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ABSTRACT 

 

Roles of Naturally Occurring Bacteria in Controlling Iodine-129 Mobility in Subsurface 

Soils. (August 2012)  

Hsiu-Ping Li, B.A., National Taiwan Ocean University;  

M.A., National Taiwan Ocean University 

Chairs of Advisory Committee: Dr. Robin Brinkmeyer 
  Dr. Peter H. Santschi 

 

 129I is of major concern because of its biophilic nature, excessive inventory, long 

half-life (~16 million yrs), and high mobility in the natural environment that depends on 

its chemical speciation. Iodide (I-) has the highest mobility than iodate (IO3
-) and is the 

predominant species in the terrestrial environment due to prevailing pH and Eh 

conditions. In order to transform I- to less mobile organo-iodine (OI), strong oxidants are 

necessary to activate the first electron transfer step from I- to reactive intermediates. The 

aim of this study was to determine the influence of naturally occurring aerobic bacteria 

isolated from an 129I contaminated aquifer (F-area of the Savannah River Site, SC) on I- 

oxidation and OI formation.  

It was demonstrated that 3 of 136 strains accumulated I- (0.2~2%) in the presence 

of H2O2, when incubated in the presence of an environmentally relevant concentration of 

I- (0.1 μM). The accumulation was likely through electrophilic substitution resulting in 

the iodination of cellular constituents. The results indicated that culturable I--
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accumulating bacteria are not directly responsible for the high fraction of oxidized 

iodine species (IO3
- and OI, >50% of total I) present in the SRS F-area.  

Several bacterial strains were found to be capable of stimulating I- oxidation 

through excretion of oxidants and enzymes. Organic acids in spent liquid medium from 

27 of 84 aerobic bacterial cultures enhanced H2O2-dependent I- oxidation 2-10 fold. 

Organic acids enhanced I- oxidation by (1) lowering the pH of the spent medium and (2) 

reacting with H2O2 to form peroxy carboxylic acids, which are strong oxidizing agents.  

In the absence of H2O2, spent medium from 44 of 84 bacteria cultures showed I- 

oxidizing capacities. One I- oxidizing bacterium was studied to characterize its 

extracellular I- oxidizing component(s). The I- oxidizing capability from the spent 

medium was inactive by treatments with heat and H2O2 and absent under anaerobic 

conditions. Conversely, NADH, NADPH and FMN additions stimulated I- oxidation in 

the spend medium. These results indicate an oxidase(s) catalyzed I- oxidation. 

Understanding the bacterial activities involved with I- oxidation and OI formation is 

expected to help reduce 129I mobility in water-soil systems. 
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NOMENCLATURE 

 

127I Stable iodine 

129I Radioactive iodine-129 

238U  Uranium-238  

ABTS  2, 2’-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid  
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GC-MS Gas chromatography- Mass spectrometry 

H2O2 Hydrogen peroxide  

HLRW High-level radioactive waste 

HOI Hypoiodous acid 

I- Iodide  
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I2 Elemental iodine  

I3
- Triiodide  

IAB Iodide-accumulating bacteria 

IMB Iodide-methylating bacteria 

IO3
- Iodate 

IOB Iodide-oxidizing bacteria 

Kd  Distribution coefficient  

LLRW Low-level radioactive waste 

MALDI Matrix-assisted laser desorption ionization 

MCL  Maximum Contaminant Level  

NAD+  Nicotinamide adenine dinucleotide  

NADH  Reduced nicotinamide adenine dinucleotide  

NADPH  Reduced nicotinamide adenine dinucleotide phosphate  

NaN3  Sodium azide  

NMR Nuclear magnetic resonance 

NRC Nuclear Regulatory Commission  

OI Organo-iodine 

PCR Polymerase chain reaction 

Pu  Plutonium  

SDS Sodium dodecyl sulfate  

SDS-PAGE Sodium dodecyl sulfate polyacrlamide gel electrophoresis 

SGZ Syringaldazine  
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SRS Savannah River Site 

TOF MS Time-of-flight mass spectrometry  

Xe  Xenon  
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CHAPTER I 

INTRODUCTION 

 

Iodine has 25 isotopes, including 1 long-lived radioisotope (129I, t1/2 = 15.7×106 

yrs), 23 short-lived radioisotopes, and 1 stable isotope (127I). Iodine radioisotopes are 

naturally produced through cosmic ray spallation of xenon (Xe) in the atmosphere and 

neutron-induced fission of natural uranium-238 (238U) and plutonium (Pu) in the Earth’s 

crust, but these natural sources account for a small fraction of the global inventory (2, 

103). The primary source of iodine radioisotopes is from the fission reactions in nuclear 

reactors, production of weapons-grade Pu, and detonation of nuclear weapons (2, 103). 

Among the radioisotopes of iodine, 129I is of concern to human health and environmental 

integrity due to the longevity, large inventory (e.g., at the Department of Energy (DOE) 

storage facilities), high perceived mobility in water-soil systems, and bioaccumulation in 

thyroid glands and breast tissues (32, 115). Thus, 129I has recently been recognized by 

the U.S. Department of Energy’s Office of Environmental Management (DOE-EM) as 

one of the key risk radionuclides in the groundwater at the Hanford Site and the 

Savannah River Site (SRS). Moreover, due to the biophilic properties of iodine, the 

Environmental Protection Agency (EPA) has regulated the Maximum Contaminant 

Level (MCL) of 129I in drinking water at the lowest level (1 pCi/L) of all radioisotopes. 

 

____________ 
This dissertation follows the style of Applied and Environmental Microbiology. 
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1.1 Inventory of anthropogenic 129I in environment  

In nuclear reactors 129I occurs as a gaseous product of fission that forms in fuel 

rods. In a typical boiling water reactor, the fuel rods consist of small (1 cm × 1 cm) 

ceramic uranium oxide ‘fuel’ pellets sealed inside a protective tube of ‘Zircaloy’ that is 

stable up to 1,200 oC. Hundreds of rods are then assembled to make a reactor core, 

which is then sealed in a high-pressure vessel filled with water that is subsequently 

heated by the fission chain reaction (285 oC) to produce steam that drives a turbine to 

generate electricity. Under normal reactor operations, the fission chain reactions are 

maintained at temperatures below 1,200  oC, whereby the heat is absorbed by boron and 

cooling water. In the critical state, the 129I is contained under pressure within the spent 

fuel pellets and Zircaloy tube as a liquid and/or solid phase. If the reactor chemistry and 

temperature are not carefully controlled, the rods can corrode and eventually crack, 

releasing 129I into the surrounding cooling water that can be discharged to the regional 

environment. Nuclear accidents such as those at Chernobyl in Ukraine (1986) and 

Fukushima Daiichi in Japan (2011) demonstrate how the failure of controlling the 

critical state can result in the release of large quantities of 129I into the water surrounding 

the core and ultimately into the environment in just a few hours.   

In addition to discharges from nuclear accidents, large quantities of 129I have 

been emitted to the environment from the reprocessing facilities, as well as leakage to 

soils from spent fuel wastes (2, 54, 103). For example, up to 1998, a total of 2,360 kg of 

129I was discharged to the marine environment by two European facilities at La Hague in 
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France and Sellafield in England, an amount that is 50 times the total release from 

nuclear weapon tests (53). To date, these two European facilities are still operating of 

which more 129I is expected to be discharged into environments.     

 

1.1.1 129I inventories and waste disposal from USA Department of Energy (DOE) 

facilities 

The highest inventories of 129I in the USA are at two DOE storage facilities (Fig. 

1.1), Hanford Site (120 Ci 129I) in the state of Washington and the SRS (26 Ci 129I) in 

South Carolina (32). Hanford Site and SRS housed the primary facilities for the 

production and processing of weapons-grade Pu (i.e. 238Pu & 239Pu) and tritium during 

the Cold War. The Hanford Site was selected in 1944 to produce the first weapons-grade 

Pu for the Manhattan Project, and 54.5 metric tons (MT) of fissile material was produced 

until 1987 (61). At the SRS, approximately 36 MT of Pu were produced from 1953 to 

1988. Nuclear weapons design, component fabrication, assembly, and final testing took 

place at the other twelve US defense facilities spread across a dozen states (Fig. 1.1) 

(88).   
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FIG. 1.1. Locations of DOE defense nuclear weapon facilities in the US consisting of the following 
active/closure project sites and their primary functions before 1992: Handford Site (plutonium production 
for WWII & Cold War operations), Fernald Closure project (former uranium processing plant), Idaho 
National Laboratory (INL, research and development, waster retrieval and remediation activities), Los 
Alamos National Laboratory (LANL, stockpile stewardship and management to ensure the safety, 
security, and reliability of the nation’s nuclear deterrent), Lawrence Livermore National Laboratory 
(LLNL, nuclear weapons research and development), Miamisburg Environmental Management Project 
(Mound, former manufacturing facility, which underwent environmental remediation), Nevada National 
Security Site (NNSS, outdoor laboratory and national experimental center for the preparation of nuclear 
waste deposition, training for emergency response, and waste management), Y-12 National Security 
Complex/Oak Ridge National Laboratory (Y-12/ORNL, uranium component manufacturing and storage), 
Pantex Plant (stockpile of nation’s nuclear weapons), Rocky Flats Environmental Technology Site (former 
manufactor of components for nuclear weapons; the environmental remediation process was complete in 
2005), Sandia National Laboratories (SNL), Savannah River Site (SRS, production of basic materials for 
nuclear weapons before Cold War), Waste Isolation Pilot Plant (WIPP, safe disposal site for Transuranic 
waste), West Valley Demonstration Project (WVDP, commercial storing site for mixed nuclear waste 
from State of New York) (http://www.dnfsb.gov/about/where-we-work/doe-defense-nuclear-facilities). 

 
 
 

Production of nuclear defense materials ended in 1992 and the DOE’s mission 

shifted to the dismantlement of nuclear weapons, the disposal of fissionable materials, 

and decontamination of the production, testing, and storage facilities (88). Currently, 

about 60% (35 megacurries) of high-level radioactive waste (HLRW) is stored at the 

Hanford Site. The remainder is stored at the SRS and Idaho National Laboratory (2, 61). 
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Plans to transfer most of DOE’s HLRW to the Yucca Mountain Nuclear Waste 

Repository in Nevada were terminated by President Obama in 2009. In March 2010 the 

DOE withdrew its license application for permanent storage of HLRW at Yucca 

Mountain. While the debate over a permanent storage site by the US Congress continues 

(47, 127), HLRW remains at Hanford, SRS, and Idaho facilities in shallow waste pits or 

‘cribs’ and steel tanks, many of which have cracked after chemicals were added in an 

attempt to neutralize the most radioactive materials (113). Furthermore, in order to 

conserve tank space, low-level radioactive waste (LLRW) or partly decontaminated 

waste was injected into the subsurface with the reasoning that waste would be trapped in 

the capillary pores of unsaturated materials, such as sand lying above the water table 

(31). In the early years of disposal (late 1940s to early1950s), the movement of liquids in 

the unsaturated (i.e. vadose) zone above the water table was not well-understood, thus, 

researchers were unable to accurately access the storage capacity in soils and migration 

of radioactive wastes (31). Hydrologists estimated that it would take 175-180 years for 

Pu-contaminated groundwater at the Hanford Site to reach the Columbia River; however, 

Pu was detected in the river only 11 years after it was first produced (113). Liquid 

HLRW (and LLRW) from pits and steel tanks at Hanford Site and the SRS have 

contaminated aquifers, which contain 129I at concentrations well above (10 ~1000 times) 

the MCL levels regulated by EPA (2, 58, 90). These radionuclides such as 129I have a 

high potential to seep into the Columbia River that borders the Hanford Site and the 

Savannah Rivers which borders the SRS.   
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1.1.2 Disposal of 129I wastes from commercial nuclear reactors 

Environmental contamination with HLRW from commercial nuclear power 

plants is of equal concern. By 1991, 20% of the electricity in the US was generated by 

104 nuclear reactors at 65 commercial nuclear power plants (Fig. 1.2) (134). To date, no 

permanent disposal facilities have been designated in the US for the ~63,000 tons of 

spent fuels produced by these commercial reactors. The Yucca Mountain repository was 

also intended as a permanent storage facility for HLRW from commercial power 

reactors. As a temporary solution, the Nuclear Regulatory Commission (NRC) has 

sanctioned an increase in the allowable numbers of rods that can be ‘re-racked’ in plant 

pools. For example, the pool at Reactor 3 of the Millstone Nuclear Power Plant in 

Waterford, Connecticut was originally licensed to hold 756 rods but now holds 1,040 

and has recently been licensed by the NRC to hold 1,860 (30). Considering the dire 

problems at the DOE facilities, it is not difficult to imagine similar HLRW 

contamination of surface water and aquifers from ‘long term’ storage at commercial 

nuclear power plants. Figure 1.2 illustrates the proximity of commercial nuclear power 

plant accumulated HLRW to major aquifers in the US. 
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               (A)   

 
                (B)  

 

FIG. 1.2. (A) Locations of commercial nuclear power plants in the US and accumulated HLRW (134) and 
(B) principal aquifers in the US (86). Color used in pink indicates minor aquifers. 
 

 

There are now over 440 commercial nuclear power reactors in the world today 

with 377 gigawatts of total capacity (135). Given that 129I is produced by nuclear fission 
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at a rate of 1 Ci per gigawatt of electricity produced and assuming a reactor efficiency of 

98% (32), 385 Ci of 129I is currently generated per year. In order to respond to global 

warming, 11 applications to the NRC are proposed to construct 18 new nuclear reactors, 

increasing the total number of reactors in the USA from 104 to 122 (134). China alone 

has 17 reactors under construction and anticipates a six-fold increase in nuclear power 

capacity to at least 50 gigawatts, with more large units than in the U.S. by 2020 (136). If 

only a fraction of the “Nuclear Renaissance” is realized, a significant increase in world-

wide 129I waste will be created by the nuclear power industry.  

 

1.2 Mobility of 129I in soil-water systems  

Iodine can exist in multiple oxidation states ranging from -1 to +7 depending on 

the environmental conditions. Thus, one of the key factors that controls 129I mobility is 

its chemical speciation. For example, one can predict the predominant iodine species in 

aqueous solution based on a Pourbaix diagram, which determines iodine speciation 

based on pH and Eh conditions (94). As shown in Figure 1.3, iodate (IO3
-, oxidation 

state +5) is expected to be stable under oxic conditions across the pH values that are 

typically found in the natural environment. Elemental iodine (I2, oxidation state 0) is 

expected to be present under moderately oxidized and acidic (pH ≤ 4.0) conditions; 

whereas, iodide (I-, oxidation state -1) would be expected when the environment 

becomes more reducing, Among these inorganic iodine species, I- would be expected to 

be the dominant species in most groundwaters due to its stability under a wide range of 

natural pH and Eh conditions (Fig. 1.3). This is important because I- has been recognized 
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to have lower soil affinity (i.e. high mobility), with a distribution coefficient (Kd) of ~1 

L3 kg-1, than that of IO3
- (Kd ~1000 L3 kg-1) (13, 54, 65, 103, 107), which would explain 

the relatively high mobility of 129I that has been observed in Hanford Site and SRS.  

However, several field investigations of water-soil systems have observed that I- and 

IO3
- coexist in different proportions and that another iodine species, organo-iodine (OI), 

is often present (52-53, 90, 107, 142). These observations signify that biogeochemical 

factors other than pH and Eh control iodine speciation in natural water-soil systems.   

 
 
 

 
FIG. 1.3. Pourbaix plot illustrates the theoretical aqueous iodine speciation based on the pH and Eh values 
(90). Solid and hollow dots indicated the groundwater pH and Eh values of the SRS F-area, indicating that 
I- should be the predominant iodine species (90).  
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Formation of OI occurs through a complex, poorly characterized process. First, a 

reactive intermediate iodine species, such as I2, hypoiodous acid (HOI, oxidation state 

+1) or triiodide (I3
-), needs to be formed from I- oxidation or IO3

- reduction, as shown in 

Fig. 1.4. Next, the reactive iodine species is thought to attack organic matter, forming OI 

through electrophilic substitution on aromatic moieties (25, 82, 97, 104, 139, 141). Thus, 

organic-rich soils are considered to have a higher tendency to serve as an iodine sink, 

whereby soil organic matter acts as a barrier to decrease 129I mobility. Indeed, Hu et al. 

(53-54) and Xu et al. (138) have successfully demonstrated that soils with high organic 

matter content are capable of taking up >80% of iodine as OI, whereas inorganic iodine 

became dominant (~50%) in soils with low organic content. However, several studies 

reported that a small fraction of soil OI can be released to groundwater (90, 107, 138, 

142). Recent observations have pointed out that the solubility and molecular weight of 

OI species can play a crucial role whereby high molecular weight OI would tend to 

become a sink for 129I, whereas very low molecular weight or truly dissolved OI species 

can leach out and migrate into groundwater (39, 107, 137-138).  

Regardless of the leaching potential of OI, it is clear that the initial iodine species 

and the presence of organic matter in a water-soil system play important roles in 129I 

mobility. As mentioned earlier, I- is expected to be the dominant species in most water-

soil systems due to its stability under natural groundwater Eh and pH conditions. Since I- 

is the most reduced chemical form of all iodine species, an oxidation process is the most 

plausible pathway to generate reactive iodine species or IO3
- (Fig 1.4). However, the first 

electron transfer from I- to an electron acceptor such as oxygen is thermodynamically 
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unfavorable unless catalyzed by strong oxidants (77). Abiotic oxidants present in soil, 

such as manganese oxide (MnO2, major component in pyrolusite) and ferric oxide 

(Fe2O3, major component in hematite), are capable of oxidizing I-; however, this reaction 

is favorable only under acidic conditions (pH<5.0) (36, 42, 137). 

 

 
FIG 1.4. Redox cycling of iodine species mediated by biotic and abiotic processes (after Amachi et al. 
(4)). 

 
 

 
 

1.3 Potential means by which soil bacteria could decrease 129I mobility 

It is hypothesized that microbes can influence I- oxidation and OI formation due 

to iodine’s biophilic nature, strong affinity for organic matter and redox sensitivity (3, 

32). Moreover, given the high abundance of microbes occurring in water-soil systems, 

especially in organic-rich soils (e.g. 108-109 cells per gram soil) (118, 129), it is 

reasonable to assume that microbes could play an important role in the mobility of 129I in 
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terrestrial systems. This assumption is supported by recent field observations and 

laboratory experiments (3-4, 6, 83-84, 107, 112). These laboratory studies have used 

soils/sediments treated with heat, chloroform, γ-irradiation, or prokaryotic antibiotics, to 

demonstrate that microbial activity is required for significant iodine binding capacity 

onto soils (6, 83-85). Moreover, inoculation of sterilized soil with fresh soil or viable 

microorganisms can restore the iodine-organic matter binding potential (84). 

Contradictory results, however, have also been observed, whereby only a minor increase 

in I- sorption had been observed in an organic-rich soil that had first been sterilized by 

autoclaving and then enriched with viable microbes (110). These contradictory results 

led to debates of the importance of microbes on 129I mobility, especially given the fact 

that the potential for I- oxidation by metal oxides could be high at most nuclear waste 

storage sites where groundwater is acidic (110-111, 141). 

A growing body of literature has implicated microbial enzymes, such as oxidases, 

laccases, perhydrolases and peroxidases, in the formation of halogenated organic matter 

compounds in soils (6, 20, 48, 67, 84-85, 89, 95, 98, 112, 140). Furthermore, a series of 

recent studies on marine bacteria have identified a number of species that can influence 

iodine speciation/mobility via I- accumulation in bacterial cells, I- oxidation in exudates 

(e.g. extracellular enzymes), and I--methylation (3, 5-7, 9-10, 12, 117). To date, little 

research has been devoted to identifying terrestrial bacteria associated with the 

transformation of iodine species. If terrestrial bacteria also have similar capabilities for I- 

accumulation and I- oxidation that has been found in marine bacteria, bacteria could 

have a profound effect on 129I mobility in contaminated aquifers.  
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1.3.1 Cellular iodide accumulation  

Iodine is an essential trace element for mammals because of its role as a 

constituent of thyroid hormones (i.e. thyroxine and triiodothyronine). In the thyroid 

gland, I- is taken up with sodium ions by a sodium/iodide symporter utilizing an 

electrochemical potential gradient, where it is then incorporated into hormones via an 

iodination process. For centuries it has been known that marine macroalgae can also 

concentrate iodine, by a mechanism distinct from that used my mammals (67). For 

example, the brown algae Laminaria digitata utilizes an unidentified haloperoxidase 

associated wtih the cell wall to oxidize I- extracellularly to HOI, which can penetrate 

algal cell walls by facilitated diffusion (67). The maximum amount of accumulated I- in 

L. digitata can reach up to 50,000 μg g-1 of dry weight, whereas terrestrial plants 

accumulate, on average, just 0.2 − 0.5 μg g-1 dry weight (24, 45, 66, 92). Inside the L. 

digitata cell HOI is reduced and stored as I- which acts as an inorganic antioxidant, 

scavenging reactive oxygen species (66). X-ray absorption spectroscopy experiments 

have revealed that while inside L. digitata tissue, I- is surrounded by organic molecules 

such as phenols, carbohydrates, and proteins, without forming chemical bonds with these 

organic compounds (66). 

To date, information concerning I- accumulation by bacteria has been obtained 

primarily through the pioneering efforts of Seigo Amachi and his research group at 

Chiba University, Japan (7, 9, 11). I- accumulating bacteria (IAB), isolated from marine 

sediments, are classified phylogenically within only one family, Flavobacteriaceae, 
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within the phylum Bacteroidetes (9). The maximum I- content observed in IAB cells was 

30 μg g-1 dry weight, with a cellular concentration factor of 5.5×103, when I- was 

provided at an environmentally relevant concentration (0.1 μM) (7, 9). By comparison, L. 

digitata has been found to have an I- concentration factor of 1.5 x 105 (66-67). Results 

indicate that I- uptake by marine bacteria mechanisms are facilitated by membrane-

bound enzymes. Furthermore, I- uptake was enhanced in the presence of glucose/oxygen 

or H2O2 (3, 7).  Amachi proposed a model whereby extracellular H2O2, generated by 

glucose oxidase, is used to oxidize I- to I2 or HOI via an unidentified haloperoxidase. 

HOI is then transported across the cell membrane via a facilitated diffusion-type 

mechanism (3, 7) which is similar to that observed in L. digitata. Once inside the cell, 

HOI would be reduced to I- or form OI species (3, 7).  

Terrestrial bacteria with I--accumulating abilities were also examined by 

Amachi’s group (8). Bacterial strains were isolated from enrichments of anoxic natural 

gas formation waters that contained exceptionally high concentrations of total iodine 

(~120 mg L-1, with I- as the major species), and a set of 16 “anaerobic” terrestrial 

bacterial strains were obtained from culture collections that included sulfate and iron 

reducers, denitrifiers and methanogens (8). Results indicated very limited 

adsorption/accumulation of iodide (0.7-2.0 μg g-1 dry weight) by these anaerobic 

terrestrial bacteria.  

Cellular surface adsorption could also be considered as a mechanism for I- 

accumulation by bacterial cells. For example, MacLean et al. (78) used cells of Bacillus 

subtilis to model I--bacteria adsorption through electrostatic interactions of I- and the 
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positively charged functional groups (e.g. amine groups) on the bacterial surface. They 

found that I- was readily adsorbed to the surface of B. subtilis at pH values < 4, but that I- 

could also be quickly desorbed (~2 hours) by raising the pH to 7.0.  

 

1.3.2 Iodide oxidation through extracellular reactions 

In the 1960’s a fish kill related to the liberation of I2 in a saltwater aquarium led 

to the discovery of the first iodide oxidizing bacterium. Pseudomonas iodooxidans sp. 

nov. (γ-Proteobacteria) was isolated from the aquarium and found to be capable of 

oxidizing I- to I2 by an extracellular or membrane bound peroxidase (45). Moreover, this 

bacterium exhibited high tolerance to I2 toxicity, and its I2 production could only be 

detected in the presence of 8 mM I-, but not of 0.8 mM (45). Unfortunately, this 

bacterium was not deposited in any culture collections; thus, the characteristics and 

identity of the functional peroxidase, as well as its ecological role, remain unclear.   

Since that time, two studies invovling I- oxidizing bacteria (IOB) have been 

conducted. Fuse et al. (40) isolated two strains of marine bacteria capable of producing 

I2 and volatile OI, such as methyl iodine, in spent medium containing I- and H2O2 

indicating that a peroxidase-like enzyme was involved in I- oxidation. The 16S rRNA 

gene sequences of these two marine bacteria were phylogenetically related to 

Roseovarious tolerans (phyla α-Proteobacteria). The other study was conducted by 

Amachi’s research group (10, 12, 117), who initially attempted to “directly isolate” IOB 

from three environmental sources, including terrestrial soils, seawater, and natural gas 

brine water, using I--starch agar plates. The attempt was, however, only successful with 
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natural gas brine water samples which contained high concentrations of I- (0.06~1.20 

mM). They later incubated seawater and terrestrial samples in the presence of high 

concentrations of I- (1-5 mM) and detected a yellow coloration and an I2 smell from only 

the seawater samples. IOB were subsequently isolated from the high I- seawater 

enrichments. The IOB isolated from brine water and seawater were phylogenetically 

classified within two genera, Rhodothalassium spp and Roseovarious spp, both within 

the α-Proteobacteria sub-phylum (10). It was concluded that these IOB utilized the 

produced I2 as an antimicrobial to give them a competitive advantage in the high I- 

environment (12). A laccase-like enzyme (i.e. one of the multi-copper oxidases) was 

then identified and characterized from one of the brine water IOB that carry out I- 

oxidation (117).  

Together with implications from other studies that microbial oxidases, 

perhydrolases, and peroxidases could be involved in the halogenation of soil organic 

matter (6, 20, 48, 67, 84-85, 89, 95, 98, 112, 140), microbial enzymes associated with I- 

oxidation can be classified into two major types, ‘oxidase-like’ and ‘peroxidase-like’ 

enzymes which utilize oxygen and H2O2 as electron acceptors, respectively. In studies 

conducted thus far, ‘oxidase-like’ enzymes capable of transforming I- to a reactive 

intermediate iodine species (e.g. I2) are limited to a blue laccase secreted by the fungus 

Myceliophthora thermophile (140) and the laccase-like enzyme secreted by brine water 

IOB (Roseovarious spp) (117). Laccases are multi-copper phenolytic oxidases that are 

widely secreted by plants, fungi and bacteria that assist in lignin transformations and can 

utilize multiple, disparate substrates (e.g. Mn2+) (109). In recent field studies of 129I 
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mobility, laccase activities were determined from the top ~20 cm of surface soils and 

correlated with I- oxidation and OI formation (112, 141). Whether laccases, or other 

oxidase-like enzymes capable of carrying out I- oxidation, exist in terrestrial bacteria still 

needs to be clarified.  

 The best-known peroxidase-like enzymes associated with halide oxidation are 

the haloperoxidases. These enzymes are widely distributed among different biota, 

including humans, bacteria, fungi, plants, and algae (50, 120, 122). Haloperoxidases 

commonly exhibit broad-substrate specificity and are classified based on the most 

electronegative halide that they can catalyze – chloroperoxidases use chloride (Cl-), 

bromide (Br-) and I-, bromoperoxidases utilize Br- and I-, and iodoperoxidases are 

limited to I- as the halogen source. They generate hypohalides via the direct H2O2-

dependent oxidation of halides, and thus are capable of halogenating a wide variety of 

organic moieties. Interestingly, the involvement of haem (i.e. iron) as a cofactor for 

electron transfer is only observed in eukaryotic haloperoxidases whereas prokaryotic 

haloperoxidases require no haem (51). Among soil bacteria, these enzymes have been 

primarily identified in Actinobacteria, Firmicutes, and several groups of Proteobacteria 

(51). Given the wide distribution of haloperoxidases, it seems reasonable to find the 

existence of haloperoxidases in terrestrial bacteria. However, studies conducted thus far, 

none have reported any direct evidence for the existence of haloperoxidase action 

associated with iodinated organic matter in natural water-soil systems. 
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1.4 Research hypotheses and objectives 

In groundwater from F-area of DOE’s SRS, a nuclear waste disposal site in 

South Carolina, I- was expected to be the predominant iodine species based on the 

prevailing pH (3.2 ~ 6.8) and Eh (360 ~ 654 mV) (Fig. 1.3) (90). However, field 

investigations in the SRS F-area have quantified appreciable amounts of IO3
- (~30 %) 

and OI (~35%) in groundwater (90, 107, 142), indicating that I- oxidation has occurred. 

As mentioned earlier, abiotic oxidants such as MnO2 and Fe2O3 capable of oxidizing 

iodide are limited to acidic conditions (pH < 5.0) (36, 42, 137). Thus, it was 

hypothesized that bacteria occurring in the SRS F-area are capable of carrying out I- 

oxidation and OI formation. In order to better understand the impact that terrestrial 

bacteria exert on 129I mobility in water-soil systems via I- oxidation and OI formation, 

this study utilized naturally occurring bacteria isolated from the 129I-contaminated, oxic 

plume in F-area. Two hypotheses were proposed in this study and are listed below with 

the specific objectives.  

 
Hypothesis I:  

Certain types of terrestrial, aerobic bacteria can accumulate I- through internalization or 

binding onto their cell surface, thus, temporarily or permanently retarding the transport 

of 129I in a water-soil system.  

Objectives: 

a) Isolate and characterize aerobic I--accumulating bacteria (IAB) from the SRS F-

area sedimemts;  
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b) Identify mechanisms of bacterial accumulation of I- (i.e. adsorption onto cell 

membrane or incorporation into cells); 

c) Determine the abundance of IAB at the site; 

d) Estimate the importance IAB to retardation of 129I mobility from microbial 

accumulation rates determined at environmental relevant I- concentrations. 

 

Hypothesis II:  

There are aerobic bacteria present in water-soil systems that can produce enzymes to 

oxidize I- and control the mobility of iodine.  

Objectives  

a) Identify aerobic I--oxidizing bacteria (IOB) isolated from the SRS F-area;  

b) Identify IOB produced enzymes that participate in iodide oxidation;  

c) Evaluate the environmental importance of IOB and their associated enzymatic 

activities that relate to the transformation of I- to OI in a natural water-soil 

system. 
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CHAPTER II 

IODIDE ACCUMULATION BY AEROBIC BACTERIA ISOLATED FROM 

SUBSURFACE SEDIMENTS OF A 129I-CONTAMINATED AQUIFER AT THE 

SAVANNAH RIVER SITE, SOUTH CAROLINA* 

 

2.1 Overview 

129I is of major concern because of its mobility in the environment, excessive 

inventory, toxicity (it accumulates in the thyroid), and long half-life (~16 million years). 

The aim of this study was to determine if bacteria from a 129I-contaminated oxic aquifer 

at the F-area of the U.S. Department of Energy’s Savannah River Site, South Carolina, 

could accumulate I- at environmentally relevant concentrations (0.1 μM I-). I- 

accumulation capability was found in 3 out of 136 aerobic bacterial strains isolated from 

the F-area that were closely related to Streptomyces/Kitasatospora spp., Bacillus 

mycoides, and Ralstonia/Cupriavidus spp. Two previously described iodide-

accumulating marine strains, a Flexibacter aggregans strain and an Arenibacter 

troitsensis strain, accumulated 2 to 50% total I- (0.1 μM), whereas the F-area strains 

accumulated just 0.2 to 2.0%. I- accumulation by FA-30 was stimulated by the addition 

of H2O2, was not inhibited by chloride ions (27 mM), did not exhibit substrate saturation 

____________ 
*Reproduced with permission from “Li, H.-P., R. Brinkmeyer, W. L. Jones, S. J. Zhang, 
C. Xu, K. A. Schwehr, P. H. Santschi, D. I. Kaplan, and C. M. Yeager. 2011. Iodide 
Accumulation by Aerobic Bacteria Isolated from Subsurface Sediments of a I-129-
Contaminated Aquifer at the Savannah River Site, South Carolina. Appl. Environ. 
Microbiol. 77:2153-2160.” Copyright© 2011 American Society for Microbiology. 
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kinetics with regard to I- concentration (up to 10 μM I-), and increased at pH values of 

<6. Overall, the data indicate that I- accumulation likely results from electrophilic 

substitution of cellular organic molecules. This study demonstrates that readily 

culturable, aerobic bacteria of the F-area aquifer do not accumulate significant amounts 

of I-; however, this mechanism may contribute to the long-term fate and transport of 129I 

and to the biogeochemical cycling of iodine over geologic time. 

 

2.2 Introduction 

129I is a major by-product of nuclear fission that is of concern because of its 

mobility in the environment, excessive inventory, long half-life (~16 million years), and 

potential toxicity due to bioaccumulation through the food chain and bioconcentration in 

the thyroid gland (32, 38, 52). Currently, 146 Ci of 129I is inventoried in soils at two U.S. 

Department of Energy (DOE) sites, the Hanford Site and the Savannah River Site (SRS), 

where it has been identified as a key risk driver in contaminated soils and groundwater 

(49, 62). Furthermore, the global inventory of 129I will increase significantly if just a 

fraction of the expected “Nuclear Renaissance” is realized (e.g., between China and 

India alone, 50 to 60 new nuclear reactors are expected to come online by the year 2020) 

(32, 133). Thus, it is critical to understand the environmental behavior of 129I in order to 

rigorously assess storage and disposal options for current and future stockpiles of 129I. 

In general, little information is available about the chemical properties and 

mobility of iodine in subsurface aquifers, particularly its tendency to form organo-iodine 

or its mobility as organo-iodine. However, our own measurements of groundwater from 
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several of the F-area aquifer bore holes found that organo-iodine could account for up to 

25% of total iodine (107, 142). The various isotopes of iodine can be strongly bound to 

macromolecular organic matter, which can significantly decrease or increase its transport, 

bioavailability, and transfer to humans, depending on the molecular weight and 

physicochemical properties of the resulting iodine-organic matter species (28, 43, 105-

107, 132).  

Microbial activity has been linked to the production of organo-iodine and 

sorption of iodine to soil, and a small but growing body of literature has implicated 

microbial oxidases, perhydrolases, and particularly peroxidases in the halogenations of 

soil organic matter (6, 20, 48, 56, 67, 84-85, 89, 96, 98). Yet, details concerning the 

mechanisms and bacterial species or groups involved are lacking. The most-recent 

advances in research concerning microbial-iodine interactions have been contributed by 

Amachi et al. (3, 5-11, 40). In a series of papers, Amachi’s research group has isolated (i) 

I--accumulating bacteria (IAB) from marine sediments that concentrate I- by a factor of 6 

× 103 (9), (ii) I--oxidizing bacteria from seawater and natural gas brine water that 

transform I- into I2 and volatile organo-iodine species (10), and (iii) I--methylating 

bacteria from a variety of soil and seawater samples (5-6). For the marine IAB, Amachi 

et al. (7) proposed a model whereby extracellular H2O2, generated by glucose oxidase, 

oxidizes I- to I2 or hypoiodous acid (HOI) via an unidentified 

haloperoxidase. HOI is then transported across the cell membrane via a facilitated 

diffusion-type mechanism. Once inside the cell, HOI either is reduced to I- or forms 

organo-iodine.  
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Notably, I--oxidizing and I--accumulating strains were readily obtained from 

marine or brine waters but not from surface soils (22 samples from a rice paddy, upland 

field, and forest soils) (9, 11). The only study to date examining the potential for 

microorganisms from subsurface aquifers to associate with I- was performed using 

enrichments from anoxic natural gas formation waters that contain exceedingly high 

concentrations of iodine (~120 mg liter-1) and a set of 16 anaerobic bacterial strains 

obtained from culture collections that included sulfate and iron reducers, denitrifiers, and 

methanogens (8). The results indicated very limited adsorption or accumulation of I- by 

anaerobic microorganisms.  

Overall, the research conducted thus far demonstrates that microbial activity is an 

important factor in iodine biogeochemical cycling (particularly in enhancing iodine 

binding to high molecular-weight organic matter) and leads us to hypothesize that select 

soil and sediment bacteria could be capable of influencing the chemical behavior of I- 

(the most common form of 129I found in groundwater) via accumulation, volatilization, 

and oxidation under aerobic conditions. In particular, we wish to develop an 

understanding of the role that microorganisms play in the formation of organo-iodine in 

the subsurface and how they influence iodine mobility. As an initial step toward this 

overarching goal, the aim of this study was to determine if naturally occurring bacteria 

from a 129I-contaminated oxic aquifer at the Savannah River Site, SC, could accumulate 

iodide at environmentally relevant concentrations. 
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2.3 Materials and methods 

2.3.1 Isolation of bacteria  

Sediment samples were collected from three locations and multiple depths within 

the F-area plume zone (10 to 100 pCi/liter 129I) at the Savannah River Site, SC (Fig. 2.1). 

Sediments from the first two locations, FAW-4 and FAW-1, were collected from a 

sandy/clay aquifer 13.1 to 20.7 m and 24.1 to 25.9 m below the surface, respectively. 

The other sampling location, FSP-07, was an organic-rich wetland zone (0.15 to 1.2 m 

below the surface). Two approaches, sonication or pyrophosphate based, were used to 

isolate microbes directly from each of the subsurface soils. For the sonication method, 

soil samples (1 g) were suspended in 100 ml sterile distilled water (dH2O) and stirred for 

15 min. A portion (1 ml) of this soil slurry was sonicated for 15 s to generate a 10-2 

dilution of the original soil slurry. For the pyrophosphate method, soil samples (1 g) 

were suspended in 100 ml sterile phosphate-buffered saline (pH 7.0) containing 25 

mM pyrophosphate and stirred for 30 min and then allowed to settle for 30 min to 

generate a 10-2 dilution of the original soil slurry.  
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FIG. 2.1. Map of the F-area at the Savannah River Site with 129I concentrations in groundwater. Mixed 
radioactive wastes originating from three storage basins (red rectangles) have seeped into the groundwater 
and have, over time, created a groundwater plume that flows toward Four Mile Branch Creek, a tributary 
to the Savannah River. Sediment samples for this study were collected at FAW-4 (13.1 to 20.7 m below 
the surface) and FAW-1 (20.7 to 25.9 m below the surface) in a sandy/clay aquifer and at FSP-07 (0.15 to 
1.2 m below the surface) in an organic-rich wetland zone. 

 

 

Subsequent dilutions (10-3 to 10-6) were prepared from the sonication- and 

pyrophosphate-generated soil slurries in both R2A (1/10 strength; Difco) and DNB 

(Oxoid) medium. A portion (100 μl) of each dilution (10-2 to 10-6) series prepared in 

R2A was spread onto R2A (1/10 strength) plates solidified with either noble agar (Difco) 

or gellum gum (Sigma Aldrich), with or without cycloheximide (100 μg ml-1; Sigma 

Aldrich). A portion (100 μl) of each dilution (10-2 to 10-6) series prepared in DNB was 

spread onto DNB agar plates, with or without cycloheximide (100 μg ml-1). Plates were 

incubated at room temperature in the dark and monitored for growth over a period of 1 

week to 3 months. As colonies with unique morphologies appeared on the plates, they 
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were transferred to fresh R2A (1/10 strength) or DNB plates. In this manner, 325 distinct 

morphotypes were isolated and stored (agar plates at 4°C and glycerol stocks at -80°C) 

for further analysis.  

Enrichment cultures containing 1 mM iodide were also prepared with sediments 

collected from the aquifer and wetland zones as means to isolate IAB. Enrichments were 

generated by suspending sediments (0.05 g) in 50 ml conical tubes containing (i) 20 ml 

dH2O, (ii) 20 ml 10% nutrient broth (Oxoid), or (iii) 20 ml 10% nutrient broth plus 50 

μg ml-1 cycloheximide. I- was added (as KI; Sigma) to give a final concentration of 1 

mM. This resulted in a total of 24 enrichment cultures (8 sediment samples, with 3 

treatments for each sediment sample). The enrichments were incubated in the dark at 

room temperature and agitated by tube inversion once each day. At 2, 9, and 22 weeks, 

50 μl from each tube was transferred to sterile tubes containing 5 ml R2A (1/10 strength) 

to generate a 10-2 dilution. Dilutions of 10-4 and 10-6 were then prepared in R2A (1/10 

strength), and 25 μl of each dilution was spread on both 25% DNB-IS (IS consists of 1.2 

g liter-1 KI and 1g liter-1 soluble starch) and 25% R2A-IS agar plates. In this manner, 29 

distinct morphotypes were isolated and stored (agar plates at 4°C and glycerol stocks at -

80°C) for further analysis. 

 

2.3.2 16S rRNA gene sequencing and phylogenetic analysis  

To determine the taxonomic identity of the isolates, a portion of the 16S rRNA 

gene was amplified and sequenced. Crude bacterial lysate was collected by placing a 
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small amount of isolated colonies into 10 μl Tris-EDTA (TE) buffer (pH 7.5) with sterile 

pipette tips. Amplification was performed using 1 μl of the crude lysate as a template in 

50-μl reaction mixtures containing 5 μl 10× buffer, MgCl2 (2.5 mM), the 27f primer (5’-

GAGTTTGATCMTGGCTCAG-3’) (10 pmol), the 1492r primer (5’- 

GGTTACCTTGTTACGACTT-3’) (10 pmol), deoxynucleoside triphosphates (200 μM 

each), and 1.25 U of HotStar Taq DNA polymerase (Qiagen). Reactions were amplified 

in a PTC-100 thermocycler (MJ Research, Inc.) as follows: 95°C for 10 min and 32 

cycles of 95°C for 1 min, 45°C for 45 s, and 72°C for 1 min, followed by a 7-min 

elongation step. PCRs were visualized on a 1.2% agarose gel to ensure amplification of a 

single product of the expected size. The 16S rRNA gene amplicon was purified with a 

MinElute PCR purification kit (Qiagen), and the concentration of the purified product 

was adjusted to ~15 ng μl-1 in dH2O using a Nanodrop 1000 spectrophotometer (Thermo 

Scientific). Sequencing of the purified PCR products was performed by the Georgia 

Sequencing Facility at the University of Georgia, Athens, GA.  

Phylogenetic similarity of 16S rRNA sequences was first determined with 

BLAST searches of the GenBank (http://www.ncbi.nlm.nih.gov/genbank/index.html) 

and the RDP classifier (26), followed by maximum-likelihood reconstruction of 

phylogenetic trees with ARB (131). 

 

2.3.3 Culture conditions  

Two marine I--accumulating bacterial (IAB) strains, Flexibacter aggregans 

NBRC15975 and Arenibacter troitsensis JCM11736, were purchased from the NITE 
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Biological Research Center, Chibin, Japan, and used as reference strains for the I- 

accumulation assay. The two reference strains and all microbial isolates from the F-area 

were grown on marine agar 2216 (Difco) and 1/4-strength R2A agar medium (EMD), 

respectively. 

 

2.3.4 Iodide accumulation screening  

Two methods using 125I- as a tracer were combined to determine the I--

accumulating ability from F-area microbes. The first used autoradiography, similar to the 

procedure of Amachi et al. (11). A mixture of I-, 0.016 μM stable I- (as NaI; Sigma), and 

0.80 kBq ml-1 125I- was applied evenly to R2A agar plates. Microbial isolates from the F-

area were inoculated onto the plates using sterile toothpicks and incubated for 3 days in 

the dark at room temperature (~27°C). A small portion of microbial colonies, ~0.25 mm 

in diameter, was transferred with sterile toothpicks into 7-ml glass vials containing 4 ml 

of scintillation cocktail (Ecolume). After the colonies were vortexed for 1 min, the 

radioactivity of accumulated 125I was determined by a liquid scintillation counter 

(Beckman Coulter LS6500) for 10 min as a preliminary screen. Colonies testing positive 

for 125I accumulation were then transferred from the agar plates via a traditional plate lift 

technique onto a nitrocellulose membrane filter (82-mm diameter; Whatman Optitran 

BA-S 85). As a control for the background, liquid on the agar surface was also 

transferred onto the nitrocellulose membrane. The membranes were dried at room 

temperature for 30 min and then exposed to a maximum-sensitivity autoradiography film 
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(Kodak BioMax) at -20°C for 14 days in the dark. Film was processed with developer, a 

deionized-water stop bath, and fixer according the manufacturer’s instructions (Kodak).  

For the second method for assessment of iodide accumulation, microbial isolates 

from the F-area and the two reference marine IAB strains (the F. aggregans and A. 

troitsensis strains) were cultivated in 50-ml conical tubes containing 5 ml of nutrient 

broth and marine broth, respectively. Stable I- was added to the cultures at a 

concentration (0.1 μM) that reflected the ambient concentration of 127I- (stable iodine) in 

the F-area. 125I- (1.33 kBq liter-1) was added to the cultures as the tracer. Incubations 

were performed at room temperature in the dark with continuous shaking (150 rpm). 

After a 24-h incubation period, a subsample (100 μl) was collected and was immediately 

transferred into a scintillation vial. Radioactivity of 125I was determined by liquid 

scintillation counting for 10 min and referred to as “125I activity in the microbial 

culture.” To investigate the effect of hydrogen peroxide on cellular iodide accumulation, 

H2O2 (final concentration, 5 mM) was added to a portion (4 ml) of the cell-iodide 

mixture after the initial 24-h incubation period, and the incubation was continued for an 

additional 4 to 24 h. Portions of the cell suspension (900 μl) were collected immediately 

after the initial 24 h of incubation (before H2O2 addition) or 4 or 24 h after H2O2 addition. 

The collected cell suspension was centrifuged at 16,000 × g for 20 min at 4°C. The 

supernatant was discarded, and the cell pellet was washed 3 times and suspended in 900 

μl of fresh medium (without added stable I- and 125I-). To determine “cell-associated 

125I,” a portion (100 μl) of the washed cell suspension was measured by scintillation 

counting for 10 min (count errors were consistently below 20%). The I- accumulating 
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ability (percent accumulation) of microbial cells was calculated as the ratio of “cell-

associated 125I” versus “125I activity in the microbial culture.” Cell densities in aliquots 

were measured at 600 nm with a spectrophotometer (Turner SP8001). Correlations of 

bacterial dry weight with optical density at 600 nm (OD600) for each target bacterium 

were obtained during different periods of exponential growth through linear regression, 

resulting in an r2 value higher than 0.98 for each strain. 

 

2.3.5 Effect of chloride on iodide-accumulating abilities  

Bacteria were grown in two types of aqueous minimal media, M9 and Cl--

deficient M9 (M9X). M9 contained 47.75 mM Na2HPO4, 22.04 mM KH2PO4, 8.56 mM 

NaCl, 18.70 mM NH4Cl, 2 mM MgSO4, 0.1 mM CaCl2, 22.22 mM glucose, and 0.5% 

yeast extract. M9X was prepared by replacing NaCl, NH4Cl, and CaCl2 with the same 

concentrations of Na2SO4, (NH4)2SO4, and Ca(OH)2, respectively. Cells grown in M9 

and M9X media were exposed to 2 different concentrations of stable I- (0.1 and 10 μM) 

while maintaining the same concentration of 125I- (1.33 kBq liter-1). Incubations were 

performed in the dark at room temperature with continuous shaking at 150 rpm for 24 h. 

H2O2 (final concentration, 5 mM) was then added to the microbial culture. After an 

additional 24-h incubation, aliquots were collected for the determination of cellular 125I 

activity and cell density as described above. 
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2.3.6 Effect of pH and sodium azide on iodide-accumulating abilities  

To evaluate I- accumulation as a function of pH, IAB from the F area were grown 

in the M9 medium containing 0.5% yeast extract at room temperature in the dark with 

shaking (150 rpm). When the optical density (600 nm) of the cultures reached 

~0.8, cells were harvested by centrifugation (3,500 × g at 20°C for 15 min) and washed 2 

times with pH-adjusted minimal medium (pH 4 to 9). The minimal medium contained 

8.6 mM NaCl, 18.7 mM NH4Cl, 2 mM MgSO4, 0.1 mM CaCl2, 22.2 mM glucose, and 

50 mM KH2PO4. Acetate buffer, phosphate buffer, and borate buffer were used to adjust 

the pH from 4 to 5, from 6 to 8, and to 9, respectively. To avoid bursting or shrinking of 

cells by transferring them from M9 to pH-adjusted medium, the ionic strength of pH-

adjusted medium was maintained at 177 mM, which was the same ionic strength as in 

the M9 medium. Cell pellets were suspended in pH-adjusted minimal medium 

containing stable I- (0.1 μM), 125I- (1.33 kBq liter-1) and H2O2 (5 mM).  

In order to investigate the role of heme-containing enzymes or other active cell 

processes on iodide accumulation, a parallel assay was performed with the addition of 

sodium azide (NaN3). NaN3 (10 mM) was added to the cell suspension to inhibit 

enzymatic activities before addition of I- and H2O2. Cell suspensions were then 

incubated at room temperature in the dark for 24 h, after which aliquots were collected 

for the determination of 125I activity and cell density as described above. 
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2.3.7 Iodide desorption  

A procedure similar to that of MacLean et al. (78), with slight modifications, was 

performed to determine if iodine desorption could occur after accumulation. After I- 

accumulation at pH 4 to 9 (described above), cells were collected via centrifugation 

(16,000 × g for 20 min at 4°C), suspended in M9 medium (pH 7), and incubated with 

end-over-end shaking (150 rpm) for 2 h. Aliquots were then collected for the 

determination of 125I activity and cell density as described above. 

 

2.3.8 Statistical analyses  

Analyses of variance (ANOVA) were performed to evaluate the significant 

differences in I--accumulating abilities as a function of I- concentrations, as well as the 

presence versus absence of chloride ions. Tukey’s post hoc tests were used to compare 

means of values for I--accumulating abilities from significant (P < 0.05) ANOVA test 

results. The statistical analyses were performed using SPSS 16.0 (SPSS Institute, Inc.). 

 

2.4 Results 

2.4.1 Isolation and phylogenetic analysis of F-area soil bacteria 

A total of 325 aerobic microbes were directly isolated from subsurface sediments 

of the F-area at the Savannah River Site (Fig. 2.1). Of these isolates, 32% were cultured 

from sandy/clay sediments of an aquifer (sites FAW-1 and FAW-4, 13.1 to 25.9 m 

below the surface) and 29% and 39% were cultured from the dark, organic rich 

sediments of the seep zone (site FSP-07), 0.15 to 1 m and 1 to 1.2 m below the surface, 
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respectively. Analysis of the 16S rRNA gene revealed that the isolates were members of 

four phyla within the domain Bacteria. The majority of isolates (55%) were classified as 

Proteobacteria, followed by Firmicutes (20%), Actinobacteria (17%), and Bacteroidetes 

(8%). No obvious trends relating the phylogeny of the isolates to their environmental 

source (seep zone versus sand/clay aquifer or depth of the sediment) or the isolation 

method employed (pyrophosphate versus sonication or gellan gum versus noble agar) 

were observed (data not shown). 

A yellow coloration was noted on the tubes of 2/24 enrichment cultures (8 

sediment sources, with 3 enrichment conditions for each culture (see Materials and 

Methods) after 22 weeks of incubation in the dark. A strong I2 smell was also detected 

after the caps of the discolored conical tubes were opened, indicating the transformation 

of I- to I2 (8). The two enrichment cultures that exhibited yellow coloration were derived 

from the seep zone (FSP-07) sediments collected 0.15 to 1 and 1 to 1.2 m below the 

surface, and both were incubated in dH2O with 1 mM I-. Isolation efforts from the 24 

enrichment cultures yielded 29 distinct morphotypes. Analysis of 16S rRNA gene 

sequences revealed that these 29 strains were members of the same 4 phyla, as the 

isolates recovered directly from sediments. The majority of isolates from the enrichment 

cultures (76%) were classified as Proteobacteria, followed by Actinobacteria (14%), 

Bacteroidetes (7%), and Firmicutes (3%). 
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2.4.2 Screening for iodide-accumulating strains  

Forty-two strains, representing the phylogenetic diversity of isolates from F-area 

soils and enrichment cultures, were screened for their ability to accumulate 125I- during 

growth on R2A agar. Cell material from 14 strains exhibited detectable radioactivity by 

liquid scintillation counting following growth in the presence of 125I-. Cell mass from 

colonies of these 14 isolates and liquid from the surface of the 125I- R2A plates was 

transferred to a nitrocellulose membrane, which was exposed to film for 14 days. An 

obvious solid black circle was observed where the film had been exposed to cell material 

from strain FA-30, indicating that this strain accumulated iodide relatively strongly (Fig. 

2.2). Autoradiographic impressions from four of the isolates, FA-5, FA-16, FA-17B, and 

FA-18, showed a slightly darker region in the center of each image, whereas impressions 

from FA-15, FA-2B-NB, and FA-2B-B* showed a dark halo around the outer border of 

each of their respective images (Fig. 2.2). These distinct, strain-specific autoradiographic 

patterns were repeatable, suggesting that the strains accumulate or interact with 125I- 

differently.  
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FIG. 2.2. Autoradiographic image of cell material from 14 F-area isolates (FA-30 was blotted in duplicate) 
that had been grown on R2A plates containing 125I-. The “Agar Surface” dot shows the background 
radioactivity from the surface of an R2A plate containing 125I-. 

 
 
 
 
It has been reported that H2O2 plays a role in iodide accumulation and oxidation 

by marine bacteria (9, 40); thus, I- accumulation was assessed for the same 139 strains 

and 2 marine IAB strains in liquid cultures as described above, except that H2O2 was 

added to the cultures either 4 or 24 h prior to harvesting of the cells. H2O2 addition 

resulted in greater I- accumulation for FA-30 and the two marine strains and enabled the 

identification of two additional iodide-accumulating strains, FA-2C-B* and FA-191 

(Table 2.1). In each of these strains, I- accumulation was greater in cells that had been 

exposed to H2O2 for a longer period of time (24 versus 4 h). However, the three IAB 

strains isolated from the F-area, FA-30, FA-2C-B*, and FA-191, exhibited an I--specific 

accumulation that was 2 orders of magnitude less than that observed for the marine IAB 

strains, the F. aggregans and A. troitsensis strains (Table 2.1). Among the F-area isolates, 
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the only strain that exhibited an I- accumulation phenotype with both the plate and the 

liquid culture assays was FA-30 (among the F-area isolates, FA-30 also exhibited the 

strongest 125I- accumulation phenotype with the use of both assays). 

 
 
 

Table 2.1 I- accumulation by F-area bacterial isolates and two known IAB isolates 

Bacterial 
Isolate 

(-) H2O2 (+) H2O2, 4 hrs (+) H2O2, 24 hrs 
Cell activity 

(cpm)a 
Accumulation 

(%)b 
Cell activity 

(Bq/mL) 
Accumulation 

(%) 
Cell activity 

(Bq/mL) 
Accumulation 

(%) 
F. aggregansc 726 2.410 637 2.096 2097 7.246 
A. troitsensisc 10170 25.482 10365 25.609 17635 41.489 
FA-30 105 0.383 120 0.428 315 1.100 
FA-2C-B* 33 0.157 61 0.296 121 0.593 
FA-191 27 0.099 40 0.154 67 0.251 
Other strainsd 31 (±18) 0.143 (±0.087) 26 (±13) 0.125 (±0.066) 28 (±17) 0.134 (±0.082) 
a Activity associated with cells washed 3 times following incubation of cells in the presence of 125I for 24, 
28, or 56 h. H2O2 was added after 24 h for the 28- and 56-h incubations. 

b (Number of cpm 125I in cell pellet after incubation/number of cpm 125I in supernatant after incubation) × 
100. 

c Marine strains previously identified as IAB (9). 
d Average values ± SD for the 133 strains that did not consistently accumulate iodide. 

 
 
 
Phylogenic analysis of the partial 16S rRNA genes (750 to 900 bp) from FA-30, 

FA-2C-B*, and FA-191 revealed that these strains were members of the Actinobacteria, 

Firmicutes, and Proteobacteria phyla, respectively. FA-30 was most closely related to 

various Streptomyces and Kitasatospora species (16S rRNA gene similarity, ~94%), FA-

2C-B* was closely related to Bacillus mycoides L2S8 (EU221418; 98% similarity), and 

FA-191 was most closely related to various Ralstonia and Cupriavidus species (97 to 

98% similarity). FA-191 and FA-30 were cultured from seep zone (FSP-07) sediments, 

0.15 to 1 and 1 to 1.2 m below the surface, respectively, whereas strain FA-2C-B* was 
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isolated from one of the I- enrichment cultures. No IAB were found among the isolates 

obtained from the deeper, oligotrophic sandy/clay aquifer material. 

 

2.4.3 Impact of chloride on iodide accumulation  

To evaluate whether Cl- present in M9 medium could inhibit iodide accumulation 

by the F-area IAB, cells of FA-30, FA-2C-B*, and FA-191 were incubated in medium 

with and without added chloride (27 mM total Cl- concentration, added as 8.56 mM 

NaCl, 18.70 mM NH4Cl, and 0.1 mM CaCl2). Strains FA-30 and FA-2C-B* 

accumulated more iodide in the presence of chloride (P > 0.05), whereas chloride did not 

have a significant effect on I- accumulation in strain FA-191 (Fig. 2.3). 
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FIG. 2.3. I- accumulation by FA-30, FA-2C-B*, and FA-191 in M9 medium containing 27 mM chloride 
ions (gray bars) versus that in medium without chloride salts (white bars). The experiment was performed 
using 0.1 μM I-. Bars represent average amounts of I- accumulated per cell culture biomass (OD600), and 
error bars show standard deviations (SD) (n = 3). 
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2.4.4 Impact of pH and sodium azide on iodide accumulation 

The I--accumulating ability of strains FA-30, FA-2C-B*, and FA-191 in liquid 

cultures grown in pH-adjusted medium (pH 4 to 9) containing iodide (0.1 μM) was 

evaluated. Between pH 4 and pH 6, there were significant decreases in cellular iodine 

content in strains FA-30 and FA-191 as the pH increased (Fig. 2.4). Above pH 6, the 

cellular iodine content was low, <0.1 μg/g dry cell weight, and either gradually 

decreased with increasing pH (FA-30) or remained at a constant low level with 

increasing pH (FA-191). A relationship between pH and I- accumulation was not 

observed for FA-2C-B* (data not shown).  

Strains FA-30 and FA-191 were tested in a parallel pH assay where sodium azide 

(NaN3; 10 mM) was included. Both strains exhibited lower I- accumulation when 

incubated with NaN3, particularly below pH 6.0 (Fig. 2.4). At pH 4.0, cells of FA-191 

and FA-30 accumulated 40% and 90% less I-, respectively, in the presence of NaN3. At 

pH levels of >6.0, I- accumulation was essentially unaffected by NaN3 (it should be 

noted, however, that the cellular iodine content of cells incubated in medium with a pH 

value of >6.0 was barely above background levels). 

 

2.4.5 Desorption of iodine from IAB  

Desorption experiments were conducted with strains FA-30 and FA-191 to 

evaluate the nature of the interaction between I- and the cells. Desorption of iodine as a 

function of pH was not observed in cells of FA-30 or FA-191 (only ±10% variation in 
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the cellular iodine content of the cells before and after the desorption step) (data not 

shown). 

 
 
 

 
FIG. 2.4. Correlation between pH and iodide accumulation by FA-30 (A) and FA-191 (B) in the presence 
(squares) or absence (triangles) of sodium azide. Symbols represent average amounts of I- accumulated per 
cell culture biomass (μg g dry cell weight-1), and error bars show standard deviations (n = 3). 
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2.5 Discussion 

Mobility of radioactive iodine in the subsurface environment is affected by the 

iodine’s chemical speciation and interactions with soil constituents, including minerals, 

organic matter, and microorganisms. Based on thermodynamic principles, the main 

iodine species in SRS F-area groundwater and sediments should be I-, which is thought 

to have the highest subsurface mobility, i.e., to be least sorbed or taken up by sediments, 

compared to IO3
- and organo-iodine (84, 103, 107). However, organo-iodine has been 

found to contribute a significant fraction (up to 25%) of total iodine in groundwater from 

the F-area (107, 142). The extent to which I- binds to or is incorporated within bacterial 

cells in oxic subsurface aquifers has not previously been investigated; thus, we tested the 

I- accumulating ability of 139 phylogenetically distinct bacterial isolates from F-area 

sediments. 

Three aerobic bacterial strains from the F area, FA-30, FA-2C-B*, and FA-191, 

were shown to accumulate I-. I- accumulation by these three strains was significantly 

different from the background value observed for 136 other strains evaluated 

(consistently 2 to 10 times higher), and in the case of FA-30, this result was validated by 

two different approaches, (i) autoradiography of cell material grown on 125I- agar plates 

and (ii) liquid scintillation analysis of washed cell material that had been grown in liquid 

medium containing 125I-. Compared to that of IAB isolated from marine sources, 

however, the I--accumulating capacity of the F-area strains was quite small. Amachi et al. 

(9) reported accumulation of 80 to 90% of total I- by various marine strains, including F. 

aggregans NBRC15975 and A. troitsensis JCM11736, when these strains were 
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incubated in the presence of 0.1 μM I-. Under our experimental conditions (i.e., much 

more rigorous cell washing and higher pH [7.0 versus 6.0] than those used by Amachi et 

al.), F. aggregans and A. troitsensis accumulated 2 to 50% total I- (0.1 μM), whereas F-

area strains FA-30, FA-2C-B*, and FA-191 accumulated 0.2 to 1.5% of the total I- (0.1 

μM). 

Another difference between the IAB isolated from F-area sediments and the IAB 

previously identified from marine sediments (9) is that the latter microorganisms were 

classified exclusively within the Flavobacteriaceae family of the Bacteroidetes, whereas 

the F-area IAB represented three phyla, Actinobacteria (FA-30, most closely related to 

Streptomyces and Kitasatospora spp.), Firmicutes (FA-2C-B*, a putative Bacillus sp.), 

and Betaproteobacteria (FA-191, closely related to Ralstonia/Cupriavidus spp.). As 

these three phyla are often dominant members of terrestrial soil microbial communities 

(they comprise >90% of the isolates obtained from F-area sediments) whereas 

Bacteroidetes spp. are more common in marine environments, it appears that I- 

accumulation is not restricted to a distinct phylogenetic lineage(s) but rather is 

manifested in select bacterial taxa adapted to their respective environments.  

There are two mechanisms that provide the most parsimonious explanation for I- 

accumulation by bacteria. One is electrostatic adsorption of I- by positively charged 

functional groups, such as amines from proteins and peptides, present on the surface of 

the cell. For example, MacLean et al. (78) used Bacillus subtilis to exam I--bacterium 

adsorption through electrostatic interaction and found that it readily adsorbed I- at pH 

values of <4 and that I- could then be quickly desorbed (~2 h) by raising the pH to 7.0. In 
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that study, an aqueous solution of diluted HNO3 was used as the experimental wash 

solution, precluding other halide ions from competing with I- for electrostatic interaction 

with bacterial cells. In the present study, the three terrestrial IAB strains were incubated 

and maintained in a M9 minimal medium solution that contained ~27 mM chloride ions, 

which is ~2.7 × 105 times higher than the iodide concentration (0.1 μM) present in the 

experimental assays. I- accumulation by FA-30, FA-2CB*, and FA-191 was not 

inhibited by chloride ions (27 mM) (Fig. 2.3). Indeed, at low I- concentrations (0.1 μM), 

I- accumulation by FA-30 and FA-2C-B* was greater in M9 medium than in chloride-

deficient M9 medium (we note that there was no difference in ionic strength between the 

standard M9 medium and chloride-deficient M9 medium used in this experiment). 

Furthermore, pH-dependent desorption tests failed to reveal reversibility of the 

interaction between I- and cells of FA-30 and FA-191. These results indicate that I- 

accumulation by the F-area terrestrial strains was not due to electrostatic surface 

adsorption when pH levels were ≥4.0.  

The second possible mechanism for adsorption between I- and cellular 

constituents is electrophilic substitution resulting in iodination of organic molecules. 

Strong electrophiles such as HOI/I2/I3
- produced by biotic or abiotic processes from I- 

could attack aromatic rings or other organic moieties of the cell and replace -H with -I to 

form a stable organoiodine bond (25, 82, 114). Given the high concentration of organic 

matter in a bacterial culture, it is reasonable to expect that the oxidized I species, i.e., 

HOI/I2/I3
-, could react with it. Several observations signify that the I- accumulation 

phenotype exhibited by F-area strains FA-30, FA-2C-B*, and FA-191 likely proceeds 
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via this mechanism. First, the I--accumulating abilities from FA-30, FA-2C-B*, FA-191 

were all facilitated by the addition of H2O2. Since H2O2 is a strong oxidant, I- is readily 

oxidized to I2/I3
- without enzymatic catalysis, especially under acidic conditions. 

However, at the near-neutral pH values (pH 6 to 7) that were used during the screening 

portion of our study, H2O2 consistently stimulated I- accumulation in just 5 of 141 strains 

tested (including the two marine strains). Thus, it is unlikely that H2O2, itself acting as 

an oxidizing agent, transformed I- into a highly reactive species capable of binding 

nonspecifically to cell material (though at lower pH values [<4 to 5], this mechanism 

could be more relevant). Alternatively, haloperoxidases, which are found in animals, 

plants (including algae), fungi, and bacteria, utilize H2O2 as a cosubstrate and are 

considered the primary enzyme system responsible for nonspecific halogenations of 

organic substrates in nature (22, 121, 124). NaN3 significantly inhibited I- accumulation 

in the F-area strains, implicating the involvement of an enzymatic driven process, such 

as an active transport system or heme haloperoxidases, which are NaN3 sensitive (121). 

The F-area strains also exhibited increased I- accumulation with decreasing pH, 

characteristic of many haloperoxidases, which exhibit optimal activity under acidic 

conditions (27, 93, 98). Although our data support electrophilic substitution or 

internalization rather than electrostatic adsorption to the cell surface, the precise nature 

and location of bacterially bound I- in these terrestrial strains and the accumulation 

mechanism remain to be determined.  

Background concentrations of stable I in F-area groundwater range from 10 to 

100 nM, and plume concentrations of 129I are typically ~60 pCi/liter (2.4 nM) at “hot 
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spots” but can reach levels of >900 pCi/liter in the organic-rich seep zone. Our results 

demonstrate that the majority (98%) of aerobic bacteria isolated from F-area sediments 

do not accumulate I- (<0.2% accumulation) at ambient I- concentrations (0.1 μM), and 

the three IAB strains that were identified accumulate less than 2% I- under 

environmental conditions (aerobic; pH 4 to 9; 0.1 μM total I-) associated with most of 

the F-area plume (at the center of the plume, pH values as low as 3.2 have been 

documented, where electrostatic adsorption of I- by bacterial cells as demonstrated by 

MacLean et al. (78) could play a role in I- transport). Our experiments were conducted 

with dense cell cultures (≥1 × 109 cells ml-1), whereas cell numbers in groundwater from 

the sandy/clay aquifer of the F-area are lower than 1 × 104 cells ml-1 (data not shown). 

At these cell concentrations, cellular accumulation of I- would be exceedingly low. 

Furthermore, each of the IAB strains identified in this study was isolated from the seep 

zone sediments, not the sandy/clay aquifer material. These results indicate that 

IAB are most likely not responsible for the high fraction of organo-iodine (up to 25% of 

total iodine) that has been measured in groundwater of the F-area subsurface aquifer 

above the seep zone (107, 142). However, our ongoing experiments with I--oxidizing 

bacteria from F-area soils thus far indicate that this pathway for organo-iodine formation 

is more significant.  

Our multifaceted, carefully controlled approach allowed us to definitively 

identify an IAB phenotype that was 1 to 2 orders of magnitude less, in terms of specific 

I- accumulation activity, than that previously established for bacteria from very different 

environments (i.e., brines). This is important for several reasons. 129I has an extremely 
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long half-life (~16 million years), and its production is increasing each year. The DOE 

and other entities are tasked with modeling the long-term (centuries to thousands of 

years) fate and transport of 129I. Over decades or centuries, I- accumulated by bacterial 

cells and covalently attached to cellular constituents could conceivably make its way to 

the organo-iodine pool through cell lysis and possible incorporation into more-refractory 

organic soil material (e.g., humic or fulvic acids). Even when bacteria, whose biomass 

typically accounts for 1% or less of sedimentary organic matter (such as the F-area seep 

zone sediments) (63), incorporate less than 2% of iodine into their cells, this process 

could contribute appreciably to the organo-iodine pool over the long term. Similar 

mechanisms have been proposed to explain chloride retention in forest soils and peat 

bogs over decades to centuries (20). Carefully controlled, long-term column studies are 

needed to examine the extent that IAB, such as those identified in this study, affect 129I 

speciation and mobility in F-area seep zone sediments. Finally, uncultivated bacterial 

species yet to be discovered from the F-area or fungi may be capable of much higher 

levels of iodide accumulation (19). We are currently examining that possibility through a 

microautoradiography-fluorescence in situ hybridization (MAR-FISH) approach (74). 
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CHAPTER III 

BACTERIAL PRODUCTION OF ORGANIC ACIDS ENHANCES H2O2-

DEPENDENT IODIDE OXIDATION* 

 

3.1 Overview  

In order to develop an understanding of the role that microorganisms play in the 

transport of 129I in soil-water systems, bacteria isolated from subsurface sediments were 

assessed for iodide oxidizing activity. Spent liquid medium from 27/84 bacterial cultures 

enhanced iodide oxidation 2-10 fold in the presence of H2O2. Organic acids secreted by 

the bacteria were found to enhance iodide oxidation by 1) lowering the pH of the spent 

medium, and 2) reacting with H2O2 to form peroxy carboxylic acids, which are 

extremely strong oxidizing agents. H2O2-dependent iodide oxidation increased 

exponentially from 8.4 to 825.9 μM with decreasing pH from 9 to 4. Organic acids, with 

≥2 carboxy groups, enhanced H2O2-dependent iodide oxidation (1.5 – 15 fold) as a 

function of increasing pH above pH 6.0, but had no effect at pH ≤ 5.0.  The results 

indicate that, as pH decreases (≤ 5.0), increasing H2O2 hydrolysis is the driving force 

behind iodide oxidation.  However, ≥ pH 6.0, spontaneous decomposition of peroxy 

carboxylic acids, generated from H2O2 and organic acids, contributes significantly to 

iodide oxidation. The results reveal an indirect microbial mechanism, organic acid 

____________ 
* Reproduced with permission from “Li, H.-P., C. M. Yeager, R. Brinkmeyer, S. Zhang, 
Y.-F. Ho, C. Xu, W. L. Jones, K. A. Schwehr, S. Otosaka, K. A. Roberts, D. I. Kaplan, 
and P. H. Santschi. 2012. Organic acids produced by subsurface bacteria enhance iodide 
oxidation in the presence of hydrogen peroxide. Environmental Science & Technology 
46:4837-4844.” Copyright © 2012 American Chemical Society. 
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secretion coupled to H2O2 production, that could enhance iodide oxidation and organo-

iodine formation in soils and sediments. 

 

3.2 Introduction 

With the development of nuclear power, large inventories of fission products 

have been produced and, in some cases, released into the environment. 129I, one of the 

major fission products, has been given relatively little attention despite its potential 

toxicity to man, high perceived mobility, radioactive longevity (t1/2= 1.6×107 yrs), and 

growing inventories in engineered disposal facilities and in the environment. For 

example, 146 Ci of 129I was deposited in soils at two US Department of Energy (DOE) 

sites, the Hanford Site and Savannah River Site (SRS), and has been detected in mixed 

waste plumes at these sites well above (10 ~1000x) the federally regulated Maximum 

Contaminant Level (MCL) of 1 pCi L-1 (58, 90). As a consequence, 129I has been 

identified as a key risk driver at both sites. It is therefore critical to understand the 

environmental behavior of 129I in order to rigorously assess its storage and disposal 

options.  

The mobility of 129I in water-soil systems is affected by its chemical speciation 

and interactions with soil constituents, including minerals and organic matter. Major 

iodine species in water-soil systems includes iodide (I-), iodate (IO3
-) and organo-iodine 

(OI). Iodide has a lower soil affinity, with a distribution coefficient (Kd) of ~1 L3 kg-1, 

than that of iodate (Kd ~ 1000 L3 kg-1) under oxic conditions (13, 39, 54, 59, 107). Both 

iodide oxidation and iodate reduction can result in the production of several reactive 
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intermediates, including iodine (I2), hypoiodous acid (HOI) and triiodide (I3
-). These 

intermediates in turn can be taken up by soil organic matter to form OI through 

iodination of aromatic moieties (82, 104, 139), adsorbed onto mineral surfaces (58-59), 

and volatilized into the atmosphere (6). All these processes would influence the mobility 

of 129I. To date, several studies have demonstrated that organic-rich soils have the 

tendency to serve as a 129I sink, i.e. immobilize 129I, mainly through the iodination 

process (84, 138, 141). In addition, the molecular weight of OI in soils can play a major 

role in the mobility of iodine, whereby the higher molecular weight OI would tend to 

become a sink for 129I, whereas lower molecular weight colloidal or truly dissolved OI 

species can leach out and migrate in groundwater (39, 107, 137-138, 142).  

In theory, iodide is expected to be the dominant species in most water-soil 

systems due to its stability over the typical range of Eh and pH found in these 

environments (94). Oxidation of iodide via a single-step electron transfer is 

thermodynamically unfavorable, unless a strong oxidant is available (77). Abiotic 

oxidants (e.g. MnO2, Fe2O3) have been demonstrated to facilitate iodide oxidation; 

however, the importance of their reactions is limited under acidic conditions (pH ≤ 5.0) 

(36-37, 42, 137). Microbial activity has long been linked to iodide oxidation and soil OI 

formation (6, 84-85). These studies have demonstrated that soils or sediments treated 

with heat, γ-irradiation, or prokaryotic antibiotics exhibit a considerable reduction in 

iodine binding capacity onto soils (6, 85), whereas inoculation of sterilized soil with 

fresh soil can restore the iodine-organic matter binding potential (84). Mechanisms of 

microbial activities that could immobilize 129I include bacterial accumulation and 
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extracellular oxidation, which would also lead to iodination of soil organic matter. 

Indeed, a growing body of literature has implicated microbial oxidases, perhydrolases 

and peroxidases in the formation of halogenated organic matter in soils (6-7, 10, 20, 84-

85, 89). Both iodide oxidation and accumulation activity have been identified in marine 

and brine water bacteria; however, using similar approaches, efforts to demonstrate 

iodine immobilization by cellular uptake or oxidation by terrestrial bacteria was not 

successful (7, 10).  

In soils and sediments of the SRS F-area, based on the observed ranges of pH 

(3.2 ~ 6.8) and Eh (360 ~ 654 mV), iodide is expected to be the predominant iodine 

species (90). However, ≥50% of iodine species is present in an oxidized form (i.e. IO3
- 

and OI) in the groundwater of the SRS F-area, indicating that iodide oxidation occurred 

(90, 107, 142). We previously demonstrated that bacteria isolated from SRS F-area 

subsurface sediments irreversibly bound iodide, but only a small fraction (0.2~2%) was 

accumulated at ambient iodine concentrations (0.1 μM) (72). It was concluded that 

bacterial iodide accumulation was not responsible for the high fraction of OI detected in 

F-area groundwater.  Interestingly, enhanced iodide oxidation was observed in the spent 

medium from a number of SRS F-area bacterial isolates in the presence of H2O2. In 

water-soil systems, H2O2 can originate from common metabolic processes of fungi and 

bacteria under aerobic conditions and freely diffuse across the cell membrane into the 

surrounding milieu where the concentration can reach up to 2~15 μM (44, 46). 

Moreover, studies have demonstrated that H2O2 produced by photochemical or 

biological reactions in surface soils could be transported down-gradient to the subsurface 
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environment (29, 125). This result leads us to believe that a number of terrestrial bacteria 

are capable of influencing the chemical behavior of 129I via extracellular H2O2-dependent 

reactions. In this study, we report that organic acids secreted by SRS F-area bacteria can 

enhance H2O2-dependent iodide oxidation.  

 

3.3 Materials and methods 

3.3.1 Culture conditions and preparation of spent medium and crude cell extracts  

Bacteria isolated from soils in the F-area of the SRS (72) were cultured 

aerobically by shaking (150 rpm) in liquid 1X M9GY medium (M9 minimal salt 

medium enriched with 0.4% glucose and 0.4% yeast extract, pH 7.4 ± 0.2) at 30 oC in 

the dark. When the optical density (OD600) of the cultures reached ~1.2 (late exponential 

phase), bacterial cells were harvested by centrifugation (3200 ×g, 20 oC, 15 min), then 

washed and suspended in fresh 1X M9G medium. After 24 h incubation at 30 oC in the 

dark with shaking (150 rpm), spent M9G medium and cell pellets were separated by 

centrifugation (3200 ×g, 20 oC, 15 min). The spent medium was then directly used for 

the assays detailed below. To obtain crude cell extracts, cell pellets were suspended with 

fresh 0.1X M9G medium and then disrupted by 5 cycles of 20 s sonication (Misonix 

XL2000, 100W) at 20 kHz and 40 s cooling in an ice bath. Complete lysis of bacterial 

cells was confirmed through microscopy. Crude cell extracts were centrifuged to remove 

cell debris.  
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3.3.2 Determination of H2O2-dependent iodide oxidizing activity  

A method for monitoring triiodide (I3
-) formation (10) was applied to determine 

iodide oxidation rates. Reaction mixtures for the determination of I3
- formation were 

prepared in 96-well plates (Polystyrene, Greiner UV-Star) and consisted of: 150 μL 

spent media or crude cell extract, 100 mM phosphate buffer (pH 7.2), 10 mM KI and 5 

mM H2O2 in 300 μL total volume. Controls (i.e., reactions without KI or spent 

medium/crude cell extract) were also carried out to differentiate abiotic from biotic 

reactions. Formation of I3
- was monitored spectrophotometrically at 353 nm after 

incubation at 30 oC for 20 min. The increase in absorbance at 353 nm was converted to 

the concentration of I3
- by applying Beer-Lambert’s law with a  molar extinction 

coefficient (ε) of 25.5 mM-1 cm-1 (10). In this study, the amount of I3
- formed, in μM, 

from 150 μl of spent medium or crude cell extract was used to express the iodide 

oxidizing capacity.   

 

3.3.3 16S rRNA gene sequencing and phylogenetic analysis  

For phylogenetic analysis of SRS bacteria capable of oxidizing iodide 

extracellularly, 16S rRNA gene was sequenced as previously described (72). Briefly, 

genomic DNA was extracted by Tris-EDTA buffer (pH 7.5). Amplification by 

polymerase chain reaction (PCR) of the 16S rRNA was performed by using bacterial 27f 

primer (5’-GAGTTTGATCMTGGCTCAG-3’) and the 1492r primer (5’-

GGTTACCTTGTTACGACTT-3’) and followed with a purification procedure 

(MinElute PCR purification kit, Qiagen).  Sequencing of purified PCR products was 
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performed by the Georgia Sequencing Facility at the University of Georgia, Athens. 

Phylogenetic analysis of 16S rRNA gene sequences was performed using BLAST 

searches (http://www.ncbi.nlm.nih.gov/Genbank/index.html), the RDP classifier (26), 

and maximum likelihood reconstruction of phylogenetic trees with ARB (131). 

 

3.3.4 Correlation of peroxidase and iodide oxidation activities  

To evaluate the correlation of H2O2-dependent iodide oxidation and peroxidase 

activities, 1 − 5 mL of spent medium was fractionated by centrifugal ultrafiltration with 

molecular weight cut-offs of 3, 10, 30, 50 and 100 kDa (AmiconUltra, Millipore). 

Polysulfonate standards (40 and 100 kDa, Sigma) were used as ultrafiltration controls. 

The retentate was washed with 300 μL of fresh 1X M9G at least 3 times and suspended 

to 1 mL with 1X M9G. The retentates and filtrates of each fraction were analyzed to 

determine H2O2-dependent iodide oxidation rates using the I3
- formation method. The 

fraction with the highest iodide oxidizing activity was also analyzed for general 

peroxidase activity using 2, 2’-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid 

(ABTS, Sigma) as the substrate. The assay mixture contained 1.3 mM ABTS, 150 μL 

retentate or filtrate sample and 5 mM H2O2 in 100 mM phosphate buffer (pH 7.2). 

Oxidized ABTS was monitored spectrophotometrically at 420 nm at 30 oC over 30 min 

intervals for 2 h. The increase in absorbance at 420 nm was converted to the 

concentration of oxidized ABTS by applying Beer-Lambert’s law with ε of 36 mM-1 cm-

1 (92). 
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3.3.5 Quantification of organic acid concentration  

Spent medium was passed through a 0.22 μm syringe filter (cellulose acetate, 

VWR) and injected (50 μL) into an ion chromatograph equipped with an IonPac AS11-

HC column set (analytical column, 4 × 250 mm; guard column, 4 × 50 mm) and a 

conductivity detector from Dionex. The anionic components in the samples were eluted 

with a gradient program of NaOH flowing at 1.5 mL min-1. The gradient program of 

NaOH was set as follows: 1 mM NaOH for 6 min, NaOH to 15 mM over 7 min, NaOH 

to 30 mM over 15 min, and then NaOH was maintained at 30 mM for 7 min. The eluted 

anionic components were quantified based on the standard curve of the following 

organic acids: lactic, pyruvic, succinic, maleic, oxalic, and citric acids. 

 

3.4 Results and discussion 

3.4.1 Bacterial enhancement of H2O2-dependent iodide oxidation  

Iodide can be oxidized directly by reacting with H2O2 (Equation 3.1). 

3 I− (aq) + H2O2 (aq) + 2 H+ → I3
−

 (aq) + 2 H2O (3.1) 

In this study, increased H2O2-dependent iodide oxidation was observed in liquid cultures 

of numerous bacterial strains isolated from F-area of the SRS. Analysis of spent medium 

and crude cell extracts localized the activity to the extracellular medium (Table 3.1). It 

should be noted that components of cell extracts could hamper H2O2-dependent iodide 

oxidation (e.g. intracellular catalases and/or peroxidases could rapidly deplete H2O2). 

Spent medium from 84 SRS bacteria was subsequently screened for iodide oxidizing 
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activity in the presence of H2O2, and enhancement occurred with 27 of the strains. These 

27 positive strains were members of Actinobacteria, Bacteriodetes, Firmicutes, and 

Proteobacteria phyla. No obvious trends relating the phylogenic affiliation of these 

bacteria to their capacity for H2O2-dependent iodide oxidation were observed (data not 

shown). In M9G medium without cells, 38 μM I3
- was formed from 10 mM iodide and 5 

mM H2O2 over a 20 min incubation period. In contrast, 342 ± 4 μM I3
- accumulated in 

spent medium from strain FA-130 (phyla Firmicutes) containing the same 

concentrations of iodide and H2O2 (Table 3.1). These results indicate that a 

component(s) commonly secreted by SRS bacteria can accelerate iodide oxidation by 

reacting with H2O2 or using H2O2
 as an electron acceptor. To characterize these reactive 

component(s), 10 SRS strains exhibiting enhanced H2O2-dependent iodide oxidation 

capacity, 142 ~ 342 μM I3
- produced from 10 mM iodide and 5mM H2O2

 over 20 min, 

were selected for further experiments (Table 3.1).  

Initially, we hypothesized that the reactive component(s) responsible for 

enhanced iodide oxidation was a haloperoxidase or other, non-specific peroxidase. 

Peroxidases are commonly found in soil bacteria (92), and haloperoxidases have been 

implicated in halogenation of natural organic matter (20, 89). However, using molecular-

size fractionation, the reactive component(s) secreted by SRS bacteria was found to be 

smaller than 3 kDa (data not shown), and peroxidase-like activity (2, 2’-azino-bis-3-

ethylbenzothiazoline-6-sulphonic acid oxidation assay, (92)) was not detected (data not 

shown). Furthermore, the spent medium of three different strains exhibited the same 

level of enhanced triiodide formation before and after boiling (15 min). These results 
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indicated that enzymatic activity was not directly responsible for the enhanced H2O2-

dependent iodide oxidation detected in spent medium from SRS bacteria.  

 
 
Table 3.1. Enhancement of H2O2-dependent iodide oxidation by spent medium and crude cell extracts of 
various bacterial cultures and the pH values and carboxylic acid concentrations in the spent medium  

Bacteria 

Phylogenic affiliation  
I3

- formation 

(μM)a 

pH 

Carboxylic anions (mM)b 

Accession 

no. 

Most closely related 

organism in GenBank 

database (% similarity) 

 
Spent 

medium 

Crude 

cell 

extract 

Lac/Ace Pyr Suc Mal Oxa Cit 

M9Gc    38 ± 0 38 ± 0 7.45 > 5.55 ND ND ND ND ND 

FA-86 JQ765450 Paenibacillus sp. HGF7 

(83%) 

 250 ± 2 <DL 6.24 > 5.55 0.18 1.68 ND 0.06 ND 

FA-121 JQ765444 Bacillus cereus Rock3-44 

(99%) 

 180 ± 6 <DL 6.43 > 5.55 0.11 2.13 ND 0.00 ND 

FA-130 JQ765447 Bacillus anthracis CNEVA-

9066 (95%) 

 342 ± 4 <DL 6.04 > 5.55 0.11 1.81 ND 0.34 ND 

FA-132 JQ765446 Bacillus thuringiensis IBL 

4222 (91%) 

 269 ± 11 <DL 6.28 > 5.55 0.08 1.85 ND 0.11 ND 

FA-139 JQ765445 Burkholderia phytofirmans 

PsJN (98%) 

 196 ± 2 <DL 6.42 > 5.55 0.14 1.40 ND 0.06 ND 

FA-149 JQ765451 Bacillus cereus G9842 (83%)  247 ± 5 <DL 6.28 > 5.55 0.07 1.72 ND 0.25 ND 

FA-151 JQ765449 Brevibacillus brevis NBRC 

100599 (94%) 

 337 ± 27 <DL 6.11 > 5.55 0.08 2.34 ND 0.46 ND 

FA-152 JQ765448 Bacillus cereus 03BB108 

(83%) 

 306 ± 8 <DL 6.13 > 5.55 0.09 2.12 ND 0.17 ND 

FA-183B JQ765442 Bacillus thuringiensis IBL 

4222 (98%) 

 173 ± 5 <DL 6.60 > 5.55 0.29 1.25 ND 0.06 ND 

FA-2CB* JQ765443 Bacillus cereus Rock3-44 

(98%) 

 143 ± 13 <DL 6.50 > 5.55 0.42 1.32 ND 0.04 ND 

aThe standard deviation is derived from triplicate assays. <DL, below detection limit.   
bAbbreviations of organic acids: Lac/Ace, lactate/acetate; Pyr, pyruvate; Suc, succinate; Mal, maleate; Oxa, oxalate; Cit, citrate. ND, 

not detected. 
cM9G medium without cells. 

 
 
 

3.4.2. Influence of pH on H2O2-dependent iodide oxidation  

Changes in pH can also influence H2O2-dependent iodide oxidation according to 

the reaction shown in Equation (3.1). To evaluate the effect of pH on H2O2-dependent 

iodide oxidation in M9G medium, I3
- formation was measured as a function of pH. The 



 56

degree of I3
- formation exponentially increased from 8 ± 2 to 826 ± 73 μM with 

decreasing pH from 9 to 4 (Fig 3.1A). The pH values of the spent M9G medium from 

the SRS bacterial cultures ranged from 6.04-6.60, which is substantially lower than the 

pH (7.45) of fresh M9G medium (Table 3.1). A theoretical iodide oxidation rate, 

factoring in the effect of pH, was estimated for each SRS spent medium listed in Table 1 

using the equation shown in Fig 1A. These calculations indicate that the bacterial-

mediated decrease in pH value would have provided an appreciable enhancement of 

H2O2-dependent iodide oxidation (Fig 3.1B). However, the estimated rates of iodide 

oxidation were still significantly lower (31~58 %) than the experimentally determined 

values (Fig 3.1B), indicating additional factors were involved.  

 

3.4.3 Organic acids enhance H2O2-dependent iodide oxidation  

Four anions of organic acids, including lactate, pyruvate, succinate and oxalate 

anions, were commonly detected in the <3 kDa fraction of the spent medium from SRS 

cultures (Table 3.1). In each case, high concentrations of lactate (> 5.55 mM) were 

observed, which could contribute substantially to the pH decrease of the bacterial culture 

medium. The high concentration of lactate interfered with the quantification of acetate; 

thus, lactate and acetate concentrations were shown as a single value using lactate as the 

standard. 
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FIG. 3.1. (A) Relationship between pH and H2O2-dependent iodide oxidation in M9G medium. (B) 
Correlation between the measured rate of H2O2-dependent iodide oxidation and that estimated from pH 
effects alone in spent medium from 10 SRS bacterial isolates. (C) Difference in the measured rate (solid 
circles) of succinic acid enhanced H2O2-dependent iodide oxidation and the rate estimated to be due to pH 
effects alone (hollow circles). The pH values of the succinic acid-amended M9G medium are indicated 
with stars. (D) Correlation between the measured rate of H2O2-dependent iodide oxidation and the rate 
estimated from the combined action of pH (equation from Fig. 1A) and organic acids (equations from 
Figure 2). Error bars in each figure represent one standard deviation (n = 3). 

 
 
 
Organic acids can acidify aqueous solutions by dissociation of the hydrogen ion 

from the carboxyl group. In order to differentiate pH-related effects from other 

mechanisms that could be associated with the observed enhancement of iodide 

oxidation, rates of I3
- formation were measured in M9G medium containing pure 

succinic acid (the predominant dicarboxylic acid detected in the bacterial cultures; Table 

3.1) ranging in concentration from 0-15 mM, then compared to the expected rates based 

on pH change alone using the equation shown in Fig 3.1A. As shown in Fig 3.1C, when 

the succinic acid concentration increased from 0 to 15 mM, the pH value of the M9G 
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medium decreased from 7.45 to 6.65. This discrepancy in pH (0.8 units) was estimated 

to enhance I3
- accumulation from 38 μM in M9G medium to 61 μM, an increase of <2 

fold over the time course of the experiment. Yet, I3
- concentration in the presence of 15 

mM succinic acid was measured as 323 ± 19 μM, an increase of ~10 fold (Fig 3.1C). 

These results further demonstrate that organic acid enhanced H2O2-dependent iodide 

oxidation is not simply a function of pH change.  

Next, rates of I3
- formation were measured in reaction mixtures buffered at a 

constant pH (pH 6.0) containing M9G medium and 0 − 20 mM of select organic acids 

(Fig 3.2). Enhanced H2O2-dependent iodide oxidation was detected in the reaction 

mixtures containing citric, maleic, oxalic or succinic acid, but not acetic, lactic or 

pyruvic acid (Fig 3.2). Moreover, the H2O2-dependent iodide oxidation capacity 

exhibited a “second order correlation” with respect to the concentration of citric, 

succinic, maleic or oxalic acid (R2 ≥ 0.995). The most plausible mechanism that can 

explain the enhanced capacity of iodide oxidation by organic acids in the presence of 

H2O2 is the formation of peroxy carboxylic acid (Equation 3.2).  

R-COOH + H2O2 → R-COOOH + H2O (3.2) 

Peroxy carboxylic acids are powerful oxidants that could readily oxidize I-. Similar to 

H2O2, their instability in aqueous solution leads to a spontaneous decomposition, 

whereby 2 electrons are consumed by each peroxy carboxyl group (-COOOH) (Equation 

3.3) (16, 18, 35). 

R-COOOH + 3I- + 2H+
 → R-COOH + H2O + I3

- (3.3) 
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FIG 3.2 Correlation between I3

- formation and organic acid concentration. Reactions were buffered at pH 
6.0 and contained citric (solid rectangles), succinic (solid diamonds), oxalic (solid circles), maleic (solid 
triangles), acetic (hollow diamonds), lactic (hollow rectangles), or pyruvic (hollow circles) acid in M9G 
medium with 5 mM H2O2. Each line expressed a second order correlation between triiodide formation and 
organic acid concentration with R2 ≥ 0.995 (citric acid, Y=95.1X2+205.6X+7.3; succinic acid, 
Y=7.0X2+50.0X+15.8; maleic acid, Y= 7.8X2+25.0X+2.6, oxalic acid, Y=4.2X2+37.5X+8.9). Error bars 
represent one standard deviation (n = 3). 

 
 
 
The data also revealed a correlation between the degree of enhanced H2O2-

dependent iodide oxidization and the number of carboxyl groups (-COOH) on a given 

organic acid (Fig 3.2). The highest iodide oxidizing capacity (479 ± 16 μM I3
- produced) 

was observed in reaction mixtures with citric acid, which contains 3 carboxyl groups. 

Reactions containing succinic, maleic or oxalic acid, all dicarboxylic acids, produced 

224, 151, and 139 μM I3
-, respectively. H2O2-dependent iodide oxidation was not 

enhanced in reactions containing monovalent organic acids (acetic, lactic or pyruvic 

acid; I3
- formation in M9G medium, with or without these monocarboxylic acids, was 38 

μM). These results imply that the H2O2-dependent iodide oxidation enhancement 

potential of a given organic acid is dependent on the number of available sites for peroxy 
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carboxyl group formation. The lack of H2O2-dependent iodide oxidation enhancement by 

monovalent organic acids, which could only produce one peroxy carboxyl group, does 

not imply that no iodide oxidation occurred. It is more likely related to the fact that the 

spontaneous decomposition of one peroxy carboxyl group consumed 2 electrons, the 

same electrons required for the hydrolysis of one H2O2.  

As discussed earlier, 31 to 58 % of the H2O2-dependent iodide oxidation capacity 

measured in the spent medium of SRS bacterial cultures was not accounted for when pH 

change was the only variable considered (Fig 3.1B). To determine if this differential 

could be explained by the action of peroxy carboxylic acids, the estimated H2O2-

dependent iodide oxidation capacities were recalculated by summing (i) the influence of 

peroxy carboxylic acids, using the regressions derived from Fig 3.2, and (ii) the 

influence of pH change, using the equation from Fig 3.1A. For example, the estimated I3
- 

formation for strain FA-86, which secreted 1.68 mM succinate and 0.06 mM oxalate and 

lowered the pH value from 7.45 to 6.24 (Table 3.1), was 248 μM using the following 

equations: 

1)  7.00 × (1.68)2 + 49.99 × (1.68) + 15.79 = 119.87 μM from succinate (Fig 3.2)  

2)  4.19 × (0.06)2 + 37.51 × (0.06) - 8.93 = 2.34 μM from oxalate (Fig 3.2)   

3)  45469 × e (-0.94 × 6.24) = 125.74 μM from the decrease in pH value (Fig 3.1A)  

After performing this normalization, the ratio of the estimated H2O2-dependent iodide 

oxidation capacities to the measured values approximated 1 (Fig 3.1D). This result 

demonstrates that the enhanced H2O2-depenedent iodide oxidation from SRS bacterial 



 61

strains could be fully accounted for by considering pH and the concentration of 

dicarboxylic acids in the mixture.  

 

3.4.4 Relevance of organic acids influencing 129I mobility in natural water-soil 

systems  

Several reasons lead us to believe that iodide oxidation by peroxy carboxylic 

acids may be relevant in the F-area subsurface. First, although organic acid 

concentrations in SRS F-area groundwater or sediments have not been measured, 

evidence from other studies suggests that organic acids are ubiquitous and abundant in 

soil-water systems. Numerous field observations place organic acid concentrations in 

pore waters and stream waters in the μM range (1, 23, 60, 119). Organic acids in soils 

are mainly derived from biotic processes including microbial decomposition and 

exudation from plant roots, bacteria, and fungi, and appreciable quantities (μM ~ mM) 

of organic acids can be found in the surrounding milieu of these organisms (57, 80). 

Although the range of organic acid concentrations evaluated in our experiments (400 μM 

to 10 mM) exceeded that found in the bulk phase of typical soil porewater, it was well 

within the range of concentrations expected for microenvironments surrounding bacterial 

biofilms, plant roots, and fungal hyphae (75, 80).   Finally, much of the low level 

radioactive waste inventoried in soils and sediments at DOE sites, including F-area, 

contain abundant chelating agents that were used in the decontamination processes (90), 

of which organic acids, including citric and oxalic acid, were often principal components 

(99, 108).  
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In addition to organic acids, enhancement of iodide oxidation via the formation 

of peroxy carboxylic acids described in this paper requires H2O2. As addressed earlier, 

H2O2 in water-soil system mainly originates from metabolic processes of fungi and 

bacteria whereby porewater concentration can reach up to 2-15 μM and possibly much 

higher at micro- or nano-scale near the microorganisms (44, 46). To determine if 

environmentally relevant concentrations of H2O2 could interact with organic acids to 

enhance iodide oxidation, I3
- formation was measured in the presence of citric, succinic, 

or oxalic acid as a function of H2O2 concentration (Fig 3.3). Iodide oxidation was 

enhanced by organic acids in the presence of H2O2 at all concentrations tested. However, 

the degree of enhancement (I3
- formation with organic acid versus I3

- formation without 

organic acid) decreased from 2.5 − 5.7x enhancement to 1.5 − 3.0x enhancement as 

H2O2 concentrations decreased from 5 mM to 5 μM.  

 
 
 

 
FIG. 3.3. I3

- formation as a function of H2O2 concentration with 3 mM citric acid (hollow triangles), 
succinic acid (hollow squares), and oxalic acid (hollow circles), and without organic acids (solid circles). 
Organic acid standards were prepared in M9G medium (pH 7.45).      
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Our results implicate groundwater pH as a primary control on H2O2-dependent 

iodide oxidation (Fig 3.1A). In the SRS subsurface, bacterial activity is not likely to 

affect the pH of bulk soils or porewater, because the alkalinity of soil or porewater is in 

the mM range. However, microniches surrounding bacterial biofilms, fungi, and plant 

roots are often more acidic than the surrounding bulk phase due to respiratory activity 

and organic acid secretion (75, 80). Coupled to H2O2 production, these acidic 

microniches could serve as hotspots for iodide oxidation in water-soil systems.    

Theoretically, the production rate of peroxy carboxylic acids is directly related to 

the availability of protons (18, 33, 35, 143). The pH of the contaminated groundwater 

within F-area of SRS ranges from 3.0 to 9.0 due to the acidic nature of the mixed waste 

plume and ongoing base injection remediation efforts (90). To determine if 

environmentally relevant pH ranges could influence the organic acid enhancement of 

H2O2-dependent iodide oxidation, I3
- formation was measured in the presence of citric, 

succinic or oxalic acid as a function of pH. Overall, the rate of H2O2-dependent iodide 

oxidation decreased with increasing pH from 3.0 to 8.0 (Fig 3.4A), similar to the pattern 

illustrated in Fig 3.1A. However, as presented in Fig 3.4B, the contribution of peroxy 

carboxylic acids to H2O2-dependent iodide oxidation, as calculated in equation (3.4), 

prevails only at pH ≥ 6.0.  

I3
- ratio = 

onlyhydrolysisOHfromproducedI

OHandacidscarboxylicperoxyfromproducedI

223

223
−

−

 (3.4) 
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FIG. 3.4. (A) I3

- formation as a function of pH with 3 mM citric acid (hollow triangles), succinic acid 
(hollow squares), and oxalic acid (hollow circles), and without organic acids (solid circles). (B) Relative 
I3

- formation (i.e. ratio of I3
- formed with the presence of 3 mM organic acid to I3

- formed without the 
presence of organic acid) as a function of pH. Citric acid (hollow triangles), succinic acid (hollow 
squares), and oxalic acid (hollow circles) were prepared in the pH-adjusted M9G medium individually.   

 
 
 
It is quite possible that iodide oxidation at pH <6.0 can be carried out 

concomitantly via H2O2 hydrolysis and spontaneous decomposition of peroxy carboxylic 

acids. However, our results indicate that at low pH values, particularly ≤ pH 5.0, 

increased H2O2 hydrolysis is the driving force behind iodide oxidation; whereas, above 

pH 5.0, spontaneous decomposition of peroxy carboxylic acids, generated from H2O2 

and organic acids, can contribute significantly to iodide oxidation. Indeed, the 

dissociation constants of citric (pKa3=6.40), succinic (pKa2=5.60), and oxalic acids 
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(pKa2=4.14) are such that at higher pH values (i.e. pH >7.0) full dissociation of the 

carboxyl groups is more likely, thus increasing the number of reactive sites to form 

peroxy carboxylic groups (18). 

In summary, organic acids produced by terrestrial bacteria can enhance iodide 

oxidation in the presence of H2O2. As demonstrated in this study, the magnitude of this 

effect can be controlled by several environmental factors such as pH, the composition 

and redox properties of the organic acids and the concentration of H2O2. In terms of the 

long-term fate and transport of 129I, H2O2- and organic acid-dependent iodination 

reactions could be a relevant mechanism for immobilizing 129I in the terrestrial 

environment.   
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CHAPTER IV 

IODIDE OXIDIZING ACTIVITY OF BACTERIA FROM SUBSURFACE 

SEDIMENTS OF THE SAVANNAH RIVER SITE, SC, USA* 

 

4.1 Overview 

129I is a major by-product of nuclear fission that is of concern because of its 

extremely long half-life (~16 million yrs), perceived toxicity through bioaccumulation, 

and the increasing inventory of this radionuclide worldwide. Relatively high 

concentrations of iodate (27.3%) and organo-iodine (23.9%) are present in a 129I-

conatminated aquifer at the Savannah River Site, SC, USA. To determine if 

microorganisms could influence 129I speciation in this system, iodide oxidizing activity 

was evaluated in bacteria isolated from SRS sediments. All strains isolated directly from 

sediment material (n=325) and from sediment enrichment cultures containing 1 mM 

iodide (n=29) tested negative for iodide oxidation on R2A agar plates containing iodide 

and starch. However, tubes from 2/24 enrichment cultures exhibited a distinct yellow 

coloration, indicative of iodide oxidation to I2 and/or volatile organic iodine species, 

after 22 weeks incubation. Analysis of iodine speciation in the enrichment culture 

____________ 
* Reproduced with permission from “Li, H.-P., R. Brinkmeyer, W. L. Jones, S. Zhang, 
C. Xu, Y.-F. Ho, K. A. Schwehr, D. I. Kaplan, P. H. Santschi, and C. M. Yeager. 2012. 
Iodide Oxidizing Activity of Bacteria from Subsurface Sediments of the Savannah River 
Site, SC, USA, p. 89-97. In M. Kawaguchi, K. Misaki, H. Sato, T. Yokokawa, T. Itai, T. 
M. Nguyen, J. Ono, and S. Tanabe (ed.), Interdisciplinary Studies on Environmental 
Chemistry Vol. 6 - Environmental Pollution and Ecotoxicology. Terra Scientific 
Publishing Company Tokyo.” Copyright © 2012 TERRAPUB. 
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supernatant from these two tubes revealed transformation of iodide to iodate and organo-

iodide. Screening of 84 strains for iodide oxidizing activity using a combination of 

triiodide (I3
-) formation, radiography and a recently developed, sensitive iodine 

speciation assay revealed that 44 of these strains were capable of iodide oxidation. These 

results indicate that iodide oxidation, albeit at very slow rates, can be supported by a 

variety of terrestrial bacteria.   

 

4.2 Introduction 

129I is a major by-product of nuclear fission that is of concern because of its 

mobility in the environment, excessive inventory, long half-life (~16 million yrs), and 

potential toxicity due to bioaccumulation through the food chain and bioconcentration in 

the thyroid gland.  Currently, 146 Ci of 129I is inventoried in soils at two US Department 

of Energy sites, Hanford Site and Savannah River Site (SRS) (58, 90). Based on 

thermodynamic principles, the main iodine species in SRS F-area groundwater should be 

iodide (I-), which is thought to have higher subsurface mobility than iodate (IO3
-) or 

organo-iodine. Because relatively high concentrations of iodate (27.3%) and organo-

iodine (23.9%) have been detected in the SRS subsurface, it is likely that chemical/ 

biological factors, other than pH and Eh, are involved in regulating iodine speciation 

(42, 72, 137). 

In terrestrial groundwater and sediments where iodide is the thermodynamically 

favoured form of iodine, it is thought that organo-iodine formation proceeds after iodide 

is transformed into more reactive species, such as I2, HIO, or I3
- (82). Because iodide 
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oxidation via a single-step electron transfer is thermodynamically unfavourable, this 

process requires a strong oxidant (e.g. MnO2 or H2O2) or an enzymatic catalyst (3, 42). 

Numerous studies have implicated a role for microorganisms in organo-iodine formation 

in soils and sediments, and growing body of literature has implicated microbial oxidase, 

perhydrolases and peroxidases in the formation of halogenated organic matter (3, 89). 

Iodide oxidizing bacteria (IOB) have been isolated from environments naturally high in 

iodine, including marine sediments and natural gas brine waters/sediments (10), and 

from a marine fish aquarium where I2 formation was implicated in a fish kill (45). IOB 

were also isolated from seawater, however only after enrichment for several months in 

the presence of 1 mM iodide (10). Using similar approaches, efforts to isolate IOB from 

terrestrial sources have been unsuccessful. 

In a previous study (72), we isolated bacteria from SRS sediments that were 

capable of accumulating 0.2 to 2.0% iodide at ambient concentrations (0.1 µM), but 

based on the relatively low biomass in the subsurface aquifer at F-area and the relatively 

small amount of iodide associated with the cells, it is unlikely that iodide-accumulating 

bacteria are responsible for the high fraction of organ-iodine detected at this site. Instead, 

we hypothesized that IOB may play a more significant role. The goal of this study was to 

evaluate if IOB are present in F-area subsurface sediments.  
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4.3 Materials and methods 

4.3.1 Isolation of bacteria  

Bacteria were isolated from F-area sediments as previously described (72). 

Sediments from 8 different regions within the contaminated subsurface of F-area were 

used to start enrichment cultures containing 1 mM KI and either 1) sterile dH2O, 2) 1/10 

strength DNB (dilute nutrient broth), or 3) 1/10 DNB with cylcohexamide (50 µg mL-1). 

This resulted in 24 enrichment cultures. At 2, 9, and 22 weeks, a 50 µL sub-sample from 

each enrichment culture was used to isolate bacteria as described above. Once isolated, 

all strains were grown on R2A-iodine-starch agar plates (1.2 g L-1 KI and 1g L-1 soluble 

starch) to screen for iodide oxidizing activity through the formation of purple I2-starch 

complexes (10). 

 

4.3.2 16S rRNA gene sequencing and phylogenetic analysis   

Extraction of genomic DNA and PCR amplification of the 16S rRNA gene was 

performed as previously described (72).  Sequencing of purified PCR products 

(MinElute PCR Purification Kit, Qiagen) was performed by the Georgia Sequencing 

Facility at the University of Georgia, Athens. Phylogenetic analysis of 16S rRNA gene 

sequences was performed using BLAST searches 

(http://www.ncbi.nlm.nih.gov/Genbank/index.html), the RDP classifier (26), and 

maximum likelihood reconstruction of phylogenetic trees with ARB (131). 
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4.3.3 Screening for iodide oxidizing strains 

Two approaches were applied to identify IOB. The first method examined the 

formation of triiodide (I3
-) (10) using culture supernatants and crude cell extracts. 

Culture supernatants and crude cell extracts were examined. To prepare crude cell 

extracts, cell pellets of individual strains were suspended in 0.1X M9G (M9 minimal 

medium with 2% glucose), stored on ice for 30 min, then disrupted by 5 cycles of 20 s 

sonication (Misonix XL2000, 100W) at 20 kHz and 40 s of cooling in an ice bath. 

Complete lysis of cells was confirmed by microscopy. Cell debris was removed from the 

crude cell extracts using centrifugation (3200×g, 20oC, 15 min).    

 Reaction mixtures for I3
- formation contained 150 µL crude extract or 

supernatant, 177 mM phosphate buffer (pH 6.0) and 10 mM KI in 300 µL total volume. 

Sample controls (no KI) and assay controls (no crude extract or supernatant) were 

included. Formation of I3
- was monitored spectrophotometrically (absorbance 353 nm) at 

10 min intervals over 1 hour at 30oC.  One unit (U) of iodide-oxidizing activity was 

defined as the amount of crude extract or supernatant capable of oxidizing 1 µmol of 

iodide min-1.  

Autoradiography was the second method used to identify IOB (72). Cell material 

from certain strains grown in the presence of 125I- exhibited a ring or “halo” when 

exposed to radiography film (Figure 2 in Li et al.(72)), and our preliminary observations 

led us to believe that this halo pattern could be an indication of iodide oxidation activity.  
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4.3.4 Size fractionation of the iodide-oxidizing components of IOB supernatants 

  Supernatant (30 mL) from strains incubated in 1X M9G for 24 h was collected 

and concentrated by ultra-filtration (AmiconUltra, Millipore). The retentate was washed 

three times with 1X M9G (300 µL) and suspended to 3 mL in the same medium. Iodide 

oxidation was measured in the retentate and filtrate using the I3
- formation assay. 

 
 
4.3.5 Iodine speciation analysis 

Presumptive IOB were incubated in 1X M9G medium containing 10 µM KI for 1 

to 30 days with gentle hand shaking twice daily. The supernatant was collected by 

centrifugation (3200 ×g, 20oC, 15 min) for iodine species analysis. 1X M9G medium 

containing 10 µM KI was used as the background control. Additionally, 1-2 bacterial 

strains deemed non-IOB based on the I3
- formation and radiography assays were also 

included as negative controls. Quantification of inorganic iodine species (iodide and 

iodate) was performed as described by Zhang et al. (142). 

 

4.4 Results and discussion  

A comprehensive culturing strategy using different combinations of cell 

dispersion techniques, medium, gelling agents, antibiotics, and incubation times was 

used to isolate 325 morophologically distinct bacterial strains from F-area sediments.  

Phylogenetic analysis of 16S rRNA gene fragments revealed that the isolates comprised 

6 phyla and 33 bacterial families, common to terrestrial soils and sediments (Fig 4.1). No 

obvious trends were observed relating the phylogeny of the isolates to their 
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environmental source (seep zone versus sand/clay aquifer or depth of the sediment) or 

the isolation method employed (pyrophosphate versus sonication; gellan gum versus 

noble agar). Each of the isolates was evaluated for iodide oxidizing ability using R2A or 

DNB agar plates containing starch and iodide (1 mM KI), where purple coloration is 

indicative of iodide oxidation to I2 (10). None of the isolates exhibited an iodide 

oxidation phenotype using this assay.   

 
 
 

 
FIG. 4.1.  Phylogenetic affiliation of bacteria isolated directly from 8 F-area sediment samples (n=325, left 
panel) and from 1 mM KI enrichment cultures (n=29, right panel). 
 
 
 
 Enrichment cultures containing high concentrations of iodide have previously 

been used to isolate IOB from seawater (10). Likewise, tubes from 2 of 24 cultures 

exhibited a distinct yellow coloration, indicative of iodide oxidation to I2 and/or volatile 

organic iodine species, after 22 weeks of static incubation in the dark (Fig. 4.2). These 

two enrichment cultures contained dH2O and iodide and had been inoculated with 

organic-rich sediment collected no more than 1 .2 m below the surface from two 

locations in the F-area seep zone. All other enrichment cultures (that did not show 

yellow coloration) were inoculated with organic-poor, sandy sediment collected 13-26 m 
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below the surface from a sandy/clay aquifer or contained DNB medium.  A strong iodine 

smell was detected after removing the cap from each of the 2 yellow colored tubes, 

suggesting that iodide oxidation had occurred. To confirm that iodide oxidation had 

occurred and that microorganisms were involved, a second set of iodide enrichment 

cultures were established in sealed serum vials containing: 1) medium from the original, 

yellow colored enrichment tubes (as controls autoclaved medium from the enrichment 

cultures was also used as inoculant), 2) sterile dH2O, and 3) 1 mM KI (Table 4.1). After 

a 2-month incubation period, a yellow color was noted in the two vials that had been 

inoculated with non-autoclaved medium from the initial enrichment cultures. Analysis of 

iodine speciation in the medium from these tubes revealed the presence of iodate and 

organo-iodine, indicating that microbial activity is necessary for oxidation of iodide 

under these conditions (Table 4.1).     

 
 

 
FIG. 4.2. Volatile iodine formation in enrichment cultures. Yellow discoloration was observed in 2 out of 
24 enrichment culture tubes (tubes 1 and 2 shown here). 
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Table 4.1. Iodine species distribution in enrichment culture supernatant 

Enrichment Culturea 
Iodine Speciation (%) 

Iodide Iodate Organo-iodine 

1A 23.1 ± 0.7b 4.5 ± 0.8 72.4 ± 0.1 

1A autoclaved 100 0   0 

2A  86.2 ± 3.2 7.2 ± 1.4   6.6 ± 1.9 

2A autoclaved 100 0   0 
a Enrichment cultures 1A and 2A contained sediment (collected from two separate sites, 0.15 to 1.2 m below the surface in the 
organic-rich wetland zone of F-area) suspended in sterile, dH2O and were incubated 3 months; the same sediment samples were 
sterilized by autoclaving for “1A autoclaved” and “2A autoclaved”.  
b Values represent means from duplicate experiments ± standard deviations. 

 

 Bacterial isolates (n=29) were obtained from the two yellow colored enrichment 

cultures using R2A and DNB agar plates were then tested for iodide oxidation by 

streaking on the same medium amended with starch and iodide.  Many purple colored 

colonies were identified using this approach, however it was determined that the purple 

coloration was not caused by the formation of I2, but rather the production of the 

pigmented antibiotic violacein.  Interestingly, this pigment was not observed in any of 

the colonies isolated directly from sediments.  Violacein is known to possess strong 

antioxidant properties and could thus help protect cells from iodination (64), yet the 

reason that violacein-producing strains were preferentially isolated from the 1 mM 

iodide enrichment cultures is not clear.  

 From the results presented above, we postulated that either 1) IOB (or fungi) in 

the enrichment cultures are difficult to isolate on solid surfaces or 2) rates of iodide 

oxidation catalyzed by microorganisms in the enrichment cultures are relatively low 

and/or not detectable using the starch-iodide plate technique. To address the second 

hypothesis, we utilized several different approaches to assess iodide oxidation potential 
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among the bacterial isolates that had been obtained both directly from sediments and 

from the enrichment cultures.  

Crude cell extracts and supernatants of 84 F-area bacterial strains, isolated 

directly from seep zone sediments (n=64) and from enrichment cultures (n=20), were 

screened to identify iodide oxidizing potential using an I3
- formation assay. Rates of I3

- 

formation were quite low, and in some cases variable (i.e triplicate measurements using 

a single strain sometimes yielded both positive and negative I3
- formation results). Using 

this screening assay, 36 of 84 strains exhibited a positive mean value from triplicate 

analysis, ranging from 0.006 to 0.076 mU mL-1 (Table 4.2).  

 
 
 

Table 4.2. Summary of iodide-oxidizing activity screening among F-area bacteria 

a For the I3
- production assay 1 U was defined as 1 µmol I3

- min-1  
b For the radiography assay, cell material grown in the presence of 125I that exhibited a “halo” when exposed to radiography film was 

considered IOB (+) (see Li et al. 2011, Fig. 2, FA-2B-B2* for the example of “halo”) 
c Average values ± SD for triplicate experiments 
d Numbers in parentheses indicated the # of positive strains were isolated from enrichment cultures 

 
 
 
To confirm iodide oxidizing activity among the strains that tested positive with 

the I3
- formation assay, iodide consumption was measured in culture medium (10 µM 

Description I3
- assaya Radiography assayb 

IOB Screening   
(1) Activity in background control (mU mL-1) 0.000 ± 0.009c no halo 
(2) # of positive strains 36 (5)d 48 (11)d 

(3) Activity range (mU mL-1) 0.006 ± 0.005 to 
0.076 ± 0.049c 

NA 

   
Iodine speciation analysis   

(4) # of strains examined from (2) 28 (5)d 46 (11)d 
(5) # of strains exhibiting >10% I- oxidation 23 (5)d 36 (11)d 
(6) Range of mean iodide oxidation rates (µM I- day-1) 0.03 to 0.70 0.04 to 0.70 

   

# of confirmed IOB strains 23 36 
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inital I-) for 28 of the 36 putative IOB following 5-10 day incubation. Total iodide 

decreased ≥10% in culture medium from 23 of these strains (iodide levels remained 

unchanged in culture medium for the 5 remaining strains and the background control) 

(Table 4.1). The iodide oxidation rates for these 23 strains ranged from 0.03 to 0.70 µM 

I- day-1.   

Autoradiographic analysis was conducted on cell material from 84 F-area strains 

that had been grown on R2A plates containing 125I-, and a halo pattern was evident with 

48 of these strains.  The iodide consumption assay was again used to confirm the IOB 

phenotype.  Iodide consumption (≥10%) was measured in cultures of 36 of the 46 strains 

examined, with rates ranging from 0.04 to 0.70 µM I- day-1 (Table 4.1). Among these 36 

confirmed positive strains, 15 of them also exhibited I3
--positive phenotypes. 8 bacterial 

strains exhibited I3
--positive phenotype but no halo patterns in autoradiography. 

Coincidently, it was noticed that these 8 strains exhibited no moisture in their colonies 

while growing on the 125I--enriched R2A agar plate which might result the difficulty to 

exam the halo formation in autoradiography.  

From the screening and confirmation assays described above, a total of 44 

bacterial strains were classified as IOB (84 strains were examined, i.e. 52.4% positive). 

Phylogenetic analysis of partial 16S rRNA genes (750 ~ 900 bp) revealed that these 

strains were members of the Actinobacteria, Bacteriodetes, Firmicutes, and 

Proteobacteria. Apparent correlations between the IOB phenotype and taxonomic 

lineage were not noted. A large majority of the IOB isolates (n=27) originated directly 

from the organic-rich sediments (0.15-1.2 m below surface) or from enrichment cultures 
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that had been initiated with the same organic-rich sediments (13 strains). Only 4 IOB 

strains were obtained from the sandy/clay deep aquifer sediments. 

Supernatants from cultures of 4 of the most active IOB were fractionated by size 

and evaluated for iodide oxidizing activity using the I3
- formation assay. The 

extracellular iodide-oxidizing activitiy of three of these strains was identified in the ≥30 

kDa but ≤50 kDa fractions, whereas the ≥ 50 kDa but ≤100 kDa fractions were found to 

be active for the other strain. 

In conclusion, SRS F-area bacteria (44 of 84) were identified as IOB using a 

combination of I3
- formation, radiography and iodide consumption. From the I3

- 

formation assay or starch-iodide plates alone, it would be difficult to ascertain that any 

of these strains were IOB. Indeed, it has been noted that haloperoxidase activities are 

difficult to detect in crude cell extracts because of high detection limits of the existing 

assays (70). However, using a newly developed method to detect low levels of iodide, 

iodate, and organo-iodide (detection limits for iodide and iodate are 0.34 nM and 1.11 

nM) we measured a decrease ≥ 10% in cultures (10 µM iodide, initial concentration) of 

each of the 44 IOB after 5-30 days incubation, whereas there was negligible iodide loss 

in sterilized controls or with non-IOB strains. Whether this slow, but apparently 

common, iodide oxidizing activity or that of a highly active IOB strain(s), not yet 

cultured, was responsible for the bulk of the iodide oxidation observed in the enrichment 

tubes (Fig. 4.2) has not been reconciled, but this question is currently being addressed by 

our group.  
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CHAPTER V 

CHARACTERIZATION AND IDENTIFICATION OF AN IODIDE OXIDIZING 

ENZYME FROM A BACILLUS Sp. ISOLATED FROM 129I-CONTAMINATED 

SUBSURFACE SOILS OF SRS 

 

5.1 Overview 

Iodide (I-) oxidizing activity was observed in spent medium of 44/84 aerobic 

bacteria that were isolated from 129I-contaminated subsurface soils of the Savannah 

River Site (SRS) in South Carolina. The aim of this study was to characterize and 

identify the reactive compound(s) secreted from one of these I- oxidizing strains, FA-

2CB* (16S rRNA gene was >98% similar to that of Bacillus cereus). An oxidase-like 

enzyme(s) was suspected to be the reactive I- oxidizing compound(s) because I- 

oxidation was inactived by treatments with heat, H2O2 and anaerobic incubation. Results 

from substrate utilization assays, copper amendments and size exclusion experiments 

largely precluded the possibility that the reactive enzyme was a multicopper oxidase 

(laccase). In the presence of cofactors NADH, NADPH or FMN the I- oxidizing 

capability of FA-2CB* spent medium was enhanced 1.3, 2.7 and 3.3 times, respectively. 

Overall, the results led us to conclude that an oxidase-type enzyme, but not of the 

multicopper oxidase family, was responsible for the I- oxidizing activity observed in the 

FA-2CB* spent medium. Additional assays are underway to identify the reactive 

enzyme, including: 1) substrate (NADPH and NADPH+FMN) kinetics for I- oxidation, 

2) the production of superoxide anions and H2O2, and 3) peptide identification using 
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HPLC-MS.   

 

5.2 Introduction 

129I is one of the major byproducts of nuclear fission reactions. Due to its 

biophilic nature, excessive inventory, high perceived mobility in water-soil systems and 

radioactive longevity (t1/2= 1.6×107 yrs) 129I has been recognized as a key risk drivers at 

Department of Energy (DOE) nuclear disposal facilities, e.g., the Hanford and Savannah 

River Sites (SRS), where contaminant plumes were detected containing 129I 

concentrations 10 ~1000 times above the federal regulated Maximum Contaminant 

Level of 1 pCi/L (58, 90). Thus, it is critical to understand the environmental behavior of 

129I in order to rigorously assess its storage, disposal and remediation options.  

The mobility of 129I is mainly determined by its chemical speciation and 

interaction with natural organic matter (NOM). In most groundwater and aquifers, iodide 

(I-) is expected to be the dominant chemical species based on the prevailing Eh and pH 

conditions and has a lower soil affinity (i.e., high mobility), with a distribution 

coefficient (Kd) of ~1 L3 kg-1, than that of iodate (IO3
-, Kd ~1000  L3 kg-1) (13, 54, 65, 

103, 107). Soil with a high NOM content could serve as a sink for 129I due to the 

formation of organo-iodine (OI) through halogenation processes, i.e. electrophilic 

substitution of reactive iodine species (e.g. elemental iodine (I2), triiodide (I3
-) or 

hypoiodous acid (HOI)) on aromatic moieties (54, 138-139). Since I- is the most reduced 

chemical form (oxidation state, -1) of all iodine species, oxidation is required to obtain a 

reactive iodine species (of higher oxidation state, 0/+1) or IO3
-(oxidation state, +5). 
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However, the first electron transfer from I- to an electron acceptor such as oxygen is 

thermodynamically unfavorable unless catalyzed by strong oxidants (e.g. catalytic 

enzymes or metal oxides) (36, 42, 77, 137).  

From several field observations and laboratory experiments, it was concluded 

that microbial activities can mediate I- oxidation and OI formation in water-soil systems 

(3-4, 6, 83-84, 107, 112). For bacteria, their particular roles in I- transformation have 

been classified as 1) cellular accumulation (7-9, 72), 2) extracellular iodide oxidation (10, 

73), and 3) methylation (5-6). Among these roles, extracellular I- oxidation might lead to 

the greatest impediment of 129I mobility in soils by promoting the iodination of soil 

aromatic moieties. A growing body of literature has implicated microbial oxidases, 

perhydrolases and/or peroxidases in the halogenation of soil organic matter (6, 20, 48, 67, 

84-85, 89, 95, 98). However, little research has been devoted to identifying iodide-

oxidizing enzymes and their mechanism(s) of action. 

In the studies conducted thus far, two types of oxidoreductases, haloperoxidases 

and laccases, have been demonstrated to directly extract one electron from I-, forming 

reactive intermediate iodine species (50, 116, 121, 123, 130, 140). Haloperoxidases are 

widely distributed among different biota, including humans, bacteria, fungi, plants, and 

algae (50, 120, 122) and commonly exhibit broad-substrate specificity. These enzymes 

have thus been classified based on the most electronegative halide that they can catalyze 

– chloroperoxidases use chloride (Cl-), bromide (Br-) and I-, bromoperoxidases utilize 

Br- and I-, and iodoperoxidases are limited to I- as the sole halide substrate. They 

generate hypohalites via the direct H2O2-dependent oxidation of halides, which are 
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capable of halogenating aromatic moieties (121-122). Through traditional activity assays 

using spectrophotometric methods, it was found that chloroperoxidase activities are 

ubiquitously distributed in soil-water systems (14-15). However, OI formation catalyzed 

by these chloroperoxidases is not likely to occur in natural terrestrial environments 

because the substrate affinity (Km) of these enzymes toward halides is in the mM range 

(126, 128), whereas environmentally relevant concentrations of I- are in the 0.001-0.1 

μM range (103-106 times less than that of Cl- [0.2-14 mM]) (34, 43, 102, 142).  

Laccases are multi-copper phenolytic oxidases in which an oxidative state of +2 

(Cu2+) is required for substrate oxidation. They are secreted by fungi and bacteria to 

assist in lignin formation/degradation and can react with multiple substrates (e.g., Mn2+) 

(109). The I- oxidizing ability of laccase was first identified in a fungus, Myceliophthora 

thermophile, whereby I- servesd as a substrate by donating one electron to the type 1 

copper site (140). Moreover, the laccase mediated I- oxidation could be enhanced in the 

presence of the general laccase substrate, 2, 2’-azino-bis-3-ethylbenzothiazoline-6-

sulphonic acid (ABTS) (140). In recent field studies examing 129I mobility, laccase 

activities in surface soils were correlated with OI formation (112, 141). However, 

bacterial laccases capable of carrying out I- oxidation have only been identified from 

brine water samples, not from terrestrial sources (116).   

Our previous field investigation in SRS F-area revealed relatively high amounts 

of IO3
- (27.3%) and OI (OI, 23.9%) in the groundwater, indicating that I- oxidation had 

occurred since I- should be the predominant species at the ambient pH (3.2~6.8) and Eh 

(364~654 mV) conditions (90, 142). Although I- could be oxidized by manganese oxides 
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and ferric oxides in the SRS subsurface, these processes are limited in environments 

with pH <5.0 (137). Thus, it is probable that biogenic oxidants such as enzymes secreted 

by bacteria are capable of catalyzing I- oxidation in the F-area.  Indeed, 44 of 84 

bacterial strains isolated from the F-area subsurface soil exhibited slow rates of 

extracellular I- oxidation (71). In this study, we used one bacterial isolate of the F-area, 

FA-2CB*, to characterize and identify the extracellular reactive component(s) capable of 

carrying out I- oxidation. 

 

5.3 Materials and methods 

5.3.1 Bacterial growth 

FA-2CB* has been demonstrated to be able to oxidize I- extracellularly and its 

16S rRNA gene (GenBank accession# JQ765443) is most closely related (> 98%) to that 

of Bacillus cereus Rock3-44 (71, 73). FA-2CB* was incubated in liquid M9GY medium 

(M9 minimal salt medium enriched with 0.4% glucose and 0.4% yeast extract, pH 7.4 ± 

0.2) at 30 oC in the dark. When the optical density at 600 nm (OD600) of the culture 

reached ~1.2, FA-2CB* cells were harvested by centrifugation (3200 × g, 20 oC, 15 

min), then washed and suspended in fresh 1X M9G (i.e. M9GY medium without yeast 

extract, pH 7.4 ± 0.2) for the assays listed below.  
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5.3.2 Determination of the iodide oxidation rate under aerobic and anaerobic 

conditions 

After FA-2CB* cells were suspended in 1X M9G medium, the culture was 

amended with I- (10 μM). Aerobic incubations were carried out in the dark at 30 oC on a 

rotary shaker (150 rpm) with loosened caps. For anaerobic incubations, the FA-2CB* 

culture was transferred into a 250 mL serum bottle, which was sealed using a gastight 

septum stopper (butyl rubber, Fisher Scientific) with a crimp seal. Oxygen was displaced 

from the bottle by purging with pure nitrogen gas at ~8.0 L min-1 flow rate for 5 minutes. 

The anaerobic incubations were also carried out in the dark at 30 oC. Background 

controls consisting of M9G medium amended with I- but without bacterial cells were 

carried out. After 5 days incubation, the spent medium from the aerobic and anaerobic 

treatments were collected to determine iodide concentrations using GC-MS as described 

in Zhang et al. (142). The detection limits for I- and IO3
- were 0.34 and 1.11 nM, 

respectively. 

 

5.3.3 Characterization of aerobic iodide oxidizing activity in spent medium  

After FA-2CB* cells were suspended in 1X M9G medium and incubated 

aerobically for 24 hrs, the spent medium and cell pellets were separated by 

centrifugation (3200 × g, 20 oC, 15 min). The spent medium was then concentrated 10 ~ 

50x using centrifugal ultrafiltration units with a 3 kDa cut-off (AmiconUltra, Millipore) 

for further characterization of I--oxidizing activities.  
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Triiodide (I3
-)  formation  was use to determine rates of I- oxidation (10). 

Reaction mixtures for the determination of I3
- formation were prepared in 96-well plates 

(Polystyrene, Greiner UV-Star) and consisted of 50 μL of concentrated spent medium, 

20 mM acetate buffer (pH 5.5) and KI in 150 μL total volume. Due to fact that I3
- is 

highly reactive and volatile, high concentrations of KI (10 mM) were applied in the 

assay mixture in order to stabilize the presence of I3
- in aqueous solution. Controls (i.e., 

reactions without KI or the spent medium) were also carried out to differentiate non-

enzymatic from enzymatic reactions. Rates of I3
- formation were monitored as the 

increase in absorbance at 353 nm at 30 oC as a function of time using a molar extinction 

coefficient (ε) of 25.5 mM-1 cm-1 (10). One unit (U) of I- oxidizing activity was defined 

as 1 μmol I3
- formation per hour at 30 oC.  

In order to characterize the I- oxidation capability of FA-2CB* as related to 

enzymatic catalysis, several common enzymatic inhibitors were tested, including: 

boiling (100 oC, 30 mins), sodium azide (NaN3), ethylenediaminetetraacetic acid 

(EDTA), hydrogen peroxide (H2O2), or sodium dodecyl sulfate (SDS).    

 

5.3.4 Assessment of laccase activity in spent medium 

In order to identify the relationship between laccase activity and iodide oxidizing 

activity of FA-2CB*, Cu2+ amendments were applied in two ways to stimulate laccase 

activity in spent medium. First, various concentrations of Cu2+ ions (as CuSO4) were 

amended directly into the FA-2CB* aqueous medium during growth, in order to 

stimulate the production of laccases (41, 91, 117). Spent M9G medium from these cells 
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was collected and concentrated for I3
- formation assays. Second, spent medium from FA-

2CB* cells grown without Cu2+ addition was collected, concentrated and then amended 

with various concentrations of Cu2+ ions to allow the reactive I- oxidizing component(s) 

to chelate with Cu2+ ions (17). I- oxidation rates were determined for the Cu2+ amended 

concentrates using the I3
- formation assay.   

Molecular size fractionation was also applied to determine the relationship 

between laccase activity and iodide oxidizing activity of FA-2CB*. The spent medium 

of FA-2CB* was sequentially separated and concentrated into five fractions based on 

molecular size (>50, 30-50, 10-30, 3-10, and <3kDa) using centrifugal ultrafiltration 

devices (AmiconUltra, Millipore). Polysulfonate standards (10, 20, and 40 kDa) were 

used as filtration controls in order to confirm that no breakage occurred in the filtration 

devices. I3
- formation rates and laccase activity (see below) were determined for each of 

these five size fractions. Two commercial laccases extracted from fungi, Trametes 

versicolor and Rhus vernicifera (Sigma-Aldrich), were used as experimental controls.  

Laccase activities were measured spectrophotometrically using two laccase-

specific substrates, 2, 2’-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS, 

Sigma-Aldrich) and syringaldazine (SGZ, Sigma-Aldrich). Reaction mixtures were 

prepared in 96-well plates and consisted of 50 μL commercial laccases or spent medium, 

20 mM acetate buffer (pH 5.5) and 1.2 mM ABTS or 60 μM SGZ in 150 μL total 

volume. To differentiate enzymatic activities from non-enzymatic reactions, controls 

(i.e. reactions without spent medium or ABTS/SGZ) were also carried out. Oxidized 

ABTS and SGZ were monitored at 30 oC as the function of time by the absorbance 
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increase at 420 nm (ε = 36 mM-1 cm-1) and 525 nm (ε = 65 mM-1 cm-1), respectively 

(55). One unit (U) of laccase activity was defined as the amount of enzyme oxidizing 1 

μmol of ABTS or SGZ per hour at 30 oC. 

 

5.3.5 The effect of common enzymatic cofactors on I- oxidation by spent medium of 

FA-2CB* 

Several common enzymatic cofactors that are involved in oxidation-reduction 

reactions were examined to determine their ability to enhance I- oxidation in the FA-

2CB* concentrated spent medium. Cofactors included flavin adenine dinucleotide 

(FAD), riboflavin-5’-phosphate (i.e. flavin mononucleotide, FMN), reduced 

nicotinamide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide (NAD+), 

reduced nicotinamide adenine dinucleotide phosphate (NADPH), coenzyme A (CoA), 

and adenosine-5'-triphosphate (ATP) which were all purchased from Sigma-Aldrich Inc. 

and freshly prepared in distilled water before use. Reaction mixtures (150 μL) for the 

determination of I3
- formation consisted of 50 μL of concentrated spent medium, 10 μL 

of cofactors (various concentrations), 20 mM acetate buffer (pH 5.5), and 10 mM KI. 

Controls (i.e. reactions without cofactors or the spent medium) were also carried out to 

differentiate non-enzymatic from enzymatic reactions. 

 

5.3.6 Purification and identification of the iodide-oxidizing reactive component(s) 

Spent M9G medium from FA-2CB* cultures (1~2 L ) was concentrated to ~5 mL 

using centrifugal ultrafiltration devices with a 10 kDa cut-off (AmiconUltra, Millipore). 
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To fractionate the reactive I- oxidizing component(s), the concentrated spent medium 

was washed with equal volume of 20 mM Tris buffer (pH 8.0) at least three times to 

remove the excess salt ions and directly loaded onto a 10 × 40 mm anion affinity column 

(DEAE-Sepharose CL-6B, GE Healthcare) which was equilibrated with 20 mM Tris 

buffer (pH 8.0) as described by the manufacturer. The column was then eluted with 25 

mL of 20 mM Tris buffer (pH 8.0) using natural gravity at a flow rate ~0.625 mL min-1, 

and the eluent (25 mL) was collected in a 50 mL conical tube (polypropylene, VWR 

International). The elution and collection process was continued as a linear gradient with 

25 mL of each 100, 200, 300, 400, 500, and 600 mM NaCl prepared in 20 mM Tris 

buffer (pH 8.0). Eluents further size fractionated based on the molecular size (>50, 30-

50, 10-30, and <10kDa) using centrifugal ultrafiltration devices. The I- oxidation rate of 

each fraction was then determined using the I3
- formation assay. The fraction containing 

the reactive I- oxidizing component(s) was then subjected to gel electrophoresis to 

confirm its purity (see below). The entire purification procedure was carried out at 4 oC.  

The protein concentration of fractions for each step was quantified using the 

bicinchoninic acid (BCA) method (Pierce).  

Purity and molecular weight determination was carried out using sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The SDS- polyacrylamide gel 

consisted of a 15% resolving gel and 4% stacking gel in a 1 mm thick slab. Precision 

Plus Protein Dual Color standards, ranging in molecular size from 10 to 250 kDa (Bio-

Rad), were used as molecular weight markers. After the sample was denatured in 

Laemmli loading buffer (pH 6.8; 2% SDS and 2% dithiothreitol) by boiling at 95 oC for 
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5 min, electrophoresis was carried out in 25 mM Tris-glycine buffer (pH 8.3) following 

the method described by Laemmli (68). Protein bands were visualized by Coomassie 

Brilliant Blue R-250 staining. The reactive fraction exhibited a single band in the gel, 

which was cut from the gel and digested with trypsin into several peptide fragments for 

amino acid sequence determination by matrix-assisted laser desorption ionization time-

of-flight mass spectrometry (MALDI-TOF MS) at Los Alamos National Laboratory.      

   

5.4 Results  

5.4.1 Determine iodide oxidation rates under aerobic and anaerobic conditions 

As shown in Fig 5.1, the capability of FA-2CB* to carry out I- oxidation was 

limited to aerobic conditions, where 23.8% of amended I- (10 μM) was oxidized and 

transformed into IO3
-. Under anaerobic conditions, no significant decreases (≤ 5%) in I- 

concentration nor increases of IO3
- or OI concentrations were detected, indicating that I- 

oxidation was not occurring. Spent medium from heat-treated (i.e. autoclaved) FA-2CB* 

cells were incapable of I- oxidation (< 5% I- loss).  
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FIG. 5.1 Concentrations of iodine species in the spent medium of FA-2CB* cultures under aerobic and 
anaerobic treatments. Heat-treated cells of FA-2CB* cells were autoclaved. Each treatment was carried 
out with duplicate samples containing 10 μM I- as the initial iodine species over a 5 day incubation. OI 
concentrations of each treatment were below the detection limits. Bars indicated the concentration range of 
duplicate samples. 

 
 
 

5.4.2 The effect of enzymatic inhibitors on iodide oxidation by FA-2CB* spent 

medium 

 The effects of various enzymatic inhibitors on I- oxidation in FA-2CB* spent 

medium are shown in Table 5.1. In the presence of 0.1 mM NaN3, I
- oxidation was 

enhanced 1.7 times, but at higher NaN3 concentrations I- oxidation was inhibited. I- 

oxidation activity decreased with increasing EDTA concentrations from 0.1 to 10 mM. 

When the concentrated spent medium was treated with H2O2, 1% SDS, or heat (100 oC, 

30 mins), I- oxidation was completely inhibited.  
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Table 5.1   Effects of enzymatic inhibitors and treatments on 
iodide-oxidizing activities by the extracellular extract of FA-
2CB* 

Treatments Concentration Activity remaining (%)b 

None 100 

NaN3 0.1 mM 167 ± 4 

1.0 mM 67 ± 5 

10.0 mM 30 ± 0 

EDTA 0.1 mM 67 ± 2 

1.0 mM 17 ± 5 

10.0 mM 17 ± 3 

H2O2 0.05 mM 0 ± 5 

0.5 mM 0 ± 4 

5.0 mM 0 ± 7 

SDS 1% 0 ± 3 

Heata 0 ± 0 
a The heating process was carried out by boiling for 30 min. 
b The standard deviation was derived from triplicate analysis. 

 
 
 

5.4.3 The relationship between laccase activity and iodide oxidation 

Regardless of the Cu2+ concentration in the growth medium, which was varied 

from 0 to 60 μM, the I- oxidizing capability of the FA-2CB* spent medium remained 

constant (~138 mU/mL crude concentrate) (Fig 5.2A). When the Cu2+ concentration in 

the growth medium exceeded 80 μM, the iodide oxidizing activity in the spent medium 

of FA-2CB* decreased (Fig 5.2A). 

A similar scenario was also observed when amending Cu2+ directly in the 

concentrated spent medium of FA-2CB* that had been collected from cultures grown in 

Cu2+-free medium (Fig 5.2B). The highest I- oxidizing activity was observed when the 

concentrated spent medium was amended with 40 μM Cu2+, but this value was just 1.2x 

higher (0.6 μU/μg crude protein) than that measured in spent medium without the 
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amendment of Cu2+ (0.5 μU/μg crude protein). When the Cu2+ amendment 

concentrations exceeded 80 μM, the iodide oxidizing activity of the spent medium was 

significantly inhibited (Fig 5.2B). 

The concentrated spent medium of FA-2CB* was fractionated based on 

molecular size, >50, 30-50, 10-30, 3-10, and <3kDa, and then examined for I- oxidizing 

activity and laccase activity, which was assessed using two common laccase substrates, 

ABTS (2, 2’-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid) and SGZ 

(syringadazine). As shown in Fig 5.3, the component(s) responsible for I- oxidation was 

10-30 kDa, whereas the fractions exhibiting laccase activity were 30-50 kDa (~84% of 

total observed laccase activities) and >50 kDa (~16% of total laccase activities).  

 

 
 

 
 
FIG. 5.2  The influence of Cu2+ ions on iodide oxidation activity of concentrated spent medium from FA-
2CB* in which Cu2+ ions were amended (A) to the culture medium of FA-2CB* during growth or (B) into 
the concentrated spent medium prior to the I3

- formation assays.  Symbols represent the average value of 
triplicate analysis. One unit (U) of iodide oxidation is defined as 1 μmol I3

- generated in 1 hour at 30 oC..  
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FIG. 5.3  (A) Formation of  I3

- as the  indicator of I- oxidation and (B) oxidation of ABTS as an indicator 
of laccase activity, in each molecular size fraction of FA-2CB* concentrated spent medium. Error bars 
represent one standard deviation of triplicate analysis. One U of iodide oxidation is defined as 1 μmol I3

- 
generated in 1 hour at 30 oC. One U of laccase activity is defined as 1 μmol of ABTS oxidized per hour at 
30 oC. 
 

 

5.4.4 Influence of common enzymatic cofactors on iodide oxidation by FA-2CB* 

spent medium 

 A total of 7 cofactors that are commonly associated with enzymatic oxidation-

reduction reactions were examined for their influence on I- oxidation by FA-2CB* spent 

medium (Table 5.2). Results showed that in the presence of FMN (flavin 

mononucleotide), NADH (reduced nicotinamide adenine dinucleotide), and NADPH 

(reduced nicotinamide adenine dinucleotide phosphate), the capability for I- oxidation by 

concentrated FA-2CB* spent medium was enhanced, whereas no significant 

enhancement was observed in the presence of FAD (flavin adenine dinucleotide), NAD+ 

(nicotinamide adenine dinucleotide), CoA (coenzyme A), or ATP (adenosine-5'-

triphosphate). The greatest enhancement in I- oxidation (3.3 times higher than without 

cofactors) was observed when 14 μΜ FMN was amended to the 150 μl assay mixture 
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containing 50 μl of concentrated FA-2CB* spent medium. When the FMN concentration 

was increased to 139 μΜ, I- oxidation activity was enhanced just 1.3 fold and at this high 

concentration (139 μΜ), FMN was capable of oxidizing I- by itself. In general, the I- 

oxidation capability of concentrated FA-2CB* spent medium was increased when 

NADH and NADPH concentrations were increased. However, NADPH provided a 

greater enhancement in I- oxidation (2.7 fold enhancement at 58 μΜ) than did NADH 

(1.5 fold enhancement at 100 μΜ).  

 
 
Table 5.2   Effects of various cofactors on iodide-oxidizing activity of spent medium from FA-2CB* 

Cofactors 
Biochemical 

function 
Oxidation status 

Concentration 
(μΜ) 

Abiotic I3
- 

formation 
(μM)a 

Total I3
- 

formation 
(μM)a 

Noneb  0.00 ± 0.04 0.16 ± 0.02 

FAD Redox reaction Oxidized form 80 0.00 ± 0.04 0.15 ± 0.09 

FMN Redox reaction  Oxidized form 14 0.00 ± 0.09 0.61 ± 0.10 

 139 0.27 ± 0.14 0.50 ± 0.10 

NAD+ Redox reaction Oxidized form 90 0.00 ± 0.03 0.16 ± 0.04 

NADH Redox reaction Reduced form 10 0.03 ± 0.02 0.24 ± 0.02 

 100 0.04 ± 0.04 0.27 ± 0.03 

NADPH Redox reaction Reduced form 6 0.00 ± 0.04 0.24 ± 0.04 

 58 0.00 ± 0.04 0.49 ± 0.06 

CoA Oxidation  87 0.00 ± 0.04 0.14 ± 0.08 

ATP Energy transfer  10 0.00 ± 0.04 0.16 ± 0.06 
a Abiotic I3

- formation indicates the amount of I3
- formed in 6 hours in reactions without spent medium, 

whereas total I3
- formation indicates the amount of I3

- formed in reactions with FA-2CB* spent medium. 
The standard deviation is derived from triplicate analysis. 

b “None” indicates that cofactors were not added to the reaction mixture. 
 
 
 
5.4.5 Purification of the iodide-oxidizing reactive component(s) 

After the purification process using DEAE-Sepharose anion exchange 

chromatography and molecular size fractionation (10-30 kDa), the specific I- oxidizing 
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activity of the reactive fraction was 99.09 U/g protein, whereas that from the 

concentrated spent medium following ultrafiltration (with 10 kDa cut-off) was only 0.55 

U/g protein (Table 5.3). Moreover, I3
- production by 0.165 μg protein of the purified 

reactive fraction increased in a linear fashion over 5-6 hours (R2=0.99, p<0.05) (Fig 

5.4A). After subjecting ~15 μg protein of the purified reactive fraction to SDS-PAGE, 

two bands were observed with the estimated molecular size of 16.4 (band A) and 15.6 

kDa (band B) (Fig 5.4B). The band with molecular size of 16.4 kDa was cut from the gel 

and digested with trypsin for amino acid sequence determination by MALDI-TOF MS at 

Los Alamos National Laboratory.     

 
 
 
Table 5.3  Summary of purification of I- oxidizing component(s) from FA-2CB* spent medium 

Procedure 
Protein 

(μg) 
I3

- formation 
(μM)b 

Specific I- oxidizing activity 
(U/g protein)c 

Ultrafiltration-concentrated 
spent medium  

7.1 0.16 ± 0.02 0.55 ± 0.08 

Reactive fractiona 0.165 0.65 ± 0.08 99.09  ± 11.82 
a The reactive fraction was purified from the DEAE-Sepharose anion exchange column and 10-30 kDa 
fractionation. 
b The I3

- concentration was determined after incubating the assay mixture for 6 h at 30 oC. Cofactors were 
not used for this assay. Standard deviations were derived from triplicate analysis. 
c One unit (U) of  I- oxidizing activity was defined as 1 μmol I3

- formed per hour at 30 oC.  
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(A)                                                                                 (B) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIG. 5.4  (A) I- oxidation (measured as I3

- production) over time by the purified, reactive fraction (0.165 
μg protein; no cofactors) and (B) visible protein bands in a SDS-PAGE gel run with the purified, reactive 
fraction containing ~15 μg protein (lane 2) and molecular standards (lane 1). Error bars indicate the 
standard deviation (n=3).   
 
 
 
5.5 Discussion 

In this study, we characterized the I- oxidizing component(s) from the spent 

medium of a strain, FA-2CB*, isolated from 129I-contaminated soils of the SRS (71). 

The I- oxidizing activity of the spent medium exhibited an oxygen requirement (Fig 5.1), 

heat-intolerance (Fig 5.1 & Table 5.1) and was not dependent on H2O2 and Cu2+ ions 

(Table 5.1 & Fig 5.2). In the presence of NADH, NADPH and FMN the I- oxidizing 

activity of FA-2CB* spent medium was enhanced 1.3, 2.7 and 3.3 fold, respectively 

(Table 5.2). These results lead us to conclude that an oxidase-type enzyme, likely an 
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superoxide- or H2O2-producing oxidase, is responsible for the I- oxidizing activity 

observed in spent medium  from FA-2CB*. 

 

5.5.1 An oxidase-like enzyme mediated the I- oxidation  

The fact that I- oxidation by the concentrated FA-2CB* spent medium was 

inactived upon boiling for 30 min (Table 5.1), indicated that the reactive component(s) 

was likely an enzyme. Two types of oxidoreductases, oxidases and peroxidases, are 

often implicated for halogenation processes in soils (50, 116, 121, 123, 130, 140). The 

activities of oxidase and peroxidases can be distinguished by their electron acceptors, 

which are oxygen and hydrogen peroxide (H2O2), respectively. As shown in Fig 5.1, I- 

oxidation activity by FA-2CB* spent medium was significant only under aerobic 

conditions, in which case 23% of amended I- (10 μM) was transformed into IO3
-. 

Moreover, the I- oxidizing activity of the concentrated FA-2CB* spent medium was 

completely inhibited in the presence of 0.05 to 5 mM H2O2 (Table 5.1). These results 

indicate that the reactive enzyme(s) was not a peroxidase, but rather an oxidase-like 

enzyme.   

 

 5.5.2 I- oxidation was not mediated by laccase activity 

 In studies conducted to date, only one type of oxidase, laccases secreted from 

fungi Myceliophthora thermophila and brine water iodide-oxidizing α-Proteobacteria, 

have been directly shown to carry out I- oxidation (116, 140). Laccases are widely 

produced by plants, fungi and bacteria and are classified as multicopper oxidases. 



 97

Laccase activity can be stimulated by the addition of Cu2+ ions, either as a supplement to 

medium during the growth of laccase-bearing fungi or bacteria or when directly applied 

to enzyme mixtures (17, 41, 91, 117); however, the optimal concentrations of Cu2+ ions 

vary (0.02-5 mM), depending on fungal or bacterial species or growth conditions (17, 

41, 91, 117). In this study, we tested two means of Cu2+ amendment, (i) additions of 0 − 

100 μM Cu2+ during the growth of FA-2CB* and (ii) additions of 0 − 200 μM Cu2+ to 

the concentrated FA-2CB* spent medium, to examine the possibility that the I- oxidizing 

activity exhibited by FA-2CB* spent medium is mediated by a laccase.. Significant 

enhancement of I- oxidation not observed upon either Cu2+ amendment (Fig 5.2).  

To further explore the relationship between I- oxidizing capability and laccase 

activity, concentrated FA-2CB* spent medium was fractionated into 5 groups by size 

(>50, 30-50, 10-30, 3-10, <3 kDa) and each was tested for I- oxidizing and laccase 

activity. The results demonstrate that I- oxidation activity was limited to the 10-30 kDa 

fraction, whereas the laccase activity, measured as the oxidation of ABTS, was found in 

fractions >30 kDa. Thus, we conclude that laccase activity by FA-2CB* under our 

experimental conditions was likely not responsible for the observed I- oxidation.  

 

5.5.3 Was I- oxidation mediated by a NADPH oxidase? 

  Several lines of evidence lead us to hypothesize that the reactive I- oxidizing 

enzyme could be an oxidase, possibly a NADPH oxidase. First, I- oxidation by the 

concentrated FA-2CB* spent medium was significantly enhanced upon addition of 

NADH, NADPH, and FMN (Table 5.3). Among these cofactors, 1 μg FMN and 10 μg 
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NADPH could enhance I- oxidation 3.3 and 2.7 fold, respectively (Table 5.2). The 

enhancement of I- oxidation by an oxidized flavin molecule (Table 5.2), such as FMN, 

which are well recognized electron transfer shuttles in many oxidases (81), strongly 

supports our hypothesis that the I- oxidizing activity in FA-2CB* spent medium was 

mediated by an oxidase-like enzyme. Second, in the presence of 58 μM NADPH, a 

stronger enhancement of I- oxidizing activity was observed than in the presence of 100 

μM NADH (Table 5.2). Also, we observed a concentration-dependent enhancement (~ 2 

fold) of I3
- oxidation activity upon inclusion of 6 to 58 μΜ NADPH in the reaction 

mixture (Table 5.2). These results suggest that the oxidase(s) from FA-2CB* involved in 

I- oxidation preferably utilizes NADPH over NADH to activate molecular oxygen.  

Oxidases that preferentially utilize NADPH and flavin molecules as cofactors are 

NADPH oxidases (EC 1.6.3.1) (21, 76). A subset of NADPH oxidases, including the 

NOX family, is membrane-bound complexes that can generate reactive oxygen species. 

The NOX enzymes have been recognized among facultative bacteria, such as Bacillus 

licheniformis, Bacillus megaterium, Lactobacillus sanfranciscensis and Lactococcus 

lactis (76, 79, 87, 101). NOX oxidases can transfer electrons from NADPH or NADH to 

oxygen molecules (O2) which are subsequently transformed to superoxide anions (Fig 

5.5). Superoxide anion is a highly reactive molecule and can disproportionate rapidly 

into H2O2 and O2 in the presence of water molecules. In a previous study, H2O2 was 

shown to oxidize I-, especially under acidic conditions (73). Superoxide anions in the 

aqueous form have similar properties as H2O2, that is, they are highly reactive toward 

electron sequestration. Furthermore, bacterial production of reactive oxygen species has 
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been demonstrated to oxidize Mn2+ and Fe2+ into insoluble forms of Mn(IV) and Fe(III) 

(69, 100) and Mn- and Fe-oxides have been shown to oxidize iodide (36, 42, 137).. 

Thus, regardless of the produced superoxide anion, i.e., if they rapidly transform to H2O2 

or if they remain in the original form, they should be capable of oxidizing I- to reactive 

iodine species (i.e. I2/I3
-/HOI) (Fig 5.5), which are then capable of iodinating soil 

aromatic moieties. 

However, our hypothesis that the reactive I- oxidizing enzyme is a superoxide-

producing NADPH oxidase is based on preliminary results that require confirmation. 

The actual identity of the reactive enzyme still needs to be established. In order to 

determine whether I- oxidation by spent medium of FA-2CB* is associated with the 

production of superoxide anions, several assays are being conducted: 1) substrate 

(NADPH and NADPH+FMN) kinetics for I- oxidation, 2) the production of superoxide 

anions and H2O2, and 3) peptide sequence of the reactive enzymes.    

 
 

 

FIG. 5.5  The hypothesized pathway of I- oxidation mediated by FA-2CB* secreted oxidase.  
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CHAPTER VI 

SUMMARY 

 

129I has recently been recognized as one of the key risk radionuclides in the 

groundwater at two DOE nuclear disposal facilities, the Savannah River and Hanford 

Sites, due to its longevity, excessive inventory, perceived high mobility in water-soil 

systems, and biophilic nature. Mobility of 129I in water-soil systems depends on its 

speciation, which is greatly influenced by the presence of natural organic matter (NOM). 

Due to environmental pH and Eh conditions, I-, which has the lowest oxidation state (-1) 

among all iodine species and higher mobility than IO3
-, was expected to be the 

predominant species in groundwater (13, 54, 65, 103, 107). However, field 

measurements demonstrate that I-, IO3
- and OI can comprise a significant fraction of the 

total iodine in groundwater (52-53, 90, 107, 142), indicating that biogeochemical 

processes, beyond pH and Eh, mediate iodine speciation in the subsurface. For example, 

OI formation requires that reactive intermediate iodine species (I2/HOI/I3
-), arising 

through the oxidation of I- or reduction of IO3
-, attack organic matter through 

electrophilic substitution on aromatic moieties (25, 82, 97, 104, 139, 141). Thus, a soil 

with elevated NOM concentration has been demonstrated to have a higher tendency to 

serve as an iodine sink through the iodination process and act as a barrier with 

decreased129I mobility (53-54, 137).  

It has been hypothesized that microbes influence I-  oxidation and OI formation 

in water-soil systems due to iodine’s biophilic nature, strong association with organic 
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matter and the redox sensitivity, along with insights into the capabilities of marine 

microbes that can influence the biogeochemical cycle of iodine (3, 32). Given the high 

abundance of microbes occurring in water-soil systems, especially in organic-rich soils 

(e.g. 108-109 bacteria per gram soil) (118, 129), it is quite possible that microorgnaisms 

play an important role in the speciation and mobility of 129I in the subsurface. This 

assumption is supported by recent field observations and laboratory experiments (3-4, 6, 

83-84, 107, 112). These laboratory studies have demonstrated that soils/sediments 

treated with heat, chloroform, γ-irradiation, or prokaryotic antibiotics, exhibit 

considerable reduction in iodine binding capacity onto soils (6, 83-85). Inoculation of 

sterilized soils with fresh soil or viable microorganisms can restore the iodine-organic 

matter binding potential (84). However, details concerning the mechanisms, identities, 

and functions of soil bacteria in regards to iodide oxidation and OI formation are 

lacking. In this study we examined the capacity of bacteria that were isolated from 

surface and subsurface soils of an 129I-contaminated region of SRS’ F-area to transform 

iodine and influence its mobility in the subsurface..  

 

6.1 Accumulation of I- by bacteria 

Because of its biophilic nature, iodine accumulation has long been observed in 

various organisms, such as mammals, vertebrates, marine algae and marine bacteria. 

Among the culturable aerobic bacterial strains isolated from F-area soils, I- accumulation 

was found in 3 out of 136 strains tested (FA-30, FA-2CB*, and FA-191), in the presence 

of H2O2 (5 mM). These three strains were closely related to Streptomyces/Kitasatospora 
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spp., Bacillus mycoides, and Ralstonia/Cupriavidus spp, suggesting that the I- 

accumulation phenotype was not limited to any particular phylogenetic group. Compared 

to IAB isolated from the marine environment, the I- accumulating capacity of the F-area 

IAB was quite small. With environmentally relevant I- concentrations (0.1 μM), the F-

area IAB only accumulated 0.2 to 2.0% of the total I-, whereas two previously described 

marine IAB, a Flexibacter aggregans strain and an Arenibacter troitsensis strain, could 

accumulate 2 to 50%.  

Specific mechanisms for marine IAB accumulation of I- was proposed by 

Amachi et al. (7) whereby extracellular H2O2, generated by glucose oxidase, oxidizes I- 

to I2 or HOI via an unidentified haloperoxidase. HOI is then transported across the cell 

membrane via facilitated diffusion. Once inside the cell, HOI either is reduced to I- or 

forms OI. F-area IAB, however, exhibited a different mechanism. For example, I- 

accumulation by FA-30 was stimulated by the addition of H2O2, was not inhibited by 

high concentrations of chloride ions (27 mM), did not exhibit substrate saturation 

kinetics with regard to I- concentration (0.1 to 10 μM I-), and increased at pH values of 

<6. These data indicated that the mechanism for I- accumulation by F-area IAB is 

unlikely mediated by specific enzymatic catalysis or cell surface electrostatic adsorption. 

Rather, it is likely that I- was oxidized by H2O2 to reactive iodine species, which could 

subsequently attack the organic molecules containing aromatic functional groups on 

bacterial surfaces by electrophilic substitution to form OI. In chapter 2 we demonstrate 

that readily culturable, aerobic bacteria of the F-area aquifer do not accumulate 

significant amounts of I-, and that these IAB are most likely not responsible for the high 
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fraction of OI observed in F-area groundwater (142). However, this mechanism may 

contribute to the long-term fate and transport of 129I and to the biogeochemical cycling 

of iodine over geologic time scales. 

 

6.2 Oxidation of I- by H2O2-dependent reaction with bacterially secreted organic 

acids  

Oxidation of I- via a single-step electron transfer is thermodynamically 

unfavorable unless strong oxidants are available (77). In water-soil systems, abiotic 

oxidants (e.g. MnO2 and Fe2O3) are capable of oxidizing I- but their roles are limited in 

acidic environments, where pH values ≤5.0 (36, 42, 137). In order to investigate the 

extracellular I- oxidizing capacities from F-area aerobic bacteria, the spent medium of 84 

F-area bacterial cultures was examined. The enhanced I- oxidation (2-10 fold) that 

occurred with 27 of the bacterial strains in the presence of 5 mM H2O2 was found to be 

due to the organic acids secreted by the bacteria. Two mechanisms were found to be 

responsible for the enhanced I- oxidation. First, organic acids acidified the spent medium 

by dissociation of hydrogen ions from their carboxyl groups. The lowered pH of the 

spent medium subsequently enhanced the rate of H2O2 hydrolysis which sequestered 

electrons from I- (Equation 3.1). Second, organic acids react with H2O2 to form peroxy 

carboxylic acids, which are strong oxidizing agents (Equation 3.2). The instability of 

peroxy carboxylic acids in aqueous solution leads to their spontaneous decomposition, 

whereby 2 electrons are consumed from I- by each peroxy carboxyl group (Equation 

3.3).   
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3 I− (aq) + H2O2 (aq) + 2 H+ → I3
−

 (aq) + 2 H2O (3.1) 

R-COOH + H2O2 → R-COOOH + H2O (3.2) 

R-COOOH + 3I- + 2H+
 → R-COOH + H2O + I3

- (3.3) 

With decreasing pH from 9 to 4, I3
- concentrations, which were used as indicators 

for H2O2-dependent I- oxidation, increased exponentially from 8.4 to 825.9 μM. Organic 

acids with ≥2 carboxy groups, enhanced H2O2-dependent I- oxidation 1.5 – 15 fold as a 

function of increasing pH above pH 6.0, but had no effect at pH ≤ 5.0.  The results 

indicate that, as pH decreases (≤ 5.0), increasing H2O2 hydrolysis is the driving force 

behind I- oxidation.  However, at pH of ≥ 6.0, spontaneous decomposition of peroxy 

carboxylic acids, generated from H2O2 and organic acids, contributes significantly to 

iodide oxidation. The results reveal an indirect microbial mechanism, organic acid 

secretion coupled to H2O2 production, that could enhance I- oxidation and OI formation 

in soils and sediments. 

 

6.3 Oxidation of I- by bacterial extracellular oxidase-like enzymes  

I--oxidizing bacteria (IOB) have been isolated from natural gas brine waters or 

sediments where the environments are naturally high in iodine (10) and from a marine 

fish aquarium where I2 formation was implicated in a fish kill (45). IOB were also 

isolated from seawater, however only after enrichment for several months in the 

presence of 1 mM I- (10). Using similar approaches, efforts to isolate IOB from 

terrestrial sources have been unsuccessful (10). To determine if bacteria from SRS F-

area sediments could influence 129I speciation by extracellular activity, I- oxidizing 
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activity was evaluated from the culturable bacterial strains and from soils. All bacterial 

strains isolated directly from sediment material (n=325) and from sediment enrichment 

cultures containing 1 mM I- (n=29) tested negative for I- oxidation on R2A agar plates 

containing I- and starch. However, tubes from 2/24 enrichment cultures exhibited a 

distinct yellow coloration, indicative of I- oxidation to I2 and/or volatile organic iodine 

species, after 22 weeks incubation. Analysis of iodine speciation in the enrichment 

culture supernatant from these two tubes revealed transformation of I- to IO3
- and OI, 

whereas I- oxidation did not occur in treatments with autoclaved soils. Screening of 84 

strains for I- oxidizing activity using a combination of triiodide (I3
-) formation, 

radiography and a recently developed, sensitive iodine speciation assay revealed that 44 

of these strains were capable of oxidizing I- at slow rates. The IOB phenotype was 

observed across a number of distinct bacterial phyla, indicating that I- oxidation can be 

supported by a variety of terrestrial bacteria.   

A growing body of literature has implicated microbial enzymes, such as oxidases, 

laccases, perhydrolases and peroxidases, in the formation of halogenated organic matter 

compounds in soils (6, 20, 48, 67, 84-85, 89, 95, 98, 112, 140). In recent field studies 

that examining 129I mobility in soils, laccase activities were correlated with OI formation 

(112, 141). However, bacterial laccases capable of carrying out I- oxidation have been 

identified from the brine water IOB (116), but not from terrestrial bacteria. In chapter V 

we characterize the extracellular I- oxidizing component(s) of one F-area IOB closely 

related to Bacillus cereus, strain FA-2CB*. Oxidase-like enzyme(s) were implicated as 

the reactive I- oxidizing component(s) because I- oxidation was inhibited by treatments 
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with heat, H2O2 and anaerobic incubation. It was also shown that the reactive enzyme 

was unlikely a laccase. In the presence of cofactors NADH (reduced nicotinamide 

adenine dinucleotide, 100 μΜ), NADPH (reduced nicotinamide adenine dinucleotide 

phosphate, 58 μΜ) or FMN (riboflavin-5’-phosphate, 14 μΜ), the I- oxidizing activity in 

FA-2CB* spent medium was enhanced 1.3, 2.7 and 3.3 times, respectively. In aggregate, 

the results led us to hypothezise that an oxidase-type enzyme was responsible for the I- 

oxidizing activity observed in the FA-2CB* spent medium. Additional experiments are 

underway to identify the reactive enzyme, including: 1) substrate (NADPH and 

NADPH+FMN) kinetics for I- oxidation, 2) the production of superoxide anions and 

H2O2, and 3) protein identification. 

The research presented in this thesis demonstrates that SRS aerobic bacteria are 

capable of transforming I- by (1) cellular accumulation, (2) organic acids and/or H2O2 

secretion (i.e. peroxy carboxylic acids formation), and (3) extracellular enzymatic 

activity. In summary, a better understanding of the role that bacteria play in I- oxidation 

and OI formation is expected to help to reduce 129I mobility in water-soil systems. 
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