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ABSTRACT 

 

Urban Form and Travel Patterns at the Regional Scale  

Considering Polycentric Urban Structure. (August 2012) 

Young-Jae Yi, B.E., Urban Engineering, University of Seoul; 

M.U.P., University of Michigan at Ann Arbor 

Co-Chairs of Advisory Committee: Dr. Ming-Han Li 
               Dr. Chanam Lee 

 

Increasing concerns about climate change have attracted global interests in 

reducing auto travel. Regional average vehicle miles traveled (VMT) vary across the 

urbanized areas in the U.S., suggesting a potential influence of development patterns on 

greenhouse gas emission. 

To explore the contribution of development control to driving reduction at the 

regional scale, this dissertation estimated impacts of urban form on two travel outcomes 

at the metropolitan scale: daily vehicle miles traveled (DVMT) per capita and daily 

transit passenger miles (DPMT) per capita. To overcome major problems of previous 

studies, i.e., lack of generalizability and multicollinearity, a cross-sectional analysis of 

203 U.S. urbanized areas was conducted, using directed acyclic graph and structural 

equation modeling.  

A literature review revealed gaps in the previous research: while individual-level 

behavioral studies have identified distance from the center as the most influential factor 

on VMT, regional-level studies have not reflected this relationship and failed to deliver 

effective implications for land use policies. A method to identify regional centers was 

evaluated to appropriately measure polycentric urban structure of contemporary 

metropolitan areas. The evaluation found that lower density cutoff, wider reference area, 

and equal treatment between central business district (CBD) and subcenters yielded 
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better performance in McMillen’s two-stage nonparametric method. Results also showed 

that for polycentric areas, the use of a polycentric model produced a better model fit than 

the monocentric model.  

Major findings of this dissertation include 1) higher regional concentration, 

greater local density and less road supply per capita lowered VMT, and 2) higher local 

density and more transit supply per capita increased PMT. These results imply that 

different approaches to development control are needed for different sustainable 

transportation goals – intensifying regional centers such as infill developments for VMT 

reduction, and compact neighborhood development approaches, such as transit oriented 

development for transit promotion.  

However, CBD has a limited capacity and indiscreet compact developments at 

the urban fringe can lead to decentralization from the regional perspective, and 

consequently result in increased VMT. This study suggests polycentricism as a potential 

solution for the contradictive development principle. By allowing dispersion and 

concentration at the same time, urban form control at the regional level will be more 

beneficial than conventional local-level control. 
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1. INTRODUCTION 

 

1.1. Background 

 Increasing concerns about climate change have attracted global interests in 

reducing auto travel as a way to reduce greenhouse gas. The transportation sector 

producing 30% of CO2 is the second largest cause of greenhouse gas after electricity 

generation in the U.S. (2008 data reported by U.S. EPA 2011). Moreover, vehicular 

greenhouse gas emissions are growing at a faster rate than overall greenhouse gas 

emissions. Regional average vehicle miles traveled (VMT) varies significantly across the 

urbanized areas in the U.S., suggesting a potential influence of development patterns on 

greenhouse gas emission. According to Highway Statistics 2000, daily VMT per capita of 

401 U.S. urbanized areas greatly varies from 6 to 56 miles with an average of 23 miles. 

 It has long been recognized that the amount of aggregated regional-level travels 

is determined by the interaction between urban form and transportation infrastructure 

(Handy 1996). In many urbanized areas developed after World War II in the U.S., strict 

zoning regulations (e.g., exclusive land uses, minimum lot size requirement, etc.) have 

caused dispersed urban form and increased road constructions. Automobile-oriented 

policies and enormous investments on highway construction have promoted migrations 

toward suburbs and consequently led to low density, dispersed development patterns. 

Dispersed developments in turn have intensified dependency on private vehicles 

(Mieszkowski and Mills 1993). This cyclical urban phenomenon, called sprawl, has been 

blamed for many urban and environmental problems, including increased fuel use and 

emission, congestion, deforestation, and degraded ecological quality (Burchfield et al. 

2006). Remedies have been sought for managing and guiding the urban development 

toward more compact urban form. Various sustainable development concepts (e.g., 

compact city, new urbanism, transit oriented development, traditional neighborhood 

development, growth management, and smart growth) have emerged. Many U.S. 
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governments have adopted such policy tools to fight against sprawl (CPDR 2008; U.S. 

SCCST 2009).  

 Despite the supposedly strong relationship between urban form and travel, over 

60 years of studies have not provided an agreement in the effects of urban form control 

on driving reduction. Many studies found compact neighborhoods are conducive to 

sustainable travel behaviors (Ewing and Cervero 2001; 2010; Holtzclaw 1994; 

Holtzclaw 1990; Frank and Engelke 2005; Kockelman 1997; Cervero and Kockelman 

1997), while others argued that polycentric regional urban structure is a more sustainable 

development pattern (Jenks et al. 1996). Some found that dense and/or mixed use 

developments reduced driving distance or increased transit use (Frank and Engelke 

2005; Holtzclaw 1994; Kockelman 1997). Others denied these effects and further 

insisted that paying more attention to gas price control or the technological improvement 

in fuel efficiency would be more effective for emission control (Pisarski 2009). This lack 

of agreements in theories and empirical findings weakened the justification of plausibly 

strong urban form-travel relationship, and therefore led to discourage development 

control efforts in many growing metropolitan areas. 

 The inconsistent findings are attributed to a lack of standardized methodology 

(Susan Handy 1996; Crane 2000; Gomez-Ibanez 1996). The methodological limitations 

include the lack of generalizability, collinearity problems among explanatory factors, 

and inconsistent urban form measures. Due to the scarcity of data, generalizability is the 

most frequent problem in many micro approach studies that are carried out in one or 

several metropolitan areas. The high quality travel survey data for the individual-level 

studies are available only in a limited number of large areas (e.g., New York, NY; Los 

Angeles, CA; San Francisco, CA; Seattle, WA; Oregon, PO. etc.). However, each of 

these areas has a unique regional setting and is different in its size, population and job 

distribution patterns, road and transit supply, and relative travel costs among travel 

alternatives, compared to other areas. The magnitude of urban form impacts estimated in 

a unique regional condition is therefore not applicable to other regions with different 

conditions.   



 3 

 Collinearity among explanatory variables is an inherent problem in most travel 

studies. Places with a low population density tend to have dispersed land uses, more 

roads per capita, and consequently greater VMT. Transit use tends to be higher in denser 

areas, and such areas tend to be populated by more low-income people with a lower 

level of automobile access (Taylor and Fink 2002). At the regional scale, regions with 

greater population tend to have a greater density, more compact neighborhoods, and 

more supply of transportation infrastructure. Unraveling the relationships among 

multiple variables correlated with each other is a significant methodological challenge 

applicable to most urban form-travel studies (Crane 2000; Gomez-Ibanez 1996). 

Urban form measures have been inconsistent in previous studies. Four Ds (i.e., 

density, diversity, design and destination accessibility) is a popular classification system 

of urban form attributes in micro-level studies (Ewing and Cervero 2001). While 

extensive literature review studies found destination accessibility is the most influential 

attribute determining VMT (Ewing and Cervero 2001; 2010), many studies excluded this 

variable. The destination accessibility at the individual scale is comparable to the 

centeredness at the regional collective scale because trip destinations tend to be 

concentrated in regional centers. Few macro studies have used an effective measure of 

centeredness. Also, density is the most frequent measure of urban form in macro studies; 

however, this heavily aggregated-level density is conceptually different from the local-

level density used in micro studies. The local-scale density relevant variable has been 

rarely treated in previous macro studies. 

 
1.2. Objectives 

 To explore the contribution of development control to auto driving reduction at 

the regional scale, the primary objective of this dissertation is to estimate impacts of 

urban form on two aggregate travel outcomes: daily vehicle miles traveled (DVMT) per 

capita and daily transit passenger miles (DPMT) per capita, in U.S. metropolitan areas. 

Two secondary objectives are established to facilitate the methodological specification 

necessary to carry out the primary objective. One is to identify methodological 

limitations of previous macro-scale studies. This task focuses on identifying gaps and 
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correspondences between micro and macro studies and assisting the development of the 

methodological framework for this study. The other secondary objective is to identify 

appropriate measures for polycentric urban structure which is an important urban form 

attribute influencing the regional aggregate level of travel but has been neglected in 

many previous studies. This dissertation accomplishes these objectives by searching for 

a valid method to identify regional centers including both the central business district 

and other subcenters. 

 

1.3. Significance 

This study can contribute to urban form-travel knowledge at the conceptual, 

methodological, and policy implication perspectives. At the conceptual perspective, this 

study provides a systematic review of micro-level behavioral studies and macro-level 

phenomenal studies, highlighting the differences and agreements between them. Despite 

the distinctive tradition in interests, assumptions, methodology and implications, the two 

types of studies have frequently been interpreted within the same conceptual and 

theoretical context. The mixed interpretations of study findings can confuse the 

understanding of urban form-travel relationships. This study distinguishes both 

approaches from the methodological perspectives, while maintaining conceptual 

connections between them. 

This study addresses the methodological limitations that are described in the 

background section as possible reasons for the disagreement among previous studies. 

Few studies have been able to address all the limitations. A total of 203 urbanized areas 

were used in this dissertation to gain more generalizable results applicable to mid to 

small size metropolitan areas in the U.S. Directed acyclic graph (DAG) and structural 

equation modeling (SEM) are employed to disentangle the complex relationships among 

correlates of VMT. The urban form measures used in this study help fill the gap between 

micro and macro studies. Particularly, the gradient-based measures effectively represent 

the degree of concentration of population and jobs toward urban employment centers 

and give a straightforward implication to regional urban form controls. Gradient-based 
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measures reflect the finding from micro studies that the accessibility to regional centers 

has a strong effect on individual VMT. This study improves the gradient measures to 

further account for the polycentric urban structure.  

Two contributions are made from the policy implication perspective. While 

previous studies tend to deliver implications of urban form controls at the neighborhood 

scale, this study supports that regional scale controls of development patterns (e.g., 

density gradient and poverty gradient from regional employment centers) can contribute 

to auto travel reduction. Also, this study evaluates urban form impacts in consideration 

of the polycentric urban structure. Many contemporary metropolitan areas have multiple 

regional centers significantly restructuring trip origins and destinations and affecting the 

collective travel distance within a region. Nevertheless, most of the previous studies 

were based on the monocentric assumption. 

 

1.4. Dissertation Structure 

This dissertation is composed of six sections. Section 1 describes the 

background, objectives, significances and the organization of the dissertation. Section 2 

provides the literature review in regard to the impacts of urban form on VMT and transit 

use. The review focuses on identifying the gaps between individual-based micro and 

region-based macro scale studies. Searching for an appropriate method to quantify 

regional urban form, Section 3 tests a regional center identification method, named 

McMillen’s two-stage non-parametric method, with multiple combinations of associated 

parameters. The best performing parameter combination identified from the test is used 

to identify the regional centers and measure the regional urban form, which are used in 

the subsequent sections. Section 4 examines the influences of urban form on regional 

average VMT. Section 5 explores the impacts of urban form on the regional average of 

transit passenger miles traveled (PMT). Sections 3, 4, and 5 are structured as an 

independent journal manuscript, including introduction, research framework, 

methodology, results, and conclusions. Section 6 summarizes findings from each section 

and delivers overall conclusions. 
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2. IMPACTS OF URBAN FORM ON VEHICLE MILES TRAVELED –  

A LITERATURE REVIEW 

 

2.1. Introduction 

Studies examining urban form impact on VMT and transit use can be classified 

into two discrete approaches – micro and macro. The micro approach is people oriented 

and focuses on urban form as locational attributes that influence individual behavior. 

The macro approach is place oriented and recognizes urban form as characters of the 

place, which represent the patterns of how people and resources are distributed across 

the region. This review (1) explained micro and macro approaches in terms of the unit of 

analysis, variables used, data sources, major findings and policy implications, and (2) 

discussed gaps and links between them toward a comprehensive understanding of the 

relationship between urban form and VMT. 

 

2.2. Micro Approach  

2.2.1. Unit of analysis 

The purpose of micro approach is to estimate built environmental impacts on 

individual travel behavior. Travel behavior studies typically have tested not only VMT 

but also other travel outcomes such as car ownership, trip frequency, trip length and 

mode choice. The ideal unit of analysis for micro approach is an individual or a 

household that enables a control of individual travel decision factors. Many earlier 

behavioral studies have been conducted at the neighborhood unit (e.g., zip code in 

Holtzclaw 1990; 1994; traffic analysis zone in Friedman, Gordon, and Peers 1994; 

census tract in Frank and Pivo 1994) because individual datasets were hardly available at 

that time. Such aggregated methods are less preferred for travel behavior studies because 

they bear an unrealistic assumption that people in the same neighborhood have the same 

sociodemographic characteristics and travel behavior. For that reason, most of recent 

studies have been conducted at the individual or household unit. 
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2.2.2. Data source 

Individual travel data are obtained from travel surveys and include information 

about individual sociodemographic characteristics, household size and structure, vehicle 

ownership, and a diary of trips on one or two given days including origin and 

destination, start and end time, mode of travel, accompaniment, and the purpose of 

travel. Travel surveys have provided researchers with rich datasets, but they have 

limitations as well; “The most pressing problem is that these region-wide surveys do not 

include many respondents in any one neighborhood” (Handy 1996). For example, 

national household travel survey (NHTS) in 2001 had the sample size of about 60,000 

from 300,000,000 households. Regional level travel surveys probably provide a better 

response rate, but those surveys are available in a limited number of large metropolitan 

areas due to high cost. Given the limited sources of high quality surveys, many travel 

behavior studies were conducted at one or several regional scales. This brings up the 

generalizability issue particularly when regional factors (e.g., size, number of job 

centers, regional infrastructure, sprawl level, etc.) are considered significant for travel 

patterns.  

 

2.2.3. Urban form measures 

Micro approach typically measures the built environment at the local scale such 

as census tract, block group, traffic analysis zone and a certain distance of radius from an 

individual object. Cervero and Kockelman (1997) classified built environment attributes 

into three Ds – density, diversity and design. Density is measured in terms of persons, 

households, jobs, or floor area per unit area. The area can be the whole unit area or a 

developed part of the unit area. Diversity refers to land use mix and balance. Land use 

mix is typically characterized by the dissimilarity index which measures the degree of 

land use difference among adjacent parcels or grid cells. Land use balance is measured 

by the degree of land use share, called entropy index, wherein low values indicate 

single-use environments and higher values more varied land uses. Design refers to street 
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network characteristics often measured with average block size, the number of 

intersections, or the proportion of four-way intersections.  

The neighborhood-based three Ds have been criticized for the scale mismatch 

with typical activity space (Badoe and Miller 2000; Ewing et al. 2008). For example, the 

average length of U.S. trips is 6.8 miles which is far beyond the limits of a neighborhood 

(Ewing et al. 2008). Studies considering three Ds of trip origin only (e.g., Dunphy and 

Fisher 1996; L. D. Frank and Engelke 2005; J Holtzclaw et al. 2002; Schimek 1996) 

might deliver limited implications as they fail to control other potential built 

environment factors beyond the residential environment. Distance to destination clearly 

has a significant impact on VMT. Destination accessibility, the fourth D, was considered 

to address this problem. The measure of accessibility should be cautiously selected 

depending on the purpose of trip (Handy 1993). Local accessibility is the accessibility 

for local activity (e.g., grocery shopping, school commuting, etc.), and is typically 

measured by distance from home to closest store or other services of interest. Regional 

accessibility is the accessibility to regional activity destination such as job and regional 

recreation place. Its measures are extensive including distance to central business 

district, the number of jobs accessible within a given travel time, or more complicated 

measures based on gravity model or utility theory.  

 

2.2.4. Control variables 

Two types of control variable can be defined for travel behavior studies – 

socioeconomics and self-selection. Socioeconomic factors (e.g., age, sex, income, etc.) 

have been considered in most of recent studies since the information is readily available. 

They have shown an impact on trip frequency but provided an insignificant or marginal 

impact on VMT (Ewing and Cervero 2001). Self-selection issue has emerged with a 

question that the relationship between built environment and travel behavior might be 

spuriously created by individual preference of certain travel patterns (e.g., people who 

prefer less travel may choose to live in such built environment, and thus travel less). Cao 

et al. (2009) classified 38 studies by nine self-selection control methodologies  (i.e., 
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direct questioning, statistical control, sample selection model, instrumental variables 

model, propensity score, joint discrete choice models, nested logit model, structural 

equation model, and longitudinal model), and reviewed them focusing on the impact of 

built environment and self-selection on individual travel behavior (not limited to VMT). 

This extensive literature review concludes that built environment has a direct and strong 

impact even after controlling self-selection regardless of the methodology used. The 

degree of self-selection impact somewhat varied by study but was found to be weaker 

than built environmental impact. 

  

2.2.5. Findings and implications 

There are at least eight review studies of the literature on the built environment 

and motorized travel (Badoe and Miller 2000; Cao et al. 2009; Cervero 2003; Crane 

2000; Ewing and Cervero 2001, 2010; Handy 1996; Stead and Marshall 2001). A 

common finding from the literature is that regional accessibility is the most influential 

factor on VMT or travel distance. In contrast, the impacts of other local-based three Ds 

are inconsistent among studies. These review studies commonly point out that this 

inconsistency is due to the large variance among studies in their study site, data, 

measures and methodology used. As an attempt to generalize the results of different 

studies, a series of meta-analyses were conducted by Ewing and Cervero (2001; 2010). 

They selected 3 to 10 articles from over 200 studies based on the methodological rigor, 

and calculated the average effect size of travel behavior outcomes with respect to four 

Ds using selected 10 studies. The effect size is measured by partial elasticity, which 

estimate the effect size of any given built environment variable after controlling for other 

variables. Table 2.1 presents average elasticities by built environment factor in both 

studies. They agree that regional accessibility is most strongly associated with VMT, 

showing about -0.2 of elasticity with respect to “job accessibility by auto,” and “the 

inverse of the distance to downtown.” The other consistent finding is the small effect of 

household/population density with about -0.05 of elasticity in controlling for regional 

accessibility. The variable most dramatically changed between 2001 and 2010 studies is 
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“design,” which is quantified by street/intersection density or the fraction of 4-way 

intersections. The elasticity was -0.03 in the earlier study but -0.12 in the later study. The 

effect size of diversity was somewhat different between the two meta-analyses, 

presenting -0.05 and -0.09 each.  

 

 

Table 2.1  
Partial elasticity of VMT with respect to built environment variables  

Ewing and Cervero (2001) Ewing and Cervero (2010) 

Variable 
Number of 

studies 
Partial 

elasticity 
Variable 

Number of 
studies 

Weighted avg. 
elasticity 

Local density  10 -0.05 
Household/population density  9 -0.04 

Job density  6  0.00 

Local diversity  6 -0.05 
Land use mix (entropy index)  10 -0.09 

Jobs-housing balance  4 -0.02 

Local design  4 -0.03 
Intersection/street density  6 -0.12 

% 4-way intersections  3 -0.12 

Regional 
Accessibility  

5 -0.20 
Job accessibility by auto  5 -0.20 

Distance to downtown  3 -0.22 

 

 

As pointed out in the studies, the elasticities presented are still not generalizable 

due to small sample size. However, the meta-analyses reveal an important finding from 

micro approach: regional accessibility has a stronger impact on VMT than local built 

environment. In other words, people who live closer to regional center produce lower 

VMT. This is probably because job, shopping and recreational opportunities at the local 

level cannot fully satisfy the needs of residents.  Agglomeration economies are still 

working even in this sprawling era. The strong attractive power of regional centers 

implies that a key urban form attribute influencing regional VMT is the spatial pattern of 

population distribution around regional centers. Without considering this regional 

configuration patterns, denser development at local level may have a limited influence 

on regional VMT reduction.  
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2.3. Macro Approach 

2.3.1. Unit of analysis 

The purpose of macro approach is to estimate how regional development patterns 

influence collective VMT levels (e.g., VMT per capita). Even if significant factors 

influencing individual travel behavior were identified, it would be somewhat difficult to 

interpret the individual-level implications as collective-level policy goals. Built 

environment cannot be ideally controlled to be consistent across every individual in a 

region. Regional average VMT depends on distribution patterns of residents and jobs as 

well as people and jobs with certain characteristics (e.g., low income people, quality 

jobs, etc.). The ideal unit of analysis for macro approach studies is a travel-shed that 

includes all origins and destinations of daily-basis trips (e.g., commuting and shopping). 

Since the travel-shed is a conceptual definition, macro studies have been typically 

conducted at the scale of metropolitan area, urbanized area, or city, depending on data 

availability of outcome variables.  

 

2.3.2. Data source 

A major data source of collective VMT in the U.S. is daily vehicle miles traveled 

(DVMT) from Highway Performance Maintenance System (HPMS). DVMT refers to 

daily traffic volume calculated by traffic counts multiplied by lane length of highways 

and arterials. The count-based traffic information does not include details of travel 

patterns (e.g., origin/destination, vehicle type, trip purpose, etc.); thus, DVMT data is 

reliable only at a highly aggregate scale that includes origin/destination of most trips in 

the region. Inability to separate vehicle type and trip purpose is an inherent limitation of 

the data. Nevertheless, DVMT data, covering major streets of 401 urbanized areas, are 

so far the most complete nationwide dataset of regional collective VMT. Some studies 

have used survey sample data to calculate regional averages (e.g., average of sample 

individual VMT or gasoline use), but the reliability of the estimated mean is 

questionable due to small sample sizes. 
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2.3.3. Urban form measures 

A number of measures have been developed to quantify regional urban form 

(Clifton et al. 2008; Galster et al. 2001; Ewing et al. 2008; Knaap, Song, and Nedovic-

Budic 2007; Longley and Mesev 2000; Srinivasan 2002; Torrens 2008; Tsai 2005). 

Existing measures can be broadly classified into three attributes -- density, diversity, and 

urban structure. Density is most frequently used among the three. Density is measured in 

terms of population, workers, and jobs at the regional scale. Some studies (e.g., Ewing et 

al. 2003) made a composite index using multiple density associated variables (e.g., 

regional density, local density, regional density gradient, etc.). Diversity at the regional 

scale has been measured by the average of locally measured accessibility, for example, 

percentage of residents with satisfactory neighborhood shopping within one mile (Ewing 

et al. 2003), or per grid cell accessibility based on cumulative count of jobs within a 

given travel time (Cervero and Murakami 2010). Land use balance indices based on 

Shanon’s entropy theory have often been used for quantifying diversity (Ewing et al. 

2003; Torrens 2008), though their implication at the regional scale is not as clear as the 

local scale. Urban structure refers to distribution and texture of the development. 

Measures of urban structure are extensive. For example, Galster et al. (2001) offered five 

measures of urban structure (i.e., continuity, concentration, clustering, centrality, and 

nuclearity) among their eight measures of sprawl. Spatial autocorrelation measures such 

as Moran’s I, Geary coefficient, and Getis-Ord G statistic were used to quantify the 

degree of clustering (Torrens 2008; Tsai 2005). Torrens (2008) also offered fractal 

dimension, contagion, and interspersion and juxtaposition index to measure how 

fragmented or scattered a development is. To characterize centrality as well as overall 

degree of distribution of development, Gini coefficient of local density (Eidlin 2005; 

Tsai 2005), and density gradient (Clifton et al. 2008; Torrens 2008; Lee 2007; Kim 

2007) have been widely used. These urban structure measures differ in implications, thus 

should be carefully selected depending on the interest of study.  
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2.3.4. Findings and implications 

Relatively few studies explored the relationship between urban development 

patterns and regional VMT/fuel consumption/greenhouse gas emission. A pioneering 

study by Newman and Kenworthy (1989) presents an inverse relationship between 

regional density and gasoline use in 32 major cities in North America, Europe, Asia, and 

Australia. This study simply explores correlations of city average gasoline use with 

respect to densities at three different scales (i.e., citywide, inner city and outer area) and 

a centrality measured by the proportion of population and jobs in the inner city. The 

original study has been improved by controlling for a number of variables on transport 

service level and socioeconomic characteristics (Newman and Kenworthy 1999). Van de 

Coevering and Schwanen (2006) updated this study by employing a multiple regression 

model including additional housing variables (e.g., housing tenure, age and size) and 

socio-economic variables (e.g., gender, age, education, and income level). They found 

that VMT was significantly associated with population density, job centrality and 

employment rate. They also found that housing variables had stronger relationships with 

mode choice than regional urban form. Overall, this series of studies reconfirmed 

population density as the key factor on gasoline use and modal split. 

Ewing et al. (2002; 2003) developed a series of composite sprawl indices and 

estimated the impacts of those indices on selected travel outcomes. To create the sprawl 

indices, they conducted a principal components analysis to extract four factors out of 22 

land use and street network variables – density, land use mix, centeredness, and street 

accessibility. Individual factor scores were standardized to have a mean value of 100 and 

standard deviation of 25. A multiple regression estimated the impacts of these sprawl 

factors on DVMT per capita after controlling for population, per capita income, 

household size and the percentage of working age. Only density factor showed a 

significant impact. Specifically, a 50 unit (or two standard deviation) increase in the 

density factor was associated with a decrease of 10.75 DVMT per capita. This amount of 

decrease indicates 40% reduction in DVMT per capita in areas with an average-level 

density (Ewing et al. 2008). For example, San Francisco (155) and Washington, D.C 
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(106) showed the 50 unit difference in the density factor. Density factor also showed 

strong and significant relationships with vehicle ownership and transit share, but was not 

significantly associated with mean commuting time. This implies that density factor 

contributes to VMT reduction through influencing car ownership and mode choice but 

does not affect travel distance. 

Cervero and Murakami (2010) employed structural equation modeling (SEM) to 

explore the complex causal relationships between regional urban form, DVMT per 

capita and other variables in 370 U.S. urban areas. They measured regional development 

patterns with gross population density, job densities, and accessibilities for each retail 

and basic job. Accessibility was measured based on the cumulative count of jobs that can 

be reached within 30 minutes over a transportation network. Other variables included 

transportation supply, mode choice and sociodemographic factors. A primary finding 

was that population density had a strong direct relationship with DVMT per capita 

(direct elasticity -0.604), but the effect was offset by the traffic-encouraging effects of 

higher density such as denser road networks and a higher access to retail shopping 

(indirect elasticity 0.223, yielding a net elasticity -0.381). Accessibility to basic jobs had 

relatively modest effects. 

All these macro approach studies concluded that density is the most influential 

factor on regional VMT, though their estimations of effect size do not agree with each 

other. Density dominates over other land-use configuration attributes. This is probably 

because density at the regional scale is a composite measure as a product of other 

sophisticated urban form measures, and therefore, absorbs the effects of those measures 

in a predictive model (Ewing, Pendall, and Chen 2002; Cervero and Murakami 2010). 

However, regional density provides limited implications for local land use policy. An 

increase of density at the regional scale is like regional population growth, which is not 

an attribute that local land use policy can control. Hence, it might be appropriate for 

macro approach studies to exclude regional density variables and estimate real effects of 

other policy-relevant urban form measures.  
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2.4. Discussions: Gaps and Links between Micro and Macro Approaches 

Micro and macro approaches are distinctive in the focus of study, methodology, 

findings and policy implications (Table 2.2). The only agreement is “denser 

development” as a policy implication. However, this policy implication is marginally 

supported in both approaches. In micro approach studies, the influence of local density 

on VMT is weaker than accessibility. Macro approach has been dealing with density at 

the regional scale, and therefore cannot clearly explain how locally denser development 

influences regional density. Ironically, micro approach studies imply that denser 

development may increase regional VMT if it occurs at a location remote from regional 

centers. This contradiction is a major gap between both approaches. Micro approach 

recognizes “distance from job centers” as the key variable influencing VMT, whereas, 

macro approach has identified “centeredness” of population (a macro approach version 

of accessibility) as an insignificant variable. Two reasons for this difference can be 

considered.  

The first reason is that the two approaches use different density (i.e., local 

density for micro approach vs. regional density for macro approach). The implication 

between local and regional density is entirely different. Regional density is a proxy 

variable of multiple regional characteristics that micro approach inherently cannot deal 

with. Thus, the differences in findings between micro and macro approach might reveal 

the limitation of micro approach, that is, it cannot consider regional variances. For 

example, regional density may influence the level of transit development; or the 

elasticity between accessibility and individual VMT might vary by region depending on 

other regional factors such as regional distribution patterns of population and jobs, and 

regional supply of roads and associated congestion level. This is why each metropolitan 

planning organization has its own regional accessibility coefficient for operating traffic 

simulation model. 

The other reason for the difference between the micro and macro approach is 

found from the inappropriate definition of urban form made by the macro approach. 

First, it might be improper to regard regional density as an urban form measure. 
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Regional density is a composite characteristic that cannot be controlled by locally denser 

development but by regional policies including urban containment and population 

control. In a VMT predictive model, regional density may be useful as a variable 

representing transportation infrastructure, but not as an urban form variable. Other urban 

form measures also should be chosen or developed more carefully. Linking with findings 

from micro approach, it would be ideal that the measures used for macro approach can 

represent the average accessibility to regional activity and local activity separately.  

 

 

Table 2.2  
Comparison of micro and macro approaches 
 Micro approach Macro approach 

Purpose Built environment impacts on 
individual VMT 

Regional development pattern 
impacts on collective VMT 

Unit of analysis Individual/household Urban area (travel shed) 

Dependent variable VMT/VHT/ Gasoline use  
(collected from survey) 

DVMT per capita  
(collected from traffic count) 

Major independent 
variables 

 Local density 

 Local diversity (entropy) 

 Local design 

 Regional accessibility 

 Individual socioeconomic 
variables  

 Individual self-selection variables 

 Regional density 

 Regional diversity 

 Centeredness 

 Other regional development 
texture 

 Aggregate socioeconomic 
variables 

Major findings  Regional accessibility is the most 
influential factor on individual 
VMT 

 Local built environment 
influences mode choice 

 Regional density is the most 
influential factor on regional 
collective VMT 

Policy implications  Infill development 

 Denser development 

 Urban containment 

 Denser development 

Strength  Detailed control for 
sociodemographic factors 

 Ability to control for diverse 
regional factors 

Limitations  Generalizability  Limited control for 
sociodemographic factor  

 

 

The insufficient consideration in selecting urban form measures can be found 

frequently. For example, all the macro approach studies reviewed here have defined 
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regional density as a main urban form attribute despite its inappropriateness as an urban 

form measure. Newman and colleagues’ studies (Newman and Kenworthy 1989; 1999; 

Van de Coevering and Schwanen 2006) used only one simple centeredness measure (i.e., 

proportion jobs in CBD in the total number of jobs) and did not consider the accessibility 

to local activity. Ewing et al. (2002; 2003; 2008) could not explain influences of specific 

variables straightforwardly, because each factor was quantified with a composite 

measure. For example, density factor was composed of seven density indicators 

including gross population density, urban population density, lot size, density of 

population centers, percentage of population living in a lower density area, percentage of 

population living in a higher density area, and CBD density estimated by exponential 

density function. Cervero and Murakami (2010) measured the accessibility to basic jobs 

and local retails separately, but those measures’ effectiveness was doubtful. They 

calculated the accessibility at every grid cell by multiplying the cell population by the 

amount of jobs that can be reached from the cell in 30 minutes. These values were 

supposed to have a strong correlation with local densities. Thus their regional average 

value likely had a strong correlation with regional density rather than representing the 

average accessibility to regional centers. Actually in this study, the elasticity of regional 

density was 0.98 with respect to the accessibility to basic jobs, and 0.81 with respect to 

the accessibility to local jobs. Note that other studies showed a weak correlation between 

density and centeredness.  

To measure relevant regional-level urban form attributes influential to VMT, the 

macro approach can derive ideas from the micro approach. Micro studies have 

hypothesized that VMT increases as people live farther from jobs and everyday services, 

and employed “regional accessibility” and “local-level three Ds” as built environment 

measures. These individual-level measures can be converted to the aggregated level with 

“density gradient” and “population-weighted average of local three Ds.” Population 

density gradient toward job centers is one of the effective measures to present the 

accessibility to jobs. As the bid-rent theory (Alonso 1964) implied, developments tend to 

be concentrated in specific locations, like central business districts and subcenters, rather 
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than dispersed constantly across a region. In addition, a gradient is easy to interpret and 

delivers straightforward policy implications. The population density gradient shows the 

changing trend of density from center to periphery. If this measure has a significant 

influence on VMT, then it can suggest location specific density control guidelines based 

on distance from the center, such as rural-to-urban transect. Population-weighted 

average of tract density directly follows the concept of local density measure of the 

micro approach – measuring built environment in individual perspective. The regional 

average of individual-level local density increases as more people live in denser 

neighborhoods. 

 

2.5. Conclusion 

 This review identified that the inconsistency between micro and macro approach 

is originated from seemingly similar but conceptually different urban form measures. By 

using inappropriate urban form measures such as regional density, macro studies have 

failed to support that urban form control can contribute to VMT reduction. Micro 

approach studies, despite minor inconsistency in methodology, have collected solid 

evidence that “distance from job centers” and “local built environment” have a 

significant influence on VMT. This study suggested urban form measures for the macro 

approach, based on findings from the micro approach studies. The use of appropriate 

urban form measures in macro studies will help fill the gap with micro studies and 

enhance the generalizability of the implications. 
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3. EVALUATING THE PERFORMANCE OF CENTER IDENTITFICATION 

METHOD 

 

3.1. Outline 

Center identification is the first step to understanding the influence of a 

polycentric urban structure. Although several center identification methods have been 

developed, few studies have evaluated the performance of these methods. McMillen’s 

two-stage nonparametric method is fully flexible in controlling three major parameters to 

define urban centers – density threshold of a center, the extent of the nearby area 

affected by a center, and the relative power between a central business district and other 

subcenters. This study evaluates which parameter values perform better in identifying 

the centers using the data of 348 U.S. urbanized areas. The results showed that the uses 

of polycentric models for the polycentric areas yielded a better model fit than the use of 

a monocentric model. The use of monocentric model for polycentric areas could 

underestimate the job concentration level. The model with the lower density cutoff, the 

wider reference area, and the equal treatment between CBD and subcenters overall 

yielded the better performance in center identification.  

 

3.2. Introduction 

Most of the contemporary large metropolitan areas are recognized as polycentric, 

having multiple employment centers (Cervero and Wu 1997; Giuliano and Small 1991; 

McDonald and Prather 1994; McMillen and McDonald 1998). Research found that a 

polycentric urban structure has prominent effects on commuting (Cervero and Wu 

1997), population density (Giuliano and Small 1991), and property value (Heikkila et al. 

1989; McDonald and McMillen 1990). Building a polycentric urban structure model is 

necessary to explore the influences of polycentricism. Center identification is the first 

step to constructing a polycentric urban structure model. While several center 

identification methods were developed by researchers, including Giulliano and Small 

(1991), McDonald (1989), McMillen (2001), Craig and Ng (2001) and Redfearn (2007), 
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few studies evaluated the performance of the method they used. Most of the existing 

evaluations were conducted based on local knowledge for the limited number of 

metropolitan areas. This approach would be more accurate for these specific areas but 

may not validate the general uses for cross-sectional studies of multiple metropolitan 

areas.  

A major reason for the lack of evaluation studies is the difficulty in making 

objective definitions of urban centers to be compared with estimated results. Researchers 

agreed with two general characteristics of centers – 1) a significantly larger employment 

density than nearby locations, and 2) a significant effect on the density of nearby areas. 

However, the detailed definitions are not clear, as McMillen (2001) pointed out: “how 

large is large? What is the appropriate definition of nearby? Should we condition on 

distance from the central business district (CBD) or consider each site only within its 

local context? (p.449)” McMillen provided a fully-flexible method to allow users to 

control these parameters without suggesting which parameters are more appropriate. 

Studies employing this method arbitrarily selected the parameter values, thus the 

identified centers for the same areas varied by study. 

Using McMillen’s method, this study evaluated which parameter values 

performed better in terms of the gradient and goodness-of-fit of density structure model. 

A simple monocentric density function was employed for the ease of interpretation. In 

the monocentric function, the polycentric structure was considered by assuming that all 

centers are located at an imaginary central location. The better model fit and the steeper 

gradient in this model implies the better positioning of centers. These polycentric models 

based on various combinations of associated parameter values were compared with each 

other and with the traditional monocentric model.  

 

3.3. Previous Research on Center Identification Methods 

Center identification methods fall into two general categories: methods based on 

absolute and relative density guidelines (Lee 2007). Absolute methods identify candidate 

centers by an absolute minimum density cutoff. Areas (typically, census tracts or traffic 
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analysis zones) with higher density than the density cutoff are identified as center 

candidates. Giuliano and Small (1991) proposed this method, applying 10 jobs per acre 

of employment density as well as 10,000 jobs of total employment as the thresholds for 

Los Angeles, CA. This approach was employed by many studies with different density 

criteria in different cities (Anderson and Bogart 2001; Bogart and Ferry 1999; Peter 

Gordon and Richardson 1996; Pfister et al. 2000). Despite the popularity, the arbitrary 

nature of the density and total employment thresholds has been a major criticism against 

the absolute methods. Setting an absolute density threshold was not only sensitive to the 

unit of analysis but also required the detailed knowledge about study areas (McMillen 

2001).  

Methods based on relative density guidelines focused on capturing areas that 

have relatively higher employment density than nearby locations. This approach 

typically relied on statistical tests to identify significant residuals from a density 

function. Earlier methods employed parametric-regression-based density functions to 

model the exponential decay of densities by distance from CBD. Subcenters were 

identified as positive residuals from the monocentric models (Mcdonald 1989; 

McDonald and Prather 1994). This approach was criticized for its assumption that the 

topography of employment densities is symmetric about the CBD. Two different tracts 

in a same distance from the CBD might have different nearby conditions. In polycentric 

regions with strong subcenters, the local rises in density by the subcenters would make 

the monocentric density gradient flatter. This could reduce the probability of identifying 

some mid-to-small subcenters. To solve these problems, more recent methods employed 

nonparametric regressions to estimate polycentric density models. These include 

quantile regression (Craig and Ng 2001) and locally weighted regression (McMillen 

2001). While these nonparametric methods considered both the distance and direction 

from the CBD, the latter provides a more flexible procedure that can be easily applicable 

to many different regions. Locally weighted regression estimates a smoothed density 

surface, considering only nearby areas for any data point (e.g., tract) with more weight 
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given to closer locations. It can control the threshold of relative density as well as the 

extent of a nearby area.  

In recent center identification methods, the absolute and relative methods 

explained above serve as the initial stage to identify candidate centers because they 

consider only the first characteristic of centers – a significantly larger employment 

density than nearby locations. The next stage typically involves examining the second 

characteristic of centers – the significant influence on the densities of nearby areas. A 

two-stage procedure was proposed by Gordon et al. (1986). They identified candidate 

sites for Los Angeles via visual inspection of density maps. They used distance from 57 

candidate sites as explanatory variables for density functions and concluded that only six 

subcenters have statistically significant effects on densities. McMillen and McDonald 

(1998) used Giuliano and Small’s (1991) procedure to identify candidate centers for 

Chicago and selected 17 centers from 20 candidates in the second stage. The first stages 

of these earlier methods were somewhat arbitrary. More recent methods such as Craig 

and Ng (2001), McMillen (2001; 2003) and Redfearn (2007) improved this issue by 

employing nonparametric regression procedures for the first stage.  

The studies cited above attempted to evaluate the performance of their center 

identification methods. While most of these existing evaluations included visual 

inspections based on local knowledge, McMillen (2001) used a gravity variable 

proposed by Shukla and Waddle (1991) to estimate the aggregate effects of proximity to 

identified subcenters on densities of individual traffic analysis zones (TAZs). The 

gravity was designed to increase as a site is located closer to subcenters. The gravity 

variable, however, was not used for comparing between different center identification 

methods, but used for comparing his polycentric model to the traditional monocentric 

model. For six cities, the regression model with both gravity and distance from the CBD 

(DCBD) yielded a better goodness-of-fit than the model with only DCBD. The study 

found that the addition of the gravity variable caused the coefficients of DCBD to turn 

positive in some cities including Dallas, Houston, and San Francisco, though density and 

DCBD are expected to have a negative relationship. The study concluded that it is 
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because the traditional CBD is no longer the significant determinant of the broad spatial 

trend in densities. He suggested that a more realistic specification would be to consider 

the CBD as simply another of the multiple centers. 

 

3.4. Methodology 

3.4.1. Data and study areas 

The data came from two sources – Census Transportation Planning Package 

(CTPP) for employment information and Census TIGER for geographic boundaries. 

While U.S. Census dataset organizes demographic data by place of residence, CTPP 

dataset reorganizes the raw census data based on place of work and provides the number 

of employments at the various geographic scales nationwide. Since this study’s 

performance evaluations included an application to vehicle miles traveled (VMT) 

estimation models, travel-associated information was obtained from Highway Statistics. 

In the VMT model, independent variables included two density gradient variables (i.e., 

job and population) estimated from the identified centers and five control variables (i.e., 

lane miles per capita, population, population density, job density, and median household 

income). 

Given the time and geographical inconsistencies across these databases, a major 

consideration was given to join the datasets and to decide time and geographic 

definitions for the study. This study employed CTPP 2000 and Highway Statistics 2002. 

Year 2000 data was the most recent version for CTPP available as of 2012. Meanwhile, 

year 2002 dataset is the first Highway Statistics data using year 2000 urbanized area 

definition. This study assumed that the regional demographic structure did not change 

significantly during the two-year period. The urbanized area population estimations by 

Highway Statistics 2002 and the estimations by CTPP 2000 showed 0.998 of correlation 

coefficient. Table 3.1 presents variables used for empirical performance tests and their 

data sources. 
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Table 3.1  
Variables used for empirical tests and data sources 

 

Variable Data source; geographic unit of data 

Dependent Daily vehicle miles of travel per capita Highway Statistics 2002, FHWA; urbanized area 

Independent Population density gradient  CTPP 2000, Part 1; census tract 

 Job density gradient CTPP 2000, Part 2; census tract 

Control Lane mile per capita Highway Statistics 2002, FHWA; urbanized area 

 Population U.S. Census 2000; urbanized area 

 Population density U.S. Census 2000; urbanized area 

 Job density U.S. Census 2000; urbanized area 

 Median household income U.S. Census 2000; urbanized area 

Note: CTPP – Census Transportation Planning Package; FHWA – Federal Highway 
Administration   

 

 

Among 384 U.S. urbanized areas in Highway Statistics 2002 (except Alaska, 

Hawaii, and Puerto Rico), 36 cases were dropped due to missing data and geographic 

discrepancies. Figure 3.1 shows the selected 348 study areas.  

 

 

 
Figure 3.1 Study areas for the center identification study (Source: U.S. Census 2000) 
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3.4.2. Subcenter identification 

This study tested eight modified versions of McMillen’s (2001) two-stage 

nonparametric method. As mentioned above, the first stage is to identify candidate 

centers that show a significant residual from a job density estimation model. The second 

stage is to select the final list of centers from the candidates that have a significant 

influence on the density of nearby areas. This procedure is composed of three steps and 

each step had modifiable parameters that affect the final list of centers.  

The first step is to estimate a density surface using locally weighted regression 

(LWR). This non-parametric regression conducts a series of local regressions at each 

observation point using a cluster of nearby observations, which are often called a 

“moving window.” Within the window, closer observations receive more weight. The 

modifiable parameter in this step is the span of the window. Window size can be 

determined by the number of nearby observations or the percent of nearby subset of all 

observations. The larger window size leads to a smoother surface as more observations 

are used in local regressions. While the original study by McMillen (2001) used 50% 

subset, this study tested 25% and 50% windows to estimate the impact of window size 

on center identification performance. Figure 3.2 presents the actual and estimated job 

densities of census tracts in San Antonio urbanized area in Texas. 

The second step selects candidate centers by identifying significantly greater 

residuals than 0 at the designated statistical significance level. McMillen suggested a 

normalized residual for the statistical test, and the significance level is modifiable in this 

step. A stricter threshold would yield the fewer but stronger candidates. The original 

study used the 0.05 significance level only, while this study added a more generous 

threshold of 0.1 to examine the influence of different cutoffs on the performance. The 

normalized residual and the thresholds can be described as follows: (yi - ŷi ) /   i > 1.96 or 

1.64, where ŷi is the LWR estimator of y at tract i, and   i is the estimated standard error 

for the prediction. In addition to this relative threshold, tracts with the density less than 

10 jobs/acre were dropped off.  
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Figure 3.2 Actual job densities and smoothed density estimates. 
A horizontal view from the south side in San Antonio, TX.  Circles represent actual job 
densities at the census tract level and triangles represent their locally weighted 
regression estimates. Two obvious peaks (A and B) over the smoothed density 
estimation surface indicate potential centers. The peak C would be excluded by an 
absolute minimum density threshold although it has a higher density than nearby area. 
 

 

The last step selects centers from the candidates that show a significant 

explanatory power on job densities of nearby areas. This final list of centers is obtained 

by the stepwise (backward) regression of job density on distances to candidate centers, 

where the candidates with an insignificant effect will be omitted from the final list. The 

regression model can described as follows: yi = g(DCBD) + ∑j (𝛿j dij) + ui, where yi is 

logarithm of  job density at site i, dij is distance between site i and subcenter j, g(DCBD) 

is a function to control for the influence of CBD on job density. 𝛿j is regression weight, 

and ui is error term. This model tests if the distances from each candidate center have a 

significant influence on the job densities of nearby tracts. Stepwise regression excludes 
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C 
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candidates that have an insignificant influence. In addition, candidates showing a 

positive coefficient need to be excluded because the expected relationship is negative 

(i.e., the density of a site increases as getting closer to a center). It is noteworthy that the 

original method attempted to consider CBD and other subcenters differently. The 

variable representing the influence of CBD is the density estimator based on the distance 

from CBD, while the influence of a subcenter is represented by the distance from the 

subcenter itself. The logic behind this is that CBD has a predominant influence over 

other centers. This approach is more advantageous for identifying subcenters in a more 

sophisticated manner particularly in regions with one very strong CBD. However, it may 

not be appropriate for the regions with multiple stronger centers (as the author already 

recognized in conclusion). So this study also tested identification models with “distance 

from CBD” as the CBD control variable. The models consider CBD in the same manner 

with other subcenters.  

Hence, with two alternatives for each of three steps (i.e., 25% and 50% window 

for the LWR estimation; 0.05 and 0.1 significance levels for the candidate center 

threshold; and density estimator by the distance from CBD and the distance itself for the 

CBD influence control), a total of eight center identification models were tested and 

compared. 

 

 3.4.3. Density function 

The performances of the eight center identification models were examined based 

on how the identified centers improve job density estimation models. To represent 

multiple centers to density estimation, an appropriate polycentric model is necessary. 

There are several polycentric models, which are based on spline density curve (Craig 

and Ng 2001), gravity (McMillen 2001), and locally weighted regression (McMillen 

2004). However, these non-parametric models are technically complicated to calculate 

and difficult to translate the estimated parameter values into policy guidelines.  

This study used a monocentric model to take advantage of its simplicity and 

added an operational assumption to apply the monocentric model to polycentric urban 
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structures.  A polycentric structure with multiple concentric circles is translated into a 

monocentric structure by assuming that all employment centers (including CBD) are 

located at the same location (Figure 3.3). A simple exponential decay function was used 

for the monocentric model as follows: D = EXP [α ⋅ d + β], where D is job density at 

distance d from the imaginary center, α is the gradient, and the exponential of β is the 

estimated density of the center. The gradient α can be calculated by a linear regression 

with the transformation of the original function: LN(D) = α⋅d + β, where the gradient α 

is the slope of regression model.  

 

 

 
Figure 3.3 A simple operation to translate polycentricity using monocentric model 
(center identification study) 
 

 

3.4.4. Performance evaluations 

This study used two criteria to estimate the center identification performance – 

the goodness-of-fit and the gradient estimated from the job density model based on each 

center identification model. By removing outliers located beyond CBD, the model based 

on a better center identification is expected to have a better model fit and steeper 

gradient. The goodness-of-fit is represented by the r-square of the regression type of the 
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density model. Center identification models showing a statistically insignificant gradient 

at the 0.05 level were excluded from evaluations.  

Evaluations were conducted in four ways, 1) comparison of the performance 

criteria, 2) examination of performance criteria changes made by using a polycentric 

model instead of a monocentric one, 3) a series of paired t-tests to identify which 

treatments in window size, candidate threshold and CBD control have significant 

influences on the performance criteria, and 4) an empirical application of the estimated 

polycentric urban structure models to a transportation model. As many travel behavior 

studies found that the distance from CBD is the most influential factor of vehicle miles 

traveled (Ewing and Cervero 2001; 2010), a regression model of daily vehicle miles of 

travel (DVMT) per capita was used for the empirical test. Independent variables 

included two density gradient variables (i.e., job and population) estimated from each 

center identification model and five common variables, including lane miles per capita, 

population, population density, job density, and median household income. Stepwise 

procedure was employed to avoid the multicollinearity problem. As a result, population 

density gradient survived from the stepwise procedure in eight of the nine models (i.e., 

one monocentric and eight polycentric). The coefficients and statistical significances of 

the population density gradients were compared to examine the empirical performance 

of each center identification scheme. 

 

3.5. Results and Discussions 

Results showed that 331 of 348 (95%) urbanized areas had a significant job 

density gradient in both monocentric and polycentric models. While the number of 

identified polycentric areas varied by the model, about 73 to 82% of all urbanized areas 

were classified as monocentric form (Table 3.2). The stricter models using the smaller 

window size (25%), the stricter candidate cut threshold (0.05) and the CBD control with 

density estimation tended to recognize the fewer numbers of polycentric areas. The 

average number of identified centers and the average r-square of job density gradients 

were similar among the models because the majority of observations were monocentric.  
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Table 3.2  
Center identification results by each monocentric and polycentric model 

Model 

Number of 
UAs with a 
significant 
gradient 

Number of 
polycentric 

UAs 
identified 

Number of 
centers by UA 

Average R
2 

of job 
density 
gradient 

Average 
job 

density 
gradient Avg. Max. 

Monocentric 331 NA 1 1 .44 .44 

Polycentric 
    

  

Window 
Size 

Cut 
Threshold 

CBD 
Control     

  

25% 0.05 Density 331 48 1.5 22 .44 .38 

50% 0.05 Density 331 52 1.5 18 .45 .38 

25% 0.10 Density 331 56 1.6 33 .45 .39 

50% 0.10 Density 331 68 1.7 30 .45 .39 

25% 0.05 Distance 331 57 1.5 19 .45 .39 

50% 0.05 Distance 331 70 1.5 19 .45 .39 

25% 0.10 Distance 331 66 1.7 30 .45 .39 

50% 0.10 Distance 331 91 1.8 29 .45 .39 

Note: Calculations were performed using 331 U.S. urbanized areas that show a significant job 
density gradient at the 0.05 level. 

 

 

3.5.1. Performance changes made by using polycentric model 

To highlight the performances of polycentric versus monocentric models, further 

examinations were performed only with the areas that every center identification model 

recognized as polycentric. Table 3.3 presents the performances of polycentric models for 

the 41 polycentric areas. Polycentric areas tend to show a worse model fit than 

monocentric areas (i.e., 0.45 of r-square with all areas versus about 0.3 with polycentric 

areas).  

Meanwhile, the use of polycentric models for the polycentric areas yielded a 

better model fit than the use of monocentric model (i.e. 43 to 60% increase in r-square), 

indicating the superiority of the polycentric model. Polycentric models also resulted in a 

much steeper gradient (i.e., 85 to 112% increases). This implies that the use of 

monocentric model to polycentric areas may underestimate job concentration level. The 

least strict model (50%/0.10/Distance) yielded the largest improvements in both r-square 
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and gradient, and 25%/0.10/Distance model performed the second best. The least 

performing model was the strictest model (25%/0.05/Density). The results indicate that 

less strict models have the better chance to identify appropriate centers. 

 

 

Table 3.3  
Performance changes made by using polycentric models instead of monocentric 
model for 41 polycentric urbanized areas in the U.S. in 2000 

Model 
Average 

Number of 
Centers by UA 

Average 
R

2
 

Performance Change 

Window 
Size 

Cut 
Threshold 

CBD 
Control 

Average Change 
in R

2
  

Average Change 
in Gradient  

25% 0.05 Density 4.6 0.26 45% 85% 

50% 0.05 Density 4.7 0.26 45% 86% 

25% 0.10 Density 5.9 0.29 57% 103% 

50% 0.10 Density 5.8 0.28 56% 102% 

25% 0.05 Distance 4.5 0.26 43% 90% 

50% 0.05 Distance 4.7 0.27 47% 95% 

25% 0.10 Distance 5.6 0.28 57% 109% 

50% 0.10 Distance 5.7 0.28 60% 112% 

 

 

3.5.2. Attributes affecting center identification performance 

The next evaluation examined whether the change in each of the three parameters 

of center identification made a meaningful difference. This evaluation was conducted by 

a paired t-test between two models that have one different parameter value and two 

common parameter values. For example, the test between 50%/0.05/Density and 

25%/0.05/Density could show if the difference in window size made a statistically 

significant difference in the performance criteria.  

Table 3.4 presents mean differences and their significances in three criteria (i.e., 

the number of centers, the fit of density model, and the estimated job gradient) by 

matching pair. The results explain why 50%/0.10/Distance model was the best 

performing model in the previous test. The change in window size has negligible 

impacts on the benchmarks, while the candidate cut threshold was revealed as the most 

influential parameter. The less strict (0.10) cut threshold identified more centers in more 
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appropriate locations which makes the density gradient steeper. It also yielded a better 

model fit. The stricter threshold might exclude some good center candidates in the initial 

stage.  

CBD control was also recognized as a significant parameter determining the 

location of centers. Although CBD control did not make any significant distinction in the 

number of centers and the goodness-of-fit of the density model, the distance-based CBD 

control yielded a steeper gradient. This result differs from the traditional way of 

controlling the CBD impact. McMillen’s original method and its successors controlled 

the CBD impact using density estimation by the distance from CBD rather than the 

distance itself. The superiority of distance-based CBD control over the density-based 

control implies that some subcenters have a regional influence equivalent to CBD in 

many U.S. urbanized areas. 
 

 

Table 3.4  
Paired-samples mean differences and t-values in three center identification 
performance criteria by matching parameter values 

    

Paired-samples Difference in: 

Number of Centers R-square Density Gradient 

    Mean t Mean t Mean t 

Difference 

in Window 

Size 

(50% vs. 

25%) 

50%-25%, 0.05/Den. 0.098   0.585 0.000   0.000 0.001   0.244 

50%-25%, 0.10/Den. -0.073   -0.453 -0.005   -0.884 -0.001   -0.467 

50%-25%, 0.05/Dist. 0.171   0.943 0.009   1.567 0.006   1.301 

50%-25%, 0.10/Dist. 0.073   0.393 0.000   0.000 0.001   0.360 

Difference 

in Cut 

Threshold 

(0.10 vs. 

0.05) 

0.10-0.05, 50%/Den. 1.146 ** 3.290 0.020 * 2.479 0.012 * 2.620 

0.10-0.05, 25%/Den. 1.317 ** 3.265 0.024 ** 3.274 0.015 ** 3.149 

0.10-0.05, 50%/Dist. 1.000 ** 2.938 0.016 * 2.515 0.009   1.950 

0.10-0.05, 25%/Dist. 1.098 ** 3.100 0.025 ** 3.592 0.014 ** 2.925 

Difference 

in CBD 

Control 

(Distance 

vs. Density) 

Dist.-Den., 50%/0.05 0.000   0.000 0.003   0.486 0.013 * 2.477 

Dist.-Den., 25%/0.05 -0.073   -0.368 -0.006   -0.821 0.008   1.423 

Dist.-Den., 50%/0.10 -0.146   -0.771 0.000   0.000 0.009 * 2.064 

Dist.-Den., 25%/0.10 -0.293   -1.550 -0.005   -0.806 0.007   1.302 

** significant at the 0.01 level 
*  significant at the 0.05 level 
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3.5.3. Empirical application test 

Results from the empirical application test partially agreed with the two 

performance tests above. For the empirical test, stepwise regression estimations of 

DVMT per capita were conducted for nine center identification models, including one 

monocentric and eight polycentric models. Among seven independent variables (i.e., 

both job and population density gradient measures estimated from each center 

identification model and five common variables), the stepwise procedure identified only 

two or three variables as significant at the 0.05 level (Table 3.5). “Lane miles per capita” 

and “median household income” were recognized as most influential and significant in 

every model. Population density gradient was significant in eight of nine models, 

reconfirming the insight from travel behavior studies. 

 

 

Table 3.5  
Results of empirical application test using a stepwise regression model of vehicle 
miles of travel (VMT) 
- Dependent variable: DVMT per capita 
- Independent variables: job density gradient, population density gradient, lane miles per 

capita, population, population density, job density, and median household income 
- Samples: 41 polycentric urbanized areas in the U.S. 

    

Mono-

centric 

25%/ 

0.10/ 

Dist. 

50%/ 

0.10/ 

Dist. 

25%/ 

0.05/ 

Dist. 

50%/ 

0.05/ 

Dist. 

25%/ 

0.10/ 

Den. 

50%/ 

0.10/ 

Den. 

25%/ 

0.05/ 

Den. 

50%/ 

0.05/ 

Den. 

R-square  .613  .645  .632  .628  .615  .606  .606  .550  .622 

Std. coefficient                 

  PD.grd -.254* -.310** -.293* -.283** -.259* -.240* -.241* NA -.270** 

  LM/c  .820**  .816**  .814**  .833**  .821**  .825**  .826**  .787**  .817** 

 Income  .316**  .330**  .303**  .338**  .314**  .323**  .312**  .320**  .316** 

Note: PD.grd – Population density gradient; LM/c – Lane miles per capita;  
          Income – median household income 
** significant at the 0.01 level 
*  significant at the 0.05 level 

 

 

Basically, seven of the nine center identification models yielded similar results in 

terms of model fit, variables identified as most influential, and their coefficients. None 
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of these models produced a distinctively better performance in the empirical travel 

model, because the explanatory power of population density gradient was not strong 

enough to make a significant change in overall estimation results. Despite the minimal 

influence in the empirical test, different center identification models caused subtle 

changes in the values of model fit and coefficients. Also, their trend tended to be 

consistent with previous tests. Models with a weaker candidate cutoff and distance-based 

CBD control showed larger r-square values and stronger coefficients of population 

density gradient. Smaller window size also slightly improved these performance criteria. 

The best performing model was revealed as 25%/0.10/Distance model in which the 

significance of population density gradient was accepted at the 0.01 level. The only case 

inconsistent with this tendency is 50%/0.05/Density model, which was expected to 

perform least in the tendency. This result is unexpected but no specific reasons could be 

identified.  

Another unexpected finding in the empirical test was that polycentric models did 

not yield significantly different results from the monocentric model despite the clear 

distinction between the two. Polycentric models have 43 to 60 percent larger goodness-

of-fit values and 85 to 112 percent larger gradient values than monocentric model (Table 

3.3). This lack of distinction in the empirical test is attributed to the strong correlation 

between them. The correlation between population gradients of the best-performing 

polycentric model (25%/0.10/Distance) and monocentric gradients has an r-square of 

0.622 and a slope of 0.999 (Figure 3.4).  
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Figure 3.4 Correlation between population gradients of the best-performing 
polycentric model (25%/0.10/Distance) and monocentric gradients, 41 polycentric 
urbanized areas in the U.S. in 2000 
 

 

This strong correlation between monocentric and polycentric gradients is 

contradictory to the expectation, considering that those gradients are changed to opposite 

directions by the strength of subcenters. That is, stronger subcenters tend to result in 

steeper polycentric gradients but gentler monocentric gradients (Figure 3.5). Hence the 

relative strength of subcenters is the key variable to differentiate between monocentric 

and polycentric gradients – the stronger the subcenters, the larger the gradient gap. 

According to this tendency, the strong correlation between the two gradients would be 

explained by the consistency of relative subcenter strength among polycentric areas (i.e., 

areas with stronger CBD tend to have stronger subcenters). The empirical test result 

could not provide a clear answer to which policy option between strengthening CBD 

versus promoting subcenters is more effective for the reduction of regional average 

VMT.  
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        Note: The power of the exponential function indicates density gradient. 

Figure 3.5 Change of monocentric gradient by the strength of subcenter.  
 two areas with the same CBD strength: stronger subcenters result in gentler monocentric 
gradients (while steeper polycentric gradients). 
 

3.6. Conclusions 

Polycentricity or multi-centered urban structure became a common characteristic 

of contemporary larger metropolitan areas. There have been many attempts to accurately 

capture the complexity of polycentric urban structure. Center identification is the first 

step to study polycentricity. While several center identification methods were developed, 

few studies evaluated the performance of the methods. Most of the existing evaluations 

were conducted based on local knowledge for the limited number of metropolitan areas. 

A major reason for the shortage of evaluations is the difficulty in making 

objective definitions of urban centers. Studies agreed with two general characteristics of 

centers – significantly larger employment density than nearby locations and a significant 

effect on the density shapes of nearby areas. However, the details are not clear in 

definitions of “larger” and “nearby,” and the way to treat central business district (CBD). 

McMillen’s two-stage nonparametric method is fully flexible in controlling these three 

parameters. Its first stage selects candidate centers based on the size of residual from a 

smoothed density estimate surface. The larger residual has the better chance to be 

selected as a center. The cut-off of residual size determines the degree of “larger.” The 
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extent of “nearby” can be controlled by the size of reference area for the smoothed 

density estimation function. The second stage determines the final list of centers based 

on their influences on densities of nearby areas. A candidate that has a larger impact on 

densities of closer areas is considered as a center. In this stage, CBD can be treated as 

another center equally with other subcenters or can be specially treated as a control for 

estimating the influence of other subcenters. 

Using the McMillen’s method, this study evaluated which parameter values help 

identify more appropriate centers. Eight combinations of parameter values (i.e., two 

alternatives by each of three parameters) were tested. The performances were evaluated 

with two criteria – the gradient and the model-fit statistic estimated from the polycentric 

density model based on each center identification model.  

For polycentric areas, polycentric models yielded a better model fit than 

monocentric models. Polycentric models also resulted in a steeper gradient, which implies 

that the use of monocentric model to polycentric areas may underestimate the job 

concentration level. The least strict model (i.e., the wider reference area, the lower cutoff 

for candidate centers, and the equal treatment of CBD) overall yielded the best 

performance in center identification. According to the paired t-tests between different 

values in each parameter, the less strict candidate cut threshold identified more centers in 

more appropriate locations. The extent of nearby reference area did not make a significant 

difference in the identification performance. While CBD control did not make any 

significant distinction in the number of centers and the model fit, the distance-based CBD 

control yielded the steeper gradient, indicating the more appropriate positioning of centers. 

Empirical application tests of the eight center identification scenarios on a travel 

model did not find any significant difference among the scenarios. Even the monocentric 

scenario model yielded similar parameter estimates and model fit with the best 

performing polycentric model. This was unexpected since the two models showed a 

clear distinction in density gradient values. The study found this is due to the strong 

correlation in population density gradient between the two models. That is, the areas 

having the greater monocentric gradient tend to have the greater polycentric gradient. 
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4. INFLUENCES OF URBAN FORM ON VEHICLE MILES TRAVELED 

AT THE METROPOLITAN SCALE 

 

4.1. Outline 

  This study evaluated the influence of regional development patterns on collective 

vehicle miles traveled. A cross-sectional analysis of 203 U.S. urbanized areas was 

conducted. Directed acyclic graph (DAG) and structural equation modeling (SEM) were 

used to analyze complex relationships among urban form, transportation infrastructure, 

and income segregation. Considering the polycentric urban structure of many 

metropolitan areas, regional urban forms were measured with changing trends of 

population, job and poverty rate by the distance from multiple centers. The study found: 

1) Vehicle miles traveled (VMT) is lower in areas with more concentrated urban 

structure and more compact neighborhoods, and these two effects were independent; 2) 

VMT was strongly affected by road supply; while, transit supply had no significant 

influence; and 3) poverty gradient had a minimal effect on VMT. Overall, the study 

indicates the “rural-to-urban transect” approach is superior to traditional “compact 

neighborhood” approach for reducing VMT, because it accounts for both regional and 

local urban form effects. 

 

4.2. Introduction 

Growing concerns over climate change have attracted keen interests in reducing 

the amount of vehicle use. Producing 30% of CO2, the transportation sector was the 

second largest source of greenhouse gas after electricity generation in the U.S. in 2008 

(U.S. EPA 2011). Many governmental bodies established policy initiatives targeting auto 

travel reduction, and their efforts typically included redesigning urban form to make 

residents travel shorter and introducing alternative travel options to reduce driving (U.S. 

SCCST 2009; CPDR 2008).  

Planners are beginning to recognize that local urban form should be organized in 

the regional context to reduce vehicle travels more effectively. Common planning 
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guidelines (e.g., transit oriented development or traditional neighborhood development) 

tend to pursue the “compact neighborhood” approach, focusing on denser and mixed-use 

developments at the neighborhood scale. This local approach does not consider regional 

development patterns and often can lead to intense developments in suburban areas. 

Some argue that there is no clear evidence for the relationship between compact city and 

sustainable travel behavior (Neuman 2005). On the contrary, recent land use initiatives 

emphasize regional frameworks to classify local urban form by regional location, such as 

rural-urban transect, form-based zoning, etc. (Parolek et al. 2008).  

  Studies of regional development patterns in association with collective vehicle 

miles traveled (VMT) are limited in terms of amount, methodology and implications. 

These studies provided limited insight into the urban form-VMT relationship. Most of 

the collective VMT studies concluded that density is the most influential factor (Cervero 

and Murakami 2010; Ewing et al. 2003; Newman and Kenworthy 1989; Newman and 

Kenworthy 1999; Van de Coevering and Schwanen 2006). However, an increase of 

density at this large scale simply implies regional population growth, which is not an 

attribute land use plans can control. Meanwhile, the majority of urban form-travel 

studies was conducted at the individual level in only one or several metropolitan areas, 

and thus, could not control for a wide variety of regional settings. Their main interest 

was to evaluate the “compact neighborhood” approach, while their finding was that 

location (i.e., distance to central business district or regional accessibility to jobs) is a 

better predictor of individual VMT than the surrounding built environment (Ewing and 

Cervero 2001; 2010). This implies that regional development patterns (i.e., how many 

people live closer to job centers) have a potentially strong influence on collective VMT 

rather than local urban form (i.e., how many people live in denser neighborhoods). 

The bid-rent theory is useful to synthesize the findings from the disaggregate 

studies. The theory explains settlement decisions made by the tradeoff between land 

price and transportation cost (Alonso 1964). In this concept, the notion that VMT 

increases with the distance from centers infers two ideas: 1) VMT is lower in denser 

neighborhoods because denser developments occur near the job center and 2) VMT is 
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greater among higher income people because they are less sensitive to transportation 

costs and tend to prefer suburban living. These insights can be applied to aggregate 

studies at the regional scale too and can connect the disaggregate and aggregate studies. 

 

4.3. Previous Research 

The studies examining urban form impact on VMT can be classified into two 

discrete approaches – micro and macro. Both approaches are distinctive in the subject of 

analysis and the associated perspective on urban form. The micro approach is intended 

to analyze people and understand urban form as a locational attribute that influences 

individual behavior. The macro approach focuses on place and recognizes urban form as 

characters of the place presenting how people and resources are distributed across the 

region. Urban form was frequently called built environment in micro studies, while it 

was often called regional development pattern in macro studies. Because of this 

difference, they differ as well in detailed methodology; thus, the findings need to be 

interpreted differently.  

There are several literature review studies on built environment and travel 

behavior (Badoe and Miller 2000; Cao et al. 2009; Cervero 2003; Crane 2000; Ewing 

and Cervero 2001, 2010; Handy 1996; Stead and Marshall 2001). A common finding 

from the literature reviews was that regional accessibility was the most influential factor 

on VMT. In contrast, the impacts of local-based three Ds (i.e., density, diversity, and 

design) were inconsistent among studies. These review studies commonly pointed out 

that this inconsistency was due to the broad variance among studies in their study sites, 

data, measures and methodologies used. Ewing and Cervero (2001; 2010) attempted to 

generalize the results of different studies using a series of meta-analyses. They selected 

literature from over 200 studies based on their own methodological rigor and calculated 

the average effect size of travel behavior outcomes with respect to four Ds (i.e., three Ds 

+ destination accessibility). These meta-analyses confirmed that destination accessibility 

(or distance to central business district) is the strongest factor on VMT. They also 

concluded that density has a marginal impact but the combined impact of the three Ds 
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was larger. A review by Cao et al. (2009) particularly focused on studies that consider 

the self-selection issue. The study reconfirmed that the impacts of the built environment 

measures remain valid even after controlling for self-selection. 

Relatively few studies explored the relationship between development patterns 

and travel outcome at the regionally aggregated scale. A pioneering study by Newman 

and Kenworthy (1989) presented the inverse relationship between regional density and 

gasoline use in 32 major cities in the world. Their study simply explored the impacts of 

densities at three different scales (i.e., citywide, inner city and outer area) and centrality. 

The centrality was measured by the proportion of population and jobs in the inner city. 

The original study has been improved by considering a number of additional variables, 

including transport service level and socioeconomic characteristics (Newman and 

Kenworthy 1999; Van de Coevering and Schwanen 2006). This series of studies 

reconfirmed that population density is the key factor to determine average gasoline use.  

Ewing et al. (2002; 2003) developed a series of composite sprawl indices and 

estimated the impacts of those indices on selected travel outcomes. To create the sprawl 

indices, they conducted a principal components analysis to condense 22 land use and 

street network variables to four factors – residential density, land use mix, centeredness, 

and street accessibility. Individual factor scores were standardized to have a mean value 

of 100 and a standard deviation of 25. A multiple regression estimated the impacts of 

these sprawl factors on daily vehicle miles of travel (DVMT) per capita in controlling 

for population, per capita income, household size and the percentage of working age 

population. The studies found that the density factor and the percentage of working age 

population have a significant impact on VMT. However, these studies provide limited 

policy implications about what specific urban form attributes influence VMT because 

the urban form measures were composite. For example, the density factor is composed 

of four attributes as follows: 1) gross population density in persons per square mile, 2) 

the percentage of population living at densities less than1,500 persons per square mile, 

3) the percentage of population living at densities greater than 12,500 persons per square 
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mile, and 4) the estimated density at the center of the metropolitan area derived from a 

negative exponential density function. 

Cervero and Murakami (2010) employed structural equation modeling (SEM) to 

explore causal relationships between urban form, daily vehicle miles traveled (DVMT) 

per capita and other control variables of 370 US urban areas. They measured regional 

development patterns with gross population density, gross job density, and accessibilities 

for each retail and basic job. Accessibility was measured based on the cumulative count 

of jobs that can be reached within 30 minutes over a transportation network. A primary 

finding is that population density has a strong direct relationship with DVMT per capita 

(direct elasticity -0.604), but the effect is offset by the traffic-encouraging effects of 

higher density such as denser road networks and a higher access to retail shopping 

(indirect elasticity 0.223, yielding a net elasticity -0.381). Accessibility to basic jobs 

showed relatively modest effects. However, these accessibility measures’ effectiveness 

is doubtful because these values are expected to have a strong correlation with local 

densities. Thus, it is likely that their regional average value has a strong correlation with 

regional density and does not represent the average accessibility to regional centers. 

Actually, in their study the elasticity of regional density is high (0.98) with respect to the 

accessibility to basic jobs. Note that other studies show a weak correlation between 

density and centeredness, another development pattern measure. 

The only agreement between the micro and macro approaches is “denser 

development” as a policy implication. However, this policy implication was marginally 

supported in both approaches. In micro approach studies, the influence of local density 

on VMT is only marginal in comparison to accessibility. The macro approach has been 

dealing with density only at the regional scale, and yet it cannot clearly explain how 

local denser developments are related to regional density. Ironically, the micro approach 

studies imply that denser development may increase regional VMT if it occurs at a 

location remote from regional centers. This contradiction is a major gap between the 

both approaches. The micro approach recognizes “accessibility” (or distance from job 

centers) as the key variable influencing VMT, whereas the macro approach has 
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identified “centeredness” of population (a macro approach version of accessibility) as a 

less significant variable than density. 

 

4.4. Research Approach 

To explore the contribution of development control to auto driving reduction at 

the regional scale, this study aims to estimate impacts of urban form on DVMT per 

capita in U.S. metropolitan areas. Figure 4.1 is the conceptual framework that shows 

how this study comprehends relationships of associated variables. This study classifies 

influential factors of average VMT into three constructs—regional development 

patterns, local built environment, and transportation infrastructure. The framework has a 

hierarchical structure that includes urban area characteristics (i.e., population, population 

density, job density, and poverty rate1) as control variables at the higher level over the 

three policy factor constructs of VMT. This structure is devised to serve two purposes: 

1) to control various sizes and economic conditions of urbanized areas, and 2) to set the 

directions of relationships between these control variables and the key constructs. The 

constructs at the lower level include attributes that can be controlled by transportation 

and land use policies. On the other hand, regional demographic characteristics are not a 

product of urban form and transportation supply, but they may influence planning 

policies and shape distributions of population, job, and infrastructure. Except this 

structural condition, all possibilities of relationships are allowed between variables in the 

model, reflecting the relationships in the real world. Regions with stronger centers are 

expected to show a higher concentration of jobs, population and poverty. They also have 

more dense neighborhoods, and require fewer roads. The key questions of this study are 

to identify how these variables are interrelated with each other and with VMT, and to 

identify what factors are more influential than others in predicting the average VMT. 

 

                                                 
1 We also tested with median household income, but its higher correlations with all other explanatory 
variables in the model distorted the overall relationship structure and produced an unacceptable level of 
model fit. Poverty rate had insignificant correlations with other control variables and yet showed a high 
correlation with the income variable. Poverty rate also showed a significant relationship with the VMT 
variable, while, the income variable did not. 
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Figure 4.1 Conceptual framework for the DVMT study 
 

 

Recognizing “distance to regional centers” as the key correlate of average VMT, 

this study hypothesized that average VMT is lower in these cases: 1) as residents are 

located more closely to regional centers, 2) as regional employment centers are stronger, 

and 3) as income segregation is less severe. The study also tested a hypothesis that 

previous studies identified: 4) VMT is lower in areas with more dense neighborhoods. 

The first three hypotheses represent development control at the regional scale, such as 

“rural-to-urban transect” approach; while, the forth hypothesis supports a local-scale 

control, such as “compact neighborhood” approach. This study evaluated both policy 

options by testing the hypotheses.   

 

4.5. Methodology 

A cross-sectional analysis of 203 U.S. urbanized areas was conducted with two 

methodological emphases. First, gradient-based measures were used to quantify the 

changes of interested urban form attributes (i.e., population, job, and poverty rate) by 

distance from centers. While traditional gradient measures were based on a monocentric 
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urban model, this study further considered a polycentric urban structure commonly 

found in many metropolitan areas. Also, directed acyclic graph (DAG) and structural 

equation modeling (SEM) were used to control intervening factors (e.g., transportation 

infrastructure, and income segregation) between urban form and VMT. 

 

4.5.1. Data 

Data for this study came from four different sources: Highway Statistics for 

VMT and road information by urbanized area, National Transit Database (NTD) for 

transit information by transit provider, Census Transportation Planning Package (CTPP) 

for jobs and population information by census tract, and U.S. Census for poverty by tract 

and urbanized area boundaries. Given the time and geographical inconsistencies across 

these databases, a major consideration was taken to join variables from different sources 

and to determine time and geographic definitions for the study. This study employed 

CTPP 2000 and Highway Statistics 2002. The year 2000 data is the most recent version 

for CTPP available for this study. Meanwhile, the year 2002 dataset is the first Highway 

Statistics data using the year 2000 urbanized area definition. Here, the study assumed 

that the regional demographic structure did not change much during the two years. NTD 

2002 was selected for the consistency of transportation variables. The urbanized area 

population estimates in NTD 2002 showed a correlation coefficient of 0.998 with this 

study’s population estimates based on CTPP 2000.  

 

4.5.2. Study areas 

Among 384 U.S. urbanized areas (except Alaska, Hawaii, and Puerto Rico) in 

Highway Statistics 2002, 26 cases were dropped due to missing data and geographic 

discrepancies among data sources. Then, 203 areas that showed consistent distribution 

patterns of jobs, population, and poverty—these were assumed to be concentrated more 

toward regional centers—were selected. Population and jobs showed this distribution 

pattern in 331 areas, but only 203 areas showed this pattern in poverty.  This selection 

based on regional development patterns was to consider assumptions of the standard 
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urban model. The model predicted constantly decreasing job and population density with 

distance from the centers. The model also predicted lower income households would 

locate closer to the dense centers while higher income households would locate in the 

low density outskirts (Giuliano et al. 2008). These hypotheses enable establishing 

predictive relationships between regional development patterns and regional average 

VMT. For the other areas with unpredictable regional development patterns, a different 

research framework is necessary. 

Out of the selected areas, 122 areas were identified as monocentric and 81 areas 

as polycentric based on the center identification results of this study. Figure 4.2 presents 

the selected 203 urbanized areas. 

 

 

 
Figure 4.2 Study areas for the DVMT study (Source: U.S. Census 2000) 
 

 

4.5.3. Variables and measurements 

Table 4.1 presents variable names, data sources, and the geographical units of 

original data. Regional average VMT was measured with daily vehicle miles traveled 

(DVMT) per capita. DVMT refers to daily traffic volume calculated by traffic counts 
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multiplied by lane length of major roads, including highways, arterials, collectors, and 

local roads. The data was provided by the Federal Highway Administration (FHWA) at 

the urbanized area scale. Since the VMT were estimated from local traffic counts, the 

FHWA dataset is not perfect. However, it would be the most reliable regional-scale 

VMT dataset among the available in the U.S. The FHWA has made great efforts to 

maintain consistent data quality among urbanized areas using a standardized monitoring 

system, called the Highway Performance Monitoring System.  

 

 

Table 4.1  
Variable descriptions, measures, and data sources and geographic unit of data 

Variable 
description Variable measure 

Variable 
name 

Data source; geographic unit of 
data 

Travel outcome    

Regional VMT Daily vehicle miles of travel 
per capita 

DVMT/c Highway Statistics 2002, FHWA; 
urbanized area 

Transportation infrastructure   

Road supply Street lane feet per capita Road/c Highway Statistics 2002, FHWA; 
urbanized area 

Transit service 
supply 

Daily actual transit revenue 
feet per capita 

Transit/c NTD 2002, FTA; transit service 
provider 

Regional development patterns   

Population 
concentration 

Population density gradient  PD.grd CTPP 2000, Part 1: population at 
place of residence; census tract 

Job concentration Job density gradient JD.grd CTPP 2000, Part 2: population at 
place of work; census tract 

Poverty 
concentration 

Gradient of poverty rate Pvt.grd CTPP 2000, Part 1: population 
with poverty status determined; 
census tract 

Local built environment   

Neighborhood 
density 

Population-weighted average 
of tract population density  

Local.den CTPP 2000, Part 1: population at 
place of residence; census tract 

Controls for size and demographic condition   

Urban area size Population Pop Census 2000; urbanized area 

Population profile Population density Pop.den Census 2000; urbanized area 

Employment profile Job density Job.den Census 2000; urbanized area 

Economic profile Poverty rate Pvt.rate Census 2000; urbanized area 

Note: FHWA-Federal Highway Administration; FTA-Federal Transit Administration;  
          NTD - National Transit Database; CTPP-Census Transportation Planning Package 
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Policy-relevant variables include three regional development pattern variables 

(representing the concentrations of residents, jobs and poverty), one local built 

environment variable (representing neighborhood compactness), and two transportation 

infrastructure variables (representing road and transit supply). Other variables in the 

model—population, population density, job density and poverty rate—served as 

statistical controls for regional demographic aspects.  

Road supply was measured with “lane feet per capita.” While this study 

interpreted this measure as a transportation infrastructure variable, some micro studies 

used this as an urban form design factor. Transit supply is measured with “actual vehicle 

revenue feet,” which refers to the distance that buses or railway vehicles travel while in 

their revenue service. NTD provided the data by service provider. All provider 

information in a same urbanized area was summed up. 

Local built environment was measured with population density only, while micro 

approach studies typically used three Ds (i.e., density, diversity, and design). The other 

two Ds could not be measured in this study due to data limitations and the aggregate 

nature of this study. However, density is considered an effective proxy for the 

remainders at the large scale (Ewing 1994; Cervero 1993). To aggregate the densities of 

multiple neighborhoods at the regional scale, the population-weighted average of tract 

population density was used. This regional index is designed to increase as more people 

live in denser neighborhoods. It is calculated by ∑i (P  ·Di) / ∑i (Pi), where Pi is 

population at tract i, and Di is population density at tract i. 

Regional development patterns were measured in terms of spatial distributions of 

residents, jobs, and poverty, each of which characterizes trip origins, destinations, and 

travel behavior, respectively. This study is particularly interested in how these features 

are concentrated near regional employment centers because micro studies found the 

accessibility to regional centers is a key VMT variable. Gradient measures were used to 

quantify regional development patterns due to two advantages they provide. A gradient 

is effective to present the concentration toward a specific place like an employment 

center. Also, gradients are easy to interpret and convey straightforward policy implications. 
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For example, population density gradient shows the changing trend of density from 

center to periphery. If this measure has a significant influence on VMT, then it can 

suggest location specific density control guidelines based on distance from the center, 

such as rural-to-urban transect. This study used the simple exponential decay function to 

calculate gradients, y=EXP [α⋅x + β], where y is the variable of interest (i.e., job density, 

population density, or poverty rate) at distance x from center, α is gradient, and the 

exponential of β is the estimated density of center. The gradient α can be calculated by a 

linear regression with the transformation of the original function, LN(y) = α⋅x + β, where 

the gradient α is the slope of regression analysis. Urbanized areas with statistically 

insignificant α at the 0.05 level were excluded from this study. 

A major limitation of traditional gradient measurement is that it can only be used 

in monocentric urban models, while many contemporary metropolitan areas have 

polycentric urban structure. There are several gradient estimation methods for 

polycentric models (e.g., Craig and Ng 2001 and McMillen 2001; 2004), but these 

methods are technically complicated to calculate and translate into policy guidelines. To 

take advantage of the simplicity of the monocentric model, this study translated a 

polycentric structure into a monocentric structure by assuming that all employment 

centers (including CBD) are placed at the same location (Figure 4.3). A gradient value 

measured in this assumption is identical to the average of gradients from each center. 

 

 

  
Figure 4.3 An operation to translate polycentricity using monocentric model 
(DVMT study) 
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Center identification is the first step to estimate gradients of polycentric regions. 

Among a number of center identification methods (e.g., McDonald 1989; Gordon et al. 

1989; Giuliano and Small 1991; McMillen 2001; 2003; and Redfearn 2007), this study 

employed the two-stage non-parametric method of McMillen (2001). McMillen’s 

method is one of the most commonly used center identification methods, and allows for 

flexible applications to any areas without requiring local knowledge. Therefore, it was 

selected to be appropriate for this study involving a large number of urbanized areas 

across the U.S. Following McMillen’s process, center candidates were first identified as 

tracts having significantly higher densities than a smoothed density surface. The second 

stage determined centers among the candidates based on the significance of influence on 

job densities of nearby locations. Specifically, the method includes three steps: (1) 

estimate a job density surface using locally weighted regression (LWR); (2) select 

candidate centers as significantly greater residuals from the LWR estimates; and (3) 

exclude insignificant candidates based on the influence of proximity to each candidate 

on density. In this procedure, center identification results depend on three modifiable 

parameters: (1) window size for the LWR, (2) p-value to determine significant residuals, 

and (3) way to control CBD influence compared to other subcenters. Section 2 compared 

eight combinations of different parameter values for their performance in identifying 

employment centers, based on the model fit and the gradient of density model estimated 

from each parameter combination and the application to a VMT estimation model. This 

study used the best performing parameter combination out of the eight combinations—

the window size of 25%, the p-value of 0.1, and the same control between CBD and 

subcenters. 

 

4.5.4. Analytical methods 

A directed acyclic graph (DAG) was used to identify the structure of 

relationships. Directed graph stems from the field of artificial intelligence and computer 

science to present causal relationships among a set of variables using an arrow graph 

(Spirtes et al. 2001). DAG is a directed graph with no cyclic path, where there is at least 
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one ultimate outcome variable, such as VMT used in this study. Several search 

algorithms are available to calculate paths of the structural relationships. These 

algorithms statistically determine the path between any two variables in a model among 

four possible paths: one-direction, correlation, no relation, or unable to be determined. 

The algorithms can be broadly classified into the PC algorithm family (e.g., conservative 

PC, PCD, and FCI) and the greedy equivalent search (GES) algorithm. 

The PC algorithm starts the search with a complete, undirected graph which has a 

line (called “edge”) with no arrowhead connecting each variable (called “node”) with 

every other variable (Spirtes et al. 2000). Edges between nodes are removed sequentially 

based on conditional independence. Edges that survive this removal process are then 

directed using simple rules. For example, imagine a triangle of variables X, Y, and Z, 

and it is known that Z is correlated with both X and Y. If the edge between X and Y are 

conditionally independent given Z, then we can direct X—Z—Y as X→Z←Y. Any full 

path structure can be read as a set of multiple triangles. Since this algorithm determines 

path by individual edge, each variable should have a normal distribution in order to 

determine the independence between any two variables in the triangular relationship. 

The GES algorithm is a stepwise search over alternative DAGs using Bayesian 

posterior scores (Chickering 2002). The algorithm consists of two stages. It begins with 

a DAG in the condition that all variables are independent with each other (i.e., no edges 

between nodes). Edges are added and/or edge directions reversed in a systematic search 

across classes of equivalent DAGs if the Bayesian posterior score is improved. The first 

stage ends when a local maximum of the Bayesian score is found such that no further 

edge additions or reversals improve the score. After this first stage, the second stage 

commences to delete edges and reverse directions, if such actions result in improvement 

of the Bayesian posterior score. The algorithm terminates if no further deletions or 

reversals improve the score. 

These algorithms determine relationships based purely on statistical procedures 

and may produce unreasonable results. To avoid this problem, users can set up specific 

conditions based on rational hypotheses or knowledge. As described in the conceptual 
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framework (Figure 4.1), this study classified variables into three hierarchical tiers (i.e., 

control, policy, and outcome variables) and established a rule that variables in the lower 

tier do not influence variables in the higher tier (the lowest tier is the outcome variable, 

DVMT per capita). 

Using the Tetrad IV software, this study attempted multiple algorithms, 

searching for models with better model fit. Models with logarithm-transformed data 

were also tested, particularly because PC-based algorithms may require stricter 

normality for each individual variable. To determine reasonable DAGs, every tested 

model was evaluated with the relative chi-square, for which value closer to 1 indicates a 

better-fitted model (Carmines and McIver 1981). Then final DAG models were selected 

after excluding worse-fitted models and models showing a duplicative relationship 

structure. 

Direct and indirect influences of explanatory variables on regional VMT were 

estimated by structural equation modeling (SEM) based on the DAGs selected. SEM is 

useful for tracking relative effects of variables on each other through hypothesized 

relationship paths. SEM estimates parameter coefficients by solving simultaneous 

equations of a series of hypothesized relationships in a model. The technique uses 

iterative methods (e.g., maximum likelihood method, generalized least square, etc.) that 

involve a series of attempts to obtain estimates of unknown parameters until it finds the 

model covariance matrix best fitted with the actual covariance matrix representing the 

hypothesized relationships (Hoyle 1995). Therefore, SEM can be regarded as a general 

method for constructing a predictive model with relatively few restrictions (e.g., 

regression analysis, factor analysis, and ANOVA are special cases of SEM). The AMOS 

20 software package was used to conduct SEM analyses in this study. 

 

4.5.5. Descriptive statistics 

Table 4.2 shows descriptive statistics of variables used, including normality 

indices. Since both DAG and SEM calculate model-fit statistics using normal theory-

based estimation methods, one of the main concerns about the data in this study is 
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whether the sample has a multivariate normal distribution. In a strict perspective, 

multivariate normality is not necessarily achieved by the normality of every single 

variable (Mardia 1974). However, researchers often found that a looser standard can be 

allowed for structural equation models (Gao et al. 2008; Kline 1998; Voortman and 

Druzdzel 2008). For example, Klein (1998) suggested that a distribution with a skewness 

less than 3 and kurtosis less than 10 is allowable. Most variables met with Klein’s 

normality criteria except population (Pop) and local density (Local.den). Both variables 

were extremely skewed because the majority of study areas had a population of less than 

200,000. Three extreme outliers (i.e., New York, NY; Los Angeles, CA; and Chicago, 

IL) also might influence their normality. Among the two extreme non-normal variables, 

population does not have to satisfy the normality assumption since it is an exogenous 

variable in the model (i.e., population is not influenced by any other variable). 

According to regression theory, the normality assumption is applied to residuals, and 

therefore, endogenous variables. The local built environment variable (Local.den) still 

has the non-normality problem. Common suggestions to solve this problem include 

variable transformation to improve the univariate normality of each individual variable 

(Andreassen et al. 2006; Bollen 1989; Yuan et al. 2000) and the deletion of outliers to 

improve multivariate normality (Bagley and Mokhtarian 2002). However, as Gao et al. 

(2008) pointed out, “the pursuit of a multivariate normal distribution by the deletion of 

observations should be consciously weighed against the loss of model power and 

generalizability in the interpretation of the results (p. 116).” This study weighed model 

interpretation more heavily and did not delete data. Instead, logarithm-transformed 

models were tested. Natural logarithm transformation made all variables pass the 

normality test based on the Kolmogorov-Smirnov index (Lilliefors 1967) and Klein’s 

(1998) criteria, though it still did not meet the multivariate normality condition of less 

than 3 of Mardia’s statistic (Mardia 1974). 

 



 54 

Table 4.2  
Descriptive statistics of variables  
(values in parenthesis are calculated from the natural log-transformed data) 

Construct Variable Unit Min. Max. Mean Std. Dev. Skewness Kurtosis 

Outcome DVMT/c  mi/person 12.7 
(2.54) 

43.4 
(3.77) 

22.8 
(3.1) 

5.3 
(0.23) 

0.6 
(-0.1) 

0.6 
(-0.2) 

Regional 
demographic 
characteristics 

Pop thousand 51 
(3.93) 

17485 
(9.77) 

782  
(5.72) 

1777 
(1.22) 

6.1 
(0.8) 

46.8 
(0.2) 

Job.den /sq. mi 634 
(6.32) 

3615 
(8.06) 

1293  
(7.11) 

441 
(0.30) 

2.0 
(0.3) 

6.7 
(0.3) 

Pop.den /sq. mi 1337 
(7.14) 

7514 
(8.86) 

2475  
(7.75) 

926 
(0.30) 

2.4 
(0.8) 

7.9 
(0.9) 

Pov.rate percent 4.4 
(1.48) 

34.5 
(3.54) 

13.4  
(2.53) 

4.8 
(0.33) 

1.5 
(0.2) 

3.5 
(0.9) 

Transportation 
infrastructure 

Road/c  ft/person 11 
(2.40) 

68.8 
(4.23) 

26 
(3.22) 

7.7 
(0.30) 

1.0 
(-0.4) 

4.2 
(0.6) 

Transit/c  ft/person 31.3 
(3.44) 

671.2 
(6.51) 

165.5 
(4.95) 

99.7 
(0.56) 

1.9 
(0.0) 

5.7 
(0.0) 

Local built 
environment 

Local.den /sq mi 974 
(6.88) 

33540 
(10.42) 

3628 
(8.06) 

2799 
(0.48) 

6.7 
(0.9) 

65.8 
(2.7) 

Regional 
development 
patterns 

JD.grd   0.062 
(1.82) 

1.205 
(4.79) 

0.373 
(3.43) 

0.229 
(0.62) 

1.0 
(-0.1) 

0.6 
(-0.7) 

PD.grd   0.037 
(1.31) 

0.936 
(4.54) 

0.265 
(3.06) 

0.178 
(0.67) 

1.2 
(0.0) 

1.2 
(-0.7) 

Pvt.grd   0.012 
(0.18) 

0.559 
(4.02) 

0.192 
(2.75) 

0.116 
(0.70) 

0.8 
(-0.7) 

0.0 
(0.4) 

Note 1: Refer to Table 4.1 for detailed descriptions of variables. 
Note 2: The log-transformations of gradient measures were done after multiplying the original 
value with 100 to avoid a negative value. 

 

 

DVMT/c is correlated with almost all variables (except population and transit 

supply) in the model. Many factor variables also are significantly correlated with each 

other as shown in Table 4.3. This raises the multicollinearity problem that can distort 

estimations of explanatory powers of factor variables in a multiple regression model. 

Structural equation modeling (SEM) is not free of multicollinearity, as the model is a 

simultaneous equation form of several regression models. However, SEM often can 

relieve the multicollinearity problem by decomposing a single regression model with 

many independent variables into many simpler regression models. 
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Table 4.3  
Standardized correlations (Pearson’s R) among variables 
(values in parenthesis are calculated from the natural log-transformed data) 

Variables DVMT/c Pop Job.den Pop.den Pvt.rate Road/c Transit/c Local.den 

DVMT/c 1               

Pop 
 -.047 
( .312**) 

1             

Job.den 
 -.163*  
(-.247**) 

  .429**  
( .309**) 

1           

Pop.den 
 -.214**  
(-.329**) 

  .525**  
( .431**) 

  .876**  
( .846**) 

1         

Pvt.rate 
 -.168*  
(-.153*) 

 -.096  
(-.242**) 

  .131  
( .032) 

  .151*  
( .066) 

1       

Road/c 
  .445**  
( .439**) 

 -.347**  
(-.450**) 

 -.489**  
(-.538**) 

 -.568**  
(-.671**) 

  .043  
( .064) 

1     

Transit/c 
 -.117  
(-.114) 

  .511**  
( .379**) 

  .490**  
( .486**) 

  .448**  
( .465**) 

 -.027  
(-.005) 

 -.343**  
(-.358**) 

1   

Local.den 
 -.230**  
(-.320**) 

  .819**  
( .521**) 

  .618**  
( .735**) 

  .691**  
( .869**) 

  .048  
( .044) 

 -.495**  
(-.696**) 

  .621**  
( .563**) 

1 

JD.grd 
 -.403**  
(-.403**) 

 -.341**  
(-.740**) 

  .085  
( .092) 

 -.074  
(-.059) 

  .387**  
( .302**) 

  .110  
( .155*) 

 -.070  
(-.103) 

 -.098  
(-.111) 

PD.grd 
 -.416**  
(-.427**) 

 -.318**  
(-.750**) 

  .016  
( .031) 

 -.113  
(-.101) 

  .327**  
( .249**) 

  .085  
( .171*) 

 -.056  
(-.100) 

 -.065  
(-.070) 

Pvt.grd 
 -.337**  
(-.314**) 

 -.333**  
(-.622**) 

  .055  
( .103) 

 -.071  
(-.024) 

  .333**  
( .243**) 

  .180 
( .185**) 

 -.152*  
(-.116) 

 -.096  
(-.038) 

** Correlation is significant at the 0.01 level 
*  Correlation is significant at the 0.05 level 
Note: Refer to Table 4.1 for detailed descriptions of variables  

 

 

4.6. Results and Implications 

4.6.1. Directed acyclic graph (DAG) 

To find more reasonable structural relationships, multiple algorithms (i.e., GES 

and PC and its modifications) were tested to draw DAGs. Both non-transformed and 

transformed data were tested in the DAG procedure. Model fit was estimated using the 

relative chi-square (chi-square divided by the degree of freedom), in which a value less 

than 2 is regarded as reasonably fitted (Carmines and McIver 1981).  

The two different types of reasonably fitted DAGs were found: the GES with 

non-transformed data (GES-non) and the GES with log-transformed data (GES-log) 
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(Figure 4.4). Both the GES-non and the GES-log agreed that road supply (Road/c) had a 

direct effect on VMT. A major distinction between the two was the paths between urban 

form variables and VMT. The GES-non model identified that VMT was directly 

influenced by population density gradient (PD.grd) while local density (Local.den) had 

no effect. The model also implies more compact neighborhoods were achieved by the 

regional development patterns, showing local density level was a product determined by 

regional development patterns and road supply. On the contrary, the GES-log model 

supports a counter theory that local density has a direct impact on VMT while regional 

development patterns only have an indirect impact. This is an interesting distinction in 

planning perspective particularly because the GES-log model reinforces the traditional 

“compact neighborhood” principle whereas the GES-non model supports the “rural-to-

urban transect” concept. The clear distinction between the two models was presented 

later through parameter estimates by SEM. 

Another noteworthy implication found in both models is that transit supply 

(Transit/c) has no significant effect on VMT per capita. This would not indicate the 

uselessness of transit development, but rather indicates that most U.S. urbanized areas 

are primarily dependent on private vehicles and transit supply is not sufficient enough to 

affect vehicle usages. Since this study focuses on influences on VMT, the transit supply 

variable was excluded in SEM analyses. 

There also exist some differences in relationships between control and regional 

development pattern variables. For example, control variables have direct relationships 

with both job and population density gradients in the GES-log model, while the GES-

non model gives direct paths between control variables and job density gradient only. 

However, this difference does not seem to suggest meaningful policy implications but to 

simply indicate the overall association between the two constructs. Areas with a larger 

population tend to have a higher density and a steeper density gradient, but planning 

policies cannot control population and regional density to manage density gradient. 
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chi-square = 55.73 
degree of freedom = 32 

chi-square/df = 1.74 
 
(a) DAG searched by GES algorithm with  
     non-transformed data 

chi-square = 41.85 
degree of freedom = 31 

chi-square/df = 1.35 
 
(b) DAG searched by GES algorithm with  
     log-transformed data 

Note: Refer to Table 4.1 for detailed descriptions of variables 
 
Figure 4.4 Directed acyclic graphs of variables influencing vehicle miles traveled 
per capita among 203 U.S. urbanized areas, 2002 
 

 

4.6.2. Structural equation modeling (SEM) 

The path models derived from the DAG searching process were estimated using 

SEM. Since the two models used different types of data, their results also need to be 

interpreted differently. The non-transformed model has a wide variety of variable units; 

thus, standardized effect size is useful to compare the relative explanatory power among 

factor variables. In the log-transformed model, non-standardized effect size represents 

elasticity that reflects the relative sensitivity (percentage change) of DTMT/c to a 1% 

increase in each factor variable, holding other factors constant. Table 4.4 summarizes 

SEM results by model, including direct and indirect effects of factor variables on 
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DVMT/c and model-fit statistics. Goodness-of-fit was measured with five indices as 

follows. The values in parentheses indicate critical thresholds to determine a good model 

fit (Hu and Bentler 1999). 

 Relative chi-square (< 2.0) 

 Comparative fit index: CFI (> 0.90), 

 Normed fit index: NFI (> 0.95), 

 Tucker-Lewis Index: TLI (or non-normed fit index: NNFI) (> 0.90), and 

 Root mean square error of approximation: RMSEA (≈0.05). 

 
 
Table 4.4  
Effects on DVMT/c and model fit statistics, estimated using SEM 

 
GES-non 

(standardized effects) 
GES-log 

(elasticity) 

Variables 

Total 
Effect 

Direct 
Effect 

Indirect 
Effect 

Total 
Effect 

Direct 
Effect 

Indirect 
Effect 

PD.grd 
Pop. density 
gradient 

-0.500 -0.448 -0.053   0.024 -  0.024 

JD.grd 
Job density 
gradient 

-0.389 - -0.389  0.015 -  0.015 

Pvt.grd 
Poverty rate 
gradient 

 0.160 -  0.160  0.030 -  0.030 

Local.den Local density - - - -0.257 -0.155 -0.102 

Road/c Lane feet per capita  0.484  0.484 -  0.424  0.424 - 

Pop Population -0.036 - -0.036  0.060  0.138 -0.079 

Pop.den Pop.density -0.292 - -0.292 -0.449 - -0.449 

Job.den Job density -0.240 - -0.240  0.016 -  0.016 

Pvt.rate Poverty rate -0.198 - -0.198  -0.070 -  0.070 

Model statistics             

Chi-square 52.67 
 

  22.02 
 

  

Degrees of freedom 26 
 

  22 
 

  

Relative chi-square 2.026 
 

  1 
 

  

CFI (> 0.90) 0.983 
 

  1.000 
 

  

NFI (> 0.95) 0.967 
 

  0.988 
 

  

TLI (>0.90) 0.971 
 

  1.000 
 

  

RMSEA (≈ 0.05) 0.071     0.002     

Note 1: GES-non is a DAG model searched by GES algorithm with non-transformed data, and 
GES-log is a model searched by GES algorithm with log-transformed data. 

Note 2: Refer to Figure 4.4 for detailed relationship paths in each model. All paths in the two 
models are statistically significant at the 0.01 level. 
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The GES-log model, passing all these criteria, showed a better model fit. The 

GES-non model also showed a good fit overall but only marginally satisfied the relative 

chi-square and RMSEA criteria. All path coefficients in the two models were statistically 

significant at the 0.01 level. The models agreed that the strongest positive predictor was 

road supply (Road/c) – the more road supply, the more VMT. They also agreed that 

population has a minimal effect, indicating the size of region is less important in 

determining the level of VMT.  

Regional population density had a relatively strong influence on VMT in both 

models (i.e., -0.292 of standardized effect in the GES-non and -0.449 of elasticity in the 

GES-log). This result is consistent with many previous studies (Cervero and Murakami 

2010; Ewing et al. 2008; Newman and Kenworthy 1989; 1999). However, it should be 

noted that its effect is indirect in both models. For example in the GES-non, population 

density influenced VMT through two indirect paths, “Pop.den→Road/c →DVMT/c” and 

“Pop.den→JD.grd→PD.grd→ DVMT/c” (Figure 4.4-a). An indirect path can be 

interpreted in two different ways – an actual causality path or a spurious relationship. A 

relationship between X and Y can be regarded as spurious when a third intervening 

factor W affects both variables. This can be described as “X←W→Y” in a DAG. 

Determining the type of relationship is a major function of the DAG searching process. 

In both the GES-non and the GES-log models, DAG searching algorithms agreed with 

the pattern of “Pop.den → Road/c → DVMT/c,” which indicates the actual indirect 

relationship between regional population density and VMT. 

Meanwhile, the two models were inconsistent results regarding VMT reduction 

factors: population density gradient (PD.grd) and job density gradient (JD.grd) in the 

GES-non and regional population density (Pop.den) and local density (Local.den) in the 

GES-log. This indicates that both models agreed on the significant influence of urban 

form on VMT but disagreed about the rationale of the influence. Considering that 

population density gradient and local density has a direct effect in GES-non and GES-

log, respectively, this disagreement indicates the theoretical competition between the 

“compact neighborhood” principle versus the “rural-to-urban transect” concept. 
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4.6.3. Structural equation modeling (SEM) without control variables 

The full model results could not provide a clear decision about which theory is 

more plausible. To evaluate the relative applicability of the competing theories (i.e., 

compact neighborhood development versus regional development pattern control), 

another series of SEM analyses were conducted after excluding indirect control variables, 

such as population, population and job density, and poverty rate. The removal of these 

variables could be justified because they have only indirect or minimal impacts. These 

simple models also would help avoid possible model estimation errors by making the 

non-normal variable exogenous. Considering a possible distortion by the control 

variables onto the whole relationship structure, another set of path searching was 

conducted for the simplified models. All algorithms identified three discrete patterns of 

relationships in common –”Local.den - Road/c - DVMT/c,” “PD.grd - DVMT/c,” and 

“Road/c - Pvt.grd” – in both non-transformed and log-transformed models. No link was 

identified between PD.grd and Local.den. A path diagram was developed based on the 

identified relationships, and SEM analyses were conducted with both non- and log-

transformed data using the same path diagram.  

Figure 4.5 presents the results. The models showed a good fit, and every path 

was significant at the 0.01 level. The non- and log-transformed models yielded similar 

results in terms of model fit and coefficient estimates. Different from the full-models, 

local density and regional development pattern variables showed similar effects on VMT 

in both simple models  

The concentration of population toward centers was the primary player to lower 

average VMT. Population density gradient (PD.grd) had a direct effect, and its net 

elasticity was relatively higher (-0.169) among urban form variables (Table 4.5). This 

conceptually agreed with previous studies which found a significant relationship either 

between regional average gasoline use and job centrality (Van de Coevering and 

Schwanen 2006) or between individual VMT and distance to CBD (Ewing and Cervero 

2001, 2010).  
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(a) Non-transformed model 
    (number indicates standardized effect) 

(b) Log-transformed model 
    (number indicates elasticity) 

  
Chi-square = 10.84 
Degrees of freedom = 8 
Relative chi-square = 1.355 
CFI (> 0.90) = 0.996 
NFI (> 0.95) = 0.986 
TLI (> 0.90) =0.993 
RMSEA (≈ 0.05) = 0.042 

Chi-square = 12.20 
Degrees of freedom = 8 
Relative chi-square = 1.53 
CFI (> 0.90) = 0.995 
NFI (> 0.95) = 0.986 
TLI (> 0.90) = 0.991 
RMSEA (≈ 0.05) = 0.051 

Note 1: All path coefficients are significant at the 0.01 level. 
Note 2: DVMT/c – daily VMT per capita; Road/c – lane feet per capita; Local.den – population-weighted 
average of tract density; PD.grd – population density gradient; JD.grd – job density gradient; Pvt.grd – 
poverty rate gradient 

Figure 4.5 Structural equation modeling of simplified urban form-VMT models 
 

 

Table 4.5  
Effects on DVMT/c in simplified urban form-VMT models, estimated using SEM 

  
Non-transformed model 
(standardized effects) 

Log-transformed model 
(elasticity) 

  
Total 
Effect 

Direct 
Effect 

Indirect 
Effect 

Total 
Effect 

Direct 
Effect 

Indirect 
Effect 

PD.grd Pop. density gradient -0.433 -0.459 0.026  -0.169 -0.181  0.012 

JD.grd Job density gradient -0.368 - -0.368  -0.153 -  0.015 

Pvt.grd Poverty rate gradient  0.065 -  0.065  0.028 -  0.030 

Local.den Local density -0.235 - -0.235 -0.178 - -0.178 

Road/c Land feet per capita  0.484  0.484 -  0.412  0.424 - 

Note: Refer to Figure 4.5 for detailed relationship paths in each model. All paths in two models 
are significant at the 0.01 level. 
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In addition to the direct effect, population density gradient also exerted its 

influence under close relationships with other regional development pattern variables. 

The path of “JD.grd→PD.grd→ DVMT/c” can be translated as follows: the 

concentration of jobs toward centers tends to attract more population near to the centers 

reducing the average travel distance. The elasticity between JD.grd and PD.grd is very 

high, 0.99. Also, the path of “JD.grd→Pvt.grd→Road/c →DVMT/c” can be interpreted 

that the stronger centers tend to attract low income people more strongly and push out 

higher income population to the outskirt. This process would result in an increase in the 

demand for roads and travels by the higher income group who tend to drive more. An 

interesting point here is that the dispersion of poverty showed an effect to reduce road 

construction and VMT (0.028 of elasticity). This is somewhat surprising because all 

gradients of poverty, population density, and job density had a positive relationship with 

each other, and the dispersion of population and jobs significantly increased VMT. The 

impact of poverty gradient suggests that the efforts to relieve income segregation will be 

in sum beneficial to a region’s sustainability goals. It reduces VMT, reduces road 

construction, and makes many equity goals achievable, such as lessening racial 

segregation and the inequality in labor market, educational, and health outcomes (Ananat 

2007; Cutler and Glaeser 1995; Ellen et al. 2000; Mayer 2002) 

The path of “Local.den → Road/c → DVMT/c” suggests that areas having more 

high-density neighborhoods tend to require fewer road supply and yield less VMT. This 

finding agrees with the claim of “compact city” advocates. The net elasticity of local 

density (-0.178) is slightly higher than the elasticity of population density gradient (-

0.169), while the non-transformed model indicates that population density gradient has a 

higher effect than local density (-0.433 versus -0.235 of standardized effect).  

 

4.7. Discussion 

At first glance, the test results of the simplified models appear to present a 

balanced view between the “rural-to-urban transect” and the “compact neighborhood” 

principles, because the influences of local density and regional development patterns are 
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independent of each other. Initially, this study tested models conditioning that local 

density and job density gradient have a covariate relationship, but the relationship was 

confirmed insignificant. However, this independence is somewhat odd in policy 

perspective. If we consider urban form change in a single region, it is reasonable that an 

increase of population density gradient means more people living in denser 

neighborhoods thus causing an increased local density measure. The opposite 

relationship can be considered too. Density gradient will become gentler as more 

compact neighborhoods are developed further from a center. Hence, population density 

gradient and local density are expected to have a significant relationship in any direction. 

The insignificant relationship between these two actually confuses policy decision 

making between “transect” (or infill development) and “compact neighborhood.”    

This seemingly contradictive result has to be interpreted differently considering 

that this study is cross-sectional rather than longitudinal. A more valid implication of the 

independence between regional development patterns and local density in this cross-

sectional study is that many urbanized areas have compact neighborhoods not only near 

centers but also in the outskirts. Consequently, the variances in development patterns in 

suburbs weakened the relationship between the regional and local variables. Compact 

development in suburbs must be an extra benefit in comparison to dispersed 

development there. This would be the reason why local density has a significant effect 

after controlling for regional variables. Here the effects of regional variables are 

regarded as additional, and thus an area with compact neighborhoods near centers has 

much lower average VMT by the summed effects of local density and regional density 

gradient. 

Hence, in terms of policy implication, the test results indeed indicate “rural-to-

urban transect” is superior to “compact neighborhood” for reducing VMT. The 

“transect” becomes an important element of New Urbanism, which provides a regional 

framework for organizing human habitats in a range of intensity from the most rural 

environment to the most urban. Although the Charter for the New Urbanism includes 

regional principles from the early stage, the early New Urbanism concept was generally 
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organized in the emphasis of compact developments at the neighborhood scale, such as 

traditional neighborhood developments (TNDs) and transit-oriented developments 

(TODs) (Bohl and Plater-Zyberk 2006). Data shows an interesting tendency that implies 

the consequence of this fashion – larger urbanized areas tend to have more high-density 

neighborhoods but lower density gradients. That is, many compact neighborhoods have 

been developed in suburbs. Based on the results of this study, the compact neighborhood 

approach appears to achieve a partial success and rather might lessen the chance to 

reduce VMT. 

Two reasons for the limited success of TOD can be explained by this study. One 

is the limited uses of transit. The provision of transit services was enlarged as dense 

neighborhoods increased (the path of “Local.den→ Transit/c” in Figure 4.4-a), but the 

effect of transit supply on VMT was not significant. The other is the urban nature of 

unequal spatial distribution of jobs and population. Quality jobs and markets tend to be 

clustered at limited areas, such as CBD or other subcenters, as supported by urban 

economic theories such as bid-rent theory and agglomeration of economy. Among 348 

urbanized areas identified in this study, 333 areas have a significant job density gradient, 

and 324 areas showed a significant population density gradient. The strong effect of 

density gradient on DVMT/c indicates that denser development at a location remote 

from regional centers may just make residents increase their VMTs, particularly in the 

private vehicle oriented world. 

 

4.8. Summary and Conclusion 

This study examined the influence of local and regional development patterns on 

collective VMT, considering polycentric urban structure and complicatedly intervening 

factors (e.g., transportation infrastructure, and income segregation). A series of cross-

sectional analyses of 203 U.S. urbanized areas was conducted, using directed acyclic 

graph (DAG) and structural equation modeling (SEM), which are particularly useful to 

address complex relationships. Recognizing “distance to regional centers” as the key 

dimension to quantify regional development patterns conducive to reducing regional 
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VMT, this study measured regional development patterns with changing trends of 

population, jobs and poverty rate by the distance from centers. In the calculation process, 

multiple centers were identified to consider the polycentric urban structure of modern 

metropolitan areas, and gradients were calculated after operationally transferring the 

polycentric structure into the monocentric one in the assumption that all employment 

centers are placed at a same location. 

As illustrated in Figure 4.6, major findings of this study are as follows: 1) VMT 

is lower as more people and jobs are located more closely to centers (or steeper 

population and job density gradients); 2) the higher concentration also increases VMT 

by requiring more road supply; 3) VMT is lower as more people live in denser 

neighborhoods (or higher population-weighted average of tract density); 4) road supply 

has a strong positive impact on VMT; 4) transit supply is not related to VMT; 5) poverty 

gradient has a minimal effect on VMT; and 6) the effects of local versus the regional 

urban form on VMT were independent of each other. These findings collectively suggest 

that the “rural-to-urban transect” approach that considers both regional and local urban 

form effects is superior to traditional “compact neighborhood” approach that only 

considers local urban form effects. 

This study encompasses a comprehensive picture of regional sustainable 

development principles such as smart growth, New Urbanism, and compact city. The 

analyses were intended to explore if these principles and methods are promising in terms 

of a concrete sustainability performance indicator, VMT. Specific attention was paid to 

clarifying a few potential factors that may distort the urban form-VMT relationship, such 

as polycentricism, regional vs. local urban form, and spatial income segregation. The use 

of aggregate data limits detailed controls, but this study helps fill the gap in the 

disaggregate travel behavior studies that rely on only one or several metropolitan areas 

and provides additional insights on how to balance travel-associated factors in the 

regional planning context.  
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Figure 4.6 Summary of findings from the DVMT study 
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5. INFLUENCES OF URBAN FORM ON TRANSIT PASSENGER MILES 

TRAVELED AT THE METROPOLITAN SCALE 

 

5.1. Outline 

This paper examines the influence of urban form on transit passenger miles 

traveled (PMT) at the regional scale, particularly focusing on policy-interpretable urban 

form measures and structural relationships among predictor variables. A series of cross-

sectional analyses of 203 U.S. urbanized areas was conducted using directed acyclic 

graph (DAG) and structural equation modeling (SEM). The study found that: 1) PMT 

per capita is greater in urbanized areas that supply more transit service hours and have a 

greater amount of dense neighborhoods; 2) more concentrated regional development 

patterns were associated with moderate increase of PMT per capita, but this effect may 

not be generalized throughout the U.S.; 3) while regional population density has been 

known as the strongest transit increasing factor, its effect might be spurious or only 

indirect; and 4) road supply did not cause a difference in PMT per capita among U.S. 

urbanized areas because transit demand and supply is too low to be a viable substitute 

travel option for driving. 

 

5.2. Introduction 

Growing concerns over climate change have attracted keen interests in reducing 

the amount of vehicle use. Producing 30% of CO2, the transportation sector was the 

second largest source of greenhouse gas after electricity generation in the U.S. in 2008 

(U.S. EPA 2011). Promoting transit, with restructuring urban form toward more compact 

form, has been a major policy means to achieve the auto travel reduction goal. Transit 

oriented development (TOD) is a representative example. The main idea of TOD is a 

combination of transit infrastructure constructions and compact neighborhood 

developments near transit stations to promote transit use and reduce vehicle travel 

(Cervero et al. 2002). This idea has been accepted by many State/local governments in 

the U.S. as a sustainable planning strategy (U.S. SCCST 2009; CPDR 2008). 
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Many studies have examined factors affecting transit uses at both the micro and 

the macro scales. Micro-scale studies examined individuals’ transit choices using 

disaggregate variables such as individual socioeconomic characteristics, car ownership, 

and local built environment (Cervero and Radisch 1996  Bento et al. 2005  Cervero and 

Duncan 2006  Ewing et al.2009  Frank and Pivo 1994  Kitamura et al. 1997  Rodr  guez 

and Joo 2004; Zhang 2004). Macro scale studies were interested in understanding how 

the aggregate scale of transit use is affected by macro scale influences such as 

population and employment, regional density, transit fares and service levels (Chen et al. 

2011; Taylor et al. 2009; Litman 2004; Gomez-Ibanez 1996; Hendrickson 1986). These 

two kinds of studies were based on different assumptions, and thus provided different 

implications. Martel (1996) pointed out that choice theory-based studies at the individual 

scale have few implications for the behavior of large-scale aggregates.  

Micro and macro studies have treated urban form factors differently. Focusing on 

built environment impact on transit use, micro studies measured various types of urban 

form attributes, including residential density, employment density, retail density, transit 

stop density, land use mix, distance to transit stop, distance to central business district, 

job accessibility and so on. The geographic unit of measurement is also diverse (e.g., 

census tract, block group, and two-mile distance near travel origins and/or destinations). 

While many micro studies overall agreed that dense, compact development is more 

conducive to promoting transit ridership, there exists some inconsistencies about what 

and how specific urban form attributes affect transit uses (Taylor and Fink 2002). For 

example, some found that residential density has a significant effect (Dunphy and Fisher 

1996; Baker 1994; Ross and Dunning 1997; Cervero 2002;  Cervero and Duncan 2006; 

Zhang 2004), while others negated the effect (Frank and Pivo 1994; Ewing et al. 2009; 

Pushkar et al. 2000). This inconsistency supposedly came from variances in study area, 

variables and analysis framework used. Ewing and Cervero (2010) attempted to 

generalize the results of micro studies with meta-analysis. They found that the distance 

to nearest transit stop, percent of 4-way intersection and road density have the strongest 

effect on transit mode choice (0.29, 0.29 and 0.23 of elasticity, respectively). Effects of 
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neighborhood-level diversity and density were found moderate (0.12 and 0.07 of 

elasticity, respectively). 

Macro studies were designed to evaluate the influences of regionally aggregated 

attributes on the collective transit ridership. However, focusing on evaluating the effects 

of fare and service level (e.g., vehicle revenue miles, etc.) change on collective transit 

ridership, these aggregated level studies tended to inadequately consider urban form 

effects. Many studies ignored urban form factors in their estimation models (Kain 1996; 

Lane 2010; Agthe and Billings 1978; Gomez-Ibanez 1996; Chen et al. 2011). Although 

some macro studies used regional (e.g., city or metropolitan) scale densities of 

population and employment as proxy measures of urban form (Spillar and Rutherford 

1998; Taylor et al. 2009; Bento et al. 2005), these large scale density measures do not 

deliver land use policy implications that micro studies’ urban form measures can 

provide. Increasing regional density depends on the growth of population and 

employment at the regional scale, and this is not a land use policy issue. A compact 

neighborhood development may not contribute to increasing regional density but only 

lead migrations from one neighborhood to another within a same region. While many 

macro studies found significant impacts of fare and service level (Gomez-Ibanez 1996; 

Kain 1996; Agthe and Billings 1978; Lane 2010; Chen et al. 2011; Taylor et al. 2009), 

some studies found that employment and population change significantly affect transit 

ridership (Hendrickson 1986; McLeod Jr et al. 1991; Gomez-Ibanez 1996; Litman 2004; 

Taylor et al. 2009; Chen et al. 2011). This implies a potentially strong effect of urban 

form on transit use, considering that population and employment size tend to be strongly 

correlated with population and employment densities, road density as well as local-level 

density. 

Generalizability is a problem in both micro and macro studies.  Due to the 

scarcity of quality disaggregate data, micro studies have been conducted with samples in 

one or several metropolitan areas and thus could not sufficiently consider regional 

attributes that might significantly influence transit uses (e.g., the size of region, the size 

of transit infrastructure, service level, and fare). A majority of macro studies also were 
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conducted for one or a few regions because they prefer longitudinal analysis to examine 

the change in transit ridership in a given area. One of few cross-sectional studies at the 

macro level was done by Taylor et al. (2009). They tested 23 variables measuring 

geographic, economic, population, road system, and transit system characteristics for 

265 U.S. urbanized areas. After eliminating independent variables that were insignificant 

or highly collineared with other variables, they established a simultaneous equation with 

two regression models representing transit supply and demand each. The study found 

that per capita transit supply (vehicle revenue hours) was lower in areas with lower 

density and lower percent carless households, and located in the South of the U.S. 

Transit ridership per capita was influenced by transit supply, land area, median 

household income, non-transit trips (walking, biking, etc.), transit fares, and service 

frequency. 

Another challenge in urban form-transit studies is the generally high level of 

collinearity among factor variables. Many macro studies identified population, 

employment, fare, and service level (or transit supply) as significant factors on transit 

uses. All these variables tend to be highly correlated with each other because transit use 

level is a balanced outcome between demand and supply. For example, areas with a 

greater population tend to show greater employment and density, and greater population 

and density are typically accompanied by more transit supply. In this situation, spurious 

relationships might exist between some variables and transit use; thus, it is difficult to 

identify what factors have actual influences. Resolving the structural influence of these 

various factors on one another and on transit use is a significant methodological 

challenge (Crane 2000; Gomez-Ibanez 1996). 

This study attempted to examine the influence of urban form on transit use with 

three emphases: 1) focusing on transit passenger miles traveled (PMT) rather than the 

number of passenger trips because PMT is a more relevant indicator of reduction in fuel 

usage and emission, 2) using urban form measures that can be translated to land use 

policy implications, and 3) searching for a structural relationship among variables. 
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5.3. Research Approach 

Figure 5.1 is the conceptual framework that shows how this study hypothesized 

the relationships among study variables. This study classifies influential factors of PMT 

per capita into three policy-relevant study constructs – regional development patterns, 

local built environment, and transportation supply factor. The framework has a 

hierarchical structure that includes urban area characteristics (i.e., population, population 

density, job density and income) as control variables at the higher level over the three 

influential constructs of VMT. This structure is devised to serve two purposes: 1) to 

control various sizes and economic conditions of urban areas, and 2) to set the directions 

of relationships between these control variables and the key constructs. Regional 

demographic characteristics are not a product of urban form and transportation supply, 

but they may influence planning policies and shape distributions of population, job, and 

infrastructure. Except this structural condition, all possibilities of relationships are 

allowed between variables in the model, reflecting the relationships in the real world. 

  
 

 
 

Figure 5.1 Conceptual framework for the DPMT study 
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Regions with stronger centers are expected to show the higher concentration of 

jobs, population and poverty. They also have more dense neighborhoods, and require 

fewer roads. Key questions of this study are to identify how these variables are 

interrelated with each other and with PMT, and what variables are more influential than 

others in predicting PMT per capita at the urbanized area scale. 

 

5.4. Methodology 

A cross-sectional analysis of 203 U.S. urbanized areas was conducted with two 

methodological emphases. First, gradient-based measures were used to quantify the 

changes of interested urban form attributes (i.e., population, job, and poverty rate) by 

distance from centers. While traditional gradient measures were based on a monocentric 

urban model, this study further considered a polycentric urban structure commonly 

found in many metropolitan areas. Also, directed acyclic graph (DAG) and structural 

equation modeling (SEM) were used to control intervening factors (e.g., transportation 

infrastructure, and income segregation) between urban form and VMT. 

 

5.4.1. Data 

Data for this study came from four different sources: Highway Statistics for 

VMT and road information by urbanized area, National Transit Database (NTD) for 

transit information by transit provider, Census Transportation Planning Package (CTPP) 

for jobs and population information by census tract, and U.S. Census for poverty by tract 

and urbanized area boundaries. Given the time and geographical inconsistencies across 

these databases, a major consideration was taken to join variables from different sources 

and to determine time and geographic definitions for the study. This study employed 

CTPP 2000 and Highway Statistics 2002. The year 2000 data is the most recent version 

for CTPP available for this study. Meanwhile, the year 2002 dataset is the first Highway 

Statistics data using the year 2000 urbanized area definition. Here, the study assumed 

that the regional demographic structure did not change much during the two years. NTD 

2002 was selected for the consistency of transportation variables. The urbanized area 
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population estimates in NTD 2002 showed a correlation coefficient of 0.998 with this 

study’s population estimates based on CTPP 2000.  

 

5.4.2. Study areas 

Among 374 U.S. urbanized areas (except Alaska, Hawaii, and Puerto Rico) in 

Highway Statistics 2002, 26 cases were dropped due to missing data and geographic 

discrepancies among data sources. Then, 203 areas that showed consistent distribution 

patterns of jobs, population, and poverty—these were assumed to be concentrated more 

toward regional centers—were selected. Population and jobs showed this distribution 

pattern in 331 areas, but only 203 areas showed this pattern in poverty. Out of the 

selected areas, 122 areas were identified as monocentric and 81 areas as polycentric 

based on the center identification results of this study. Figure 5.2 presents the selected 

203 urbanized areas. 

 

 

 
Figure 5.2 Study areas for the DPMT study (Source: U.S. Census 2000) 
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This selection based on regional development patterns was to consider 

assumptions of the standard urban model. The model predicted constantly decreasing job 

and population density with distance from the centers. The model also predicted lower 

income households would locate closer to the dense centers while higher income 

households would locate in the low density outskirts (Giuliano et al. 2008). These 

hypotheses enable establishing predictive relationships between regional development 

patterns and regional average PMT. For the other areas with unpredictable regional 

development patterns, a different research framework is necessary. 

 

5.4.3. Variables and measurements 

Table 5.1 presents variable names, data sources, and the geographical units of 

original data. Regional average PMT was measured with daily transit passenger miles 

traveled (DVMT) per capita. Policy-relevant variables include three regional 

development pattern variables (representing the concentrations of residents, jobs and 

poverty), one local built environment variable (representing neighborhood compactness), 

and three transportation policy variables (representing road supply, transit supply, and 

transit fare). Other variables in the model—population, population density, job density 

and poverty rate—served as statistical controls for regional demographic aspects.  

Road supply was measured with “lane feet per capita.” While this study 

interpreted this measure as a transportation infrastructure variable, some micro studies 

used this as an urban form design factor. Transit supply is measured with “actual vehicle 

revenue feet,” which refers to the distance that buses or railway vehicles travel while in 

their revenue service. Transit fare is estimated with the passenger revenues divided by 

unlinked passenger trips. NTD provided the transit data by service provider. All provider 

information in a same urbanized area was summed up. 

Local built environment was measured with population density only, while micro 

approach studies typically used three Ds (i.e., density, diversity, and design). The other 

two Ds could not be measured in this study due to data limitations and the aggregate 

nature of this study. However, density is considered an effective proxy for the 
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remainders at the large scale (Ewing 1994; Cervero 1993). To aggregate the densities of 

multiple neighborhoods at the regional scale, the population-weighted average of tract 

population density was used. This regional index is designed to increase as more people 

live in denser neighborhoods. It is calculated by ∑i (P  ·Di) / ∑i (Pi), where Pi is 

population at tract i, and Di is population density at tract i. 

 

 

Table 5.1  
Variable descriptions, measures, and data sources and geographic unit of data 

Variable 
description Variable measure 

Variable 
name 

Data source; unit of 
measurement 

Travel outcome    

Regional PMT Daily transit passenger miles 
traveled 

DPMT/c NTD 2002, FTA; transit service 
provider 

Transportation infrastructure   

Road supply Street lane mile per capita Road/c Highway Statistics 2002, FHWA; 
urbanized area 

Transit service 
supply 

Daily actual transit revenue 
miles per capita 

Transit/c NTD 2002, FTA; transit service 
provider  

Transit fare Passenger revenue divided 
by unlinked passenger trip 

Fare NTD 2002, FTA; transit service 
provider 

Regional urban form   

Population 
concentration 

Population density gradient  PD.grd CTPP 2000, Part 1: population at 
place of residence; census tract 

Job concentration Job density gradient JD.grd CTPP 2000, Part 2: population at 
place of work; census tract 

Low income 
concentration 

Gradient of poverty rate Pvt.grd CTPP 2000, Part 1: population 
with poverty status determined; 
census tract 

Local built environment   

Neighborhood 
density 

Population-weighted 
population density 

Local.den CTPP 2000, Part 1: population at 
place of residence; census tract 

Controls for size and demographic condition   

Urban area size Population  Pop Census 2000; urbanized area 

Population profile Population density Pop.den Census 2000; urbanized area 

Employment profile Job density Job.den Census 2000; urbanized area 

Economic profile Poverty rate Pov.rate Census 2000; urbanized area 

Note: FHWA-Federal Highway Administration; FTA-Federal Transit Administration;  
NTD - National Transit Database; CTPP-Census Transportation Planning Package 
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Regional development patterns were measured in terms of spatial distributions of 

residents, jobs, and poverty, each of which characterizes trip origins, destinations, and 

travel behavior, respectively. This study is particularly interested in how these features 

are concentrated near regional employment centers because micro studies found the 

accessibility to regional centers is a key VMT variable. Gradient measures were used to 

quantify regional development patterns due to two advantages they provide. A gradient 

is effective to present the concentration toward a specific place like an employment 

center. Also, gradients are easy to interpret and convey straightforward policy implications. 

For example, population density gradient shows the changing trend of density from 

center to periphery. If this measure has a significant influence on VMT, then it can 

suggest location specific density control guidelines based on distance from the center, 

such as rural-to-urban transect. This study used the simple exponential decay function to 

calculate gradients, y=EXP [α⋅x + β], where y is the variable of interest (i.e., job density, 

population density, or poverty rate) at distance x from center, α is gradient, and the 

exponential of β is the estimated density of center. The gradient α can be calculated by a 

linear regression with the transformation of the original function, LN(y) = α⋅x + β, where 

the gradient α is the slope of regression analysis. Urbanized areas with statistically 

insignificant α at the 0.05 level were excluded from this study. 

A major limitation of traditional gradient measurement is that it can only be used 

in monocentric urban models, while many contemporary metropolitan areas have 

polycentric urban structure. There are several gradient estimation methods for 

polycentric models (e.g., Craig and Ng 2001 and McMillen 2001; 2004), but these 

methods are technically complicated to calculate and translate into policy guidelines. To 

take advantage of the simplicity of the monocentric model, this study translated a 

polycentric structure into a monocentric structure by assuming that all employment 

centers (including CBD) are placed at the same location (Figure 5.3). A gradient value 

measured in this assumption is identical to the average of gradients from each center.  
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Figure 5.3 A simple operation to translate polycentricity using monocentric model 
(DPMT study) 

 

 

Center identification is the first step to estimate gradients of polycentric regions. 

Among a number of center identification methods (e.g., McDonald 1989; Gordon et al. 

1989; Giuliano and Small 1991; McMillen 2001; 2003; and Redfearn 2007), this study 

employed the two-stage non-parametric method of McMillen (2001) because it can be 

applied to any area without local knowledge. Its first stage identified center candidates 

as tracts having significantly higher densities than a smoothed density surface. The 

second stage determined centers among the candidates based on the significance of 

influence on job densities of nearby locations. Specifically, the method includes three 

steps: (1) estimate a job density surface using locally weighted regression (LWR); (2) 

select candidate centers as significantly greater residuals from the LWR estimates; and 

(3) exclude insignificant candidates based on the influence of proximity to each 

candidate on density. In this procedure, center identification results depend on three 

modifiable parameters: (1) window size for the LWR, (2) p-value to determine 

significant residuals, and (3) way to control CBD influence compared to other subcenters. 

Section 2 compared eight combinations of different parameter values for their 

performance in identifying employment centers, based on the model fit and the gradient 

of density model estimated from each parameter combination and the application to a 

VMT estimation model. This study used the best performing parameter combination out 
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of the eight combinations—the window size of 25%, the p-value of 0.1, and the same 

control between CBD and subcenters. 

 

5.4.4. Analytical methods 

Directed acyclic graph (DAG) was used to identify the structure of relationships 

among study variables. Directed graph stems from the field of artificial intelligence and 

computer science to present causal relationships among a set of variables using an arrow 

graph (Spirtes et al. 2001). DAG is a directed graph with no cyclic path, where there is at 

least one ultimate outcome variables, such as VMT used in this study. Several search 

algorithms are available to calculate paths of the structural relationships. These 

algorithms statistically determine the path between any two variables in a model among 

four possible paths: one-direction, correlation, no relation, or inability to determine. The 

algorithms can be broadly classified into PC algorithm family (e.g., conservative PC, 

PCD, and FCI) and greedy equivalent search (GES) algorithm. 

The PC algorithm starts the search with a complete, undirected graph which has a 

line (called “edge”) with no arrowhead connecting each variable (called “node”) with 

every other variable (Spirtes et al. 2000). Edges between nodes are removed sequentially 

based on conditional independence decisions. Edges that survive this removal process 

are then directed using simple rules. For example, imagine a triangle of variables X, Y, 

and Z, and it is known that Z is correlated with both X and Y. If the edge between X and 

Y are conditionally independent given Z, then we can direct X—Z—Y as X→Z←Y. 

Any full path structure can be read as a set of multiple triangles. Since this algorithm 

determines path by individual edge, each variable should have a normal distribution in 

order to determine the independence between any two variables in the triangular 

relationship. 

The GES algorithm is a stepwise search over alternative DAGs using Bayesian 

posterior scores (Chickering 2002). The algorithm consists of two stages. It begins with 

a DAG in the condition that all variables are independent with each other (i.e., no edges 

between nodes). Edges are added and/or edge directions reversed in a systematic search 



 79 

across classes of equivalent DAGs if the Bayesian posterior score is improved. The first 

stage ends when a local maximum of the Bayesian score is found such that no further 

edge additions or reversals improve the score. After this first stage, the second stage 

commences to delete edges and reverse directions, if such actions result in improvement 

of the Bayesian posterior score. The algorithm terminates if no further deletions or 

reversals improve the score. 

These algorithms determine relationships based purely on statistical procedures 

and may produce unreasonable results. To avoid this problem, users can set up specific 

conditions based on rational hypothesis or knowledge. As described in the conceptual 

framework (Figure 5.1), this study classified variables into three hierarchical tiers (i.e., 

control, policy, and outcome variables), and established a rule that variables in the lower 

tier do not influence variables in the higher tier (the lowest tier is the outcome variable, 

DVMT per capita). 

Using the Tetrad IV software, this study attempted multiple algorithms, 

searching for models with better model fit. Models with logarithm-transformed data 

were also tested, particularly because PC-based algorithms may require stricter 

normality for each individual variable. To determine reasonable DAGs, every tested 

model was evaluated with the relative chi-square, for which value closer to 1 indicates 

better-fitted model (Carmines and McIver 1981). Then final DAG models were selected 

after excluding worse-fitted models and models showing a duplicative relationship 

structure. 

Direct and indirect influences of explanatory variables on regional VMT were 

estimated by structural equation modeling (SEM) based on the DAGs selected. SEM is 

useful for tracking relative effects of variables on each other through hypothesized 

relationship paths. SEM estimates parameters by solving simultaneous equations of a 

series of hypothesized relationships in a model. The technique uses iterative methods 

(e.g., maximum likelihood method, generalized least square, etc.) that involve a series of 

attempts to obtain estimates of unknown parameters until it finds the model covariance 

matrix best fitted with the actual covariance matrix representing the hypothesized 
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relationships (Hoyle 1995). Therefore, SEM can be regarded as a general method for 

constructing a predictive model with relatively few restrictions (e.g., regression analysis, 

factor analysis, and ANOVA are special cases of SEM). The AMOS 20 software 

package was used to conduct SEM analyses in this study. 

 

5.4.5. Descriptive statistics 

Table 5.2 shows descriptive statistics of variables used. The non-normality of 

several variables would be a potential problem because parameter estimations for DAG 

and SEM are mostly based on the assumption of normality. A major effect of normality 

violation is an overestimation of chi-square value. The higher the chi-square means the 

worse the model fit. The overestimated chi-square could lead researchers to think that 

their models were worse fitted than the actual fit. The lack of multivariate normality also 

tends to yield the underestimation of standard errors and can result in the misreading of 

regression paths to be statistically significant more than the actual significance (Kline 

1998).  

Meanwhile, several simulation studies found that SEM parameter estimates are 

still fairly accurate under conditions of severe non-normality of data (Gao et al. 2008; 

Kline 1998; Voortman and Druzdzel 2008). Klein (1998) suggested that a distribution 

with skewness less than 3 and kurtosis less than 10 is allowable. Most variables in this 

study meet this normality criteria except daily passenger miles traveled per capita 

(DPMT/c), population (Pop) and population-weighted average of tract densities 

(Local.den). Among these three variables, population does not have to be normally 

distributed since it is an exogenous variable by definition in this study (i.e., population is 

not influenced by any other variable). Transit use variable (DPMT/c) and local built 

environment variable (Local.den) still have the non-normality problem though. Common 

suggestions to solve this problem include data transformation (Andreassen et al. 2006; 

Bollen 1989; Yuan et al. 2000) and outlier removal (Bagley and Mokhtarian 2002). This 

study avoided data removal approach, and instead transformed the data. 
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Table 5.2  
Descriptive statistics of variables 
(values in parenthesis are calculated from the natural log-transformed data) 

Construct Variable Unit Min. Max. Mean Std. Dev. Skewness Kurtosis 

Outcome DPMT/c  mi/person 0.012 
(2.48) 

2.884 
(7.97) 

0.201 
(4.78) 

0.305 
(0.96) 

5.2 
(0.4) 

3.0 
(0.4) 

Regional 
demographic 
characteristics 

Pop thousand 51 
(3.93) 

17485 
(9.77) 

782  
(5.72) 

1777 
(1.22) 

6.1 
(0.8) 

46.8 
(0.2) 

Job.den /sq. mi 634 
(6.32) 

3615 
(8.06) 

1293  
(7.11) 

441 
(0.30) 

2.0 
(0.3) 

6.7 
(0.3) 

Pop.den /sq. mi 1337 
(7.14) 

7514 
(8.86) 

2475  
(7.75) 

926 
(0.30) 

2.4 
(0.8) 

7.9 
(0.9) 

Pov.rate percent 4.4 
(1.48) 

34.5 
(3.54) 

13.4  
(2.53) 

4.8 
(0.33) 

1.5 
(0.2) 

3.5 
(0.9) 

Transportation 
infrastructure 

Road/c  ft/person 11 
(2.40) 

68.8 
(4.23) 

26 
(3.22) 

7.7 
(0.30) 

1.0 
(-0.4) 

4.2 
(0.6) 

Transit/c  ft/person 31.3 
(3.44) 

671.2 
(6.51) 

165.5 
(4.95) 

99.7 
(0.56) 

1.9 
(0.0) 

5.7 
(0.0) 

 Fare US$/trip 0.05 
(1.53) 

2.35 
(5.46) 

0.64 
(4.06) 

0.31 
(0.489) 

1.7 
(-1.09) 

6.2 
(4.7) 

Local built 
environment 

Local.den /sq mi 974 
(6.88) 

33540 
(10.42) 

3628 
(8.06) 

2799 
(0.48) 

6.7 
(0.9) 

65.8 
(2.7) 

Regional 
development 
patterns 

JD.grd ratio 0.062 
(1.82) 

1.205 
(4.79) 

0.373 
(3.43) 

0.229 
(0.62) 

1.0 
(-0.1) 

0.6 
(-0.7) 

PD.grd ratio 0.037 
(1.31) 

0.936 
(4.54) 

0.265 
(3.06) 

0.178 
(0.67) 

1.2 
(0.0) 

1.2 
(-0.7) 

Pvt.grd ratio 0.012 
(0.18) 

0.559 
(4.02) 

0.192 
(2.75) 

0.116 
(0.70) 

0.8 
(-0.7) 

0.0 
(0.4) 

Note 1: Refer to Table 5.1 for detailed descriptions of variables. 
Note 2: The log-transformations of fare and gradient measures were done after multiplying the 
original values with 100 to avoid a negative value. 

 
 
 

DPMT/c is correlated with all variables in the model. Many predictor variables 

also are significantly correlated with each other as shown in Table 5.3. It raises 

multicollinearity problem that can distort estimations of explanatory powers of factor 

variables in a multiple regression model. SEM is not free of multicollinearity because it 

is a regression-based method. However, SEM often can relieve multicollinearity 

problem by decomposing a single regression model with many independent variables 

into many simpler regression models. 
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Table 5.3  
Standardized correlations (Pearson’s R) among variables 
(values in parenthesis are calculated from the natural log-transformed data) 

Variables DPMT/c Pop Job.den Pop.den Pvt.rate Road/c Transit/c Fare Local.den 

DPMT/c 1                

Pop 
  .789** 
( .632**) 

1           
 

  

Job.den 
  .508**  
( .519**) 

  .429**  
( .309**) 

1         
 

  

Pop.den 
  .528**  
( .567**) 

  .525**  
( .431**) 

  .876**  
( .846**) 

1       
 

  

Pvt.rate 
 -.027  
( .027) 

 -.096  
(-.242**) 

  .131  
( .032) 

  .151*  
( .066) 

1     
 

  

Road/c 
 -.403**  
(-.514**) 

 -.347**  
(-.450**) 

 -.489**  
(-.538**) 

 -.568**  
(-.671**) 

  .043  
( .064) 

1   
 

  

Transit/c 
  .791**  
( .835**) 

  .511**  
( .379**) 

  .490**  
( .486**) 

  .448**  
( .465**) 

 -.027  
(-.005) 

 -.343**  
(-.358**) 

1 
 

  

Fare 
  .159*  
( .035) 

  .167*  
( .239**) 

 -.028  
(-.058) 

 -.004  
(-.036) 

 -.254**  
(-.344**) 

 -.043  
(-.063) 

  .205**  
( .089) 

1  

Local.den 
  .853**  
( .680**) 

  .819**  
( .521**) 

  .618**  
( .735**) 

  .691**  
( .869**) 

  .048  
( .044) 

 -.495**  
(-.696**) 

  .621**  
( .563**) 

  .130  
( .073) 

1 

JD.grd 
 -.214**  
(-.308**) 

 -.341**  
(-.740**) 

  .085  
( .092) 

 -.074  
(-.059) 

  .387**  
( .302**) 

  .110  
( .155*) 

 -.070  
(-.103) 

 -.217**  
(-.292**) 

 -.098  
(-.111) 

PD.grd 
 -.205**  
(-.305**) 

 -.318**  
(-.750**) 

  .016  
( .031) 

 -.113  
(-.101) 

  .327**  
( .249**) 

  .085  
( .171*) 

 -.056  
(-.100) 

 -.160*  
(-.222**) 

 -.065  
(-.070) 

Pvt.grd 
 -.246**  
(-.284**) 

 -.333**  
(-.622**) 

  .055  
( .103) 

 -.071  
(-.024) 

  .333**  
( .243**) 

  .180 
( .185**) 

 -.152*  
(-.116) 

 -.158*  
(-.199**) 

 -.096  
(-.038) 

 ** Correlation is significant at the 0.01 level 
*  Correlation is significant at the 0.05 level 
Note: Refer to Table 5.1 for detailed descriptions of variables  

 

 

5.5. Results and Implications 

5.5.1. Directed acyclic graph (DAG) 

To find more reasonable structural relationships, multiple algorithms (i.e., GES 

and PC and its modifications) were tested to draw DAGs. Both non-transformed and 

transformed data were tested in the DAG procedure. Model fit was estimated using the 

relative chi-square (chi-square divided by the degree of freedom), in which a value less 

than 2 is regarded reasonably fitted (Carmines and McIver 1981). 
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Two different types of reasonably fitted DAGs were found: the GES with non-

transformed data (GES-non), and the GES with log-transformed data (GES-ln). Figure 

5.4 shows their path diagrams and model fit statistics. Both GES-non and GES-ln are 

overall similar to each other. Local density, transit supply and population have direct 

effects on PMT per capita. Fare shows a direct relationship in the GES-ln, but not in the 

GES-non.  

 

 

 

 

(a) DAG searched by GES algorithm with  
     non-transformed data 
 
     chi-square = 38.09 
     degree of freedom = 38 
     chi-square/df = 1.00 

(b) DAG searched by GES algorithm with  
     log-transformed data 
 
     chi-square = 52.65 
     degree of freedom = 39 
     chi-square/df = 1.35 

Note: Refer to Table 5.1 for detailed descriptions of variables 
Figure 5.4 Directed acyclic graphs of factors influencing passenger miles traveled 
per capita among 203 U.S. urbanized areas, 2002 
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A major distinction between the two models is that GES-non identified regional 

development patterns as direct and indirect factors, while GES-ln negated these 

influences. There also exist some differences between the two models in the relationship 

between demographic characteristics and regional development patterns. These gaps 

might be caused by the presence of collinearity, particularly between direct and indirect 

factors. An indirect path can be interpreted in two different ways – an actual causality 

path or a spurious relationship. A relationship between X and Y can be regarded as 

spurious when their relationship becomes insignificant by adding a third intervening 

factor W. This can be described as “X←W→Y” in a DAG. Diagnosing the type of 

relationship is a major function of the DAG searching process. Table 5.4 presents the 

diagnosis result for indirect paths to PMT per capita (DPMT/c) in each model. 

 

  

Table 5.4  
Diagnosis of spurious relationships using DAG search algorithms 

Model Path Relationship Search algorithm 

GES-non  Job.den → Transit/c → DPMT/c Spurious GES 

 Pvt.rate → PD.grd → DPMT/c Actual PC, GES 

 Road/c → Local.den → DPMT/c Spurious PC, GES 

 Pop.den → Local.den → DPMT/c Actual PC, GES 

GES-ln Pop.den → Local.den → DPMT/c Spurious PC 

  Actual GES 

Note 1: GES-non is a DAG model searched by GES algorithm with non-transformed data, and 
GES-ln is a model searched by GES algorithm with log-transformed data. 

Note 2: Refer to Table 5.1 for detailed descriptions of variables 
 

 

Removing the identified spurious variables made the two path diagrams more 

similar. In the GES-non model, job density (Job.den) and road supply (Road/c) had a 

spurious relationship with PMT per capita. These variables showed no relationship with 

PMT per capita in the GES-ln model. Poverty rate (Pov.rate) was found to have an actual 
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indirect influence in the non-transformed model, and the log-transformed model 

identified the variable as a significant direct factor. The only disagreement in the 

decision on spurious factor between the non- and log-transformed models was about 

regional population density (Pop.den). The GES-non recognized that the regional density 

has an actual influence, while the variable was determined as being spuriously related 

through local density factor (Local.den) in the GES-ln.  

The two models have minor differences in the relationship between demographic 

characteristics and regional development patterns. These differences do not seem to 

suggest meaningful policy implications but to simply indicate an association tendency 

between the two constructs. In other words, areas with a larger population tend to have a 

higher density and a steeper density gradient; however, regional population and density 

control policies do not aim to manage the spatial configuration of any specific 

population, job or poverty. 

Based on the DAG searching and the diagnosis of spurious relationships, 

variables of job density, road supply, fare and poverty gradient were excluded in further 

structural equation modeling analyses. Considering a possible distortion by these 

variables onto the whole relationship structure, another set of DAG searching was 

conducted without these variables. 

 

5.5.2. Structural equation modeling (SEM) 

The path models derived from the DAG searching process were estimated using 

structural equation modeling. Since the two models produced a similar structural 

relationship and model fit level, this study selected to present the log-transformed model 

(GES-ln) results for two advantages: 1) this log-log model satisfies the normality 

assumption, and 2) the model’s parameter estimates represent elasticities, reflecting the 

relative sensitivity (percentage change) of DPMT/c to a 1% increase in each factor 

variable holding other factors constant.  

Figure 5.5 shows the SEM results. Every path in the model showed a statistical 

significance at the 0.01 level. It also had an almost perfect model fit based on five 
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goodness-of-fit indices. The indices and their critical thresholds to determine a good fit are 

as follows (Hu and Bentler 1999): relative chi-square (< 2.0), comparative fit index: CFI 

(> 0.90), normed fit index: NFI (> 0.95), Tucker-Lewis index: TLI (or non-normed fit 

index: NNFI) (> 0.90), and root mean square error of approximation: RMSEA (≈ 0.05). 

 

 

 Figure 5.5 Structural equation model of DPMT per capita (log transformed data) 
 

 

Table 5.5 summarizes direct and indirect effects of explanatory variables on 

PMT per capita. In terms of total effect, regional population density (Pop.den) showed 

the highest elasticity. However, it should be noted that all of its effects are indirect. 

Referring to Figure 5.5, population density (Pop.den) influences PMT per capita 

(DPMT/c) through local density (Local.den). In the diagnosis of indirect paths, PC-based 

algorithms agreed with the pattern of “Pop.den ← Local.den → DPMT/c” in this log-

Chi-square = 16.056 
Degrees of freedom = 16 
Relative chi-square = 1.000 
CFI (> 0.90) = 1.000 
NFI (> 0.95) = 0.990 
TLI (>0.90) = 1.000 
RMSEA (< 0.05) = 0.004 

Note 1: All coefficients are significant 
at the 0.01 level 

Note 2:  
Pop – population; 
Pop.den – population density;  
Pvt.rate – poverty rate; 
Local.den – population-weighted 

average of tract density;  
PD.grd – population density gradient;  
JD.grd – job density gradient;  
Transit/c – Daily actual transit 

revenue miles per capita; 
DPMT/c – daily PMT per capita 
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transformed model, indicating the spurious relationship between regional population 

density and PMT per capita. This reveals that the areas with a greater amount of dense 

neighborhoods tend to have not only a higher level of transit use but also a higher 

regional density. This also implies that regional density could serve as a good proxy 

measure of local density level in transit use models in studies on U.S. urbanized areas. 

The relationship between regional population density and local density was almost unit-

elastic (i.e., the elasticity between them is 1.26). Results also indicate that a higher 

transit fare moderately reduce PMT per capita (-0.183 of elasticity) under the control for 

other variables (particularly, transit supply and population). 

 

 

Table 5.5  
Effect size (elasticity) on DPMT/c, estimated by SEM 

Variable Description Total effect Direct effect Indirect effect 

Pop Population  .455  .285 .170 

Pop.den Population density 1.317 .000 1.317 

Pvt.rate Poverty rate  .285 .206 .079 

Transit/c 
Daily actual transit revenue 
miles per capita  

 1.066  1.066 .000 

Fare 
Passenger revenue divided 
by unlinked passenger trip 

-.183 -.183 .000 

Local.den 
Population-weighted 
average of tract density  

.966 .276 .690 

PD.grd Population density gradient  .293 .000  .293 

JD.grd Job density gradient .029 .000 .029 

Note: Refer to Figure 5.5 for detailed relationship paths in the model. All paths in the model are 
statistically significant at the 0.01 level. 

 

 

Excluding population density, the strongest factor is transit supply, indicating 

that a 1% larger actual transit revenue miles per capita is contributed to an 1.066% more 

transit passenger miles traveled per capita. The second strongest factor is local density 

which has 0.966 of elasticity. The strong effect of these two factors reflects the success 

of continuous efforts for transit oriented development (TOD) in the U.S. While our 

results indicate that increasing local density alone has a moderate direct effect on 
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increasing PMT per capita (i.e., 0.276 of elasticity), greater effect was achieved when 

more transit service was provided. The elasticity of this indirect effect through the transit 

supply is 0.690. 

Population and poverty rate showed a moderate effect (i.e., 0.455 and 0.285 of 

elasticity, respectively), reflecting that transit use is greater in urbanized areas with 

greater population and more low income people. Their effects are fairly independent of 

each other showing near zero elasticity between them.  

Under the control of population and poverty rate, regional development patterns 

(particularly the population density gradient in this model) also showed a moderate 

effect, 0.293 of elasticity. This influence was not direct but was achieved indirectly 

through the local density factor. To check the spuriousness of this path, a DAG 

searching was conducted among population density gradient, local density and passenger 

miles traveled. All search algorithms yielded the same result of “PD.grd → DPMT/c ← 

Local.den” which indicates an actual influence. This inference appears to make sense 

because the increased population density gradient means more compact local 

development near regional centers.  

However, it should be noted that the bivariate correlation between regional 

development patterns and PMT per capita were negative (Table 5.3). It indicates that the 

higher concentration of population, job and poverty have a PMT reduction effect too. 

This effect was found significant in the non-transformed model (not presented in this 

study), but became insignificant after the log-transformation. The inconsistency of the 

relationship between regional development patterns and transit use can be observed in 

previous individual-level studies. Cervero and Duncan (2006) found that the distance to 

CBD has a significant positive influence on weekday boardings per station, while others 

(e.g., Bento et al. 2005, Baker 1994, and Pushkar et al. 2000) failed to find this 

influence. This inconstancy might be due to positive and negative relationships of 

regional development patterns with local urban form depending on population size. The 

gentler population gradient may imply either fewer compact neighborhoods near centers 
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in most smaller urbanized areas or more compact developments at the outskirt in other 

larger areas (Figure 5.6). 

 

  

  
(a) UAs with population over 500,000 
     (except New York-Newark urbanized area, NY) 

(b) UAs with population less than 400,000 

* Local density: population-weighted average of tract densities 

Figure 5.6 Correlation between local density and population density gradient by  
population size 

 

 

5.6. Summary and Conclusion 

This paper examined the influence of urban form on transit passenger miles 

traveled (PMT) at the urbanized area scale, emphasizing policy-interpretable urban form 

measures and structural relationships among predictor variables. A series of cross-

sectional analyses on 203 U.S. urbanized areas was conducted, using directed acyclic 

graph (DAG) and structural equation modeling (SEM). 

As illustrated in Figure 5.7, this study found that PMT per capita is greater in 

urbanized areas that supply more transit service hour and include a greater amount of 

dense neighborhoods. These two variables are closely associated with key characteristics 
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of transit oriented development (TOD), and their strong effects reflect the success of 

TOD in the U.S.  

The results for this study present that a more concentrated regional development 

pattern (or steeper density gradient) led to a moderate increase of PMT per capita. 

However, this study also found that the regional development pattern effect may not be 

generalized throughout U.S. urbanized areas because the lower level of regional 

concentration implies two opposite effects on transit use by population size – 1) the 

fewer compact neighborhoods near centers and thus the fewer transit use in most smaller 

urbanized areas, or 2) the more compact neighborhoods at the outskirt and thus the 

greater transit use in some larger urbanized areas.  

 

 

 
 

Figure 5.7 Summary of findings from the DPMT study 
 

 

Not surprisingly, population and poverty rate were identified as positive factors 

of PMT per capita. Population density showed the strongest positive effect as found 

from many previous studies, while this study found that this effect is spurious or only 
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indirect. Hence, transit promoting efforts, including urban form restructuring and transit 

supply expansion, can be justified for most urbanized areas regardless of the gross 

density level.  

Road supply was found to have no effect on PMT per capita. Considering that 

road supply is a strongest predictor of vehicle miles traveled (Section 4), the lack of road 

supply effect on PMT implies that transit is not a substitute travel option to private 

vehicle. In other words, an increase of transit use does not necessarily mean a decrease 

of driving. Transit fare showed a significant relationship with PMT per capita as found 

in many previous studies.  

During the past several years, we have observed several signs of increasing 

demand for transit, including a rise in fuel price, growing transit ridership, growing 

immigrant population, increasing traffic congestion and limited parking supply (APTA 

2011; Blumenberg and Evans 2007 therein Chen et al. 2011). If these transit demand 

forces are expected to continuously grow in the future, the remaining challenge will be 

to provide transit service sufficiently and appropriately to people in need of affordable 

travel mean. This study reconfirmed that ongoing efforts of urban form control and 

transit service expansion are effective measures to promote regional aggregate transit use 

regardless of given population size and socioeconomic condition. The use of aggregate 

data limits detailed controls, but this study helps fill the gap in the disaggregate travel 

behavior studies of only one or several metropolitan areas. 
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6. SUMMARY AND CONCLUSIONS 

 

6.1. Summary 

Section 2 reviewed urban form-travel studies, focusing on the distinction 

between micro and macro approaches in terms of the unit of analysis, variables used, 

data sources, major findings and policy implications. This review showed a gap in the 

previous research that micro studies have identified distance from the center as the most 

influential factor on VMT, while macro studies have not reflected this relationship. 

Section 3 evaluated parameters influencing the performance of regional center 

identification methods. This study found that lower density cutoff, and equal treatment 

between CBD and subcenters yielded better results. Results also showed that for 

polycentric areas, the use of a polycentric model produced a better model fit than the 

monocentric model. This section provided a methodological support for the measure of 

polycentric regional urban form. 

Section 4 examined the influence of local and regional development patterns on 

collective VMT, considering the polycentric urban structure and multiple intervening 

factors (e.g., transportation infrastructure, and income segregation). Major findings of 

this section is as follows: 1) VMT is lower as more people and jobs are located more 

closely to centers; 2) the higher concentration toward centers also increases VMT by 

requiring more road supply; 3) VMT is lower as more people live in denser 

neighborhoods; 4) road supply has a strong positive impact on VMT; 4) transit supply is 

not related to VMT; 5) poverty gradient has a minimal effect on VMT; and 6) the effects 

of local versus regional urban form on VMT are independent of each other.  

Section 5 examined the influence of urban form on transit passenger miles 

traveled (PMT) at the urbanized area scale, particularly focusing on applying policy-

relevant urban form measures and searching for a structural relationship among predictor 

variables. This section found that: 1) PMT per capita is greater in urbanized areas that 

supply more transit service hours and have denser neighborhoods; 2) more concentrated 

patterns of regional development result in a moderate increase of PMT per capita; 3) 
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regional population density only has an indirect effect on transit use ; and 4) road supply 

do not cause differences in PMT per capita among U.S. urbanized areas because transit 

demand and supply are too low to be an alternative to driving. 

 

6.2. Limitations  

This dissertation has several limitations. First, this study was based on only 203 

out of 347 urbanized areas that show statistically significant gradients in job density, 

population density and poverty rate. Further studies are needed for remaining 144 

urbanized areas with a different methodological framework.  

The second limitation lies in urban form measures. Gradient measures used in 

this study aggregated multiple centers into one imaginary center, and thus cannot 

distinguish areas with a dominant CBD and smaller subcenters from areas with multiple 

strong centers. Although the latter would be a more desirable form in terms of 

polycentricism concept, this study could not evaluate the difference. Local built 

environment measures were captured by census tract-level density only. Inclusion of 

other sophisticated measures that can represent land use diversity and design at the local 

level may provide more findings with additional policy implications.  

Third, although the 203 samples are not small, urbanized areas in the U.S. tend to 

have insufficient variability in some potentially significant characteristics affecting 

VMT, such as transit infrastructure, fuel price and polycentricity, which limits the 

statistical power to detect their potential association with VMT. Transit is 

underdeveloped in most U.S. urbanized areas. Fuel price in the U.S. is fairly constant 

across the states and lower than many Eroupean and Asian countries. Only 81 among 

203 areas have a polycentric urban structure. An addition of more study areas with 

diverse regional settings will improve generalizability of this study and offer more solid 

policy implications.  

Fourth, data limitations need be noted.  Since a DVMT is estimated by summing 

up traffic counts multiplied by lane lengths of road sections, the data has three 

limitations inherited from traffic survey procedure. Traffic surveys usually do not cover 
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local and minor roads, and often estimated based on a statistical model. Therefore, minor 

errors are inevitable for those model-estimated counts. Also, traffic surveys cannot 

differentiate visitors’ travels. Urbanized areas that attract many outside visitors would 

have overestimated DVMT estimations. Finally, traffic survey methods are inconsistent 

among urbanized areas. While every state follows a general federal-level standard for the 

traffic survey (FHWA 2010), data quality might vary by urbanized area.  

 

6.3. Conclusions 

Major findings of this dissertation research can be summarized as 1) higher 

regional concentration, greater local density and less road supply lowered VMT; and 2) 

higher local density and more transit increased PMT. These results imply that different 

approaches to development control are needed for different sustainable transportation 

goals—1) intensifying regional centers such as infill developments for VMT reduction, 

and 2) compact neighborhood development approaches such as transit oriented 

development for transit promotion.  

This study could not clearly present which development control approach is most 

effective in achieving the sustainable transportation goal because compact neighborhood 

approach has both positive and negative potentials for VMT reduction. Transit is 

underutilized in most U.S. metropolitan areas and shows no significant influence on 

VMT per capita in this study (Section 4). Considering the strong impact of local density 

on PMT per capita, continuing compact neighborhood development efforts may promote 

transit use and consequently reduce VMT in the future. On the other hand, indiscreet 

compact developments at the urban fringe may lead to decentralization (or dispersed 

development) from the regional perspective and consequently result in increased VMT 

per capita. Infill development approach satisfies both the compact local urban form and 

the centralized regional development; however, containing growth in a very restricted 

boundary will encounter a physical limitation in capacity. 

Polycentricism can explain the seemingly contradictive development principle 

between compact neighborhood and regional centralization by allowing dispersion and 
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concentration at the same time (Jenks et al. 1996; Ewing 1997). This study suggests a 

potentially positive impact of polycentric development on sustainable travel outcomes. A 

regional center can emerge naturally through any historic or economic processes, such as 

edge cities. Meanwhile, its development can be controlled by appropriate policies and 

planning methods such as the form-based code and the urban-rural transect approach. 

This implies that land use control policies can make a significant contribution to VMT 

reduction.  

These general implications are not new. Over 40 years of smart growth efforts 

have promoted sustainable communities and regions, fighting against auto-oriented, 

dispersed development patterns. The Smart Growth Network (2002a; 2002b) announced 

10 principles of smart growth and 200 policies for implementation. This dissertation 

provided additional empirical evidence that confirmed and expanded the potential for 

these smart growth solutions to help reduce automobile dependency in many urbanized 

regions in the U.S. Specific implications from this study include the following. 

First, findings suggest that more effective infill development strategies should 

focus on areas near existing employment centers, and consider the overall regional 

development configurations. Some of current infill development strategies, such as 

growth boundary or green belt, tend to overlook the development patterns within the 

boundary. This type of conventional approach is effective in containing urban expansion 

but does not include any mechanism to regulate dense and high-impact developments 

along the edge of the boundary. Further, the green belt approach has shown to bring 

leapfrog developments outside of the outer edge of the belt (Amati and Taylor, 2010). 

Second, the jobs-housing balance needs to be stressed in the regional context. 

Many sustainable development principles emphasize mixed land uses, but most of them 

are discussed and applied to the neighborhood-level planning and site-level projects. The 

jobs included in such small scale projects may be limited to service and commercial jobs 

to support the immediately surrounding neighborhoods. The regional distribution of 

quality jobs and housing developments close to the jobs is also very important. In the 

regional jobs-housing balance perspective, infill developments in CBDs might need to 
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focus more on residential uses, while the developments in subcenters need to focus on 

achieving the balance between jobs and housing. Proper strategies to locate housing 

developments to improve the jobs-housing balance are recommended.  

Third, plans to manage and regulate regional urban form need to precede plans 

for local urban form. Growing number of governments have adopted form-based codes 

based on the rural-to-urban transect (Parolek et al. 2008). The New Urbanism offered the 

transect concept suggesting the need for different urban design guidelines for diverse 

local environmental settings within the regional context. However, it does not provide 

specific guidelines for transect planning. This dissertation study suggests a simple 

guideline for the transect (i.e., decreasing development intensity as the distance from 

employment centers is increased); however, more research (e.g., how to determine actual 

development intensity thresholds based on regional settings, how to consider different 

local settings in the same distance from centers, etc.) is required to develop a complete 

set of guidelines of the transect planning.  

Finally, TOD has shown to be a useful strategy to promote transit uses, but its 

plans still need to consider regional urban form for the VMT reduction purpose 

simultaneously. This study indicates that compact neighborhood developments 

accompanied by transit developments increase the PMT per capita. Meanwhile, this 

study also implies that the increased transit developments do not necessarily have a 

VMT reduction impact in many small and medium size urbanized areas. The TOD 

emphasizes compact developments near transit stops and may lead to a dense, monotonic 

urban form that is isolated and does not respond to the regional configuration. This 

pattern of development does not help reduce the regional average VMT. Therefore, 

establishing a hierarchy of TOD nodes within the context of regional development 

patterns will be an efficient transitional step until cities grow enough that the impact of 

transit developments on VMT reduction will become more significant in the future.  

Despite the ongoing efforts of smart growth, barriers to attracting developments 

to inner cities and subcenters are persistent in four dimensions: marketability, land use 

policies, residents, and financing. The first two dimensions are planning issues; therefore 
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the solutions for them depend on the will and capacity of governments and developers. 

Governments can improve the marketability of urban centers by establishing infill 

developments as goals, conducting associated plans and actions, and promoting the plans. 

Governments favorable to redevelopments of urban centers would be more willing to 

accept creative ideas to overcome existing barriers and introduce policy tools to facilitate 

development process, such as relieving restrictive regulations (e.g., zoning, parcel size, 

parking, road width, etc.), streamlining permit process (e.g., limiting review period and 

public hearings), tax incentives for developers and future residents, facilitating land 

assembly processes, establishing focused public investment area, and lessening 

development fees  (MRSC 1997). Developers are market-oriented thinkers and strive to 

improve the marketability through more attractive design. They negotiate with 

governments for more favorable policies and government incentives. These planning 

issues would be relatively easier to resolve than the tangible problems of financing and 

resistance from residents and stakeholders. Redevelopment plans typically require land 

assembly, gentrification, infrastructure improvement, high-density development, or 

longer construction periods. Solutions for the stakeholder opposition are agreed among 

studies – educating them and involving them in the plan (TMRPA 2005; MRSC 1997). 

Various financing solutions have been offered, such as supporting with governmental 

grants (e.g., urban development action grants, community development block grants, tax 

exempt industrial development bonds, city infrastructure grants, etc.), tax-increment 

financing, bank land, issuing project bonds, revolving loan funds, and providing loan 

guarantees for private developers (MRSC 1997). However, the ultimate success of every 

financing effort would depend on the marketability and feasibility of plans. The market 

potential of urban centers has been stated (Levine 2006; Porter 1997) and this is partly 

supported by the fact that the majority of urbanized areas show a higher density near 

centers. A successful urban center development depends on the collaboration among 

governments, stakeholders, developers and citizens. 
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