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ABSTRACT

Soft Sensors for Process Monitoring of Complex Processes. (August 2012)

Mitchell Roy Serpas, B.S., Louisiana State University

Chair of Advisory Committee: Dr. Juergen Hahn

Soft sensors are an essential component of process systems engineering schemes.

While soft sensor design research is important, investigation into the relationships

between soft sensors and other areas of advanced monitoring and control is crucial as

well. This dissertation presents two new techniques that enhance the performance of

fault detection and sensor network design by integration with soft sensor technology.

In addition, a chapter is devoted to the investigation of the proper implementation

of one of the most often used soft sensors. The performance advantages of these

techniques are illustrated with several cases studies.

First, a new approach for fault detection which involves soft sensors for process

monitoring is developed. The methodology presented here deals directly with the

state estimates that need to be monitored. The advantage of such an approach is

that the nonlinear effect of abnormal process conditions on the state variables can

be directly observed. The presented technique involves a general framework for using

soft sensor design and computation of the statistics that represent normal operating

conditions.

Second, a method for determining the optimal placement of multiple sensors

for processes described by a class of nonlinear dynamic systems is described. This

approach is based upon maximizing a criterion, i.e., the determinant, applied to the

empirical observability gramian in order to optimize certain properties of the process

state estimates. The determinant directly accounts for redundancy of information,
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however, the resulting optimization problem is nontrivial to solve as it is a mixed

integer nonlinear programming problem. This paper also presents a decomposition

of the optimization problem such that the formulated sensor placement problem can

be solved quickly and accurately on a desktop PC.

Many comparative studies, often based upon simulation results, between Ex-

tended Kalman filters (EKF) and other estimation methodologies such as Moving

Horizon Estimation or Unscented Kalman Filter have been published over the last

few years. However, the results returned by the EKF are affected by the algorithm

used for its implementation and some implementations may lead to inaccurate results.

In order to address this point, this work provides a comparison of several different

algorithms for implementation.
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CHAPTER I

INTRODUCTION

As processes trend towards safer, cleaner, more energy efficient, and more prof-

itable production in chemical plants and refineries, a continually increasing reliance

on advanced monitoring and control is necessary. The use of the diverse set of tools

made available through process systems engineering is now crucial to operation of

manufacturing plants on many different levels. The domain of the Process Systems

Engineer in practice consists of the interactions between the process and the operator.

This is true across a large range of time and distances, from planning and scheduling

the interactions between facilities spread across the globe years in advance to basic

proportional control of a quick acting valve. Using mathematical and computational

techniques, it is the job of the engineer to optimize this interaction by attempting

to increase the amount of information gleaned from the process and ensure that the

plant remains as close as possible to the operators desired trajectory. On the inter-

face between this arena and the process lies the sensor. The sensor is any way that

the process is physically measured, and constitutes the source of data, both histor-

ical and current, for use by the process systems engineering strategies. Conversely,

the operator interacts with the system by providing goals for the process to attain.

Everything in between, such as system control, analysis, optimization, simulation,

monitoring, filtering and fault detection, form the suite of technologies that must

attempt to perfect the communication between the two.

One critical piece of this arrangement is a soft sensor. A soft sensor is a math-

ematical technique used to infer important process variables that are not physically

The journal model is Computers and Chemical Engineering.
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measured. This is accomplished by the use of the combination of current data of the

plant with some previous knowledge of the plants behaviour, i.e. some type of plant

model. The inclusion of the additional information about the process contained in the

system model and the procedures to analyse the current state of the system allow for

the enhancement of the information available. In other words, the estimated variables

produced by soft sensors are often used with other techniques such as advanced pro-

cess control, fault detection, process monitoring and product quality control to obtain

higher performance. For example, no matter how fine-tuned a control system is, it

cannot properly control system variables that it cannot observe. One role of a soft

sensor is to provide an increased availability of variables as feedback to the control

system. Because of these types of relationships (illustrated in Figure 1), the connec-

tions between soft sensors and other areas of process systems engineering should be

thoroughly and carefully investigated. This constitutes the broad motivation for this

dissertation.

Soft sensors can generally be in one of two subtypes based on the type of plant

model it uses. The model can either be a historical data based model or a first prin-

ciples model. While the former is used often in many fields, its is outside the scope

of this dissertation. The later type uses a physically meaningful model of the internal

dynamics of a process system, and is typically derived from accurate mathematical

descriptions of known phenomena. A process model is usually developed initially

based on general laws related to the process and further honed by parameter estima-

tion. In this way, sometimes massive amounts of historical experience is accurately

and concisely incorporated into the system model. Fundamentally, this is the reason

for the enhance performance that comes with the inclusion of soft sensors. Of course

system modeling is inherently imperfect and remains a very active area of research of

its own (Chu, 2011). Because of model inaccuracies, all work regarding soft sensors
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Fig. 1. Illustration of the relationship of soft sensors to process systems engineering

must be assumed to be only as accurate as the process model being used, at best.

A. Fault Detection

As the accuracy of modelling and soft sensor design continues to increase, the use

of estimated variables for critical process monitoring and control tasks does as well.

One crucial part of many process monitoring strategies is fault detection. Whether it

be for an early warning safety limit system on a critical process variable, or for quality

control on one parameter of a final product, fault detection is often relied upon to



4

relay important information about the state of the process. There are many types of

fault detection schemes, including threshold detection, quick change detection, and

model based fault detection. One key component in many of them is defining exactly

where the variable of interest is supposed to be, and how much is it allowed to vary

around that point before declaring a fault. This often translates mathematically into

finding the statistical mean and variance of the variable.

Finding thresholds for fault detection is an often performed task in industrial

application and usually involves statistical analysis of historical data. In other words,

the variation in the variable during “normal operation” are used to determine thresh-

olds for future fault detection. The issue becomes more complex however when there

is a desire to use a soft sensor application in order to perform fault detection on

unmeasured variables. In the general case, the thresholds that are proper for mea-

sured variables obtained from historical data will not be the correct thresholds for

unmeasured variables.

This dissertation presents a method to use the information about the process

previously known, such as variance, in combination with the soft sensor model, to

perform fault detection on estimated state variables. A fault detection scheme is

developed, including computation of the upper and lower control limits, which per-

forms fault detection directly on variables that are estimated by soft sensors. This

process is intentionally general in that it can be used with many of the available fault

detection methods. The use of the additional process information contained in the

process model enhances the performance of fault detection schemes that make use of

a normal operation threshold.
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B. Sensor Network Design

As mentioned previously, a control system can only be expected to perform as

well as the quality of information it receives. Similarly, the accuracy of the soft

sensor’s estimations is dependent on its two sources of information about the process,

namely the process model and the current state of the process. The former is related

to the level of model detail and precision available. However, as mentioned earlier

these are part of the considerations taken into account in the modeling process and

are outside the scope of this work. Therefore, it is assumed that the most accurate

model available is employed. Instead, this work focuses on the latter component. The

inputs to the soft sensor calculations, i.e. the sensor or network of sensors, determine

the best case accuracy of state estimation. In other words, if the placement of sensors

throughout the process is not carefully considered, the soft sensor may be using less

than ideal data. This is one of the main motivations for the field of Sensor Network

Design.

In most industrial plant units there is a plethora of potential measurement loca-

tions. Because of this large number of possibilities and the complexities inherent to

chemical engineering systems, the “best” location for sensor placement is often not

obvious. Furthermore, the capital and maintenance costs of sensors produces a desire

to employ a minimum number of sensors whenever possible.

There are several unattractive issues with much of the state of the art in sensor

network design. Firstly, much of the groundwork has been in attempting to determine

the single best sensor. However, in industrial application, the interest will almost

always be on an entire network of sensors. This greatly complicates the problem

as it introduces redundancy of information about the process. Secondly, many of

the communications in sensor network design literature focus on steady state linear
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models of processes. Although this allows for useful solutions to be found, it is only

practical for certain specific situations, as most systems require dynamic control and

exhibit nonlinear behaviour.

This dissertation presents a method for determining the optimal sensor network

design for a general non-linear system. Specifically, the determinant of the empirical

observability gramian is maximized using a hybrid approach to solve the necessary

Mixed Integer Nonlinear Programming Problem.

C. Extended Kalman Filter Implementations

There exists a dichotomy between first principles modeling of physical systems,

which is usually represented by continuous time ordinary differential equations, and

measurement and computational techniques, which are fundamentally restricted to

discrete time formulations. In addition to this gap, first principle models are almost

always non-linear in nature, but many of the most used process systems techniques are

derived and implemented using assuming a linear model. Because of these situations,

the concepts of linearization, or alternatives of the same goal, and discretization are

essential tools in systems engineering. The situation is complicated by the fact that

there are many different ways of executing these goals. These competing technolo-

gies vary widely in accuracy and computational expense depending on the situation.

Therefore it is crucial that the implementation of these strategies be done with ex-

treme attention to the details.

This point is particularly pertinent to the application of soft sensors. There

have been many simulation based performance comparisons between different soft

sensors recently. These typically use Extended Kalman filters (EKF) performance as

a benchmark for newer methods created as an attempt to rectify some of the flaws
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of the EKF. These include Moving Horizon Estimation, Unscented Kalman Filter,

and Particle Filtering. However, the results returned by the EKF are affected by

the algorithm used for its implementation and some implementations of EKF lead

to inaccurate results. In order to address this point, this dissertation investigates

several different algorithms for implementing EKF. Advantages and drawbacks of

different EKF implementations are discussed in detail and illustrated in a comparative

simulation study.

This dissertation is organized as follows. Chapter II contains a thorough review

of the previous literature and a review of techniques relevant to this work. Next,

Chapter III presents a new technique for using fault detection with soft sensors. Then,

Chapter IV contains a complete method for determining the optimal sensor network

design. Chapter V offers a detailed look at implications of improper implementations

of the EKF. Finally, Chapter VII concludes with a summary and discussion of future

work.
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CHAPTER II

LITERATURE REVIEW

The study of the science of soft sensors is a wide and diverse area of research.

Logically, the central area of investigation details soft sensor design. This main topic

can be broadly divided into soft sensor types based on data driven modeling and those

based on first principles based modeling (Lin et al. , 2005). There is a very large

collection of literature involving the design and application of the former, including

current textbooks and state of the art survey papers (Fortuna et al. , 2007; Lin et al. ,

2007; Kadlec et al. , 2009). However, the focus of this dissertation is restricted to the

latter, namely soft sensors using first principle based models. This type of modeling

is advantageous as it retains the physical meaning connected with important process

variables, as is often desired in systems encountered in chemical engineering systems.

A more thorough review of previous work concerning model based soft sensor design

is detailed in the next section, followed by a review of literature in related fields such

as soft sensors used with fault detection and sensor network design.

A. Soft Sensor Design

Model based soft sensor design techniques play a key role process monitoring

and various types of estimators have been developed. Model based soft sensors, often

called state filter or state estimators, can trace their origins to one of two historically

important state estimators, the Luenberger Observer and the Kalman filter (KF). The

first was developed by David Luenberger during his dissertation project (Luenberger,

1964). The Luenberger Observer is used on deterministic linear systems in order to

reconstruct unmeasured dynamic states. It is tuned to guarantee stability and ideally

produces a diminishing error in the absence of unknown disturbances and perfect
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model knowledge. The Kalman Filter was introduced in a seminal paper by Rudolph

Kalman (Kalman, 1960). As the term “filter” suggests, the Kalman Filter is designed

to infer unobserved states, while simultaneously removing unwanted random noise

inherent to all real systems. Although both state estimators continue be used in both

academia and industrial applications, the Kalman Filter is by far the more popular

for application in petrochemical process industries (de Assis, 2000; Soroush, 1998).

Accordingly, the focus of this dissertation is on soft sensors, or state estimators, of

the Kalman Filter “type”.

1. The Kalman Filter

A general dynamic, stochastic, continuous, linear time invariant model is written

as follows:

ẋ = Ax+Bu+Gw (2.1)

y = Cx+Du+ v (2.2)

Here, x, y, and u are vectors containing the variables of the internal system states,

the outputs, and inputs of the system respectively. Matrices A, B, G, C and D

contain the system parameters. Additionally, w and v are vectors representing the

random disturbances present in the system, specifically dynamic model noise and

measurement noise. It is assumed that both are zero mean Gaussian white noise

processes, given by w ∼ N(0, Q) and v ∼ N(0, R) . The noise terms are assumed to

be uncorrelated in time and uncorrelated to each other and the states.

This continuous time model involving differential equations often results nat-

urally from linearization of physically meaningful natural laws such as the energy

balance resulting from the first law of thermodynamics. However, because actual

data is inherently discrete and due to the simplifications that result from using only
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algebraic equations, there is often a desire to represent this model in a discrete time

form (2.3)-(2.4).

xk = Adxk−1 +Bduk +Gdwk (2.3)

yk = Cdxk +Ddu+ vk (2.4)

where each of the vectors are now defined at each time point k, and the matrices are

denoted as the discrete time form. This equivalent model is obtained through the

following transformation:

Ad = eAT (2.5)

Bd = A−1(Ad − I)B (2.6)

Cd = C (2.7)

Dd = D (2.8)

Gd = A−1(Ad − I)G (2.9)

T is the sampling interval of the system. Because of the reasons mentioned above,

most of the methods in this work assume a discrete time form. Accordingly the accent

d will be dropped for simplicity of notation.

Assuming a model given by equations (2.3)-(2.4), the Kalman Filter is given by

the following set of recursive equations.

P−
k = APk−1A

T +GQGT (2.10)

Kk = P−
k CT (CP−

k CT +R)−1 (2.11)

x̂−
k = Ax̂k−1 +Buk (2.12)

x̂k = x̂−
k +Kk(yk − Cx̂−

k ) (2.13)

Pk = (I −KkC)P−
k (2.14)
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At each time step the state estimate x̂k is calculated, in addition to the error co-

variance matrix Pk = E[(xk − x̂k)(xk − x̂k)T ]. Here, x̂−
k represents the propagated,

or a priori, state estimate, which is simply the state variables propagated from one

time step to the next using the system model equations. The term x̂k represents the

updated state estimate, where the update is an error term multiplied by the optimal

Kalman gain, and added to the a priori estimate. The calculation of the Kalman

gain, denoted by Kk, is included in the recursive format of the state dynamics and

is accomplished using the noise covariance terms Q and R. The gain term repre-

sents a trade-off between the accuracy of the model versus the precision of the data.

Determination of these factors is discussed in section 3.

2. State Estimation for Nonlinear Systems

For unconstrained linear systems, the KF provides the optimal state estimation in

the least squared sense (Mariani & Corigliano, 2005). The KF is applied to real world,

non-linear systems via local linearizations, providing a suboptimal estimate (Grewal

& Andrews, 2001). The disadvantages include its restriction to the area directly

around a chosen steady state, possible existence of offset between the estimate and

actual state value, and that it does not easily allow inclusion of system constraints.

This latter point is especially pertinent in chemical engineering systems as most all

state variables have at least non-negativity constraints. Despite this, the KF is a very

often implemented state estimator, and has formed the basis for development for many

nonlinear filters. These extensions include the widely used Extended Kalman Filter

(Schmidt et al. , 1976; Anderson & Moore, 1979; Sorenson, 1985; Grewal & Andrews,

2001), which utilizes a dynamically updated first order linearization approximation

of nonlinear systems. Here, the a priori density is assumed Gaussian, and is captured

by the propagation of the mean and covariance only. A basic, first order Taylor Series
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linearization is performed on the system model.

The EKF is applied to a nonlinear system matching the general discrete time

formulation of the following set of equations.

xk = f(xk−1, uk, wk) (2.15)

yk = h(xk, uk, vk) (2.16)

Here, the variable definitions match those of equations (2.3)-(2.4) only the models

functions f and g are no longer restricted to the linear relationships posed there. In

order to overcome this difference the matrices Ãk =
df
dxT , C̃k =

dh
dxT , and G̃k =

df
dwT can

be calculated as approximations of the linear system at each time step. This allows

the EKF to outperform a simple “one-time” linearization of the process by updating

the linearization as the system moves to a different place in state space. However,

the EKF is still reliant on the accuracy of first order approximation and still does not

easily allow for the inclusion of system constraints.

Another useful filter for nonlinear systems derived in the spirit of the KF is the

Unscented Kalman Filter (Julier & Uhlmann, 1997; Wan & Van Der Merwe, 2000;

Xiong et al. , 2006; Pan et al. , 2005), which combines the KF with an unscented

transformation. The UKF is comparatively new but is being applied in chemical

engineering systems (Julier & Uhlmann, 2004, 1997; Romanenko & Castro, 2004;

Romanenko et al. , 2004). The UKF propagates a deterministically chosen set of

sample points through the nonlinear system so that the mean and covariance can be

calculated without the use of linearization. In this way, the error covariance matrix,

Pk in equation (2.14), is given by the following equation.

Pk =
∑

i

[wi(zik − x̂k)(ηik − x̂k)T ] (2.17)
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Here, wi represents the weight given to each sample zik. Equation (2.17) shows that in

the UKF the state estimate error is not propagated through system linearization but

uses a specified number and type of sample points in order to obtain an “average” of

the system around the current location of the system in state space. In addition to

this, the UKF provides the advantage of not requiring the system’s partial derivatives

for its computation.

A large and diverse class of state filters, broadly called sample based filters, have

been in development recently. The author is including in this category Particle Filters,

Cell Filters, Ensemble Kalman Filters and others (Lang et al. , 2007; Prakash et al. ,

2010; Ungarala, 2011). The unifying concept in this class of state estimators is that

they propagate randomly chosen sample points through the nonlinear system and

allow for the approximation of any non-Gaussian distribution. Although the inner

working of these filters is varied and very different from the UKF, the final error

covariance matrix calculation is similar to equation (2.17), as they are sample based.

Much research has been done in attempting to incorporate state constraints into

particle filtering directly, and the proper way to accomplish this task remains open.

Although random sample filters may currently be too computationally intensive for

many applications, the allowance for any general shaped probability density for the

random disturbances entices many to work in this field.

Finally, probably the most popular nonlinear state estimator in recent research

is the Moving Horizon Estimator. This will be discussed in the next sub-section as

the framework is best understood from an independent treatment.

3. Moving Horizon Estimation and Arrival Cost

Moving Horizon Estimation has become an increasingly popular strategy for

state estimation over the last number of years (Rawlings & Bakshi, 2006; Zavala
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et al. , 2008). This is due to the fact that it allows for directly dealing with model

nonlinearities and state variable constraints. Consider a system described by the

following discrete time, general nonlinear recursive model.

xk+1 = f(xk, uk) + wk (2.18)

yk = h(xk) + vk (2.19)

The solution to the following optimization problem provides the optimal state

estimate in the least squares sense, as displayed in (Rawlings & Bakshi, 2006).

minX(T )

[
V0(x(0)) +

T−1∑

j=1

Lw(w(j)) +
T∑

j=0

Lv(y(j)− h(x(j)))

]

s.t. xj+1 = f(xj, uj) + wj

V0(x) = −log(px(0)(x))

Lw(w) = −log(pw(w))

Lv(v) = −log(pv(v))

(2.20)

The objective function is a sum of three terms V0, Lw, and Lv, which represent the

uncertainty or state estimate error due to the initial state, dynamic model noise, and

measurement noise, respectively. This formulation of the state estimation problem

into an optimization problem, known as full information estimation, allows for di-

rectly dealing with nonlinear system models and for the explicit inclusion of system

constraints. Both of these less than ideal situations occur frequently in chemical en-

gineering processes. However, the computational burden problem defined in equation

(2.20) increases dramatically as time horizon and system size increase. In response to

this difficulty, the Moving Horizon Estimator (MHE) was developed to use the same
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formulation as equation (2.20) on a fixed window of data, size N .

minX(T−N :T )

[
VT−N(x(T −N)) +

T−1∑

j=T−N

Lw(w(j)) +
T∑

j=T−N

Lv(y(j)− h(x(j)))

]

(2.21)

Here VT−N is known as the arrival cost. The arrival cost is responsible for including

information about the system at the beginning of the horizon. More specifically, this

represents the a priori density function. If the system is linear and unconstrained,

the Kalman Filter provides the exact a priori density in the form of its state estimate

and error covariance matrix (Rao & Rawlings, 2002). In this case, the arrival cost

can be expressed as follows.

VT−N(x(T −N)) = (x(T −N)− x̂(T −N))TP−1
T−N(x(T −N)− x̂(T −N)) (2.22)

Here, VT−N is the error covariance matrix from the Kalman filter defined by the

following equation.

PT = (x(T )− x̂(T ))T (x(T )− x̂(T )) (2.23)

The error covariance matrix evolves according to the following dynamic equation.

PT = APT−1A
T +GQGT − APT−1C

T (CPT−1C
T +MRMT )−1CPT−1A

T (2.24)

The steady state solution can be determined for linear systems by solving the related

discrete time algebraic Riccati equation.

For general nonlinear systems, the exact representation of this density is non-

trivial, and is typically approximated in one of many available methods. The main

open area of research for MHE is in determining good approximations of the arrival

cost. This is critical to the industrial application of MHE because the poorer the
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estimation of the arrival cost, the larger the estimation horizon must be in order to

provide satisfactory performance. However, the larger the estimation horizon (and

therefore the computational cost), the longer the state estimation takes at each time

step. The goal of arrival cost research is to find a useful compromise in this tradeoff

(Ungarala, 2009).

The arrival cost may be calculated using any nonlinear filter that propagates the

mean and covariance (Robertson & Lee, 1995; Ungarala, 2009). Recent literature is

full of attempts to use a large variety of nonlinear filters for this approximation. The

traditional approach for estimating the arrival cost for MHE on nonlinear systems is

the Extended Kalman Filter (Ungarala, 2009). Using EKF to calculate the arrival

cost follows the approach outlined above where A = df
dxT , C = dh

dxT , and M = dh
dvT

in equation (2.24). The disadvantages of using EKF to calculate the arrival cost in-

clude inability to include system constraints, and the calculation of the covariance

matrix through system linearization introduces errors (Vachhani et al. , 2006). These

two problems have been shown to introduce unwanted errors and have led to a ma-

jor response in the literature for investigating the development of other approaches

(Haseltine & Rawlings, 2005).

The Unscented Kalman Filter has been proposed for use in computing the arrival

cost as an improvement from the EKF. The approach of using UKF for the arrival cost

estimation has been implemented and compared to results using EKF to calculate the

arrival, and reported improved performance in all cases studied (Qu & Hahn, 2009b;

Ungarala, 2009). In order to deal with constraints it was proposed using a constrained

version of UKF for calculating the arrival cost using clipping to satisfy the bounds

(Kandepu et al. , 2008). However, this has been criticized as ad hoc and potentially

sub optimal (Lopez-Negrete & Biegler, 2011).

Many types of sample based filters have been proposed for use in calculating the
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arrival cost as well (Lopez-Negrete et al. , 2009; Ungarala, 2009). Typically the limi-

tation in using these types of filters is computation cost. However, research continues

into how best to formulate the techniques in sample based filters to create efficient

algorithms. As this field develops these types of filters may be used increasingly to

compute arrival cost.

Moving Horizon Estimation remains one of the most promising solutions to the

constrained nonlinear online estimation problem. However, due to high computation

costs in the complex optimization problem, live industrial implementation is restricted

to low horizon lengths. This requires an accurate estimation of the arrival cost.

The best arrival cost calculation seems to be theoretically difficult, especially when

considering the inclusion of state constraints. Many of the techniques described above

show improved performance over the basic EKF approach, especially the constrained

sample based filters.

B. Crucial Related Fields

While much work has been done focusing specifically on soft sensor design, there

are also many related fields that require thorough investigation. Because soft sensors

are pieces in a larger framework that is process monitoring, many of these peripheral

areas of research arise due to the interactions between the soft sensors and the tools

used to monitor and control the process. For example, advanced control techniques

often rely on soft sensors for accurate and current values for the internal states of

the process. The following subsection details a review of literature related to Fault

Detection use with Soft Sensors. Next, a subsection discussing the work related to

Sensor Network Design is given. Finally a discussion on determination of the Kalman

Filter tuning parameters, Q and R.



18

1. Fault Detection

Fault detection has been described as the number one priority for improvement

of industrial process operations (Venkatasubramanian et al. , 2003a). A fault can be

defined as an a non-permitted deviation of a characteristic property which leads to

the inability to fulfill the intended purpose (Isermann, 1984). However, even strictly

within Chemical Engineering related research, fault detection is a wide and diverse

area of investigation, both in application and approach, as shown in several compre-

hensive reviews (Kramer & Mah, 1994; Venkatasubramanian et al. , 2003b,c,a; Zhang

& Jiang, 2008). Quantitative fault detection can be broadly divided into techniques

that use historical process data, and techniques using model-based methods.

Within the set of process history techniques, one main category deals with sta-

tistical methods (Qin, 2003). The most commonly used technique is principal compo-

nent analysis, a type of data/model reduction (Chiang et al. , 2000; Li et al. , 2000).

Another widely-used approach uses neural networks for fault detection (Venkatasub-

ramanian & Chan, 1989), which is often used for nonlinear systems (Nahas et al. ,

1992).

The second set of methods, model-based methods, has also been extensively dis-

cussed in the literature (Frank, 1990; Frank et al. , 2000; Katipamula & Brambley,

2005). Model-based approaches can be broken up into three areas: diagnostic ob-

servers, parity space methods, and fault detection filters (Frank et al. , 2000). These

methods, in different ways, perform fault detection by monitoring some model error

residual. However, it has been shown that these different methods are closely related

and often return similar or identical results (Ding et al. , 1998; Frank et al. , 2000;

Gertler, 1991; Hou & Mller, 1994). Applications of model-based approaches to indus-

trial processes have also been reported (Chetouani, 2004; Huang et al. , 2003). Model
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based approaches are typically derived for linear systems, however, some extensions

to nonlinear systems have also been reported (Venkatasubramanian et al. , 2003a).

One of the common themes among all of these fault detection approaches is

that they compare current measurements to values that are regarded as represent-

ing normal plant operation. The differences among the techniques result from how

these nominal values are computed and how the comparison between the current

measurements and their nominal values are made. One area that has received little

to no attention in the literature is that fault detection can be performed on physi-

cally important, but unmeasured, variables, if soft sensors are employed. Himmelblau

(Watanabe & Himmelblau, 1983) mentioned that this is a possibility, however, did not

propose a solution as to how such a fault detection scheme should be implemented.

Even now, according to Fortuna (Fortuna et al. , 2007), the main application of

soft sensors for fault detection is still to compare the soft sensor prediction with an

actual measurement and not perform fault detection on the soft sensor predictions

themselves.

A large number of different fault detection methods have been developed and im-

plemented. While it is beyond the scope of this work to review all of these techniques

here, there are concepts that can be found universally across all schemes. Every

process monitoring approach compares one or more variables that are monitored to

values of these variables that reflect normal operation. The decision if a process is op-

erating within normal parameters is usually made by comparing the variable against

a threshold value.

Possibly the simplest of these monitoring techniques is limit checking using

thresholds. Here, the mean and variance, defined below, are used to determine if
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the process is experiencing a fault or not (Isermann, 2006).

µi = E[yi(t)] (2.25)

σ̄2
i = E[(yi(t)− µi)

2] (2.26)

These statistics can be applied to determine the presence of faults in a number of

ways, including application of hypothesis tests, control chart techniques, and adaptive

thresholds (Himmelblau, 1978; Hofling & Isermann, 1996; Scharf & Demeure, 1991).

The general approach for using these techniques is to compare current live data with

some expected statistics of that data. More specifically for limit checking, the residual

used for fault detection is determined by the difference between the expected value

of the process and the actual value.

rk = yk − yss (2.27)

This residual can then be compared to some threshold. This same principle similarly

applies to many fault detection schemes as a residual is calculated as the difference

between data and the normal operating condition, and this residual is compared to a

threshold, as shown below.

rk < rmin OR rk > rmax → fault (2.28)

Regardless of the method used for determining the residual, almost all fault detection

methods require determination of this threshold. The success of a fault detection

scheme can only be as good as the accuracy of the boundaries chosen for the fault

decision. Despite the large amount of research dealing with fault detection methods,

little effort has been put into the computation of appropriate thresholds. This finding

is surprising as determining an appropriate threshold is a key parameter for process
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monitoring, even for such a simple and widely applied method such as limiting check-

ing (Ding, 2008; Ding et al. , 2004). To the authors knowledge, there is no work

previously done on threshold computation specifically for use with soft sensors.

2. Sensor Network Design

There have been many contributions advancing the field of sensor network design.

The solution to this problem is highly valued due to evidence that poor sensor network

design can cause a wide range of problems for plant operation (Van den Berg et al.

, 2000). The goal of sensor network design for chemical engineering systems is to

choose an optimal group of sensors from many available measurement locations based

on evaluating the capital and maintenance costs of the sensors and some performance

criteria. The performance criteria has taken on many different forms throughout the

research literature, but the general concept remains to maximize the accuracy and

precision of the monitoring systems knowledge of the system. Some groups focus

on minimizing undesired disturbances, or noise, in the measurements, and others

attempt to isolate the richest data set, assuming excellent measurement and model

quality. In addition, others focus solely on the cost minimization piece of the problem

formulation. Simultaneous to these research efforts in proper problem formulation,

there have been many advances in solution strategies for the programming problems

that result.

Specifically, there are many interesting contributions focusing on minimizing cost

while also maximizing precision and reliability via variability (Kotecha et al. , 2008;

Luong et al. , 1994; Bagajewicz & Sanchez, 2000; Bagajewicz, 1997; Ali & Narasimhan,

1993; Madron & Veverka, 1992). Nguyen and Bagajewicz extended current linear

techniques to nonlinear systems (Nguyen & Bagajewicz, 2008). Over the years, other

work has focused specifically on the maximization of observability in ranking sensor
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network designs (Georges, 1995; Kister, 1990; Waldraff et al. , 1998; Raghuraj et al.

, 1999). However, there has also been work specifically in observability for nonlinear

systems using other metrics, including Lie-algebra techniques, gram determinant test

of independence and nonlinear observability gramians (Hermann & Krener, 1977;

Scherpen, 1993). Some researchers use the state error covariance matrix from the

Kalman Filter (equation (2.14)) instead (Kadu et al. , 2008; Mellefont & Sargent,

1978; Mehra, 1976; Muske & Georgakis, 2003; Musulin et al. , 2005). Also, several

researchers have presented approaches for optimal monitoring design using Principle

Component Balance combined statistics (Brewer et al. , 2007; Stanimirovic et al. ,

2008; Zumoffen & Basualdo, 2010).

The many techniques represented here have been applied to a variety of chemical

systems. Recently, Sumana and Venkateswarlu investigated different observability

measures based on the empirical observability gramian applied to reactive distillation

(Sumana & Venkateswarlu, 2009). The trace of the observability gramian has been

applied to fault detection in micro chemical plants (Tonomura et al. , 2008). Some

work on the increasingly popular water network security problem via sensor network

design (Busch et al. , 2009; Mann et al. , 2011). There is also significant work

on related research that requires only observability or redundancy of measurements

and focuses on minimizing the cost of sensor networks (Nguyen & Bagajewicz, 2008;

Uci ski & Patan, 2010). In a somewhat different approach, some research is focused

on designing optimal sensor networks while explicitly considering optimal control

(Fraleigh et al. , 2003; Vande Wouwer et al. , 2000). In addition, there have been

related contributions focusing on catastrophic event detection (Berry et al. , 2006;

Legg et al. , 2012).

The field of sensor network design for soft sensing based on maximization of

information gathered by the sensor takes advantage of several other areas of pro-
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cess systems engineering in order to accomplish its tasks. The following subsections

present a review of these areas including some review of the pertinent literature.

First, the concept of experimental design is introduced and its relationship to sensor

network design is discussed. Second, a specific class of programming problems, MAX-

DET optimization, is stated briefly. Next, the central concept of system observability

is presented, for linear and nonlinear systems. Finally, a short subsection on a recent

solution technique for Mixed Integer Non-Linear Programming Problems is included.

a. Experimental Design

The goal of experimental design is to determine the best set of conditions for de-

termining optimal values for estimated parameters. In experimental design, a quan-

titative measure of goodness of design is the Fisher Information Matrix (Walter &

Pronzato, 1990). The Fisher Information Matrix is related to the covariance between

the measured variables and the estimated parameters. Just as with the observability

gramian, in order to perform optimization, a scalar function of the matrix must be

chosen. There are many functions used for this task, such as the E-optimality cri-

terion, D-optimality criterion and the A-optimality criterion (Kiefer, 1992). These

criteria optimize the least eigenvalue, the determinant, and trace, respectively, of the

covariance matrix, represented below by Σ.

ΦE = max [λmin (Σ)] (2.29)

ΦD = max [det (Σ)] (2.30)

ΦA = min [trace (Σ)] (2.31)

Though each criterion has its own purpose, the determinant of the Fisher Informa-

tion Matrix is the most widely accepted optimality criterion for experimental design
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(Emery & Nenarokomov, 1998; Uci ski, 2005; Walter & Pronzato, 1990; Wynn, 1972).

Therefore the optimization problem is generally described as equation (2.30).

b. MAX-DET Optimization

Because of its usefulness in experimental design and other fields, the problem

class of maximization of the determinant of a matrix has been previously studied thor-

oughly. It is critical that this problem formulation be investigated as the determinant

introduces nonlinearity to the objective function, thereby significantly increasing the

difficulty of the problem. It has been shown that the optimization problem resulting

from maximizing the determinant of a positive semi-definite matrix, as written in

equation (2.32), is convex (Atkinson et al. , 2007; Vandenberghe et al. , 1998).

min
x

cTx+ log det[G(x)−1]

s.t. H(x) > 0

F (x) ≥ 0

(2.32)

In addition to guaranteeing a global solution, this property allows the use of problem

solving techniques that are designed for the convex class of problems.

c. Observability

Observability is a property of a dynamic system which determines if it is possible

to reconstruct the values of the states from the measurements. As such, observability

is a property which is commonly used in some form for sensor network design (Damak

et al. , 1993; Mller & Weber, 1972; Waldraff et al. , 1998). A linear system is said to

be observable if the initial state can be determined by some finite set of measurement
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data (Brogan, 1985). For linear systems of the form,

ẋ = Ax+Bu (2.33)

y = Cx+Du (2.34)

the observability gramian (eq. (2.35)) and observability matrix (eq. (2.36)) are

defined by the following equations:

WO,linear =

∫ ∞

0

eA
T tCTCeAtdt (2.35)

Q =





C

CA

...

CAn−1





(2.36)

Here, the internal system state vector is represented by x ∈ Rn×1, the input or

manipulated variable vector is u ∈ Ro×1, and the measurement or system output

vector is given by y ∈ Rm×1.

For general nonlinear systems given by the following general formulas,

ẋ = f(x, u) (2.37)

y = g(x, u) (2.38)

calculation of these observability matrices analytically is not possible, as the relation-

ships between variables are dependent on the location in state space. One solution

would be to simply obtain the observability gramian of a linearized system around a

specific operating point. This likely will produce misleading results, however, since

they will only be valid when the system is exactly at the chosen steady state. Instead,

the empirical observability gramian offers an alternative for use directly on nonlinear
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systems (Singh & Hahn, 2005b). The empirical observability gramian is defined as

follows:

Wo =
r∑

l=1

s∑

m=1

1

(rsc2)

∫ ∞

0

TlΨ
lmT T

l dt (2.39)

Ψlm
ij (t) = (yilm(t)− yss)

T (yjlm(t)− yss) (2.40)

T n =
{
T1, ..., Tr;Ti ∈ Rnxn, T T

i Ti = I, i = 1, ..., r
}

(2.41)

M = {c1, ..., cs; ci ∈ R, ci > 0, i = 1, ..., s} (2.42)

En = {e1, ..., en; unit vectors in Rn} (2.43)

Here, yilm is the system output given by the initial condition x(0) = cmTlei + xss.

Using this approximation, observability information can be found that provides

some sort of average around an operating point. The empirical observability gramian

has been shown to both offer an accurate approximation for nonlinear systems and

has been shown to be equivalent to true observability gramians when applied to

linear systems (Singh & Hahn, 2005a). Furthermore, as the specified range around

the operating point is reduced, the empirical observability gramians results reduce to

that of the observability gramian of the linearized system.

Both the observability gramian and the observability matrix are useful in deter-

mining the binary decision of whether a system is fully observable or not. In each

case, if the rank is equal to the number of states, n, then the system is fully observ-

able. However, the answer to the question of how to quantify a scale of observability

for ranking various systems is not quite as clear. Several metrics based on producing

a scalar value from the observability gramian have been used to rank increasing ob-

servability (Mller & Weber, 1972). Certain metrics, such as the determinant, which

are known to be useful for this were not used in past work (Singh & Hahn, 2006;

Sumana & Venkateswarlu, 2009). This seems to be due to the computational com-
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plexity that these metrics cause when applied to sensor network design. For example,

the trace is popular, possibly due to the simplicity of the resulting optimization prob-

lem. However, most scalar functions other than the determinant do not include all of

the observability information from the matrix as they only operate on certain terms

in the matrix.

d. MINLP Solution Methods

Mixed Integer Nonlinear Programming problems (MINLPs) are often considered

extremely difficult to solve, and solution methods are an open area of research. A

set of hybrid solution techniques for solving convex MINLPs is presented in recent

literature (Bonami et al. , 2008) and is briefly introduced here.

The solution technique detailed in literature operates on a subclass of MINLPs

whose continuous relaxation is convex. This type of formulation is shown in equation

(2.44).

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0

x ∈ X ∩ Zn

y ∈ Y

(2.44)

Here, the functions f : X × Y → R and g : X × Y → R are continuously twice

differentiable and convex. Note that the MINLP in the previous formulation can be

reformulated as an MINLP with a linear objective function by introducing a new

variable a which is minimized subject to the additional constraint f(x,y)= a. The

solution procedure begins by introducing linearizations of the objective function and

constraints to build the relaxed problem in the form of a mixed-integer linear pro-
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gramming problem (MIP). The relaxed problem has the form of Equation (2.45).

min
x,y

α

s.t. ) f
(
xk, yk

)T



x− xk

y − yk



+ f(xk, yk) ≤ α, ∀(xk, yk) ∈ T

) g
(
xk, yk

)T



x− xk

y − yk



+ g(xk, yk) ≤ 0, ∀(xk, yk) ∈ T

x ∈ X ∩ Zn

y ∈ Y

α ∈ R

(2.45)

Here T represents a set of points (xk, yk) where the functions f and g are linearized.

Due to convexity of the functions f and g, this problem is guaranteed to provide a

lower bound on the original objective function. Bonami et al. show that by successivly

strengthening the relaxed subproblem with new linearization points the algorithm

converges to an optimal solution of the original MINLP in a finite number of steps,

provided that assumptions on convexity, differentiability, and constraint qualifications

hold (Bonami et al. , 2008). Application of this solution technique to the sensor

location problem is discussed in further detail in the following section.

3. Estimation of Unknown Disturbance Statistics

In order to tune Kalman Filter type state estimators, information about the dy-

namic state model error and the measurement noise must be known. As described

shown in Section 1 for KF and EKF particularly, the Q and R covariance matri-

ces must be determined before implementing the filter. Currently, the most popular

technique in process systems research for accomplishing this goal is the Autocovari-
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ance Least Squares (ALS) method (Odelson et al. , 2006b,a; Rajamani & Rawlings,

2009; Odelson, 2003; Rajamani et al. , 2007; Åkesson et al. , 2008). ALS is part of

a larger group of techniques for estimating these covariance matrices called correla-

tion techniques. This set of techniques accomplishes the estimation using the residuals

from state filtering and was pioneered by several researchers previously (Mehra, 1970,

1972; Belanger, 1974; Carew & Bélanger, 1973). In addition, there are other ways

historically used for estimating these covariance matrices that have not been focused

on recently for various reasons. These areas include Bayesian, maximum likelihood,

and covariance matching methods (Kashyap, 1970; Bohlin, 1976; Hilborn & Lainiotis,

1969; Alspach, 1974; Bunn, 1981). Finally, there is a growing interest in researching

optimal adaptive filtering with application to electrical engineering systems (Karasalo

& Hu, 2011; Ding et al. , 2007; Yang & Gao, 2006).

The ALS method is a technique to estimate the covariance of the model and

measurement noise terms in a state space model, using information from real process

data. Much of the difficulty in this estimation process is due to the goal of simulta-

neously estimating the unknown covariance of both noises. The ALS technique for

linear systems is steady state data from a time-invariant system that can be described

by the following discrete time equations.

xk = Axk−1 +Buk−1 +Gwk−1 (2.46)

yk = Cxk +Duk + vk (2.47)

Q ≡ E[wkw
T
k ] (2.48)

R ≡ E[vkv
T
k ] (2.49)

Here, x ∈ Rn is the vector of states, y ∈ Rm is the vector of measurements, w ∈ Rg is

the vector of random state disturbances, v ∈ Rm is vector of measurement noise, and
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u ∈ Ro is the vector of inputs. Each process variable is defined at every time step k.

First, a discrete time linear filter is used on the data to produce estimates of the

state variables, from chosen “best guess” filter gain, L.

x̂+
k = x̂−

k + L(yk − Ckx̂
−
k ) (2.50)

x̂−
k = Ax̂+

k−1 +Buk−1 (2.51)

Then, the innovations term is formed at each step by subtracting the actual historical

data from the “estimated data”, and the error term is defined as the difference between

the actual state value and the propagated state estimate at each time step.

Yk ≡ yk − Cx̂−
k (2.52)

ek ≡ xk − x̂−
k (2.53)

Now, with substitution, the dynamic model for the error term is obtained.

ek = Āek−1 + Ḡw̄k−1 (2.54)

Yk = Cek + vk (2.55)

Ā ≡ A− ALC (2.56)

Ḡ ≡ [G,−AL] (2.57)

w̄k ≡ [wk, vk]
T (2.58)

Q̄ ≡ E[w̄kw̄
T
k ] =




Q 0

0 R



 (2.59)

Next, the propagation of the variance of the error term is given by the following.

Pk ≡ E[eke
T
k ] (2.60)

Pk = ĀPk−1Ā
T +GQ̄ḠT (2.61)
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The steady state value of the variance of the error term is simply given by the solution

to the Lyapunov equation.

P = ĀP ĀT + ḠQ̄ḠT (2.62)

The next piece of information needed is the correlation matrix of the innovations

term, defined by the following equation.

SN ≡





c0 · · · cN
...

. . .
...

cN · · · c0




≡ E





YkY T
k · · · YkY T

k+N

...
. . .

...

Yk+NY T
k · · · Yk+NY T

k+N




(2.63)

Here, N is the number of time steps chosen for the correlation. Each term in this

matrix can be estimated from the innovations, by the following often used technique.

cj ≈
1

N − j

Ndata∑

i=1

Yi+jY
T
i (2.64)

Next, the equation for the correlations is determined, by plugging in the dynamic

equations shown previously.

c0 = E[YkY
T
k ] = CPCT +R (2.65)

cj = E[Yk+jY
T
k ] = CĀPCT − CALR (2.66)

Finally, the relationship between the innovations term obtained from data and

the covariance of the noise can be established. By using the above equations, the

Lyapunov equation for the value of P and the estimated value for each innovations

correlation, the equation can be derived and solved for Q and R. However, in most

cases the N is chosen large enough where the solution is not unique, and an opti-

mization strategy is needed. An optimization approach is also necessary in order that

positivity constraints can be placed on the variances. In this case, the problem is
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formulated as follows.

min
x

‖Zx− b‖2

s.t. x ≤ 0

Z =




((C ⊗O)(In2 − Ā⊗ Ā)−1

((C ⊗O)In2 − Ā⊗ Ā)−1(AL⊗ AL) + (Ip ⊗G))





T

x =




Q|s

R|s





(2.67)

Here, Q|s and R|s represent the variance matrices vectorized. Also, b represents the

estimate of the first column of the correlation matrix SN which can be estimated as

discussed earlier. Several of the matrices in Z are not defined here, but are built

from the system model parameters. As is clear here, the size of the programming

problem is determined not only by the size of the system (i.e. states, measurements,

and random disturbances), but also the chosen N parameter. N can be described as

the size of the window of data analyzed for the estimation.

a. ALS Technique for Nonlinear Systems

Generally, state space models are used to describe the dynamic action of internal

states of system, in addition to the inputs and outputs (or measurements). Because

they are typically more connected to physical interpretations of physical phenomena,

systems of differential equations are often used to describe the dynamics of internal

states. However, algebraic difference equations can also be used, and are often used in

estimation techniques for nonlinear systems because of nice mathematical properties.

The ALS method for nonlinear systems assumes that the system being studied can

represented by the following set of discrete time equations, and practically, many
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systems can be described in this way.

xk = f(xk, uk) + g(xk, uk)wk (2.68)

yk = g(xk, uk) + vk (2.69)

The ALS method presented previously can be modified and applied to systems mod-

elled by nonlinear systems of equations, and time-variant linear systems. In general,

the modification consists of linearizing the system at each time step around the state

estimate, similar in concept to the procedure of the Extended Kalman filter.

When the system has been linearized, the following property must hold in the

limit as k goes to infinity, in order for the ALS method to be applicable.

k∏

i=0

Āi ≈ 0 (2.70)

Given this property, the derivation of the ALS technique for nonlinear systems

follows the same ideas as the linear case. The main difference is the inclusion of this

product term, multiplying the linearized system from the initial time until time k.

There is a simplification though, where the product is only used from time tm to

time k. This adds an additional parameter to the nonlinear ALS. Once again, the

estimation depends on information gained from a window sized N , but also, each piece

of information is obtained using tm number of historical data. This extra parameter

is necessary for the nonlinear or time-variant version of ALS because the correlation

matrix is changing with time.
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CHAPTER III

FAULT DETECTION APPROACH FOR SYSTEMS INVOLVING SOFT

SENSORS

A. Introduction

Process monitoring forms an essential element of operating modern industrial

processes. Various types of control charts have been developed and extensively used

to monitor the variability of process variables such that process faults can be de-

tected. These fault detection techniques generally monitor if the values of process

variables are within acceptable parameters, e.g., upper and lower bounds of the pro-

cess variable value (Isermann, 1997). One challenge for process monitoring is that

the important variables, e.g. the concentrations of key components in a reactor, may

not be measured directly and the control charts cannot be applied directly to mon-

itor their variability. One solution to this problem is using the measured variables,

e.g. the temperature of a reactor, to monitor process conditions. Data from these

measured variables can then be used as an indicator of the operating condition if

the measured variables are affected by the unmeasured ones. Monitoring measured

data directly is a simple way to detect faults; however, this approach is not always

trivial as the relationship between the measurements and the process fault may be

non-trivial. One result of this is that many multi-variable monitoring techniques,

such as principal component analysis or partial least squares, have been developed

as usually several measured variables need to be used to determine the state of a

process.

Alternatively, the measured process variables can be used to predict the un-

measured ones by employing some form of soft sensor which infers the value of the
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unmeasured variables from a combination of data and a system model (Fortuna et al.

, 2005; Kadlec et al. , 2009; Lin et al. , 2007). The estimated value can be used for

monitoring instead of the original data. This approach offers the benefit of additional

information contained in the model. However, this approach needs to take into ac-

count that the predicted variables are not only affected by the process operations

and measurement accuracy but also by the soft sensor design. For variables that

are directly measured, upper and lower control limits are often given as a function

of the covariance matrix of the measured variables. However, the situation is more

complex if the variables are determined from soft sensors as the covariance matrix of

the predicted variables is affected by the soft sensor design and is not equal to the

covariance matrix of the original measurements. Instead, the covariance matrix of

the estimated variables has to be computed if limits for the operating conditions are

to be determined.

As soft sensors begin to replace some plant measurements for process monitor-

ing, it is important to adapt techniques, such as fault detection, to variables that

are computed from soft sensors. The concept of using soft sensor predictions directly

for process monitoring, instead of comparing soft sensor predictions to actual mea-

surements, is not a new idea (Watanabe & Himmelblau, 1983), however, there seems

to be little literature focusing on this concept. This work addresses this point and

presents a new, generally applicable approach for fault detection schemes for pro-

cesses involving soft sensors. Specifically, the presented approach will directly use

state estimates of unmeasured process variables to determine if the values of these

variables are corresponding to normal operating conditions.

This chapter is organized as follows. Section B presents the description of the

process monitoring scheme for linear and, under certain conditions, for nonlinear

systems. Next, in Section C, simulation results from the application of the technique
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are shown and discussed, including a comparison to standard techniques. Finally,

Section D presents the conclusions.

B. Fault Detection Approach Involving Soft Sensors

1. Motivation for Fault Detection Approach

Kalman filters such as the one given by equations (2.10)-(2.11) allow the predic-

tion of the values of unmeasured states of a process. These predicted state values can

be used for process monitoring. However, the statistics of the estimated states are dif-

ferent from the statistics of the actual states as measurement noise, model accuracy,

and the soft sensor design/tuning affect the statistical properties of the estimated

states. It is the purpose of this work to develop a process monitoring technique which

can take these factors into account.

The motivation of this work is to develop an approach to fault detection that

can be combined with process monitoring strategies that include soft sensors. The

strategy employed here determines the mean and covariance matrix of the state es-

timate from the system model to be used and from the methodology for computing

the filter gain. Given these statistical values, thresholds for fault detection are cal-

culated. These thresholds can then be used for fault detection, where one common

method uses three times the standard deviation above and below the steady state

value, for a control chart threshold. With these thresholds, most of the fault de-

tection techniques currently used for monitoring measured variables can be adapted

to the case where soft sensor state estimates are available instead of measurements.

This is beneficial primarily because it allows application of fault detection directly on

physically meaningful internal states of the system that are unmeasured. Secondly,

this approach offers the potential for increasing fault detection performance in cer-
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tain circumstances, e.g., for cases where the measurements are nonlinearly related to

the process variable to be monitored, but where this relationship is known with a

reasonable level of accuracy.

Fig. 2. Flowchart of presented soft sensor-based fault detection scheme

The presented approach is conceptually illustrated in Figure 2. In a first step, the

state estimator receives data about the inputs and outputs of the plant, and computes

the state estimates. Then, the residual generator compares the state estimates to their

expected values. These expected values are determined from operating characteristics

of the system and the chosen filter. Finally, a fault detection decision is made by

comparing the computed residual to some threshold. It should be pointed out that

standard procedures can be used for all of the individual blocks shown in Figure 2,
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however, the contribution of this work is to show the integration of these tasks and

to use the predicted statistical variations of the state estimates for fault detection. In

addition, this work offers a detailed discussion of the threshold calculation required

for implementation of the presented approach. This procedure is intentionally kept

general, so that it may be used for a variety of available state estimation and fault

detection tools.

One key component of this strategy is that the thresholds of the estimates must

be determined from the covariance matrix of the state estimates. This covariance

matrix will be a function of the system parameters, including the dynamic state

model and measurement noises, Q and R.

VAR(x̂) = E[(x̂− E[x̂])(x̂− E[x̂])T ] = f(Q,R) (3.1)

In the general case, an estimate of this covariance is attainable via Monte Carlo

simulations. However, depending on the type of filter employed, there may be an

analytical solution. In the next section this analytical calculation is performed for

a linear system using a steady state linear filter, followed by a section detailing the

estimation in the general case.

2. Calculation of Variance Matrix for Linear Systems

This section will analytically determine the necessary normal operating statistical

values for linear systems with a linear filter. Specifically, the steady state mean and

variance of the state estimate vector are calculated. Though these statistics can

be calculated from a Monte Carlo simulation, as will be shown in Section 3.3, such

an approach requires a large amount of computation time and its accuracy is not

guaranteed. The following derivation offers an analytical solution of the desired values

for a linear system. One implementation of a linear filter for a stable model given by
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equations (2.3) and (2.4) is given by:

x̂−
k = Ax̂k−1 +Buk (3.2)

x̂k = x̂−
k + Lk(yk − Cx̂−

k ) (3.3)

where the A, B, and C matrices are identical to the matrices from equations (2.3)

and (2.4) and L refers to the gain. It is further assumed that the data y is collected

while the system is at steady state and that the gain is constant.

Equations (2.3), (2.4), (3.2), and (3.3) can be combined into a single equation

for the propagation of the error updated state estimate:

x̂k = Ax̂k−1 +Buk +K(CA(xk−1 − x̂k−1) + CGwk + vk) (3.4)

In order to determine the normal operating condition of the process, the expected

value of the state estimation model can be taken.

E[x̂k] = (A− LCA)E[x̂k−1] + Buk + LCE[yk] (3.5)

The assumption is made that the expected value from one time step the next does

not change at steady state. This allows for solving for the steady state, resulting in:

E[x̂ss] = (I − A− LCA)−1[Buss − LCBuss + Lyss] (3.6)

x̂ss = (I − A− LCA)−1[B − LCB + LC(I − A)−1B]uss (3.7)

Next, the steady state variance of the state estimate needs to be computed. In order

to do so, a new term is defined as the estimation error given by the difference between

the state estimate and the actual state:

ek = xk − x̂k (3.8)
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The linear filter as given by equation (3.4) can be written in terms of the estimation

error, and the estimation error can be formulated in terms of its own dynamic recursive

equation:

x̂k = Ax̂k−1 + LCAek−1 +Buk + LCGwk + Lvk (3.9)

ek = xk − x̂k = Aek−1 − LCAek−1 +Gwk − LCGwk − Lvk (3.10)

A new state vector that includes the estimated state and the estimation error can be

created, resulting in the following system:

zk =




A LCA

0 A− LCA



 zk−1 +




B

0



uk +




LCG L

G− LCG −L








wk

vk



 (3.11)

zk ≡




x̂k

ek



 (3.12)

Πk = ΛΠk−1Λ
T + ΓΦΓT (3.13)

Λ ≡




A LCA

0 A− LCA



 (3.14)

Γ ≡




LCG L

G− LCG −L



 (3.15)

Φ ≡




Q 0

0 R



 (3.16)

Πk =




VAR[x̂k] COV[x̂keTk ]

COV[ekx̂T
k ] VAR[ek]



 (3.17)

Using the form shown in equation (3.11), the variance of the state vector, including

the variance of the state estimates, can be found by the discrete time Lyapunov
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equation (3.13). The steady state variance of the state estimates can be determined

by the steady state solution of the Lyapunov equation (3.13). It is worth noting that

if the gain is the steady state Kalman Filter gain, the variance of the estimate error

matrix (lower right block of Πk) will be equivalent to that automatically produced

by the KF (Pk in equation (2.14)), and the covariance between the state estimate

and the estimate error will be a matrix of zeros. However, if a case arises where

the chosen gain is not the KF gain, then the variance calculated using this method

still provides the state estimate variance. In other words, whether or not the gain

is the Kalman Filter, the upper left block of Πkk produces the variance of the state

estimates as desired. Moreover, this approach for calculating the variance matrix for

linear systems is applicable to any general linear system of the form of equations (2.3)

and (2.4) with any chosen linear filter.

An alternative derivation for calculating the same value without having to solve

the Lyapunov equation is shown in the Appendix. It can easily be seen from the

equations provided in the Appendix that the variance of the state estimate is linearly

dependent on the variance of the random input to the system.

Given the model of the system and information about the noise term, the steady

state solution of equation (3.13) provides the variance of the state estimate, and

equation (3.5) provides the steady state mean. The mean and covariance matrix

can be used to determine the upper and lower threshold limits for fault detection in

process monitoring. These control limits can be used for monitoring the values of the

predicted state variables in a similar manner as one could use the statistics of the

actual states if these were measured. It is one of the contributions of this work to

derive how these control limits of the predicted states can be computed.
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3. Calculation of Variance Matrix for Nonlinear Systems

In the previous section, the expected mean and variance of a given linear system

with a linear filter was explicitly determined. This allows for calculation of thresholds

for process monitoring as described in Section 3.1. However, given a general nonlinear

system, where one of the many possible filters for nonlinear systems is applied, a

general formula for calculating the covariance matrix is not available. Instead, it is

possible to determine estimates of these values using a Monte Carlo approach. Assume

that the system model and state estimator are given by the following equations:

xk = f(xk−1, uk, wk) (3.18)

yk = h(xk, uk) + vk (3.19)

x̂k = g(x̂k−1, yk, f, h,Q,R) (3.20)

where all variables are defined as previously except f, h, and g represent general

nonlinear dynamic state, measurement and recursive state estimator equations. The

procedure simulates these equations for long periods of time where the system is

driven by the random inputs wk and vk. This will produce a matrix of data of

dimension ns x nt, where ns refers to the number of states and nt corresponds to the

number of data points simulated. The state estimate variance can then be estimated

using the following equations:

µ̂x̂ ≈ 1

nt

nt∑

i=1

x̂i (3.21)

VAR[x̂] ≈ 1

nt

nt∑

i=1

[(x̂i − µ̂x̂)× (x̂i − µ̂x̂)
T ] (3.22)

The described approach has the advantage that it is general in nature. However,

drawbacks of this approach include significant computational effort and that it is
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difficult to determine just how much data is required to obtain sufficient accuracy for

a proper threshold.

One (sub-optimal) alternative to the technique presented in this subsection can

be used if an Extended Kalman Filter is employed for state estimation. Since the

Extended Kalman Filter is an extension of the Kalman Filter, an estimate of the

covariance of the state estimate can be calculated using the procedure described

in Section 3.2. The system parameter matrices used in the calculation should be

determined as follows, and evaluated at the system steady state:

A =
df

duT
(3.23)

B =
df

dxT
(3.24)

G =
df

dwT
(3.25)

C =
dg

dxT
(3.26)

d =
dg

duT
(3.27)

The steady state Kalman filter gain should be used for L, which can be determined

by solving the algebraic Riccati equation:

P−
ss = AP−

ssA
T − (AP−

ssC
T )(CP−

ssC
T +R)−1(CP−

ssA
T ) +GQGT (3.28)

L = Kss = P−
ssCT (CP−

ssC
T +R)−1 (3.29)

These matrices can be used as part of the Lyapunov equation (3.13), which can then

be solved at steady state.
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C. Case Studies

This section illustrates the presented technique via several case studies. The

methodology is applied to two linear examples in Section 1 and a nonlinear system

in Section b. An illustrative comparison between results returned by the presented

technique and a traditional fault detection method is made in Section 3.

1. Application to Linear Systems

This subsection presents two case studies: the first example investigates process

monitoring of an isothermal CSTR while the second one deals with a linearized model

of a distillation column.

a. Isothermal CSTR

Assume that a series reaction is occurring in an isothermal reactor where the first

reaction is reversible while the second reaction is irreversible. The model equations

are given by:

A
kf ,kr←→ B

k2−→ C

dCA

dt
= −kfCA + krCB + FCAin − FCA + w1

dCB

dt
= kfCA − krCB − k2CB − FCB + w2

dCC

dt
= k2CB − FCC + w3

y =





CA

CB

CC




+ v

(3.30)

In this example, the concentration of A is monitored and used as an indicator for

process faults. The system parameters were chosen as kf = 400, kr = 10, k2 = 100,
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F = 2000, and CA,in = 10. For this simulation both process and measurement

noise is used, w ∈ R3 and v ∈ R3, respectively. The noise terms are Gaussian

with distributions given by N ∼ (0, 0.1I3) for w andN ∼ (0, I3) forv. Given these

random inputs the process operates with expected noise levels around its steady state.

Threshold values of 3σ, i.e. 3 times the standard deviation are used for fault detection.

In this case, σ = 0.323. A typical snapshot of the control chart is shown in Figure

3. It can be seen that the process is operating normally as the monitored variable

CA remains within its bounds. More specifically, the process was simulated for long

periods of time in order to observe that the theoretically predicted 99.7% of points

are approximately within these boundaries (Montgomery et al. , 2009).

Next, the same process is simulated again, but this time a fault is introduced.

The flow rate into the reactor is increased by 7% at time 500, simulating an upstream

problematic valve. The fault can clearly be seen in Figure 3(b) as the process variable

is outside of the fault boundaries. The situation changes, however, if the concentration

of A would not be measured, i.e., the process variable is still important for process

monitoring, but the measurement is not available. In order to illustrate this point, a

Kalman Filter is implemented to infer the value of this process variable.

When the same bounds that were derived for the measured variables are applied

to the predicted variables, it is not possible to detect this fault. This scenario is

illustrated in Figure 4, where the red lines represent the upper and lower control

limits based upon the statistics of the concentration of species A if it were directly

measured. However, if the fault boundaries are recomputed based upon the presented

approach, they are found to be much smaller, specifically s = 0.03. Using these new

bounds, which are shown by the black lines, the state estimates can be used to

accurately predict the faulty behavior.
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(a) Fault free process monitoring

(b) Fault present

Fig. 3. Typical control chart snapshot
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Fig. 4. State estimate (green) fault detected by calculated boundaries (black), but not

by boundaries based upon statistics of the measurement of CA (red)
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b. Distillation Column with 30 Trays

A model of a distillation column with 30 trays, a full condenser, and a reboiler

is shown below (Hahn & Edgar, 2002).

dxA,1

dt
=

V

Acondenser
(yA,2 − xA,1)

dxA,i

dt
=

1

Atray
[L1(xA,i−1 − xA,i)− V (yA,i − yA,i+1)], for i = 2, ..., 16

dxA,17

dt
=

1

Atray
[FxA,Feed + L1xA,16 − L2xA,17 − V (yA,17 − yA,18)]

dxA,i

dt
=

1

Atray
[L2(xA,i−1 − xA,i)− V (yA,i − yA,i+1)], for i = 18, ..., 31

dxA,32

dt
=

1

Areboiler
[L2xA,31 − (F −D)xA,32 − V yA,32]

αAB =
yA(1− xA)

(1− yA)xA

y = [xA,1 xA,17 xA,32]
T

(3.31)

The simulation and filter used in this section make use of a linearization of this

model around the steady state corresponding to: αAB = 1.6, xF = 0.5, xD = 0.935,

xB = 0.065, and L1
D = RR = 3.0. As with the previous case study, additive noise

enters both the dynamic state equation and the measurement equation with variances

of 10-5 and 10-1. In this study, only the concentrations of the feed and the two exits

of the column are measured. This is an attempt to mimic the realistic situation in

which internal column measurements are usually impractical and unavailable.

Despite the limited number of measurements, the presented approach has been

used to obtain thresholds for fault detection for all of the unmeasured states. One

representative result of this is discussed next. In this example the measurement noise

variance is significantly increased from 10e−3 to 10e−1 at time step 500. Figure 5(a)

shows the process monitoring bounds for the concentration of species A on tray 20.
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The blue curve represents the value of the measured variable, and the red bounds

are the 3σ bounds for that variable, here σ = 0.032. It can be clearly seen that the

measurement after time step 500 is not accurate as the majority of the measurements

are outside of the 3σ bounds. However, if an observer is used then the estimated

state trajectory is shown as the green curve in Figure 5(a). The state estimate clearly

remains inside the bounds determined from the original measurements. However,

these bounds will need to be modified as the variance of the state estimate is different

from the variance of the measurement of this state, now σ = 0.004. The updated 3σ

bounds are given by the black lines in Figure 5(b). It can clearly be seen that the

technique correctly identifies a fault, albeit a measurement and not a process fault,

using these updated upper and lower control limits.

2. Application to a Nonlinear System

The nonlinear system under investigation in this subsection deals with a non-

isothermal CSTR in which a van de Vusse reaction is taking place:

A
k1−→B

k2−→ C

2A
k3−→ D

The equations governing this CSTR are given by

dCA

dt
=

F

V
(CA,in − CA)− k1e

−E1
RT CA − k3e

−E3
RT C2

A

dCB

dt
= −F

V
CB + k1e

−E1
RT CA − k2e

−E2
RT CB

dT

dt
=

1

ρcp
[+k1e

−E1
RT CA(−∆H1) + k2e

−E2
RT CB(−∆H2) + k3e

−E3
RT C2

A(−∆H3)]

+
F

V
(Tin − T ) +

Q

V ρcp

(3.32)
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(a) Monitoring measured variable

(b) Monitoring unmeasured variable

Fig. 5. Simulation of fault in distillation column simulation
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and the values of the parameters for this model can be found in (Hahn & Edgar,

2001). The only input is the volumetric flow into the reactor (F), and it was chosen

as 25 L/hour so that the system is operating close to the most nonlinear region.

The initial conditions are given by the steady state operating point corresponding

to this nominal input value, namely xo = [2.98, 0.905, 351]T. For simulation of this

nonlinear system, the random state model noise and measurement noise entered the

system according to the following general equation.

ẋ = f(x, u) +Gw (3.33)

y(t) = Cx(t) + v (3.34)

Here the noise enters the system in a linear fashion and is assumed to be taken

from a white noise Gaussian distribution. However, this does not guarantee that the

distribution of the states will remain Gaussian as the distribution is affected by the

nonlinear function f . In situations with relatively small noise variances a Gaussian

approximation is often appropriate. For this system, Monte Carlo simulations were

used and it was found that the state vector appears Gaussian in shape for realistic

values of the model noise covariance. Figures 6(a) - 6(c) shows the histogram of the

temperature for simulations of the presented nonlinear system for 106 time units, with

state model noise variances of 10e−3, 10e−1, and 10e1, respectively. Even though the

probability distribution starts to take on a nonsymmetrical shape, this only happens

at temperatures changes which are outside of a realistically acceptable range, e.g.,

resulting in temperature variations of 40 degrees or more. Therefore, it can safely

be assumed that each state follows a Gaussian distribution for small values of the

variances in the noise, such as 10e−3.
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(a) σ = 10e−3

(b) σ = 10e−1

(c) σ = 10e1

Fig. 6. Distribution of temperature state variable from varying model noise variance
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The noise levels for this investigation were chosen as

Q =





10−3 0 0

0 10−3 0

0 0 10−3




(3.35)

R =





10−4 0

0 10−4

0 0




(3.36)

for the state disturbance and sensor noise covariance matrices, respectively. A pro-

cess monitoring scheme was applied to this reactor for the unmeasured concentration

of species A for two different cases: 1) using the bounds calculated from the vari-

ance of directly measuring CA and 2) using the bounds determined by the presented

approach. For both cases, the only measurement is the reactor temperature. This

mimics many practical situations in which the concentrations in a reactor are impor-

tant for monitoring the state of the system, but concentrations are not measured due

to online concentration measurements being non-trivial. One representative result

of this simulation is shown in Figure 7. A fault of a 1% increase in the inlet flow

was introduced at time step 500. It can be seen that the bounds computed from the

direct measurement of CA (given by the red lines, σ = 0.014) cannot detect the fault,

whereas the bounds computed by the presented technique (given by the black lines,

σ = 0.006) accurately detect the fault.

3. Comparison with Techniques that only Use Available Measurements

One question that naturally arises in the context of this paper is how the pre-

sented technique compares to existing approaches that directly use measured data for
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Fig. 7. Fault detected while monitoring state estimate (green) with calculated bounds

(black)

fault detection. As discussed previously, most currently implemented process mon-

itoring techniques perform fault detection on a residual calculated from the current

data. The difference between these classical approaches and the presented technique

is that, besides data, the model included in the soft sensor is also used in this work.

A soft sensor technique can sometimes take advantage of the model resulting in a

more rapid and accurate fault detection. A detailed comparison of the results that

can be obtained for the example shown in the previous subsection is performed here.

In the case study dealing with the linear isothermal CSTR, faults were assumed
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to be sufficiently large so that they can be detected by visual inspection of the process

monitoring charts. However, not all faults can be detected easily by such an approach.

Suppose the fault is a change in the raw material concentration, i.e., in this case

the inlet concentration CA is assumed to increase by 2%. The concentration CC is

measured and the increase in CA is reflected in the variations of the measured data.

However, the measurements are relatively insensitive to the fault and monitoring data

will cause a delayed detection of the fault or even miss it. On the other hand, fault

detection via monitoring estimated state values can result in improved performance.

To illustrate this point, the CSTR model is simulated for 1,000 time steps after the

fault occurs. Normally there are about 3 out of 1,000 points beyond the 3σ bound

(.27%). However, there will be significantly more points outside of the bounds if a

fault has occurred.

To compare the performance of fault detection methods, two criteria are calcu-

lated. The first one is the time at which the 4th point beyond the bounds appears.

The appearance of the point is an indicator for presence of the fault and the earlier it

is found the more quickly the fault is detected. Due to the stochastic property of the

system the time of appearance of the 4th point will change for different runs. In order

to address this point, a Monte Carlo simulation with 10,000 runs is applied. Figure

8(a) shows the distribution of the time point when the original measured data or the

estimated state values are monitored. It can be seen that monitoring state estimates,

even of unmeasured states, can detect the fault more quickly than monitoring the

original data.

Another criterion to compare the performance of fault detection methods is the

total number of points which are outside of the normal operating bounds over the

entire simulation interval. The more points that appear outside of the bounds, the

stronger the evidence for detecting the fault. Since the number is also dependant on
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the noise added in a single run, 10,000 Monte Carlo simulations have been used to

compute the distribution of the numbers shown in Figure 8(b). It can be seen that

there are more points of the estimated state values that appear outside of the bounds

than points of the measured variables that appear outside of their respective bounds.

Figure 8(b) also indicates that the estimate of CC has more time points at which the

bounds are violated than if the estimates of any of the other states are used.

In order to investigate that an increase in the sensitivity of the state estimate to

faults does not result in a large number of false positives, another type of assessment

has also been used for comparing the presented approach to traditional fault detection

techniques.

For this investigation, the model of the nonlinear CSTR was simulated for 100

time steps with a deterministic fault being introduced at the beginning of the simula-

tion. This simulation is repeated 1,000 times with the fault being randomly generated

from a uniform distribution between 0 and 1, for each simulation. This additive type

of fault model represents a situation such as a leak or certain types of environmental

changes.

A fault of less than 0.04 was chosen as the fault detectability limit. A different

choice of this threshold will simply affect the number of false positives versus false

negatives and the total percent of cases in the No Fault category; the threshold can be

selected for desired results. In each simulation a 99.99% confidence level hypothesis

test on the mean was performed on the data to determine if a fault was present or

not present. Table I below shows the results in the case where the fault is affecting

CA. The only variable measured is the temperature.

The first section of Table I, labeled State Variable, shows the results for perform-

ing the hypothesis test directly on the internal states. The next two sections show the

performance when using the measurements and state estimates, respectively. Each
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(a) The time point at which the 4th point appears beyond the bound

(b) The number of total points beyond the bound in the simulation
interval

Fig. 8. Distribution of the monitored value in Monte-Carlo simulation
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value represents the percentage of simulations in which a fault was detected, or not

detected. For example, the upper left hand entry shows that 96% of the times where

there was truly a fault present, a fault was detected.

It can be seen that when fault detection is performed on the state estimate,

the performance is as good as the case in which the actual measurement is used.

If monitoring is done on either concentration of species A or B, the only option

would be to perform the fault detection using the state estimate. If it is desired to

monitor temperature directly, the state estimate shows equivalent results to that of

the measurement. This is due to the process in which the state value is estimated by

the soft sensor. Information from the available measurement is used to filter the values

and reconstruct the others. In this way, information about the fault is contained in

all of the state estimates.

While these types of results cannot necessarily be expected for all nonlinear

systems, the technique performed well in this case as well as all other ones to which

the methodology was applied.

Table I. Comparison of fault detection performance when limit checking is

performed on measurements and on state estimates

State Variable CA CB T
Fault No Fault Fault No Fault Fault No Fault

Fault Detected 96 0 89 0 99 0
Fault Not Detected 4 100 11 100 1 98

Measurement CA CB T
Fault No Fault Fault No Fault Fault No Fault

Fault Detected N/A N/A N/A N/A 96 0
Fault Not Detected N/A N/A N/A N/A 4 100
State Estimate CA CB T

Fault No Fault Fault No Fault Fault No Fault
Fault Detected 96 0 96 0 96 0

Fault Not Detected 4 100 4 100 4 100
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D. Summary and Conclusions

This chapter developed an approach for process monitoring and fault detection

involving soft sensors. The process monitoring strategy compares state estimates to

bounds that represent state values derived from normal operation of the process. It is

important to point out that these bounds are different from the bounds that would be

derived if the states were measured instead of estimated. The reason for this is that

the soft sensor design has a direct impact on the variance of these state estimates.

Accordingly, the bounds need to be adjusted based upon the soft sensor design. While

this may seem like a trivial point, this point has, to the best of the knowledge of these

authors, not been addressed in the literature.

The approach presented here was kept general such that it can be used regardless

of the employed type of soft sensor. As a special case, the equations for a linear system

where a linear filter is used for state estimation have been derived. In addition,

an approximation of the bounds for use with a nonlinear system using the EKF

was shown. The technique was illustrated by applying it to three examples and

also performing comparisons to standard process monitoring schemes which only use

process data. The presented approach of performing limit checking on physically

meaningful state estimates of unmeasured variables, rather than simply on available

measurements only, was shown to offer improved performance.
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CHAPTER IV

SENSOR LOCATION FOR NONLINEAR DYNAMIC SYSTEMS VIA

OBSERVABILITY ANALYSIS AND MAX-DET OPTIMIZATION

A. Introduction

Accurate and current values of process variables are essential in order for man-

ufacturing plants to maximize profits and meet all safety, health, and environmental

requirements. Specifically, proper data collection is crucial for many process systems

techniques including control, state and parameter estimation, and fault detection.

Due to the sometimes extremely large number of important process variables and

measurement difficulty often associated with them, the objective to know the state

of the plant is in competition with the capital and maintenance costs of additional

sensors. Therefore, optimization of the placement of sensors is a vital part of plant

design and operation.

Sensor network design research based on observability, or sensitivity of the system

outputs to the initial state values, as a metric is not new in the literature. Classically,

the use of a scalar function of the observability gramian to determine the best sensor

network for linear systems has been proposed (Mller & Weber, 1972). Several scalar

metrics which are focused on one key part of the matrix were used including smallest

eigenvalue, condition number, lower bound for rank deficiency, spectral norm, and

trace (Georges, 1995; Van den Berg et al. , 2000; Waldraff et al. , 1998). Linear sys-

tems analysis has the obvious drawback of only being applicable to real systems over

a small range of operation. Thus, efforts turned to attempting to determine optimal

sensor network designs for state estimation of nonlinear systems (Lopez & Alvarez,

2004; Vande Wouwer et al. , 2000). The use of the empirical observability gramian,
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an approximation of the observability gramian for nonlinear systems, was shown to be

effective in applying previous work for linear systems to dynamic nonlinear systems

(Singh & Hahn, 2005a, 2006).

Despite this progress, most all of this research is resigned to using scalar metrics

which only use some small part of the information available in the observability ma-

trix, as mentioned above. The determinant of the observability matrix is mentioned

as useful, but often not incorporated into the final approach. This may be due to the

complexity that the determinant causes in the final problem formulation. However,

the determinant advantageously includes all of the terms in the matrix. In addition, in

the related field of optimal experimental design, the D(eterminant)-optimality crite-

rion has become one of the most commonly used metrics (Atkinson et al. , 2007; Joshi

& Boyd, 2009; Uci ski, 2005; Vandenberghe et al. , 1998). Using this method, the

determinant of the Fischer Information Matrix is used to rank different arrangements

of sensors in order to obtain the best experimental design.

This paper mainly provides two advances in this effort, and in so doing creates a

generic approach for finding the optimal sensor network design for nonlinear systems.

In order to choose the best sensor network, a metric must be defined. In this work, the

determinant of the empirical observability gramian is chosen. However, for systems

that are unobservable or marginally observable, this metric creates numerical prob-

lems. As a way of producing meaningful results, state space reduction is performed

on the matrix before the determinant. Finally, this paper incorporates methods from

the optimization literature for efficiently solving the mixed integer nonlinear pro-

gramming problem (MINLP) that results from the maximization of the determinant.

This combination of proposed approaches utilizes the information provided by the

observability gramian in order to determine the best sensor network design.

This chapter is organized as follows. Section B defines the sensor network prob-
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lem to be solved and discusses the optimization problem that results, including pro-

cedures for its solution. Section C includes results from case studies and discussion

of the results, followed by a conclusion section.

B. Formulation of Sensor Location Problem: Determinant of Gramian

In this work, a general procedure is outlined for producing the optimal sensor

network design for general nonlinear systems described by equations (2.37) and (2.38).

This procedure uses the determinant of the empirical observability gramian as the

metric for the sensor network design. In addition, a methodology for dealing with

nearly unobservable systems through model reduction is presented, and an algorithm

for solving the resulting mixed integer nonlinear programming problem is introduced.

In general, the objective of this work is to maximize the determinant of the

observability gramian by varying the network of sensors placed. As mentioned above,

there are several scalar functions to choose from, but the determinant is useful for

several reasons. First, the determinant includes information from all elements of

the matrix. This is important, in general, for properly ranking the networks. More

importantly, however, is the impact on information redundancy when placing multiple

sensors. The nave application of many other available scalar functions works well for

placing a single sensor, but fails to capture information redundancy present in the

system when placing multiple sensors. The determinant takes this information into

account as it is a function the entire matrix of values, including covariance terms.

Based on this choice of the determinant as the scalar metric, the problem can be

formulated mathematically as follows:

max
χ

det [Wo (χ)] (4.1)
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Here, χ is used to represent the set of sensors chosen in the network. In other words,

the goal is to maximize the determinant of the observability matrix Wo, by varying

the set of sensors to be placed in the system, χ. In order to create observability

gramians for the placing multiple sensors, the matrices are added according to the

following equation.

Wo(χ) =
∑

i

χiWo,i (4.2)

Here, χi is a binary variable set to 1 if a sensor is selected to be placed at location

i and 0 otherwise. For example, if it is desired to place sensor at state 2 and 5, the

observability gramian would be the sum of Wo,2 and Wo,5. This procedure effectively

creates observability gramians for each set of sensors in a network by adding the

information from each sensor individually and the information available from the

combination of sensor found in the covariance terms. One drawback to the selection

of the determinant of the empirical observability matrix is the extremely small values

produced from near singular matrices. This occurs often in systems with many states,

in situations where few are being measured. In order to allow for comparison of

reasonable values, the presented method uses a simple matrix reduction technique to

strip out only the most important information from the almost unobservable system.

Simple dimension reduction via singular value decomposition gives the following set

of equations.

Wo = USV T (4.3)

W(o, reduced) = U1:pWoU
T
1:p (4.4)

Where the first p columns of U are used to reduce the size of Wo from n × n

to p × p to include only the state space directions of the largest p singular values.
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Technically this allows for extracting the most important information from a matrix.

Using equations (4.2) and (4.4) the problem formulation is now written as:

max
χ

det

[
m∑

i=1

χiU1:pWo,iU
T
1:p

]
(4.5)

In summary, the procedure for finding the optimum sensor network design is as fol-

lows. First, empirical observability gramians are calculated where it is assumed that

only one state is measured at a time. In other words, for a system with n states,

n gramian matrices of size nxn are calculated. This is done according to equations

(2.39)-(2.40), with q = 1. These matrices represent the observability gramian for each

possible case of the system where only one sensor is placed. Next, the gramians are

reduced in size based on analysis of the singular values of the observability gramian

calculated for the case where all sensors are present, as in equations (4.3)-(4.4). These

matrices are then used in the problem formulation defined in equation (4.5), which

results in a Mixed Integer Nonlinear Programming problem, or MINLP.

Typically, MINLP problems are difficult to solve, however, a second primary ad-

vantage to using the determinant as the chosen scalar function is that the optimization

is related to a well known class of convex problems, specifically MAX-DET optimiza-

tion (Vandenberghe et al. , 1998). This property of guaranteed convexity leads to a

tractable solution procedure. In order to apply this approach, equation (4.5) is rewrit-

ten in the following equivalent way, according to the standard presented in equation
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(2.32).

P : min log




det




(

m∑

i=1

χiU1:pWo,iU
T
1:p

)−1









s.t.
n∑

i=1

χi ≥ r

χ ∈ {0, 1}

(4.6)

Here, r is the maximum number of sensors to be placed. The reduction matrices

U1:p are assumed to be included in the problem formulation. For convenience, this

problem is labeled P . Here it is noted that each gramian sub-matrix Wo,iis positive

semi-definite such that zTWo,iz = 0 for all nonzero z. This property guarantees

that the continuous relaxation of the objective function from equation (4.6) is convex

(Vandenberghe et al. , 1998). Therefore, this problem can be solved using the global

optimization technique found in (Bonami et al. , 2008), which is explained in more

detail in the remainder of this section.

The following notation is introduced to refer to the objective function from Equa-

tion (4.6) as G(χ) and its derivative defined over the continuous domain χi ∈ {0, 1},

excluding the point where χi = 0 for all i as )jG(χ).

G(χ) = log




det




(

m∑

i=1

χiWo,i

)−1







 (4.7)

)jG(χ) = − trace




(

m∑

i=1

χiWo,i

)−1

Wo,j



 (4.8)

(4.9)

Now a mixed-integer linear programming problem can be formulated which serves as

an outer approximation to the original MINLP from P. For convenience, this formu-
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lation is labeled POA(T ), or the outer approximation of P at T .

POA(T ) : min
χ

α

s.t. )G(χ̄)T (χ− χ̄) +G(χ̄) ≤ α, ∀χ̄ ∈ T
n∑

i=1

χi ≤ r

χ ∈ {0, 1}

(4.10)

Here T is some set of points, not necessarily feasible to P , where linearizations of the

original objective function from equation (4.6) are generated. Any optimal solution

of POA(T ) provides a lower bound of the optimal solution of P . This is illustrated in

Figure 9 below.

This figure shows that, for any set of linearization points T , αi = G(χi) holds,

where (αi,χi) is the optimal solution of POA(T ). This leads to an iterative approach

for finding the optimal solution to P where the linear relaxation POA(T ) is solved

successively, at each iteration updating the set of linearizations points T . Note that

the optimization procedure described in (Bonami et al. , 2008) may require the solu-

tion of a nonlinear probramming problem (NLP) to obtain the upper bound on the

original objective function. The NLP is obtained by fixing all integer variables in the

MINLP version of the problem to the current value objtained by solving the MIP

relaxation. However, in this study only a function evalution of the original objective

function is needed because the MINLP consists soley of integer variables χ. Termi-

nation of the solution algorithm occurs when an optimal solution (α∗,χ∗) of POA(T )

is obtained for which G(χ∗) = α∗ or when the difference between G(χ∗) and α∗ is

within some tolerance ε. This iteration process is illustrated in Figure 10.
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Fig. 9. Linearizations of a convex objective function which provide a lower bound on

the optimal solution

C. Case Studies and Discussion

The following section details two case studies that are used to illustrate the

technique presented above. First is a 32 stage binary distillation column, followed by

a 120 state packed bed reactor.

1. Distillation Column

The first case study consists of a nonlinear 30 tray distillation column model,

separating cyclohexane and n-heptane. The feed, with composition x = 0.5, is intro-
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Fig. 10. Work flow diagram using linear under estimators to solve the MAX-DET

optimization problem

duced on the 17th tray and the relative volatility, αAB, is constant and equal to 1.6.

The distillate and bottom product compositions are 0.935 and 0.065, respectively,

and the reflux ratio is chosen to be 3. This model is also used in previous work on

sensor network design, and its details are available there (Singh & Hahn, 2005a).

First, the single sensor case is analyzed. Each state is chosen individually as

the only measurement. In order to produce the observability gramians, the following

parameters are chosen; T = [I,−I],M = 0.05, and E32 is comprised of 32 orthogonal

unit vectors. This produces 32 empirical observability gramians according to equa-
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tions (2.39)-(2.40). Simply taking the determinant of these 32 matrices should allow

for the ranking of the single sensor networks. However, in a system this large, having

only one measurement makes the observability gramian very close to singular at best.

In this case, values produced range from -1e-314 to 3e-97, effectively zero. Simple

state space reduction will extract the important information from the observability

gramians. In order to decide how many states to extract, the singular values of the

observability gramian from the fully observed system, q = 32, must be analyzed. As

seen in Figure 11, over 90% of the information is present in the first four eigenvalues.

Fig. 11. Singular values of empirical observability gramian of fully observed system

The results from performing the reduction technique on each matrix according
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to equation (4.3), allow the determination of the best sensor network. The next step

is to compare the determinants of the empirical observability gramians based on each

individual sensor being used alone. These results are plotted in Figure 12, and tray

26 is seen to be the best choice for placing one sensor.

Next, the problem of how best to place two sensors together is evaluated. Al-

though trays 25 and 27 give the next highest values of the observability metric from

the one sensor analysis, this choice of location for placing the second sensor will

involve mostly redundant information.

Fig. 12. Observability ranking for one sensor placement

In this case, there are only 469 feasible solutions for the two sensor problem,
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indicating that total enumeration is tractable. The optimum placement of sensors is

chosen to be tray 7 and tray 27. The results for the top 10 highest ranking determi-

nants are displayed in Table II. The determinant is automatically taking into account

redundancy of information, as the sensors are spread across the column, with one in

each of the rectifying and stripping sections.

Table II. Results for placing two

sensors

1st 2nd
Sensor Sensor Determinant
Tray Tray
7 27 4.4284
6 27 4.3347
7 26 4.3249
6 26 4.2364
8 27 4.1774
7 28 4.1334
8 26 4.0754
6 28 4.0429
8 28 3.9017
5 27 3.8788
7 25 3.8753

In a similar manner, the results for each number of sensors placed can be deter-

mined. In each case, the size of the reduced observability gramian is chosen equal

to the number of sensors desired. Following this methodology, Table III is produced.

The results indicated that the redundancy of information is continually taken into

account by the determinant of the reduced observability gramian as the sensor are

spread about the distillation column as the number of sensors increases. As expected,

both total enumeration and the optimization scheme produce exactly the same results

shown in Table III.
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Table III. Results for placing one

through seven sensors

Number
of

Sensors Sensor Location
1 26
2 7, 27
3 5, 26, 32
4 4, 11, 25, 32
5 1, 6, 7, 25, 32
6 1, 7, 13, 19, 26, 32
7 1, 5, 10, 15, 21, 27, 32

As the number of sensors placed increased, the number of possibilities increases

dramatically, such that it begins to become unrealistic to be computed through full

enumeration. In this case study, if it is desired to place 12 sensors, for example,

among the 32 possible locations, there are over 2e8 different combinations. In order

to solve this increasingly computationally intensive problem, the presented solution

technique is utilized to find solutions in a reasonable amount of time. Table IV shows

the optimal sensors locations found for placing 8 through 12 sensors.

Table IV. Results for placing 8 through 12 sensors

Number
of

Sensors Sensor Location
8 1, 5, 9, 13, 18, 23, 28, 32
9 1, 4, 8, 11, 15, 19, 23, 28, 32
10 1, 4, 7, 10, 14, 17, 21, 25, 29, 32
11 1, 4, 7, 10, 13, 16, 18, 22, 25, 29, 32
12 1, 4, 7, 10, 13, 16, 18, 23, 26, 27, 29, 32

Convergence of the solution took under 6 minutes for each of the placements in Table

IV using a Apple Macbook Pro with a 2.4GHz Intel Core i7 Quad Core Processor and

8GB of RAM. The algorithm was formulated using the open source software package
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Pyomo (Hart et al. , 2012). Figure 13 shows the convergence behavior of the solution

for the placement of 12 sensors.

Fig. 13. Convergence of the optimization algorithm for placing 12 sensors

In this figure, the solid line represents the objective function value for the relaxed

problem, and the dashed line represents the current best MINLP solution (incum-

bent). The figure shows the algorithm proved optimality of the incumbent solution

in fewer than 400 iterations, with a high quality solution being found in fewer than

50 iterations. Thus, the efficiency of solution of the presented technique can be seen

from this case study.
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2. Solid Catalyst Packed Bed Reactor

The next case study is to determine the optimal sensor network design on

a packed bed reactor described in several previous works (Singh & Hahn, 2005a;

Van Welsenaere & Froment, 1970). The reaction involves producing phthalic an-

hydride from the catalytic oxidation of o-xylene. The model is implemented using

60 discretizations, with concentration and temperature being state variables at each

point along the reactor, resulting in a total of 120 nonlinear equations. The initial

conditions for the partial pressure of the reactant and the bulk temperature are p(t,0)

= 0.015 atm and T (t, 0) = 625K. The steady state profiles of the reactor’s reactant

concentration and temperature are shown in Figure 14. This type of reactor model

is often studied due to ”hot spots” in the temperature profile that are nontrivial to

control. This case study is no exception; the spike in temperature around 0.45 m can

be seen in the steady state profile.

As a more complex model with significantly more states, it is infeasible to com-

pute results from total enumeration in a satisfactory amount of time. For instance,

choosing to place 10 sensors along this reactor offers more than 1e14 possible sensor

combinations. In addition to these differences between this case and the previous one,

this model offers two different types of states to measure at each location, namely

temperature and concentration. However, in this case it is almost always desirable

to place temperature indicators over concentration sensors simply due to capital and

maintenance costs, as well as reliability issues. First, the simple case of placing one

sensor is analyzed. In addition to discovering where the most critical point along

the reactor is for measurement, an analysis can be made about the tradeoffs between

the two types of measurements. The results for placing one sensor are as follows

and are displayed in Figure 15. For temperature, the maximum observability metric
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(a) Partial pressure of reactant

(b) Reactor temperature

Fig. 14. Steady state profile of temperature and reactant partial pressure along the

length of the reactor
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was produced at 0.9 m along the reactor with a value of 3. For partial pressure, a

maximum value of 0.007 was found at 0.9 m. These results seem to indicate that the

most sensitive point for taking measurements is near the hotspot of the reactor.

Next, the multisensor case is analyzed. The results for optimal sensor locations

chosen for placing 3, 4, and 10 sensors are displayed in Table V. The second column

lists the optimal sensor locations shown as number of discretizations points along the

reactor. For example, state 30 out of a total of 60 of the 3 meter distance represents

1.5 m. The third column displays the time to solution in seconds. The solutions were

solved to a relative solution gap of 0.001%, where the gap is defined as the percent

difference of the objective function value of the MINLP and the relaxed NLP. The

results indicate that even for this larger problem, solution times are feasible. When

choosing 10 sensor locations from 120 possible, a solution was found in about three

minutes. These times were validated through repetitive runs of the solver and each

time produced similar timing results. Also, the results again confirm that redundancy

of information is accounted for as some sensor locations are concentrated near the hot

spot of the reactor, but as more are added they are spread throughout the column in

order to best measure the states.

Table V. Multiple sensor placement results

Number Optimization
of Solution

Sensors Sensor Location Time (sec)
3 39, 40, 41 0.7
4 18, 45, 46, 47 1.0
10 12, 13, 23, 30, 36, 43, 50, 57, 58, 59 57
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(a) Partial pressure of reactant

(b) Reactor temperature

Fig. 15. Results for placing only one sensor



78

D. Summary and Conclusion

Determination of the best locations for sensors is crucial for process monitoring

and control. This paper presents a general procedure for obtaining the optimal sen-

sor network design using observability analysis for dynamic nonlinear systems. The

empirical observability gramian is first determined from computations on simulated

or real plant data. If the gramian is near singular for low numbers of sensors, it is

reduced in size based on a singular value decomposition analysis. Finally the network

is optimized based on finding the maximum determinant of the feasible gramians.

The presented technique incorporates the full observability gramian, taking advan-

tage of all of the information available. Also, a decomposition for solving the resulting

MINLP is applied. This method is a result of combining techniques in previous work

in sensor network design, research into optimal experimental design, and optimiza-

tion literature. The procedure is illustrated in two case studies, and results show that

it is possible to place a reasonable number of sensors even for nonlinear systems of

reasonable size.
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CHAPTER V

INVESTIGATION OF DIFFERENT EXTENDED KALMAN FILTER

IMPLEMENTATIONS

A. Introduction

Extended Kalman filters have found wide-spread use in nonlinear state and pa-

rameter estimation. In order to apply Kalman filters to nonlinear systems, EKF uses

a first-order Taylor series expansion to linearize the nonlinear model along its tra-

jectory and assumes a Gaussian noise distribution. This inevitably leads to EKF’s

limitations when applied to nonlinear systems or non-Gaussian noise processes. Nu-

merous estimation methodologies have been proposed in the literature to address the

problems that the EKF encounters and comparisons between the presented new ap-

proaches and EKF have often been made. To name a few, Rawlings and coworkers

compared Moving Horizon Estimation (MHE) to EKF for estimation of constrained

problem and pointed out that EKF may fail to converge to the true values (Hasel-

tine & Rawlings, 2005). Chen et al. investigated particle filtering (PF) performance

in industrial batch processes and compared the results to EKF (Chen et al. , 2005).

Similar comparisons on a continuous stirred-tank reactor (CSTR) were made by Chen

and his coworkers (Chen et al. , 2004). In the area of unscented Kalman filter (UKF)

applications, Romanenko et al. applied EKF and UKF to a nonlinear exothermic

chemical CSTR and a pH system (Romanenko et al. , 2004; Romanenko & Castro,

2004). The authors showed improvements in the performance of UKF over EKF in

both cases. Kandepu et al. conducted comparisons between UKF and EKF for four

cases including a Van der Pol oscillator and a reversible reaction (Kandepu et al.

, 2008). They also showed that the UKF performs better than the EKF in terms
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of robustness and speed of convergence. Contrary to some of these findings, the

work by Qu and Hahn found the difference between UKF and EKF to be minor for

mildly nonlinear systems and the advantages of UKF over EKF can be mainly seen

for highly-nonlinear systemsv(Qu & Hahn, 2009a). It is evident from several of these

findings that only a few generally applicable conclusions can be drawn when compar-

ing different estimators. This is especially so as the implementation of an estimator

can affect its performance.

This work performs a detailed study of EKF implementations with a focus on

several key procedures such as discretization, first order linearization and computation

of the Jacobian matrix for nonlinear continuous-time model functions. Comparisons

among the implementations are made based upon a chemical reactor model with Van

de Vusse reaction kinetics.

This Chapter is organized as follows. Different approaches for EKF implementa-

tions are presented and discussed in Section B. Section C compares the performance

of each EKF implementation based upon application to a continuous stirred tank reac-

tor exhibiting nonlinear dynamic behavior. Concluding remarks are given in Section

D.

B. Implementations of EKF and Discussions

1. Continuous Extended Kalman Filter

The EKF was introduced with several other state estimation techniques in Chap-

ter II. However, only the discrete form was discussed.For different models, there are

different forms for EKF. For continuous-time models with discrete-time measure-
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ments, as given by

ẋ(t) = f(x(t), u(t)) +Gw(t) (5.1)

yk = h(x(tk)) + vk (5.2)

x(0) ∼ N(x̄0, Px0), w(t) ∼ N(0, Q), vk ∼ N(0, Rk), (5.3)

where x ∈ Rn is a vector of the state variables; w ∈ Rn is a vector of plant noise;

yk ∈ Rm is a vector of the measured variables and vk ∈ Rm is a vector of measurement

noise, the following equations define the continuous-discrete form of the EKF:

Prediction equations:

˙̂x = f(x̂, u)

Ṗ = A(x̂)P + PA(x̂) +GQG
′

ŷk = h(x̂(tk), u)

(5.4)

Update equations:

Kk = P (tk)H
′

k(HkP (tk)H
′

k +R)−1

Pk = (I −KkHk)P (tk)

x̂k = x̂(tk) +Kk(yk − ŷk)

(5.5)

where A(x̂) ≈ ∂f
∂x |x̂ and Hk ≈ ∂h

∂x |x̂(tk) are the matrices of the linearized system model,

and computed as functions of the estimate for linearization about the estimated tra-

jectory. Lyapunov equations need to be solved at each step for computing the Kalman

gain Kk and updating state estimates, x̂k.

Finite difference is the most commonly used method found in the literature for

model discretization or computing a Jacobian matrix A(x̂) for EKF (Haseltine &

Rawlings, 2005; Romanenko & Castro, 2004). The estimation errors and computation

times are greatly dependent on the step size for computing the finite difference.
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In order to implement an extended Kalman filter, attention must be paid to dis-

cretization and linearization of nonlinear continuous-time model along its trajectory.

The order in which discretization and linearization are performed may result in dif-

ferences in performance. The approach used for discretizing systems, such as Euler’s

method or Runge-Kutta method, may also lead to different results. In addition, com-

putation of Jacobian matrices via sensitivity equations or via finite differences affect

the accuracy of EKF.

Taking these points into account, several different EKF implementations are

discussed in this section. The reason for doing so is that when results for EKF and

other estimation methods are reported in the literature, there is often very little

discussion of the discretization scheme used, yet the choice of a discretization scheme

has a major effect on the outcome. In this work, the system model is assumed to be

a nonlinear continuous dynamic system with discrete measurements, such as the one

shown in Equations (5.1) - (5.3).

The functions f and h are differentiable functions of the state vector x, w ∈ Rn

is a vector of plant noise, with E[w] = 0 and E[wwT ] = Q; yk ∈ Rm is a vector of the

measured variables and vk ∈ Rm is a vector of measurement noise, with E[vk] = 0

and E[vkvTk ] = Rk; n is the number of states, m refers to the number of measurement

variables. The distributions of w and v are Gaussian. The initial value x0 is also a

Gaussian random variable with known mean x̄0 and known n× n covariance matrix

Px0 . The sampling time for measurements is T . x(t),u(t) and w(t) are referred to x,

u and w, respectively, in the rest of the paper unless specified.
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2. Implementations Via Linearization and Continuous KF for Covariance

Prediction

This algorithm (Algorithm 1) linearizes the model along its trajectory and then

predicts the covariance matrix P via continuous KF.

The state estimate x̂ is computed from the nonlinear differential equation, i.e.,

˙̂x = f(x̂, u)1 (5.6)

The Jacobian matrix A(x̂) of f(x̂) is found to be

A(x̂) =





∂f1
∂x̂1

· · · ∂f1
∂x̂n

...
. . .

...

∂fm
∂x̂1

· · · ∂fm
∂x̂n




. (5.7)

The covariance matrix P is then propagated through the Lyapunov equation

Ṗ = A(x̂)P + PA(x̂)
′
+GQG

′
. (5.8)

Since the initial values x̂0 and P0 are known, ODEs (5.6) ∼ (5.8) form an initial value

problem that can be solved using commercial ODE solvers such as Matlab! ′
s ode45.

The predictions at any sampling point kT are given by

x̂(kT ) = x̂−
k , P (kT ) = P−

k . (5.9)

1Consider the first-order Taylor series expansion of f(x, u) about the current esti-
mate (i.e., conditional mean) x̂:

f(x, u) ∼= f(x̂, u) +
∂f

∂x

∣∣∣∣
x=x̂

[x− x̂],

where x̂ is close to x. Taking the expectation of both sides of the above equation
gives

E{f(x, u)} = f(x̂, u),

Therefore the state estimate x̂ is predicted via ˙̂x = f(x̂, u).
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Since measurements are only available at the sampling time, the Kalman gain is

calculated based on the predicted discrete covariance:

Kk = P−
k H

′

k(HkP
−
k H

′

k +R)−1,where Hk =
∂h

∂x

∣∣∣∣
x=x̂−

k

. (5.10)

In a last step, corrections are made based upon the predictions and the new

available measurement.

Pk = (I −KkHk)P
−
k (5.11)

x̂k = x̂−
k +Kk[yk − h(x̂−

k )]. (5.12)

Table VI provides a summary of this algorithm. In this algorithm, both mean

x̂ and covariance matrix P are solved in a continuous manner. The numerical solver

determines the step size for integration of x̂ and P during each sampling interval.

This increases the accuracy of integration compared to methods with a fixed step

size. This method produces an error resulting from linearization at each integration

step only.

Table VI. Summary of procedure for algorithm 1

Initialization x̂0 = x̄0, P0 = Px0

Prediction ˙̂x = f(x̂, u)

Ṗ = A(x̂)P + PA(x̂)
′
+GQG

′
,where A(x̂) = ∂f

∂x

∣∣∣
x=x̂

x̂(kT ) = x̂−
k , P (kT ) = P−

k

Kalman gain Kk = P−
k H

′
k(HkP

−
k H

′
k +R)−1,where Hk =

∂h
∂x

∣∣∣
x=x̂−

k

Correction Pk = (I −KkHk)P
−
k

x̂k = x̂−
k +Kk[yk − h(x̂−

k )]
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Remark: There are possible alternatives to this implementation. In Algorithm

1, the Jacobian matrix A is considered to be time-varying for solving the ODEs. If A

is assumed to be time-invariant, the matrix could be calculated at each sampling in-

terval, i.e., A(x̂k) =
∂f
∂x

∣∣∣
x=x̂k

. The ODEs (5.6) and (5.8) thus can be solved separately

(Algorithm 1.1), which may reduce computation costs. However,the computation

accuracy may be decreased concurrently since the error is affected by linearization at

each sampling interval, which is usually significantly larger than the integration step

size used in Algorithm 1.

3. Implementations Via Linearization and Discrete KF for Covariance Prediction

In the second algorithm (Algorithm 2), linearization of the nonlinear continuous-

time model along its trajectory is performed and the covariance predictions are com-

puted from discrete information.

As in Algorithm 1, the nonlinear differential equation

˙̂x = f(x̂, u) (5.13)

is used for predicting the state vector x̂k. The Jacobian matrix A is then computed

at each sampling time,

A(x̂k) =
∂f

∂x

∣∣∣∣
x=x̂k

. (5.14)

The linearized model is given by

˙̃x = A(x̂k)x̃+Bũ+ f(x̂k, uk), (5.15)

where x̃ = x̂− x̂k and ũ = u− uk.

Solving the ODEs (5.15) and (5.8) for computing the discrete covariance matrix
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P results in

x̂k+1 = Akx̂k +Bk (5.16)

P−
k+1 = AkPA

′

k +GQkG
′

(5.17)

where Ak = eA(x̂k)T is the state transition matrix, GQkG
′
=

∫ T

0 eA(x̂k)τGQG
′
eA(x̂k)

′
τdτ

is the process noise matrix, and Bk =
∫ T

0 eA(x̂k)τ [Bu(T −τ)+f(x̂k, uk)]dτ is the input

matrix with B = ∂f
∂u

∣∣∣
u=uk

.

Corrections for mean and covariance matrices using a Kalman filter are computed

by equations (5.10) ∼ (5.12) as discrete measurements are the source for estimation

updates.

Table VII summarizes the procedure of this algorithm. During each measurement

sampling interval, the nonlinear system is considered as a linear first-order system

with constant coefficients, which results in equations (5.16) and (5.17). This incurs

a larger error for computing the covariance matrix P than Algorithm 1, where P is

integrated using a time-varying state transition matrix A.

An alternative (Algorithm 2.1) to this algorithm is to use an Euler approx-

imation for discretization of continuous-time models. The matrices for covariance

prediction are then replaced by the following:

Ak = I + A(x̂k)T, Qk = QT, and Bk = BTu(kT ). (5.18)

Due to the lower accuracy of Euler’s method compared to, e.g., a Runge-Kutta method

used by conventional ODE solvers, Algorithm 2.1 will in theory result in poorer perfor-

mance than Algorithm 2. The errors are due to both linearization and discretization

of nonlinear continuous-time models. Additionally, when large sampling times are

used, this method may produce unstable results.
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Table VII. Summary of procedure for algorithm 2

Initialization x̂0 = x̄0, P0 = Px0

Prediction ˙̂x = f(x̂, u)

P−
k+1 = AkPA

′
k +GQkG

′

where A(x̂k) =
∂f
∂x

∣∣∣
x=x̂k

, Ak = eA(x̂k)T ,

GQkG
′
=

∫ T

0 eA(x̂k)τGQG
′
eA(x̂k)

′
τdτ

Kalman gain Kk = P−
k H

′
k(HkP

−
k H

′
k +R)−1,where Hk =

∂h
∂x

∣∣∣
x=x̂−

k

Correction Pk = (I −KkHk)P
−
k

x̂k = x̂−
k +Kk[yk − h(x̂−

k )]

4. Implementations Via Discretization Followed by Linearization

In this algorithm (Algorithm 3), the nonlinear continuous-time model is dis-

cretized first and then linearized along its trajectory. It is well known that ODE

solvers or Euler approximations are two common methods used for discretization of

continuous-time models. Euler’s method discretizes models with a fixed step size

while the step size for discretization is adjusted for different dynamic behaviors when

ODE solvers are used. Therefore ODE solvers can result in more accurate discrete

data than if Euler approximations are used.

In order to use ODE solvers such as Matlab! ′
s ode45 for discretization, however,

a continuous noise signal w(t) in equation (5.3) is needed. This is unlikely to be

simulated and implemented in a digital computer. As a compromise, a discrete signal

wk = w(kT ) can be generated. After solving an initial value problem for finding a
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solution of the ODE

ẋ = f(x, u), (5.19)

wk is linearly added to xk = x(kT ) at each sampling interval kT .

Once a discrete-time model is obtained, the next step is to compute the Jaco-

bian matrix Ak of the nonlinear function f at each time step kT . Since numerical

discretization of the continuous-time model is executed at the first step, no analytical

form for the model is available and Ak also needs to be computed numerically. One

approach uses the sensitivity matrix

Ȧ =
∂f

∂x′A. (5.20)

The state vector predictions x̂−
k and the Jacobian matrix Ak of f can be solved

simultaneously

˙̂x = f(x̂, u) (5.21)

Ȧ =
∂f

∂x̂′A (5.22)

with x̂0 = x̄0 and A0 = I.

Remarks: One alternative (Algorithm 3.01) is to compute Ak by using finite

difference such as central differences, i.e.,

Ak =
f(x̂k +∆x)− f(x̂k −∆x)

2∆x
. (5.23)

Numerically it is non-trivial to find an appropriate difference ∆x. A finite difference

method may be less accurate than solving the sensitivity equation.

Once the state vector estimate x̂−
k and the matrix Ak are computed using equa-



89

tions (5.21) and (5.22), the covariance matrix P is computed

P−
k+1 = AkPkA

′

k +GQkG
′
, (5.24)

where Qk is approximated by QT .

The Kalman gain is calculated in the same discrete-time form as in equation

(5.10),

Kk = P−
k H

′

k(HkP
−
k H

′

k +R)−1,where Hk =
∂h

∂x

∣∣∣∣
x=x̂−

k

. (5.25)

Updates for the state estimate x̂k and the covariance matrix Pk are made in the

same manner as in equations (5.11) and (5.12),

Pk = (I −KkHk)P
−
k (5.26)

x̂k = x̂−
k +Kk[yk − h(x̂−

k )]. (5.27)

Table VIII. Summary of procedure for algorithm 3

Initialization x̂0 = x̄0, P0 = Px0 , A0 = I

Prediction ˙̂x = f(x̂, u), Ȧ = ∂f
∂x̂′A

x̂(kT ) = x̂−
k , A(kT ) = Ak

P−
k+1 = AkPkA

′
k +GQkG

′

Kalman gain Kk = P−
k H

′
k(HkP

−
k H

′
k +R)−1,where Hk =

∂h
∂x

∣∣∣
x=x̂−

k

Correction Pk = (I −KkHk)P
−
k

x̂k = x̂−
k +Kk[yk − h(x̂−

k )]

Table VIII summarizes the procedure, where the sensitivity matrix is used for

computing the Jacobian matrix of the nonlinear function f at each time step.

As mentioned in Algorithm 2.1, a discretization of continuous-time models can
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be replaced by an Euler approximation. Algorithm 3 then results in:

x̂−
k+1 = x̂k + Tf(x̂k, uk) (5.28)

Ak = I + T
∂f(x̂, uk)

∂x̂

∣∣∣∣
x̂=x̂k

(5.29)

P−
k+1 = AkPkA

′

k +GQTG
′
, (5.30)

which is referred to as Algorithm 3.1 here. The Kalman gain and correction equa-

tions remain the same. Unstable filters may be generated when the step size is large

for the Euler approximation. This method results in errors from linearization of the

nonlinear model along its trajectory at each sampling interval and discretization of

continuous-time models for computing the covariance matrix, similar to Algorithm

2.1. Additionally, an error is resulting from prediction of the states using an Euler

approximation. It is estimated that this method performs worse than Algorithm 2.1.

5. Discussions

The algorithms discussed in the last three subsections involve linearization and

discretization of nonlinear continuous-time models at different steps. The sequence

and the specific technique for executing them define each algorithm. To be more

specific, Algorithms 1 and 1.1 execute linearization of the model along its trajectory

first and then use a continuous KF to predict the covariance P. Algorithms 2 and 2.1

also linearize the model along its trajectory first but use a discrete KF to propagate

P. Algorithms 3, 3.01 and 3.1 first discretize the model and then linearize the model

along its trajectory for computing P. With respect to linearization, Algorithm 1, 3

and 3.01 evaluate the Jacobian matrix A continuously while the others compute it

only at the sampling time.

In spite of the classifications, all algorithms share the same formulation for state
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predictions and mean and covariance corrections with the exception of Algorithm

3.1 where the state is predicted via an Euler approximation. The main differences

between the methods are given by the computation of the covariance matrix P and

the approaches used to evaluate the Jacobian matrix A. Table IX summarizes the

results. Algorithm 1 and 1.1 propagate P via a continuous KF while a discrete KF

is used to compute P for the other algorithms. Further, Algorithms 1, 3 and 3.01

evaluate A continuously while Algorithms 1.1, 2 and 2.1 compute A at each sampling

point xk.

Table IX. Summary of the algorithms

Initialization x̂0 = x̄0, P0 = Px0 , A0 = I

Mean ˙̂x = f(x̂, u)

Prediction (Exception : x̂−
k+1 = x̂k + Tf(x̂k, uk) for Algorithm 3.1)

Covariance

Prediction

Evaluate A: at x(t) at xk

Ṗ = A(x̂)P + PA(x̂)
′
+GQG

′
Alg. 1 Alg. 1.1

P−
k+1 = AkPkA

′
k +GQkG

′
Alg. 3, 3.01 Alg. 2, 2.1, 3.1

Kalman gain Kk = P−
k H

′
k(HkP

−
k H

′
k +R)−1,where Hk =

∂h
∂x

∣∣∣
x=x̂−

k

Correction
Pk = (I −KkHk)P

−
k

x̂k = x̂−
k +Kk[yk − h(x̂−

k )]

Figure 16 provides a graphic overview of the discussed EKF implementations for

a continuous-time model with discrete-time measurements.

Remarks:

1. Algorithms 1 and 1.1 predict P via solution of the Lyapunov Eq. Ṗ = A(x̂)P +

PA(x̂)
′
+GQG

′
which distinguishes them from the other algorithms. The dif-
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Fig. 16. Comparison of different algorithms for implementing EKF.

ference between 1 and 1.1 lies in the Jacobian matrix calculation of model

functions. Algorithm 1 computes the Jacobian A at each integration step x(t)

while Algorithm 1.1 computes A only at time kT which implies that Ak is time-

invariant during each integration period. Algorithm 1.1 should be less accurate

than Algorithm 1 though it can save computation time.

2. Algorithms 2, 2.1, 3, 3.01 and 3.1 propagate P in a discrete manner P−
k+1 =

AkPkA
′
k +GQkG

′
.

3. Algorithms 2 and 2.1 linearize the model along its trajectory first and then

carry out discretization of the state equations. Algorithm 2 uses Ak = eA(x̂k)T

for discretization while Algorithm 2.1 makes use of an Euler approximation

which results in Ak = I + A(x̂k)T . If the sampling time T is small, then

Algorithm 2.1 may produce results comparable to Algorithm 2. Additional
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note: For computing the integral
∫ T

0 eA(x̂k)τGQG
′
eA(x̂k)

′
τdτ for Algorithm 2, a

simple alternative involving the matrix exponential computation is presented

by Van Loan (Van Loan, 1978).

4. Algorithms 3, 3.01 and 3.1 implement discretization of the model first and then

use linearization for the same model along its trajectory. Similar to Algorithms

2 and 2.1, the discretization scheme distinguish Algorithms 3 and 3.01 from

Algorithm 3.1 where an Euler approximation is used. Therefore both Algorithm

3 and 3.01 should be superior to Algorithm 3.1 in terms of accuracy. Algorithm

3 and 3.01 differ in the approach for computing the Jacobian matrix A. The

former uses solution of the sensitivity equation while finite differences are chosen

for the latter.

5. Algorithms 2.1 and 3.1 are identical except for how they predict the state x̂. The

former uses direct integration while the latter makes use of an Euler approxima-

tion. Therefore Algorithm 2.1 potentially performs better than 3.1. However,

both of them may produce unstable filters when the sampling interval is large

due to the Euler approximation for discretizing the model.

6. Algorithm 2 is identical to Algorithm 1.1 although the implementations are not

the same. Please refer to the Appendix for a detailed proof.

C. Case Studies

To evaluate the performance of EKF using each implementation, the algorithms

given in Section B have been applied to models including ones with mild as well as

some with strong degrees of nonlinearity and a large number of scenarios such as

different operating conditions, different tuning parameters Q and R, and different
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process and measurement noise levels. Monte Carlo simulations of 50 runs were

carried out for each scenario. The performance is evaluated by the overall mean-

squared error (MSE). The MSE is first averaged over all simulations for each time

point and then over time to indicate the long-term behavior of each estimator and the

distribution of errors over time. Due to the space constraints, this section includes

only one case study for a model exhibiting strongly nonlinear behavior. However, the

presented results are representative for other cases that have been investigated.

The considered system is an isothermal nonlinear CSTR with a competing side

reaction governed by van de Vusse reaction kinetics used for the production of Cy-

clopentanol (Stack & Doyle III, 1997):

A
k1−→ B

k2→ C

2A
k3→ D.

(5.31)

Component A is the the reactant cyclopentadiene, B is the product cyclopentanol,

C and D are the side products cyclopentandiol and dicylopentadiene. The nonlinear

system model is given by the following three differential equations:

dCA

dt
=
u

V
(CAin − CA)− k1e

−E1/RTCA − k3e
−E3/RTC2

A (5.32)

dCB

dt
=− u

V
CB + k1e

−E1/RTCA − k2e
−E2/RTCB (5.33)

dT

dt
=

1

ρcp
[k1e

−E1/RTCA(−∆H1) + k2e
−E2/RTCB(−∆H2) + k3e

−E3/RTC2
A(−∆H3)]

+
u

V
(Tin − T ) +

Q

V ρcp
(5.34)

where the feed flow rate u is the only controlled variable. The values of the parameters

can be found in the work by Hahn and Edgar (Hahn & Edgar, 2001).

The nonlinear model exhibits multiple steady states, of which the upper steady

state (CAss = 2.49mol/L; CBss = 1.1mol/L; Tss = 411K; u = 800L/h) is chosen
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as the point of operation. The measurable variable is assumed to be the reactor

temperature T . Initial conditions are chosen to be x̂0 =

[
2.5 1.09 411

]T
and all

process variables were scaled to be dimensionless using the upper steady state as the

nominal point. The sampling time for the measurements is 0.02 min.

The remaining filter parameters after scaling are given by

P̂0 = diag{100, 100, 100}, Q = diag{10−2, 10−2, 10−2},

R = diag{10−2, 10−2}.
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Fig. 17. EKF performance comparison.

The overall MSEs for ∆t = 0.02, R = 0.01I are shown in Table X and it can be

seen that Algorithms 1, 2 and 3 produce relatively small MSEs. The predictions of

the states made by these algorithms are also shown in Figure 17.

Compared to Algorithm 1, Algorithm 1.1 also performs reasonably well although

its performance is slightly worse than Algorithm 1 for large variations in the operating

conditions.
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As discussed in Remark 3, Algorithm 2 produces more accurate results than

Algorithm 2.1 due to the Euler approximations used in the latter. This can be seen

by comparing the MSEs, which are 0.627 for Algorithm 2 and 1.039 for Algorithm

2.1. As shown in the Appendix, Algorithm 1.1 and 2 are identical and generate the

same MSEs.

The MSE Results using Algorithms 3, 3.01 and 3.1 are 0.653, 0.675, and 1.537,

respectively. Algorithm 3.01 has poorer performance than Algorithm 3 because of the

finite differences used for computing the Jacobian instead of solving the sensitivity

equation. The difference between Algorithm 3 and 3.1 is significant as Algorithm 3.1

failed to produce reasonably good estimates when the sampling interval is large due

to the Euler approximation.

Methods that involve Euler approximations, such as Algorithm 2.1 and 3.1, pro-

duce relatively large values of the MSEs as given by 1.039 and 1.537, respectively.

The two methods share the formulation for the covariance matrix propagation but

differ in their mean predictions.

Table X. MSEs for algorithms (∆t = 0.02, R = 0.01I)

Algorithms 1 1.1 2 2.1 3 3.01 3.1

MSEs 0.626 0.627 0.627 1.039 0.653 0.675 1.537

Further investigations are also carried out for different measurement noise levels

and different sampling interval lengths, and are summarized in Table XI. When mea-

surement noise is relatively small (∆t = 0.02, R = 0.0001I), methods involving Euler

approximations such as Algorithm 2.1 and 3.1 generate acceptable MSEs. However,

for large measurement noise(∆t = 0.02, R = 1I), both Algorithm 2.1 and 3.1 ex-

hibit unstable properties due to the Euler Approximation. Similarly, all algorithms



97

perform comparably well when the sampling time is relatively small (∆t = 0.002).

However unstable filters can result from Algorithm 2.1 or 3.1 when large sampling

intervals are used. Therefore approaches such as Algorithm 2.1 or 3.1 should only be

considered when measurement noise levels and the sampling time are relatively small.

Table XI. MSEs for algorithms

Algorithm 1 1.1 2 2.1 3 3.01 3.1

∆t = 0.02, R = 0.0001I 0.250 0.247 0.247 0.339 0.361 0.368 0.420

∆t = 0.02, R = 1I 0.686 0.686 0.686 6.158 0.689 0.691 11.370

∆t = 0.002, R = 0.01I 1.516 1.517 1.517 1.508 1.512 1.508 1.507

∆t = 0.2, R = 0.01I 0.323 0.325 0.325 2.384 0.306 0.306 42.331

Scenarios with input changes are investigated for different measurement noise

levels and different sampling times. Table XII provides a summary of MSE results for

the case where the input flowrate increases from 800L/h to 1200L/h at the 1500th

sampling interval. This set of results are consistent with the case without input

changes or any disturbance. Algorithm 1, 2 and 3 provide reasonably good perfor-

mance for EKF while Algorithm 2.1 and 3.1, which involve Euler approximations,

generate unstable filters.

Table XII. MSEs for algorithms with a 50% input change

Algorithm 1 1.1 2 2.1 3 3.01 3.1

∆t = 0.02, R = 0.01I 1.297 1.297 1.297 17.090 1.296 1.296 380.76

∆t = 0.02, R = 0.0001I 0.978 0.986 0.986 7.658 1.095 1.140 24.654

∆t = 0.2, R = 0.01I 0.567 0.569 0.569 NaN 0.576 0.576 NaN
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D. Conclusions

This paper compares different implementations of EKF for a class of continuous-

time nonlinear models with discrete-time measurements. The algorithm can be clas-

sified by the sequence and methods used for linearization and discretization of non-

linear continuous-time models. The main difference between the methods lies in the

methodology for computing the covariance matrix P . The conclusions are that con-

tinuously predicting P for EKF results in an accurate implementation. Evaluating P

at discrete times can also be applied. In this case, good performance can be expected

if P is obtained from integrating the continuous-time equation or if the sensitivity

equation is used for computing the Jacobian matrix A. Instead, if a finite difference

approach is chosen for computing A, the sampling time of the finite difference scheme

needs to be small for acceptable performance of EKF. Approaches involving Euler

approximations show good behavior only when the sampling interval is reasonably

small and therefore they are not recommended for processes with long sampling time

intervals.
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CHAPTER VI

CONCLUSION

A. Summary of Contribution

This dissertation provides advanced techniques to be used in the general area

of process monitoring through soft sensing of unmeasured variables. Specifically,

new techniques for determining the optimal sensor network design and for using soft

sensors for fault detection are presented. In addition, a thorough investigation into

the implementation of the EKF state estimator reveals that some often used schemes

offer inherently poor results.

First, Chapter III detailed a new method for performing fault detection using

soft sensors (Serpas et al. , Submitted,2011). Although there is a wide variety of fault

detection techniques available, most rely on some threshold for the variables of inter-

est. When the variable is under this threshold it is considered normal operation, and

when it is above it is declared as a fault. The approach derived and presented in this

dissertation allows the calculation of the proper threshold to be used on unmeasured

variables calculated by an Extended Kalman Filter. This proper threshold can then

be applied using any of the many available fault detection methods that rely on a

fault threshold. In addition, this work lays the conceptual foundation for future work

extending this approach to other state estimators. The use of the proper threshold

with the additional process information in the model provided by the EKF, the per-

formance of fault detection is significantly improved. This enhancement is illustrated

through several case studies.

The second contribution, communicated in Chapter IV, is a new generally ap-

plicable method for determining the optimal sensor network design for a nonlinear
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system (Serpas et al. , Submitted,2012). Previous to this work, most of the literature

in sensor network design focused on a single sensor or on sensors strictly for steady

state linear systems. The approach outlined here is specifically designed for large sen-

sor networks in dynamic nonlinear systems. The approach outlined takes into account

information redundancy of multiple sensors by using the determinant of the empirical

observability grammian. This problem formulation results in a Mixed Integer Non-

linear Programming problem. In order to solve this nontrival problem, the technique

incorporates a recently developed hybrid approach for solving MINLP’s. The accu-

racy and efficiency of the presented method is shown in two case studies, illustrating

that this method is indeed feasible for use in full scale industrial application.

Thirdly, a thorough investigation into the implementation of the EKF state es-

timator is detailed in Chapter V (Serpas et al. , 2009). EKF is one of the most

commonly implemented state estimator, and is the performance benchmark for fu-

ture research. Despite the maturity of the EKF in the literature and its important

role in the area, it is easily wrongly implemented. The presented work details several

of the possibilities for implementation and compares accuracy results.

B. Future Work

Just as diverse as the wide range of topics within the field of soft sensor research

is the set of open questions. Although there has been continual advancement in both

theory and application of soft sensing within petrochemical process industries, the

increasing desire for safer, cleaner, and cheaper processes demands more development

in all areas of advanced process monitoring and control.
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1. Sensor Network Design

Within the area of sensor network design, there are extensions of the presented

work that promise to bring useful results. Using the framework of maximizing the

determinant of an information matrix, the problem formulation could be extended to

include the state estimate error covariance matrix, Pk, given by equation (2.14). This

second matrix would allow the inclusion of information about the reliability of the

model and the measurement technology with respect to certain variables. Without

the state estimate error covariance matrix the sensor network may be optimal for

deterministic systems resulting from perfect system models and perfect sensors, but

may dictate placing a sensor on a variable that is actually unreliable due to model or

measurement noise. One method for including Pk would be using the model reduc-

tion technique of balancing, which “balances” information from the observability and

controllability gramians in choosing which states to truncate (Hahn & Edgar, 2002).

In addition to the inclusion of more information in the problem formulation,

the presented approach should be augmented by the inclusion of cost terms. There

has been much research into the optimization of sensor networks by focusing on the

capital and maintenance monetary costs, but much of the time this research does not

include the information variability between different process variables. Therefore,

from a process management standpoint, the truly optimal sensor network problem

formulation must combine the methods of the presented work and those focusing

monetary considerations.

Finally, because of the wide variety of available techniques available, in addition

to offering combinations mentioned above, future research into comparisons between

methods would be very useful for control engineer practitioners in industry.
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2. Fault Detection Using Model Based Soft Sensors

The presented work explored the question of how to determine fault boundaries

for systems that use soft sensors. The results include a procedure that can be used

for Kalman Filter and EKF applications. The next step should be to develop similar

techniques for other commonly used state estimators such as Moving Horizon Esti-

mators, Unscented Kalman Filters and Particle Filters. These techniques should also

then be compared to the results found from performing fault detection using EKF,

as this would add to the ongoing discussion of relative performance of different state

estimators.

3. Soft Sensor Design - Arrival Cost for Moving Horizon Estimators

Moving Horizon Estimation is becoming increasingly popular strategy for state

estimation due to fact that it allows for directly dealing with system model nonlinear-

ities and state variable constraints. The Moving Horizon Estimator was developed to

use an optimization formulation on a fixed in size, but moving, window of data. This

method truncates the previous data as the window moves forward in time. This ap-

proximation requires the use of an initialization term known as the arrival cost. The

arrival cost is responsible for including information about the system at the beginning

of the horizon. More specifically, this represents the a priori density function. If the

system is linear and unconstrained, the Kalman Filter provides the exact a priori

density in the form of its state estimate and error covariance matrix.

For general nonlinear systems, the exact representation of this density is non-

trivial, and is typically approximated in one of many available methods. The main

open area of research for MHE is in determining good approximations of the arrival

cost. This is critical to the industrial application of MHE because the poorer the
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estimation of the arrival cost, the larger the estimation horizon must be in order to

provide satisfactory performance. However, the larger the estimation horizon, the

longer the state estimation takes at each time step. The goal of arrival cost research

is to find a useful compromise in this tradeoff (Ungarala, 2009). There is a need for

continued development both of better algorithms for execution, and possibly for the

introduction of a new state filtering approach in order to make calculation of arrival

cost for MHE more tractable for industrial application.

Moving Horizon Estimation remains one of the most promising solutions to the

constrained nonlinear online estimation problem. However, due to high computation

costs in the complex optimization problem, live industrial implementation is restricted

to low horizon lengths. This requires an accurate estimation of the arrival cost.

The best arrival cost calculation seems to be theoretically difficult, especially when

considering the inclusion of state constraints.
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APPENDIX A

ALTERNATE DERIVATION FOR VARIANCE OF STATE ESTIMATE

An alternative for the computation of the covariance of x̂ shown in Section B is

presented in this Appendix. In the body of the work a solution technique performing

the calculation relied on numerical techniques to solve the algebraic Riccati Equation.

This is very useful as it is a form very familiar to those studying process systems engi-

neering. However, an alternative solution exists that gives the equivalent covariance,

but presents it in a final closed form. This is advantageous simply for studying the

functional dependence the covariance has on other variables, such as the noise levels

Q and R.

Equations (2.3), (2.4), (3.2) and (3.3) can be combined to yield:

x̂k = F x̂k−1 + (B − LCB)uk + LCxk + Lvk (A.1)

where F = A− LCA for simplicity of notation.

Since the process states and measurements are random variables, perturbed by

random disturbances, the state estimate is also a random variable. The mean of the

state estimate is given by

E[x̂k] = FE[x̂k−1] + +(B − LCB)uk + LCE[x̂k] (A.2)

Since uk is deterministic for all k, its expected value is simply itself. The covariance

matrix of the state estimate is given by

VAR[x̂k] = FVAR[x̂k−1]F
T + FCOV[x̂k−1, xk]C

TLT

+ LCCOV[x̂k−1, xk]F
T + LCVAR[x̂k−1]C

TLT + LVAR[v̂k]L
T

(A.3)
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where it is assumed that COV[x̂k−1, vk] = 0 and COV[x̂k, vk] = 0. In the equation,

the variance of the state is given by

VAR[xk] = AVAR[xk−1]A
T +GQGT (A.4)

The covariance of the state and the previous time step’s state estimate can be calcu-

lated by substituting equation (A.1) and (2.3), i.e.

COV[x̂k−1, xk] = COV[F x̂k−2 + (B − LCB)uk−1

+ LCxk−1 + Lvk−1, Axk−1 +Buk +Gwk]

= FCOV[x̂k−2, xk−1]A
T + LCVAR[xk−1]A

T

(A.5)

The equation is simplified as such since the terms COV[x̂k−2, wk], COV[xk−1, wk],

COV[vk−1, xk−1], and COV[vk−1, wk] are all equal to zero by the assumption stated in

the text that the states and noise are not correlated.

If the system is assumed to be at steady state (or assuming it is a stationary

random process), then VAR[xk] = VAR[xk−1] , and COV[x̂k−1, xk] = COV[x̂k−2, xk−1].

Using these equalities, equations (A.4) and (A.5) are simplified, using the vector

operator.

vec(VAR[xk]) = (In2 − A⊗ A)−1(G⊗G)vec(Q) (A.6)

vec(COV[x̂k−1, xk]) = (In2 − A⊗ F )−1(G⊗ LC)vec(VAR[xk−1]) (A.7)

Substituting equation (A.6) and (A.7) into (A.3), and using the steady state formula,



122

VAR[xk] = VAR[xk−1], gives the following equation:

VAR[x̂k] = (In2 − (F ⊗ F ))−1

[(LC ⊗ F )(In2 − A⊗ F )−1(A⊗ LC)(In2 − A⊗ A)−1(G⊗G)vec(Q)+

(F ⊗ LC)(In2 − A⊗ F )−1(LC ⊗ A)(In2 − A⊗ A)−1(G⊗G)vec(Q)+

(LC ⊗ LC)(In2 − A⊗ A)−1(G⊗G)vec(Q) + (L⊗ L)vec(R)]

(A.8)

It can be concluded from equation (A.8) that the variance of the state estimate for

the process shown in equations (2.3) and (2.4) is a linear function of the covariance

of the model noise and the measurement noise, Q and R respectively. This is as

intuition would predict, however, the dependence upon other system parameters is

not intuitive at all.
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APPENDIX B

PROOF THAT ALGORITHM 2 IS EQUIVALENT TO ALGORITHM 1.1.

It is adequate to show that P−
k+1 in both algorithms is identical for proving that

Algorithm 2 is equivalent to Algorithm 1.1.

From Algorithm 2 in Table VII, it can be seen that,

P−
k+1 = AkP

+
k A

′

k +GQkG
′

= eA(x̂k)TP+
k eA(x̂k)

′
T +

∫ T

0

eA(x̂k)τGQG
′
eA(x̂k)

′
τdτ,where A(x̂k) =

∂f

∂x

∣∣∣∣
x=x̂k

.

(B.1)

Also Algorithm 1.1 states that

Ṗ = A(x̂k)P + PA(x̂k)
′
+GQG

′
,where A(x̂k) =

∂f

∂x

∣∣∣∣
x=x̂k

(B.2)

with P (0) = P+
k and P (T ) = P−

k+1.

Noting that A(x̂k) in equation (B.1) and equation (B.2) is identical, it can be

replaced by A as a change of notation.

If it can be shown that

P (t) = eAtP+
k eA

′
t +

∫ t

0

eAτGQG
′
eA

′
τdτ (B.3)

is the solution of

Ṗ = AP + PA
′
+GQG

′
,with P (0) = P+

k , (B.4)

then it can be concluded that Algorithm 2 is identical to Algorithm 1.1.
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It can be derived from equation (B.3) that for t = 0,

P (0) = e0P+
k e0 +

∫ 0

0

eAτGQG
′
eA

′
τdτ = P+

k . (B.5)

Taking the derivative of equation (B.3), it is derived that

Ṗ = AeAtP+
k eA

′
t + eAtP+

k eA
′
tA

′
+ eAtGQG

′
eA

′
t. (B.6)

On the other hand, substituting equation (B.3) into the right side of equation

(B.4), the following equations

AP + PA
′
+GQG

′
= AeAtP+

k eA
′
t +

∫ t

0

AeAτGQG
′
eA

′
τdτ

+ eAtP+
k eA

′
tA

′
+

∫ t

0

eAτGQG
′
eA

′
τA

′
dτ +GQG

′
(B.7)

are obtained.

Examining the second and the fourth terms in the above equation, it is found

that

∫ t

0

AeAτGQG
′
eA

′
τdτ +

∫ t

0

eAτGQG
′
eA

′
τA

′
dτ

=

∫ t

0

d(eAτ )GQG
′
eA

′
τ +

∫ t

0

eAτGQG
′
d(eA

′
τ )

=

∫ t

0

d(eAτGQG
′
eA

′
τ )

= eAτGQG
′
eA

′
τ
∣∣∣
t

0

= eAtGQG
′
eA

′
t −GQG

′
(B.8)

Therefore equation (B.7) becomes

AP + PA
′
+GQG

′
= AeAtP+

k eA
′
t + eAtP+

k eA
′
tA

′
+ eAtGQG

′
eA

′
t. (B.9)



125

Comparing equation (B.6) to equation (B.9), it can be shown that

Ṗ = AP + PA
′
+GQG

′
. (B.10)

Taking equation(B.5) into account, it can be concluded that equation (B.3) is

the solution of equation (B.4). Therefore Algorithm 2 is equivalent to Algorithm 1.1.
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