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ABSTRACT 

 

Sources and Fates of Dissolved Organic Carbon  

in Rural and Urban Watersheds in Brazos County, Texas. (August 2012) 

Danielle Marie Cioce, B.S., Dickinson College 

Chair of Advisory Committee: Dr. Jacqueline Aitkenhead-Peterson 

  

The Bryan/College Station (B/CS) region has been reported to have elevated 

concentrations of dissolved organic carbon (DOC) in surface water.  Increased DOC 

concentrations are worrisome as DOC has been shown to be an energy source for the 

recovery and regrowth of E. coli and many watersheds are impaired by high bacteria 

levels.  To examine the sources and fates of DOC in rural and urban regions to better 

understand DOC movement though the environment, seven watersheds were studied.  To 

investigate source, streams were analyzed using diffuse reflectance near infrared 

spectroscopy (DR-NIR) and carbon isotopes.  Fate of DOC was determined through 

monthly streams samples, gathered between March 2011 and February 2012, which were 

incubated for biodegradable DOC (BDOC).  Soil in the region was sampled based on 

land use categories.  Soil was analyzed for DOC and BDOC as well as DOC adsorption, 

the other major fate of DOC.  Above ground vegetation was sampled in conjunction with 

soil and analyzed for BDOC. 

Data indicated that fecal matter from cliff swallows provided considerable 

organic material to streams in the B/CS region as shown through DR-NIR.  Carbon 

isotope values in streams ranged from -23.5±0.7‰ to -26.8±0.5‰.  Stream spectra may 

be able to predict carbon isotope values in streams (Adj. R
2
 = 0.88).   Mean annual 

stream DOC concentrations ranged from11±3 mg/L to 31±12 mg/L, which represents a 

significant decrease in DOC between 2007 and 2011.  Concurrent increases in pH and 

conductivity were also recorded.  The decrease in DOC and the increases in pH and 

conductivity may be due to impacts of high sodium irrigation tap water.  Biodegradable 

DOC was low in streams, which is likely due to DOC being present in streams in 
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refractory forms that are resistant to microbial breakdown.  Soil chemistry, including soil 

adsorption, was greatly influenced by sodium.  The elevated adsorption coefficients and 

release values seen in highly developed and urban open areas can be attributed to 

frequent exposure to high sodium irrigation water.   The results indicate that sodium is a 

major driver of DOC in the system.  Sound management decisions concerning irrigation 

water chemistry and urban development might eventually emerge to protect water 

quality as a result of this research.   
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B/CS Bryan/College Station 

BDOC Biodegradable dissolved organic carbon 

DDW Distilled deionized water 
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INTRODUCTION 

 

Dissolved organic matter 

Dissolved organic matter (DOM) is made up of many complex organic molecules 

containing carbon (dissolved organic carbon: DOC), nitrogen (dissolved organic 

nitrogen: DON), phosphorus (dissolved organic phosphorus: DOP), and sulfur (dissolved 

organic sulfur: DOS) (Aitkenhead-Peterson et al. 2003).  Dissolved organic carbon is the 

largest subset in the DOM pool (Benner 2003).  Dissolved organic matter is defined as 

the portion of organic matter that will pass through a filter with pore size of less than 

0.45 µm (Thurman 1985).  In practice, it is considered to be organic material that will 

pass through a 0.7 µm filter by many laboratories due to complications with carbon 

contamination from 0.45 µm cellulose filters.  Dissolved organic matter typically 

consists of organic material produced from dissolved atmospheric gases and dusts in 

precipitation, organic matter from vegetation leached as throughfall, root exudates, root 

and leaf litter, and both the primary and secondary metabolites of microorganisms 

(Aitkenhead-Peterson et al. 2003).   

Zsolnay (2003) stated that the scientific community is realizing that DOM is 

involved in numerous ecological processes, such as climate change, desertification, 

pollution impact, and water quality.  Dissolved organic matter is crucial in aquatic 

systems as it provides an energy source for biota and protects aquatic life from UV light 

(Williamson and Zagarese 1994; Leenheer and Croue 2003).  It is also responsible for 

the complexation, solubility, and mobility of metals and pesticides in surface waters 

(Martell et al. 1988; Worrall et al. 1997).  The concentration of DOM in surface waters 

varies according to the source of organic matter (autochthonous vs. allochthonous), 

temperature, ionic strength, pH, cation composition, surface chemistry of sediment, and 

photolytic and microbial degradation processes (Leenheer and Croue 2003).  It is 

thought that most DOM in streams is derived from allochthonous sources (Sanderman et  

____________ 
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al. 2009).  Terrestrial, or allochthonous, DOM is typically supplied to streams by soils 

and leaf litter (Aitkenhead-Peterson et al. 2003).  Thus, the advance of both global land 

use and climate change may continue to influence and increase concentrations of organic 

matter in surface waters (Findlay and Sinsabaugh 1999; Evans et al. 2005).  Soil is an 

important regulator for DOM in streams as the concentration of DOM in surface waters 

is dependent on the flow path through soil, biodegradation in soil (Marschner and 

Kalbitz 2003; McDowell et al. 2006), and the capacity of the mineral soil to adsorp 

DOM (Aitkenhead-Peterson et al. 2003).   

Biodegradability of dissolved organic carbon 

  Biodegradability of DOM is defined “as the utilization of compounds by 

microorganisms as measured through the disappearance of DOM or O2, or by the 

evolution of CO2” (Marschner and Kalbitz 2003).  Dissolved organic matter 

biodegradability is controlled by many factors in three categories: intrinsic quality, soil 

properties, and external factors (Marschner and Kalbitz 2003).  Intrinsic DOM qualities 

consist of molecular structure and size, as well as functional group content.  Soil 

characteristics, such as the microbial community structure and nutrient availability, can 

have an effect on biodegradation (Marschner and Kalbitz 2003), but not always 

(McDowell et al. 2006).  In a study examining biodegradability in throughfall and 

various soils, McDowell et al. (2006) reported that the source and community structure 

of microbes used in batch experiments to degrade DOM did not matter, but nutrient 

availability was important to the extent of degradation.  Lastly, external factors such as 

temperature, precipitation, and vegetation can create seasonal variations of microbial 

activity and inputs of DOM, thus influencing biodegradability (Marschner and Kalbitz 

2003).   

Dissolved organic carbon (DOC), the largest subset of the DOM pool, is largely 

composed of humic substances, most of which are fulvic acids (Aitkenhead-Peterson et 

al. 2003; Benner 2003).  The terms DOC and DOM are often used interchangeably, 

likely due to the minor contribution of DON, DOP, and DOS to the total DOM pool.   

Hydrophilic acids and low molecular weight organics, such as simple carbohydrates (for 
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example, glucose or fructose), and carboxylic and amino acids are also present 

(Aitkenhead-Peterson et al. 2003).  Dissolved organic matter typically consists of both a 

labile, rapidly degradable fraction and a refractory, slowly degradable fraction which has 

been shown to remain in solution for up to 180 days (Marschner and Kalbitz 2003).  The 

labile portion of DOM is composed of simple carbohydrates, low-molecular organic 

acids (such as citric or oxalic acid) and proteins, amino acids, and sugars (Marschner and 

Kalbitz 2003).  The refractory portion of DOM is thought to contain polysaccharides or 

other compounds derived from plants or microbes that need certain enzymes for 

degradation (Marschner and Kalbitz 2003).  Labile DOC is often consumed by microbes 

in the soil, while refractory DOC is usually sorbed to mineral soil below the organic 

layer (Aitkenhead-Peterson et al. 2003).  Biodegradability of DOM is increased in soils 

or solutions with high concentrations of carbohydrates, organic acids, and proteins, and 

decreased by aromatic and hydrophobic structures (Marschner and Kalbitz 2003).  

Studies have indicated that biodegradable DOC (BDOC) in surface water can vary from 

4-68% (Wiegner and Seitzinger 2001; Seitzinger et al. 2005; Wiegner et al. 2006).      

Little research has been conducted on the bioavailability of DOC in urban 

freshwater systems (Harbott and Grace 2005).   It has been shown that urbanization can 

increase both dissolved and particulate organic carbon, but decrease the retention of 

organic matter in streams (Paul and Meyer 2001).  Urban streams with waste water 

treatment plants tend to have less variable and higher concentrations of DOC 

(Westerhoff and Anning 2000), but this depends on the relative release of DOC from the 

watershed in relation to DOC released as point source effluent (Aitkenhead-Peterson et 

al. 2009).     

A study examining a beech forest floor found mean BDOC of 39% for a 21 day 

incubation of soil water extract (Andreasson et al. 2009).  Soil solution was found to be 

16-68% biodegradable during a three month incubation at room temperature (Zsolnay 

and Steindl 1991).  Another study found soil solution BDOC to be 27% during a 134 day 

incubation (Qualls and Haines 1992).  A bioreactor method with an incubation time of 

five hours reported that BDOC of soil solution collected by zero tension lysimeters 
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under the forest floor of coniferous and hardwood stands ranged from 17-45% (Yano et 

al. 1998).  However, BDOC studies tend to have a wide variety of methodologies for 

incubation.  A group of researchers in the United States and Europe shared six different 

soil extracts, soil solutions, and throughfall solutions to quantify BDOC using different 

methods (McDowell et al. 2006).  Overall, large differences among the methods used to 

determine BDOC were not found (McDowell et al. 2006).   

Bioavailable DOC has also been shown to decrease with soil depth (Boyer and 

Groffman 1996).  Greater bioavailable DOC was found in cornfields than in forest soils 

(Boyer and Groffman 1996).  Results from a study on freshwater wetlands suggested 

that seasonality and anthropogenic activity altered the bioavailability of DON in runoff, 

but seasonal patterns for DOC were not as clear (Wiegner and Seitzinger 2004).   

Soil chemistry 

Soil is important in understanding DOC as it is a source of transformed organic 

material.  Changes in land use and land cover can affect DOM cycling by shifting inputs 

of organic matter, altering soil substrate quality, and adjusting microbial degradation 

through changes in pathway, rate, and range (Cronan et al. 1992).  Watersheds with a 

high distribution of wetlands have been shown to have increased DOC concentrations in 

streams (Dillon and Morlot 1997; Aitkenhead et al. 1999; Williams et al. 2005; Mattson 

et al. 2005; Aitkenhead-Peterson et al. 2007).  Turfgrass lawns often found in residential 

and commercial areas may be exposed to increased inputs of organic matter or fertilizer 

which will increase the carbon available to the system (Steele and Aitkenhead-Peterson 

2012b).  Soil carbon is more likely to be sequestered under urban turfgrass compared to 

agricultural soils with conventional tillage (Morgan et al. 2010).   

Organic matter in soil is derived from the breakdown and transformation of leaf 

litter, root decay and exudates, and death and decay products of animals and microbes 

(Aitkenhead-Peterson et al. 2003).  Microbes are important in the processing of organic 

matter in soil and are typically regarded as the controlling factor for litter decomposition, 

leaching of organic matter from litter, and the creation of humic substances (Kalbitz et 

al. 2000).  Abiotic processes, such as adsorption and precipitation, may largely control 
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the concentration of DOM in soil solution (Kalbitz et al. 2000).  Changes in DOM in soil 

solution are thought to be tied to the amount of litter recently deposited on the surface 

and the total indigenous organic matter present in the soil (Kalbitz et al. 2000).  

Accordingly, the quality of litter is determined by the vegetation at the site and the 

importance of vegetation as a controlling factor for DOM concentrations in soil should 

not be overlooked (Kuiters 1993).   

It has been previously reported that an increase in soil pH of 0.5 units would 

cause a 50% increase in DOM mobilization (Tipping and Woof 1990).  Numerous 

laboratory studies have documented an increase in DOC release from soil with raised pH 

(Whitehead et al. 1981; Hay et al. 1985; Tipping and Hurley 1988; Gödde et al. 1996; 

Jozefaciuk et al. 1996; Kennedy et al. 1996; Hajnos et al. 1999; You et al. 1999).  

However, the interactions of pH and DOM in the field appear to be minor (Kalbitz et al. 

2000).   

Biogeochemical cycling of organic material in soil is thought to have a spatial 

and seasonal effect on the concentration and composition of DOC in surface water 

(Sanderman et al. 2009).  Organic matter in soil varies “somewhat predictably”, thus 

DOM can potentially be used as a “tracer of source water and runoff generation 

pathways” based on its chemical composition (Sanderman et al. 2009).  Typically DOC 

concentrations in soil solutions from the A horizon were reported to be between 5 and 50 

mg/L and decrease with depth (Herbert and Bertsch 1995).  Another study in New 

Hampshire forest soils found an average of 33 mg/L DOC in the A2 horizon compared 

to 2-3 mg/L in the B horizon (McDowell and Wood 1984).  Soil DOC has been shown to 

increase in response to rewetting after a dry cycle (McDowell and Wood 1984; 

Zabowski and Ugolini 1990; Haynes and Swift 1991; Chittleborough et al. 1992; Kalbitz 

and Knappe 1997; Lundquist et al. 1999; Tipping et al. 1999; Zsolnay et al. 1999).  

Three possible reasons for this were proposed by Lundquist et al. (1999): a reduction in 

the use of DOC by microbes during dry periods, an increased overturn of microbial 

biomass via rewetting, or a change in soil structure that could allow for carbon 

sequestered previously to become bioavailable. Not all soils respond similarly to wet and 
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dry cycles.  Microbes in soils under oak trees were found to undergo changes in 

community composition, while soil microbes under grass did not have a shift in 

population (Fierer et al. 2003).  The differences in microbial community response were 

attributed to greater exposure to moisture stress in grass environments, and therefore 

greater adaptation to change (Fierer et al. 2003).  Soil anaerobic conditions due to 

saturation with water have also been shown to increase DOM release (Mulholland et al. 

1990; Sedell and Dahm 1990).    

Soil adsorption 

Soil adsorption is often regarded as more important than decomposition in 

reducing concentrations of DOC in soil solution (Kalbitz et al. 2000).  Soil can retain a 

“considerable portion” of solution DOC through adsorption to soil mineral surfaces 

(McDowell and Wood 1984; Dalva and Moore 1991; Moore et al. 1992; Kalbitz et al. 

2003).  Organic carbon concentrations, iron and aluminum content, and soil mineralogy 

influence the extent of DOC adsorption (Moore et al. 1992).  Clay soils have been shown 

to be positively related to adsorption of DOC as well as to runoff in watersheds with 

high clay content soils, which have lower DOC concentrations (Nelson et al. 1993; 

Kalbitz et al. 2000).  The presence of aluminum and iron oxides and hydroxides in soils 

also increases DOC adsorption (Moore et al. 1992; Kalbitz et al. 2000).   For example, it 

was found that 72 to 92% of DOC adsorped to iron oxides was “irreversibly bound” (Gu 

et al. 1994).  It is important to note however that there is a maximum for DOC 

adsorption in soil, which depends on both the indigenous carbon in the soil as well as the 

surface area of the dominant soil minerals (Moore et al. 1992; Vance and David 1992; 

McCracken et al. 2002).  After the adsorption maximum is reached, carbon would be 

leached from soil due to a lack of available adsorption sites.  Adsorption of DOC will be 

greater in soils with low indigenous adsorped carbon (Kalbitz et al. 2000).  Low exports 

of carbon from clay soils high in aluminum and iron with low indigenous adsorped 

carbon would be expected (Kalbitz et al. 2000).  Increased pH has been shown to 

decrease the capacity for soil adsorption (Kalbitz et al. 2000).  An elevated pH will 

increase DOC release due to reduced carbon mineralization.  Solubility of DOC will also 
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be increased with elevated pH due to protonation of DOC functional groups (Kalbitz et 

al. 2000).  

Mineral soil adsorption of DOM is typically quantified using the initial mass 

isotherm method of Nodvin et al. (1986).  Results from studies examining adsorption in 

B horizon soils under forests in New Hampshire (Nodvin et al. 1986), a variety of 

Canadian soils from the A,B, and C horizons assumed to be forests using DOC derived 

from swamp peat (Moore et al. 1992), and agricultural soil to a depth of 15cm from Italy 

using DOC from farmyard manure (Riffaldi et al. 1998) are described in Table 1 for the 

adsorption coefficient (m), release term (b), and reactive soil pool (RSP).  The 

adsorption coefficient was found to be positively correlated to soil clay content in 

agricultural soils (r = 0.89, p = 0.001) while the release term was positively correlated to 

soil DOC (r = 0.87, p = 0.001) (Riffaldi et al. 1998).  Equilibrium DOC (DOCeq), also 

known as null point DOC, is defined as the value at which there is no removal or release 

of DOC from solution and is typically regarded to be the intercept of the adsorption 

isotherm and y axis (Moore et al. 1992).  Another study on Canadian soils found that 

soils with high clay content may have higher DOCeq than sandy soils (Moore and Matos 

1999).  Moore et al. (1992) also reported that organic carbon, extractable aluminum, and 

extractable iron explained 70% of the variation seen in DOCeq.  

 

 

Table 1.  Mean terms for adsorption coefficient (m), release term (b), and reactive soil 

pool (RSP) for adsorption studies. Data are based on the initial mass isotherm method of 

Nodvin et al. 1986.  Ranges are given in parentheses. 

 

 Nodvin et al. 1986 Moore et al. 1992 Riffaldi et al. 1998 

m (unitless) 0.60 0.45 (0.15-0.78) 0.32 (0.09-0.60) 

b (mg/kg) 29.8 142 (30-520) 127 (14-227) 

RSP (mg/kg) 74.8 330 (50-1790) 199 (65-377) 
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Diffuse reflectance near infrared spectroscopy 

Near infrared spectroscopy (NIR) is an optical analytical technique that has been 

widely used in agriculture, paper, food, manufacturing, and pharmaceutical industries for 

analysis of composition and function (Foley et al. 1998; Perrson et al. 2007).  Near 

infrared spectroscopy describes the molecular composition of organic material in a 

sample as it is based on the vibrational patterns and absorption of near infrared radiation 

by bonds (specifically C-H, N-H, and O-H) in the material of interest (Nilsson et al. 

1996; Foley et al. 1998; Bokobza 2002; Perrson et al. 2007).  These bonds tend to have 

“high vibrational frequencies” in the near infrared region (780 nm to 2500 nm) which 

allows for the molecular composition of organic material to be determined (Nilsson et al. 

1996; Korsman et al. 2001).  Typically, a linear relationship between absorbance and 

concentration (following the Beer Lambert Law) is shown in most biological and 

agricultural applications (Nilsson et al. 1996).  The spectral signatures are then usually 

combined in a predictive statistical model which may be used to predict the molecular 

composition of unknown samples (Foley et al. 1998).  The accuracy of the model 

depends on the reference and calibration data, but NIR is “often more precise” than 

laboratory assays (Geladi and Dabakk 1995; Foley et al. 1998).  

 Near infrared spectroscopy has been used in a limited capacity in ecological 

studies (Perrson et al. 2007), but there is great potential for its use in environmental 

monitoring (Foley et al. 1998).  The NIR method is preferable as it is a rapid, reagent 

free, and nondestructive quantitative method that requires limited sample preparation 

(Nilsson et al. 1996; Perrson et al. 2007).  Additionally, the instrumentation is relatively 

affordable (Perrson et al. 2007).  Using NIR allows for estimation of several parameters 

from one method, rather than a range of wet chemistry methods that require a lot of time, 

training, and reagents (Dabakk et al. 2000).  This could allow for extensive long term 

environmental monitoring that is cost effective, accurate, and feasible given the limited 

staff of regulatory agencies (Dabakk et al. 2000; deMedeiros et al. 2005).  Additionally, 

NIR could be used to detect events in near real time, allowing for regulatory agencies to 

respond quickly (deMedeiros et al. 2005).     
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 The limited use of NIR in water research has focused on lake studies.  For 

example, NIR was used to predict lake water chemistry (total organic carbon, total 

phosphorus, and pH, among other constituents) in Sweden based on scans of seston 

collected on filters (Dabakk et al. 2000).  Malley et al. (1996) used NIR to determine 

carbon, nitrogen, and phosphorus in both suspended and particulate matter in lake water 

in Ontario.  A study in paleolimnology used NIR to reconstruct sediment and water 

chemistry (Korsman et al. 2001).  It was found that NIR performed better than chemical 

and diatom analyses in a study examining epilithic material in streams impacted by 

mining in Sweden (Perrson et al. 2007).   

An evaporative method has been developed that concentrates stream water 

samples and allows spectral signatures to be recorded (Steele and Aitkenhead-Peterson 

unpublished).  Most studies utilize NIR spectroscopy as a predictive tool where a model 

is constructed with observed wet chemistry data and NIR spectra.  A novel technique has 

been developed (Aitkenhead-Peterson unpublished) which utilizes the whole NIR 

spectra of stream water and examines its similarity to the NIR spectra of source organic 

materials within the watershed. 

Carbon isotopes 

 Stable isotopes can be used to help determine the sources of organic matter to 

streams, as well as water flow path, nutrient cycling, and food web processes (Kendall 

and Doctor 2004; Finlay and Kendall 2007).  Biological, chemical, and physical 

processes can cause fractionation, which forms differences in the proportion of isotopes 

in elements with low atomic numbers (Kendall and Doctor 2004).  These isotopic 

differences become unique signatures that can be used to trace source material (Kendall 

and Doctor 2004).  Isotopes are typically reported as delta (δ) values in parts per 

thousand (‰ or per mil) relative to a standard (Kendall and Doctor 2004).   

 Organic carbon tends to be depleted in 
13

C, while inorganic carbon is enriched in 

13
C (Boutton 1991).  DOC tends to become enriched in 

13
C during riverine transport due 

to additions from autochthonous inputs and removal from microbes and abiotic 

processes (Raymond and Bauer 2001).  C3 plants, which include deciduous and 
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coniferous trees as well as cool season grasses such as ryegrass and fescue, have an 

approximate δ
13

C value of -27‰, while C4 plants, which include warm season grasses 

such as St. Augustine, have a δ
13

C value of -13‰ (Boutton 1991; Finlay and Kendall 

2007; Fountain 2012).  Additionally, the ranges for C3 and C4 plants (-32 to -22‰ vs. -

16 to-9‰, respectively) do not overlap, which allows for distinction between the two 

plant types to occur (Boutton 1991; Finlay and Kendall 2007).  Soil organic matter 

typically has the signature of the vegetation above it (Boutton 1991; Kendall and Doctor 

2004; Finlay and Kendall 2007).  However, the δ
13

C signature of soil organic matter may 

not correspond to its above ground vegetation if there has been recent change in 

vegetation and land use (Dzurec et al. 1985).  In soils, δ
13

C values decrease with depth, 

possibly due to the favored processing of compounds with higher δ
13

C ratios (such as 

amino acids and carbohydrates) compared to compounds with lower δ
13

C ratios (such as 

lignin and cellulose) (Schiff et al. 1990).  Freshwater values for δ
13

C have been reported 

to range from -18 to -46‰ (McKnight et al. 2003).  A coastal watershed in California 

was found to have a range of δ
13

C values from -24.2 to -28.9‰ (Sanderman et al. 2009).  

A watershed scale study in Ontario found δ
13

C to vary from -27 to -40‰ in streams and 

wetlands (Schiff et al. 1990).  It appears that streams do not reflect the C4 plant signature 

based on the above studies.  Research on DOC leaching from senesced vegetation 

showed that ryegrass, a C3 plant, lost 2 to 4 times more DOC than St. Augustine grass, a 

C4 plant, when exposed to high sodium water (Steele and Aitkenhead-Peterson 2012a).  

However, not all C3 plants have increased DOC leaching, as live oak leaves (C3) lost less 

DOC than St. Augustine grass (Steele and Aitkenhead-Peterson 2012a).  Understanding 

the dynamics of the site specific vegetation may be important in interpreting carbon 

isotope values in streams.  

Objectives 

 Three objectives were outlined for this study: 

 Investigate the sources of stream water dissolved organic carbon using 

diffuse reflectance near infrared spectroscopy and carbon isotopes 
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 Determine the fates of dissolved organic carbon in rural and urban 

watersheds in Brazos County, Texas including a) the extent of 

biodegradation or immobilization by microbes, b) adsorption to soil and 

c) release to stream water 

 Examine the extent of the relationships between land use, carbon isotopes 

of dissolved organic carbon, biodegradability of dissolved organic 

carbon, and soil adsorption 

This research focused on developing a comprehensive understanding of the 

sources and fates of DOC.  This was accomplished by analyzing a transition gradient of 

rural to urban watersheds in Brazos County, Texas.  The first part of the study was to 

determine the source of DOC in each watershed, which was quantified by diffuse 

reflectance near-infrared spectroscopy and compared to results from stable carbon 

isotope analysis. The second part of the study was to examine the fate of DOC, including 

the extent of biodegradation or immobilization by microbes, the adsorption to soil 

minerals, and release to stream water.  Biodegradability of DOC in soil under different 

land use was also quantified.  

The third and final part of the study aimed to determine the extent of the 

relationships between land cover and use, biodegradability of DOC in streams and soil, 

adsorption of DOC to soil, and carbon isotopes of DOC.  Seasonality was also 

investigated, as it would be expected that older, more refractory DOC is released from 

soil when subjected to intensive summer irrigation with municipal tap water.  This 

would result in increased instream concentrations that would be significantly less 

biodegradable relative to DOC derived from streams downstream of waste water 

treatment plants or in rural watersheds. 

This research aimed to explore the sources and fates of DOC to better understand 

the high concentrations reported in surface waters in the region.  This is of vital 

importance because DOC has been shown to be an energy source for the recovery and 

regrowth of E.coli (Bolster et al. 2005; McCrary et al. in review) and many watersheds 

in Texas, as well as the nation, are currently impaired by high bacteria levels.  Bacteria is 
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the number one water quality concern in Texas, and 291 water bodies were listed as 

impaired for bacteria in the 2010 Texas Water Quality Integrated Report as described in 

the Clean Water Act’s 303(d) list (TCEQ 2010).   

Establishing the fate of DOC will lead to increased understanding of the impacts 

of transitioning land use and irrigation on water quality in Brazos County.  The study 

incorporates both soil and surface water analysis, which allows for a more 

comprehensive and holistic view of carbon cycling within the region.  Assessing the 

biodegradation of DOC in watersheds in Brazos County may be helpful in understanding 

the mechanisms contributing to elevated concentrations of organic matter and also to 

determine if land use has an effect on the source, biodegradability, and adsorption of 

DOC in soils and surface waters.   

This research builds upon previous work which found that high sodium 

municipal tap water altered the community composition of microbes in soil and thus 

nutrient release (Holgate et al. 2011).  Additionally, it was found that carbon from 

terrestrial sources, along with the nitrogen and phosphorus from waste water treatment 

effluent, enhanced E. coli recovery and regrowth (McCrary et al. in review).  This 

research will shed light on DOC fate, source, and cycling, and will be meaningful for 

understanding water quality issues in Texas.  The study has important local relevance as 

the Bryan/College Station (B/CS) region is experiencing rapid development as well as 

changes in land use and land cover that increase irrigation needs and may impact carbon 

cycling.  Sound management decisions concerning irrigation water chemistry and urban 

development might eventually emerge to protect water quality as a result of this 

research.   

Hypotheses 

1. H01: The source of DOC in each watershed will be the same regardless of land 

cover and land use. 

H1: Sources of DOC will differ among watersheds according to land cover, with 

urban watersheds showing a greater proportion of streams with an impervious 
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runoff and turfgrass signature as quantified with near infrared spectroscopy and 

carbon isotopes.  

2. H02: There will be no significant differences in stream (H02a) or soil (H02b) DOC 

biodegradability according to different land use.   

H2: Biodegradable DOC will be higher in watersheds with less urban land use 

and in watersheds with waste water treatment plants due to a younger, more 

labile, source of DOC.      

3. H03: Adsorption of DOC on soil mineral surfaces is the same regardless of land 

cover.   

H3: A lower proportion of input DOC will be adsorped under urban land cover 

due to high inputs of sodium from municipal tap water used for irrigation.  
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SITE DESCRIPTION 

 

The Bryan/College Station metropolitan area in Brazos County, Texas had a 

population of 228,660 in 2010, compared to a population of 184,884 in 2000, an increase 

of approximately 19% (U.S. Census 2010; Aitkenhead-Peterson et al. 2011).  The 

climate is classified as humid sub-tropical with an average temperature of 20°C and an 

average yearly precipitation of 1000 mm, which falls mostly as short, high intensity 

storms in the spring and fall (Aitkenhead-Peterson et al. 2011).  Stream flow in dry 

summer months is mostly irrigation runoff in streams without a waste water treatment 

plant (WWTP), or irrigation runoff and effluent in streams with a WWTP (Aitkenhead-

Peterson et al. 2009, 2011).    

 Surface water in Brazos County generally has extremely elevated concentrations 

of DOC, and some streams have higher mean annual DOC concentrations than any 

reported in the literature as of 2009 (Wolf Pen Creek: mean annual DOC of 52.5 mg/L C 

in 2007, with a range of 10-155 mg/L C), which may be linked to interactions with 

sodium in soil (Aitkenhead-Peterson et al. 2009) or the stream channel itself (Steele and 

Aitkenhead-Peterson 2012a).  Annual mean bicarbonate concentrations in streams in the 

region ranged from 45-191 mg/L while sodium ranged from 32-174 mg/L in 2007 

(Aitkenhead-Peterson et al. 2009).  Municipal tap water also has naturally high 

concentrations of bicarbonate and sodium, reported at 431 mg/L and 200 mg/L 

respectively in a 2009 City of College Station consumer confidence report (College 

Station Utilities 2009).  Other municipal water supplies in the study area (City of Bryan, 

Wellborn Special Utility District, and Wickson Creek Special Utility District) have 

slightly different concentrations of bicarbonate and sodium (Figure 1).  Wickson Creek 

Special Utility District (WCSUD) has the most different municipal tap water chemistry, 

with relatively lower concentrations of both sodium and bicarbonate.  
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Figure 1. Chemistry of municipal tap water in the study region.  Samples were obtained 

from between March and May 2008.  Adapted from Aitkenhead-Peterson et al. 2011. 

 

  

 Seven watersheds in Brazos County surrounding Bryan/College Station were 

included in my study (Bee, Carters, Hudson, Lick, Peach, Wickson, and Wolf Pen, 

Figures 2 and 3).  Three watersheds were considered urban with greater than 35% urban 

development (Bee, Hudson, and Wolf Pen), two watersheds were designated as rural 

with less than 35% urban development (Peach and Wickson), and two watersheds have 

WWTP within their basin (Carters and Lick).  Land use within the seven watersheds 

varied from 6-100% urban, 0-35% forest, 0-16% wetland, 0-14% rangeland, and 0-63% 

agricultural (Table 2) as determined by the 2006 National Land Cover Data (NLCD) set 

published by the United States Geological Survey (USGS) in February 2011.  The 

NLCD classification is based on the Anderson Land Cover Classification System and 

satellite remote sensing (Anderson 1976).  Soils in the study area are mostly alfisols with 

marine clays and sandstone (Aitkenhead-Peterson et al. 2011).  Bee, Carters, Hudson, 

and Wolf Pen Creeks are underlain with the Yegua formation (Aitkenhead-Peterson et 

al. 2011).  Wickson Creek is underlain by the Cook Mountain formation, while Lick and 
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Peach Creeks are underlain with the Manning formation (Aitkenhead-Peterson et al. 

2011).  

 

 

Table 2. Percent land use in the seven study watersheds.  Data is from 2006 National 

Land Cover Data (NLCD) published by the United States Geological Survey and 

calculated using Spatial Analyst in ArcGIS. 

 

Watershed Area Urban Forest Wetland Range 

Ag-

Pasture Ag-Crop 

  km
2
 %           

Urban 

       Bee 21.5 88.8 3.3 1.6 4.5 1.4 0 

Hudson 7.6 44.1 9.2 6.9 8.6 30.5 0 

Wolf Pen 6.3 100 0 0 0 0 0 

Rural 

       Peach 58.4 8.5 35 15.7 11.1 28.2 0 

Wickson 85.0 6.0 11.3 2.1 13.0 63.2 3.7 

WWTP 

       Carters 57.3 69.3 5.1 4.2 6.8 12.5 1.3 

Lick 46.1 32.1 23.9 7.6 14.2 21.4 0 
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Figure 2. Study watersheds within Brazos County. 
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Figure 3. Land use in the study watersheds from the NLCD 2006 dataset.  
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Bee Creek was sampled off a bridge in a residential neighborhood on 

Appomattox Drive in College Station.  The sampling site is located just north of Emerald 

Forest Park, a 4.59 acre (0.02 km
2
) park dedicated to the preservation of native 

vegetation (City of College Station 2012a).  The stream starts in Brison Park, flows 

through a residential area to Lemontree and Bee Creek Parks, to an open developed area, 

and finally to an area of forest and wetlands in Emerald Forest Park.  Bee Creek meets 

Carters Creek approximately 1.5 km downstream. Bee Creek experienced an increase of 

approximately 12% urbanization from 2001 to 2006 (Fry et al. 2011).   

 Hudson Creek was sampled off a bridge on University Drive East/FM 60 in 

College Station, located northeast of the intersection with Texas State Highway 6 (SH 

6).  Hudson Creek’s watershed is located mostly in the City of Bryan.  The creek passes 

through Miramont Country Club, which includes a 22 hole golf course and 176 luxury 

residential lots ranging from 1/7 acre to greater than 1 acre (Miramont 2012).  The golf 

course was built in 2004 and the entire complex consists of 1000 acres (4 km
2
) 

(Miramont 2012).  After Miramont, the stream passes through a small area of pasture 

and wetlands before crossing Boonville Road/FM 158 and entering a residential and 

medical complex in the Copperfield area.  The stream passes through a small area of 

rangeland just prior to the sampling point. Hudson Creek meets Carters Creek 

approximately 1.5 km downstream.  Hudson Creek experienced an increase of 

approximately 13% urbanization from 2001 to 2006 (Fry et al. 2011), which is mostly 

attributed to the development at Miramont.      

 Wolf Pen Creek was sampled from the bank of the stream just upstream of a 

stormwater outfall located adjacent to the parking area for Wolf Pen Creek Park off 

Dartmouth Street in College Station.  The headwaters of Wolf Pen Creek are located just 

east of the 18 hole Texas A&M University golf course.  The stream flows through a 

heavily developed residential and commercial area before entering Wolf Pen Creek Park 

just north of Texas Avenue South.  Wolf Pen Creek was sampled midway through the 

park.  The stream continues to pass through open developed areas and Raintree Park 

until its confluence with Carters Creek approximately 2.4 km downstream.  There were 
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no changes in urban land use between 2001 and 2006 as the watershed was already 

100% urbanized (Fry et al. 2011).    

 Peach Creek was sampled off a bridge surrounded by pasture on Peach Creek 

Road in College Station, just downstream of where the creek crosses under SH 6. Peach 

Creek experienced an increase of approximately 2% urbanization from 2001 to 2006 

(Fry et al. 2011).  Forested land adjacent to the sampling site underwent moderate 

clearing for pasture towards the end of the sampling period.  Peach Creek has its 

headwaters near the intersection of Wellborn and Barron Roads.  The creek flows 

through mostly pasture, forest, and wetlands to its sampling point.  Peach Creek drains 

directly into the Navasota River approximately 5 km downstream.   

 Wickson Creek was sampled off a bridge surrounded by pasture on Old Reliance 

Road in Bryan, located southeast of Texas State Highway 21 (SH 21).  Wickson Creek 

has been listed as impaired for bacteria since 2006 according to the 2010 Texas Water 

Quality Integrated Report for water quality impairments as described in the Clean Water 

Act’s 303(d) list (TCEQ 2010).  This site has a category status of 5b, which indicates 

that a review of water quality standards will be conducted before the total maximum 

daily load (TMDL) process is begun (TCEQ 2010).  The sampling point often had a 

visible oily sheen on the surface.  This may be due to runoff from various industries 

upstream.  The headwaters of Wickson Creek are located near the intersection of FM 

974 and FM 2776.  There has been some development of low density homes on large 

acreage in the headwaters, but this has not increased the urban classification since 2001.  

The stream flows through pasture, forest, and a small area of developed land as it crosses 

under SH 21. The site is sampled approximately 3.1 km downstream of SH 21.  Wickson 

Creek continues to flow through pasture and forest until it drains directly into the 

Navasota River approximately 16 km downstream.  Flow data collected by the Brazos 

River Authority between 1999 and 2004 at a site downstream of the sampling point 

(N=29, 18 estimates and 11 actual measurements) indicate an average flow of 13.2 cubic 

feet per second (cfs) (TCEQ 2012).  
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 Carters Creek was sampled off a bridge at the northwest corner of the 

intersection of University Drive East/FM 60 and Texas State Highway 6 Frontage Road 

in College Station.  Burton Creek WWTP, operated by the City of Bryan, is located on 

Burton Creek, which is a tributary of Carters Creek.  The Burton Creek WWTP has a 

treatment maximum of 8.0 million gallons per day (MGD), though the plant averaged 

4.76 MGD in 2010 (Figure 4, US EPA 2012a).  Seven violations were reported for 

ammonia-N and total suspended solids (TSS) in the most recently available period (US 

EPA 2012a, Table 3).  The sampling site for Carters Creek is downstream of the 

confluence of Burton and Carters Creek and approximately1.6 km downstream of the 

Burton Creek WWTP (Aitkenhead-Peterson et al. 2011).  Carters Creek has been listed 

as impaired for bacteria since 1999 (TCEQ 2010).  Currently, the site is listed as 

category 5a, which indicates that a TMDL is underway (TCEQ 2010).  A draft TMDL 

was released for public comment in May 2012 (TWRI 2012).  Carters Creek experienced 

an increase of approximately 2% urbanization from 2001 to 2006 (Fry et al. 2011).  The 

headwaters of Carters Creek are near the intersection of SH 21 and SH 6.  Carters Creek 

flows through the eastern half of the watershed, which is mostly dominated by pasture, 

forest, and open developed land.  Several tributaries drain the urbanized western half of 

the watershed.  Carters Creek meets the Navasota River at the north end of Sulphur 

Springs Road in College Station, approximately 16 km downstream of its sampling 

point, after continuing to flow through pasture, forest, and wetlands.  Flow data collected 

by the Brazos River Authority between 1999 and 2004 downstream of the sampling site 

(N=48, 25 estimates and 23 actual measurements) indicate an average flow of 21.3 cfs 

(TCEQ 2012).   

Lick Creek was sampled off a bridge surrounded by pasture at the northwest 

corner of the intersection of Peach Creek Rd and Sulphur Springs Road in College 

Station.  This site is approximately 1.6 km downstream of the Lick Creek WWTP 

operated by the City of College Station (Aitkenhead-Peterson et al. 2011; College 

Station 2012b).  The Lick Creek WWTP first came online in 1987 and currently has a 

treatment maximum of 2.0 MGD to serve the south side of College Station  
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Figure 4. Average 2010 (monthly and yearly) and maximum (monthly) facility flow for 

Burton Creek WWTP (MGD). 2010 is the most recently available data.  Data is from the 

U.S. EPA’s Enforcment and Compliance History Online (ECHO). 

 

 

Table 3. Permit violations for Lick Creek and Burton Creek WWTP in the most recently 

available three year period (October 2008-September 2011).  Violations are expressed as 

the highest percentage the permit was exceeded in the given quarter. NMth= 

nonmonthly, a maximum amount during the quarter, Mthly= monthly, based on monthly 

average of readings. Data is from the U.S. EPA’s Enforcment and Compliance History 

Online (ECHO). 
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 (College Station 2012; US EPA 2012b).  The plant averaged 0.84 MGD in 2010 (Figure 

5, US EPA 2012b).  Four violations were reported for E.coli and TSS in the most 

recently available period (Table 3, USEPA 2012b).  The headwaters of Lick Creek are 

near the intersection of Graham Road and Longmire Drive.  Lick Creek flows through a 

developed area, under SH 6, and through a large area of forest until it meets the 36 hole 

golf course at Pebble Creek Country Club which also includes luxury residential 

development.  The Pebble Creek development encompasses approximately 1,348 acres 

(5.5 km
2
) and was built in the 1990s (Pebble Creek 2012).  Lick Creek is the northern 

border of the development, which currently has 1,312 developed lots which average 

approximately 0.4 acres (0.002 km
2
) in size (Mary Stephens, Brazos Central Appraisal 

District, personal communication, February 23, 2012).  The stream continues to flow 

through the forested and wetland areas of Lick Creek Park and past the Lick Creek 

WWTP.  Lick Creek flows through wetland, pasture, and forest until its confluence with 

the Navasota River approximately 3 km downstream of the sampling point.  Lick Creek 

had a 2% increase in urbanization between 2001 and 2006 (Fry et al. 2006).   

 

 

 

Figure 5. Average 2010 (monthly and yearly) and maximum (monthly) facility flow for 

Lick Creek WWTP (MGD). 2010 is the most recently available data.  Data is from the 

U.S. EPA’s Enforcment and Compliance History Online (ECHO). 
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MATERIALS AND METHODS 

 

The Soil Conservation Service (SCS) Runoff Curve Number (RCN) Method 

The Soil Conservation Service (SCS) created the Runoff Curve Number (RCN) 

Method in 1954 as an interagency tool to estimate peak runoff rates and volumes in 

watersheds with varying land use (Schiariti 2008).  This method was used to examine 

runoff potential within the study watersheds. Several equations are used to determine 

runoff (Equations 1-4; Barfield et al. 1981; NRCS 1986).  It is typically assumed that 

initial abstraction (Ia), or all losses before runoff begins, is equal to 20% of the potential 

maximum retention after runoff begins (S, Equation 2).  Equation 1 can be rewritten to 

become Equation 3, below.  The S value can be determined via Equation 3 which 

incorporates curve number (CN), a coefficient that represents the amount of runoff based 

on the type and quality of land use and land cover.  Finally, runoff (Q) can be solved for 

after incorporating rainfall (P) in inches (Equation 4).  Runoff curves can be plotted as P 

(rainfall, inches) versus Q (runoff, inches).   

Curve number coefficients incorporate losses of precipitation to evaporation, 

adsorption, transpiration, and surface storage so that the higher the curve number, the 

greater the runoff potential (Schiariti 2008).  Runoff curve numbers can be determined 

from Table 2.2 in Technical Release 55 (TR-55) from the United States Department of 

Agriculture (USDA) and Natural Resources Conservation Service (NRCS 1986).  The 

curve numbers given in TR-55 assume average antecedent runoff condition and that 

Ia=0.2S.  For urban areas, it is also assumed that impervious areas are directly connected 

to the drainage system (CN=98) and that pervious urban areas are equivalent to pasture 

in good hydrologic condition (NRCS 1986).  Several factors influence curve number, 

including hydrologic soil group (HSG), hydrologic condition, cover type, and 

management (NRCS 1986).  Soils are divided into four HSGs (A, B, C, and D) based on 

their minimum infiltration rate as measured for bare soil after prolonged wetting (Table 

4, NRCS 1986).  HSG information for the study area was obtained through soil surveys 

stored online through Web Soil Survey (WSS), a project of the USDA and NRCS. 
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Precipitation data from Easterwood Airport, College Station (“KCLL”) was used for all 

sites except Wickson Creek, where precipitation was gathered from the Roy Ball Road 

station (“KTXBryan10”) in Bryan (KCLL 2012; KTXBryan10 2012).  Cover type and 

condition are used to characterize the hydraulic condition as poor, fair, or good (NRCS 

1986).  Hydraulic condition is further defined within the footnotes of Table 2.2 

according to cover type (NRCS 1986).  Hydraulic condition is replaced by average 

percent impervious area for urban regions.   

Composite CNs for each watershed were obtained using soil survey data from 

WSS joined with land use and land cover data from the NLCD 2006 dataset following 

the example in Figure 2.5 of TR-55 (NRCS 1986).  Composite CNs were calculated 

according to the percent of each HSG within the watershed using ArcGIS (Figures 6-8).  

Different land uses within the HSGs were accounted for and weighted based on percent 

cover.  Areas reported as water were assigned a CN of 100 (Barfield et al 1981).  

 

 

Table 4. Descriptions of hydrologic soil groups.  Adapted from (Barfield et al. 1981; 

NRCS 1986). 

  Group A Group B Group C Group D 

Soil texture 

sand, loamy 

sand, or sandy 

loam 

silt loam or 

loam sandy clay loam 

clay loam, silty 

clay loam, sandy 

clay, silty clay, or 

clay 

Runoff 

potential low Intermediate intermediate High 

Infiltration 

rate high Moderate Low very low 

Water 

transmission 

high, >0.30 

in/hr 

moderate, 0.15-

0.30 in/hr 

low, 0.05 to 

0.15 in/hr 

very low, 0 to 

0.15 in/hr 
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Q = ((P-Ia)
2
)/((P-Ia) + S) 

            where 

   Q= runoff (in) 

   P = rainfall (in) 

   S = potential maxiumum retention after runoff begins (in) 

   Ia = initial abstraction (in) 

Equation (1)  

 

 

Ia = 0.2S 

Equation (2) 

 

          

S = (1000/CN) -10 

                                   Equation (3)  

 

 

Q = ((P-0.2S)
2
)/(P+0.8S) 

Equation (4) 
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 Figure 6. Map of Carters, Hudson, and Wolf Pen Creek watersheds and the soil 

classifications for  HSG. 
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Figure 7. Map of Wickson Creek watershed and the soil classifications for  HSG. 
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Figure 8. Map of Bee, Lick, and Peach Creek watersheds and the soil classifications for  

HSG. 
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Diffuse reflectance near infrared spectroscopy  

Visible (415 to 750 nm) and near infrared (780 to 2440 nm) spectra have been 

analyzed with fiber optic probes and diffuse reflectance to examine organic matter 

source materials in various watersheds (Aitkenhead-Peterson et al. unpublished).  These 

spectra have been combined to create a regional input database of diffuse reflectance 

NIR (DR-NIR) spectral signatures called the Watershed Source Spectral Library or the 

WSSL model (Aitkenhead-Peterson et al. unpublished).  Source materials included 

organic matter such as WWTP effluent, fecal material from a range of animals, water 

extractable vegetation and soil, engine oil, and impervious runoff from different 

surfaces.  Each source material has a unique spectral signature.  The WSSL model can 

be used as a relatively fast and inexpensive method to source track diffuse sources of 

runoff to streams during all flow regimes and seasons.   

25 mL aliquots of filtered stream water (nominal 0.7 µm Whatman GF/F filters) 

were processed using an evaporative technique to concentrate and isolate the organic 

compounds in the streams on a solid matrix.  Stream water was added to white 

commercial sponges (mean diameter 57 mm, depth 10 mm, 3.017 g) and dried (50°C for 

24 hours) before being scanned.  A Labspec 5000 near infrared spectrometer (Analytical 

Spectral Devices Inc., Boulder, CO, USA) with a wavelength range from 350 to 2500 

nm at a 1 nm resolution was used to take three scans of a sponge, rotating 90⁰ between 

each new scan.  Source materials were diluted in a 10:1 material: DDW solution.  

The raw reflectance data was pretreated by converting to the first derivative prior 

to statistical analysis.  Average values for each nm wavelength were calculated from the 

three scans of each stream sample.  The average DR-NIR spectral signature of blanks 

(ultrapure distilled deionized water, DDW, 18.2 MΩ cm, Barnstead, on commercial 

sponge, n = 14) was deducted from the DR-NIR spectral signature of each of the stream 

samples so that only the stream material signature was considered. 

Principal component analysis (PCA) was applied to the WSSL to assess 

clustering of sources of organic material.  To remove noise at the front and back end of 

the spectra, PCA was run again with 350-414 nm and 2441 – 2500 nm removed from 
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analyses.  Cluster analysis (Euclidean distance using k-means clustering) was then used 

as a confirmation of stable clusters.  Cluster analyses were performed 10 times, and each 

analysis had 100 iterations to reduce spatial outlier detection (SOD).  Sixteen groups of 

source material of carbon were identified (Figure 9, Table 5).   Soils divided into five 

groups (groups 1, 2, 10, 11 and 15), while vegetation split into two groups, with group 8 

tending to have greater exposure to irrigation or irrigation runoff and group 6 consisting 

mainly of forest and shrub scrub vegetation.  Domestic and feral animal fecal material 

separated into two groups (domestic, group 3 and cliff swallow, group 16) although they 

showed some co-correlation (Table 6).  Bryan/College Station municipal tap water 

formed group 4, but because rural creeks in the study area have a different municipal 

supply with varied chemistry, group 4 is described as high NaHCO3 (sodium 

bicarbonate) water.  Pure effluent from Carters Creek WWTP split into two groups.  

Group 7 was made up of only effluent while group 5 included both effluent and 

impervious runoff.  Group 12 comprised impervious runoff only.  Because of the oily 

sheen on Wickson Creek and the potential for engine oil to be washed from impervious 

surfaces to streams, group 9 represents the spectra for engine oil.  Groups 13 and 14 

(DDW blanks and human decomposition remains) did not explain any variance in the 

sampled streams and were excluded from analysis.    

Once the main source groups were established using PCA and cluster analysis, 

the average value for each 1 nm wavelength between 415 nm and 2440 nm was 

calculated for every source group.  Regression analysis was performed between each 

source group and each stream collection to assess the amount of variance (R
2
) that an 

individual WSSL source group explained of the stream spectra (Figure 10).  

There was some co-correlation between groups (Table 6).  In these cases, simple 

linear regression analysis was performed on each source group.  If the R
2
 value between 

two groups was > 0.50, then those groups were not used in the final model describing 

stream water content.   
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Table 5. Descriptions of source groups of DOM produced through the WSSL.  

Group Description 

1 Soil 

2 Soil 

3 Domestic animal fecal material 

4 High NaHCO3 water 

5 Effluent and impervious runoff 

6 Vegetation- forest, shrub scrub 

7 Effluent 

8 Vegetation- irrigation exposure 

9 Engine oil 

10 Soil 

11 Soil 

12 Impervious runoff 

13 Blanks 

14 Human remains decomposition 

15 Soil 

16 Cliff swallow fecal material 

 

 

 

Figure 9. Principal component analysis (PCA) of spectra included in the WSSL.  Groups 

are identified in Table 5. Groups 13 and 14 (not shown) were blanks (group 13) and 

human remains decomposition (group 14) and were removed from the figure as they did 

not explain any of the variance seen in stream spectra. 
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Figure 10.  Example of the relationships explored between source groups and 

stream spectra.  This figure is of the relationship between group 16 (cliff swallow feces) 

and Bee Creek stream water collected on 2/6/2012. 
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Table 6. Pearson correlations (R) among the source groups identified by cluster analysis.  Bold values are not statistically 

different (paired t-test with equal variance; p > 0.05). Unbolded values are significantly different (paired t-test with equal 

variance; p < 0.05). 

 

Group 1 2 3 4 5 6 7 8 9 10 11 12 15 

1                           

2 0.97                         

3 0.06 0.18                       

4 -0.08 -0.06 0.40                     

5 -0.04 0.10 0.75 0.61                   

6 0.57 0.71 0.66 0.25 0.64                 

7 0.05 0.18 0.50 0.14 0.65 0.58               

8 0.70 0.83 0.41 0.06 0.40 0.93 0.48             

9 0.28 0.23 0.10 0.33 0.09 0.12 -0.13 0.05           

10 0.77 0.88 0.39 -0.03 0.34 0.86 0.48 0.93 0.06         

11 0.90 0.97 0.24 -0.11 0.16 0.78 0.33 0.9 0.13 0.96       

12 0.12 0.26 0.68 0.31 0.81 0.73 0.90 0.58 0 0.57 0.40     

15 0.97 0.89 0.02 -0.02 -0.09 0.44 -0.05 0.55 0.37 0.62 0.79 0.03   

16 0.02 0.12 0.80 0.69 0.82 0.59 0.38 0.33 0.25 0.25 0.13 0.64 -0.10 
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Since the sum of the amount of variance explained by sources of organic matter 

often exceeded 100%, and because of the high correlations between some of the groups 

in the WSSL, three models (urban, rural, and WWTP) were constructed (Table 7).  Each 

model was based on land use and known inputs to the stream. The goal was to select 

groups that could explain up to 100% of the variance in stream water but were not 

correlated to each other.   

Vegetation groups used in each model were chosen based on land use 

characteristics and can be considered subjective in the development of this preliminary 

model.  Group 8 was selected for the urban watersheds because the vegetation in this 

group was dominated by irrigated lawns.  Comparatively, group 6 vegetation was chosen 

for the rural and WWTP models.  Soil was selected based on sampling location, as well 

as a low correlation between the vegetation and the soil groups.  Spectra of engine oil 

and NaHCO3 water were not correlated with any group and were therefore used in all 

three models.  Cliff swallow fecal material was used in the urban model due to the 

prevalence of the birds in urban environments.  Domestic animal fecal material was 

included in the rural model because the source material included fecal samples from 

animals (chicken, cow, dog, and pigeon) that are common in the rural communities in 

the region.  Fecal material was highly correlated with runoff (group 5), therefore both 

fecal material and runoff could not be used in the same model.  For the WWTP model, 

the logical group to include was effluent (group 7).  However, the effluent group (7) was 

highly correlated to runoff, which may have included fecal material from domestic 

animals.   
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Table 7. Models used to describe the relative contribution of each source material 

to DOM in stream water. 

  Land use model 

Group Description Urban  Rural WTTP 

1, 2, 10, 11, 15 Soil 15 1 11 

6, 8 Vegetation 8 6 6 

3, 16 Feces 16 3  - 

7 Effluent  -  - 7 

5 Effluent + Runoff   -    -   -  

12 Runoff   -    -   -  

4 High NaHCO3 water 4 4 4 

9 Engine oil 9 9 9 

 

 

Isotope analysis 

 A subset of 32 samples out of the 87 collected stream water samples (Table 8) 

were evaporated to dryness using freeze dryers at the Geochemical and Environmental 

Research Group (GERG) of Texas A&M University and the solid residue (~1 mg C) was 

recovered (Gandhi et al. 2004).  Subsamples of the dried residues were weighed into 

silver capsules using a microbalance and treated with HCl vapor in a desiccator to 

volatilize inorganic C present as CaCO3 (Harris et al. 2001).  Finally, samples were 

analyzed for δ
13

C using a Carlo Erba EA-1108 (CE Elantech, Lakewood, NJ, USA) 

interfaced with a Delta Plus (ThermoFinnigan, San Jose, CA, USA) isotope ratio mass 

spectrometer operating in continuous flow mode (Boutton et al. 2009).  Samples were 

prepared and analyzed at the Stable Isotopes for Biosphere Science (SIBS) Laboratory, 

Texas A&M University, under the direction of Dr. Thomas Boutton.  Carbon isotope 

ratios are presented in δ-notation shown below in Equation 5 where Rsample is the 
13

C/
12

C 

ratio of the sample and Rstd is the 
13

C/
12

C ratio of the Vienna Pee Dee Belemnite (V-

PDB) standard (Coplen 1996). 

δ
13

C = [(Rsample-Rstd)/Rstd] * 10
3    

  
Equation (5) 
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Isotope data were compared to data from DR-NIR spectroscopy in order to confirm 

dominant DOC source as from C3 or C4 vegetation.  

DOC biodegradability in streams 

 The seven study watersheds were sampled monthly to examine biodegradability 

of DOC in surface water.  Stream samples were collected from March 2011- February 

2012.  Approximately 25% of samples were taken during rain events to capture the 

influence of stormwater runoff within the watersheds.  Rain event samples are denoted 

with an asterisk in figures in this thesis.  Stream water samples were collected in sterile 

500 mL Nasco Whirlpak bags and transported back to the Nutrient and Water Analysis 

(NAWA) Research Laboratory, Texas A&M University, for biodegradability analysis.  

Electrical conductivity (EC, VWR 89094-958) and pH (Beckmann 255) were recorded 

on unfiltered samples.  Stream water samples were then filtered through nominal 1.2 µm 

Fisher GF/F filters, followed by a second filtration through nominal 0.7 µm Whatman 

GF/F filters, and frozen until analysis for all other chemical parameters.  

 Biodegradation of DOC was based on the 7 day incubation method of McDowell 

et al. (2006) at 25°C.  70 mL of the stream water sample was inoculated with 10 mL of 

WWTP effluent.  Effluent was collected from the Carters Creek WWTP in College 

Station after all treatment stages but before UV disinfection.  Effluent was collected each 

month just prior to biodegradability incubations and was stored at 4⁰C in 500mL HDPE 

bottles until needed.  A nutrient mixture (2 mL), with concentrations of 1.82 mM 

nitrogen, 2.43 mM phosphorus, 0.070 mM sulfur, and 2.42 mM potassium, was added to 

create ideal conditions for DOC biodegradation by microbes (McDowell et al. 2006).  

Three small pieces of an ashed Fisher GF/F 1.2 µm filter was added to act as substrate 

for microbes (Qualls and Haines 1992).  Filled incubation flasks were sealed with 

parafilm prior to incubation to prevent evaporation.  Samples were run in triplicate and 

analyzed at time (t) 0 days and 7 days. To assess DOC at t=0 and t=7, mass of DOC in 

the sample and inoculant was calculated as shown in Equations 6 and 7.  Biodegradable 

dissolved organic carbon was calculated as shown in Equation 8.   
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Table 8. Stream samples collected during sampling period March 2011-February 2012.  

A non sampling date indicates the site was dry.  Rain values are from Easterwood 

Airport, reported in inches, for the time period prior to sampling.   

Asterisks indicate rain event. 

 

Sampling 

date Rain 

Isotope 

analysis Bee Carters Hudson Lick Peach Wickson 

Wolf 

Pen 

3/4/2011     x x x x x x x 

4/11/2011   x x x x x   x x 

5/13/2011* 

1.88" 

48 hrs    x x x x   x x 

6/08/2011   

 

x x x x   x x 

6/22/2011* 

2.45" 

24 hrs x x x x x x x x 

7/1/2011     x x x x   x x 

8/2/2011   

 

x x x x   x x 

9/6/2011   x x x x x   x x 

9/19/2011* 

1.4"  24 

hrs   x x x x   x x 

10/5/2011     x x x x     x 

11/10/2011   x x x x x   x x 

12/3/2011     x x x x   x x 

1/16/2012   x x x x x x x x 

2/6/2012* 

6.27" 

72 hrs   x x x x x x x 

 

 

DOCm0 = Sample Xmg/L/1000*70mL + Inoculant Xmg/L/1000*10mL  

Equation (6) 

DOCm7 = Sample Xmg/L/1000*82mL  

 Equation (7) 

%BDOC was calculated as: 

DOCm0 – DOCm7/DOCm0*100  

Equation (8) 
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 Two controls were used in my study.  A 25 mg/L D (+) anhydrous glucose 

solution was used to assess microbial uptake, and a second control of DDW was used as 

a blank.  Both controls were spiked with 10 mL effluent inoculant and 2 mL of the 

prepared nutrient solution.  BDOC over 90% in the glucose control indicated that 

inoculant microbes successfully used the DOC available in solution.  

DOC biodegradability in soil extracts 

 Soil in the study area was sampled according to land use classification following 

the categorization used by the 2006 National Land Cover Data (NLCD) set published by 

the United States Geological Survey (USGS) in February 2011.  The NLCD 

classification is based on the Anderson Land Cover Classification System and satellite 

remote sensing (Anderson 1976).  Samples were taken in triplicate for the following 8 

land uses, for a total of 24 soil samples: 1) developed open space, 2) developed low 

intensity, 3) developed medium intensity, 4) developed high intensity, 5) forest, 6) 

pasture, 7) wetlands, and 8) rangeland/shrub scrub.  Soils were collected on multiple 

sampling dates including June 2011, October 2011, November 2011, and January 2012 

(Figure 11). Soil was sampled to a depth of 15cm in the different land uses and stored in 

plastic bags until drying and processing occurred.    

 Soil was air-dried and then sieved (2 mm) to remove stones and roots.  9.0 g of 

soil was combined with 90 mL DDW and shaken at 50 rpm for 4 hours.  The soil and 

water mixture was centrifuged (Sorvall RC6 Plus) at 10,000 g-force for 15 minutes.  

Supernatant was removed and pH and EC were recorded prior to syringe filtration 

through a nominal 0.7 µm Whatman GF/F filter.  Soils were run in triplicate for each site 

and bulked to allow for sufficient solution to run replicates for biodegradability.  

Approximately 75 mL of extract solution was available from each sample after 

centrifuging.  The volume of bulked extract was recorded.  An aliquot from the bulked 

solution was removed to quantify DOC concentration so that solutions for the 

biodegradability experiment could be diluted to achieve 20 mg/L DOC.  Typically DOC 

in soil solution for biodegradability studies should be between 10 and 30 mg/L 
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(McDowell et al. 2006).  Biodegradability analysis followed the method described above 

for stream water.    

DOC biodegradability in vegetation extracts 

 Above-ground vegetation was collected with each soil sample and stored in paper 

bags.  The vegetation was dried at 50°C in an oven for 7 days.  24 g of vegetation from 

each site was combined with 960 mL of DDW and was soaked for 48 hours, stirring 

daily.  A 40:1 water to vegetation ratio for a stock solution was produced from this 

process.  The solution was centrifuged at 10,000 g-force for 15 minutes and filtered 

through nominal 0.7 µm Whatman GF/F filters.  An aliquot of the solution was removed 

to quantify DOC concentration so that solutions for the biodegradability experiment can 

be diluted to 20 mg/L DOC.  Biodegradability analysis followed the method described 

above for stream water.    

Soil adsorption 

  Seven standard solutions, diluted to range from 0 to 200 mg/L of the DOC 

vegetation stock concentration, were prepared in 100 mL volumetric flasks.  Duplicates 

were run for each soil:vegetation combination.  3.0 g of sieved soil were combined with 

30 mL of input solution at a 1:10 soil:solution ratio in HDPE centrifuge tubes.  

Following a slightly modified method of Nodvin et al. (1986), the soil/solution units 

were shaken at 50 rpm for 20 hours at 20°C prior to centrifugation at 10,000 g-force for 

15 minutes.  The supernatant was removed and pH and EC were recorded.  Supernatant 

was then syringe filtered through nominal 0.7 µm Whatman GF/F filters prior to DOC 

analysis. 

Retention or release of DOC was analyzed using the initial mass (IM) isotherm 

as described by Nodvin et al. (1986).  This method has been widely used for the 

characterization of DOC sorption in soils (Guggenberger and Zech 1992; Moore et al. 

1992; Vance and David 1992; Donald et al. 1993; Riffaldi et al. 1998).  In the IM 

approach, the mass of a substance retained or released (RE, mg/kg) is the product of 

input mass (Xi, mg/kg) minus output mass (Xf, mg/kg) based on the initial and final 

solution concentrations of a substance (Ci and Cf, mg/L).  RE was plotted against the  
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     Figure 11. Soil and vegetation sample locations within watershed study area. 
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initial mass of the substance added and normalized to soil mass Xi to obtain both an 

adsorption coefficient (m, unitless) and a release term (b) as shown in Equation 9.   

RE = mX i – b  

Equation (9) 

The slope of the linear regression (m) gives a measure for the affinity of the substance to 

the sorbent (adsorption coefficient).  The intercept of the equation (b, mg/kg) indicates 

the amount of substance released from the soil when a solution with a zero sorbate 

concentration is added.  The calculations for the samples were performed on a dry 

weight basis.  Reactive soil pool (RSP, mg/kg), a measure of the amount of DOC that is 

likely to be leached from soil (Neff and Asner 2001), was also calculated as described in 

Equation 10 (Nodvin et al. 1986). 

RSP = b/(1-m) 

          Equation (10) 

Soil extracts were analyzed for base cations and calcium, magnesium, and 

sodium were used to determine sodium adsorption ratio (SAR) after conversion of ion 

concentrations from mg/L to meq/L (Equation 11).  Sodium adsorption ratio examines 

the ratio of a harmful element (sodium) to beneficial elements (calcium and magnesium) 

in a soil (Munshower 1994).  It can also be used to determine irrigation water quality.  

Soil problems typically occur when SAR reaches 12-15 and vegetation is less likely to 

take up water (Munshower 1994).  However, recent work in Texas found that an SAR of 

less than 5 was conducive to the release of DOC from soil (Steele and Aitkenhead-

Peterson 2012b).         

 

SAR = [Na
+
]/((Ca

2+
) + (Mg

2+
)/2)

0.5 

Equation (11) 
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Chemical analysis 

 Dissolved organic carbon was quantified using high temperature Platinum-

catalyzed combustion with a Shimadzu TOC-VCSH and Shimadzu total measuring unit 

TNM-1 (Shimadzu Corp. Houston, Texas, USA).  Dissolved organic carbon was 

measured as non-purgeable carbon which entails acidifying the sample (250 µL, 2M 

HCl) and sparging for 4 minutes with carbon free air.  Calcium, magnesium, potassium, 

and sodium were quantified by ion chromatography using an Ionpac CS16 analytical and 

Ionpac GC16 guard column for separation and 20mM methanosulfonic acid as eluent at 

a flow rate of 1mL/minute and an injection volume of 10μL with a Dionex ICS 1000 

(Dionex Corp. Sunnyvale, California, USA).  National Institute of Standards and 

Technology (NIST) traceable reference materials, replicate standards, and replicate 

samples were run every tenth sample to monitor instrument precision.  

Statistical analysis 

Diffuse reflectance near infrared spectroscopy  

Principal component analysis and cluster analysis with Euclidean distance was 

performed using Unscrambler v. 9.8: chemometric software.  Regression analyses 

between cluster groups and stream spectra were performed using Microsoft Excel 2007. 

Partial least squares regression in Unscrambler was used to examine the relationship 

between stream spectra and carbon isotope values.  

Isotope analysis 

 Isotope data were analyzed using a one way analysis of variance (ANOVA) by 

stream and land use with a post-hoc Tukey test in SPSS Version 16.0 to determine if 

there was any significant difference in carbon isotope values.  

Stream water chemistry 

Annual and seasonal means of stream DOC were calculated.  Winter was defined 

as December, January, and February and the remaining seasons were each three month 

period thereafter.  A one way ANOVA by sampling site and a post-hoc Tukey test was 

used to determine any significant differences among parameters.  
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Stream biodegradability 

To determine if there was any significant difference in source and 

biodegradability of stream DOC, a one way ANOVA by sampling site and a post-hoc 

Tukey test was used.   

Soil biodegradability and soil adsorption 

A one way ANOVA with a post-hoc Tukey test was used with land use as the 

independent variable to examine if land use had an effect on DOC fate, such as soil 

extract biodegradability and adsorption to mineral soil.  To examine significant 

differences in soil extract biodegradability and soil retention or release of DOC, two 

sample two tailed t-tests were used.  Backward multiple regression analysis was used to 

explore relationships between adsorption and soil chemistry terms.  

Synthesis of sources and fates of DOC 

Pearson bivariate correlation was used to determine any significant relationships 

between water, soil, and vegetation chemistry, and land use.   

Spatial analysis 

 ArcGIS Desktop ESRI ArcMap 9.3.1 was used to conduct all spatial analysis. 

Watershed delineation was performed and overlaid on USGS NLCD 2006 data to 

examine land use.  Area of each land use was estimated by using the Spatial Analyst tool 

in ArcView.  These resulting areas were divided by total watershed area to determine the 

percent of each land use within the watershed.  Area of each HSG was determined using 

the Spatial Analyst tool for SCS curve number analysis.  Land use was calculated for 

each HSG to determine composite curve numbers.  All analysis was conducted under the 

Universal Transverse Mercator (UTM) projection referenced to the North American 

Datum 1983 (NAD83).   
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RESULTS 

 

The Soil Conservation Service (SCS) Runoff Curve Number (RCN) Method 

The RCN Method showed that the greatest direct runoff would be at two urban 

sites and one WWTP site (Wolf Pen, Bee, and Carters Creeks), followed by Hudson (an 

urban site) and Lick Creeks (a rural WWTP site), and finally Wickson and Peach 

Creeks, rural sites (Figure 12).  Figure 13 is the same data, but does not include the large 

rain event in February 2012 order to show more detail in the lower range of precipitation 

values.  The RCN Method supports the fact that there will be greater runoff at more 

urbanized watersheds due to an increase in impervious surfaces (Hook and Yeakley 

2005).   

Sources of dissolved organic carbon in rural and urban watersheds 

Diffuse reflectance near infrared spectroscopy 

 To examine the relative contribution of watershed source materials, data were 

plotted as a 100% stacked bar chart for each stream (Figures 14-16).  All urban sites 

showed a large contribution from cliff swallow feces (Figure 14).  The June 2 rain event 

showed increased influences of soil and vegetation in urban streams.  High NaHCO3 tap 

water was seen in every urban sample.  Peach Creek, a rural site, was dominated by 

effluent and runoff (Figure 15).  However, this site was dry for most of the sampling 

period and only had 4 samples taken compared to 14 samples at other sites.  Soil was 

more influential at Wickson Creek than any other site.  Samples with an increased 

signature of NaHCO3 tap water in Wickson Creek tended to have a decreased signature 

of soil.  Streams with a WWTP showed the signature of effluent and runoff, as well as 

feces (Figure 16).  

Analysis of stream spectra using the urban, rural, and WWTP WSSL models 

revealed that the amount of variance explained by the spectra varied between watersheds 

and sampling date.  The summed amount of variance explained by each model ranged 

from 10% to 150% (R
2
 0.1-1.5; Figures 17-19).  The WSSL model was not able to 

explain most of the variance at Peach and Wickson Creeks (Figure 18).  
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Figure 12. Results of SCS CN runoff model. 
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Figure 13. Results of SCS CN runoff model with large rain event (4”+) removed. 
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The amount of variance in stream spectra explained by soil varied between the 

study streams.  For the urban streams, soil explained between 0 and 9% of the variance 

in stream spectra at Wolf Pen Creek, 0 to 4% at Bee Creek, and 0 to 6% at Hudson 

Creek.  In the rural sites, 0 to 22% of the variance in stream spectra was explained by 

soil at Wickson Creek.  Peach Creek did not have a measurable contribution from soil.  

Explained variance ranged from 0 to 28% at Carters Creek and 0 to 42% at Lick Creek, 

both of which had a WWTP upstream of the sampling point.   

Vegetation explained a considerable proportion of the variance in stream spectra 

in all sampled streams.  In the urban streams, vegetation explained between 0 and 27% 

in Wolf Pen Creek, 2 and 29% in Bee Creek, and 1 and 39% in Hudson Creek stream 

spectra.  At the rural sites, up to 37% of the variance in stream spectra was explained by 

vegetation in Wickson Creek, while only up to 11% of the variance in stream spectra 

was explained by vegetation in Peach Creek.  In the watersheds with a WWTP, the 

amount of variance explained by vegetation ranged from 1 to 57% in Carters Creek and 

between 2 and 55% in Lick Creek.   

Fecal contributions within each WSSL model were different according to the 

source group used.  Feces from cliff swallows were selected for the urban model due to 

their prevalence (assumed by number of nests) under bridges, on commercial buildings, 

and homes.  Between 5 and 70% of the variance in stream spectra was explained by cliff 

swallow feces at Wolf Pen Creek, 31 and 82% at Hudson Creek, and 18 and 73% at Bee 

Creek.  Feces from domesticated animals (chickens, cows, dogs, and pigeons) were used 

for the rural WSSL model.  Between 1 and 46% of the variance in stream spectra was 

explained by domestic animal feces for Wickson Creek, and between 14 and 33% of the 

variance was explained for Peach Creek.  For the WWTP sites, effluent explained 

between 0 and 56% of the variance in stream spectra at Carters Creek and between 9 and 

30% of the variance in stream spectra at Lick Creek.   

Water with a high concentration of NaHCO3 was included in each model because 

it was not highly correlated to any other group, with the exception of cliff swallow feces.  

This correlation is likely because feces were collected in a small bucket resting below a 
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Figure 14. Relative contribution of DOM source material on each sampling date based 

on stream spectra at urban sites. Asterisks indicate rain event.  
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Figure 15. Relative contribution of DOM source material on each sampling date based 

on stream spectra at rural sites. Asterisks indicate rain event.  Peach Creek was dry 

during 10 of the sampling dates.  Wickson Creek was during one sampling date.  
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Figure 16. Relative contribution of DOM source material on each sampling date based 

on stream spectra at WWTP sites. Asterisks indicate rain event.  
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Figure  17. Variance explained (R
2
) in urban streams using DOM sources in the WSSL.  

Askerisks indicate rain event.  
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Figure  18. Variance explained (R
2
) in rural streams using DOM sources in the WSSL.  

Askerisks indicate rain event.  Peach Creek was dry during 10 of the sampling dates.  

Wickson Creek was dry during one sampling date. Note different scale on y-axis 

compared to Figures 17 and 19.  
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Figure  19. Variance explained (R
2
) at WWTP sites using DOM sources in the WSSL.  

Askerisks indicate rain event.  
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nest and the bucket was exposed to irrigation water throughout the summer.  Municipal 

tap water high in sodium and bicarbonate is supplied to the entire region, with slightly 

decreased concentrations in municipal sources in Wickson and Peach Creek watersheds.  

Municipal tap water is used extensively for irrigation in commercial and residential 

areas, although its spectral signature is not highly linked to effluent, as suggested by a 

low correlation.  High NaHCO3 water is moderately correlated to group 5 (both runoff 

and effluent), which may be reflective of irrigation runoff.  In urban watersheds, 

between 5 and 58% (Wolf Pen Creek), 4 and 44% (Bee Creek), and 4 and 53% (Hudson 

Creek) of the variance in stream spectra was explained by NaHCO3 water.  In rural 

watersheds, high NaHCO3 water explained between 0 and 48% at Wickson Creek and 

between 0 and 4% at Peach Creek of the variance in stream spectra.  It was unexpected 

that water high in sodium bicarbonate would explain this much variance in rural streams 

as there is decreased commercial and residential irrigation at these sites.  However, more 

data is needed from rural streams, as only one site has a complete data set (Wickson 

Creek).  At WWTP sites, NaHCO3 water explained between 5 and 53% of the variance 

in stream spectra at Carters Creek and between 1 and 62% of the variance in stream 

spectra at Lick Creek.   

Engine oil was included in each of the WSSL models to understand its role in 

storm runoff or illicit dumping into storm drains.  The contribution from engine oil in 

urban streams was between 0 and 17% of the variance in stream spectra in Wolf Pen 

Creek, 2 and 12% in Bee Creek, and 0 and 17% in Hudson Creek.  At the rural sites, 

between 0 and 12% of the variance in stream spectra was explained by engine oil in 

Wickson Creek and between 6 and 16% in Peach Creek.  In the watersheds with a 

WWTP, engine oil explained between 0 and 9% of the variance in stream spectra in 

Carters Creek and between 2 and 14% in Lick Creek.   
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Isotope analysis 

The values for δ
13

C ranged from -23.5±0.7‰ at Wolf Pen Creek to -26.8±0.5‰ 

at Wickson Creek.  δ
13

C was significantly less at Wickson Creek compared to all other 

sites except Peach Creek (p < 0.001, Figure 20, Table 9).  Percent organic carbon ranged 

from 1.6±2.1% at Carters Creek to 5.8±0.1% at Peach Creek.  There were no significant 

differences for percent organic carbon by site (p = 0.08).  δ
13

C was significantly less at 

rural sites compared to urban and WWTP (p < 0.001, Figure 21).  Percent organic 

carbon was not significantly different between land uses (p = 0.06).   

Percent organic carbon was significantly higher during the June 2 rain event 

compared to all other collection dates except January (p = 0.01, Figure 22).  There were 

no significant differences for δ
13

C based on sampling date.  

 

 

 

Figure 20. Mean δ
13

C ‰ values for streams based on five sampling events. N=5 for all 

sites except Peach Creek, where N=2.  Error bars are standard deviation. Letters indicate 

significant difference. 
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Table 9.  Summary of δ
13

C ‰ and percent organic carbon values for streams.  Letters 

indicate significant differences.   

 

Site N δ
13

C %OC 

Wolf Pen 5 -23.46
b
 1.97

a
 

Peach 2 -25.00
b
 5.83

a
 

Lick 5 -23.50
b
 1.74

a
 

Bee 5 -22.68
ab

 3.97
a
 

Wickson 5 -26.84
a
 3.58

a
 

Hudson 5 -22.82
b
 4.44

a
 

Carters 5 -23.86
b
 1.63

a
 

 

 

 

 

 
 

Figure 21. Mean δ
13

C ‰ values for streams grouped by land use classification. Error 

bars are standard deviation. Letters indicate significant difference. 
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Figure 22. Percent organic carbon in streams grouped by sampling date.  Asterisk 

indicates rain event.  Error bars are standard deviation. Letters indicate significant 

difference. 

 

 

 

Links between DR-NIR spectra and isotope analysis  

 A partial least squares regression (PLSR) was performed using chemometric 

software (Unscrambler, v. 9.8) in order to explore a possible relationship between DR-

NIR spectra and carbon isotope values.  Eighty eight percent of the variance in carbon 

isotope values was explained by stream spectra (Figure 23).  A simple validation model 

was constructed to predict missing carbon isotope values (leave one out cross validation) 

to generate a table of observed and predicted carbon isotope values. The predicted and 

observed values were transferred to a scatter plot and a trend line was added to observe 

the capability of stream water DR-NIR spectra to predict carbon isotope values.  There 

was a strong significant relationship between observed and predicted δ
13

C ‰ values 

(adjusted R
2 

= 0.88; p < 0.001).   

 

 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

April June 2* September November January 

%
 o

rg
an

ic
 c

ar
b

o
n

 



59 

 

  

5
9
 

 
 

Figure 23. Predicted and observed δ
13

C ‰ values.  Predicted values are based on DR-

NIR stream spectra.  

 

 

Vegetation and soil extract chemistry 

 Mean water extractable DOC (WEDOC) in vegetation extracts ranged from 

213±89 mg/L in forests to 800±67 mg/L in pasture.  Concentrations of WEDOC in forest 

and range/shrub scrub vegetation extract was significantly lower than from pasture and 

developed open vegetation (p = 0.004, Figure 24).  

Mean WEDOC in soil solutions ranged from 17±10 mg/L for developed low 

areas to 42±17 mg/L in highly developed regions (Figure 25).  Mean water extractable 

pH ranged from 6.8±0.5 in pasture to 9.3±0.8 in highly developed areas. Mean EC 

ranged from 19±8 μS/cm in range/shrub scrub to 522±582 μS/cm in developed open 

areas.  There were no significant differences in WEDOC, pH, or EC in soil based on 

land use.   
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Figure 24. WEDOC in vegetation extracts.  Three replicates and the mean value are 

shown for each land use.  Error bars are standard deviation.  Letters indicate significant 

difference. 

   

 

   

 

Figure 25. WEDOC in soil extracts.  Three replicates and the mean value are shown for  

each land use.  Error bars are standard deviation. 
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Mean water extractable sodium ranged from 2±0.8 mg/L in pasture to 50±28 

mg/L in developed open areas.  Sodium was significantly higher in developed open areas 

compared to all land uses, except for highly developed regions (p < 0.001, Figure 26).  

Water extractable soil calcium was significantly higher in developed open areas from all 

other land uses (p < 0.001, Figure 27) and ranged from 1±0.17 mg/L for range/shrub 

scrub to 15±7 mg/L in developed open areas.  There was no land use effect on water 

extractable soil potassium and magnesium.  SAR ranged from 0.4±0.1 in pasture to 

3.9±2.1 in developed open areas and was significantly different between these two land 

uses (p = 0.003, Figure 28).   

 

 

 

Figure 26. Mean water extractable soil sodium.  Error bars are standard deviation.  

Letters indicate significant difference. 
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Figure 27. Mean water extractable soil calcium.  Error bars are standard deviation.  

Letters indicate significant difference. 

 

 

 

 

Figure 28. Sodium adsorption ratio (SAR) in soil extracts.  Error bars are standard 

deviation.  Letters indicate significant difference. 
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In most cases, soil chemistry was influenced by land use.  Soil pH, as measured 

in a 1:10 soil:water extract, was highest at developed open and highly developed sites 

(pH 8.9 and 9.3), illustrating the effect of irrigation with tap water high in sodium.  A 

positive correlation was found between pH and water extractable soil sodium (r = 0.43, p 

= 0.04) as well as pH and land use (r = 0.46, p = 0.03).  While there was no significant 

different between land uses, urban sites had a pH of 8.4 compared to a pH of 7.3 in non 

urban sites.  Soil EC was also highest at developed open and highly developed sites (522 

and 105 µS/cm).  No significant difference was recorded among land uses, but urban 

sites had a higher conductivity than non urban sites (188 and 29 µS/cm respectively).  

Urban sites with medium and low intensity of development had much lower 

conductivities (84 and 43 µS/cm), which were more in line with non urban regions.  A 

positive correlation was found between EC and water extractable soil sodium (r = 0.86, p 

< 0.001).  Lower conductivity, along with lower pHs at these same two sites (pH 7.7 and 

7.8), suggests that less intensive irrigation, or even no irrigation at all, may have taken 

place.  Soil pH was significantly higher at urban sites (p = 0.01) while EC was not (p = 

0.10).   

The highest concentrations of water extractable sodium were recorded at highly 

developed and open urban areas.  Open developed areas, typically recreational parks, 

had a significantly higher sodium concentration due to increased inputs of sodium 

through irrigation.  Water extractable soil sodium was significantly higher at urban sites 

(p= 0.01), with an average of 22 mg/L in urban sites, compared to 4 mg/L at non urban 

areas.  Water extractable calcium was significantly higher in urban open areas compared 

to all other land uses.  Water extractable sodium adsorption ratio was highest at urban 

open areas and highly developed sites due to increased concentrations of the sodium ion 

at these locations.  Water extractable soil SAR was significantly higher in urban regions 

compared to non urban regions (2.8 and 1.1, p = 0.002).  Soil SAR was correlated to 

most soil parameters, indicating the importance of sodium relative to calcium and 

magnesium. 
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Water extractable DOC (WEDOC) in soil was highest at highly developed and 

open urban areas, the two locations subjected to the greatest intensity of irrigation with 

high sodium tap water.  Positive correlations were also found between WEDOC and 

water extractable soil sodium (r = 0.50, p = 0.01), WEDOC and pH (r = 0.59, p = 0.002), 

and WEDOC and SAR (r = 0.57, p = 0.03).  While there were no significant differences 

in WEDOC among land uses, there was variation within replicates.  For example, one of 

the developed medium sites has much higher WEDOC values than the other two 

replicates (48 mg/L vs. 16 and 13 mg/L).   

Fates of dissolved organic carbon in rural and urban watersheds 

Stream chemistry 

Dissolved organic carbon in streams can be considered to be a fate of terrestrial, 

or allochthonous, DOC.  Mean annual DOC in stream water ranged from 11±3 mg/L in 

Carters Creek to 31±12 mg/L in Hudson Creek.  DOC concentrations in Lick and Carters 

Creeks were significantly lower than in Bee Creek and Hudson Creek (p < 0.001, Figure 

29).  Urban streams had significantly higher DOC than WWTP streams (p < 0.001, 

Figure 30).   

Mean annual pH varied from 7.8±0.2 in Peach Creek and 7.8±0.4 in Wickson 

Creek to 8.5±0.7 at Wolf Pen Creek and was significantly different between these two 

rural sites and one urban site (p = 0.005, Figure 31).  pH was not significant based on 

land use (p = 0.06), but was significantly higher in the summer and fall compared to 

spring (p < 0.001, Figure 32).  Mean annual EC ranged from 388±185 μS/cm at Peach 

Creek to 1262±632 μS/cm at Wolf Pen Creek and was significantly different between 

these two sites (p < 0.001, Figure 33).  Rural streams had significantly lower EC 

compared to urban and WWTP streams (p < 0.001, Figure 34).  There were no 

significant seasonal effects for DOC or EC, but some sites had increases of DOC in the 

summer and fall (Figure 35).        

Simple stream chemistry measurements, such as pH and conductivity, provide 

valuable context for understanding DOC in streams.  Mean annual pH was significantly 

lower at rural sites, which is likely due little to no irrigation with high sodium tap water 
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in these watersheds.  The higher pH at rural watersheds recorded in summer and fall can 

be attributed to high pH baseflow.  Mean annual EC was significantly lower at Peach 

Creek compared to Wolf Pen Creek.  Again, exposure to high sodium irrigation water is 

the likely culprit as Wolf Pen is a 100% urbanized watershed with a high percentage of 

irrigated recreational parks compared to rural land uses in the Peach Creek watershed.  

Additionally, EC was significantly lower at rural sites compared to both urban and 

WWTP streams.  Irrigation exposure can explain the increased urban EC, while salts 

associated with the water treatment process likely contribute to an increased EC at 

WWTP sites.  While season did not significantly affect EC (p = 0.06), conductivity was 

higher in summer and fall (1039 µs/cm average) compared to winter and spring samples 

(780 µs/cm average), which is also attributable to increased irrigation during the summer 

and fall seasons.  Both pH and EC were significantly lower during rain events due to the 

dilution of salts (p < 0.001).  A positive correlation was found between pH and EC in 

streams (r = 0.61, p < 0.001).   

Streams with WWTPs typically have higher DOC concentrations compared to 

other streams (Westerhoff and Anning 2000).  In my study, mean annual DOC was 

lower in streams with WWTP which may be due to increased processing of carbon by 

microbes used in the treatment process.  The higher DOC seen in urban streams may be 

due to sodium inputs from irrigation with high sodium tap water (Aitkenhead-Peterson et 

al. 2009).  Westerhoff and Anning (2000) showed that urban infrastructure, such as 

reservoirs and impoundments, can support processes that can cause an increase in DOC 

in surface waters through algal growth and atmospheric deposition.  The urban sites in 

my study typically had very low, slow moving flows, which may be functioning 

similarly to ponded water.  This may help to explain the significantly higher DOC seen 

in urban streams.  Variance in surface water DOC was lowest at WWTP sites, likely due 

to consistent effluent inputs.  Previously, stream DOC concentrations have been linked 

to urban open area (Aitkenhead-Peterson et al. 2009).  The DOC concentrations in my 

study did not correlate to any land use.  There was not a significant increase in DOC 

during the fall as is often typical in northern forested regions due to heavy inputs of 
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organic matter from leaf litter (Hongve 1999). Surface water DOC increased slightly in 

summer and fall (average of 18.8 mg/L among all sites compared to 16.4 mg/L in winter 

and spring), but this trend was not significant.    

 

 

 

Figure 29. Mean annual DOC concentrations in streams (mg/L). Error bars are standard 

deviation.  Letters indicate significant difference.  Blue columns are classified as urban, 

red as rural, and green as WWTP. 

   

 

 

Figure 30. Mean annual DOC concentrations in streams (mg/L) grouped by land use 

classification. Error bars are standard deviation.  Letters indicate significant difference.  
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Figure 31. Mean annual pH in streams. Error bars are standard deviation.  Letters 

indicate significant difference.  Blue columns are classified as urban, red as rural, and 

green as WWTP. 

 

 

 

 
 

Figure 32. Mean annual stream pH grouped by season. Error bars are standard deviation.  

Letters indicate significant difference. 
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Figure 33. Mean annual EC (μS/cm) in streams. Error bars are standard deviation.  

Letters indicate significant difference.  Blue columns are classified as urban, red as rural, 

and green as WWTP. 

 

 

 

Figure 34. Mean annual EC (μS/cm) in streams grouped by land use classification. Error 

bars are standard deviation.  Letters indicate significant difference. 
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Figure 35. DOC (mg/L) in streams grouped by season.  Spring was defined as March, 

April, and May, and rest of the seasons are the follow three month periods thereafter.  

Peach Creek was dry throughout the fall season.   

 

 

Biodegradability 

Analysis of the biodegradability of a glucose solution used as a check found that 

inoculant microbes successfully used the DOC available in solution for all incubations 

conducted during this study (vegetation, soil, and stream, Figure 36).    

 

 

 

Figure 36. Biodegradability of glucose solution.  Biodegradability over 90% indicated 

that the inoculants microbe successfully utilized the DOC available in solution.  Error 

bars are standard deviation.  
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Vegetation biodegradability 

Mean BDOC ranged from 34±3% for forests to 75±4% for developed low areas.  

Significant differences for %BDOC in vegetation were recorded between forest, 

wetland, and developed low regions (p < 0.001, Figure 37).   

 

 

 

Figure 37. Percent biodegradable dissolved organic carbon (%BDOC) in vegetation 

extracts.  Three replicates and the mean value are shown for each land use.  Error bars 

are standard deviation.  Letters indicate significant difference. 

 

 

Soil biodegradability 

Values for soil BDOC in the study watersheds ranged from 47±1% in urban 

medium developed regions (composed of mixed warm and cool season grasses and 

associated weeds) to 19±3% in soil under wetlands (Figure 38).  The increased BDOC in 

soils beneath land uses dominated by grass, relative to soils beneath woody species, 

likely reflects a greater proportion of refractory compounds of DOC in forest vegetation. 
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The null hypothesis that there would be no significant differences in soil BDOC based 

on land use (H02b) was not rejected (p = 0.80, .    

 

 

 

Figure 38. Percent biodegradable dissolved organic carbon in soil extracts.  Three 

replicates and the mean value are shown for each land use.  Error bars are standard 

deviation. 

 

 

Stream biodegradability 

Mean annual BDOC ranged from 5±5% in Wolf Pen Creek to 10±7% in 

Wickson Creek.  There were no significant differences in %BDOC among streams 

(Figure 39).  Percent BDOC over the sampling period is shown by site in Figures 40-42.    

The hypothesis that BDOC would be higher in watersheds with less urban land 

use and in watersheds with WWTP due to a younger, more labile, source of DOC (H2) 

was rejected as there were no significant differences in BDOC among streams (p = 0.06, 

).  However, BDOC was highest in rural watersheds (9.7%), followed by 

WWTP watersheds (6.1%), and lastly urban watersheds (5.2%).  It appears that this 

trend in the data may support the hypothesis, which was based on the influence of high 

sodium irrigation water removing refractory compounds adsorped to soil.   
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Figure 39. Mean annual %BDOC concentrations in streams. Error bars are standard 

deviation.  Blue streams are classified as urban, red as rural, and green as WWTP.  Axis 

is set to 100% in order to allow easy comparison to soil and vegetation BDOC figures.  

 

 

 

 

 

Figure 40. Biodegradability in Peach Creek. Samples were collected four out of fourteen 

sampling dates as stream was dry for most of the sample period.  Red line is mean 

annual average %BDOC. Asterisks indicate rain event. 
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Figure 41. Biodegradability in streams shown by month.  Red line is mean annual average %BDOC.  Asterisks indicate rain 

event. Wickson Creek was dry in October and was not sampled.  
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Figure 42. Biodegradability in all streams shown over the sampling period. Asterisks indicate rain event.  

 

0 

10 

20 

30 

40 

50 

60 

March April May* June June 2* July Aug Sept Sept 2* Oct  Nov Dec Jan Feb* 

D
O

C
 m

g/
L 

Wolf Pen Peach Lick Bee Wickson Hudson Carters 



75 

 

   

7
5
 

Soil adsorption 

 Isotherms for urban and non urban sites are shown in Figures 43 and 44.  The 

adsorption coefficient, m, ranged from 0.13±0.13 in pasture to 0.33±0.04 in wetland 

soils (Figure 45).  Higher values for the adsorption coefficient, m, are indicative of a 

better ability to adsorp carbon.  The adsorption coefficient for pasture was significantly 

lower than for developed high and wetland soils (p = 0.006).  Values for the release 

term, b, ranged from 85±41 mg/kg in range/shrub scrub soils to 412±152 mg/kg in 

highly developed areas (Figure 46).  Reactive soils pools (RSP), a measure of the 

amount of DOC that is likely to be leached from soil, varied from 108±53 mg/kg in 

range/shrub scrub to 647±660 mg/kg for developed open areas (Figure 47).  Equilibrium 

values for DOC ranged from 15±2 mg/L in range/shrub scrub soils compared to 49±20 

in highly developed areas (Figure 48).  Percent soil adsorption at the highest input 

concentration ranged from 4±3% in developed open areas to 12±3% in medium 

development regions (Figure 49).  Soil SAR was correlated to most soil parameters 

(Table 10).  Significant positive correlations were found between pH and several soil 

parameters (Table 11).  There were no significant differences for b, RSP, equilibrium 

DOC, or percent adsorption based on land use.       

 

 

 

Figure 43. Initial mass isotherms for urban soil sites. 
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Figure 44. Initial mass isotherms for non urban soil sites. 

 

 

 

 

 

Figure 45. Adsorption coefficient (m) for soils in land use classes.  Three replicates and 

the mean value are shown for each land use. Error bars are standard deviation.  Letters 

indicate significant difference. 
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Figure 46. Release term (b) for soils in land use classes.  Three replicates and the mean 

value are shown for each land use. Error bars are standard deviation. 

 

 

 

 

 

Figure 47. Reactive soil pool (RSP) for soils in land use classes.  Three replicates and 

the mean value are shown for each land use. Error bars are standard deviation. 
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Figure 48. Equilibrium DOC (mg/L) for soils in land use classes. Three replicates and 

the mean value are shown for each land use.  Error bars are standard deviation. 

 

 

 

 

Figure 49. Percent of DOC adsorped to soil based on initial mass isotherm method.  

Three replicates and the mean value are shown for each land use. Error bars are standard 

deviation.  Note different scale compared to %BDOC figures.  
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Table 10. Significant correlations between soil SAR and other soil parameters. 

 pH EC DOC Na
+ 

Land 

use 

m b RSP DOCeq 

r 0.66 0.55 0.57 0.83 0.44 0.51 0.54 0.57 0.53 

p < 0.001 0.001 0.003 <0.001 0.003 0.01 0.01 0.003 0.01 

 

 

Table 11. Significant correlations between soil pH and adsorption parameters. 

 m b RSP DOCeq 

r 0.54 0.70 0.67 0.68 

p 0.01 <0.001 <0.001 <0.001 

 

 

Synthesis of sources and fates of DOC 

 A holistic analysis was conducted to determine the relative importance of each of 

the various processes in the movement of organic carbon through the watershed.  

Percentages were calculated based on proportions of each land use within the watershed 

and summed.  The resulting pie graphs show that carbon moves similarly through all 

watersheds in the study (Figure 50).  Vegetation BDOC was not included in this analysis 

as the process is not as likely to occur in natural systems.   

 Between 31 and 38% of DOC entering the soil is biodegraded by soil microbes 

and either immobilized or mineralized.  Between 5 and 8% of the DOC derived from 

above ground vegetation is retained in soils at a depth of 0-15cm through adsorption to 

soil minerals.  The remainder, between 55 and 64%, runs off to surface waters.  In 

streams, 3-7% of DOC is biodegraded by stream microbes, which leaves a net stream 

DOC between 52-57% of the initial DOC input into the system.   

 

 



 

 

 
8
0
 

 

 

Figure 50. Pie graphs showing how dissolved organic carbon is allocated within each study watershed. 
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DISCUSSION 

 

Much of the earlier work on the sources and fates of DOC in soils and surface 

waters focused on small watersheds with little variation in land use (Moeller et al. 1973; 

Naiman 1982; Downes et al. 1986; Tipping et al. 1988).  Previous questions focused on 

the source and associated molecular structure of DOC (Meyer and O’Hop 1983; David 

and Vance 1991; Aitkenhead et al. 1999).  While some of those questions have been 

answered over the years, such as that wetlands and peat lands provide the major source 

of aquatic DOC (Heikkinen 1994; Aitkenhead et al. 1999; Aitkenhead and McDowell 

2000), more questions have evolved regarding DOC source and fate. 

Recent scientific interest in watersheds with varied land use, particularly those 

with urban regions, has been shown by biogeochemists examining DOC in soils and 

streams (Hook and Yeakley 2005; Williams et al. 2005; Aitkenhead-Peterson et al. 2009; 

Pannkuk et al. 2011; Petrone et al. 2011; Kalscheur et al. 2012; Steele and Aitkenhead-

Peterson 2012a, 2012b).  The largest contributors to DOC in surface water are waste 

water effluent (Westerhoff and Anning 2000; Sickman et al. 2007), stormwater runoff 

especially from urban areas (Hope et al. 2004; Sickman et al. 2007), and more recently, 

soil exposure to water with high sodium concentrations (Green et al. 2008, 2009; 

Aitkenhead-Peterson et al. 2009; Steele and Aitkenhead-Peterson 2012b).  Development 

activities within the watershed are also important, as a study utilizing radiocarbon dating 

in water samples from the Sacramento and San Joaquin Rivers in California suggested 

that DOC losses from soil can continue for decades after the initial disturbance (Sickman 

et al. 2010).  Watersheds with urban land use have a larger proportion of impervious 

surfaces, and therefore the volume of runoff is much higher (Hook and Yeakley 2005), 

causing flashy streams that are prone to stream bank erosion. There are several models to 

assess stormwater quantity and quality, but the models have a great deal of uncertainty 

and limits (Dotto et al. 2012). 

The Soil Conservation Service (SCS) Runoff Curve Number (RCN) Method 

The RCN Method of modeling runoff supported the suggestion that there would 

be greater runoff at more urbanized watersheds due to an increase in impervious surfaces 
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(Hook and Yeakley 2005).  Current land use data would be helpful to determine distinct 

curve numbers for Hudson and Lick Creeks, which had the same composite curve 

number in the analysis for my study.  Based on 2006 land use data, Hudson Creek 

should have more runoff due to greater urban area, and thus impervious surfaces, than 

Lick Creek watershed.  

 It is interesting to note that when there is a very small amount of rain (about 0.25 

inches), the model shows direct runoff.  This may be due to the dominance of HSG 

Group D soils in the region which have a very low infiltration rate and high runoff 

potential (Barfield et al. 1981; NRCS 1986).  Small amounts of rain may initially runoff 

of land surfaces as it is difficult for the water to permeate the soil, particularly after a dry 

spell when soil tends to become hydrophobic.  With a precipitation event of 0.25 inches 

to 0.75 inches, there was very little to no runoff, presumably due to increased rates of 

infiltration into land surfaces as the precipitation has time to soak into the ground or be 

intercepted by vegetation.  From 0.75 inches of precipitation and higher, runoff increases 

directly with precipitation, indicating the start of saturation of permeable surfaces.       

Sources of dissolved organic carbon in rural and urban watersheds 

 Current methods for examining the sources of DOC in watersheds include 

regression analysis, neural networks, and fluorescence.  Regression analysis uses a 

number of watersheds with a range of a certain land use (typically wetlands or peat 

lands) and quantifies DOC by the strength of the relationship with the chosen land use.  

Regression is a popular analytical technique because the method is relatively simple 

(Aitkenhead et al. 1999; Aikenhead-Peterson et al. 2005, 2009).  Regression analysis is 

limited by the fact that there is often a lag in land use data availability, which may be 

significant if the watershed is undergoing land conversion and development.  Co-

correlations between land uses may occur, which complicates the quantification and 

interpretation of DOC concentrations in streamwater (Aitkenhead-Peterson et al. 2009).  

Neural networks can incorporate a large number of variables in an attempt to model 

complex systems (Aitkenhead et al. 2007) and have been used by a number of 

researchers (Clair and Ehrman 1998; Aitkenhead et al. 2007; Kalin and Isik 2010).  
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However, the addition of more variables increases the error within the model, especially 

in small watersheds (Aitkenhead et al. 2007).  The data collection process can be 

cumbersome and time consuming due to the inclusion of numerous variables.  

Fluorescence has been used to track the origin of DOM as from microbes or vegetation 

(McKnight et al. 2001; Hood et al. 2003; Spencer et al. 2010), but it is less helpful in 

understanding the spatial variability of DOC within watersheds.  There is room for 

improvement in methodologies to provide a more comprehensive understanding of 

DOC, especially in watersheds with mixed land uses. The preliminary use of DR-NIR 

and the resulting WSSL models to track sources of DOC in my study suggested that 

there is great potential in using DR-NIR as a tool to model DOC contributions from 

watersheds to streams.  

Diffuse reflectance near infrared spectroscopy 

 The use of DR-NIR spectroscopy to identify non point source inputs of 

particulate matter and seston to surface waters appears to be a promising tool (Sousa et 

al. 2007; Martinez-Carreras et al. 2010).  The resolution or extent of this type of analysis 

is unknown at the larger basin size when examining streams and rivers.  My study 

examined the full spectral signature (415nm to 2440 nm) of watershed source inputs of 

organic material, as well as the spectra of receiving stream waters.  At a larger watershed 

scale, the amount of data input into the WSSL may be too time consuming to collect.  

There is also likely to be a greater heterogeneous mix of source materials which would 

make source tracking of organic material more challenging.  Further work using a nested 

stream approach will be used to test this method in future studies.  It was assumed that 

the method could be used on a regional basis and act as a predictive model for all the 

watersheds in my study, but the difference in geology and irrigation water in the 

Wickson and Peach watersheds and geology in Lick Creek watershed suggested that this 

was not possible.  For example, in early iterations of the model, the tap water signature 

was evident in Wickson Creek stream water.  However, municipal tap water in the 

Wickson Creek watershed has decreased levels of sodium and bicarbonate compared to 

the rest of the B/CS study region.  Therefore, the tap water signature seen for Wickson 
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Creek is unlikely to be an irrigation runoff source.  Instead, it appeared that there was an 

unaccounted source of sodium in the Wickson Creek watershed.  Additionally, most of 

the soil and vegetation samples were taken in the Bee Creek watershed and were aimed 

at representing different land use types rather than collecting samples from each land use 

type from every watershed.  Future work should be watershed specific in order to have 

the greatest accuracy possible.    

Earlier work suggested that streams with a WTTP upstream will have the 

signature of effluent and irrigation runoff during dry seasons, while streams without a 

WWTP will show the signature of only irrigation runoff (Aitkenhead-Peterson et al. 

2009).  However, the effluent signature was seen in all streams, not just those with a 

WWTP in the watershed.  One possible explanation is that some of the effluent samples 

clustered with impervious runoff (group 5) which indicates that in some cases, effluent 

had a different signature that was similar to impervious runoff.  There may be seasonal 

implications involved, as the population of the B/CS region decreases considerably 

during the summers and holidays due to a high student population, which may have 

allowed for a more dilute signature in effluent.  Future studies would benefit from a 

range of impervious runoff samples in regards to surface, flow, and time of collection 

after first flush to better ascertain the relationship between effluent and impervious 

runoff.  It is also possible that the effluent signature may be from failing on-site sewage 

facilities (OSSFs) in the rural regions.  In the Carters Creek watershed alone, 455 OSSFs 

are estimated to exist (Millican and Hauck 2011).  Aging water infrastructure, such as 

cracks in pipes, might also allow for inputs of effluent like material to streams.  While 

there was some correlation between effluent and animal and bird feces (r = 0.38 and r = 

0.50), it is unlikely that the effluent signature would be confused for other fecal material 

in spectra analysis.   

 The amount of variance in stream water chemistry explained by domestic animal 

feces (dog, pigeon, chicken, and cow) and wild animal feces (cliff swallow) was 

unexpected.  Cliff swallows (Petrochelidon pyrrhonota) start building their mud nests on 

homes, businesses, and bridges over streams as early as mid March and migrate back to 
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South America as late as September (Gorenzel and Salmon 2008).  Cliff swallows are 

well known for building nests on bridges in Texas; as expressed in an article in the San 

Angelo Standard-Times, “…if you build a bridge, cliff swallows will come” (Maxwell 

2008).  Cliff swallows live in large colonies with up to several hundreds of pairs at one 

site (Gorenzel and Salmon 2008).  Typically, cliff swallow feces explained slightly more 

variance than any other source input of DOM in stream spectra, suggesting that their 

fecal material either dropped directly into streams from nests under bridges or washed 

off impervious surfaces via irrigation or stormwater.  Cliff swallow fecal material 

contributed considerably to the DOM loading of the study streams and only slightly 

more than other animal feces.  There are high populations of farms animals in Brazos 

County as 2007 estimates included 54,735 cattle, 3,395 horses, 1,461 goats, and 778 

pigs, as well as 74 poultry farms (USDA 2007).  Feral hogs are also present in the 

region, with an extrapolated estimate of 237-509 in Carters Creek watershed, with 

presumably higher numbers in rural watersheds (TCEQ 2011).  Additionally, as of 2011, 

there were an estimated 5,218 dogs and 5,887 cats within the urban portion of Carters 

Creek watershed alone (Millican and Hauck 2011).   Considering the number of animals 

in the region, the high contribution of fecal material to DOC in streams is not surprising.  

The spectral signature for impervious runoff was moderately to highly correlated 

with fecal material (r = 0.64 to 0.68 and r = 0.75 to 0.82), which suggests that fecal 

material in the watershed was carried to streams via irrigation and stormwater runoff.  

Fecal material from wild birds, such as the cliff swallow and the common and great 

tailed grackle (Quiscalus quiscula L. and Quiscalus mexicanu), is ubiquitous in the 

urban watersheds.  The grackles generally roost in large numbers in parking lot trees or 

overhead power lines where their feces fall directly onto impervious surfaces.  Future 

work would benefit from inclusion of grackle feces in the WSSL model.  There are also 

fecal contributions from dog owners who do not pick up after their pets and from feral 

cats in the watershed.  

Most streams showed soil signatures throughout the sampling period, despite the 

exceptional drought.  Considerable construction activities occurred in most watersheds 
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during the sampling period.  The soil signature seen in streams may have been from the 

wind blowing soil particles onto impervious surfaces where the soil could be flushed into 

streams by stormwater.  However, there was no indication of a strong relationship 

between impervious runoff (groups 5 and 12) and soils (groups 10 and 15) used in the 

WSSL models.  It is also possible that rain events caused erosion of the stream channel, 

which may be responsible for the soil signature seen in streams, especially since the 

streams studied are considered flashy.  Soil signatures in stream spectra explained less 

than 10% of the variance seen in urban stream spectra for the most part, but ranged up to 

40% in Wickson Creek, a rural site.  High proportions of pasture in this watershed, 

coupled with the exceptional drought conditions during the sampling period and 

therefore decreased pasture irrigation, could lead to increased soil exposure as vegetation 

dies.  Peach Creek, the other rural site, did not have as great of an influence by soil.  

However, Peach Creek was only sampled four times as it was dry in the rest of the 

sampling period.  Therefore, it is difficult to draw comparisons between the two rural 

sites and future studies would benefit from inclusion of additional rural watersheds to 

have a more robust data set.    

The vegetation signature in the streams varied.  Overall, group 6 explained more 

of the variance in stream spectra than group 8.  Group 6 contained more C3 plant species 

such as trees, shrubs, and cool season grasses with associated weeds, while group 8 had 

a greater proportion of C4 plant species, such as warm season grasses including St. 

Augustine (Stenotaphrum secundatum Walter Kuntze), Bermuda (Cynodon dactylon L. 

Pers), and Centipede (Eremochloa ophiuroides) grasses.  This observation was 

supported by carbon isotope analysis, as stream isotope values reflected C3 vegetation.  

The NaHCO3 signature in streams does not necessarily indicate a direct irrigation 

water source to the stream.  Irrigation water can over splash or runoff to impervious 

surfaces where the water is likely to evaporate quickly on hot impervious surfaces during 

the Texan summer, leaving salts behind.  When a rain event occurs, the salts are carried 

to streams in stormwater.  Accumulated soil sodium is also likely flushed from the soil 

during rain events.  In the rural creeks, baseflow chemistry is likely responsible for the 
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NaHCO3 signature.  Groundwater from both the Cook Mountain formation (Wickson 

Creek) and Manning formation (Peach Creek) is high in sodium bicarbonate, with 

bicarbonate values of 225 mg/L in Cook Mountain formation and 137 mg/L in Manning 

formation (Aitkenhead-Peterson et al. 2011).  Sodium adsorption ratio for the Cook 

Mountain groundwater is 39.9, while SAR is 5.2 for the Manning formation 

(Aitkenhead-Peterson et al. 2011), illustrating the potential source for the high NaHCO3 

water
 
signature seen in rural streams. 

The WSSL models were unable to adequately describe Peach and Wickson 

Creeks, as in most cases a low amount of variance was explained by the WSSL model.  

This was likely due to inadequate sampling of the source materials of organic matter 

within these watersheds.  Sometimes more than 100% of the variance in a stream was 

explained by the WSSL model (for example, at urban sites).  This suggests that samples 

specific to each watershed, rather than regional sampling, should be taken as the WSSL 

database is developed further to create watershed specific WSSLs. 

Isotope analysis 

 Stable carbon isotope analysis can be used to track the source of organic carbon 

from C3 or C4 plants.  Isotopic analysis of stream samples indicated that the δ
13

C values 

represented C3 plants, supporting the findings for source vegetation signature in stream 

spectra using DR-NIR.  The δ
13

C values for all samples averaged -24.1‰ while C3 

plants have a δ
13

C value of -27‰ and a range from -32 to -22‰ (Boutton 1991; Finlay 

and Kendall 2007).  No sites reported a C4 plant signature (-16 to -9‰), which supports 

the findings of other researchers (Schiff et al. 1990; McKnight et al. 2003; Sanderman et 

al. 2009).  However, the three urban sites had the highest δ
13

C values which may be 

reflective of the contribution from C4 grasses within the watersheds.  This may support 

the hypothesis that urban watersheds will show a greater proportion of impervious runoff 

and turfgrass signatures (H1), but further isotope analysis is needed to determine if the 

trend among urban sites is real or an artifact of a small amount of data (N=5 for all sites 

except Peach Creek where N=2).  Additional isotope analysis of ryegrass (Lolium 

perenne L.)  used for overseeding, and St. Augustine grass, as well as surveys of the 



 

  

88 

 

88 
88 

8
8
 

presence of C3 and C4 grasses in the sampling region, would be helpful to determine the 

extent of influence to DOC leaching from these turfgrasses on stream isotope value 

(Steele and Aitkenhead-Peterson 2012a).  Isotope values were negatively correlated to 

highly developed regions, again possibly reflecting the high amounts of C4 grasses 

within the urban regions (r = -0.80, p = 0.03).   

Rural watersheds had significantly lower δ
13

C values, perhaps responsive to the 

forest and shrub scrub vegetation in these regions, while WWTP sites fell in between 

urban and rural streams, which may be due to mixed vegetation or the influence of 

human diet in waste water.  A study examining the effluent of WWTPs in the 

Connecticut and Hudson River watersheds reported an average δ
13

C value of -26‰ 

compared to -24‰ in the B/CS region (Griffith et al. 2009).  Differences between the 

studies may be due to sampling design and frequency, as the Griffith study was based on 

24 samples from 12 WWTP sites with a variety of treatment size compared to 10 

samples in the B/CS region for 2 WWTP sites.  Isotope values at WWTP sites may be 

driven higher than rural sites due to the high prevalence of corn in the human diet, which 

is a C4 plant (Griffith et al. 2009).   

Wickson Creek had a significantly lower δ
13

C value than all sites except Peach 

Creek.  Wickson Creek was observed to have an oily sheen throughout the sampling 

period which may be due to stormwater runoff or illegal dumping upstream.  These 

additions of oil may be responsible for the lower δ
13

C value at Wickson Creek, as oil has 

a δ
13

C value of -30.03‰ (NIST 2012).  Evidence of engine oil in Wickson Creek was 

found using DR-NIR.  Between 2 and 12% of the variance in Wickson Creek spectra 

was explained by engine oil.  The largest rain event in the sampling period (February 

2012) showed 12% of variance explained by engine oil.   

 Percent organic carbon provides a relative measure of the portion of organic 

carbon within a sample.  Percent organic carbon did not vary significantly among sites.  

However, the one rain event analyzed for isotopes (June 2) had a significantly higher 

percent organic carbon compared to all other sampling periods except January.  This is 

reflective of the flushing effect of precipitation as more organic carbon is mobilized 
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during rain events (Chang and Carlson 2005; Hook and Yeakley 2005).  There were no 

differences in δ
13

C based on sampling date.    

Carbon isotope values were able to be predicted from the DR-NIR spectra and 

the resulting cross validation and generation of predicted values were highly and 

significantly related to observed values.  Previously, near infrared spectroscopy has been 

used to predict many constituents such as lignin, cellulose, and total nitrogen in 

vegetation (McLellan et al. 1991; Aitkenhead-Peterson et al. 2006; Albrechtova et al. 

2008) and clay content, sand, carbon, and total nitrogen in soil as well as soil moisture 

(Brunet et al. 2008; Zornoza et al.2008).  Values for R
2
 for soil carbon content reported 

in the literature range 0.88 to 0.98 (Brunet et al. 2008; Zornoza et al. 2008).  Future work 

should include an increased number of stream sites and corresponding isotope analysis 

in order to confirm the predictive relationship seen between stream carbon isotope 

values and DR-NIR stream spectra.   

Vegetation extract chemistry 

 The dominant vegetation of a site will influence DOC concentrations in soil 

solution and ultimately flux to stream systems (Kuiters 1993).  Water extractable DOC 

(WEDOC) was highest at pasture and developed open sites and was significantly greater 

than forest and range/shrub scrub areas.  The differences seen in WEDOC may be 

attributable to differences in the type of vegetation at the sites.  Based on the data in my 

study, grass seems to have higher extractable concentrations of carbon compared to 

shrub vegetation and leaf litter.  A study examining the amount of DOC leached from 

senesced vegetation with solutions with differing SAR found that St. Augustine and 

ryegrass had higher amounts of leaching under all conditions compared to live oak leaf 

litter, riparian litter, and mulch (Steele and Aitkenhead-Peterson 2012a).  An increase in 

SAR from 2 to 30 caused a 37-65% increase in the amount of carbon leached from 

vegetation, which may help to explain the elevated DOC concentrations seen in urban 

sites.  Differences in WEDOC within replicates for each land use may also be attributed 

to differences in vegetation cover.  For example, not every urban open land use (parks) 

had the same grass species.  
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Soil extract chemistry 

Concentrations of WEDOC in soil solution in my study (17-42 mg/L) compared 

well to reported results in the literature (5-50mg/L, McDowell and Wood 1984; Zsolnay 

and Steindl 1991; Herbert and Bertsch 1995).  Variation seen in replicates can be 

attributed to differences in soil chemistry that may be naturally occurring due to 

differences in litter quantity and quality as well as organic matter content of the soil 

(Kalbitz et al. 2000).   

Sodium plays an important role in the solubilization and transport of DOC in 

urban watersheds due to irrigation with municipal tap water that is naturally high in 

sodium and bicarbonate (Aitkenhead-Peterson et al. 2009; Holgate et al. 2011; Pannkuk 

et al. 2011; Steele and Aitkenhead-Peterson 2012 a,b).  It was reported that soil DOC 

concentrations were highest when equilibrated with sodium compared to calcium and 

aluminum (Skyllberg and Magnusson 1995).  The data reported from the soil extract 

solutions in my study support the work done by Skyllberg and Magnusson (1995) under 

forests in Sweden.  

Water extractable calcium was significantly higher in urban open areas compared 

to all other land uses.  However, calcium concentration in municipal tap water is 

relatively low (6 mg/L) compared to in stream concentrations in the B/CS region which 

range from 24 to 77 mg/L (Aitkenhead-Peterson unpublished data).  Additions to soil, 

such as fertilizer, may have increased the levels of calcium in urban open soils (Steele 

and Aitkenhead-Peterson 2012b).  Alternatively, there may be natural variation of 

calcium within soils (Steele and Aitkenhead-Peterson 2012b).   

 A study on urban soils under turfgrass in Texas reported pH values between 7.4-

8.6, EC as 570-4570 µs/cm, and SAR as 0.5-9.7 (Steele and Aitkenhead-Peterson 

2012b).  The data from my study support the work done by Steele and Aitkenhead-

Peterson (2012b) in urban areas across Texas.  pH data from my study (6.8-9.3) had a 

greater range than what was reported by Steele and Aitkenhead-Peterson (2012b), but 

the data were similar.  Conductivity in my study was much lower (19-522 µs/cm), but 

this may be attributed to different methodologies, as Steele and Aitkenhead-Peterson 
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(2012b) used a soil paste extract method while my conductivity data are from soil 

solution extracts.  Sodium adsorption ratio was lower in my study (0.4-3.9), but within 

the range reported previously.   

Fates of dissolved organic carbon in rural and urban watersheds 

DOC biodegradability in vegetation extracts 

Few studies have examined BDOC in vegetation.  Bulk throughfall from a 

northern red oak (Quercus borealis), red maple (Acer rubrum), and paper 

birch (Betula papyrifera) stand in Harvard Forest, Massachusetts, and water extractable 

spruce litter from a 150 year old Norway spruce (Picea abies [L.] Karst.) stand located 

in the Fichtelgebirge of northeast Bavaria, Germany, were examined in a study 

quantifying BDOC in vegetation and soils in USA and Europe (McDowell et al. 2006).   

Spruce litter BDOC averaged 50% while deciduous forest throughfall averaged 35% 

(McDowell et al. 2006).  The percent of DOC lost from St. Augustine grass extract 

during a 76 hour incubation with effluent ranged from 50-59% compared to a range of 

30-53% from leaf litter extract derived from Live Oak (Quercus fusiformis) (McCrary et 

al. in review).  Comparatively, the BDOC for vegetation in my study found forest leaf 

litter averaged 35% and lawn grass, typically composed of a mixture of warm and cool 

season grasses and weeds, averaged 75%.  Forests have lower %BDOC, suggesting that 

carbon from leaf litter may be more refractory. A previous study in forested headwater 

streams in North Carolina reported that 30% of daily DOC exports are from leaf litter 

that has reached streams (Meyer et al. 1998), illustrating the important role of leaf litter 

as a source of DOC. 

DOC biodegradability in soil extracts 

Soil solution BDOC has been reported to range from 16-68% (Zsolnay and 

Steindl 1991; Qualls and Haines 1992; Yano et al. 1998; Andreasson et al. 2009).  

Studies in forests reported 17-45% BDOC under pine and hardwood trees in soil from 

Harvard Forest, Massachusetts (Yano et al. 1998), 27% BDOC in a North Carolina oak 

and hickory forest (Qualls and Haines 1992), and up to 39% BDOC was recorded under 
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beech trees (Andreasson et al. 2009).  A study on German agricultural soils found a soil 

solution BDOC of 16-68% (Zsolnay and Steindl 1991).  

  Values for soil BDOC in my study were similar to previously published values 

(19-47% compared to 16-68%).  One forest site (John Crompton Park) had very high 

BDOC compared to the other two replicates.  However, all three forest sites have similar 

DOC concentrations.  John Crompton Park is located in a residential neighborhood that 

consists of mostly apartments and duplexes.  A small stream runs through the park and 

serves as a stormwater channel during rain events.  As such, the remnant forest within 

the park is exposed to stormwater regularly while the other two forest sites are not.  The 

microbial community at this site may differ due to the frequent exposure to stormwater, 

as differences in soil microbial communities exposed to high sodium irrigation water and 

grey water have been documented (Holgate et al. 2011).   Differences in microbial 

populations would account for differences in decomposition processes and ultimately 

BDOC (Andreasson et al. 2009; Holgate et al. 2011).  Differences in microbial 

communities may also explain the decreased BDOC seen for one replicate within each 

urban land use.   

DOC biodegradability in streams 

Stream biodegradable organic carbon (BDOC) typically ranges from 4-68% 

(Wiegner and Seitzinger 2001; Seitzinger et al. 2005; Wiegner et al. 2006).  Streams 

dominated with agricultural and forest land use were reported to have a BDOC of 6-14% 

(Wiegner and Seitzinger 2001) while values from 4-68% were reported in watersheds 

with mixed land uses in the east coast of the United States (Seitzinger et al. 2005; 

Wiegner et al. 2006).  Stream BDOC in my study was on the low end of the reported 

range.  Variance was very large for BDOC, with standard deviations ranging from 4.7% 

at Lick Creek to 9.9% at Hudson Creek.  Since the glucose control solution was always 

degraded above 90% by the inoculant microbes, the stream BDOC data can be 

considered valid, despite the high variance.  The variance may have been due to 

inconsistent mixing of the stream sample prior to pouring replicates, thus introducing an 

unbalanced range of refractory and labile molecules.  Further work with additional 
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sampling and replication to reduce variability is needed to determine if the pattern of 

decreasing BDOC from urban to rural areas will continue in different watersheds and at 

a statistically significant level. 

The use of sodium bicarbonate in recarbonation for water treatment purposes 

decreases BDOC (Zoungrana et al. 1998).  In a laboratory study, Zoungrana et al. found 

little effect when sodium was raised from 3 mg/L to 40 mg/L, but an “important 

underestimation of BDOC occurred” of 0.4 to 0.6 mg/L when sodium concentration was 

raised to 109 mg/L.  The authors attribute the changes in BDOC to an increase in 

alkalinity, pH, and sodium concentration.  The extremely small increase in BDOC 

described by Zoungrana et al. (1998) due to high sodium would have made little 

difference in the BDOC of my study streams in terms of comparison to other stream 

BDOC studies.  Additional analysis of streams for aromaticity would be helpful to 

understand the extent of refractory compounds in the study streams and confirm the 

reasons for the low BDOC observed.  

Soil adsorption 

 Previous studies have shown that adsorption of DOC can vary based on land use 

and land cover (Nodvin et al. 1986; Moore et al. 1992; Riffaldi et al. 1998).  The null 

hypothesis that adsorption of DOC on soil mineral surfaces is the same regardless of 

land cover (H03) was not rejected (for the B/CS study regionDifferences 

were shown in release based on a t-test comparing land cover of urban or nonurban (p = 

0.04), but differences were not seen for adsorption coefficient m (p = 0.64), RSP (p = 

0.10), DOCeq (p = 0.23), or percent adsorption (p = 0.13).    

 Soil adsorption as measured through the adsorption coefficient, m, was greatest 

in wetlands, followed by highly developed and open urban areas.  The values for m were 

on the lower end compared to those from other studies (Nodvin et al. 1986; Moore et al. 

1992; Riffaldi et al. 1998; Neff and Asner 2001).  Reactive soil pool (RSP), DOC 

release, and DOC equilibrium values were greatest at highly developed and open urban 

areas which have exposure to high sodium irrigation water.  A positive correlation was 

found between water extractable soil sodium and RSP (r = 0.44, p = 0.03).  The range 
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reported for reactive soil pool was within values reported by other studies (Nodvin et al. 

1986; Moore et al. 1992; Riffaldi et al. 1998; Neff and Asner 2001).  Release was 

highest in an urban open area soccer field (782 mg/kg), compared to the maximum 

release of 520 mg/kg reported by Moore et al. (1992) in Canadian soils under forests.  

However, releases up to 780 mg/kg were reported in the A horizon of mollisols (Neff 

and Asner 2001).  Equilibrium DOC (DOCeq) was not significantly different among sites 

but was within the range reported by other studies (Moore et al. 1992; Moore and Matos 

1999).  Additional analyses of clay content, soil organic C, aluminum, and iron would be 

useful in explaining the DOCeq values observed (Moore et al. 1992; Moore and Matos 

1999).  While percent soil adsorption was not significantly different among sites, percent 

adsorption was lower at developed open and pasture areas (4 and 5% respectively) 

compared to an average of 11% at all other sites.  Percent adsorption at one wetland site, 

collected within Lick Creek Park, had a negative percent adsorption due to higher output 

than input values.  This may indicate that the highest concentration used for the Lick 

Creek wetland sample was too concentrated and breached the adsorption maximum 

threshold that caused adsorption to decline.  Percent adsorption at the next highest 

concentration averages to 8%.   

 Exposure to high sodium irrigation water was an important variable in 

determining soil chemical parameters.  While adsorption coefficients were elevated in 

highly developed and urban open areas, release values were also increased which can be 

attributed to exposure to high sodium irrigation water (Aitkenhead-Peterson and Cioce in 

review).  Water extractable soil sodium was found to explain the differences seen in RSP 

(Adj. R
2
= 0.95, p < 0.001) and release (Adj. R

2
 = 0.94, p <0.001) through the use of 

backward multiple regression analysis (Aitkenhead-Peterson and Cioce in review).  

Direct evidence of irrigation was seen at all urban highly developed sites which were 

sampled from grass medians in commercial parking lots.  Two of the urban open sites 

were irrigated (Wolf Pen Creek Park and Central Park), but the soccer field at Austin 

Colony Park was not irrigated, though often exposed to stormwater runoff.  Wolf Pen 

Creek Park was determined to be an outlier due to very low values of release and RSP in 
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addition to water extractable soil sodium as described previously.  A similar trend of 

elevated adsorption coefficient, release, and RSP was seen at one of the urban medium 

sites, which was the only replicate within the urban medium land use that was irrigated.  

Urban medium and low sites had adsorption values similar to pasture, range/shrub scrub, 

and forest soils which indicates that these urban turfgrasses may be lightly managed and 

functioning similarly to native soils in regards to DOC adsorption (Aitkenhead-Peterson 

and Cioce in review).   

Indigenous carbon and the surface area of soil minerals maximize the amount of 

DOC adsorped to soil (Moore et al. 1992; Vance and David 1992; McCraken et al. 

2002).  Exchange sites within the soil at highly developed and urban open areas in my 

study may be saturated with DOC.  It was reported that turfgrass can leach from 4-17% 

of DOC when exposed to irrigation water with SAR values between 2 and 30 (Steele and 

Aitkenhead-Peterson 2012a).  Comparatively, live oak and riparian leaf litter had lower 

carbon losses of 2-4% and 3-4% (Steele and Aitkenhead-Peterson 2012a).  Therefore, 

the high percentage of turfgrass at highly developed and urban open sites, coupled with 

exposure to high sodium irrigation water, may be responsible for increased release of 

DOC due to saturation with organic matter, allowing a greater reactive soil pool to 

develop (Aitkenhead-Peterson and Cioce in review).  A correlation between percent 

DOC adsorped to soil and vegetation extract DOC was found (r = -0.56, p = 0.004), 

indicating the influence vegetation cover has over soil processes.       

High soil solution pH has been shown to decrease DOC adsorption to soil 

minerals (Kalbitz et al. 2000).  Adsorption coefficients for my wetland sites (0.29-0.37) 

were found to be lower than those seen in another study in China (0.56-0.72) on a 

natural wetland and a reclaimed wetland which was converted to agricultural land and 

sampled to a depth of 10 cm (Yu et al. 2010).  These differences may be attributed to 

variation in soil pH, as pH in my study was 1 to 4 units higher than values seen in the Yu 

et al. (2010) study, and increased pH has been shown to decrease adsorption capacity 

(Kalbitz et al. 2000; Aitkenhead-Peterson and Cioce in review).  However, release was 

similar between the two studies, ranging from 145-211 mg/kg in the Yu et al. (2000) 
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study compared to 148-239 mg/kg in my study.  The results from my study however did 

not follow the reported trend of concurrent increases in pH and release of DOC 

(Whitehead et al. 1981; Hay et al. 1985; Tipping and Hurley 1988; Tipping and Woof 

1990; Gödde et al. 1996; Jozefaciuk et al. 1996; Kennedy et al. 1996; Hajnos et al. 1999; 

You et al. 1999).  A number of studies on forests have shown no effect of pH on DOC in 

regards to fluxes including throughfall, forest floor solutions, and percolates (Chapman 

et al. 1995; Liechty et al. 1995; Schaaf et al. 1995; Michalzik and Matzner 1999).  

Kalbitz et al. (2000) have suggested that while there are documented effects of the 

interactions of pH and DOM in the laboratory, the relationship appears to be minor in 

the field.  In my study, a positive correlation between pH and WEDOC was found (r = 

0.59, p = 0.002) as well as positive correlations between pH and m, b, RSP, and DOCeq.   

The adsorption coefficients for forest sites (0.17-0.20) in my study were lower 

than those reported by Moore et al. (1992) in Canadian soils (0.29 to 0.33 for A horizon 

soils) assumed to be under forest cover based on the soil series sampled (Aitkenhead-

Peterson and Cioce in review).  pH values between the studies varied as the Moore et al. 

(1992) study had an average pH of 3.7 compared to 7.4 in my study (Aitkenhead-

Peterson and Cioce in review).  Release values and reactive soil pools between these two 

studies were somewhat similar.  Release ranged from 190-320 mg/kg in A horizon soil 

and RSP was between 270-480 mg/kg in the Moore et al. (1992) study, while release 

values ranged from 62-264 mg/kg and RSP was between 78-324 mg/kg in my study.   

  Tropical rainforests and wetlands are regarded as the most productive 

ecosystems in the world (US EPA 2012c), which may provide similar desirable 

conditions for ideal microbial growth.  Adsorption coefficients from a study in a tropical 

rainforest ranged from 0.37 to 0.57 (Remington et al. 2007), which were higher than the 

forest values in my study, but align more closely with my values for wetlands (0.29-

0.37).  Adsorption coefficients for pasture soils were on the low end of the range 

reported by Riffaldi et al. (1998) (0.11-0.16 compared to 0.09-0.60).  Release values for 

pasture soils were similar between the Riffaldi et al. (1998) and my data (71-260 mg/kg 
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compared to 14-227 mg/kg) as were pasture reactive soil pools (80-310 mg/kg compared 

to 65-377 mg/kg).   

Clay soils, aluminum, and iron are positively correlated to DOC adsorption in 

soils (Moore et al. 1992; Nelson et al. 1993; Kalbitz et al 2000).  These parameters were 

not measured in my study.  However, most of the soil within the study region is 

classified as hydrological soil group (HSG) D, which are categorized as clays with a 

high runoff rate and very low infiltration rate (NRCS 1986).  This may indicate that 

there is potential for increased adsorption within the study region due to the dominance 

of clay soils.  Increased adsorption was not seen in the B/CS region in 2011 compared to 

other studies (Moore et al. 1992; Riffaldi et al. 1998).  However, drought conditions 

during 2011 may have allowed for increased runoff of DOC due to even lower 

infiltration in clay soils.  Clay soils also shrunk as a result of the drought, making soil 

sampling to depths greater than 15 cm near impossible.  

Temporal changes in soil and stream chemistry in rural and urban watersheds 

Temporal changes in soil 

The dominant vegetation of a site is important as the litter quality will influence 

DOC concentrations in soil solution (Kuiters 1993).  Variation in soil microbial 

population and soil structure may also contribute as changes in the microbial community 

were previously documented after exposure to high sodium municipal tap water (Holgate 

et al. 2011).  Soils exposed to high sodium irrigation water had a two to four times 

greater loss of dissolved organic carbon compared to soil irrigated with harvested 

rainwater (Holgate et al. 2011).  Evidence of this process can be seen in the data 

collected at Wolf Pen Creek Park, a developed open site.  Soil in the park had a WEDOC 

concentration of 22 mg/L in 2011 compared to a WEDOC concentration of 30 mg/L in 

2010 (Aitkenhead-Peterson and Cioce in review).  The two soil samples were collected a 

year apart and within 1 m
2
 of each other.  Additionally, water extractable soil sodium 

was 74 mg/L in 2011 compared to 32 mg/L in 2010.  This is a significant increase in soil 

sodium accumulation (two-tail t-test; p < 0.05, Aitkenhead-Peterson and Cioce in 
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review).  At Wolf Pen Creek, it appears that chronic exposure to high sodium irrigation 

water is causing carbon to leach from the soil.     

A different relationship occurred at Central Park, another developed open area.  

Water extractable soil carbon was found to increase at this site.  Soil had a WEDOC 

concentration of 44 mg/L in 2011 compared to 8 mg/L in 2010 (Aitkenhead-Peterson 

unpublished data).  Water extractable soil sodium increased from 5 mg/L in 2010 to 20 

mg/L in 2011 (Aitkenhead-Peterson unpublished data).  A number of other factors, such 

as age of the site, vegetation, and use of fertilizer may introduce carbon into the system 

(Steele and Aitkenhead-Peterson 2012b).   

Irrigation water with SAR greater than 5 was shown to cause a two to three times 

increase in WEDOC in a study examining 33 soils from 26 cities across Texas (Steele 

and Aitkenhead-Peterson 2012b).  Municipal tap water in the region has been recorded 

well over the established threshold of 5 with reported values of 38.5 in 2010 and 45.2 in 

2007 (Aitkenhead-Peterson et al. 2009; Steele and Aitkenhead-Peterson 2012b).  

Increasing carbon and sodium at Central Park is likely due to interactions with high 

sodium irrigation water.  The trend of decreasing carbon and increasing sodium seen at 

Wolf Pen Creek is probably due to a threshold of carbon leaching being reached.  Green 

et al. (2008) discuss a “when-it’s-gone-it’s-gone” theory, arguing that high sodium 

inputs will solubilize DOC and high concentrations of DOC will be leached and 

ultimately lost with continued sodium exposure.  Based on this approach, WEDOC at 

Wolf Pen Creek should continue to decline and carbon at Central Park should eventually 

decline due to increased leaching within the soil.  Additionally, differences in soil 

chemistry seen at these two recreational parks may be due to different irrigation regimes.  

Higher rates of irrigation would increase the intensity of sodium exposure and should 

ultimately accelerate the “when-it’s-gone-it’s-gone” hypothesis.  

Temporal changes in streams 

Mean annual DOC concentrations are helpful to understand the natural 

fluctuation in stream chemistry through the seasons.  Mean annual DOC concentrations 

for my study (March 2011-February 2012) were compared to data collected four years 
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prior on the same streams between March 2007 and February 2008 and limited data 

collected between March 2010 and February 2011 (Table 12; Aitkenhead-Peterson et al. 

2009; Steele and Aitkenhead-Peterson unpublished data).  In all cases, DOC decreased 

over the four year period, ranging from a 3.9% reduction at Peach Creek to 72.2% at 

Wolf Pen Creek. This decrease in DOC from 2007 to 2011 was significant (p = 0.02).  

pH also significantly increased at all sites (p < 0.001), ranging from a 3.8% increase at 

Hudson Creek to 10.1% at Wickson Creek.  The 2010 data mostly follow this decreasing 

trend.  It is important to note that in 2010, Wickson Creek was only sampled 26 times 

due to construction which made the site inaccessible, while all other sites were sampled 

55 times.  The summer months, which would typically have the highest DOC 

concentrations, are not included in the 2010 Wickson Creek data.  Therefore, the 

decrease in DOC seen at Wickson Creek for 2010 is likely an artifact of the incomplete 

data set.  Hudson Creek also had a decrease in DOC for 2010 to 17.6 mg/L relative to 

37.3 mg/L in 2007, but increased in the 2011 study to 30.9 mg/L.  At the same time, pH 

increased to 8.7 in 2010 and dropped to 7.9 in 2011.  It is possible that this is due to 

various land management and development activities within the watershed.  For 

example, Miramont Country Club is situated in the headwaters of Hudson Creek and 

sulfur may be used to lower soil pH on golf course turf (PSU 2003).   

Conductivity increased at all sites except Peach and Bee Creeks, ranging from a 

15.0% increase at Carters Creek to 39.5% increase at Wickson Creek. Conductivity 

decreased at Peach and Bee Creeks, at 54.4% and 6.0% respectively.  It is important to 

note that in the 2011 study, Peach Creek was only sampled 4 times as the site was dry 

for the remaining 10 sampling periods and therefore natural seasonal variation was not 

captured at Peach Creek.  The increase in conductivity was significant if Peach Creek 

data are excluded (p = 0.04).   

Previously, increased concentrations of DOC in surface water have been 

explained by high pH, as humic acids are solubilized at high pH (Stevenson 1994) and a 

strong correlation was reported between DOC and pH in B/CS streams (r = 0.81, p 

<0.01) (Aitkenhead-Peterson et al. 2009).  However, this relationship was not observed 
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in the same region during the 2011 B/CS study (r = -0.19, p = 0.08).  It also does not 

explain the concurrent decreases in DOC and increases in pH seen in data collected for 

my 2011 study relative to values observed in 2007 (Aitkenhead-Peterson et al. 2009) and 

concentrations recorded in 2010 (Steele and Aitkenhead-Peterson unpublished data).   

Environmental conditions were different during the three sampling periods.  

Brazos County was under drought conditions for the entire 2011 study as 88% of the 

sampling period was during “exceptional” drought conditions, the highest intensity of 

drought as defined by the US Drought Monitor, while the remaining 12% was under 

“extreme” drought (Fuchs 2012).  Comparatively, only 12% of the sampling period in 

2007 was during “abnormally dry” conditions, the lowest drought ranking (Fuchs 2012).  

In 2010, 54% of the sampling period was under some degree of drought (Fuchs 2012).     

Precipitation may help explain differences seen in stream DOC concentrations as 

DOC has been shown to have a positive relationship with flow (Meyer and Tate 1983; 

Correll et al. 2001; Chang and Carlson 2005; Hook and Yeakley 2005).  Precipitation in 

the region was slightly above average at 1062 mm during the 2007 sampling period 

compared to 650 mm in 2011 and 745 mm in 2010, which may support lower DOC 

concentrations in 2011 and 2010 (Aitkenhead-Peterson et al. 2011; NOAA 2012).  While 

changes in flow have been shown to explain 20-45% of variance seen in surface water 

DOC (Hope et al. 1997), there was no significant relationship between stream DOC and 

rain events in my study.  However, mandatory water restrictions were not imposed in the 

B/CS region, which may have resulted in more intense irrigation and sodium deposition 

in soils at some sites.   

Changes in precipitation patterns may explain the increases in pH and EC as 

these parameters have shown to be negatively correlated to stream flow due to the 

concentration of salts (Wang and Yin 1997).  Both WWTP sites had a decrease in DOC 

over the four year period.  Annual discharge records from 2007-2010 indicate that Lick 

Creek WWTP has steadily increased the amount of discharge over the four years (US 

EPA 2012b), while Burton Creek WWTP shows a slight decrease in discharge (Figure 

51, US EPA 2012a).  Increases in flow from WWTPs would typically increase DOC in 
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receiving streams, however, the opposite was reported at Lick Creek which had an 18% 

increase in discharge.  This may be due to the influence of sodium, as described below.  

The slight 4% decrease seen in Burton WWTP discharges over four years would support 

the decrease in DOC seen in Carter Creek.  It is important to note that discharge data 

from the WWTPs are not yet publically available for 2011 and flow values may be 

different due to the exceptional drought seen in 2011.  

Exposure to chronic additions of sodium from deicing salts was shown to cause a 

loss of carbon from soil in Great Britain (Green et al. 2008, 2009).  Irrigation with high 

sodium tap water may also be reducing carbon in soils, thereby decreasing the amount of 

carbon available to be transported to surface waters.  Sodium additions, coupled with a 

decrease in flow due to drought conditions, may explain the losses seen in surface water 

DOC and the increases in pH and EC from 2007 to 2011.  Previously, DOC 

concentrations in stream water were linked to SAR (Aitkenhead-Peterson et al. 2009).  

However, this relationship did not hold for the 2011 study (p = 0.69).   

 

 

   

Figure 51. Changes in annual flow (MGD) for Burton and Lick WWTP.  2010 is 

the most recently available data.  Data is from the U.S.EPA’s Enforcement and 

Compliance History Online (ECHO).  
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Table 12. Mean annual DOC (mg/L), pH, and EC (µs/cm) for the current study data collected from March 2011-February 

2012, unpublished data collected from March 2010-February 2011 (Steele and Aitkenhead-Peterson), and data collected from 

March 2007-February 2008 (Aitkenhead-Peterson et al. 2009).  Percent change in mean annual DOC, pH, and EC over four 

years (2007 to 2011) is shown.  

 

DOC mg/L pH EC µs/cm 

Stream 

Current 

study      

2011 

Steele and 

Aitkenhead-

Peterson 

Unpublished 

data 2010 

Aitkenhead-

Peterson et 

al. 2009 

Percent 

change 

Current 

study      

2011 

Steele and 

Aitkenhead-

Peterson 

Unpublished 

data 2010 

Aitkenhead-

Peterson et 

al. 2009 

Percent 

change 

Current 

study      

2011 

Steele and 

Aitkenhead-

Peterson 

Unpublished 

data 2010 

Aitkenhead-

Peterson et 

al. 2009 

Percent 

change 

Wolf 

Pen 14.6 14.0 52.5 -72.2 8.5 8.6 8.1 4.4 1262 1406 1005 20.4 

Peach 19.6   20.4 -3.9 7.8   7.4 4.9 388   851 -54.4 

Lick 11.6   32.2
+
 -64.1 8.0   7.7

&
 4.2 994   950

&
 4.4 

Bee 21.2   31.5 -32.7 7.9   7.6 4.3 766   815 -6.0 

Wickson 15.5 11.8* 20.5 -24.3 7.8 8.3* 7.0 10.1 609 645* 368 39.5 

Hudson 30.9 17.6 37.3 -17.1 7.9 8.7 7.6 3.8 950 840 619 34.9 

Carters 11.4 11.5 38.6 -70.4 8.1 8.4 7.7 5.2 1082 977 919 15.0 

 

 
+
 Lick Creek data is unpublished and did not appear in Aitkenhead-Peterson et al. 2009.  

&
 Lick Creek data was published in Aitkenhead-Peterson et al. 2011. 

*Wickson Creek data is based on half as many samples as other sites due to construction and site inaccessibility.
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Urban open area was correlated to stream DOC concentrations (Aitkenhead-

Peterson et al. 2009) in some of the same watersheds used in the 2011 B/CS study.  Land 

use did not explain the stream DOC concentrations in my study.  This may be due to the 

decreases seen in DOC concentration over the last four years as described above.  

Decreases in DOC concentration may be due to increased levels of soil sodium in some 

of the urban open area sites.  Land use data used in my study were from 2006, which is 

the most recently available version.  The land use data were “ground-truthed” as much as 

possible, but it is likely that recent developments may not be fully captured in the data.  

Additionally, the land use data is processed by USGS at a regional scale and only 

captures features larger than one acre (0.004km
2
) (MRLC 2011).  A number of important 

changes in the landscape may have been missed, such as small patches of remnant forest, 

shrub scrub, or riparian areas, which could be of great importance for understanding the 

processing of carbon.  Additionally, measuring the proportion of humic and fulvic acids 

in future studies would be valuable in determining how fractions of DOC move between 

pools. 

Synthesis of sources and fates of dissolved organic carbon in rural and urban watersheds 

 Vegetation plays an important role in regulating DOC in soil solutions as 

vegetation cover determines the quality of plant debris available as a source of DOC 

(Kuiters 1993).  Vegetation inputs are also sources of DOC directly to streams through 

litter deposits (Bernhardt and McDowell 2008; Steele and Aitkenhead-Peterson et al. 

2012a).  Vegetation BDOC was analyzed for these reasons.  Vegetation extracts had the 

least variation of any matrix analyzed for BDOC.  Variance in BDOC increased as DOC 

moved through the watershed, with more variance in soils, and the greatest variance was 

observed in streams.  This may be due to a large labile portion of DOC being 

biodegraded before reaching waterways.  Alternatively, the solubilization of humic acids 

in soil may have provided a more refractory form of DOC in streams which is resistant 

to microbial breakdown.  The strong vegetation signature quantified by DR-NIR seen in 

almost all streams suggests that perhaps more refractory compounds from vegetation 
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were present in streams.  The data support this, as BDOC decreases through the 

watershed from an average of 63% in vegetation, 32% in soils, and 6% in streams.   

 The holistic analysis revealed that stream BDOC is similar among all sites, but 

slightly higher in rural watersheds.  This may be due to a more diverse microbial 

population at these sites, which have less impact from anthropogenic development, as 

well as different sources of irrigation water that vary somewhat from the irrigation water 

chemistry in the rest of the study region.  The relative proportion of soil adsorption of 

DOC (retention) was similar in all watersheds, which suggests that land use does not 

have an important influence on soil adsorption of DOC.  However, analysis of the 

adsorption terms found that soils in urban regions are compromised in their ability to 

retain DOC relative to shrub scrub land use (Aitkenhead-Peterson and Cioce in review).  

In this case, the relative analysis may not show the small, but important, differences in 

soil adsorption terms.  Soil BDOC was lower in rural watersheds compared to urban and 

WWTP sites, probably due to differences in microbial populations.  Microbial 

community composition has been shown to be affected by differences in irrigation water 

chemistries such as harvested, grey, and municipal tap waters (Holgate et al. 2011).  In 

all watersheds, greater than 50% of carbon enters the stream based on the holistic 

synthesis.  This is confirmed by DR-NIR analysis of the spectral signatures where 

between 20% (Wickson) and up to 100% (other streams) of the variance in stream 

spectral signature is explained by source groups of DOC within the watershed.  The 

holistic analysis was also based on 2006 land use data (the most recently available) and 

considerable changes in land use probably occurred between 2006 and the sampling 

period, which are not reflected in the analysis.      

Humic acids are typically thought to be more refractory due to their relatively 

high molecular weight compared to lighter fulvic acids (Tate 1987).  Humic acids are 

also more soluble in higher pH conditions, while fulvic acids are soluble under all pH 

regimes (Stevenson 1994).  In contrast, Boyer and Groffman (1996) reported that humic 

acids were more bioavailable than fulvic acids in agricultural and forest soils.  It has also 

been suggested that hydrophobicity is a more important control of organic matter rather 
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than its molecular weight (Piccolo 1998).  This is based on a theory that humic acids are 

combinations of small molecules, rather than macromolecules.  Piccolo (1998) argued 

that framing DOM bioavailability based on molecular weight is not appropriate.  

 It has been suggested that DOC might accumulate in upper soils during low 

flows and be mobilized to streams during high flows (Boyer et al. 1996).  The streams in 

the study region are flashy and have large changes in flow due to stormwater runoff. 

This suggests that DOC inputs to waterways may be from discrete events, rather than 

continuous inputs over time.  Other studies have shown the length of soil dryness, 

ambient temperature, and the fluxes of water are positively correlated to the 

concentration of DOC released from soil after a dry period (Chittleborough et al. 1992; 

Tipping et al. 1999).  However, a relationship was not found between DOC in rain 

events and dry periods.  It is possible that the first flush from land surfaces was missed 

due to a lag in sampling after the rain event and increases in DOC were not captured.  

Flow was not measured in my study and USGS gauge data is not available in the region.  

It is typically thought that soil adsorption of DOC plays a greater role than 

decomposition in reducing DOC concentrations in soil (Kalbtiz et al. 2000).  Soil BDOC 

averaged to 35% based on land use, while soil adsorption averaged to 7% in the holistic 

analysis.  The possible saturation of highly developed and urban open soils for DOC and 

drought conditions resulting in decreased soil infiltration may be contributing to lower 

adsorption than possible in the urban and rural watersheds studies.   

This study also illustrates the impacts of high sodium inputs on the movement of 

organic carbon through the ecosystem.  The use of high sodium irrigation water was 

intensified by drought conditions as there was less precipitation input to dilute the 

concentration of sodium, which caused increases in pH and EC.  The data indicated that 

high sodium irrigation water may be reducing carbon in soils, thereby decreasing the 

amount of carbon available to be transported to surface waters.  Sodium additions, 

coupled with a decrease in flow due to drought conditions, may explain the losses seen 

in surface water DOC and the increases in pH and EC from 2007 to 2011.  Green et al. 

(2008) discuss a “when-it’s-gone-it’s-gone” theory, and argued that high sodium inputs 
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will cause DOC to become more soluble, but high concentrations of DOC will be 

leached and ultimately lost with continued sodium exposure.  High sodium inputs may 

also alter the microbial populations in soil, therefore altering processing potential.  

Sodium also affected soil adsorption as water extractable soil sodium was 

correlated to both RSP and release of DOC.  The increased percentage of turfgrass at 

highly developed and urban open sites, coupled with exposure to high sodium irrigation 

water, may be responsible for increased release of DOC due to saturation with organic 

matter, allowing a greater reactive soil pool to develop.  Impacts can also been seen in 

the environmental service of carbon sequestration in soil, as soil carbon is more likely to 

be sequestered under urban turfgrass compared to agricultural soils with conventional 

tillage (Morgan et al. 2010).  High sodium irrigation water may pose a greater risk of 

leaching of sequestered carbon (Steele and Aitkenhead-Peterson 2012b).  It was also 

suggested that soils high in sodium could function as a nonpoint source of carbon and 

other nutrients to surface waters (Steele and Aitkenhead-Peterson 2012b).  Management 

strategies, such as total irrigated area and irrigation rates, and soil structure, such as 

impermeable layers which could cause subsurface lateral flow, could also influence the 

movement of carbon as a result of high sodium inputs (Steele and Aitkenhead-Peterson 

2012b).  As shown, sodium is a major driver and control on the movement of DOC in 

the study region.    

Limitations to study 

Further DR-NIR analysis using the WSSL should strive to collect source 

materials of DOM that are watershed specific.  Grackle feces, as well as more 

impervious runoff samples, should be incorporated into the WSSL to provide more 

accurate results.  A survey of the distribution of C3 and C4 grasses in the study area 

would also be useful to understand the role these types of vegetation play in DOC 

leaching from soil and corresponding stream isotope values.  All analyses would benefit 

from the inclusion of additional rural watersheds in the dataset, since one of the two 

rural watersheds was dry for the majority of the sampling period and it was difficult to 

draw comparisons and conclusions.   
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Changes in sampling design may be beneficial for future studies.  Soil and 

vegetation samples were taken over four different sampling periods, from June 2011 to 

January 2012.  An increase in soil DOC due to rewetting after dry periods has been well 

documented (McDowell and Wood 1984; Zabowski and Ugolini 1990; Haynes and 

Swift 1991; Chittleborough et al. 1992; Kalbitz and Knappe 1997; Lundquist et al. 1999; 

Tipping et al. 1999; Zsolnay et al. 1999).  This phenomenon may have contributed to 

variance in the samples, especially because most of the sampling period was during 

exceptional drought.  Soil moisture conditions may have changed among soil sampling 

periods.  Future studies would benefit from collecting samples within a single sampling 

period to limit influences from soil moisture, changes in microbial community, and 

seasonality, especially for vegetation.  Additionally analyses of percent clay and 

aluminum and iron content would be useful for delineating trends in the adsorption study 

and allowing for better comparison with other research.  

Lastly, analysis of aromaticity and the proportion of humic and fulvic acids in 

streams would help to answer questions about how DOC moves through the watershed 

and the extent of refractory DOC present in the study region. 
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CONCLUSIONS 

 

The first null hypothesis (H01) that the source of DOC in each watershed would 

be the same regardless of land cover and land use was not rejected.  Limited isotope 

data, combined with preliminary WSSL models, did not generate enough data to 

conclusively reject this hypothesis.  Isotope data did show significantly different carbon 

isotope values at rural sites compared to urban and WWTP streams (p <0.001, = 

0.05Isotope data might also suggest that urban watersheds will show a greater 

proportion of impervious runoff and turfgrass signatures as the urban sites had the 

highest δ
13

C values, which may be reflective of high amounts of C4 grasses within the 

watersheds.  This is complicated by the fact that C3 and C4 plants have shown different 

levels of DOC leaching when exposed to high sodium water, and two of the common 

turfgrasses in the region seem to leach carbon differently (Steele and Aitkenhead-

Peterson et al. 2012a).  The WSSL models are challenging to interpret for this 

hypothesis as the models were designed subjectively.  The 100% stacked column 

figures, which give a relative sense of source material contribution in each watershed 

over the sampling period, show variety in source over time, but there are not any obvious 

differences in urban streams compared to rural and WWTP sites.  

The second null hypothesis was split into two parts.  The first hypothesis, that 

there would be no significant difference in stream BDOC according to land use (H02a), 

was not rejected. Biodegradable BDOC was not found to be higher in watersheds with 

less urban land use and in watersheds with WWTP due to a young, more labile, source 

of DOC as initially thought.  No significant difference in BDOC in streams was reported 

(p = 0.06, = 0.01though BDOC did increase from urban to rural watersheds.  

Additional analyses are needed to determine if this trend is valid.  The second 

hypothesis, that there would be no significant difference in soil BDOC based on land use 

(H02b) was not rejected (p=0.80, = 0.05.  There were no significant differences in soil 

BDOC based on land use.  
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The third null hypothesis that adsorption of DOC on soil mineral surface is the 

same regardless of land cover (H03) was not rejected (= 0.01While differences were 

shown based on the release term (b, p = 0.04), no differences were seen based on the 

adsorption coefficient (m, p = 0.64), RSP (p = 0.10), DOCeq (p = 0.23), or percent 

adsorption (p = 0.13).     

 Based on the hypotheses outlined above, useful trends for future studies or land 

use management were seen in regards to the sources and fates of DOC in rural and urban 

watersheds: 

1. Stream spectra may be able to predict carbon isotope values in streams.  

Regression analysis found an adjusted R
2
 of 0.88 for predicted δ

13
C ‰ values 

based on DR-NIR stream spectra compared with observed δ
13

C ‰ values.  

Additional analysis is needed to confirm this observation. 

2. Preliminary WSSL models seem promising as a method to examine the source of 

carbon in streams, but further work is needed to develop watershed specific 

WSSLs based on source inputs of organic material within the watershed of 

interest.  Cliff swallows had a considerable impact on DOM loading in B/CS 

streams.  

3. Concentrations of DOC in B/CS streams decreased between 2007 and 2011, 

while pH and EC increased.  Additions of sodium from high sodium irrigation 

tap water, combined with decreased precipitation during the exceptional drought 

in 2011, may have caused decreased carbon in soils following the “when it’s 

gone it’s gone hypothesis” which is also supported by recent work that SAR 

values greater than 5 will increase the amount of DOC leaching from soils. These 

factors act to decrease the amount of carbon that can be transported to surface 

waters.  

4. Biodegradable DOC was low in streams, which is likely due to DOC being 

present in streams in refractory forms that are resistant to microbial breakdown, 

as the labile portion of DOC is degraded before reaching waterways.  The data 
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support this, as BDOC decreases through the watershed from an average of 63% 

in vegetation, to 32% in soils, and 6% in streams. 

5. Soil chemistry, including soil adsorption, was greatly influenced by sodium.  

Water extractable soil sodium was correlated to both RSP and release of DOC, as 

well as Mg, Ca, SAR, pH, EC, and water extractable DOC.  The elevated 

adsorption coefficients and release values seen in highly developed and urban 

open areas can be attributed to frequent exposure to high sodium irrigation water.  
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APPENDIX A 

 

MEAN WATER CHEMISTRY DATA AND STANDARD DEVIATIONS FOR 

STREAM SAMPLES COLLECTED BETWEEN  

MARCH 2011 AND FEBRUARY 2012. 

 

Date Site DOC % BDOC pH EC 

  

mg/L 

  

µS/cm 

3/4/2011 Bee 12±2 13±2 7.8 794 

4/11/2011 Bee 23±2 4±7 8.3 1282 

5/13/2011 Bee 22±1 3±6 7.1 490 

6/8/2011 Bee 21±1 2±3 8.2 793 

6/22/2011 Bee 19±0 8±9 7.9 178 

7/1/2011 Bee 23±2 1±2 8.0 858 

8/2/2011 Bee 29±3 5±6 8.4 1578 

9/6/2011 Bee 40±1 10±4 8.1 1087 

9/19/2011 Bee 18±0 12±3 7.9 358 

10/5/2011 Bee 20±2 0 8.3 830 

11/10/2011 Bee 22±1 0 8.0 859 

12/3/2011 Bee 21±0 0 8.0 608 

1/16/2012 Bee 16±1 5±8 7.1 574 

2/6/2012 Bee 12±0 9±2 7.9 439 

3/4/2011 Carters 12±0 19±3 7.8 1051 

4/11/2011 Carters 10±0 6±2 7.8 1354 

5/13/2011 Carters 16±2 1±1 7.7 692 

6/8/2011 Carters 11±0 13±8 8.3 1323 

6/22/2011 Carters 17±1 14±9 8.0 333 

7/1/2011 Carters 8±0 2±2 8.2 1487 

8/2/2011 Carters 9±2 11±16 8.2 1455 

9/6/2011 Carters 10±0 23±15 8.2 1427 

9/19/2011 Carters 17±1 1±1 8.2 521 

10/5/2011 Carters 8±2 2±4 8.5 1368 

11/10/2011 Carters 8±2 0 8.8 1061 

12/3/2011 Carters 11±2 8±13 8.1 1290 

1/16/2012 Carters 10±2 7±2 8.0 1308 

2/6/2012 Carters 12±0 6±3 7.9 473 

3/4/2011 Hudson 21±2 0 8.0 651 
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4/11/2011 Hudson 18±1 4±2 8.1 976 

5/13/2011 Hudson 28±1 20±17 7.6 820 

6/8/2011 Hudson 30±1 0 7.7 1009 

6/22/2011 Hudson 36±5 0 7.9 440 

7/1/2011 Hudson 34±2 1±2 8.1 1277 

8/2/2011 Hudson 52±4 2±4 8.5 1818 

9/6/2011 Hudson 46±3 1±1 8.4 1500 

9/19/2011 Hudson 42±0 5±7 8.1 768 

10/5/2011 Hudson 34±4 0 7.7 1467 

11/10/2011 Hudson 19±2 2±3 8.1 766 

12/3/2011 Hudson 18±3 35±12 8.1 788 

1/16/2012 Hudson 43±1 2±3 6.5 701 

2/6/2012 Hudson 13±0 1±1 7.9 321 

3/4/2011 Lick 10±0 0 7.9 908 

4/11/2011 Lick 10±0 10±12 7.5 1238 

5/13/2011 Lick 19±1 4±3 7.1 407 

6/8/2011 Lick 8±0 7±9 8.2 1324 

6/22/2011 Lick 17±0 0 7.8 437 

7/1/2011 Lick 8±0 1±1 8.0 1206 

8/2/2011 Lick 8±1 0.4±0 8.4 1340 

9/6/2011 Lick 9±1 6±9 8.4 1236 

9/19/2011 Lick 15±0 6±10 7.8 1230 

10/5/2011 Lick 8±2 2±4 8.6 1222 

11/10/2011 Lick 15±2 1±2 8.1 835 

12/3/2011 Lick 15±0 16±4 8.2 973 

1/16/2012 Lick 10±1 4±4.7 8.6 1057 

2/6/2012 Lick 12±0 10±5 8.0 506 

3/4/2011 Peach 31±2 0 7.6 634 

4/11/2011 Peach dry dry dry dry 

5/13/2011 Peach dry dry dry dry 

6/8/2011 Peach dry dry dry dry 

6/22/2011 Peach 15±1 15±3 7.7 197 

7/1/2011 Peach dry dry dry dry 

8/2/2011 Peach dry dry dry dry 

9/6/2011 Peach dry dry dry dry 

9/19/2011 Peach dry dry dry dry 

10/5/2011 Peach dry dry dry dry 

11/10/2011 Peach dry dry dry dry 
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12/3/2011 Peach Dry dry dry dry 

1/16/2012 Peach 20±5 10±4 7.9 405 

2/6/2012 Peach 13±1 7±1 7.9 315 

3/4/2011 Wickson 17±2 21±2 7.7 308 

4/11/2011 Wickson 18±1 11±2 7.7 561 

5/13/2011 Wickson 15±1 6±2 7.1 722 

6/8/2011 Wickson 9±1 2±1 8.5 895 

6/22/2011 Wickson 12±0 8±10 7.7 840 

7/1/2011 Wickson 17±1 6±2 7.4 548 

8/2/2011 Wickson 18±1 9±7 7.6 637 

9/6/2011 Wickson 17±1 6±5 8.0 682 

9/19/2011 Wickson 21±0 19±5 7.8 748 

10/5/2011 Wickson Dry dry dry dry 

11/10/2011 Wickson 17±1 2±4 7.8 677 

12/3/2011 Wickson 16±1 21±19 7.8 783 

1/16/2012 Wickson 15±1 8±1 8.3 373 

2/6/2012 Wickson 11±0 13±6 8.1 139 

3/4/2011 Wolf Pen 8±1 0 7.9 1205 

4/11/2011 Wolf Pen 17±4 16±12 8.8 1180 

5/13/2011 Wolf Pen 17±1 0.4±1 6.8 387 

6/8/2011 Wolf Pen 17±2 5±9 9.0 1614 

6/22/2011 Wolf Pen 19±2 0 7.9 199 

7/1/2011 Wolf Pen 12±3 10±17 9.3 2080 

8/2/2011 Wolf Pen 12±2 5±8 9.1 1677 

9/6/2011 Wolf Pen 16±1 0 8.9 1990 

9/19/2011 Wolf Pen 16±1 6±5 8.4 333 

10/5/2011 Wolf Pen 10±3 0 9.0 1839 

11/10/2011 Wolf Pen 15±3 9±16 8.9 1491 

12/3/2011 Wolf Pen 20±1 4±5 8.4 1559 

1/16/2012 Wolf Pen 15±4 0 8.5 1487 

2/6/2012 Wolf Pen 13±1 12±7 7.8 626 
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APPENDIX B 

 

MEAN SOIL CHEMISTRY DATA AND STANDARD DEVIATIONS. 

 

Land use 

classification Site 

Soil:Solution 

ratio Soil  DDW pH EC Na
+
 K

+
 Ca

2+
 Mg

2+
 SAR 

   

g g 

 

µS/cm mg/L mg/L mg/L mg/L 

 
Developed High Post Oak Mall  10.0 9.1 90.3 10.0±0.2 114±88 20±2 6±1 6±1 1±0 3.3±0.1 

Developed High College Station Target 10.0 9.0 90.1 8.4±0.4 62±21 12±0 4±1 2±1 0.2±0 3.6±0.6 

Developed High Bryan HEB 9.9 9.1 90.4 9.5±0.2 138±3 30±1 1±0.2 7±0 0.8±0 4.1±0.2 

Developed Medium 908A Azalea 10.0 9.1 90.6 7.5±0.3 150±14 5±0 3±1 9±3 2±1 0.6±0.1 

Developed Medium Woodsman Dr 10.0 9.1 90.4 8.3±0 48±3 10±0 12±1 5±1 0.7±0 1.4±0 

Developed Medium Renaissance Park Apts 10.0 9.1 90.6 7.6±0.3 53±12 10±0 5±1 2±0 0.3±0 2.4±0.1 

Developed Low 800 Marion Pugh 9.9 9.1 90.1 7.5±0.2 37±3 6±2 3±0 2±0 0.3±0 1.5±0.4 

Developed Low Lawyer St 9.9 9.1 90.1 8.0±0.1 44±2 5±2 2±1 3±0 0.4±0.7 1.1±0.2 

Developed Low Haines St 10.0 9.1 90.3 7.6±0 50±4 11±5 2±1 2±1 0.3±0.1 3.7±2.9 

Developed Open Central Park 9.9 9.1 90.7 9.2±0 76±6 20±2 2±1 8±1 1±0.1 2.5±0.1 

Developed Open Wolf Pen Creek Park 10.0 9.0 90.4 7.2±0.2 1181±14 74±2 3±0 23±2 7±0.1 4.9±0.1 

Developed Open 

Austin Colony soccer 

field  9.8 9.2 90.4 10.2±0.2 309±5 58±16 4±2 14±0 2±0.2 5.4±1.1 

Forest John Crompton Park 9.8 9.2 90.7 8.0±0.5 26±7 6±3 5±1 3±1 0.4±0.2 1.3±0.3 

Forest Lick Creek Park 10.0 9.1 90.6 6.7±0.1 58±59 7±0 5±6 2±0 0.5±0 1.7±0.1 

Forest Kathy Fleming   9.9 9.2 90.4 7.5±0.2 45±1 1±0 3±0 5±0 0.9±0 0.1±0 

Pasture Kathy Fleming 9.9 9.2 90.4 6.8±0.2 39±19 2±1 4±2 5±3 0.5±0.2 0.3±0.2 

Pasture Wilcox Rd  9.8 9.2 90.5 7.3±0.1 27±7 1±0 2±0 2±0 0.3±0.2 0.3±0 
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Pasture N Country Estates  9.9 9.1 90.4 6.2±0.1 22±1 3±3 4±2 2±1 0.4±0 0.6±0.5 

Range/SS 

Briarcrest and 

Woodcrest 9.9 9.1 90.4 9.3±0.2 23±4 7±0 1±0 1±0 0.2±0 2.6±0 

Range/SS Old Ti Rd 9.9 9.2 91.3 6.5±0 9±5 1±0 3±1 1±0 0.1±0 0.4±0.4 

Range/SS Miramont 9.8 9.1 90.2 6.5±0 24±4 3±0 2±1 1±0 0.1±0 0.9±0.1 

Wetland Copperfield  10.0 9.1 90.4 8.6±0.7 6±3 10±2 13±12 3±1 0.5±0.2 3.0±0.9 

Wetland Austin Colony Park 9.9 9.2 90.5 7.4±0.2 43±11 6±0 2±0 5±0.5 0.6±0 1.0±0.1 

Wetland Lick Creek Park 9.9 9.1 90.5 6.8±0.5 25±4 5±3 10±8 2±1 0.3±0.1 1.2±0.5 
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APPENDIX C 

 

 SOIL AND VEGETATION DOC AND % BDOC 

 

Land use 

classification Site 

WEDOC 

 Soil % BDOC 

WEDOC 

vegetation % BDOC 

  

mg/L Soil mg/L vegetation 

Developed High Post Oak Mall  55±4 5±3 334±4 73±2 

Developed High College Station Target 23±1 29±16 498±6 73±2 

Developed High Bryan HEB 48±1 23±5 538±8 71±1 

Developed Medium 908A Azalea 16±1 15±2 345±7 66±1 

Developed Medium Woodsman Dr 13±1 61±1 617±5 69±2 

Developed Medium Renaissance Park Apts 49±3 64±1 861±10 74±1 

Developed Low 800 Marion Pugh 28±1 49±3 963±6 75±0 

Developed Low Lawyer St 8±1 7±24 341±3 79±2 

Developed Low Haines St 16±1 66±1 544±4 72±1 

Developed Open Central Park 44±3 44±2 788±10 55±24 

Developed Open Wolf Pen Creek Park 22±2 50±11 872±4 73±2 

Developed Open Austin Colony soccer field  82±2 15±15 699±3 65±6 

Forest John Crompton Park 28±1 77±1 272±17 37±2 

Forest Lick Creek Park 17±1 24±13 111±2 31±2 

Forest Kathy Fleming   20±1 13±5 256±3 34±21 

Pasture Kathy Fleming  18±2 34±3 837±9 78±2 

Pasture Wilcox Rd  16±3 19±3 840±8 64±3 

Pasture N Country Estates  44±3 37±4 722±3 75±1 

Range/SS Briarcrest and Woodcrest 20±1 33±4 247±12 68±0 

Range/SS Old Ti Rd 10±1 40±4 312±7 46±2 

Range/SS Miramont 26±1 18±4 256±2 55±1 

Wetland Copperfield  37±3 12±2 305±4 58±2 

Wetland Austin Colony Park 20±1 22±2 211±3 48±3 

Wetland Lick Creek Park 29±1 23±5 623±7 63±2 
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APPENDIX D 

 

GLUCOSE CONTROL FOR BIODEGRADBILITY STUDIES  

 

 

Date % BDOC 

3/4/2011 91.7±0.8 

4/11/2011 94.3±0.6 

5/13/2011 93.4±0.7 

6/8/2011 91.4±1.0 

6/22/2011 93.5±1.0 

7/1/2011 94.1±0.8 

8/2/2011 93.8±1.6 

9/6/2011 98.9±0.2 

9/19/2011 92.1±3.1 

10/5/2011 90.8±0.3 

11/10/2011 91.9±2.2 

11/27/2011 94.4±1.3 

12/3/2011 99.8±7.0 

1/19/2012 94.6±2.1 

1/26/2012 92.2±3.9 

2/3/2012 93.0±0.3 

2/15/2012 93.3±0 

2/23/2012 91.3±0.4 

2/26/2012 92.5±0.5 
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APPENDIX E 

 

 SOIL ADSORPTION 

 

 
Land use 

classification Site R
2
 m b RSP DOCeq 

    

mg/kg mg/kg mg/L 

Developed High Post Oak Mall  0.91 0.35±0.08 587±31 607±538 177±24 

Developed High College Station Target 0.92 0.25±0.05 305±46 409±88 125±7 

Developed High Bryan HEB 0.98 0.26±0.03 346±24 469±48 130±7 

Developed Medium 908A Azalea 0.98 0.19±0.02 89±62 111±79 24±24 

Developed Medium Woodsman Dr 0.93 0.20±0.01 97±6 121±10 49±0.1 

Developed Medium Renaissance Park Apts 0.81 0.26±0.01 228±14 308±16 90±9 

Developed Low 800 Marion Pugh 0.89 0.17±0.06 195±48 238±76 115±10 

Developed Low Lawyer St 0.88 0.21±0.07 128±44 165±70 62±2 

Developed Low Haines St 0.82 0.20±0.03 216±29 272±46 106±1 

Developed Open Central Park 0.94 0.27±0.09 433±31 599±116 169±48 

Developed Open Wolf Pen Creek Park 0.93 0.17±0.03 10±6 12±8 7±2 

Developed Open Austin Colony soccer field  0.90 0.41±0.01 782±25 1330±23 194±4 

Forest John Crompton Park 0.90 0.18±0.07 264±12 324±43 161±61 

Forest Lick Creek Park 0.96 0.20±0 62±9 78±12 32±4 

Forest Kathy Fleming  0.92 0.17±0.02 195±25 236±35 115±4 

Pasture Kathy Fleming  0.84 0.13±0.02 127±14 146±20 97±4 

Pasture Wilcox Rd  0.96 0.11±0.03 71±41 80±49 61±19 

Pasture N Country Estates  0.72 0.16±0.03 260±33 310±49 164±8 

Range/SS Briarcrest and Woodcrest 0.94 0.17±0.01 43±16 51±18 26±10 

Range/SS Old Ti Rd 0.93 0.24±0.02 89±25 118±35 35±13 

Range/SS Miramont 0.98 0.21±0.03 123±25 156±38 60±3 

Wetland Copperfield  0.97 0.37±0 367±61 586±99 103±20 

Wetland Austin Colony Park 0.95 0.29±0.01 148±25 211±33 51±11 

Wetland Lick Creek Park 0.88 0.34±0.01 239±20 362±34 71±4 

 

 

 

 

 

 

 

 



 

  

135 

 

135 
135 

1
3
5
 

APPENDIX F 

 

 CLUSTER ANALYSIS (10 CLUSTERS) OF DR-NIR SOURCE SPECTRA 

 

Group 

 

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Cluster 

7 

Cluster 

8 

Cluster 

9 

Cluster 

10 

1 

Wilcox 

pasture soil 0 1 1 9 3 10 7 9 6 0 

1 

Lawyer dev 

low soil 0 1 1 9 3 10 7 9 6 0 

1 

Woodsman 

med dev soil 0 1 1 9 3 10 7 9 6 0 

1 

Briarcrest 

shrub scrub 

soil 0 1 1 9 3 10 11 9 6 8 

2 

N Country 

pasture soil 0 10 7 10 7 3 7 10 9 0 

2 

Marion Pugh 

dev low soil 0 10 7 10 7 3 7 10 9 0 

2 

Target high 

dev soil 0 10 7 10 7 3 7 10 9 0 

3 Pigeon feces 1 4 3 1 10 4 6 0 7 10 

3 Cow feces 1 4 3 1 10 4 6 0 7 10 

3 Chicken feces 1 4 3 1 10 4 6 0 7 10 

3 Chicken feces 1 4 3 1 10 4 6 0 7 10 

3 Dog feces 1 4 3 1 10 4 6 0 7 10 

4 Tap water 2 0 5 0 6 8 5 11 5 5 

4 Tap water 2 0 5 0 6 8 5 11 5 5 

4 Tap water 2 0 5 0 6 8 5 11 5 5 

16 

Cliff swallow 

feces 2 0 5 0 11 8 8 5 10 5 

16 

Cliff swallow 

feces 2 0 9 0 11 8 8 5 10 5 

5 Effluent 2 11 9 0 11 8 8 5 10 5 

5 Effluent 2 11 9 0 11 8 8 5 10 5 

5 Effluent 2 11 9 0 11 8 8 5 10 5 

5 

Impervious 

runoff 2 11 9 0 11 8 8 5 10 5 

5 

Impervious 

runoff 2 11 9 0 11 8 8 5 10 5 

5 

Impervious 

runoff 2 11 9 0 11 8 8 5 10 5 

5 

Impervious 

runoff 2 11 9 5 11 8 8 5 10 5 

5 

Impervious 

runoff 2 11 9 5 11 8 8 5 10 5 

6 

Central Park 

dev open soil 3 2 11 2 0 5 0 2 3 4 

6 

Lick wetland 

soil 3 2 11 2 0 5 0 2 3 4 
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6 

Miramont 

shrub scrub 

soil 3 2 11 2 0 5 0 2 3 4 

6 

Lick forest 

soil 3 3 7 2 7 5 0 2 3 4 

6 

Austin Col 

wetland soil 3 3 11 2 0 5 0 2 3 4 

6 

Azalea dev 

med soil 3 3 11 2 0 5 0 2 3 4 

6 

Briarcrest 

shrub scrub 

soil 3 3 11 2 0 5 0 2 3 4 

6 

Wilcox 

pasture soil 3 3 11 2 0 5 0 2 3 4 

6 

John 

Crompton 

forest soil 3 3 11 2 0 5 0 2 3 4 

6 

Old Ti Rd 

shrub scrub 

soil 3 3 11 2 0 5 0 2 3 4 

6 

Kathy 

Fleming forest 

soil 3 3 11 2 0 5 0 2 3 9 

7 Effluent 4 6 6 6 1 7 1 7 2 6 

7 Effluent 4 6 6 6 1 7 1 7 2 6 

7 Effluent 4 6 6 6 1 7 1 7 2 6 

7 Effluent 4 6 6 6 1 7 1 7 2 6 

7 Effluent 4 6 6 6 1 7 1 7 2 6 

7 Effluent 4 6 6 6 1 7 1 7 2 6 

7 Effluent 4 6 6 6 1 7 1 7 2 6 

7 Effluent 4 6 6 6 1 7 1 7 2 6 

7 Effluent 4 6 6 6 1 7 1 7 2 6 

7 Effluent 4 6 6 6 1 7 1 7 2 6 

8 

Copperfield 

wetland soil 5 2 7 8 4 11 3 4 8 2 

8 

Wolf Pen dev 

open soil 5 2 10 2 0 1 0 2 3 4 

8 

Woodsman 

med dev soil 5 2 10 2 0 1 0 2 3 9 

8 

Haines dev 

low soil 5 2 10 8 4 11 0 4 8 2 

8 

Marion Pugh 

dev low soil 5 2 10 8 4 11 0 4 8 2 

8 

PO mall dev 

high soil 5 2 10 8 4 11 3 4 8 2 

8 

Austin Col 

dev open soil 5 2 10 8 4 11 3 4 8 2 

8 

Lawyer dev 

low soil 5 2 10 8 4 11 3 4 8 2 

8 

Target high 

dev soil 5 2 10 8 4 11 3 4 8 2 

8 

HEB high dev 

soil 5 2 10 8 4 11 3 4 8 2 
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8 

Renaissance 

Park med dev 

soil 5 2 10 8 4 11 3 4 8 2 

9 Engine oil 6 7 4 3 8 0 9 8 1 3 

9 Engine oil 6 7 4 3 8 0 9 8 1 3 

10 

Wolf Pen dev 

open soil 7 10 7 10 4 3 3 10 9 2 

10 

Haines dev 

low soil 7 10 7 10 4 3 3 10 9 2 

10 

John 

Crompton 

forest soil 7 10 7 10 4 3 3 10 9 2 

10 

Lick wetland 

soil 7 10 7 10 4 3 3 10 9 2 

10 

Azalea dev 

med soil 7 10 7 10 7 3 3 10 9 2 

10 

Renaissance 

Park med dev 

soil 7 10 7 10 7 3 3 10 9 2 

11 

Lick forest 

soil 7 10 7 10 7 3 7 10 9 0 

11 

Austin Col 

wetland soil 7 10 7 10 7 3 7 10 9 0 

11 

Austin Col 

dev open soil 7 10 7 10 7 3 7 10 9 0 

11 

Kathy 

Fleming forest 

soil 7 10 7 10 7 3 7 10 9 0 

11 

Kathy 

Fleming 

pasture soil 7 10 7 10 7 3 7 10 9 0 

11 

N Country 

pasture soil 7 10 7 10 7 3 7 10 9 0 

12 

Impervious 

runoff 8 5 6 6 1 7 2 3 2 6 

12 

Impervious 

runoff 8 5 8 7 5 2 2 3 2 11 

12 

Impervious 

runoff 8 5 8 7 5 2 2 3 4 11 

12 

Impervious 

runoff 8 5 8 7 5 2 2 3 4 11 

12 

Impervious 

runoff 8 5 8 7 5 2 2 3 4 11 

12 

Impervious 

runoff 8 5 8 7 5 2 2 3 4 11 

13 Blank 9 8 0 4 9 6 4 1 0 7 

13 Blank 9 8 0 4 9 6 4 1 0 7 

13 Blank 9 8 0 4 9 6 4 1 0 7 

13 Blank 9 8 0 4 9 6 4 1 0 7 

13 Blank 9 8 0 4 9 6 4 1 0 7 

13 Blank 9 8 0 4 9 6 4 1 0 7 

13 Blank 9 8 0 4 9 6 4 1 0 7 

13 Blank 9 8 0 4 9 6 4 1 0 7 

13 Blank 9 8 0 4 9 6 4 1 0 7 
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13 Blank 9 8 0 4 9 6 4 1 0 7 

13 Blank 9 8 0 4 9 6 4 1 0 7 

13 Blank 9 8 0 4 9 6 4 1 0 7 

13 Blank 9 8 0 4 9 6 4 1 0 7 

13 Sponge 9 8 0 4 9 6 4 1 0 7 

13 Sponge 9 8 0 4 9 6 4 1 0 7 

13 Sponge 9 8 0 4 9 6 4 1 0 7 

14 

Human 

decomposition 

remains 10 9 2 11 2 9 10 6 11 1 

15 

Copperfield 

wetland soil 11 1 1 9 3 10 11 9 6 8 

15 

PO mall dev 

high soil 11 1 1 9 3 10 11 9 6 8 

15 

Central Park 

dev open soil 11 1 1 9 3 10 11 9 6 8 

15 

HEB high dev 

soil 11 1 1 9 3 10 11 9 6 8 

15 

Old Ti Rd 

shrub scrub 

soil 11 1 1 9 3 10 11 9 6 8 

15 

Miramont 

shrub scrub 

soil 11 1 1 9 3 10 11 9 6 8 
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APPENDIX G 

 

 PRECIPITATION DURING THE SAMPLING PERIOD. BOLD INDICATES 

SAMPLING DATE. ND INDICATES NO DATA.  

 

Date Precipitation Precipitation 

 

KCLL KTXBRYAN10 

 

mm mm 

3/1/2011 0 0 

3/2/2011 0 0 

3/3/2011 0 0 

3/4/2011 0 0 

3/5/2011 9.7 0.5 

3/6/2011 0 0 

3/7/2011 0 0 

3/8/2011 2.8 1.3 

3/9/2011 0 0 

3/10/2011 0 0 

3/11/2011 0 0 

3/12/2011 0 0 

3/13/2011 0 0 

3/14/2011 4.8 13.2 

3/15/2011 0 0 

3/16/2011 0 0 

3/17/2011 0 0 

3/18/2011 0 0 

3/19/2011 0 0 

3/20/2011 0 0 

3/21/2011 0 0 

3/22/2011 0 0 

3/23/2011 0 0 

3/24/2011 0 0 

3/25/2011 0 0 

3/26/2011 0 0 

3/27/2011 0 0 

3/28/2011 0 0 

3/29/2011 0.3 0 

3/30/2011 0 0 

3/31/2011 0 0 
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4/1/2011 0 0 

4/2/2011 0 0 

4/3/2011 0 0 

4/4/2011 0 2.0 

4/5/2011 0 0 

4/6/2011 0 0 

4/7/2011 0 0 

4/8/2011 0 0 

4/9/2011 0 0 

4/10/2011 0 0 

4/11/2011 0 0 

4/12/2011 0 0 

4/13/2011 0 0 

4/14/2011 0 0 

4/15/2011 0 0 

4/16/2011 0 0 

4/17/2011 0 0 

4/18/2011 0 0 

4/19/2011 0 0 

4/20/2011 0 0 

4/21/2011 0 0 

4/22/2011 0 0 

4/23/2011 0 0 

4/24/2011 0 0 

4/25/2011 0 0.3 

4/26/2011 0 0.3 

4/27/2011 0 0 

4/28/2011 0 0 

4/29/2011 0 0 

4/30/2011 0 0 

5/1/2011 0 0 

5/2/2011 1.0 1.3 

5/3/2011 0 0 

5/4/2011 0 0 

5/5/2011 0 0 

5/6/2011 0 0 

5/7/2011 0 0 

5/8/2011 0 0 

5/9/2011 0 0 

5/10/2011 0 0 
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5/11/2011 5.6 0.3 

5/12/2011 42.2 17.8 

5/13/2011 0 0 

5/14/2011 0 0 

5/15/2011 0 0 

5/16/2011 0 0 

5/17/2011 0 0 

5/18/2011 0 0 

5/19/2011 0 0 

5/20/2011 22.6 30.0 

5/21/2011 6.1 0.3 

5/22/2011 0 0 

5/23/2011 0 0 

5/24/2011 0 0 

5/25/2011 0 0 

5/26/2011 0 0 

5/27/2011 0 0 

5/28/2011 0 0 

5/29/2011 0 0 

5/30/2011 0 0 

5/31/2011 0 0 

6/1/2011 0 0 

6/2/2011 0 0 

6/3/2011 0 0 

6/4/2011 0 0 

6/5/2011 0.5 0.8 

6/6/2011 5.3 1.5 

6/7/2011 0 0 

6/8/2011 0 0 

6/9/2011 0 0 

6/10/2011 0 0 

6/11/2011 0 0 

6/12/2011 0 0 

6/13/2011 0 0 

6/14/2011 0 0 

6/15/2011 0 0 

6/16/2011 0 0 

6/17/2011 0 0 

6/18/2011 0 0 

6/19/2011 0 0 
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6/20/2011 0 0 

6/21/2011 0 0.5 

6/22/2011 62.3 43.0 

6/23/2011 0 0 

6/24/2011 0 0 

6/25/2011 0 0 

6/26/2011 0 nd 

6/27/2011 0 nd 

6/28/2011 0 nd 

6/29/2011 0 nd 

6/30/2011 0 nd 

7/1/2011 0 nd 

7/2/2011 0 nd 

7/3/2011 0 nd 

7/4/2011 0 nd 

7/5/2011 0 nd 

7/6/2011 0 nd 

7/7/2011 0 nd 

7/8/2011 0 nd 

7/9/2011 0 nd 

7/10/2011 0 nd 

7/11/2011 0 nd 

7/12/2011 0 nd 

7/13/2011 0 nd 

7/14/2011 0 nd 

7/15/2011 1.8 0.3 

7/16/2011 0.8 0 

7/17/2011 0 0 

7/18/2011 0 1.8 

7/19/2011 0 0 

7/20/2011 0 0 

7/21/2011 0 0 

7/22/2011 0 0 

7/23/2011 0 0 

7/24/2011 0 0 

7/25/2011 0 0 

7/26/2011 0 0 

7/27/2011 0 0 

7/28/2011 0 0 

7/29/2011 0 0 
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7/30/2011 0 0 

7/31/2011 0 0 

8/1/2011 0 0 

8/2/2011 0 0 

8/3/2011 0 0 

8/4/2011 0 0 

8/5/2011 0 0 

8/6/2011 0 0 

8/7/2011 0 0 

8/8/2011 0 0 

8/9/2011 0 0 

8/10/2011 0 0 

8/11/2011 0 0 

8/12/2011 0 0 

8/13/2011 0 8.4 

8/14/2011 0 0 

8/15/2011 0 0 

8/16/2011 0 0 

8/17/2011 0 0 

8/18/2011 0 0 

8/19/2011 0 0 

8/20/2011 0 0 

8/21/2011 0 0 

8/22/2011 0 0 

8/23/2011 0 0 

8/24/2011 2.5 3.3 

8/25/2011 3.3 2.0 

8/26/2011 0 0 

8/27/2011 0 0 

8/28/2011 0 0 

8/29/2011 0 0 

8/30/2011 0 0 

8/31/2011 0 0 

9/1/2011 0 0 

9/2/2011 0 0 

9/3/2011 0 0 

9/4/2011 0 0 

9/5/2011 0 0 

9/6/2011 0 0 

9/7/2011 0 0 



 

  

144 

 

144 
144 

1
4
4
 

9/8/2011 0 0 

9/9/2011 0 0 

9/10/2011 0 0 

9/11/2011 0 0 

9/12/2011 0 0 

9/13/2011 0 0 

9/14/2011 0 0 

9/15/2011 6.9 1.0 

9/16/2011 0 0 

9/17/2011 0.3 0 

9/18/2011 0 1.8 

9/19/2011 35.6 47.1 

9/20/2011 0 0 

9/21/2011 0 0 

9/22/2011 0 0 

9/23/2011 0 0 

9/24/2011 0 0 

9/25/2011 0 0 

9/26/2011 14.5 0 

9/27/2011 0 0 

9/28/2011 0 0 

9/29/2011 0 0 

9/30/2011 0 0 

10/1/2011 0 0 

10/2/2011 0 0 

10/3/2011 0 0 

10/4/2011 0 0 

10/5/2011 0 0 

10/6/2011 0 0 

10/7/2011 0 0 

10/8/2011 0 0 

10/9/2011 20.9 13.5 

10/10/2011 0 0 

10/11/2011 0 0 

10/12/2011 1.3 0.3 

10/13/2011 0.3 0 

10/14/2011 0 0 

10/15/2011 0 0 

10/16/2011 0 0 

10/17/2011 0 0 
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10/18/2011 0 0 

10/19/2011 0 0 

10/20/2011 0 0 

10/21/2011 0 0 

10/22/2011 0 0 

10/23/2011 0 0 

10/24/2011 0 0 

10/25/2011 0 0 

10/26/2011 0 0 

10/27/2011 2.0 0.3 

10/28/2011 0 0 

10/29/2011 0 0 

10/30/2011 0 0 

10/31/2011 0 0 

11/1/2011 0 0 

11/2/2011 0 0 

11/3/2011 0.3 0 

11/4/2011 0 0 

11/5/2011 0 0 

11/6/2011 0 0 

11/7/2011 0 0 

11/8/2011 0.3 0 

11/9/2011 0 0 

11/10/2011 0 0 

11/11/2011 0 0 

11/12/2011 0 0 

11/13/2011 0 0 

11/14/2011 0 0 

11/15/2011 7.4 31.0 

11/16/2011 0 0.3 

11/17/2011 0 0 

11/18/2011 0 0 

11/19/2011 0 0 

11/20/2011 0 0 

11/21/2011 3.1 1.8 

11/22/2011 29.0 28.2 

11/23/2011 0 0.3 

11/24/2011 0 0.3 

11/25/2011 0 0.3 

11/26/2011 21.6 15.0 
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11/27/2011 0 0 

11/28/2011 0 0 

11/29/2011 0 0 

11/30/2011 0 0 

12/1/2011 0 0 

12/2/2011 0 0 

12/3/2011 0 0 

12/4/2011 9.2 22.6 

12/5/2011 2.3 3.1 

12/6/2011 0 0 

12/7/2011 0 0 

12/8/2011 0 0 

12/9/2011 0 0 

12/10/2011 0 0 

12/11/2011 0 0 

12/12/2011 0 0 

12/13/2011 0 0 

12/14/2011 0.5 1.3 

12/15/2011 3.6 5.1 

12/16/2011 13.5 7.4 

12/17/2011 0 3.3 

12/18/2011 0 0 

12/19/2011 3.1 8.6 

12/20/2011 1.5 0.5 

12/21/2011 1.8 4.8 

12/22/2011 28.7 24.2 

12/23/2011 0 0 

12/24/2011 21.6 13.5 

12/25/2011 0.3 0.5 

12/26/2011 1.3 0.51 

12/27/2011 0 0.3 

12/28/2011 0 0 

12/29/2011 0 0 

12/30/2011 0 0 

12/31/2011 0 0.3 

1/1/2012 0 0 

1/2/2012 0 0 

1/3/2012 0 0 

1/4/2012 0 0 

1/5/2012 0 0 
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1/6/2012 0 0 

1/7/2012 0 0 

1/8/2012 1.8 4.1 

1/9/2012 10.7 37.4 

1/10/2012 0.3 0.3 

1/11/2012 0 0 

1/12/2012 0 0 

1/13/2012 0 0 

1/14/2012 0 0 

1/15/2012 0 0 

1/16/2012 0 0 

1/17/2012 0.8 1.3 

1/18/2012 0 0 

1/19/2012 0 0 

1/20/2012 0 0 

1/21/2012 0 0 

1/22/2012 0 0 

1/23/2012 0 0 

1/24/2012 20.6 16.0 

1/25/2012 33.8 28.7 

1/26/2012 0 0 

1/27/2012 0 0 

1/28/2012 0 0 

1/29/2012 0 0 

1/30/2012 0.5 0.3 

1/31/2012 2.3 3.1 

2/1/2012 0.3 0.5 

2/2/2012 4.1 5.1 

2/3/2012 104.6 9.4 

2/4/2012 55 33.6 

2/5/2012 0.3 1.8 

2/6/2012 0 0 
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RUNOFF CURVE NUMBERS FROM USDA TR-55 
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APPENDIX I 

 

RUNOFF CURVE NUMBER WORKSHEET FROM USDA TR-55 

 

 

 




