω
2
e

M (6.69)

̺
(0)
bb =

(γaΓca + 2Ω2
a)[ReaγbΓeb + (Rae + γb)(γeΓeb + 2Ω2

e)]

M (6.70)

̺(0)cc =
2ReaΩ

2
aΩ

2
e

M (6.71)

̺(0)ee =
2(Rae + γb)Ω

2
e

M (6.72)
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Fig. 48. Plot of the gainGab in the presence of a coherent driveΩa(dashed Black)

and incoherent pumpΦ(solid purple). For numerical simulation we used

Rea = 1, Rae = 0.74, γb = 0.085, γe = 0.087, γa = 0.0084,Ωb = 0.001,Ωe = 5.

where,M = γaΓca [Rea(γbΓeb + 2Ω2
e) + (Rae + γb)(γeΓeb + 4Ω2

e)]. In the absence of the

drive fieldΩa, and strong pump fieldΩe ≫ γe, γb, Rea, Rae we obtain

̺(0)aa =
Rea

Rea + 2(Rae + γb)
, (6.73)

̺
(0)
bb =

Rae + γb
Rea + 2(Rae + γb)

, (6.74)

̺(0)ee =
Rae + γb

Rea + 2(Rae + γb)
, (6.75)

The steady-state inversion (̺(0)aa + ̺
(0)
ee − ̺

(0)
bb ) is given as,

Rae

Rea + 2(Rae + γb)
> 0 (6.76)

and also on the lasing transition(a↔ b) we obtain,

̺(0)aa − ̺
(0)
bb =

Rea − Rae − γb
Rea + 2(Rae + γb)

, (6.77)
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For inversion on the lasing transition we require

Rea > Rae + γb (6.78)

Let us now study the effect of drive fieldΩa on the gainGab defined as

Gab =
3

8π
Nλ2bγb

̺ab
−iΩb

(6.79)

The result of the numerical simulation of Eqs. (6.53-6.62) is shown in Fig. 48 in which we

have shown the effect of the drive field on the gainGab. We see that in the presence of the

drive field we can enhance the gain by an order of magnitude forΩa ∼ 5. To emphasize

the role of the coherence we simulated Eqs. (6.53-6.62) in the presence of the incoherent

pump and we do not see any substantial enhancement.

E. Conclusion

In this chapter we study the effect of coherence on the transient lasing. First we illustrated

a possibility of having transient lasing without population inversion inΛ−scheme when

spontaneous decay rate of the driving transitionγc is greater than those of the lasing transi-

tion γb. However, such condition is usually not satisfied for lasingat shorter wavelength as

the spontaneous decay rate is proportional of the third power of the frequency. Having in

mind improving performance of XUV and X-ray lasers with inversion by driving a longer

wavelength optical transition, we considerΛ and Cascade schemes withγb ≫ γc.

To show the effect of coherence we first optimize parameters of the model in the ab-

sence of the driving field, i.e., find the sample length for thefixed initial populations which

yields the maximum output energy of the laser pulse. Then we drive thea ↔ c transition

with a coherent sourceΩc or an incoherent pumpΦ. We demonstrate that coherent drive can

yield substantial enhancement of the laser pulse energy forhighly inverted medium than in
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the absence of the coherent drive, while incoherent pump results in energy decrease. We

applied this coherence enhanced lasing scheme for Rubidiumlaser in steady-state regime

and demonstrated that an enhancement of an order of magnitude can be achieved. Thus,

implementation of a coherent drive at optical frequency could be a useful tool for improving

performance of lasers in XUV and X-ray regions.
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CHAPTER VII

CARRIER-ENVELOPE PHASE EFFECTS ON ATOMIC EXCITATION BY

MULTI-CYCLE PULSES∗

A. Introduction

As is well-known, the electric field of a laser pulse given by

E(t) = E0f(t) cos(νt + φ) (7.1)

can be characterized by its amplitudeE0, its carrier envelopef(t), its frequencyν, and its

carrier-envelope phase (CEP)φ. The CEP is the most difficult parameter to control and

even to measure. Recently, a lot of research has been devotedto the CEP. Namely, the CEP

strongly affects many processes involving ultrashort few-cycle pulses [164]. In particular,

CEP effects on high-harmonic generation [165], strong-field photoionization [166], the

dissociation of HD+ and H+
2 [167], the electron dynamics in a strong magnetic field [168],

the population inversion during a quantum transition [169], and the external- and internal-

photo-effect currents [170, 171] have been demonstrated byfew-cycle pulses.

For longer laser pulses, the influence of the CEP becomes smaller (very often it is

beyond the experimental abilities to be measured). So the important question is what is the

maximal duration of laser pulses that can still have the CEP effects? It is a fundamental

question, but also it brings new interesting possibilitiesto measure and control parame-

ters of laser pulses and applications. A stabilized and adjustable CEP is important for

applications such as optical frequency combs [172] and quantum control in various me-

∗Part of this chapter is reprinted with permission from “Experimental observation of carrier-
envelope-phase effects by multicycle pulses” by P. K. Jha, Y. V. Rostovtsev, H. Li, V. A. Sautenkov,
and M. O. Scully 2010.Phys. Rev. A 81, 033404(1)-033404(6), Copyright [2011] by American
Physical Society
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dia [173]. Several techniques have been developed to control the CEP of femtosecond

pulses [174, 168]. A crucial step in attaining this control is measuring the CEP to pro-

vide feedback to the laser system. Promising approaches forshort pulses use, for instance,

photoionization [175] and quantum interference in semiconductors [171].

For longer pulses, on the other hand, there are no such methods. Recently, a method

has been presented for the measurement of the absolute CEP ofa high-power, many-cycle

driving pulse, by measuring the variation of the XUV spectrum [176] by applying the inter-

ferometric polarization gating technique to such pulses [177]. We stress here that extending

the CEP control to longer pulses creates interesting possibilities to generate pulses with ac-

curacy that is better than the period of optical oscillation. First, it allows researchers to

improve laser systems that generate laser pulses with better reproducibility and accuracy

and better controlled. Second, it provides an additional handle to control the process of

collisions. Femtosecond pulses are shorter than the time duration of collisions and can-

not be used to study collisions under the action of electromagnetic fields; meanwhile the

current approach of extending the duration of the pulses with measureable or controllable

CEP allows researchers to extend the coherent control to a new level when they are able

to study molecular collisions or electron collisions in nanostructures under the action of

strong electromagnetic fields with known CEP. Electromagnetically induced magnetochi-

ral anisotropy in a resonant medium demonstrated in [178] can be enhanced by the control

of the CEP of optical radiation in the laser induced chemicalreactions [179].

In this chapter, we present the CEP effects in the populationtransfer between two

bound atomic states interacting with pulses consisting many cycles in contrast with few-

cycle pulses [64]. For our experiment, we use intense radio-frequency (RF) pulses interact-

ing with the magnetic Zeeman sub-levels of Rubidium (Rb) atoms. We have found that, for

long pulses consisting two carrier frequencies, the CEP of the pulse strongly affects that

transfer. It is worth noting here that our scheme has no limitation on the duration of pulses.
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per tube; 2. non-magnetic heater on a magnetic shield; 3. solenoid; 4. pair of

Helmholtz coils; 5. Rb cell.

The significance of our experiment is that it provides the insight of CEP effect in a

new regime. The experiment is the first, to our knowledge, to observe the CEP effect on a

transition between twobound atomic states with suchlong pulses. Our experiment provides

a unique system serving as an experimental model for studying ultrashort optical pulses.

The obtained results may be easily extended to optical experiment.1

B. Experiment

In this section we will discuss the experimental aspect of our paper. We discuss the setup

and the procedure to measure the population transfer due to RF excitation, taking into

account the dephasing factorη. In subsection B, we present our experimental results which

includes the non-linear behavior of the multi-photon excitation peak3© [see Fig. 52(a)].

1Zeeman sublevels are well isolated from other states and provide a good approximation to a
two-level system.
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Effect of the CEP of the carrier-frequency components on thepopulation transfer due to

multi-photon excitation is shown in Fig. 54.

1. Setup and Population transfer

The experimental setup is shown in Fig. 49. An external cavity diode laser was tuned to

the D1 resonance line of87Rb atoms at|52S1/2;F = 1〉 ↔ |52P1/2;F = 1〉 transition.

A 2.5 cm long cell containing87Rb (and 5 torr of Neon) is located in an oven. The cell

is heated in order to reach an atomic density of the order of1011 cm−3. A longitudinal

static magnetic field is applied along the laser beam to control the splitting of the Zeeman

sub-levels of the ground state|52S1/2;F = 1, mF = −1, 0, 1〉. A pair of Helmholtz coils

produces a transverse bichromatic rf field with two central frequencies atν1 andν2.

In this experiment we tuned the longitudinal magnetic field to control the Zeeman

splitting while keeping the carrier frequencies intact. A function generator was programmed

to provide multi-cycle bichromatic pulses with controllable parameters, such as the pulse

duration, CEPs and the amplitudes of the two carrier frequencies.
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Fig. 51. CEP-shaped bichromatic pulses with spectral components of 60 kHz and 100kHz.

FWHM for both the pulse is 130µs with gaussian envelope. Unit of the magnetic

field is Gauss.

To determine the population transfer due to the rf excitation, the experiment is per-

formed with a sequence of laser pulses with a rf pulse followed by a sequence of laser pulses

without rf pulse. For the transmitted probe pulse intensityis given byI1 = I0ηe
NσLPa ,

whereI0 is the probe pulse input intensity,η is the factor due to dephasing,N is the atomic

density,σ is the absorption cross-section,L is the cell length andPa is the population of the

upper levels due to RF excitation. For the second sequence , in which there is no RF exci-

tation, the transmitted probe pulse intensity is given byI2 = I0η. Therefore, the population

due to rf excitation is given by the quantity−ln(I1/I2) = NσLPa.

The energy level scheme of87Rb and the configuration of the optical and RF pulses is

shown in Fig. 50. The ground state of87Rb has three Zeeman sub-levels; a right-circularly

polarized (RCP) laser pulse optically pumps the system and drives the atoms to the sub-

level |52S1/2;F = 1, mF = 1〉. This is followed by the bichromatic rf pulse, which excites

the atoms to the sub-levels|52S1/2;F = 1, mF = −1, 0〉 whose population is subsequently

determined by measuring the transmission of a following weak RCP optical probe pulse.

The rf pulse is delayed by 165µs with respect to the optical-pumping laser pulse and has a
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Fig. 52. (a) Optical probe transmission profile for the one-photon [peaks1© and 2©] and

three-photon [peak3©] transition under the bichromatic rf field excitation. (b) Up-

per block: Energy level scheme of87Rb; Lower block: Resonant and non-resonant

pathways contributing to three-photon peak.

duration of 130µs (FWHM). In Fig. 51 we have plotted two such CEP-shaped bichromatic

pulses, with spectral components of 60 kHz and 100kHz, used in our experiment. The

transmitted intensity of the probe pulse, delayed by 330µs with respect to the optical-

pumping pulse, is monitored by a fast photodiode.

2. Experimental Results

Single and multi-photon (resonant and non-resonant) excitation under bichromatic rf field

interaction with87Rb are shown in Fig. 52. Peaks1© and 2© in the probe transmission

profile are single photon absorption peaks at frequenciesω1=100kHz andω2=60kHz re-

spectively. Peak3© emerges due to different possible excitations between the initial and

the final states [see Fig. 52 (b) lower block]. Resonant multi-photon excitation which cor-

responds to peak3© atω=140kHz in Fig. 52, is shifted to aboutω=130kHz. The rf field is
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Fig. 53. Non-linear dependence of multi-photon excitationon the traverse magnetic field.

Unit of the magnetic field is Gauss.

very strong, so non-resonant one- and three-photon transition should be taken into account

[see Appendix G]. These non-resonant contributions interfere with resonant three-photon

transitions and the excited population depends on the phases of fields with frequenciesν1

andν2. To study this peak we first investigated the dependence of population transfer as a

function of the applied transverse magnetic field strength.Fig. 53 shows the non-linear

behavior of the process, in which the multi-photon excitation is negligible for weak trans-

verse magnetic field and starts to grow non-linearly with theincrease in the amplitude of

the driving RF pulse.

The main results of the experiment are shown in Fig. 54 where we have plotted the

population (σNLPa) as a function of carrier-envelope phase of one of the two spectral

components of the bichromatic field while keeping the other phase component at zero.

Fig. 54(a)(II) shows the oscillatory behavior when the phase of φ60kHz is changed while

keepingφ100kHz = 0. Similar effect is observed vice-versa which is shown in Fig. 54(a)(I).

Ratio of the frequency of oscillations for the two cases, when the phase is changed from

0 → 2π, is Or = 0.578 ± 0.035 which is equal toν2/ν1. Fig. 54(b) shows the effect of
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Fig. 54. Oscillatory nature of the population transfer by changing the phase of one car-

rier frequency while keeping the other at zero for the bichromatic rf Pulse. (a)

(I) Changing the phaseφ100kHz andφ60kHz=0 (II) Changing the phaseφ60kHz and

φ100kHz=0. (b) Effect of the pulse duration T (FWHM) on the population trans-

fer. (I) T=130µs, (II) T=100µs. Here we changed the phaseφ100kHz while keeping

φ60kHz = 0

pulse duration (i.e number of cycles) on the population transfer where we have plotted the

population transferred for two set of pulse widthT (full width at half maximum, FWHM).

Here (I)T=130µs, (II) T=100µs. In either case we changed the phase ofφ100kHz while

keepingφ60kHz = 0. In Fig. 54 (a) we have shifted the curve (I) vertically, for the sake of

clarity and distinguish the variations in the two curve (I) &(II) clearly. We experimentally

observed a variation in the population about25%.

C. Theory

Let us now move to the theoretical aspect of the results obtained here. The goal of the-

oretical consideration presented here is to gain physical insights that helps to understand

the CEP effects for such long pulses that have envelop containing up to fifteen periods of

oscillations, as well as the limitations imposed on the length of pulses.
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The Hamiltonian for an atomic state withF = 1 in a magnetic fieldB = (Bx, By, Bz)

is given by

H = −gµ0













Bz
Bx+iBy√

2
0

Bx−iBy√
2

0 Bx+iBy√
2

0 Bx−iBy√
2

−Bz













, (7.2)

whereg = −1/2 is the Lande factor for this Rb state,µ0 is the Bohr magneton,Bz = B0

is the static magnetic field that is chosen in the direction ofthe z-axis;Bx andBy are the

transverse components driven by a function generator. The linearly-polarized bichromatic

magnetic field is given as,

Bx(t) = e−α2t2{B1cos(ν1t + φ1) +B2cos(ν2t+ φ2)}, (7.3)

whereα = (2
√

ln2)/T andT is the FWHM duration of the pulse andBy = 0. For the

magnetic dipole transition, the relaxation due to atomic motion is the most important. The

density matrix equations is given by

ρ̇ = − i

~
[H , ρ]− Γ(ρ− ρ0), (7.4)

whereH is given by Eq.(7.2),Γ quantifies the relaxation process due to atomic motion

andρ0 is the thermal equilibrium density matrix of the atoms in thecell without the optical

and RF fields. For simple explanation we will consider only two levels coupled by the

bichromatic field and neglect any type of relaxation. The Rabi frequency is given by

Ω(t) = e−α2t2{Ω1cos(ν1t + φ1) + Ω2cos(ν2t + φ2)}, (7.5)

whereΩ(1,2) = gµ0B(1,2)/
√
2~. The equation of motions for the probability amplitudesCa
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andCb are given by

Ċa = iΩ(t)eiωtCb, (7.6a)

Ċb = iΩ∗(t)e−iωtCa. (7.6b)

Let us consider the perturbative approachCb(t) ∼= 1. We look for a solution of the form

Ca = C
(1)
a + C

(3)
a where

C(1)
a = i

∫ ∞

−∞
Ω(t′)eiωt

′

dt′ (7.7)

and

C(3)
a = −i

∫ ∞

−∞

{

Ω(t′)eiωt
′

∫ t′

−∞

[

Ω∗(t′′)e−iωt′′
∫ t′′

−∞
Ω(t′′′)eiωt

′′′

dt′′′

]

dt′′

}

dt′ (7.8)

The excited population is the result of interference of resonant three-photon excitation

and non-resonant one-photon with frequencyν1 and three-photonν2 where the detunings

are 30 kHz and 50 kHz correspondingly [see inset of Fig. 52(a)]. The probability amplitude

can be written as

Ca = A1(ν1)e
−iφ1 + A3(ν2)e

−i3φ2 + A3(2ν1 − ν2)e
−i(2φ1−φ2) (7.9)

that gives the same dependences on the phases of bichromaticfield as shown in Fig. 54.

Here, in a weak field approximation,

A1(ν1) = i

(√
π

2α

)

Ω1e
−[(ω−ν1)/2α]2 , (7.10)

is the probability amplitude of non-resonant excitation due to one-photon transition,

A3(ν2) = −i
[ √

πΩ3
2

16
√
3αν2(ω − ν2)

]

e−[(ω−3ν2)2/12α2], (7.11)
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is due to non-resonant three-photon excitation, and

A3(2ν1 − ν2) = −i
(√

πΩ2
1Ω2

8
√
3α

)[

1

2ν1(ω − ν1)
+

1

(ν1 − ν2)(ω − ν1)

+
1

(ν1 − ν2)(ω + ν2)

]

e−[(ω−2ν1+ν2)2/12α2]
(7.12)

is due to resonant three-photon excitation. Here the first terms corresponds to Hyper-

Raman type process, the second term corresponds to Doppleron type process as shown

in the lower block of Fig. 52 (b).

In Appendix G we have shown the relative strength of the threeprocesses with the

experimental parameters. We show that when we excite with strong field i.e large Rabi

frequency we should be careful about neglecting the contributions from the off-resonant

processes.

As is clearly seen from Eq.(7.9), the CEP effect occurs due tothe interference of

the terms that have different dependence on the field phases.The condition for the better

visibility of the interference is related to the amplitudesand frequencies of fields. It is

better to have amplitude be the same to have high visibility,on the other hand, if only one

term dominates the CEP effect disappears. It is very interesting to note here that the CEP

effects do not depend explicitly on the duration of pulses but only on the field amplitudes

and their frequencies.

D. Conclusion

We use intense RF pulses interacting with the magnetic Zeeman sub-levels of Rubidium

(Rb) atoms, we have experimentally and theoretically shownthe CEP effects in the popu-

lation transfer between two bound atomic states interacting with pulses consisting of many

cycles (up to 15 cycles) of the field. It opens several exciting applications and interesting

possibilities that can be easily transfer to optical range and enhance current and create new
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set of tools to control CEP of laser pulses.

These tools allow researchers to improve laser systems thatgenerate laser pulses with

better reproducibility and accuracy and better controlled. Also the tools provide an addi-

tional handle to control the process of collisions, and the current approach of extending

the duration of the pulses with measurable or controllable CEP allows researchers to ex-

tend the coherent control to a new level where they are able tostudy molecular collisions

or electron collisions in nano-structures under the actionof strong electromagnetic fields

with known CEP. In particularly, the obtained results can beapplied to control of chemical

reactions [179].
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CHAPTER VIII

COHERENT RAMAN UMKLAPPSCATTERING∗

A. Introduction

The universal requirement of momentum conservation in coherent light matter interactions

imposes stringent limitations on the range of wave-vector directions allowed for the co-

herent signals [180, 181, 182]. Specifically, generation ofbackward-propagating beams in

nonlinear wave-mixing processes has been a long-standing problem in optical science, im-

peding the application of wave-mixing-based techniques tostandoff detection [183, 184].

When applied to a generic third-order process generating a field with a frequencyω4

through the coherent mixingω1 ± ω2 ± ω3 of light fields with frequenciesω1, ω2, and

ω3, momentum conservation translates into the following requirement for the wave vectors

ki = niωi/c of the optical fieldsi = 1, 2, 3 involved in the wave-mixing process (c is

the speed of light in vacuum andni = n(ωi) is the index of refraction at the frequency

ωi): ∆k = k4 ± (k1 ± k2 ± k3) = 0. With properly designed periodic structures, this

phase-matching condition can be satisfied by picking up the momentum deficit from the

reciprocal lattice of the structure. This approach has beensuccessfully demonstrated with

a variety of photonic structures [185, 186].

In the standoff detection mode, however, creation of subwavelength lattices, needed to

phase-match the backward wave, is technically difficult requiring a complex arrangement

of auxiliary high-power laser beams [184] or modulating theindex of refraction [187]. In

the microscopy mode, backward coherent anti-Stokes Raman scattering (CARS) becomes

∗Reprinted with permission from “Coherent Raman Umklappscattering” by L. Yuan, A.A.
Lanin, P.K. Jha, A.J. Traverso, D.V. Voronine, K.E. Dorfman, A.B. Fedotov, G.R. Welch, A.V.
Sokolov, A.M. Zheltikov, and M. O. Scully, 2012.Laser Phys. Lett 8, 736-741 Copyright [2011]
by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
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possible [188] due to the specific geometry of tightly focused light beams scattered by mi-

croinhomogeneities in a biotissue. None of such epi-CARS microscopy beam-interaction

geometries, however, seems to suggest a realistic way of scaling to larger beam propagation

paths that are needed for optical standoff detection.

Recent experimental demonstrations of backward stimulated emission from atomic

oxygen produced by UV laser pulses in the air [189], yieldinga highly directional backward-

propagating light beam with an excellent quality and an average power well above the mi-

crowatt level, offer a powerful tool for standoff spectroscopy. Still, in order to benefit from

the chemical selectivity provided by the Raman effect, and to obtain efficient (coherent)

signal generation, the∆k = 0 momentum conservation (phasematching) needs to be satis-

fied. The main goal of this paper is to demonstrate that coherent Raman scattering of laser

fields can give rise to a highly directional (phase-matched)nearly backpropagating CARS

signals, and to use phasematching to resolve individual signal components in space. This

regime of the Raman effect, referred to hereinafter as coherent Raman Umklappscattering,

by analogy with phonon-phonon and electron-phonon Umklappscattering in solids [190],

is shown to be well suited for standoff detection applications, including remote sensing of

trace gases in the atmosphere and on the surfaces of distant objects, paving the way for the

development of a new class of security and ecological safetymonitoring systems.

Coherent anti-Stokes Raman scattering by molecular vibrations [188, 191] and molec-

ular rotations [192, 193] has a broad range of applications.For example, the real-time

detection of a low concentration of bacterial endospores (≈ 104 spores) via CARS was

demonstrated [194, 195]. We note that the traditional CARS cannot be used in a stand-

off mode in scenarios involving perfectly parallel forwardand backward propagating laser

beams, because of the phasematching constraints. However,we show that under certain

conditions, a small angle between laser beams satisfies phasematching. Moreover, the an-

gled geometry provides a convenient spatial separation of the applied laser and generated
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Fig. 55. Energy level andk-vector diagrams for coherent Raman Umklappscattering using

angled counter-propagating ground- and air-laser beams. Signal wave is generated

in the directionk4. Coherent Raman scattering is realized by molecular vibrations

(a) and molecular rotations (b). On the energy-level diagrams (top), solid horizontal

lines denote real molecular energy levels of the species to-be-detected, and dashed

lines correspond to virtual states. (Inset: General configuration of the beams in a

cloud.)

signal beams [196, 197]. The corresponding spatial separation of various Raman transition

lines allows improving detection capabilities which in conventional spectrally separated

methods may be limited by detector resolution or by spectralline broadening.

B. Implementation Schemes

We consider a coherent Raman scattering process where optical fields with frequencies

ω1 andω2, referred to as the pump and Stokes fields, are used for a coherent selective
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excitation of a Raman-active mode with the frequencyΩ in a medium. The third field, with

frequencyω3, is used to probe this coherence, giving rise to Stokes and anti-Stokes signal

fields with frequenciesω4 = ω3− (ω1−ω2) = ω3−Ω andω4 = ω3+(ω1−ω2) = ω3+Ω,

respectively. Detection of these signals would allow a chemically selective detection of

trace gases in the beam interaction region. Throughout the rest of the paper, we focus on

anti-Stokes generation, as shown in Fig. 55; Stokes generation can be easily calculated in

an analogous way.

To set the framework for our analysis, we consider the application where our pump

field ω1 in Fig. 55(a) [or probe fieldω3 in Fig. 55(b)] is generated in the air at a point

beyond the Raman-active region we want to detect or analyze,and that this field is directed

back towards the ground where our Stokes and probe (or pump) fields originate. This

could be accomplished by creating a backward-propagating oxygen laser as described in

Ref [189]. Our analysis shows that the small-angle CARS phasematching requires that two

of the three applied laser frequencies are nearly equal. Twopossibilities exist, as shown in

Fig. 55. In both cases, two laser beams are sent from the ground: one counter-propagating

with respect to the air-laser beam, and the other one slightly angled. In the lower part of

Fig. 55 [both (a) and (b)] we denote beams by theirk-vectors and show how thesek-vectors

align to satisfy phasematching. We consider two cases [(a) and (b)] that differ in the way

how molecular excitation is prepared. In case (a), molecular coherence (in the species to

be detected) is excited by the air-laser beam (k1, pump, frequencyω1) together with the

counter-propagating beam sent from the ground (k2, Stokes, frequencyω2), while in case

(b) molecular oscillations (whose k-vector is shown in Fig.55 by a double-line arrow) are

driven by two beams sent from the ground, at a small angle withrespect to each other (k1

andk2, pump and Stokes). The beam atk3 then scatters off the molecular coherence wave.

In both cases, the anti-Stokes signal beamk4 is then generated in the direction toward the

observer. The molecular frequency (equal toω1 − ω2) is small in case (b). Below, we
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Fig. 56. The angles between the pump and Stokes beamsθ and probe and anti-Stokes beams

ϕ providing phasematching for the anti-Stokes field generation in the noncollinear

beam geometry shown in Fig. 55 versus the Raman frequency calculations using

the exact formula for|∆k| with dispersion included (circles) and the approximation

of Eqs. (8.1) and (8.2) (solid lines). The pump wavelength is532 nm.

present detailed calculations for the situation describedin Fig. 55(b).

C. Results and Discussion

We examine phasematching options for backward CARS due to molecular rotations in-

duced in a gas medium by forward pump and Stokes fields and probed by a backward field

with an arbitrary frequencyω3. Neglecting the frequency dependence of the refractive in-

dexni = 1, and analyzing the wave-vector arrangement shown in Fig. 55(b), we find in the

case of smallθ

θ ≈ 2

(

ω3Ω

ω2
1 + ω1ω3

)
1
2

, (8.1)

ϕ ≈ 2
ω1

ω3

(

ω3Ω

ω2
1 + ω1ω3

)
1
2

. (8.2)
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In Fig. 56, we compare predictions of Eqs. (8.1) and (8.2) with the results of exact cal-

culations performed using the relevant frequency dependence ofn(ω) for the atmospheric

air. As can be seen from these calculations, the simplified formulas of Eqs. (8.1) and (8.2)

give reasonably accurate predictions within a broad range of Ω, providing useful insights

into the limitations of the angled beam-interaction geometry imposed by the momentum

conservation.

In the case of molecular vibrations, typically used for the standoff detection of trace

gases in the atmosphere, the Raman frequencies(2πc)−1Ωv are on the order of1000 cm−1.

Specifically, for the central frequency of rovibrationalQ-branch transitions in molecular

oxygen,(2πc)−1Ωv ≈ 1556 cm−1 andλ = 2πcω−1=845nm (the central wavelength of

stimulated emission by atomic oxygen in the atmosphere), wefind θ0 ≈ 21o. With such big

angles between the pump and Stokes beam, practical implementation of standoff detection

based on coherent Raman scattering would encounter seriousdifficulties, as probing the

atmosphere would require on-ground laser sources and detectors for the coherent backward

signal separated by a prohibitively large distance.

Rotational Raman frequenciesΩr of molecular systems are much lower thanΩv, with

theΩr/Ωv ratio scaling roughly as(m/M)1/2 with the ratio of the electron massm to the

relevant atomic massM . Purely rotational spontaneous Raman scattering is widelyused for

a lidar remote sensing of the atmosphere [198, 199, 200]. Thecoherent regime of Raman

scattering would radically enhance the Raman signal returndue to a higher directionality

and a higher magnitude of the coherent Raman response.

In the rigid-rotor approximation, the frequencies of molecular rotational transitions

are given byΩJ = 4πBc(2J + 3), whereJ is the rotational quantum number,B is the

rotational constant, andc is the speed of light. The amplitudes of rotational Raman lines
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Fig. 57. The amplitudesFJ of rotational Raman lines versus the phasematching angle

θJ ≈ (2ΩJ/ω)
1/2 for N2 (a) and O2 (b) with ω3 ≈ ω1 = ω, ω2 = ω − ΩJ ,

ω4 = ω + ΩJ , andλ = 2πcω−1 =845 nm.

centered atωJ are given by

FJ =
(J + 2)(J + 1)

(2J + 3)
ZJ(ρJ+1 − ρJ), (8.3)

where

ρJ =
exp

[

− chBJ(J+1)
kT

]

∑

J

ZJ(2J + 1)exp [−chBJ(J + 1)/kT ]
, (8.4)

h is the Planck constant,k is the Boltzmann constant,T is the gas temperature, andZJ is a

factor describing the quantum nuclear statistics.

In Fig. 57, we plot the amplitudesFJ of rotational Raman lines versus the phase-

matching angleθJ ≈ (2ΩJ/ω)
1/2 for molecular nitrogen (B ≈ 1.99cm−1, ZJ = 1 and2

for odd and evenJ , respectively [201]) and oxygen (B ≈ 1.44 cm−1, ZJ = 1 and0 for

odd and evenJ , respectively [201]) withω3 ≈ ω1 = ω, ω2 = ω − ΩJ , ω4 = ω + ΩJ

andλ = 2πcω−1 = 845nm. These plots model rotational coherent Raman spectra in the

beam geometry as shown in Fig. 55(b). The magnitudes of the Raman lines differ within

a range covering two orders of magnitude which provides a suitable dynamic range for the
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Fig. 58. Coherence lengthl = π(2|∆k|)−1 calculated as a function of the angleθ between

the pump and Stokes beams for theΩ0 ≈12 cm−1 rotational Raman component of

molecular nitrogen in the atmospheric air for a pump wavelength of 532 nm and a

probe wavelength of 845 nm.

experimental detection of molecular-specific spectroscopic fingerprints.

Fig. 58 displays the coherence lengthl = π(2|∆k|)−1 calculated as a function of

the angleθ between the pump and Stokes beams for the(2πc)−1Ω0 ≈ 12 cm−1 rotational

Raman component of molecular nitrogen in the atmospheric air for a pump wavelength

of 532 nm and a probe wavelength of 845 nm. Phasematching is achieved for backward

CARS atθ0 ≈ 1.8o. This small value ofθ and a narrow width provide a high directionality

and an almost backward propagation of the desired signals.

The scheme in Fig. 55(a) is also phase-matched with a small angle θ between the

Stokes and the probe on-ground beams, and with a small angle (ϕ) between the backwards

propagating sky and signal beams. The energy level detuning, ∆, between the Stokes and

probe beams is now small compared to all the optical frequencies and does not need to be

resonant with the vibrational spacing. These angles are given by equations analogous to
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Eqs. (8.1) and (8.2)

θ ≈ 2

(

ω1∆

ω2
1 + ω1ω2

) 1
2

, (8.5)

ϕ ≈ 2
ω2

ω1

(

ω1∆

ω2
1 + ω1ω2

)
1
2

. (8.6)

By suitably selecting the Stokes and probe beam frequenciesfrom the ground it may be

possible to detect the vibrational coherent Raman spectrumof the target molecules in the

sky and realize the standoff spectroscopy.

We now consider a specific example of CO trace molecules to be detected using

the backward CARS schemes considered above against the background signal, related to

molecular nitrogen and oxygen in the atmospheric air. The pump and Stokes frequencies

are tuned to the Raman resonance with transition between rotational or vibrationalb and

c levels of CO molecules in the electronic ground state (Fig. 59). The pump and Stokes

wavelengths are taken to be close to 500 nm and off resonance with an excited electronic

state of the molecules [levelsa andd in Fig. 59] in order to avoid absorption of these fields

over long propagation paths in the atmosphere.

Coherent Raman scattering by rotations and vibrations of molecular oxygen and nitro-

gen in the atmosphere give rise to a coherent background, which masks the CARS signal

from CO molecules. The intensities of both the CARS signal from CO molecules and the

nonresonant background are given by

ICARS,NR ∼ |χ(3)
CARS,NR|2I1I2I3, (8.7)

whereI1, I2, andI3 are the intensities of the pump, Stokes, and probe fields, andχ
(3)
CARS,NR
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Fig. 59. Diagrams of (a) CARS by CO molecules and (b) coherentnonresonant background

generation by nitrogen and oxygen molecules.

is the third-order susceptibility of the form [180, 202]

χ
(3)
CARS,NR=

N

4πε0~3

{(

1

ωbc − (ω1 − ω2)− iγbc

)

×
∑

d

(

℘cd℘db

ωdc − ω4 − iγdc
+

℘db℘cd

ωdb + ω4 + iγdb

)

×
∑

a

[

ρ(0)cc

(

℘ac℘ba

ωac − ω1 − iγac
+

℘ba℘ac

ωac + ω2 − iγac

)

−ρ(0)bb

(

℘ac℘ba

ωab − ω2 + iγab
+

℘ba℘ac

ωab + ω1 + iγab

)]}

.

(8.8)

HereN is the density of molecules,ωij is the frequency of transitions between levelsi and

j, ωk are the optical frequencies [k = 1, 2, 3, 4; see Fig. 59],γij are the relaxation rates,℘ij

are the dipole moments, andρ(0)ii is the initial population of the leveli. The dipole moments

are estimated as℘ij ≈ ea0 for all transitions of different molecules. The sum overa in

Eq. (8.8) yields a spontaneous Raman crosssection on the order 10−31cm2/sr [202]. The

nonresonant frequency denominators in Eq. (8.8) are of the order of1016rad/s for both CO

and nitrogen and of the order of1015rad/s for oxygen. As the frequenciesω1 andω2 are

chosen such thatωbc − (ω1 − ω2) = 0 for thebc transition of CO molecules, the frequency
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denominator|ωbc − (ω1 − ω2)− iγbc| in Eq. (8.8) is estimated as108s−1 in the case of CO

molecules. For the coherent background, this denominator is 1012rad/s and1011rad/s in

the case of molecular rotations ofO2 andN2, and1014rad/s and1013rad/s for molecular

vibrations ofO2 andN2 respectively. For these parameters, the ratio of the intensities of

the CARS signal from CO molecules to the coherent backgroundintensity is estimated as

1 : 10−10 for molecular vibrations. The intensity of the CARS signal provided by 1 ppm

of CO molecules in the atmospheric air will be thus at the level of 1% of the coherent

background intensity, which still allows a reliable detection using appropriate nonresonant

background suppression methods [203].

D. Conclusion

The analysis presented in this work shows several realisticschemes for generating back-

ward CARS in a stand-off (remote sensing) configuration. Coherent Raman Umklappscat-

tering of laser fields by molecular rotations and vibrationsis shown to enable the generation

of phase-matched highly directional, high brightness, nearly backpropagating light beams.

The two proposed angled-beam schemes in Fig. 55 have complimentary capabilities.

Scheme (a) allows a flexible selection of the frequency differenceω3 − ω2 such that the

angle can be set to any convenient (small) value. Scheme (b) does not give this flexibility

(since the differenceω1−ω2, and therefore the angleθ, are fixed by the Raman frequency),

but instead it allows a free choice of the pump wavelength which now does not have to

be close to the air-laser wavelength. For example, if the air-laser wavelength turns out

to lie in the near IR range (845 nm, from the oxygen laser [189]), the wavelength of the

forward-going pump and Stokes beams can still be chosen in the UV range, such as to take

advantage of electronic-resonance enhancement.

With each rotational Raman component predominantly emitted in the direction of
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phasematching (Fig. 57), the backward CARS beam geometry shown in Fig. 55(b) yields

angularly resolved rotational Raman spectra, offering important advantages for spectrum

analysis and helping to separate the rotational Raman components from the highly direc-

tional backpropagating probe beam. The spatial separationbetween an on-ground laser

source and a detector of the coherent backward signal dictated by phasematching in the

considered geometry is a few centimeters per each meter of standoff detection range. Exci-

tation of molecular rotations with properly shaped sequences of ultrashort laser pulses [204,

205] could offer promising options for the enhancement of backward rotational CARS. This

coherent Raman Umklapp process is well suited for standoff detection of trace gases in the

atmosphere with a sensitivity at the level of 1 ppm.
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CHAPTER IX

LASER INDUCED ATOMIC DESORPTION TO CONTROL DIMER DENSITY IN

ALKALI-METAL VAPORS ∗

A. Introduction

Alkali-metal vapor systems are in high demand as time and frequency standards[206],

playing an important role in optical metrology [207], and are widely used to test funda-

mental principles in optical and atomic physics[2]. Together with applications the alkali-

metal vapor is one of the most attractive and powerful model systems of laser atom in-

teraction, which has enabled some of the most significant discoveries in natural sciences

from pioneering experimental demonstrations of radiationpressure on atoms[208], opti-

cal pumping[209, 210], and hyperfine-structure measurements[211] to coherent population

trapping[212], magneto-optical trapping[213], and Bose-Einstein condensation[214].

A routine technique for the preparation of alkali-metal vapors for a broad variety of

laboratory experiments and applications is based on heatedalkali-vapor cells. Alkali va-

pors in such cells include atomic and molecular components whose overall pressure is

controlled by the temperature of the cell. Several elegant techniques have been proposed

to control the densities of the atomic and molecular fractions in alkali-metal vapors. In

particular, Lintz and Bouchiat[215] have demonstrated thelaser induced destruction of ce-

sium dimers in a cesium vapor through a quasiresonant process assisted by collisions of

cesium molecules with excited-state cesium atoms and latershowed in rubidium vapor by

Banet. al. [216]. Thermal dissociation of cesium dimers in cesium vapor cells have been

∗ Part of this chapter is reprinted from the manuscript “Ultralow-power local laser control of the
dimer density in alkali-metal vapors” by P. K. Jha, K. E. Dorfman, Z. Yi, L. Yuan, Y. V. Rostovtsev,
V. A. Sautenkov, G. R. Welch, A. M. Zheltikov and M. O. Scully,(submitted to Applied Physics
Letters).
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studied by Sarkisyanet. al. [217].

In the past decade, laser induced atom desorption (LIAD)[218, 219] technique has

gain much attention for enhancing the vapor density in coated cells where the atoms gets

adsorbed on the surface. In a typical LIAD experiment, a desorption laser is turned on and

its effect is studied by the analyzing the absorption of a weak probe field resonant to some

transition. Work related to this area has been primarily focused on atomic densities for eg.

Rb, Cs, K, Na etc. First initiative in the direction of control over dimer concentration using

LIAD was studied by the Berkeley group[220].

Here we extend the laser-induced photodesorption technique to ultralow laser powers

and use resonant Raman spectroscopy to demonstrate that LIAD[?, 221] enables an accu-

rate local control of the density of dimers in alkali-metal vapors. Our experimental strategy

is based on studying the optical response from cesium dimersin the presence of a thin metal

film of cesium on the window of a closed vapor cell (as shown in Fig. 60) using continuous

wave laser at milli-watt power. We use a cylindrical Pyrex cell with a diameter of 3 cm

and a length of 75 mm. After desorption from the film the cesiummonomers (atoms) can

form dimers, trimers and higher order oligomers by colliding with each other. Possibility

of dimers adsorption on the surface of the film is beyond the scope of this paper.

B. Experimental Setup

Our experiment setup is shown in Fig. 60. A tunable free-running single-mode diode laser

(Sanyo DL7140-201) is used for spectroscopy of cesium molecules. The laser wavelength

is set coarsely by adjusting the temperature (+0.04nm/K). Fine frequency tuning is per-

formed by variation of injection current (-0.04cm−1/mA).

The input laser beam is collimated by an aspheric lens, and the prism is used to com-

press the beam size in horizontal axis. The telescope systemexpands the beam size by



139

M 

Spectrometer

T
ra

n
sl

a
ti

o
n

  
  
S

ta
g
e

Cs cell 
& Oven

B
e
a
m

 B
lo

c
k

IrisIsolator

  VDF

Prism

Diode Laser

PD

Iris
I!

I 

M!M"

Telescope

Thin film

Glass window Lens

Spontaneous emission

pE(#$%
sE(#$%

p

a

s

Laser Beam

L1

L2

(10cm)

(3cm)

BS

Fig. 60. Experimental setup. The lower inset shows the zoomed part near the window. Here

we have a thin film of Cs on one side of the cell inside the oven. The spontaneous

emission generated in the backward direction is collected and analyzed using the

spectrometer. VDF is variable density filter; L is lens and BSis beam splitter. The

upper inset shows a simple three-level model for Raman scattering. Here the lower

two levelsp ands and upper levela are the vibrational states the ground state X1Σ+
g

and excited state B1Πu respectively.

a factor of 2. Unfocussed and collimated beam diameter is∼ 3mm. The beam is then

focused into the cell through a lens (f=10 cm) designated as L1; the window of the cell,

which has the thin film on the inner surface, is∼ 3cm from the lens. The beam diameter

on the window is∼ 4mm which is larger than the film diameter (approximated as circular).

The backward light is collimated by the same lens L1, and after reflected by the beam split-

ter (BS), it is collected by another lens L2(f=3 cm) into a multimode fiber which conducts

the light into a diffraction spectrometer (Ocean Optics HR2000: spectral resolution 0.065

nm). Irises are used to help collimate the beams and the one close to the cell also helps
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block diffuse scattered radiation due to reflections from the windows etc.

C. Experimental Results

The laser wavelength is set resonant to the electronic transition X1Σ+
g ↔ B1Πu of the

dimer. The absorption lines in the absorption cesium molecular band X1Σ+
g ↔ B1Πu

cover wavelength region from 755nm to 810nm[222]. In Fig. 61(a), we have plotted one

such spectrum of Raman scattering collected. We tuned the pump laser wavelength, by

varying the injection current to the laser, to the resonanceby looking at the intensity of

one of the Raman peaks (796.16nm). The maximum value of the intensity corresponds to

pump wavelengthλp = 779.9010 nm (air) [WA-1500 wave meter from Burleigh]. In Fig.

62. we have plotted the resonance enhancement of the peak (796.16nm) against the one

photon detuning∆ = ωap − νp which indicates the high sensitivity of the Raman response

to the pump wavelength[223]. To simulate the spontaneous Raman spectral response we

used [224]

SRAMAN(νp, νs) = 2π
∑

p,s

P (p)|χsp(νp)|2δ(ωsp + νs − νp), (9.1)

where

χsp(νp) =
∑

a

℘sa℘ap

−ωap + νp + iΓ
. (9.2)

Hereνp andνs are the pump and Stokes frequency respectively.P (p) is the normalized

thermal population distribution given as

P (p) = e−Ep/kT/
∑

p

e−Ep/kBT . (9.3)

~ωij and℘ij are the energy difference and the electric dipole moment between leveli and
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Fig. 61. Plot of intensity of the backscattered radiation (in arbitrary units) (a) experimental

and (b) theoretical simulations (discussed in the text).

levelj respectively. The square of the dipole moment is proportional to the Franck-Condon

factor (FCF). We have approximately calculated FCFs by using the exact eigenfunctions of

the Morse Potential [225].Γ is the transverse relaxation rate.

Ev = ~ω(v +
1

2
)− hωχ(v +

1

2
)2 (9.4)

is the energy of vibrational levelv, whereω is the vibrational frequency andωχ is the

vibrational anharmonicity [226]. For cesium ground state X1Σ+
g , ωg ∼ 42.20(cm−1) and

ωgχg ∼ 0.0819(cm−1) while in the excited state B1Πu, ωe ∼ 34.33(cm−1) andωeχe ∼

0.08(cm−1)[227]. Therefore, different amplitudes of the FCFs for different transitions be-

tween the vibrational levels in state X1Σ+
g and B1Πu indicate that the dipole moment for

different transition has different magnitude[228]. Consequently the gain for different tran-
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sitions is different. Fig. 61(b) shows the simulated spectrum in the Stokes region using

Eq.(9.1) which is an excellent agreement with the experimental data shown in Fig. 61(a).

For simulations we tookΓ=1 GHz.

The main result of our work is shown in Fig. 63 where we have plotted the intensity

of Raman peak (796.16nm) as a function of the pump power for different cell tempera-

tures. Here curves I, II, III corresponds to the cell temperatureTc= 513K, 526K and543K

respectively. In our experiment we monitor the transmission of the film before and after

measurements of laser induced fluorescence (LIF) from cesium molecules. The linear de-

pendence between transmitted power and input power is shownin Fig. 63 (inset). It means

that under our experimental condition the transmission is independent on the power. Flu-

orescence signal depends on the input power which indicatesthat the laser light induce

desorption of cesium atoms and molecules from the metal film.Power independence of

the film transmission can be explained by moderate evaporation of the film, of the order of

several monolayers. The efficiency of the desorption increases with the cell temperature.

To fit our experimental data, we assumed the following fittingfunction

I =
∑

n=1

αnP
n (9.5)

the coefficientsαn(n = 1, 2, 3...) contains the information about the number density of

the dimers, differential cross-section, geometry of the gain medium, contribution due to

photodesoprtion etc. In the absence of the filmαn = 0 for n ≥ 2. We further normalize

Eq.(9.5) with respect to the linear contribution(I1 = α1P ), which yields

I

I1
= 1 + β1P + β2P

2 + ... (9.6)

whereβn = αn+1/α1. Next we simplify our analysis by consideringn = 1 term only. To

account for the background noise we addedI0 in Eq.(9.5). In general we know the intensity

of the Stokes radiation from a volume of the medium of unit area and a lengthdz is given
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Fig. 62. Plot of the resonance enhancement of the Raman peak at 796.16nm. Full width

at half maximum is∼ 0.3 GHz. Insert depicts Relevant energy levels of Cesium

dimers.

by [231]

dI = N0(Tc)
dσ

dΩ
ζPdz (9.7)

whereN0(Tc) is the density of the scattering molecules,dσ/dΩ is the differential cross

section of the spontaneous Raman scattering,ζ is the solid angle in which the scattering is

observed, andP is the power of the laser radiation. In table II we have shown the fitting

parameterβ1 = α2/α1 and estimated the number density of the cesium dimers. The number

in the parentheses is the corresponding fitting error.Tc is the cell temperature andN1 is the

number density of the dimers when the pump power isP ∼ 8.5mW. In order to estimate

for N1 we use

N = N0 (1 + β1P ) (9.8)

From the estimated values atTc = 543K andP ∼ 8.5mW, the number density of the Cs2
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Fig. 63. Plot of the backscattered intensity (arb. units) ofthe Raman peak at 796.16nm vs

the pump power for three different choices of the cell temperature in the presence

of the film. Dots illustrate the experimental data and solid lines are fitting using

Eq.(9.5).

dimers is∼ 6 times larger than that in the acse when desorption can be neglected. We

observed this enhancement in dimer density even at lower cell temperatureTc = 513K.

Let us introduce an effective temperatureTe which is equivalent to the cell temperature

at which the the number density of Cs2 dimers isNe = N1. Using the vapor pressure

formula [229], we obtainedTe and the result in shown in Table II. We see that the effective

temperature can be as high as∼ 54K above the cell temperature.

To verify our assumption that the nonlinear behavior is not attributed to stimulated
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Raman scattering(SRS), let us estimate the gain coefficientfor SRS under the same exper-

imental condition. For stimulated Raman scattering the stokes intensity in the backward

direction under the assumption that pump intensity is not depleted is given by

d

dz
Ibs(z) = −gIbs(z)Ip (9.9)

Here the intensity isI(z) = 2ǫ0c~
2Ω(z)|2/|℘|2 and the gain coefficient

g =

(

N |℘ap|2|℘as|2νsn(0)
ps

2ǫ20c
2~3∆2Γ

)

(9.10)

wheren(0)
ps = ̺

(0)
pp −̺(0)ss andΓ is the dephasing of the Raman coherence. In the temperature

range from 470 K to 540 K the molecular number densityNm changes from1013 − 1014

cm−3, the atomic density densityNa changes from1015 − 1016 cm−3. The ratio of the

molecular number densityNm and atomic densityNa is order of10−2[229]. We have

cesium dimers with density2 × 1014cm−3 at T ∼ 545K, are pumped byP ∼ 7mW

laser with wavelength tuned to779.90nm. The diameter of the focused beam at waist is

d = 4λsf/πD ∼ 34µm, where the unfocused beam diameter isD = 0.6cm, and the focal

length of the lens isf = 10cm. The depth of the focusL = 8λpf
2/πD2 ∼ 0.11cm. The

pump intensity isIp ∼ 300W/cm2. The differential spontaneous cross section isdσ/dΩ ∼

3 × 10−21cm−2. For resonance enhanced Raman, the Doppler broadening∆D = kpvth ∼

2×109s−1 for detuning andΓ = 1GHz. From Eq.(9.9) and the experimental parameters we

obtaing ∼ 1.2× 10−2W−1cm. Hence we estimate forgIpL ∼ 0.4 which clearly indicates

that the stimulated Raman contribution is negligible compared to the LIAD.

D. Conclusion

In this chapter, we discussed a possibility to optically control the density of dimers in alkali-

metal vapors using ultra-low power continuous-wave(cw) diode laser. To probe the dimer
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Table II. Numerical values of the fitting parameterβ = α2/α1 and the number density of

the Cs2 dimers at maximum pump powerP ∼ 8.5mW.

Curve Tc (K) β1 N1/N0 Te (K)

I 513 0.1734(0.009) 2.474(0.108) 567

II 526 0.2972(0.016) 3.526(0.421) 578

III 543 0.6704(0.025) 6.698(0.267) 597

concentration, we used resonant Raman spectroscopy and collected the Raman signal in

the backward direction which serves the two-fold purpose

(a) the signal is from the dimers and

(b) envision the idea of remote detection of chemicals usingultra-low power cw lasers.

We observed a nonlinear behavior [as shown in Fig. 63] of the intensity vs the pump power

contrary to the linear dependence behavior well known from the spontaneous Raman the-

ory. The deviation from the linear behavior is due to the contribution of the Raman signal

generated from the cesium dimers produced by photodesorption from the thin film on the

window. We estimated the number density of the dimers to be increased by several times

in the presence of the film.

The main goal of this experiment to make a significant step in the direction of LIAD

which offers a powerful tool to increase number densities ofvapor (atoms/dimers) in coated

cells which cannot be heated to higher temperatures. An optical control over the dimer den-

sity offers an additional tool for numerous applications ofthe alkali-metal vapors to time

and frequency standards[206], optical metrology[207], and to test fundamental principles

in optical and atomic physics[2], as well as to be the most attractive and powerful model

systems of laser atom interaction.
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CHAPTER X

TRIGGERED YOKED-SUPERFLUORESCENT EMISSION∗

A. Introduction

In his seminal work Dicke [110] predicted coherence in the spontaneous emission from

a system ofN excited atoms confined to a region of dimensions smaller thanthe wave-

length. The intensity of the emitted radiation goes asN2 and this phenomena is knows as

Dicke Superradiance(SR). This limitation of volume confinement was later eliminated by

Eberly and Rehler [232]. First experimental demonstrationwas performed by Skribanowitz

et al.[233] using optically pumped hydrogen fluoride(HF) gas. They also gave a theoreti-

cal explanation of how and initially inverted two-level system evolves into a superradiant

state[234]. A different form of cooperative emission from asystem of uncorrelated excited

atoms with no initial macroscopic dipole moment, known as superfluorescence(SF) [235]

initiates from spontaneous emission[236] and later the system develops macroscopic po-

larization which give rise to burst of radiation whose maximum intensity is proportional

to N2 and whose time duration is proportional toN−1. Mathematically this process is

characterized by the SF time (for a thin cylindrical medium)defined as[237]

τSF =
8πA

3λ2Nγb
(10.1)

whereN is total number of participating atoms,γb is the spontaneous emission rate from the

upper to the lower level,A is the area of the cross section of the medium. Superfluorescence

has been extensively studied both experimentally and theoretically[238, 239, 240, 241].

Recently Nagasonoet al.[242] observed free electron laser induced superfluorescence in

∗ Part of this chapter is reprinted from the manuscript “Experimental measurement of initial
tipping angle for Yoked-Superflourescent emission” by P. K.Jha, Z. Yi, and M. O. Scully, (to be
submitted to Physical Review Letters).
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Helium where neutral Helium is pumped with ultrafastτFWHM ∼ 100fs pulse atλp ∼ 53

nm from the ground state11S1/2 to the excited state31P1/2 which decays to the metastable

state21S1/2 emitting a burst of radiation at 503nm.

For three-level systems, the SF emissions can be observed onboth the upper leg (c→

a) and the lower leg (a→ b). When both of them occur one by one it is known as Cascade

SF[241] on the other hand when the system is prepared in the linear superposition of the

lower (b) and the upper level (a) then SF emission on the both the upper and the lower leg

occurs simultaneously also known as Yoked-Superfluorescence[243].

More than three-decades ago Vrehen and Schuurmans[244] reported the first direct

measurement of the effective initial tipping angle in superfluorescence. The idea was as

follows, immediately after the pump pulse creates a complete population inversion a weak

pulse of areaθ is injected into the SF sample and they measured the delay of the SF pulse

generated as a function of ln[θ/2π]2. They observed that as along as the area of the injected

pulse is less than a critical valueθ0 the delay was not effected. Whenθ > θ0 the delay was

reduced, then gradually measuring the delay againstθ they were able to find the most

probable value for the tipping angleθ0 ∼ 5 × 10−4. This result was closest to the value

predicted by Schuurmans, Polder and Vrehen[245]. Later Lee[246] proposed a simple

model to incorporate the pumping in the initial evolution ofthe superfluorescence. The

analytical expression for the initial tipping angle was modified to[246].

θ0 ≃ (2/〈N〉)1/2 exp(τp/4τSF ) (10.2)

and the estimate for the quantum fluctuations was given as

θ± ≃ θ0

{

1± [1− exp(−τp/2τSF )]1/2
}1/2

(10.3)

whereτp is the duration of the pump pulse andτSF is the collective radiation time given by

Eq. (10.1).
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Motivated by the experimental work of Vrehen and Schuurmans, we studied the effect

of an injected weak but coherent (drive) pulse, resonant with the upper leg of the YSF

scheme, on the delay of the super fluorescent signal generated on the lower leg. Inherently

there are three fundamental different between our work and the experiment of Vrehen and

Schuurmans:

(a) The pump pulse does not create population inversion, rather than it transfer some

population from the lower to the upper level using two-photon resonant excitation and also

creating a non-zero coherence between these two-levels.

(b) The excitation of the vapor is non-uniform.

(c) The injected and signal pulse are different wavelength.

B. Experimental Details

The schematic of our experiment is shown in Fig. 64. Here we use pump pulse of wave-

length 656nm (two-photon resonant with5S → 9S) and weak drive pulse of wavelength

1491nm (resonant with9S → 6P3/2) overlapped (temporal and spatial) within the thin

rubidium vapor cell. The generated 420 nm signal was filteredby a band-pass filter then

analyzed by spectrometer and streak camera. The pump and thedrive laser pulses were gen-

erated from two optical parametric amplifiers (OPAs). Both OPAs (Coherent) were pumped

by a commercial femtosecond laser system (Coherent) with pulses centered at 800nm and

the pulse duration was about 30fs. The pump pulses were second harmonics of first OPA

signals and polarized in vertical plane, full width at half maximum (FWHM) of pulse du-

ration was about 100fs; while the drive pulses were the direct signals for the second OPA,

with a polarization in horizontal plane, the FWHM of pulse duration was about∼ 120fs;

both beams had a repetition rate of 1 kHz. The pulse energy of each beam was lowered by

a continuous variable metallic neutral density filter respectively, which is not showed on
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Ωa

Ωb

1491

Fig. 64. Experimental schematic. Insert, energy diagram ofthe transition. HWP, half-wave

plate; unnamed parts are mirrors; PB, pellicle beamsplitter; FM, flip mirror; BPF,

band-pass filter centered at 420nm, FWHM 10nm; pump and drivepulse energy are

adjusted by continuous variable neutral density filters.

the figure. The drive beam went through a pair of 90-degree cornered mirrors mounted on

a digital controlled translational stage (Newport), hencethe time delay between the pump

and drive pulses could be precisely adjusted. Both beam reached a pellicle beamsplitter

(PB) and combined collinearly. The PB transmits about 82% ofthe drive (1491nm) and

reflects 44% of the pump (656nm). The combined beam were then focused by a 20cm focal

length lens into a Rubidium cell with a Rb vapor thickness of 0.19cm.

The cell is made of sapphire for both wall and windows which allows high temperature

operation, it has a cylindrical shape with length of 0.53cm and diameter of 2.54cm. A

small tube filled with Rubidium is attached to the wall of the cell, and is connected to cell

cavity. Because of this configuration, the tube and the cell body can be heat up to different

temperature; in our experiment, the body was at234◦C and the tube was at214◦C, in order
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to prevent condensation on the windows. At this set of temperature, the number density of

Rb atoms was estimated to be1.3× 1015cm−3.

To make sure the two pulses overlap with each other, we putteda piece of thin glass

plate (150µm in thickness) into the spatially overlapped focal point ofthe two beams, and

found the four-wave mixing signal by adjusting the delay on the drive beam. After we

placed the cell onto the focal point, we also increased the delay of drive to compensate the

dispersion induced by the window. 420nm radiation (the signal) was generated from the

excited Rb vapor. Together with the pump and drive beam, the signal could be analyzed

by the spectrometer after collected by a multimode optical fiber. It was also analyzed by

the streak camera (SC) after filtered by a band-pass filter with FWHM of 10nm centered at

420nm.

After filtered and attenuated, the 656nm pump beam transmitted from the pellicle

beamsplitter was used as reference for SC. This beam together with the generated signal

from the cell were focused into the slid of the SC by a lens withfocal length of 5cm. The

time resolution of SC is mainly determined by the width of theentrance slid; sufficient

mount of light shining into narrow enough slid gives a best resolution with good enough

signal-to-noise ratio. In the experiment, we focused the signal onto the slid-plane and set

the slid at about50µm, resulted in a resolution around 2ps.

C. Experimental Results

In this section we will present our experimental results. InFig. 65 we have plotted the beam

profile for the pump beam and signal at the fixed distance from the vapor cell. To obtain

the signal (only) we used a narrow bandpass filter center at 420nm and FWHM of 10nm.

Fig. 65 indicates that the 420nm signal is not the spontaneous emission from independent

excited atoms rather it is cooperative effect which the excited atoms radiate collectively. To
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Fig. 65. Beam profiles of the pump (a) and 420nm signal (b)

measure the directionality we did not send any drive pulse rather pumped the atoms from

the ground state of Rb (5S) to the excite state (9S) and observed the signal generated at

420nm. Once verifying that we indeed are observing cooperative spontaneous emission,

we moved to second phase of the experiment i.e triggered YSF emission.

In the second phase we injected the weak drive field, startingfrom 1nW, into the sam-

ple and measured the delay between the pump and the signal pulse generate. We observed

that till∼ 70nW drive power the delay was not affected1. When the drive power was further

increase the delay in the signal pulse with respect to the pump pulse starts to go down as

shown by the solid red circles in Fig. 66. We performed the experiment at constant pump

power of2mW and the effect of the pump power on the tipping angle i.e thethreshold

pump energy is under progress.

1The fluctuation in the delay time could be from the shot to shotvariation or averaging over
many shot to shot data
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Fig. 66. (a) Energy level diagram for Rb with relevant levels. (b) Delay timeτD of YSF

pulse vs square root of the energy of the injected pulse.

D. Conclusion

In this chapter we have present an experiment, first to the best of our knowledge, in an

attempt to quantify the spontaneous emission noise in the YSF scheme for an optically

pumped Rubidium vapor. We investigated the effect of weak (1nW-100nW) coherent drive

resonant with the upper leg (9S → 6P ) of the YSF scheme(9S → 6P → 5S) on the

signal generated on the lower leg (6P → 5S) at ∼ 420nm wavelength. Measurement of

the tipping angle for as function of the pump power is in progress and it will be reported

elsewhere. In the experiment of Vrehen and Schuurmans the cesium vapor was excited

(complete population inversion) uniformly and then a weak coherent pulse of areaθ was

injected.

In our experiment the excitation was non-uniform, non-inversion and the SF pulse

is generated even before the pump pulse crosses the sample. Furthermore, this experiment

also shows the possibility to generate a forward UV field in the air by adding an extra strong
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845 nm drive field to the oxygen experiments, which gives various applications including

remote sensing. In the third phase of the experiment we will examine the control of the SF

signal for non-collinear pump and drive pulse by measuring the directionality of the 420nm

signal against the angle between the pump and drive beams.
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CHAPTER XI

CONCLUSION

The primary conclusion of the present dissertation is that quantum coherence plays an

active role in modifying the optical properties of matter. The main results are summarized

as follows.

(1) An efficient way of exciting coherence in UV and XUV regimeby far-off-resonant

fields is developed using exact analytical and numerical simulations with and without ro-

tating wave approximations.

(2) A theoretically investigation of the vacuum induced interference effects on the

resonance line profiles of a three level system as a model. Theresult is quite general and

applies to atoms, molecules as well as quantum wells and dots.

(3) Using quantum coherence several possibilities for frequency up-conversion and

generation of short-wavelength radiation is presented in XUV and X-Ray regime.

(4) A theory predicting a substantial enhancement in the gain in XUV/X-Ray regime

of electromagnetic radiation using a external higher wavelength coherent source.

(5) An experiment performed to observe CEP effects on bound-bound atomic ex-

citation (Zeeman sub-levels) in the radio-frequency(RF) domain by multi-cycle pulses

(∼ 13 cycles). This experiment is an important step forward to shine light on the fun-

damental question, “How many oscillations/cycles of electric field in a pulse are sufficient

to neglect the CEP effect ?”.

(6) A new Raman technique called Coherent Raman Umklappscattering for generat-

ing nearly backward coherent anti-stokes Raman scattering(CARS) in a stand-off (remote

sensing) configuration. Coherent Raman Umklappscatteringof laser fields by molecular

rotations and vibrations can generate phase-matched highly directional, high brightness,

nearly backward propagating light beams.
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(7) A proof of principle experiment on cesium experimentally to demonstrate that

LIAD can be used a powerful tool to optically control and monitor the alkali-metal vapors.

When this approach is combined with resonance Raman technique it holds a possibility for

remote sensing.

(8) Triggered YSF emission is studied experimentally in optically pumped rubidium

vapors to quantify the spontaneous emission noise intensity.
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[173] Y.Y. Yin, Ce Chen, D. S. Elliott and A. V. Smith, Phys. Rev. Lett. 69, 2353 (1992);

M. Shapiro and P. Brumer, Adv. At. Mol. Opt. Phys.42, 287 (2000); A. Haché, Y.
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APPENDIX A

DERIVATION OF HAMILTONIAN FOR THREE-LEVEL ATOM

We consider a three-level atom (ThLA) in cascadeΞ configuration interacting with two

non-resonant classical electric field. Here the transitions c ↔ a anda ↔ b are dipole

allowed while the transitionc ↔ b dipole forbidden. We write the linearly polarized,

monochromatic, classical electric field as

~E(t) =
1

2
ǫ̂1E1e

−iν1t +
1

2
ǫ̂2E2e

−iν2t +
1

2
ǫ̂1E1e

iν1t +
1

2
ǫ̂2E2e

iν2t (A.1)

where ǫ̂, E , ν are the unit polarization vector, field amplitude and the laser frequency

respectively. The interaction Hamiltonian is given as

H1 = −e~r · ~E(t) (A.2)

where~r is the position vector of the electron with respect to the nucleus. The free Hamil-

tonian of ThLA is given as

H0 = ~ωa |a〉〈a|+ ~ωb |b〉〈b|+ ~ωc |c〉〈c| (A.3)

Using the completeness relation
∑

{j=a,b,c} |j〉〈j| = 1, the interaction Hamiltonian Eq.(A.2)

is given as

H1 = −e(〈a|~r|b〉|a〉〈b|+ 〈b|~r|a〉|b〉〈a|+ 〈c|~r|a〉|c〉〈a|+ 〈a|~r|a〉|a〉〈c|) · ~E(t) (A.4)

Let us define dipole moment as

~℘ab = e〈a|~r|b〉, ~℘ca = e〈c|~r|a〉 (A.5)
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Substituting Eq(A.5) in Eq(A.4) we get,

H1 =− (~℘ab|a〉〈b|+ ~℘ba|b〉〈a|) ·
[

ǫ̂1
2

E1

(

e−iν1t + eiν1t
)

+
ǫ̂2
2

E2

(

e−iν2t + eiν2t
)

]

− (~℘ca|c〉〈a|+ ~℘ac|a〉〈c|) ·
[

ǫ̂1
2

E1

(

e−iν1t + eiν1t
)

+
ǫ̂2
2

E2

(

e−iν2t + eiν2t
)

] (A.6)

Without the loss of generality let us consider that the field is polarized along z-direction.

Now from Eq(A.6) we get

H1 =−
[

℘abE1

2
|a〉〈b|+ ℘baE1

2
|b〉〈a|

]

(

e−iν1t + eiν1t
)

−
[

℘abE2

2
|a〉〈b|

+
℘baE2

2
|b〉〈a|

]

(

e−iν2t + eiν2t
)

−
[

℘caE1

2
|c〉〈a|+ ℘acE1

2
|a〉〈c|

]

(

e−iν1t + eiν1t
)

−
[

℘caE2

2
|c〉〈a|+ ℘acE2

2
|a〉〈c|

]

(

e−iν2t + eiν2t
)

(A.7)

State vector obeys the Schrödinger equation and can be written as

|Ψ〉 = a(t)e−iφa(t) |a〉+ b(t)e−iφb(t) |b〉 + c(t)e−iφc(t) |c〉 (A.8)

The phasesφ(t) are arbitrary, and will be chosen to simplify the description of time depen-

dence at fixed location. The equation of motion for the stateb is given as

iḃ(t) + (φ̇b(t)− ωb)b(t) =− ℘baE1

2~

[

e−i(ν1t+φa(t)−φb(t)) + ei(ν1t−φa(t)+φb(t))
]

a(t)

− ℘baE2

2~

[

e−i(ν2t+φa(t)−φb(t)) + ei(ν2t−φa(t)+φb(t))
]

a(t)

(A.9)

Evidently a suitable choice of phases can reduce at least oneof the exponentials to unity.

This is the first condition we require of the phases. Given that condition, several choices

are possible. Let us chose

ν1t− φa(t) + φb(t) = 0 (A.10)

Equivalently,

φ̇b(t) = φ̇a(t)− ν1 (A.11)
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With this choice the second exponential argument vanishes and the other three argument

becomes

−ν1t− φa(t) + φb(t) = −2ν1t

−ν2t− φa(t) + φb(t) = −(ν2 + ν1)t

ν2t− φa(t) + φb(t) = (ν2 − ν1)t

(A.12)

Now e±2iν1t, e−i(ν1±ν2)t are rapidly oscillating terms, so in Rotating Wave Approximation,

we get neglect these fast oscillating terms by replacing them with their average values, zero.

Now we get

iḃ(t) = δbb(t)− Ω∗
1a(t) (A.13)

where the coefficient∆b

δb = ωb − φ̇b(t)

Ω∗
b =

℘baE1

2~

(A.14)

The equation of motion for the statea is given as

iȧ(t) + [φ̇a(t)− ωa]a(t) = −℘abE1

2~

[

e−i(ν1t+φb(t)−φa(t)) + ei(ν1t−φb(t)+φa(t))
]

b(t)

−℘abE2

2~

[

e−i(ν2t+φb(t)−φa(t)) + ei(ν2t−φb(t)+φa(t))
]

b(t)− ℘acE1

2~

[

e−i(ν1t+φc(t)−φa(t))

+ei(ν1t−φc(t)+φa(t))
]

c(t)− ℘acE2

2~

[

e−i(ν2t+φc(t)−φa(t)) + ei(ν2t−φc(t)+φa(t))
]

c(t)

(A.15)

Let us choose

ν2t− φc(t) + φa(t) = 0 (A.16)

Equivalently,

φ̇a(t) = φ̇c(t)− ν2 (A.17)

With these choices Eq(A.11,A.17), the first and the eighth exponential arguments in Eq(A.15)

vanishes and the other two arguments forb(t) are given by Eq(A.12) while forc(t) are given
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as

−ν1t− φc(t) + φa(t) = −(ν1 + ν2)t

ν1t− φc(t) + φa(t) = ν1 − ν2)t

−ν2t− φc(t) + φa(t) = −2ν2t

(A.18)

Nowe±2iν(2)t, e−i(ν2±ν1)t are rapidly oscillating terms, so we replace them with theiraverage

values, zero. Now we get

iȧ(t) = δaa(t)− Ω1b(t)− Ω∗
2c(t) (A.19)

where the coefficientδa, Ωb andΩ∗
a

δa = ωa − φ̇b(t)− ν1

Ωb =
℘abE1

2~

Ω∗
a =

℘acE2

2~

(A.20)

The equation of motion for the statec is given as

iċ(t) + [φ̇c(t)− ωc]c(t) = −℘caE1

2~

[

e−i(ν1t+φa(t)−φc(t)) + ei(ν1t−φa(t)+φc(t))
]

a(t)

−℘caE2

2~

[

e−i(ν2t+φa(t)−φc(t)) + ei(ν2t−φa(t)+φc(t))
]

a(t)

(A.21)

Using Eq(A.17), we get

−ν1t− φa(t) + φc(t) = −(ν1 − ν2)t

ν1t− φa(t) + φc(t) = ν1 + ν2)t

−ν2t− φa(t) + φc(t) = −2ν2t

(A.22)

Now e±2iν(2)t, ei(ν2±ν1)t are rapidly oscillating terms, so we replace them with theiraverage

values, zero. Now we get

iċ(t) = δcc(t)− Ω2a(t) (A.23)
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where the coefficientδc andΩa

δc = ωc − φ̇b(t)− ν1 − ν2

Ωa =
℘caE2

2~

(A.24)

Let us fix the value ofφb as

φb(t) = ωbt (A.25)

From Eq(A.14) we getδb = 0. Similarly using Eq.(A.10), we get

φa(t) = ωbt + ν1t (A.26)

Now using Eq.(A.16) we get

φc(t) = ωbt + ν1t + ν2t (A.27)

From Eq.(A.20) and Eq.(A.24) we get

∆b = (ωa − ωb)− ν1

∆a +∆b = (ωc − ωb)− (ν1 + ν2)

(A.28)

where∆a = (ωc − ωa) − ν2. The equation of motion for the statesb, a and c can be

summarized as

iḃ(t) = −Ω∗
ba(t)

iȧ(t) = ∆ba(t)− Ωbb(t)− Ω∗
ac(t)

iċ(t) = (∆a +∆b)c(t)− Ωaa(t)

(A.29)

The equivalent Hamiltonian in matrix form is

H = −













0 Ω∗
1 0

Ω1 −∆1 Ω∗
2

0 Ω2 −∆2












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In a more convenient form we will write it as

H = ∆b|a〉〈a|+ (∆a +∆b)|c〉〈c| − (Ωb|a〉〈b|+ Ωa|c〉〈a|+ H.c) (A.30)

Let us choose

ν2t− φa(t) + φc(t) = 0 (A.31)

Equivalently,

φ̇a(t) = φ̇c(t) + ν2 (A.32)

With these choices Eq(A.11,A.32), the first and the seventh exponential arguments in

Eq(A.15) vanishes and the other two arguments forb(t) are given by Eq(A.12) while for

c(t) are given as

−ν1t− φc(t) + φa(t) = (−ν1 + ν2)t

ν1t− φc(t) + φa(t) = (ν1 + ν2)t

ν2t− φc(t) + φa(t) = 2ν2t

(A.33)

Now e±2iν2t, ei(ν2±ν1)t are rapidly oscillating terms, so we replace them with theiraverage

values, zero. Now we get

iȧ(t) = ∆aa(t)− Ω1b(t)− Ω2c(t) (A.34)

where the coefficientδa, Ωb andΩc

δa = ωa − φ̇b(t)− ν1

Ωb =
℘abE1

2~

Ωc =
℘acE2

2~

(A.35)
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The equation of motion for the statec is given by Eq(A.21). Using Eq(A.31), we get

−ν1t− φa(t) + φc(t) = −(ν1 + ν2)t

ν1t− φa(t) + φc(t) = (ν1 − ν2)t

ν2t− φa(t) + φc(t) = 2ν2t

(A.36)

Now e±2iν2t, e−i(ν2±ν1)t are rapidly oscillating terms, so we replace them with theiraverage

values, zero. Now we get

iċ(t) = δcc(t)− Ω∗
2a(t) (A.37)

where the coefficientδc andΩ∗
c are given by

δc = ωc − φ̇b(t)− ν1 + ν2

Ω∗
c =

℘caE2

2~

(A.38)

Fixing the value ofφb as Eq(A.25), we get∆b = 0 andφa as Eq(A.26). Using the new

condition for lambda configuration Eq(A.31), we get

φc(t) = ωbt + ν1t− ν2t (A.39)

From Eq.(A.35) and Eq.(A.38) we get

∆b = (ωa − ωb)− ν1

∆b −∆c = (ωc − ωb)− (ν1 − ν2)

(A.40)

The equation of motion for the statesb, a andc can be summarized as

iḃ(t) = −Ω∗
1a(t)

iȧ(t) = ∆1a(t)− Ω1b(t)− Ω2c(t)

iċ(t) = ∆2c(t)− Ω∗
2a(t)

(A.41)
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The equivalent Hamiltonian in matrix form is

H =













0 −Ω∗
1 0

−Ω1 ∆1 −Ω2

0 −Ω∗
2 ∆2













In a more convenient form we will write it as

H = ∆b|a〉〈a|+ (∆b −∆c)|c〉〈c| − (Ωb|a〉〈b|+ Ωc|c〉〈a|+ H.c) (A.42)
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APPENDIX B

BACKWARD VS FORWARD GAIN

Let us write the electric fields propagating along the +z and -z direction as

~Eb(z, t) =
ǫ̂+b
2

(

E+
b e

iθ+b + E+∗
b e−iθ+b

)

+
ǫ̂−b
2

(

E−
b e

iθ−b + E−∗
b e−iθ−b

)

(B.1)

Here

θ+b = kbz − νbt, θ−b = −kbz − νbt, (B.2)

where ǫ̂b, νb are the unit polarization vector and the carrier frequency respectively. The

interaction of the field~Eb(z, t) with an two-level atom in the dipole approximation is given

as

H1 = −
(

~℘ab · ~Eb(z, t)|a〉〈b|+ c.c
)

(B.3)

The unperturbed Hamiltonian of the two-level atom is

H0 = ωa|a〉〈a|+ ωb|b〉〈b|. (B.4)

Incorporating the decay rateγb from a → b, the equation of motion for the atomic density

matrix is given as(~ = 1)

∂̺

∂t
= −i[H , ̺] +

γb
2

(

[σb, ̺σ
†
b ] + [σb̺, σ

†
b ]
)

(B.5)

where the atomic lowering (σi) and rising operators (σ†
i ) are defined as

σb = |b〉〈a| , σ†
b = |a〉〈b| . (B.6)

From Eq.(B.5) we obtain the equations of motion for the off-diagonal density matrix ele-

ments̺ ab as

˙̺ab = −γab̺ab − i~℘ab · ~Eb(z, t)(̺aa − ̺bb), (B.7)
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Hereγab = γb/2 + iωab whereωab = ωa − ωb. To eliminate the fast oscillating terms like

eiθ
±

b , let us make a transformation for̺ab as

̺ab = ̺+abe
iθ+b + ̺−abe

iθ−b (B.8)

Substituting Eq.(B.8) in Eq.(B.7) we obtain for the forwardcoherence̺+
ab

˙̺+ab + ˙̺−abe
−2ikbz = −Γab

[

̺+ab + ̺−abe
−2ikbz

]

− i
[

Ω+
b + Ω−

b e
−2ikbz

]

(̺aa − ̺bb) (B.9)

By symmetry, we can write for the backward direction̺−ab as

˙̺−ab + ˙̺+abe
2ikbz = −Γab

[

̺−ab + ̺+abe
2ikbz

]

− i
[

Ω−
b + Ω+

b e
2ikbz

]

(̺aa − ̺bb) (B.10)

The equations of motion for the population in levela i.e ̺aa is given by

˙̺aa = −γb̺aa + i
(

~℘∗
ab · ~Eb̺ab − ~℘ab · ~Eb̺

∗
ab

)

(B.11)

Substituting Eq.(B.1) in Eq.(B.13) we obtain

˙̺aa = −γb̺aa + i
{[

Ω+∗
b + Ω−∗

b exp(2ikbz)
]

̺+ab −
[

Ω+
b + Ω−

b exp(−2ikbz)
]

̺+∗
ab

}

+ i
{[

Ω−∗
b + Ω+∗

b exp(−2ikbz)
]

̺−ab −
[

Ω−
b + Ω+

b exp(2ikbz)
]

̺−∗
ab

}

(B.12)

The propagation of the probe fieldE(z, t) is described by the Maxwell-Schrodinger equa-

tion
(

∂

∂z
+

1

c

∂

∂t

)(

− ∂

∂z
+

1

c

∂

∂t

)

Eb(z, t) = −µ0
∂2P

∂t2
(B.13)

Substituting Eq.(B.1) in Eq.(B.13) we obtain the propagation equation for the probe field

Ω±
b as

∂Ω+
b

∂z
+

1

c

∂Ω+
b

∂t
= iηab̺

+
ab (B.14)

−∂Ω
−
b

∂z
+

1

c

∂Ω−
b

∂t
= iηab̺

−
ab (B.15)



187

whereηab = (3/8π)Nλ2abγb(νb/ωab). We have used the definition of Rabi frequency as

Ωb = ℘abEb/2~. Let us discuss a scenario in which we start (t = 0) with complete popula-

tion inversion and study the evolution of the seed pulse in forward (+z) and backward (-z)

direction. The temporal shape of the seed pulse entering atz = 0 andz = L, where L is

the length of the gain medium, is identical. From Eq.(B.9), we obtain

˙̺+ab = −Γab̺
+
ab − iΩ+

b (̺aa − ̺bb) (B.16)

Similarly, by symmetry, we can write for the backward direction ̺−ab as

˙̺−ab = −Γab̺
−
ab − iΩ−

b (̺aa − ̺bb) (B.17)

and the evolution of the population̺aa takes the form

˙̺aa = −γb̺aa + i
(

Ω+∗
b ̺+ab − Ω+

b ̺
+∗
ab

)

+ i
(

Ω−∗
b ̺−ab − Ω−

b ̺
−∗
ab

)

(B.18)

From Eqs.(B.14-B.18), we see that the evolution of the seed pulse in the forward and back-

ward direction are identical.
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APPENDIX C

GENERATION OF RADIATION BY A TWO-LEVEL ATOMIC MEDIUM WITH

EXCITED COHERENCE

Let us assume that a two-level atom has some small initial coherenceρ0ab =
√

ρ0aaρ
0
bb. Note

that in chapter III, we consider the case when there is no population inversion,ρ0aa < ρ0bb.

The density matrix equations for atomic coherence are

∂ρab
∂t

= iΩ(ρaa − ρbb), and (C.1)

∂

∂t
(ρaa − ρbb) = −2iΩρab. (C.2)

the solution (by neglecting relaxation processes) is

ρab = iρ0ab sin θ. (C.3)

Then, for the retarded frame

τ = t− z

c
, (C.4)

the propagation equation for a resonant field is given by

∂Ω

∂z
= −iηρab, (C.5)

whereη = 3λ2Nγ/(8π) is the coupling constant. Introducing

θ = 2

∫ t

Ω dt, (C.6)

Eq.(C.5) can be rewritten as
∂2θ

∂z∂τ
= −η sin(θ − φ), (C.7)
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whereφ can be determined from initial condition as

φ ≃ 2
√

ρ0aa. (C.8)

Solution of Eq.(C.7) is given by

θ = φ[1− J0(2
√
ηzτ )], (C.9)

and the Rabi frequency is

Ω = φJ1(2
√
ηzτ )

√

ηz

τ
. (C.10)

The energy of the generated short wavelength pulse can be calculated as

c

4π
A

∫ ∞

−∞
|E|2dt = Az N ρaa ~ωab, (C.11)

and it is equal to the energy stored in the medium after excitation. Also it is important

to note that the absence of population inversion does not influence much of pulse energy

because of coherent interaction of the radiation field with the atomic medium. The time

duration of the generated pulse is of the order of

τpulse =
4π

3Nλ2zγr
, (C.12)

and it gives the power of the pulse be

Ppulse =
λ2zN

4π
AzNγrρaa~ωab, (C.13)

where the factor
λ2zN

4π
shows the brightness of the source in comparison with spontaneous

emission of incoherent source.
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APPENDIX D

DENSITY MATRIX VS RATE EQUATIONS FOR TLA

We consider a two level system witha andb as the upper and the lower levels. The density

matrix equations are given as

r

a

b

 

 

!

Fig. 67. Two-level model. The decay rate from the levelsa andb is given byγ.

˙̺aa = r − γ̺aa − i (Ω∗̺ab − Ω̺∗ab) (D.1)

˙̺bb = −γ̺bb + i (Ω∗̺ab − Ω̺∗ab) (D.2)

˙̺ab = −Γab̺ab − iΩ (̺aa − ̺bb) (D.3)

The propagation equation for the field(Ω) in the slowly varying amplitude approximation

as
∂Ω

∂z
+

1

c

∂Ω

∂t
= iη̺ab (D.4)

where the coupling constantη is

η = νN℘2/2ǫ0c~ (D.5)
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Substituting˙̺ab = 0 in Eq.(D.3) we obtain,

̺ab = −i Ω
Γab

(̺aa − ̺bb) (D.6)

Substituting Eq.(D.6) in Eq.(D.1) and Eq.(D.2) we obtain,

˙̺aa = r − γ̺aa −
2Ω2

Γab
(̺aa − ̺bb) (D.7)

˙̺bb = −γ̺aa +
2Ω2

Γab
(̺aa − ̺bb) (D.8)

We obtain,

˙̺aa − ˙̺bb = r − γ (̺aa − ̺bb)−
4Ω2

Γab
(̺aa − ̺bb) (D.9)

Assuming the spatial uniformity of the field and using Eq.(D.6), the propagation equation

for the field gives,
dΩ

dt
=

cη

Γab

(̺aa − ̺bb) Ω (D.10)

Using simple algebra we obtain (for real field)

dΩ2

dt
=

2cη

Γab

(̺aa − ̺bb) Ω
2 (D.11)

From the definition of Rabi frequencyΩ and field amplitudeE we can write,

Ω = ℘E/2~, E2 = n~ν/ǫ0V (D.12)

Heren is the number of photons. From Eq.(D.11) and Eq.(D.12) we obtain,

dn

dt
=

℘2νN

ǫ0~ΓabV
(̺aa − ̺bb)n (D.13)

From Eq.(D.9) and Eq.(D.12) we obtain,

˙̺aa − ˙̺bb = r − γ (̺aa − ̺bb)−
ν℘2

ǫ0~Γab
n (̺aa − ̺bb) (D.14)
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Fig. 68. Numerical simulation using the Rate equations. Using the parametersγc = 30

ns−1.

Let us define some parameters to get our result in consistent with[82]

Nab = NV (̺aa − ̺bb) , Rp = NV r, K =
ν℘2

ǫ0~ΓabV
(D.15)

Using new parameters, our equations takes the form

dn

dt
= KNabn, Ṅab = Rp − γNab −KnNab (D.16)

To work on the numerical simulations we can use the rate equations derived from the den-

sity matrix equations for different choices ofT2. We have also added the cavity decay term

in the equation of motion forn phenomenologically we gives us,

dn

dt
=

℘2νN

ǫ0~ΓabV
(̺aa − ̺bb)n− γcn (D.17)
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APPENDIX E

DERIVATION OF EMISSION AND ABSORPTION PROBABILITIES USING

SCULLY’S DRESSED STATE ANALYSIS

We start with evolution of amplitudes in Eqs. (4.1)-(4.3) for γ1 = γ2 = γ

v̇2 = −(γ + i∆)v2 − pγv1 − iΩ2c, (E.1)

v̇1 = −(γ − i∆)v1 − pγv2 − iΩ1c, (E.2)

ċ = −iΩ2v2 − iΩ1v1 − Γc, (E.3)

Writing Eqs. (E.1)-(E.3) in matrix form, we obtain

d

dτ













v2

v1

c













= −Γ0













v2

v1

c













− iV













v2

v1

c













, (E.4)

whereτ = γt, and the Fano decay matrix is defined by

Γ0 =













1 + i∆̃ p 0

p 1− i∆̃ 0

0 0 Γ













, (E.5)

and probe-field interaction is given by

V =













0 0 Ω̃2

0 0 Ω̃1

Ω̃2 Ω̃1 0













, (E.6)

with ∆̃ = ∆/γ andΩ̃1,2 = Ω1,2/γ. It is intuitive to introduce a basis in which the Fano

coupling is transformed away. We proceed from the bare basisvia theU , U−1 matrices of
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diagonalization.

U−1 =
1√
2p













p p 0

x− i∆̃ −x− i∆̃ 0

0 0
√
2p













, (E.7)

U =
1√
2x













x+ i∆̃ p 0

x− i∆̃ −p 0

0 0
√
2x













. (E.8)

Herex =

√

p2 − ∆̃2. so that the transformed state vector is defined by

U













v2

v1

c













=













V+

V−

C













, (E.9)

which implies

V± =
(x± i∆̃)v2 ± pv1√

2x
(E.10)

and thus,












V̇+

V̇−

Ċ













= −Γt













V+

V−

C













− iVt













V+

V−

C













, (E.11)

in which the diagonalΓt operator is

Γt = UΓ0U
−1 =













1 + x 0 0

0 1− x 0

0 0 Γ













, (E.12)



195

and the transformed interaction potential isVt = UV U−1 which yields

Vt =
1√
2p













0 0 p[Ω̃2(x+ i∆̃) + pΩ̃1]/x

0 0 p[Ω̃2(x− i∆̃)− pΩ̃1]/x

Ω̃2 + Ω̃1(x− i∆̃) Ω̃2 − Ω̃1(x+ i∆̃) 0













.

(E.13)

The equation of motion in terms ofV± andC are then found to be

dV+
dτ

= −(1 + x)V+ − i√
2x

[Ω̃2(x+ i∆̃) + pΩ̃1]C, (E.14)

dV−
dτ

= −(1 − x)V− − i√
2x

[Ω̃2(x− i∆̃)− pΩ̃1]C, (E.15)

dC

dτ
= −Γ̃C − i√

2
[pΩ̃2 + Ω̃1(x− i∆̃)]V+ − i√

2
[pΩ̃2 − Ω̃1(x+ i∆̃)]V−, (E.16)

We start with amplitude equations in dressed basis (E.14) - (E.16). The initial conditions

corresponding to the emission from the stateC areV±(0) = 0, C(0) = 1. Assuming

the driving fields to be weak (̃Ω1,2 << 1 we can solve Eqs. (E.14) - (E.16) by expansion

in perturbation series over̃Ω1,2. The lowest order solution forB(τ) of Eq. (E.16) yields

C(0)(τ) = e−Γ̃τ . The latter can be substituted in Eqs. (E.14) and (E.15) to find V (0)
± (τ):

V
(0)
± (τ) = −iΩ̃2(x± i∆̃)± pΩ̃1√

2x(1± x− Γ̃)

(

e−Γ̃τ − e−(1±x)τ
)

(E.17)

The exponential approximation orC(τ) gives relatively good agreement with numerical

simulations only for small time. For large time the behaviorof the system is far from being

exponential. Therefore, we should consider next order correction forC(τ). It can be done

by substituting functionsV (0)
± from Eq. (E.17) to Eq. (E.16) which yields

C(1)(τ) =

[

A+

1 + x− Γ̃
+

A−

1− x− Γ̃
− (A+ + A−)τ

]

e−Γ̃τ

+e−Γ̃τ − A+

1 + x− Γ̃
e−(1+x)τ − A−

1− x− Γ̃
e−(1−x)τ , (E.18)
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where

A± =
[pΩ̃2 ± (x∓ i∆̃)Ω̃1][Ω̃2(x± i∆̃)± pΩ̃1]

2px(1± x− Γ̃)
. (E.19)

Using the definition for emission probability from Eq. (4.5)at large timeτ ≫ 1, 1/Γ̃,

neglecting higher order terms iñΩ1,2 the probability of absorption yields

Pemiss(∞|b) = (Γ̃ + 1)(|Ω̃1|2 + |Ω̃2|2)− 2pΩ̃1Ω̃2

Γ̃
[

∆̃2 + (Γ̃ + 1)2 − p2
] . (E.20)

Similarly one can derive the probability of absorption. We start from absorption from

level v1. The initial conditions for system with population onv1 in dressed states are

V±(0) = ±p/
√
2x, C(0) = 0 (see Eq. (E.10)). In lowest order of̃Ω1,2, Eqs. (E.14)

and (E.15) yield

V
(0)
± (τ |v1) = ± p√

2x
e−(1±x)τ . (E.21)

Corresponding zero order solution ofC(0)(τ) of Eq. (E.16) is given by

C(0)(τ |v1) = B+e
−(1+x)τ − B−e

−(1−x)τ + (B− − B+)e
−Γ̃τ , (E.22)

where

B± = i
pΩ̃2 ± Ω̃1(x∓ i∆̃)

2x(1± x− Γ̃)
(E.23)

Therefore, probability of absorption form levelv1 for large timeτ ≫ 1, 1/Γ̃ given by Eq.

(4.7) reads

Pabs(∞|v1) =
(Γ̃ + 2)|Ω̃1 − pΩ̃2|2 + [Γ̃(1− p2) + 2∆̃2(Γ̃ + 1)] ˜|Ω1|2

2(1 + ∆̃2 − p2)[∆̃2 + (Γ̃ + 1)2 − p2]
(E.24)

The probability of absorption from levelv2 can be derived in the same way as for the level

v1. In this case, the initial conditions according to Eq. (E.10) readV±(0) = (x± i∆̃)/
√
2x,

C(0) = 0. In lowest order of̃Ω1,2, Eqs. (E.14) and (E.15) have the following solution:

V
(0)
± (τ |a2) =

x± i∆̃√
2x

e−(1±x)τ . (E.25)
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Corresponding zero order solution ofC(0)(τ) of Eq. (E.16) yields

C(0)(τ |v1) = D+e
−(1+x)τ +D−e

−(1−x)τ + (D+ +D−)e
−Γ̃τ , (E.26)

where

D± = i
[pΩ̃2 ± Ω̃1(x∓ i∆̃)](x± i∆̃)

2px(1± x− Γ̃)
(E.27)

Therefore, probability of absorption from levelv2 for τ ≫ 1, 1/Γ̃ given by Eq. (4.7) yields

Pabs(∞|v2) =
(Γ̃ + 2)|Ω̃2 − pΩ̃1|2 + [Γ̃(1− p2) + 2∆̃2(Γ̃ + 1)] ˜|Ω2|2

2(1 + ∆̃2 − p2)[∆̃2 + (Γ̃ + 1)2 − p2]
, (E.28)

which becomes Eq. (E.24) if̃Ω1 ↔ Ω̃2.
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APPENDIX F

ANALYSIS OF GAIN IN THREE-LEVEL CONFIGURATION: UNI AND

BI-DIRECTION PUMPING

Our model consists of a three-level atomic system in cascadeconfiguration with energy

levels labelled asa, b andc as shown in Fig. 30(b). The atomic system is driven by a strong

laser field of Rabi frequencyΩ which couples the levela↔ c in resonance. It also interacts

with a weak probe field of Rabi frequencyΩl coupling the levelb ↔ a. The Hamiltonian

in the interaction picture can be written as

H = −Ωl |a〉〈b| − Ω |c〉〈a| − Ω∗
l |b〉〈a| − Ω∗ |a〉〈c| , (F.1)

The decay in the channelab is quantified by the rateγ respectively. Incorporating these

decay rates, the equation of motion for the atomic density matrix, in rotating wave approx-

imation is given as

ρ̇ = −i[H , ρ] +
γ

2

(

[σb, ρσ
†
b ] + [σbρ, σ

†
b ]
)

(F.2)

where,

σb = |b〉〈a| , σ†
b = |a〉〈b| , (F.3)

The density matrix equations for the populations and the polarization of the atomic system

can be written as

ρ̇ab = −γ
2
ρab + iΩl(ρbb − ρaa) + iΩ∗ρcb (F.4)

ρ̇cb = −iΩlρca + iΩρab (F.5)

ρ̇ca = −γ
2
ρca − iΩ(ρcc − ρaa)− iΩ∗

l ρcb (F.6)

˙ρbb = γρaa + i(Ω∗
l ρab − Ωlρba) (F.7)

˙ρaa = −γρaa − i(Ω∗
l ρab − Ωlρba) + i(Ω∗ρca − Ωρac) (F.8)
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˙ρcc = −i(Ω∗ρca − Ωρac) (F.9)

The exact analytical solutions of the coupled differentialequation given be Eqs. (F.4-F) is

very difficult to obtain. So let us take some approximations and see if we can find analytic

solutions which agree with the numerical simulation to goodextent. Let us take a simple

model as show in in which we neglect the effect of the weak probe fieldΩl. The equation

of motion for the population and the polarization is given as

ρ̇ca = −γ
2
ρca + iΩ(ρaa − ρcc) (F.10)

˙ρaa = −γρaa + i(Ω∗ρca − Ωρac) (F.11)

˙ρcc = −i(Ω∗ρca − Ωρac) (F.12)

The exact solution of Eqs. (F.10-F.12) is given as

ρcc = e−γt/2
{

16α2(ρcc(0) + ρaa(0))sinh2(Ω̃t/4)

+ρcc(0)[cosh(Ω̃t/2) + (γ/Ω̃)sinh(Ω̃t/2)]
}

(F.13)

ρaa = e−γt/2
{

16α2(ρcc(0) + ρaa(0))sinh2(Ω̃t/4)

+ρaa(0)[cosh(Ω̃t/2)− (γ/Ω̃)sinh(Ω̃t/2)]
}

(F.14)

ρca = −4iαe−γt/2sinh(Ω̃t/4)
{

(ρcc(0)− ρaa(0))cosh(Ω̃t/4)

+(γ/Ω̃)(ρcc(0) + ρaa(0))cosh(Ω̃t/4)
}

(F.15)

where,Ω̃2 = γ2 − 16Ω2 andα = Ω/Ω̃. Taking help from solutions from simple two-level

model Eqs. (F.10-F.12) and using the normalization condition of the population

ρbb + ρaa + ρcc = 1 (F.16)
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ρbb is given as

ρbb = 1− e−γt/2
{

(ρcc(0) + ρaa(0)) [cosh(Ω̃t/2) + 32α2sinh2(Ω̃t/4)]

+ (ρcc(0)− ρaa(0)) [(γ/Ω̃)sinh(Ω̃t/2)]
}

(F.17)

Eliminatingρcb from Eqs. (F.4,F.5) gives the differential equation governing the time evo-

lution of ρab as

ρ̈ab +
γ

2
ρ̇ab + Ω2ρab − ΩΩlρca + iΩl(ρ̇aa − ρ̇bb) = 0 (F.18)

Using the population normalization condition Eqs. (F.16),Eq(F.18) can be written in more

informative form as

ρ̈ab +
γ

2
ρ̇ab + Ω2ρab − ΩΩlρca + iΩl(2ρ̇aa + ρ̇cc) = 0 (F.19)

Using Eqs. (F.13-F.15) in Eq. (F.19) gives

ρ̈ab +
γ

2
ρ̇ab + Ω2ρab = f(t) (F.20)

where,

f(t) = 2iΩle
−γt/2{γρaa(0)cosh(Ω̃t/2) + 10γ(ρcc(0) + ρaa(0))α

2sinh2(Ω̃t/4)

−Ω̃[ρaa(0) + (3ρcc(0) + 13ρaa(0))α
2]sinh(Ω̃t/2)}

(F.21)

In the limit Ω̃ → 4iΩ, Eqs.(F.13-F.15,F.18) takes a simple form

ρcc(t) = e−γt/2

{[

ρcc(0) + ρaa(0)

2

]

+

[

γρcc(0)

4Ω

]

sin(2Ωt)

+

[

ρcc(0)− ρaa(0)

2

]

cos(2Ωt)

} (F.22)

ρaa(t) = e−γt/2

{[

ρcc(0) + ρaa(0)

2

]

−
[

γρaa(0)

4Ω

]

sin(2Ωt)

−
[

ρcc(0)− ρaa(0)

2

]

cos(2Ωt)

} (F.23)
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ρca(t) = −ie−γt/2sin(Ωt) {[ρcc(0)− ρaa(0)]cos(Ωt)

+ [ρcc(0) + ρaa(0)](γ/4Ω)sin(Ωt)}
(F.24)

ρbb(t) = 1− e−γt/2 {[ρcc(0) + ρaa(0)]+ [ρcc(0)− ρaa(0)](γ/4Ω)sin(2Ωt)} (F.25)

UsingΩ̃ → 4iΩ and neglecting the terms∝ (γ/Ω)2 thus Eq.(F.21) gets simplified as

f(t) = i(Ωl/8)e
−γt/2 {5γ[ρcc(0) + ρaa(0)] + γ[11ρaa(0)

−5ρcc(0)]cos(2Ωt) + 12Ω[ρaa(0)− ρcc(0)]sin(2Ωt)}
(F.26)

Solving forρab gives

ρab =i(Ωl/24Ω
2)e−γt/2 {15γ[ρcc(0) + ρaa(0)] + γ[ρcc(0) −7ρaa(0)]cos(2Ωt)

+12Ω[ρcc(0)− ρaa(0)]sin(2Ωt)− 8eγt/4[γ(2ρcc(0) + ρaa(0))cos(Ωt)

+3Ω(2ρcc(0) +ρaa(0)− 1)]sin(Ωt)}

(F.27)

Thus using a simple two-level atom toy model we are able to findapproximate analytical

solutions for a three level atom inΞ configuration for constantΩ,Ωl whenΓ/γ ≪ 1 and

Ω ≫ γ,Ωl.
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APPENDIX G

CALCULATION OF PROBABILITY AMPLITUDE FOR SINGLE AND

MULTI-PHOTON EXCITATION

In this appendix we have calculated the probability amplitude for single and multi-photon

excitation using perturbation theory. We show the strengthof the off-resonant excitation

is not negligible when the Rabi frequency is large. The wave function of a two-level atom

can be written in the form

|ψ(t)〉 = Ca(t)e
−iωat|a〉+ Cb(t)e

−iωbt)|b〉, (G.1)

whereCa andCb are the probability amplitudes of finding the atom in the statesa andb,

respectively. The equation of motions forCa andCb are given by,

Ċa(t) = iΩ(t)eiωtCb(t) (G.2)

Ċb(t) = iΩ∗(t)e−iωtCa(t). (G.3)

Integrating Eq.(G.2) we obtain

Ca(t) = i

∫ t

−∞
Ω(t′)eiωt

′

Cb(t
′)dt′ (G.4)

In the limit t→ ∞ Eq.(G.4) gives,

Ca(∞) = i

∫ ∞

−∞
Ω(t′)eiωt

′

Cb(t
′)dt′ (G.5)

Substituting Eq.(G.4) in Eq.(G.3) and using the initial conditionCb(0) = 1 we get,

Cb(t
′) = 1−

∫ t′

−∞

[

Ω∗(t′′)e−iωt′′

(

∫ t′′

−∞
Ω(t′′′)eiωt

′′′

Ca(t
′′′)dt′′′

)

dt′′

]

(G.6)
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Plugging back Eq.(G.6) in Eq.(G.4), we get

Ca(t) = i

∫ t

−∞
Ω(t′)eiωt

′

{

1−
∫ t′

−∞

[

Ω∗(t′′)e−iωt′′ (

∫ t′′

−∞
Ω(t′′′)eiωt

′′′

Ca(t
′′′)dt′′′

)

dt′′

]}

dt′

(G.7)

Thus from Eq.(G.7) we get,

Ca(∞) = i

∫ ∞

−∞
Ω(t′)eiωt

′

{

1−
∫ t′

−∞

[

Ω∗(t′′)e−iωt′′ (

∫ t′′

−∞
Ω(t′′′)eiωt

′′′

Ca(t
′′′)dt′′′

)

dt′′

]}

dt′
(G.8)

In the perturbation theoryCb(t) ∼= 1, we are looking for a solution of the formCa(∞) =

C
(1)
a (∞) + C

(3)
a (∞), where the first termC(1)

a (∞) is given by

C(1)
a (∞) = i

∫ ∞

−∞
Ω(t′)eiωt

′

dt′ (G.9)

The second term can be found as

C(3)
a (∞) = −i

∫ ∞

−∞

{

Ω(t′)eiωt
′

∫ t′

−∞

[

Ω∗(t′′)e−iωt′′
∫ t′′

−∞
Ω(t′′′)eiωt

′′′

dt′′′

]

dt′′

}

dt′

(G.10)

Let us consider that the Rabi frequencyΩ(t) is given as

Ω(t) = e−α2t2{Ω1cos(ν1t + φ1) + Ω2cos(ν2t + φ2)}, (G.11)

(i) Absorption of one-photon of frequencyν1. The transition probability amplitude is

given as

C
(1)
a,(ν1)

(∞) = i

(√
π

2α

)

Ω1e
−[(ω−ν1)/2α]2e−iφ1 (G.12)

Similarly we can findC(1)
a,(ν2)

(∞) using the substitutionΩ1 → Ω2, ν1 → ν2 andφ1 → φ2.

(ii) Absorption of three-photon of frequencyν2. The transition probability amplitude
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is given as

C
(3)
a,(ν2,ν2,ν2)

(∞) = −i
[ √

π

16
√
3αν2(ω − ν2)

]

Ω3
2e

−(1/3)[(ω−3ν2)/2α]2e−3iφ2 (G.13)

(iii) Absorption of two-photon of frequencyν1 and emission of one-photon of fre-

quencyν2 in the order:

(iii.a) ν1 → ν1 → ν2. The transition probability amplitude is given as

C
(3)
a,(ν1,ν1,ν2)

(∞) = −i
[ √

π

16
√
3αν1(ω − ν1)

]

Ω2
1Ω2e

−(1/3)[(2ν1−ν2−ω)/2α]2e−i[2φ1−φ2] (G.14)

(iii.b) ν1 → ν2 → ν1. The transition probability amplitude is given as

C
(3)
a,(ν1,ν2,ν1)

(∞) = −i
[ √

π

8
√
3α(ν1 − ν2)(ω − ν1)

]

Ω2
1Ω2e

−(1/3)[(2ν1−ν2−ω)/2α]2e−i[2φ1−φ2]

(G.15)

(iii.c) ν2 → ν1 → ν1. The transition probability amplitude is given as

C
(3)
a,(ν2,ν1,ν1)

(∞) = −i
[ √

π

8
√
3α(ν1 − ν2)(ν2 + ω)

]

Ω2
1Ω2e

−(1/3)[(2ν1−ν2−ω)/2α]2e−i[2φ1−φ2]

(G.16)

The resonant three-photon excitation we studied in chapterVII are given by (iii.a), (iii.b)

and (iii.c). Ratio of the amplitudesRα for the processes (iii.a) and (iii.b) defined as

Rα =

∣

∣C
(3)
a,(ν1,ν1,ν2)

(∞)
∣

∣

∣

∣C
(3)
a,(ν1,ν2,ν1)

(∞)
∣

∣

(G.17)

is given by

Rα =
ν1 − ν2
2ν1

(G.18)

This ratioRα → 0 in the limit ν1 → ν2 i.e Doppleron type process given by Eq.(G.15)

dominates over the hyper-Raman type process given by Eq.(G.14) and other resonant and

non-resonant processes. Similarly the ratio of the amplitudesRβ for the processes (iii.c)
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and (iii.b) defined as

Rβ =
|C(3)

a,(ν2,ν1,ν1)
(∞)|

|C(3)
a,(ν1,ν2,ν1)

(∞)|
(G.19)

is given by

Rβ =
ω − ν1
ω + ν2

(G.20)

In this case smaller the one photon detuningω − ν1, higher will be the probability of the

Doppleron type process. The ratio of the amplitudesRγ for the processes (ii) and (i) defined

as

Rγ =
|C(3)

a,(ν2,ν2,ν2)
(∞)|

|C(1)
a,(ν1)

(∞)|
(G.21)

is given by

Rγ =
Ω3

2e
[(ω−3ν2)2/6α2]

8
√
3Ω1ν2(ω − ν2)

(G.22)

Ratio of the amplitudesRδ for the processes (i) and (iii.b) defined as

Rδ =
|C(1)

a,(ν1)
(∞)|

|C(3)
a,(ν1,ν2,ν1)

(∞)|
(G.23)

is given by

Rδ =
4
√
3(ν1 − ν2)(ω − ν1)e

[−(ω−ν1)2/4α2]

Ω1Ω2

(G.24)

For smallα, this ratio is very small and we can neglect the contributionof the non-resonant

one-photon excitation with respect to the resonant three-photon excitation to a good ap-

proximation. But for largeα i.e small pulse duration we should be careful. Let us consider

Ω2 ≈ 0.3ν1,Ω1 ≈ 0.4ν1, ν2 = 0.6ν1, ω = 1.4ν1 andα ≈ 0.128ν1. Using this param-

eters we obtainRδ ≈ 0.8; thus absorption of one-photon ofν1 followed by emission of

one-photon ofν2 followed by absorption of one-photon ofν1 is comparable to one-photon

absorption ofν1. Thus we can see the contribution of off-resonant one-photon absorption

to Peak3© is not negligible.
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APPENDIX H

STIMULATED RAMAN SCATTERING: SEMICLASSICAL APPROACH

In this appendix we have presented a semi-classical derivation of the stimulated Raman

scattering.

γp
γs

Ωs

Ωp

∆
a

s

p

Fig. 69. Level diagram for the three-level model. The spontaneous decay ratesa → s and

a→ p are give byγs, γp respectively.Ωp andΩs are the pump and stokes field Rabi

frequencies respectively.

The electric field can be written as

~E(z, t) =
ǫ̂p
2

Ep(z, t) exp[i(kpz − νpt)] +
ǫ̂s
2

Es(z, t) exp[i(ksz − νst)] + c.c (H.1)

where ǫ̂, E , ν are the unit polarization vector, field envelope and the carrier frequency

respectively. The free Hamiltonian of the three-level model is

H0 = ~ωa |a〉〈a|+ ~ωs |s〉〈s|+ ~ωp |p〉〈p| (H.2)

The interaction Hamiltonian in the dipole approximation isgiven as

H1 = − (~℘as|a〉〈s|+ ~℘sa|s〉〈a|+ ~℘ap|a〉〈p|+ ~℘pa|p〉〈a|) · ~E(z, t) (H.3)
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Equation of motion for the density matrix equations is givenby

∂ρ(z, t)

∂t
= − i

~
[H , ρ] +

γs
2

(

[σs, ρσ
†
s] + [σsρ, σ

†
s]
)

+
γp
2

(

[σp, ρσ
†
p] + [σpρ, σ

†
p]
)

(H.4)

where the atomic lowering (σ) and raising (σ†) operators are defined as

σs = |s〉〈a| , σ†
s = |a〉〈s| ; σp = |p〉〈a| , σ†

p = |a〉〈p| . (H.5)

From Maxwell’s equation, the propagation equation for the electric field in slowly varying

envelope approximation (SVEA) we obtain,

(

∂

∂z
+

1

c

∂

∂t

)(

− ∂

∂z
+

1

c

∂

∂t

)

~E(z, t) = −µ0
∂2

∂t2
~P (z, t) (H.6)

If we neglect the higher harmonics, the polarization of the medium can be written as

~P (z, t) = N ~℘pa̺ap(z, t) exp[i(kpz − νpt)] +N ~℘sa̺as(z, t) exp[i(ksz − νst)] + c.c (H.7)

Substituting Eq.(H.1,H.7) in Eq.(H.6) we obtain propagation equation for the pump and the

stokes field as
(

∂

∂z
+

1

c

∂

∂t

)

Es(z, t) = i

(

N℘saνs
ǫ0c

)

̺as(z, t) (H.8)

(

∂

∂z
+

1

c

∂

∂t

)

Ep(z, t) = i

(

N℘paνp
ǫ0c

)

̺ap(z, t) (H.9)

We obtain the equation of motion forρij(z, t)

∂ρas(z, t)

∂t
= − (γas + iωas) ρas(z, t)− i

~℘as · ~E(z, t)
~

[ρaa(z, t)− ρss(z, t)]

+i
~℘ap · ~E(z, t)

~
ρ∗sp(z, t)

(H.10)

∂ρap(z, t)

∂t
= − (γap + iωap) ρap(z, t)− i

~℘ap · ~E(z, t)
~

[ρaa(z, t)− ρpp(z, t)]

+i
~℘as · ~E(z, t)

~
ρsp(z, t)

(H.11)
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∂ρsp(z, t)

∂t
= − (γsp + iωsp) ρsp(z, t)− i

~℘sa · ~E(z, t)
~

ρap(z, t)

−i ~℘ap · ~E(z, t)
~

ρ∗as(z, t)

(H.12)

Let us make a transformation

ρas(z, t) = ̺as(z, t) exp[i(ksz − νst)] (H.13)

ρap(z, t) = ̺ap(z, t) exp[i(kpz − νpt)] (H.14)

ρsp(z, t) = ̺sp(z, t) exp[i(∆k z −∆ν t)] (H.15)

where∆k = kp − ks and∆ν = νp − νs. Using the transformation Eqs.(H.13,H.14,H.15)

in Eqs.(H.10,H.11,H.12) we obtain,

∂̺as(z, t)

∂t
= − (γas + i∆) ̺as(z, t)− iΩs(z, t) [̺aa(z, t)− ̺ss(z, t)] + iΩp(z, t)̺

∗
sp(z, t)

(H.16)
∂̺ap(z, t)

∂t
= − (γap + i∆) ̺ap(z, t)− iΩp(z, t) [̺aa(z, t)− ̺pp(z, t)] + iΩs(z, t)̺sp(z, t)

(H.17)
∂̺sp(z, t)

∂t
= −γsp̺sp(z, t) + iΩ∗

s(z, t)̺ap(z, t)− iΩp(z, t)̺
∗
as(z, t) (H.18)

We obtain the steady-state solution for̺as(z, t) and̺ap(z, t) as

¯̺as(z) = −iΩs(z)

M
[(

Γpaγps + |Ωs(z)|2
)

(¯̺aa(z)− ¯̺ss(z))− |Ωp(z)|2 (¯̺aa(z)− ¯̺pp(z))
]

(H.19)

¯̺ap(z) = −iΩp(z)

M∗
[(

Γsaγsp + |Ωp(z)|2
)

(¯̺aa(z)− ¯̺pp(z))− |Ωs(z)|2 (¯̺ss(z)− ¯̺aa(z))
]

(H.20)

where

M = ΓasΓpaγps + Γpa|Ωp|2 + Γas|Ωs|2 (H.21)

Thus forΩp ≪ ∆ we can assume that in the steady-state the population in the level are
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same as thermal equilibrium values i.e¯̺aa(z) ∼ 0 and ¯̺ss(z) = ̺
(0)
ss , ¯̺pp(z) = ̺

(0)
pp .

¯̺as(z) = i
Ωs

M
[(

Γpaγps + |Ωs(z)|2
)

̺(0)ss − |Ωp(z)|2̺(0)pp

]

(H.22)

¯̺ap(z) = i
Ωp

M∗
[(

Γsaγsp + |Ωp(z)|2
)

̺(0)pp − |Ωs(z)|2̺(0)ss

]

(H.23)

For stimulated Raman scattering we will only consider the terms which are responsible for

energy exchange between the pump and stokes waves. Thus we can write Eqs.(H.22,H.23)

∂

∂z
Ωs(z) =

(

N |℘as|2νsn(0)
ps

2ǫ0c~∆2γsp

)

|Ωp(z)|2Ωs(z) (H.24)

∂

∂z
Ωp(z) = −

(

N |℘ap|2νpn(0)
ps

2ǫ0c~∆2γsp

)

|Ωs(z)|2Ωp(z) (H.25)

wheren(0)
ps = ̺

(0)
pp − ̺

(0)
ss . Using the definition of intensity as

I(z) = 2ǫ0c
~
2

|℘|2 |Ω(z)|
2 (H.26)

We obtained the coupled-differential equation for the stokes and pump waves intensities as

d

dz
Is(z) =

(

N |℘ap|2|℘as|2νsn(0)
ps

2ǫ20c
2~3∆2γsp

)

Is(z)Ip(z) (H.27)

d

dz
Ip(z) = −

(

N |℘ap|2|℘as|2νpn(0)
ps

2ǫ20c
2~3∆2γsp

)

Is(z)Ip(z) (H.28)

The extension of this result to include both forward and backward stimulated Raman signal

is trivial and we obtain

d

dz
Ifs (z) =

(

N |℘ap|2|℘as|2νsn(0)
ps

2ǫ20c
2~3∆2γsp

)

Ifs (z)Ip(z) (H.29)

d

dz
Ibs(z) = −

(

N |℘ap|2|℘as|2νsn(0)
ps

2ǫ20c
2~3∆2γsp

)

Ibs(z)Ip(z) (H.30)

d

dz
Ip(z) = −

(

N |℘ap|2|℘as|2νpn(0)
ps

2ǫ20c
2~3∆2γsp

)

[

Ifs (z) + Ibs(z)
]

Ip(z) (H.31)
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APPENDIX I

THREE-PHOTON EXCITATION RABI FREQUENCY

In this Appendix, we will discuss how to calculate effectiveRabi-frequency for the three-

photon excitation by ultra-short pulses as shown in Fig. (70).

a

b

Ωc

Ωd

Ωa

∆2
d

c
∆1

Fig. 70. Three-photon excitation

We will write the interaction picture Hamiltonian in the rotating-wave approximation

as

H1 =− Ωce
i∆1t|c〉〈b| − Ωde

i(∆2−∆1)t|d〉〈c| − Ωae
−i∆2t|a〉〈d|

− Ω∗
ce

−i∆1t|b〉〈c| − Ω∗
de

−i(∆2−∆1)t|c〉〈d| − Ω∗
ae

i∆2t|d〉〈a|.
(I.1)

Here∆1 = ωcb − νp and∆2 = ωdb − 2νp. The time scale of the three-photon excitation is

much shorter than the spontaneous decay time from the levelsand any coherence relaxation

ratesγαβ. At any instant of timet > 0, the wave function for the four-level atom can be

written as

|Ψ(t)〉 = Ca|a〉+ Cb|b〉+ Cc|c〉+ Cd|d〉. (I.2)



211

whereCα is the probability amplitude of finding the atom in state|α〉. Using the Schrodinger

equationi~|Ψ̇(t)〉 = H1|Ψ(t)〉. and Eqs.(I.1,I.2) we obtain coupled differential equations

governing the evolution of the probability amplitudesCα,

Ċa = iΩae
−i∆2tCd, (I.3)

Ċb = iΩ∗
ce

−i∆1tCc, (I.4)

Ċc = iΩce
i∆1tCb + iΩ∗

de
−i(∆2−∆1)tCd, (I.5)

Ċd = iΩde
i(∆2−∆1)tCc + iΩ∗

ae
i∆2tCa. (I.6)

To solve forCα, we first write the equation of motion for the slowly varying amplitudes,

Cα = cαe
iφαt. (I.7)

From Eqs. (I.3-I.7) we obtain,

ċa = −iφaca + iΩacd, (I.8)

ċb = −iφbcb + iΩ∗
ccc, (I.9)

ċc = −iφccc + iΩccb + iΩ∗
dcd, (I.10)

ċd = −iφdcd + iΩdcc + iΩ∗
aca, (I.11)

where the phase factorsφα obey the conditions

φd − φa = ∆2. (I.12)

φb − φa = 0. (I.13)

φb − φc = −∆1. (I.14)

φc − φd = −∆2 +∆1. (I.15)
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Solving Eqs. (I.12-I.14) gives,

φa = 0, φb = 0, φc = ∆1, φd = ∆2. (I.16)

Using these phase factors in Eqs. (I.8-I.11), we obtain

ċa = iΩacd, (I.17)

ċb = iΩ∗
ccc, (I.18)

ċc = −i∆1cc + iΩccb + iΩ∗
dcd, (I.19)

ċd = −i∆2cd + iΩdcc + iΩ∗
aca. (I.20)

Let us consider a weak excitation regime in whichΩ ≪ ∆. We can adiabatically elim-

inate the levelsc andd i.e solve forcc and cd from Eqs. (I.19-I.20) in the steady state

approximation and obtain

cc =

(

Ω∗
aΩ

∗
d

∆1∆2

)

ca +

(

Ωc

∆1

)

cb, (I.21)

cd =

(

Ω∗
a

∆2

)

ca +

(

ΩcΩd

∆1∆2

)

cb. (I.22)

From Eqs. (I.17,I.18) and Eqs. (I.21, I.22) we obtain,

ċa = i

( |Ωa|2
∆2

)

ca + i

(

ΩaΩcΩd

∆1∆2

)

cb, (I.23)

ċb = i

( |Ωc|2
∆1

)

cb + i

(

Ω∗
aΩ

∗
cΩ

∗
d

∆1∆2

)

ca. (I.24)

If we compare Eqs. (I.23,I.24) with standard two-level model, we obtain the effective

three-photon Rabi frequencyΩeff

Ωeff =
ΩaΩcΩd

∆1∆2
, (I.25)

Here|Ωa|2/∆2 and|Ωc|2/∆1 are the off-resonant Stark shifts in the levelsa andb respec-
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Fig. 71. Three-photon (at 1260nm) induced superradiant emission at 420nm

tively.

In the second part of this section we will discuss the effective three-photon Rabi fre-

quency recently reported [247]. Let us calculate∆1 and∆2 for the excitation mechanism

shown in Fig.(71). We have pump wavelengthλp = 1260nm,λ52P1/2→52S1/2
= 795nm and

λ42D3/2→52P1/2
= 1475nm. We define∆1 = ωcb − ν and∆2 = ωdb − 2νp which gives

∆1 = 1.39× 1014 s−1, ∆2 = 1.05× 1014 s−1. (I.26)

Using the definition

γ =
1

4πǫ0

4ω3℘2

~c3
(I.27)

we obtain the expression for the dipole moment as

℘ =

[

(4πǫ0)
3~c3

4ω3
γ

]1/2

(I.28)
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We will use the definition of Rabi frequency asΩ = ℘E/2~. In our experiment, we use

ultrashort pulseτFWHM ∼ 120fs, center wavelengthλp = 1260nm and energy per pulse is

E = 1µJ. The unfocused beam diameter isD ∼ 2.5mm which gives the size of the focal

spotd = 4λpf/πD ∼ 128µm wheref is the focal length of the converging lens and we

usedf = 20cm. The corresponding areaA = πd2/4 is ∼ 1.29 × 10−8m2. The average

energy per pulse isE = 1µJ, thus the average electric fieldE =
√

E /cǫ0AτFWHM is

∼ 4.92×108V/m. From Eq.(I.27) and the atomic parameters, we obtain thedipole moment

for the transition52P1/2 ↔ 52S1/2 where the spontaneous decay rate isγ = 3.613×107s−1

℘cb = 2.5356× 10−29 C.m (I.29)

Hence the Rabi frequency for the transition52P1/2 ↔ 52S1/2 is

Ωc ∼ 5.92× 1013 s−1 (I.30)

Similarly we obtain the dipole moment from the42D5/2 ↔ 52P1/2 where the spontaneous

decay rate isγ = 1.11× 107s−1

℘dc = 3.556× 10−29 C.m (I.31)

Hence the Rabi frequency for the transition52P1/2 ↔ 42D5/2 is

Ωd ∼ 8.30× 1013 s−1 (I.32)

Similarly we obtain the dipole moment from the62P1/2 ↔ 42D5/2 where the spontaneous

decay rate is taken asγ = 2.204× 106 s−1

℘ad = 3.0716× 10−29 C.m (I.33)
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Hence the Rabi frequency for the transition62P1/2 ↔ 42D5/2 is

Ωa ∼ 7.17× 1013 s−1 (I.34)

Thus the effective Rabi frequency for the three-photon excitation is

Ωeff ∼ 2.42× 1013 s−1 (I.35)

Thus the effective area (Θ) of the pulse ifΩeffτFWHM which isΘ ∼ 2.905. Thus with these

estimates, we see that the three-photon excitation under these conditions is not weak.
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