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ABSTRACT 
 

Genetic Analysis of Stem Composition Variation in Sorghum bicolor. (August 2012) 

Joseph Patrick Evans, B.S., Pacific University 

Chair of Advisory Committee: Dr. John Mullet 

 

 Sorghum (Sorghum bicolor [L.] Moench) is the world’s fifth most economically 

important cereal crop, grown worldwide as a source of food for both humans and 

livestock.  Sorghum is a C4 grass that is well adapted to hot and arid climes and is 

popular for cultivation on lands of marginal quality.  Recent interest in development of 

biofuels from lignocellulosic biomass has drawn attention to sorghum, which can be 

cultivated in areas not suitable for more traditional crops, and is capable of generating 

plant biomass in excess of 40 tons per acre. While the quantity of biomass and low water 

consumption make sorghum a viable candidate for biofuels growth, the biomass 

composition is enriched in lignin, which is problematic for enzymatic and chemical 

conversion techniques.   

The genetic basis for stem composition was analyzed in sorghum populations 

using a combination of genetic, genomic, and bioinformatics techniques.  Utilizing 

acetyl bromide extraction, the variation in stem lignin content was quantified across 

several sorghum cultivars, confirming that lignin content varied considerably among 

sorghum cultivars.  Previous work identifying sorghum reduced-lignin lines has involved 
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the monolignol biosynthetic pathway; all steps in the pathway were putatively identified 

in the sorghum genome using sequence analysis.   

A bioinformatics toolkit was constructed to allow for the development of genetic 

markers in sorghum populations, and a database and web portal were generated to allow 

users to access previously developed genetic markers.  Recombinant inbred lines were 

analyzed for stem composition using near infrared reflectance spectroscopy (NIR) and 

genetic maps constructed using restriction site-linked polymorphisms, revealing 34 

quantitative trail loci (QTL) for stem composition variation in a BTx642 x RTx7000 

population, and six QTL for stem composition variation in an SC56 x RTx7000 

population.   

Sequencing the genome of BTx642 and RTx7000 to a depth of ~11x using 

Illumina sequencing revealed approximately 1.4 million single nucleotide 

polymorphisms (SNPs) and 1 million SNPs, respectively.  These polymorphisms can be 

used to identify putative amino acid changes in genes within these genotypes, and can 

also be used for fine mapping. Plotting the density of these SNPs revealed patterns of 

genetic inheritance from shared ancestral lines both between the newly sequenced 

genotypes and relative to the reference genotype BTx623.  
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INTRODUCTION AND LITERATURE REVIEW 

 

Sorghum:  Background, Taxonomy, and Origins 

 Sorghum (Sorghum bicolor (L.) Moench) is a C4 monoecious grass species that 

diverged from maize approximately 12 million years ago (Swigonova et al., 2004).  

Sorghum is the fifth most important grain crop in the world, and the third most important 

in the United States after wheat and corn (Doggett, 1988).  Over 200,000 acres of 

sorghum were planted for silage in the United States in 2011, for a total yield of over 2 

million tons (USDA, 2012).  Sorghum grain is also valuable, with more than 5.4 million 

acres of grain sorghum planted in the United States in 2011.  Sorghum grain is primarily 

utilized as a livestock feed in the US, but is an important grain crop for human 

consumption in Africa and Asia. 

The genus Sorghum encompasses multiple species, including the rhizomatous S. 

halapense and S. propinquum, as well as the non-rhizomatous S. bicolor.  Floral 

morphology has traditionally been used in the identification of closely related taxa of 

plants, and in S. bicolor the spikelets (as Poaceae lack pedicels) have been used to 

distinguish five primary S. bicolor landraces (Harlan and de Wet, 1972).  The five 

landraces so described are Bicolor, Guinea, Kaffir, Caudatum, and Durra (Fig. 1), and 

each originates in a distinct region of Africa. 

The Bicolor landrace is believed to have arisen in central Africa (Dahlberg,  

1995), and as it spread throughout Africa, introgressions with various subspecies and 

This dissertation follows the style of Plant Physiology. 
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adaptation to varying environmental conditions produced the five primary landraces 

(Dahlberg, 1995; Smith and Frederickson, 2000). Durra is thought to have arisen from 

an introgression between Bicolor and aethiopicum that allowed the offspring to thrive in 

the more arid conditions in central Africa (Dahlberg, 1995).  Caudatum is one of the 

most agronomically important sorghum races, and is believed to have originated in 

central Africa through an introgression between early bicolor and a wild sorghum 

species. (Dahlberg, 1995).  The Guinea landrace is found in more humid conditions in 

western Africa, and is the result of an introgression between S. bicolor and S. 

arundiaceum (Dahlberg, 2000). Kafir is believed to have originated in northern Africa as 

an introgression between S. bicolor and S. verticilliflorum and was transported south by 

humans, and now forms the primary agricultural sorghum of southern Africa (Dahlberg, 

1995).  These landraces have been extensively cultivated and hybridized, resulting in the 

approximately 70 groups utilized for sorghum classification today (Murty and Govil, 

1967; Dahlberg et al., 2004).   
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Figure 1:  Sorghum landraces as determined based on spikelet morphology. (Smith and 
Frederickson, 2000). 
   

 Many of the sorghum cultivars used for breeding in the United States are or 

involve products of the Sorghum Conversion Project, which was a program to convert 

tall, exotic, and late flowering lines into shorter, earlier flowering forms more suitable 

for cultivation in the United States (Rooney and Smith, 2001).  These exotic lines were 

selected for various traits of interest such as yield and resistance to biotic and abiotic 

stress and backcrossed to BTx406, a dwarf early-flowering variant suitable for US 

agriculture (Rosenow et al., 1997).  The inbred lines produced can be roughly bulked 

into groups based on marker analysis:  durra-kafir derivative males, feterita derivative 

males, zerazera derivative males, zerazera females and kafir females, with male and 
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female assigned to fertility-restoring “R” lines and female assigned to non-fertility 

restoring “A” and “B” lines (Menz et al 2004). 

Sorghum: Genome and Genetics 

 Sorghum is a diploid organism, with a genome of approximately 700 MBp 

organized into 10 chromosomes (Paterson et al., 2009) making it the smallest of the 

sequenced C4 cereal species.  The sequence of Oryza sativa is considerably smaller, 

however rice is representative of C3 cereals and lacks many desirable traits present in C4 

plants, such as tolerance to high temperatures and drought.    

The Sorghum bicolor genome sequencing project was completed in 2009, with a 

reference sequence generated from the inbred cultivar BTx623 (Paterson et al., 2009).  

While limited biochemical data is available on sorghum genes, de novo analysis and 

comparison to the related cereals Orzya sativa and Zea mays, as well as EST libraries, 

places the estimated gene complement of sorghum at approximately 27,600 genes 

(Buchanan et al., 2005; Salzman et al., 2005; Paterson et al., 2009).  While the sorghum 

genome is approximately 2.5 times the size of the rice genome, they have similar 

quantities of euchromatin (252 MBp for sorghum and 309 MBp in rice), indicating that 

the bulk of the sorghum genome is made up of heterochromatin (Fig. 2) (Kim et al., 

2005a; Paterson et al., 2009). 
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Figure 2:  Plot of the sorghum genome with gene density graphed beneath each 
chromosome. 

 
 
 

 The relation between sorghum and other grasses is quite evident at the genomic 

level, with both Sorghum bicolor and Sorghum propinquum displaying significant levels 

of macro- and microcolinearity with both rice and maize (Bowers et al., 2005; Kim et al., 

2005b).  This colinearity reflects the common ancestor shared by cereals approximately 

42-47 Mya, and is a valuable tool for trait mapping, as regions containing trait loci often 

correspond between cereal species (Paterson et al., 1995; Paterson et al., 2004).  Unlike 

maize, however, sorghum is largely a self-pollinating species.  The lack of outcrossing 
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involved in the propagation of sorghum leads to a much lower level of sequence 

variation and a correspondingly higher level of linkage disequilibrium when compared to 

maize, both of which are valuable traits for molecular genetics (Hamblin et al., 2004).   

 The sorghum genome is enriched in heterochromatic and repeat-rich regions, 

with such regions making up approximately two thirds of the sorghum genome (Paterson 

et al., 2009).  Such a high quantity of heterochromatin made initial genetic studies of 

sorghum challenging to relate to the physical genetic location, as 97-98% of the 

recombination occurs within the euchromatic regions (Fig. 3) (Bowers et al., 2005; 

Paterson et al., 2009).  This enrichment in repeat-heavy regions also provides challenges 

for short-read sequencing, as such regions are difficult to align with high confidence. 

 

 

 

Figure 3:  Physical locations of sorghum genetic markers  
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Fortunately, the ability of sorghum to self-pollinate allows for the rapid and 

relatively simple ability to develop inbred lines and take advantage of sorghum’s high 

level of linkage disequilibrium.  This characteristic has been used to develop genetic 

maps for traits such as favorable biofuels characteristics, disease resistance, and drought 

tolerance (Haussmann et al., 2002; Parh et al., 2008; Shiringani et al., 2010; Shiringani 

and Friedt, 2011).  

Stem Physiology 

 Plant stems are multipurpose organs that vary considerably from plant to plant.  

In general, the stem is one of the primary axes of plant growth, responsible for elevating 

the leaves for optimal illumination and properly positioning the flowers and reproductive 

organs for pollination and seed dispersal.    While stems vary significantly from plant to 

plant, the general morphology of stems is similar.  An outer layer of dermal tissue 

protects the stem and provides a mechanism for controlling water and gas exchange with 

the surrounding environment.  Filling the bulk of the stem is ground tissue, a mixture of 

parenchyma, collenchyma, and sclerenchyma cells that provide a variety of functions 

throughout the plant’s lifespan (Moore et al., 1998).  Parenchyma is the most common 

cell type in ground tissue, making up the cortex and pith tissues, while collenchyma and 

sclerenchyma cells are heavily lignified and provide structural support to the stem.  

Vascular tissues are found in bundles in the stem, and serve to transport water and 

nutrients, as well as providing structural support to the stem (Raven et al., 1986). 
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 Monocot and dicot stems exhibit quite different morphologies.  Dicot stems have 

an inner pith, surrounded by vascular bundles arranged in a ring structure, while 

monocots tend toward randomly distributed vascular bundles concentrated near the 

epidermis (Fig. 4). Dicot stems can also exhibit secondary growth, where cell division 

from lateral meristems allows the girth of the stem to increase.  Monocots typically do 

not exhibit secondary growth in this manner, though exceptions such as palm trees can 

expand their girth through division and expansion of stem parenchyma cells. 

The Plant Cell Wall 

The plant cell well is a complex structure that lends support to plant cells, 

allowing them to resist osmotic pressure as well as prevent entry by pathogenic 

microorganisms  (Raven et al., 1986).  The structure of the cell wall varies between 

organisms and cell types, but in general it is a thick matrix of layered cellulose fibrils, 

crosslinked with hemicellulose, lignin, and pectin. (Fig. 5) 

Plant cell walls generally develop in two stages.  The primary cell wall is 

deposited prior to cell maturation, and retains flexibility to allow the cell to expand.  The 

secondary cell wall is deposited once the cell reaches maturity and is generally much 

thicker than the primary cell wall.  The secondary cell wall may also contain lignin, 

cutin, and/or suberin in addition to the components found in the primary cell wall 

(Buchanan et al., 2000).   

 



	
  

	
  

9	
  

 

Figure 4:  Confocal image of mature sorghum internode cross-section.  Lignified tissues 
provide fluorescence, false colored red.  

 
 
 
Primary cell walls retain flexibility, allowing cells to continue to grow and 

expand while still maintaining their rigidity due to turgor pressure.  These cell walls are 

generally between 100nm and 1 µm in thickness.  Primarily constructed of interlocking 

polysaccharide filaments and cellulose microfibrils, the primary cell wall presents a 

lattice appearance that can be adjusted to allow for cell growth and expansion (Carpita 

and Gibeaut, 1993; Cosgrove, 2005). 

 

 

Figure 5:  Schematic representation of plant primary cell wall. 
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 Mature plant cells generate secondary cell walls once their growth is complete.  

These secondary cell walls share many compounds with primary cell walls, with the 

main difference being the addition of lignin.  The secondary cell wall is deposited 

inwards of the primary cell wall, and provides an additional layer of protection and 

structural support.  Grasses may feature the inclusion of silica crystals to protect the 

plant from herbivory (Carpita, 1996).   

Cell Wall Composition 

 Determining and manipulating the composition of plant cell walls has been an 

ongoing process for several decades (Jung et al., 2012).  Significant variation exists 

between plant species, and also between primary and secondary cell walls. 

Primary cell walls are primarily composed of cellulose, arabinoxylan, uronic 

acids and protein (Burke et al., 1974).    A significant portion of this protein content are 

extensins: hydroxyproline-rich structural glycoproteins embedded and intertwined 

throughout the primary cell wall (Lamport et al., 2011). These proteins are transported to 

the cell membrane from the Golgi apparatus, where they undergo crosslinking via free-

radical oxidation to form structural supports for the growing cell wall (Lamport 1977).  

These proteins also play a role in plant pathogen response, with dense networks of 

extensins generated rapidly in response to elicitor molecules (Esquerre-Tugaye and 

Mazau, 1974; Bradley et al., 1992; Brady and Fry, 1997).   

 Also prevalent in primary cell walls are pectins, believed to form some of the 

most complex polysaccharide structures in the world (Willats et al., 2001).    Pectins are 

heterogenous mixtures of homogalacturonan, rhamnogalacturonans, galactans, 
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arabinans, and a wide variety of other polysaccharides that form multiple recognizable 

domains, which serve differing functions related to cell growth, expansion, rigidity, and 

cell adhesion (Willats et al., 2001; Vincken et al., 2003).  These pectins, among other 

functions, can form hydrated gels that serve to physically spread the mesh of cellulose 

microfibrils during cellular expansion, and cement the fibrils into position once the gels 

dehydrate.  Pectins are also present in the middle lamella, a region between the primary 

cell walls of neighboring cells that functions to adhere the cells together (Iwai et al., 

2002). 

 Secondary cell walls are less diverse in the variety of materials involved in their 

construction.  While primary cell walls maintain cell integrity and shape during cell 

growth, secondary cell walls provide structural support and hydrophobicity to mature 

cells.  The most well studied secondary cell walls are those found in the xylem, the 

element of the stem that carries water from the roots to the leaves.  Secondary cell walls 

are primarily constructed from cellulose, hemicellulose, and lignin, the last of which 

provides the hydrophobic element critical to maintaining vascular integrity.  In maize, 

development of secondary cell walls is initially concentrated on the protoxylem.  As 

development progresses, secondary cell wall thickening is localized in the protoxylem, 

metaxylem, and eventually in the parenchyma and schlerenchyma, with the xylem and 

schlerenchymal tissues showing evidence of lignification (Jung and Casler, 2006).    

Despite being present only in the secondary cell wall, lignin forms a considerable 

percentage of the total stem biomass (Iiyama and Wallis, 1990).  While necessary for 

vascular hydrophobicity, the inclusion of lignin in secondary cell wells provides 
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challenges to efficient use of stem biomass.  Lignin is a complex polyphenolic 

compound, made up of many lignin monomers that are covalently linked within the 

secondary cell wall (Fig. 6).  The energy content of lignin is quite high, however lignin 

has so far proved exceedingly intractable to processing.  The heterogenous structure of 

lignin has yet to be resolved, and the high number of carbon-carbon bonds, combined 

with the aromatic nature of the monolignols, yields a compound that is difficult to 

degrade enzymatically, and extremely energy intensive to degrade chemically (Boerjan 

et al., 2003; Chang 2007).  

 

 

Figure 6: Example of a lignin structure. (Glazer and Nikaido, 1995). 
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Cellulose Biosynthesis and Deposition 

 Cellulose is the primary component of plant cell walls, and the most abundant 

biopolymer on earth.  Cellulose is a polysaccharide molecule formed through the 

covalent β1-4 linkage of glucose molecules into long chains.  In plants, cellulose is 

typically formed into higher-order structures called cellulose microfibrils.  Each 

microfibril is made of roughly 36 hydrogen-bonded chains of cellulose, each containing 

between 500 and 14,000 covalently linked glucose molecules (Somerville, 2006).     

The exact method of cellulose microfibril synthesis and deposition has not yet 

been determined.  What is known is that in vascular plants, cellulose synthase is a 

transmembrane protein complex, with each complex made of six rosettes, and each 

rosette assembled from six or more subunits (Kimura, 1999).  Each of these rosettes is 

believed to synthesize between six and ten glucan chains, which then crystallize into the 

roughly 36-chain crystals that make up microfibrils (Herth, 1983).   

 The most well known components of cellulose synthase are the CESA family of 

proteins.  These proteins were first identified in higher plants through sequence analysis 

of mRNA in developing fibers, and share sequence identity with bacterial cellulose 

synthase proteins (Pear et al., 1996).   These proteins contain eight transmembrane 

domains, and are believed to interact through a conserved RING-type zinc finger 

(Holland, 2000; Richmond, 2000; Somerville, 2006).  UDP-glucose - channeled to the 

cellulose synthase complexes by sucrose synthase – is added to the nonreducing end of 

the growing cellulose polymers through an as-yet uncharacterized glycosyltransferase 

action (Koyama et al., 1997; Lai-Kee-Him et al., 2002).   
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 Early observations of cellulose deposition in higher plants revealed that the 

orientation of the cellulose microfibrils in expanding cells followed that of the cortical 

microtubules located nearest the plasma membrane (Ledbetter and Porter, 1963).   Live-

cell confocal imaging reveals that cellulose synthase complexes are functionally 

associated with the cortical microtubules of expanding plant cells, and follow these 

microtubules in order to establish a regular pattern of cellulose deposition (Paredez et al., 

2006).  Current observations indicate cellulose synthase travels adjacent to, but not on 

top of, the cortical microtubules, and that it is capable of bidirectional travel, 

establishing parallel arrays of cellulose deposition (Giddings and Staehelin, 1988).  The 

translocation of the complex is not believed to be linked to the association with the 

microtubule, but instead the motive force is provided by the cellulose polymerization 

itself (Robinson and Quader, 1981; Lloyd, 1984). 

Hemicellulose Biosynthesis and Deposition 

 Hemicellulose is the name given to the complex network of polysaccharides 

(excluding cellulose and pectin) that can be found in plant primary and secondary cell 

walls and contain an equatorial β-(1-4)-linked backbone structure.  Many plant cell walls 

contain a wide variety of hemicelluloses, including xyloglucans, xylans, mannans, 

glucomannans, and in the case of grasses, β-(1-3,1-4)-glucans (Scheller and Ulvskov, 

2010).   

Xyloglucan is the most common hemicellulose, found in every land plant species 

so far examined, and is the main hemicellulose present in primary cell walls in most 

plant species, excluding grasses (Moller et al., 2007; Popper, 2008).  Xyloglucan can 
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exhibit significant branching and substitution, which is believed to be a determinant of 

the role xyloglucan will be playing in the cell wall (Scheller and Ulvskov, 2010).  The 

xyloglucan backbone is synthesized by the CSLC family of glycosyltransferases that 

share similarity with the CesA family of cellulose synthase genes, and branches are 

added by galactosyltransferases, fucosyltransferases, and members of the GT47 and 

GT34 families of glycosyltransferases (Perrin et al., 1999; Cavalier and Keegstra, 2006; 

Cocuron et al., 2007).  

Xylans are also very common in cell walls, making up a large family of 

polysaccharides with the common characteristic of a β-(1-4)-linked backbone of xylose 

residues.  Variations in the composition of xylan are characteristic between the 

secondary cell walls of grasses and dicots: grasses feature a preponderance of glucuronic 

acid and arabinose residues linked to the backbone, while dicots mainly favor glucuronic 

acid (Thomas et al., 1987; Pauly and Keegstra, 2008; Vogel 2008).  The biosynthesis of 

xylan has not yet been achieved in vitro, but it is known that the CSLC family involved 

in xyloglucan synthesis does not catalyze the formation of the xylan backbone (Scheller 

and Ulvskov, 2010).  Characterization of xylem deficient mutants in Arabidposis 

indicates the involvement of members of the GT43 and GT47 families of 

glycosyltransferases in the formation of the xylan backbone, but attempts to show xylan 

synthase activity in these genes have not been successful (Brown et al., 2007; Lee et al., 

2007; Brown et al., 2009;). Similarly, the exact players functioning in the addition of 

branch resides to the xylan backbone have yet to be determined.  Members of the GT61 

family in grasses are suspected to be involved in the formation of 
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glucuronoarabinoxylans, but in vitro experiments have so far not confirmed this 

hypothesis (Porchia et al., 2002; Mitchell and Dupree, 2007; Zeng et al., 2008).  

β-(1-3,1-4)-linked glucans are a phenomenon so far unique to grass species 

(Scheller and Ulvskov, 2010).  Present mainly in the primary cell walls, mixed-linkage 

glucans are usually formed of cellotriosyl and cellotetrasyl units linked by β-(1-3) bonds 

(Stone, 1992).  These polysaccharides are believed to play a role in the primary cell wall 

during cell expansion (Gibeaut et al., 2005).  Mixed-linkage glucans have been shown to 

be synthesized by members of the CSLF and CSLH families of cellulose synthase-like 

proteins (Burton et al., 2006; Doblin et al., 2009).   

With the exception of mixed link glucans, hemicellulose is synthesized in the 

Golgi apparatus, and exported to the cell wall once assembly and modification is 

complete.  One exception to this may be mixed-linkage glucans – the protein synthetic 

machinery has been localized in the Golgi apparatus, but the polysaccharide itself has 

not.  Whether this indicates masking by acetylation or additional synthesis steps after 

exiting the Golgi has yet to be determined (Wilson et al., 2006).   

Lignin Biosynthesis and Deposition 

 Lignin is a complex polyphenolic compound formed through the covalent 

linkage of monolignol subunits derived from the amino acid phenylalanine.  Lignin is 

primarily deposited in the secondary cell walls of parenchyma, xylem, and 

schlerenchyma cells, where lignin contributes structural support and hydrophobicity to 

the cells.  Development of the phenylpropanoid pathway was critical to the colonization 

of land by plants, contributing critical shielding to damaging ultraviolet radiation as well 
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as support and hydrophobicity for the tracheary elements.  Lignin is now one of the 

largest carbon sinks for plants, and is estimated to represent up to 30% of the total 

biomass in the biosphere (Lowry et al., 1980; Bateman et al., 1998; Boerjan et al., 2003).  

 Monolignol biosynthesis begins with the deamination of phenylalanine by 

phenylalanine ammonia lyase (PAL), and then the immediate conversion of the product, 

cinnamate, to p-coumaric acid through the action of cinnamate-4-hydroxylase (C4H).  

These steps are believed to occur through an interaction of PAL and C4H in the 

endoplasmic reticulum, likely in an attempt to reduce concentrations of cinnamate, 

which has been shown to act as an ionophore and inhibitor of auxin-based cell growth 

(McLaughlin and Dilger, 1980; Rasmussen and Dixon, 1999; Achnine et al., 2004; 

Wong et al., 2005).  Ligation of CoA by 4-Hydroxycinnamoyl-CoA ligase (4CL) 

produces p-coumaroyl-CoA, which either proceeds through monolignol biosynthesis or 

proceeds into flavonoid biosynthesis.   

 Generation of p-coumaryl alcohol, the primary component of H type lignin, 

involves two additional steps.  P-coumaroyl-CoA is first reduced to p-coumaraldehyde 

through the action of hydroxycinnamoyl-CoA reductase (CCR), and then reduced again 

to form p-coumaryl alcohol (Boerjan et al., 2003). 

 Formation of coniferyl and sinapyl alcohol involve the creation of p-coumaroyl 

shikimate esters, catalyzed through the action of hydroxycinnamoyl-CoA:shikimate 

hydroxycinnamoyl transferase (HCT).  The resulting ester is hydroxylated at the 3’ 

position by p-coumaroyl shikimate-3’ hydroxylase, and then de-esterified via HCT.  The 

newly formed hydroxyl group is replaced by an O-methyl group by caffeoyl-CoA O-



	
  

	
  

18	
  

Methyl transferase, and the actions of CCR and CAD generate coniferyl alcohol, the 

primary component of G lignins (Boerjan et al., 2003; Weng and Chapple, 2010). 

 Sinapyl alcohol is the primary component of S lignin, which is present in most 

flowering plants (Weng et al., 2008).  Sinapyl alcohol is generated through the actions of 

ferulic acid/coniferaldehyde/coniferyl alcohol 5-hydroxylase (F5H) on coniferaldehyde 

and/or coniferyl alcohol, which are generated during coniferyl alcohol synthesis.  The 

products are hydroxylate on position 5, and then the hydroxyl group is replaced by an O-

methyl group by caffeic acid O-methyl transferase.  Starting with coniferaldehyde yields 

sinapaldehyde, which is then reduced to sinapyl alcohol by CAD.  If the initial substrate 

was coniferyl alcohol, the product is sinapyl alcohol. 

 The transport mechanisms for monolignols to the cell wall have yet to be fully 

elucidated.   It has been shown that lignol glycosides accumulate in lignifying tissues, 

but the function of these glycosides in transport has yet to be confirmed (Lim et al., 

2001).  Expression studies tentatively support the function of monolignol glycosides in 

transport through the involvement of members of the ABC family of transport proteins 

(Ehlting et al., 2005).  However, much work remains to be done in order to confirm the 

role of these proteins. 

 Once the monolignols arrive at the cell wall, a variety of dehydrogenation 

reactions convert the monolignols into the lignin polymer (Boerjan et al., 2003).  Many 

different classes of proteins have been suggested to be responsible for the generation of 

monolignol radicals, including peroxidases, laccases, and polyphenol oxidases, though 

recent studies have focused more closely on peroxidases as the primary agent 
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responsible for free radical generation (Onnerud et al., 2002; Blee et al., 2003). Once 

free-radical generation has taken place the polymerization step takes place largely 

without biochemical constraints, generating a complex three dimensional, racemic lignin 

molecule (Ralph et al., 1999). 

 Ferulic acid is also produced via the phenylpropanoid biosynthetic pathway 

alongside monolignols, and can be found in the primary and secondary cell walls of 

many graminaceous species (Harris and Hartley, 1976; Ou and Kwok, 2004).  

Comprising nearly 3% of the dry weight of graminaceous cell walls, ferulate is most 

often found covalently bound via an ester linkage to the arabinose residues of 

arabinoxylan polysaccharides (Ralph and Helm, 1993; Saulnier et al., 1999). Ferulic acid 

has also been shown to form linkages with lignin, and it is believed that it may serve as a 

nucleation site for lignin polymerization (Iiyama et al., 1994; Wallace and Fry, 1995) 

Nonstructural Carbohydrates 

 While the bulk of the biomass in sorghum stems originates in the plant cell wall, 

non-structural carbohydrates contribute significantly to the total biomass.   Nonstructural 

carbohydrates (NSC) are composed of readily extractable carbohydrates such as starch 

and sucrose, and serve as energy storage and transport for the plant, especially during 

grain filling (Arai-Sanoh et al., 2011).  Many crops grown for sugar or syrup, such as 

sugarcane and sweet sorghums, have been selected for high stem NSC content, though 

grain crops retain significant NSC despite grain yield optimization (Vietor and Miller, 

1990; Murray et al., 2008).   
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 The three primary soluble sugars found in sorghum stems are glucose, fructose, 

and sucrose.  Glucose is produced as a product of photosynthesis, where the plant uses 

solar energy to fix carbon in the atmosphere into forms that can be metabolized when the 

sun is not present.  Sucrose is synthesized from glucose and fructose through the action 

of sucrose synthase and is used for transporting sugars through the phloem, and makes 

up the primary stem NSC in mature sweet sorghums (Murray et al., 2008).    

 Starch is formed through the α(1-4) linkage of glucose molecules, catalyzed by 

starch synthase.  Starches are primarily separated into amylose and amylopectin – 

amylose is composed of unbranched α(1-4)-linked glucose residues, while amylopectin 

also contains α(1-6)-linked branches of glucose residues.  Amylose content in sorghum 

stems shows significant variation across the developmental cycle of sorghum, with high 

levels of starch present in the stem prior to anthesis, and levels rapidly decreasing 

thereafter (McBee and Miller, 1993).  The presence of starch in sorghum stems has not 

been analyzed in detail, and much regarding the temporal and physical distribution 

remains unknown. 

Regulation of Secondary Cell Wall Growth 

 While the chemical structures involved in plant cell walls are relatively well 

understood, and the biosynthetic complexes that create them have been studied for 

decades, an understanding of the regulation of these complexes is recent and still 

incomplete.   

 Secondary cell walls vary in function, and therefore vary in composition and 

timeframe of deposition.  These variations require a complex regulatory system to 
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establish secondary cell walls in such varying cell types as endothecium cells, guard 

cells, and trichomes.  Additionally, these regulatory systems are responsible for laying 

down the complex layers of cellulose, xylan, and lignin involved in secondary cell wall 

thickening.  While many of the players involved in the regulation of the biosynthetic 

genes are known, the “master switches” that initiate the developmental programs 

themselves remain uncharacterized (Zhong and Ye, 2007). 

 Initially characterized in endothecium cells, members of the Arabidopsis NAC 

family of transcription factors play a key role in secondary cell wall development 

(Mitsuda et al., 2005).  Two members of the NAC family, NAC SECONDARY WALL 

THICKENING PROMOTING FACTOR1 (NST1) and NST2 were shown to both act in 

the thickening of endothecium cell walls; NST1 and NST2 appear to act redundantly, 

requiring loss of function in both genes to cause a secondary cell wall deficient 

phenotype.  Interestingly, overexpression of either of these genes in parenchyma tissue 

causes upregulation of secondary cell wall biosynthetic machinery, and ectopic 

deposition of secondary cell walls, supporting the concept of an upstream control 

mechanism (Zhong and Ye, 2007).   

 Other important players in the regulation of secondary cell wall biosynthesis are 

members of the MYB family of transcription factors. Mutation of the Arabidopsis 

MYB26 gene in endothecium has been shown to cause loss of secondary cell wall 

thickening, resulting in anther dehiscence (Steiner-Lange et al., 2003; Yang et al., 2007).  

Similar to NST1 and NST2, overexpression of MYB26 in parenchyma cells also results 

in an ectopic deposition of secondary cell wall. The same mutation that abolished cell 
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wall thickening also caused a down regulation of NST1 and NST2, and overexpression 

of MYB26 causes an up regulation of NST1 and NST2, indicating that they may be 

targets of MYB26, though whether they are targeted directly is unknown.   

 NST1, along with NST3 (also called SND1) have also been shown to be involved 

with the secondary cell wall biosynthesis of fibers in Arabidopsis (Zhong et al., 2006; 

Mitsuda et al., 2007; Zhong et al., 2007a).  Much like NST1 and NST2 in the 

endothecium, SND1 and NST1 act in a redundant fashion to promote secondary cell wall 

thickening in fibers, and overexpression of SND1 leads to ectopic secondary cell wall 

deposition. The normal function of these transcription factors also appears to be tissue 

specific, as SND1 is expressed in intrafascicular and xylary fibers only, and not in the 

vessel elements (Zhong et al., 2006; Zhong et al., 2007a).  An additional MYB factor, 

MYB46, has been shown to be a direct target of SND1, and plays a role in the regulation 

of secondary cell wall biosynthesis in fibers through regulation of the biosynthetic 

machinery (Zhong et al., 2007b).   

 Vessels (protoxylem and metaxylem) also rely on NAC transcription factors to 

establish the program of secondary wall deposition.  The VASCULAR-RELATED NAC 

DOMAIN genes VND6 and VND7 are closely related to SND1, and have been shown to 

be upregulated in protoxylem and metaxylem, respectively (Kubo et al., 2005).  Similar 

to NST1 and NST2, overexpression of VND6 and VND7 results in ectopic deposition of 

secondary cell walls in parenchyma cells, strengthening the position that VND6 and 

VND7 act as high level controls for secondary cell wall deposition in their respective 

tissues. 
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 While many of the transcription factors involved in secondary cell wall 

deposition have been identified, the interactions between these genes and the 

biosynthetic genes for the various cell wall components remain largely unidentified. 

Overexpression of SND1 is known to upregulate the expression of a variety of NAC and 

MYB factors, indicating the presence of a transcriptional network (Fig. 7) that may be 

involved in the development of secondary cell wall biogenesis (Zhong et al., 2006).  

Further support is provided by the determination that MYB46 is a direct target of SND1, 

and that overexpression of MYB46 causes increases in the expression of MYB85 and 

KNAT7 (Mitsuda et al., 2005).   

 

 

Figure 7:  Diagrammatic representation of regulation of secondary cell wall 
biosynthesis in plant stems.  Question marks represent uncertainty in downstream 
factors.   
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SORGHUM GERMPLASM SCREENING AND LIGNIN ANALYSIS 

 
Introduction 

Among the traits relevant to biofuels crops, lignin content is one of the most 

important.  High levels of lignin in biomass destined for enzymatic or microbial 

degradation increases their recalcitrance to digestion, necessitating energy expenditure in 

the form of elaborate pretreatment before the biomass can be converted to fuel (Dien et 

al., 2006; Chen and Dixon, 2007; Galbi and Zacchi, 2007). Lignin additionally poses 

challenges for non-enzymatic biofuels methods such as pyrolysis although it can be 

converted into an etherized gasoline additive using thermochemical conversion 

(Dautzenberg et al., 2011).  Lignin molecules are highly oxygenated, and the presence of 

oxygenated compounds in the resulting bio-oils causes these products to be unstable and 

require further treatment (Mohan et al., 2006).  Though recent advances in fast pyrolysis 

and zeolite upgrading have taken steps towards providing a reliable method for 

stabilizing the resulting bio-oil, the ability to regulate the quantity of lignin in biomass 

going into a conversion process remains of critical importance (Adjaye and Bakhshi, 

1995; Jae et al., 2011),   

 Lignin serves an important biological role in plants by providing structural 

support for stems and trunks, as well as waterproofing tracheary elements to allow for 

water transport.  Previous experiments involving transgenic alteration of monolignol 

synthesis have caused undesirable dwarfing due in part to the loss of this waterproofing 

(Hoffman et al 2004), and mutations in Sorghum monolignol biosynthetic genes can 

result in a loss of plant structural stability (Oliver et al., 2005).  



	
  

	
  

25	
  

 In this study, diverse sorghum accessions were analyzed to determine the extent 

they varied in lignin content and in the distribution of lignin in stems. 

  

Results 

Flowering 

In the spring of 2007, Dr. William Rooney planted 2000 diverse sorghum 

accessions in 20 ft plots at the Texas A&M University farm in College Station Texas 

(located approximately 30.550, -96.438).  Plants were grown through until October 

under non-irrigated conditions.  Sampling was performed in October, with 351 total lines 

selected for analysis on the basis of distinct visible phenotypes (lodging, growth phase, 

stem thickness and stem height).  Individual plants were selected from the chosen plots 

and growth stage and lodging status recorded (Fig. 8).  Approximately half of the lines 

examined had reached anthesis (Fig. 8) with many of these lines (Fig. 8) exhibiting the 

formation of additional grain heads arising from the stem nodes.   
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Figure 8: Flowering status. 

 
 
 

 

Lodging 

Lodging is an agronomically relevant trait that can be responsible for significant 

yield loss.  It was hypothesized that lodging may be correlated to lignin content so 

lodging status of observed lines was recorded.  A plot was considered lodged if more 

than half of the plants had fallen over (root lodging) or been broken below the peduncle 

(stalk lodging).  A line was considered partially lodged if more than 25% but less than 

50% of the plants had lodged.  Nearly 2/3 of the examined lines exhibited some level of 

lodging, with the majority of those being considered fully lodged (Fig. 9).   
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Figure 9: Lodging status. 
 
 

 

Stem Lignin Staining 

 Stem segments were collected from all the lines examined for lodging and 

flowering time.  Samples were sectioned by hand using a razor blade, and the resulting 

sections stained with a mixture of 20% HCl and 2% phloroglucinol in ethanol.  

Phloroglucinol reacts with sinapyl and cinnamyl aldehydes in the presence of acid to 

create a reversible dye reaction, temporarily staining the lignified tissues pink and red-

brown, respectively (Pomar et al., 2004). The staining solution was applied to the 

samples with a Pasteur pipette and the sections photographed after 60 mins of staining.  

It was observed that the majority of the lignification detected by this method in sorghum 

stems is localized near the epidermis, with additional lignification distributed throughout 

the ground parenchyma (Fig. 10A).  Subsequent examination of stems using confocal 

microscopy revealed a layer of lignin deposited in the epidermis and surrounding cells 

comprising vascular bundles located directly below the epidermis (Fig. 10B). Further 
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staining was mainly localized to interior scattered vascular bundles, though some 

samples evinced staining in the ground parenchyma as well (Fig. 10A,B). This staining 

pattern is consistent with previously observed lignification patterns in grasses such as 

maize (Jung and Casler, 2006). 

 

 

 
Figure 10.  Methods for visualization in mature sorghum stem.  (A) Mature sorghum 
stem internode stained with phloroglucinol-HCl.  (B) Mature sorghum stem internode 
lignin autofluorescence observed with confocal microscopy. 
 
 
  

From these observations, staining categorization was separated into Epidermal Staining 

(ES) and Interior Staining (IS).  ES was defined as the intensity of staining at the 

epidermal surface of the section, rated on a subjective scale of 0-3, with 0 representing 

no staining to 3 representing the darkest, most intense staining.  IS was defined as the 

quantity and intensity of staining of cells in the interior of the stem section, considering 
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both vascular bundles and ground parenchyma cell walls.  The majority of the lines 

analyzed showed high levels of IS (Fig. 11), while much more variation was present in 

the level of ES (Fig. 12). 

 
 
 

 
Figure 11: Interior staining, rated from 0 (no staining) to 3 (most intense staining). 

 
 
 
 
 

 
Figure 12:  Epidermal staining, rated from 0 (no staining) to 3 (most intense staining). 
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There was no significant correlation between lodging and ES/IS or between flowering 

status and ES/IS (Data not shown). 	
  

Stem Lignin Quantitation 

 Acetyl bromide extraction followed by spectrophotometry was used to quantitate 

the amount of lignin present in the stems of a subset of 41 lines chosen from the set of 

351 total sampled lines (Hatfield et al., 1999).  Samples were chosen to represent the 

range of lignin staining observed and subsequently ground to ~1mm particle size.  

Samples were washed, treated with acetyl bromide and suspended in glacial acetic acid 

for spectrophotometry (Morrison, 1972).  Absorbance values at 280 nm were compared 

to standards prepared from Indulin as per Fukushima et al. (1991) to determine total 

lignin percentage for each sample (Fig. 13). 

 
 
 

 
Figure 13:  Lignin content measured as a percent value of total dry weight of sorghum 
stem.  Field plot numbers are labeled on X-axis. 
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 Lignin content varied from ~11% of total stem mass to over 17% of total stem 

mass in the samples examined.  Also included in the analysis were three sorghum 

monolignol synthesis deficient lines, bmr6, bmr12, and bmr612.   bmr6 contains a 

premature stop codon in SbCAD4 which encodes a cinnamyl alchohol dehydrogenase 

responsible for the conversion of hydroxycinnamoyl aldehydes into monolignols (Sattler 

et al., 2009).  bmr12 contains a premature stop codon in the soghum COMT gene which 

encodes an O-methyl transferase responsible for the conversion of 

hydroxyconiferaldehyde into sinapylaldehyde (Bout and Vermerris, 2003),.  bmr612 is a 

cultivar with stacked bmr6 and bmr12 alleles.  All bmr lines contain reduced lignin 

content and thus are useful for reference when examining lignin levels.   

Discussion 

Diverse sorghum accessions exhibit high levels of variability in lignin content 

and distribution in stems.  Surprisingly, fifteen of the lines examined had lignin levels 

lower than bmr6, and 3 lines had lower lignin than the bmr612 stacked line, highlighting 

the amount of variation inherent in the wide range of uncharacterized sorghum 

germplasm.  Lignin levels as detected by acetyl bromide extraction also did not correlate 

with either internal or epidermal phloroglucinol staining. This lack of correlation may 

indicate a lack of sensitivity in the staining method, but most likely represents either bias 

in the categorization of the degree of staining or a lack of adequate homogeneity in the 

preparation of the stems for staining. 

 Lignification is a relatively tissue-specific phenomenon; secondary cell wall 

thickening occurs primarily in xylem and fiber cells in the stem.  This provides a 
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mechanism for lignin variation beyond secondary cell walls containing more lignin: 

variation may exist in the number and lignification of vascular bundles and fibers.  Jung 

and Casler (2006) also observed that different secondary wall tissues lignified at 

different rates.  While all samples were harvested at the same date, the differences in 

flowering indicate that variation existed in the developmental state of the cultivars 

observed, which may also contributed to the variation as it may be challenging to 

identify partially lignified from fully lignified xylem elements through direct 

observation. 

 It has been previously observed that lignin content is negatively correlated with 

growth rate and that lignin biosynthesis is energetically expensive for the plant 

(Niemann et al., 1992; Amthor 2003; Novaes et al., 2010).  Given that plants can only 

assimilate a certain amount of carbon during a growing season, they must partition this 

carbon between the various cell components of vegetative growth and also allocate a 

sufficient quantity for grain development.  Within the stem components, limited carbon 

must be split between cellulose, hemicellulose, lignin, and nonstructural carbohydrates 

such as sucrose and fructose. While the techniques used in this project were not able to 

identify the quantities of these components, newer methods such as near-infrared 

reflectance spectroscopy will allow for a more holistic view.  This will allow for the 

evaluation of lignin quantity in the context of total stem carbohydrates, rather than in 

isolation. 

Large levels of variation in the Sorghum germplasm also illuminate sorghum’s 

value as a potential bioenergy crop.   With the ability to pyramid desirable traits through 
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breeding (as demonstrated with bmr612) and such a wide variety of lignin content, it 

should be possible to adjust the lignin content to fit the desired industrial application.  

While traditional approaches to lignin modification have attempted to reduce the overall 

amount of lignin present in feedstocks, lignin is a very energy dense material, with an 

energy content 30% higher than that of cellulose (White, 1987).  Exploiting both the 

high and low lignin cultivars in the collection will allow for flexible construction of 

lignin-optimized feedstocks. 

Using identified differences in lignin quantity, the next step is to identify the 

genetic regions responsible for this variation.  Once identified, the genic basis of the 

variation can be determined; these might be monolignol biosynthetic genes, secondary 

cell wall-associated transcription factors, or a combination of both.  
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IDENTIFICATION OF SORGHUM MONOLIGNOL 

BIOSYNTHETIC GENES 

 
Introduction 

 Lignin is a complex macromolecular structure composed of covalently linked 

phenolic compounds that is intertwined with the cellulose microfibrils in the secondary 

cell walls of plants.  The basic compounds that make up the lignin polymer are 

monolignols, aromatic alcohols synthesized from the amino acid phenylalanine.  The 

synthesis of a given monolignol from phenylalanine consists of between five and eleven 

steps, depending on the monolignol being synthesized, beginning with the deamination 

of phenylalanine, proceeding through hydroxylation of the aromatic ring, O-methylation 

of the aromatic ring, and finally reduction of the C-terminus (Boerjan et al., 2003) 

Traditional lignin engineering efforts have focused on modifying the function of 

the monolignol biosynthetic genes (Vanholme et al., 2008).   Previously identified lignin 

deficient mutants in Sorghum bicolor were determined to be the result of gene 

truncations in monolignol biosynthesis genes (Bout and Vermerris, 2003; Sattler et al., 

2009). Research on other organisms has shown that manipulation of the monolignol 

synthesis genes is a valid method for establishing changes in lignin levels and 

composition (Boudet et al., 2003; Vanholme et al., 2008;Grabber et al., 2010).   

 The genome of Sorghum bicolor was assembled in 2009, with most gene 

annotations established via ab initio predictions, with some additional data from 

previously identified genes in maize, rice and sugarcane (Paterson et al., 2009).   As a 
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result, many of the predicted genes are assigned into groups based on general function 

(i.e. dehydrogenase action) but not specific substrate or product.  While some genetic 

analyses have been performed on sorghum lignin variation (Shiringani and Friedt, 2011) 

relatively little has been done to identify the monolignol synthesis genes themselves in 

sorghum.   

Results 

Identification of Monolignol Biosynthesis Genes in Literature 

 The monolignol biosynthetic pathway consists of 10 enzymes (Fig. 14): 

phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-

CoA ligase (4CL), hydroxycinnamoyl-CoA: quinate shikimate hydroxycinnamoyl 

transferase (HCT), coumarate-3 hydroxylase (C3H), caffeoyl-CoA O-methyl transferase 

(CCoAOMT), cinnamoyl CoA reductase (CCR), ferulate 5-hydroxylase (F5H), caffeic 

acid/5-hydroxyconiferaldehyde O-methyltransferase (COMT), cinnamyl alcohol 

dehydrogenase (CAD) (Chen et al., 2006).  Exploration of the monolignol biosynthetic 

pathway has been extensive but has been spread across many species, necessitating each 

gene be identified in the organism being studied (Boerjan et al., 2003).  

 
Genes involved in various pathways have been inferred using the existing 

annotations (http://www.gramene.org/pathway/sorghumcyc.html) but as sparse 

experimental evidence for gene function exists in sorghum, and many of the annotations 

only list similarity to other putative genes, it is valuable to attempt to establish a more 

direct link with experimentally demonstrated gene functions.   Examples of each gene 
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were identified where protein function had been established, if such examples existed, 

with validation of expressed mRNA used if no protein validation was available.   

 
 

 
Figure 14:  Monolignol biosynthetic pathway. (Vanholme et al., 2008). 
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Table 1: Identification of putative monolignol biosynthetic genes in Sorghum bicolor.   

Gene Product 
Originating 
Organism 
Gene ID 

(Biosynthetic 
Product) 

Confirmation Sorghum 
Gene(s) 

% Coverage % Identity 

PAL1_ORYSJ 
Oryza sativa 
Os02g0626100 
(PAL) 
 

Minami et al., 
1989 
Komatsu et al., 
2004 

Sb04g026510.1 
Sb04g026560.1 
Sb04g026550.1 
Sb04g026540.1 
Sb04g026530.1 
Sb04g026520.1 
Sb06g022740.1 
Sb06g022750.1 
Sb01g014020.1 

84 
82 
82 
82 
82 
82 
84 
79 
80 

90 
82 
82 
82 
82 
83 
89 
82 
79 

CYP73A5 
Arabidopsis 
thaliana 
At2g30490.1 
(C4H) 

Mizutani et al., 
1997 

Sb02g010910.1 
Sb03g038160.1 
Sb04g017460.1 

79 
87 
54 

70 
71 
75 

At4CL1 
Arabidopsis 
thaliana 
At1g51680 
(4CL) 

Ehlting et al., 
1999 

Sb10g026130.1 
Sb07g022040.1 
Sb04g005210.1 
Sb07g007810.1 
Sb04g031010.1 

52 
61 
52 
52 
69 

68 
71 
66 
65 
64 

CAD47830 
Nicotiana 
tabacum 
AJ507825.1 
(HCT) 

Hoffmann et al., 
2004 

Sb04g025760.1 
Sb04g035780.1 
Sb06g021640.1 

100 
100 
99 

64 
62 
43 

AY149607 
Hordeum vulgare 
AY149607.1 
(CCR) 

Larsen, K., 2004 Sb07g021680.1 
Sb10g005700.1 
Sb02g014910.1 
Sb04g005510.1 
Sb04g036780.1 
Sb04g036770.1 

77 
77 
76 
73 
73 
73 

88 
81 
75 
72 
71 
71 

Bmr6 
Sorghum bicolor 
Sb04g005950.1 
(CAD) 

Sattler et al., 
2009 

Sb04g005950.1 
Sb06g001430.1 
Sb02g024210.1 
Sb02g024190.1 
Sb02g024220.1 
Sb07g006090.1 

* 
93 
93 
94 
93 
93 

*  
65 
65 
65 
67 
65 
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Table 1 Continued 

Gene Product 
Originating 
Organism 
Gene ID 

(Biosynthetic 
Product) 

Confirmation Sorghum 
Gene(s) 

% Coverage % Identity 

AY107051 
Zea mays 
AY107051.1 
(C3H) 

Riboulet et al., 
2008 

Sb03g037380.1 
Sb09g024210.1 

93 
82 

92 
79 

AY675076 
Sorghum bicolor 
AY675076.1 
(F5H) 

Boddu et al., 
2004 

Sb04g024710.1 
Sb04g024750.1 
Sb04g024730.1 
 

58 
59 
65 

100 
97 
93 

CAB45149 
Zea mays 
AJ242980.1 
(CCoAOMT) 

Joan, 1999 Sb10g004540.1 
Sb07g028520.1 
Sb02g027930.1 
Sb07g028530.1 
Sb07g028490.1 

97 
60 
59 
60 
59 

90 
74 
74 
73 
72 

AAO43609 
Sorghum bicolor 
HQ668169.1 
(COMT) 

Bout and 
Vermerris, 2003 

Sb07g003860.1 
 

92 
 

99 
 

 
 
 

Identification of Sorghum Homologs of Monolignol Biosynthetic Genes 

Monolignol biosynthetic gene sequences were obtained where expression and, if 

possible, function had been experimentally confirmed (Table 1).  Sequences were 

compared using the discontiguous megablast function against the published Sorghum 

bicolor genome.  Putative genes were taken from the closest available phylogenetic 

relative of Sorghum, and the putative genes were only selected if they showed at least 

50% sequence coverage and an e value no higher than 1e-50.  The sole exception to this 

is the sorghum COMT and F5H genes:  full length mRNA sequences have been obtained 

from sorghum, but the predicted genes that underlie that genomic region do not match 
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perfectly.  This most likely represents errors in the gene prediction algorithms used to 

identify putative sorghum genes.  In the case of COMT, the alignment is an incorrect 

match to a single predicted gene, perhaps caused by a small error in the gene or mRNA 

sequence.  For F5H, the alignment predicts partial matches to a cluster of nearby 

putative genes.  Given the high identity and fractional nature of the alignment, it is likely 

that one or more of these putative genes are actually the same gene, incorrectly 

annotated. 

Not surprisingly, many of these genes appear to be present in multiple copies.  

Gene duplication and redundancy are common in grasses and C3H and C4H are 

members of the cytochrome p450 monooxygenase-dependent family of enzymes which 

have undergone significant duplication in sorghum (Paterson et al., 2009).   

Many of the biosynthetic genes appear together in clusters, most notably on 

chromosomes 3, 4, 6, 7 and 10 (Fig. 15).  The cluster of CCR, 4CL, and CAD on the p 

arm of chromosome 4 are within 700 kb of each other, a detail that will prove relevant if 

future mapping indicates a QTL within that region.   
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Figure 15: Physical locations of putative sorghum biosynthetic genes. Numbers on base 
of figure indicate chromosome number.  Grey ovals represent centromeric regions. 
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Discussion 

 Identification of the genes involved in monolignol biosynthesis will prove to be 

crucial to the development of assays involved in identifying the genetic basis of lignin 

variation in sorghum.  In addition to having a visible reference for determining whether a 

particular biosynthetic gene lies within a QTL, even trans-acting QTL will need at some 

point to interact with the biosynthetic genes.  While these QTL are as yet undetermined, 

once established having a monolignol reference will make candidate gene discovery 

more rapid. 

Previous work involved in the modification of lignin content through 

perturbation of the monolignol biosynthetic pathway has shown that changes in the 

enzymes themselves can have unpredictable and sometimes undesirable effects on the 

organism as a whole (Vanholme et al., 2008).  It is likely that QTL analysis will reveal 

that naturally occurring lignin variation is the result of trans-acting factors that regulate 

the levels of expression of the biosynthetic enzymes, rather than the enzymes themselves 

(Patzlaff et al., 2003; Legay et al., 2007; Zhong and Ye, 2009).   In this case, 

identification of the monolignol biosynthetic genes is even more critical, as it will be 

necessary to identify which of the enzymes are being regulated by each transcription 

factor.   

 Lignin composition is also of concern for those plants desired for industrial 

application, and regulation of the biosynthetic enzymes would be directly relevant 

toward favoring one type of monolignol over another.  In such a situation, being able to 

identify where in the pathway regulation is taking place would be of high importance.	
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DEVELOPMENT OF GENOMIC TOOLS 

 
Introduction 

 One of the challenges facing molecular biologists and biochemists is the 

difficulty of identifying the genetic locus for a trait present in a naturally occurring 

population.  Unlike T-DNA insertion lines, there is not a sequence tag that can be easily 

located to identify where a sequence variant has occurred, and unlike TILLING 

populations, differences in sequence are not arising in a genetically uniform background.    

In the case of stem composition variants, the problem is further compounded by the 

challenge of rapidly identifying the phenotypic variation in question.   

 One technique that is used to identify the genetic basis for variation in traits is 

Quantitative Trait Loci (QTL) analysis.  QTL analysis is a statistical method that allows 

researchers to combine genetic data (in this case molecular marker alleles) with 

phenotypic data to determine the genetic basis for the variation of complex traits 

segregating in a population (Falconer and Mackay, 1996, Kearsey 1998).  This is a 

powerful tool for localizing the genes/alleles causing for phenotypic variation, but it 

requires a high fidelity genetic map and good phenotyping data. 

 Traditionally, markers such as restriction fragment length polymorphisms 

(RFLPs), short sequence repeats (SSRs) and amplified fragment length polymorphisms 

(AFLPs) were used in the creation of genetic maps, all of which were markers that could 

be physically identified during gel electrophoresis (such as SSRs), or identified using 

fluorescence tagging (such as AFLPs) (Gupta and Rustgi, 2004).  Deriving these 

markers is expensive and time consuming, and analysis is generally limited to a 
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relatively small number of markers for each group of samples.  Fortunately these 

methods do not require the possession of a genome sequence for them to function, 

allowing for the construction of genetic maps in any organism.   Before the Sorghum 

bicolor genome was sequenced, much of the genetic information available originated 

from such sources (Boivin et al., 1999; Bhattramakki et al., 2000; Menz et al., 2002; 

Kim et al., 2005). 

 Utilizing next-generation sequencing, millions of sequences can be obtained 

simultaneously, and sample multiplexing allows for many different samples to be 

analyzed at the same time.  The challenge in this process is dealing with the enormous 

amount of data that is produced: each lane on an Illumina GaIIx system produces over 

three gigabytes, and the newer HiSeq systems can produce sixteen gigabytes per lane.  

Such a quantity of data requires the development of a rapid analysis platform. 

 With the publication of the Sorghum bicolor genome sequence, such a platform 

becomes much simpler to implement.  This study demonstrates the development of a 

system for rapid genotyping of Sorghum bicolor using publicly available tools and 

datasets, producing data that can be rapidly used for genetic mapping.   

 
Results 

Initial Data Processing 

Genomic DNA from parental lines and progeny is digested with the restriction 

enzyme FseI followed by the ligation of adapters containing ID tags.   Running multiple 

samples per lane lowers the overall read count for each sample, and by only sequencing 
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areas flanking known restriction sites the read depth at each of these locations can be 

significantly increased improving accuracy.   

 
 

 
Figure 16: Generalized workflow for generation of sequence based markers from next 
generation sequencing data. 
 
 
 

Multiplexing is critical to the use of next generation sequencing (NGS) 

technologies in the generation of genetic markers and subsequent genotyping. As such, 

each of the samples being analyzed can be identified by a four nucleotide ID tag that has 

been ligated on the 5’ end of the DNA template being sequenced.  Each lane is analyzed 

independently to allow the software to run on the memory limitations of a desktop 

workstation, and to allow some lanes to be used for genotyping while others are used for 

other projects.  During the sorting process, quality control data, lane flanking 
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information, and ID tags are removed to prepare the data for downstream processing and 

to save memory.  After sorting, data is saved to independent files for ease of access and 

downstream processing.   

Marker Discovery   

 Parental genotype sequences are compared and all non-unique sequences are 

removed.  Unique sequences that align to only one location in the reference genome 

sequence with read counts of less than five are also removed to ensure high confidence 

in putative markers.  Sequences are then aligned to the genomic sequence using the 

BLAST algorithm (Altschul et al., 1990).  Installing a local instance of the BLAST 

program is relatively easy, and provides very rapid alignment of short sequence reads.  

Output from BLAST is parsed, and sequences with more than one perfect alignment to 

the genome sequence are discarded.  Sequences showing variation from the reference 

genome are then compared between parental lines to prevent identical polymorphisms 

from being declared as markers.  In cases where only one parent has a detectable 

polymorphism, the other is assigned the reference sequence.  

Digital Genotyping 

 Once generated, the list of alleles for each marker is loaded into memory.  Each 

genotype’s data is then read in, line by line, and compared to the stored sequences.  Most 

of the sequences are not polymorphic between genotypes and thus cannot be used for 

mapping as there is no sequence variation to identify lineage (Fig. 16).  Sequences that 

do match to one of the parental alleles are stored in memory, with a notation of how 

many such reads were present.  If less than three reads are present, the sequence is not 
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scored as there is not sufficient read depth to guarantee accuracy.  In some cases the 

genotypes being scored have sequences present from both parents at a given marker, 

these markers are flagged as potential residual heterozygosity if one allele is not 

represented at least an order of magnitude greater than the other.   

 Once all the genotypes have been assigned, the data is ordered by physical 

location on the genome and output into a readable file for further analysis (Fig. 17).  

After minor formatting changes, this file can be used to generate recombinational 

distances for QTL mapping. 

Marker Database Development 

 One downside of the technique discussed above is the need to develop new 

markers each time a run is performed.  Not only does this require valuable sample space 

and require lengthy computation, but also the low read number from each genotype 

ensures that some regions will not be sequenced sufficiently deeply to use them as 

genetic markers. 

A solution to this problem is to store the confirmed markers from each run in a 

database such that they will be accessible for subsequent runs.  This serves to allow 

users to genotype at markers that may not have sequenced deeply enough for assignment 

during their particular sequencing run, and also allows users to ensure their parental lines 

have not suffered any contamination, since they can be compared at each locus with 

stored data from previous analyses. 



	
  

	
  

47	
  

A deep sequencing project undertaken in collaboration with Dr. Patricia Klein 

provided initial data. The data consisted of a large set of genotyping markers sequenced 

multiple times for many genotypes, and provided data similar to that described above.   

 

Figure 17:  Display of genetic alleles within a RIL population.  Color has been applied 
for ease of human readability. 
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In all, 30 genotypes of sorghum (RTx430, R07045, 80M, SC748, SC56, Rio, 

BTx3197, R07007, R07008, Tx7000, BHK, RTx436, P850029, SC170, 100M, R07012, 

BTx623, R07020, BTx642, Hegari, DYM, BTx406, M35, IS3620c, R07030, RTx2536, 

R07054, R07018, R07034, R07042) were sequenced at 33,126 loci, generating a set of 

73,829 total unique sequences. One of the benefits of restriction site anchored 

sequencing is that all the sequences will be anchored to the same sites on the genome, 

barring those with variants within the actual restriction site.  As such, the data was stored 

in a MySQL database in a schema similar to that illustrated (Fig. 18).  The database 

schema itself is relatively simple, allowing for significant expansion if different 

genotyping techniques are to be employed. 

 From the establishment of a database, scripts can be used to access any relevant 

sections of the genome from a web interface (Fig. 19).  This data can also be exported as 

a text file so it may be accessed by the genotyping software described above.   
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Figure 18: Graphical display of database layout. 
 
 
 

 
Figure 19:  Access page to request marker data from sorghum database and results of 
displayed query. 
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Graphical Access to Marker Data 

 While having access to marker data in tabular text format is sufficient for 

developing genetic maps and QTL analysis, it is not ideally suited for human browsing.  

As such, the marker database was converted into a format readable by the ubiquitous 

GBrowse genome visualization program (Stein et al., 2002).  This allows all known 

markers to be plotted as a track in the GBrowse instance, and custom scripts allow the 

user to extract sequence variants and genotype information at each marker location (Fig. 

20A).   By using the MySQL database backend as demonstrated above, over 900,000 

sequence variants have been added for convenient browsing.  (Fig. 20B) 

 
 
 
 

 
Figure 20: (a) GBrowse display of available sorghum genetic information, including 
structural annotations and markers.  (b) Selection of a genetic marker results in display 
of marker sequence and all known alleles. 
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Discussion 

 Sequence-based genetic markers allow researchers to rapidly uncover the 

physical locations of the QTL responsible for phenotypes of interest.  The physical 

locations of the markers are determined during the initial phases of marker discovery, 

and this allows researchers to quickly anchor the QTL to the chromosome and uncover 

the genes within QTL intervals causing phenotypic variation.  As more researchers gain 

access to high throughput sequencing platforms, the ability to process this data will 

become more important, as will the ability to easily visualize and share the results. 

 Here has been shown a rapid technique for extracting genetic markers from NGS 

platforms, suitable for execution on a standard desktop workstation.  All of the 

components involved (GBrowse, MySQL, various Perl and PHP scripts) are freely 

available, avoiding the high costs of other genomics solutions.  Average processing time 

for genotyping analysis (processing raw data to generating data suitable for generating 

genetic distances) is less than 24 hours on currently available desktop computers.   
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QUANTITATIVE TRAIT LOCUS MAPPING FOR STEM 

COMPOSITION TRAITS 

 
Introduction 

  
Along with other C4 grasses such as miscanthus (Miscanthus spp.), sugarcane 

(Saccharum officinarum L.), and switchgrass (Panicum virgatum L.) sorghum is a 

promising candidate for future biofuels production (Farrell et al., 2006).  Approximately 

80% of the biomass of energy sorghum is present in stems at the end of the growing 

season.  There are numerous technologies for the conversion of stem carbohydrates to 

biofuels.   Optimizing the stem carbohydrate composition for each of these methods 

could potentially allow for greater conversion efficiency and reduced need for land 

usage (Hamelinck et al., 2005).  Stem carbohydrates are separated into the structural and 

nonstructural categories, with non-structural carbohydrates consisting primarily of 

simple sugars such as sucrose, as well as starch and structural carbohydrates consisting 

primarily of cellulose and hemicellulose.  Intertwined with the structural cell wall 

carbohydrates is a complex mesh of lignins, which usually have a negative effect on 

stem biofuel conversion efficiency (Hamelinck et al., 2005; Ragauskas et al., 2006; 

Weng et al., 2008).  Identifying the genetic basis for control of these traits would allow 

for selective optimization of stem composition components, which are ideal for biomass 

destined for different conversion programs. 

Sorghum is an important source of annual feed silage, as well as a promising 

source of biomass for biofuels production.  Sorghum is drought resistant, capable of 
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providing reasonable yields despite reduced water supply, and is often grown as a 

“hedge crop” by farmers worried about water deficit (Sanderson et al., 1992; EPA, 

2000).  Sorghum silage is, as a whole, less digestible for cattle than maize silage, largely 

thought to be a result of higher amounts of lignins present in the stem.  Lignin serves 

multiple important purposes in sorghum, such as providing waterproofing for the 

tracheary elements, but its presence is also detrimental to the ability for cattle and 

enzymatic systems to break down the cellulose and extract energy from the silage 

material (Humphreys and Chapple, 2002).   

Despite over 200,000 acres of sorghum being planted for silage in the US in 

2011, with a total yield of over 2 million tons (USDA, 2012), very little is understood 

about the genetic control of stem composition in sorghum. Progress has been made 

previously in identifying the biosynthetic components of lignin biosynthesis in, but the 

genetic basis of larger scale control of secondary cell wall biosynthesis remains largely 

unknown sorghum (Bucholtz et al., 1980; Bout and Vermerris, 2003).   An additional 

challenge to developing a framework for the control of stem composition is the difficulty 

of identifying phenotypes.  Lignin is particularly intransigent to measurement (Hatfield 

and Fukushima, 2005), though the other main stem components (cellulose, 

hemicellulose, starch, sucrose, and protein) are somewhat more easily quantified 

(Hatfield et al., 1999). 

Near-Infrared Reflectance Spectroscopy (NIR) is a technique that has been 

developed to allow for the rapid, non-destructive analysis of sample composition (Poke 

and Raymond, 2006; Labbé et al., 2008).  Once a calibration curve has been generated 
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through standard chemical techniques this calibration curve can then be applied to NIR 

scans of new material to create an accurate estimate of the components in that material 

(Labbé et al., 2007; Sluiter et al., 2008).  This allows for quick analysis, since the 

material needs only be ground and scanned rather than subjected to extensive chemical 

analysis.  Using NIR, several hundred samples can be analyzed per day, allowing for 

analysis of whole populations in a reasonable timeframe. 

Once composition data is determined, it can be combined with genetic marker 

data to identify regions of the genome that modulate phenotypic variation.  Once 

sequence markers have been established for a population, they can be combined with 

phenotypic trait data such as stem composition to establish quantitative trait loci (QTL), 

which are the genes/genic regions responsible for phenotypic variation in a population 

(Geldermann, 1975).  QTL have the benefit that they are able to identify multiple 

sources of variation that contribute to a continuously varying trait, allowing for the 

potential determination of many genes involved in the variation of stem composition 

(Kearsey and Pooni, 1996).   

 
Results 

Construction of Genetic Maps 

Two populations were analyzed in this study, a population of recombinant inbred 

lines (RILs) originally generated from a cross between the sorghum cultivars SC56 and 

RTx7000, and an additional RIL population generated from a cross between the sorghum 

cultivars BTx642 and RTx7000.  DNA from RILs of both populations were sequenced 

on an Illumina GAIIx system and unique polymorphic sequences identified and their 
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physical locations found in the genome (Weers, 2011).  This analysis yielded a total of 

566 markers for the BTx642 x RTx7000 population (Fig. 21, Weers 2011).   

 
 

 
Figure 21:  Genetic map of chromosomes 7-10 for BTx642xRTx7000 RIL population. 
Genetic distance is listed to the left of each chromosome. 
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Similar analysis was performed on the SC56 x Tx7000 RIL population, 

generating 392 markers (Fig. 22, Appendix Fig. A-1 and A-2 ).  Genetic distances were 

then determined using the Kosambi mapping function provided by the MapMaker 

software. 

	
  

 
Figure 22:  Genetic map of chromosomes 7, 8,and 10 for SC56xRTx7000 RIL 
population.  Genetic distance is listed to the left of each chromosome. 
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Trait Measurement 

For each population, 90 lines were grown in College Station in summer of 2009 

(SC56 x RTx7000) and 2010 (BTx642 x RTx7000) and harvested in the field, with five 

individuals selected from each line.  Samples were measured, and the leaves and leaf 

sheaths removed from the stems.  Stems were then dried in a forced air oven for 72 

hours, and ground in a UDY cyclone sample mill (UDY Corporation, Fort Collins, CO) 

until passing through a 1mm screen.   Samples were then scanned on a FOSS XDS 

Rapid Solids Analyzer and the resultant spectra interpreted via the ISIScan software 

package and a calibration curve provided by the National Renewable Energy Laboratory.     

NIR analysis reveals the relative amount of various stem components, expressed 

as a percent value of the total amount of material scanned (Appendix Tables 2 and 3).   

Each of the nine traits examined (ash, protein, sucrose, lignin, xylan, cellulose, water 

extractives, alcohol extractives, and starch) was then moved forward for QTL analysis.  

 Composite Interval Mapping 

 Once phenotypes were identified and the genetic map constructed, the composite 

interval mapping function of QTL Cartographer was implemented to generate a map of 

the QTL responsible for the variation in each of the stem composition traits.  Composite 

interval mapping (CIM) is useful in this case since there are likely multiple, possibly 

interacting QTL for each phenotype, and CIM allows for these QTL to be more readily 

distinguished (Jansen, 1996).   

 Analysis of the BTx642xTx7000 population revealed a total of 34 QTL for stem 

composition traits, mainly centered on chromosomes 1,3,6 and 8 (Fig. 23).  Several other 
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peaks are visible but did not meet the significance threshold established by permutation 

tests (1000 permutations, significance value 0.05). Previous work has demonstrated the 

presence of a flowering time locus on chromosome six, which would be located at 

approximately 33.2 cM, near the marker DG376 (Murphy et al., 2011).  

 
 

 
Figure 23:  QTL map of BTx642 x Tx7000 RIL population determined via composite 
interval mapping.   Height of peak indicates confidence of QTL identification. 
Horizontal colored bars indicate significance threshold. 
 
 

Plotting QTL reveals the peak of the primary QTL cluster on chromosome six to 

be located between 30.1 and 33.2 cM (Table 2).  While both BTx642 and Tx7000 come 

from ma1 backgrounds,recent work has shown that BTx642 has a weak allele of ma1, 
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causing crosses to segregate at the Ma1 locus (Smith and Frederikson, 2000; Harris, 

2007; Weers, 2011).  This segregation is believed to be responsible for the QTL cluster 

centered on DG376 on chromosome six.  

 
 
Table 2:  Location of QTL for stem composition traits in BTx642 x Tx7000 RIL 
population as determined by CIM.  Additive effect denotes the amount of variation that 
locus is responsible for, in units of percent total stem volume.  R2 indicates the amount 
of variation that locus is responsible for in terms of variation within the population.  
LOD1 left and right columns indicate the physical locations of the left and right 
boundaries of the QTL, in this case meaning the area wherein the LOD score of the QTL 
is within one point of that of the peak. 
Trait QTL# Chromosome Marker Position (cM) LOD Additive R2 LOD1 

Left 
LOD1 
Right 

Ash 1 1 68 135.8 3.56 -0.2027 0.1029 60210749 60802865 

Ash 2 6 7 30.1 4.8286 0.2421 0.1572 4711341 40120199 

Ash 3 8 9 40.1 3.6478 -0.2133 0.1151 6254008 47392453 

Protein 1 1 51 105.5 2.8984 -0.1826 0.075 51826648 52825635 

Protein 2 6 7 30.1 8.5785 0.3424 0.26 4711341 40120199 

Protein 3 8 9 42.1 4.0421 0.2411 0.1358 41623973 47392382 

Protein 4 8 16 53.6 5.6167 0.2542 0.1533 48946234 49740291 

Sucrose 1 1 54 105.8 2.9943 0.9201 0.0783 52825635 54216748 

Sucrose 2 2 28 66.5 2.8805 0.8565 0.0744 55580245 58017106 

Sucrose 3 6 7 30.1 6.7977 -1.3888 0.1968 4711341 40120199 

Sucrose 4 8 7 28.2 3.9732 1.1147 0.1271 5330131 6254008 

Sucrose 5 8 9 40.1 4.3531 1.0811 0.118 6254008 47392453 

Lignin 1 1 69 136.4 3.8047 -0.447 0.1024 60210749 60802865 

Lignin 2 3 88 131.1 4.4324 -0.4826 0.1212 72173211 72711436 

Lignin 3 8 7 26.2 5.191 -0.569 0.148 3339660 6254008 

Xylan 1 3 26 35.9 3.0251 -0.154 0.0767 7940280 8485419 

Xylan 2 4 64 107 2.9397 0.1583 0.0787 62339651 63335625 

Xylan 3 8 5 17.3 7.4016 -0.273 0.2389 2476297 3339660 

Xylan 4 8 7 27.2 9.6496 -0.3229 0.3126 3339660 6254008 

Cellulose 1 3 31 39.4 3.3641 -0.5152 0.1152 8348932 9985015 
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Table 2 continued 
Trait QTL# Chromosome Marker Position (cM) LOD Additive R2 LOD1 

Left 
LOD1 
Right 

Cellulose 2 8 6 24.6 4.3728 -0.5736 0.1421 3339660 6254008 
H2O 
Extractives 1 6 10 33.2 4.3267 -0.4695 0.1091 40120270 41856240 
H2O 
Extractives 2 8 5 17.3 3.4179 0.3196 0.0849 2476297 3339660 
H2O 
Extractives 3 8 7 26.2 4.938 0.3685 0.12 3339660 6254008 
H2O 
Extractives 4 8 17 55.5 4.1066 0.3338 0.1022 49587492 50817616 
H2O 
Extractives 5 9 15 27.4 2.5674 0.223 0.0504 2970840 4281712 
H2O 
Extractives 6 10 1 0 2.6012 -0.2435 0.058 91868 597201 
EtOH 
Extractives 1 6 7 30.1 5.716 -0.0835 0.1931 4711341 32354861 
EtOH 
Extractives 2 10 33 50.4 4.1237 0.0762 0.1385 8592781 12145020 

Starch 1 3 87 130.5 4.4541 1.2446 0.1231 71832292 72711436 

Starch 2 4 52 95 3.0402 -1.0095 0.0814 58864301 61030074 

Starch 3 6 58 112.6 2.6868 -0.9233 0.0714 58810683 61702168 

Starch 4 8 5 17.3 5.0969 1.3695 0.1482 2476297 3339660 

Starch 5 8 7 28.2 5.5492 1.5061 0.1782 5330131 6254008 
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Figure 24:  QTL map of SC56 x Tx7000 RIL population determined via composite 
interval mapping.   Height of peak indicates confidence of QTL identification. 
Horizontal colored bars indicate significance threshold. 
 
 
 

The same technique was used to construct a QTL map of the SC56 x RTx7000 

RIL population, grown in College Station in 2009. (Fig. 24)  The number of detected 

QTL was much lower than in the BTx642 x RTx7000 population, yielding 6 QTL that 

met the thresholds established by permutation tests (1000 permutations, 0.05 

significance level).  Several other peaks reached near-significance, suggesting that 

additional markers or a larger number of samples might reveal additional loci for control 

of stem composition. 
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Table 3: Location of QTL for stem composition traits in SC56 x Tx7000 RIL population 
as determined by CIM.  Additive effect denotes the amount of variation that locus is 
responsible for, in units of percent total stem volume.  R2 indicates the amount of 
variation that locus is responsible for in terms of variation within the population. LOD1 
left and right columns indicate the physical locations of the left and right boundaries of 
the QTL, in this case meaning the area wherein the LOD score of the QTL is within one 
point of that of the peak. 

Trait QTL# Chromosome Marker Position(cM) LOD Additive R2 LOD1 Left LOD1 Right 

Ash 1 10 13 23.3 4.3087 0.4243 0.24279 
6988261 

 
7617908 

 

Protein 1 10 13 19.3 3.8109 0.2571 0.170686 
6988261 

 
7617908 

 

Lignin 1 9 1 0 3.5978 0.4723 0.121241 
0 1206013 

 

Lignin 2 10 13 17.3 3.5087 0.5048 0.138044 
6988261 

 
7617908 

 

Cellulose 1 4 32 93.5 3.2087 1.0943 0.123692 
61188292 

 
62302015 

 

Starch 1 10 13 19.3 3.9522 -1.8521 0.182126 
6988261 

 
7617908 
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QTL Inspection 

One of the benefits conferred by sequence based marker determination is the 

ability to accurately and rapidly plot regions delineated by genetic markers to their 

physical locations on the genome. 

 
 
 

 
Figure 25: Physical location of QTL discovered in BTx642 x Tx7000 RIL population.  
Marker locations are plotted as red dashes on the outer perimeter of the illustration. 
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By using the known locations of the genetic markers used in QTL analysis, the 

QTL identified in the BTx642 x Tx7000 RIL population were plotted on a schematic of 

the genome (Fig. 25).  Each QTL was plotted to 1 LOD distance from the peak of the 

QTL. Regions of low genetic recombination are clearly visible as portions of the 

chromosomes with small genetic distance but large physical distance, such as the region 

spanning from ~4.7 Mb to ~40.1 Mb on chromosome six, as well as the region spanning 

from ~6.5 Mb to ~47.3 Mb on chromosome eight.   These regions also show low gene 

density, with a density of 0.66 genes/100kbp for the region on chromosome six, and 1.11 

genes/100kbp for the region on chromosome eight compared to an average gene density 

of 3.59 genes /100kbp for sorghum in general.   

Particularly noteworthy is the region between ~5.3 Mbp and ~6.3 Mbp on 

chromosome eight.  QTL for lignin, xylan, cellulose, water extractives and starch all lie 

within this region, and if the LOD boundary is expanded to 1.5, QTL for ash and sucrose 

content also overlap.  Analysis of the additive effects contributed by each allele reveals 

that the RTx7000 allele contributes to an increase in the amount of stem nonstructural 

components (starch, water extractives, and sucrose) while the BTx642 allele contributes 

to an increase in the amount of structural components (xylan, lignin, cellulose).   

 Using the current annotated S. bicolor genome available from 

http://www.phytozome.com, genes underlying the primary QTL on chromosome eight 

were identified and analyzed.   The region spanning 5,200,000 – 6,300,000 bp on 

chromosome 8 contains 61 annotated genes (Appendix Table 4).  Of those 61 genes, 21 

genes lack a functional annotation, and the rest have annotations that have been applied 
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computationally as described by Paterson et al., (2009).  Focusing on genes that could 

act in a regulatory fashion further reduced the remaining pool of 40 potential gene 

candidates.  The large number of compositional traits affected by this single QTL 

indicates that the gene in question likely acts as a developmental or biosynthetic 

regulator, rather than as a step in the biosynthetic process itself, allowing further 

reduction of the candidate pool to ten (Remington and Purugganan, 2003).   

 

Table 4: Potential gene candidates located within first QTL cluster on chromosome 8, as 
identified in BTx642 x Tx7000 population. 

Gene Name PFAM ID Panther Description 

Sb08g004510 PTHR22982 
CALCIUM/CALMODULIN-DEPENDENT PROTEIN 
KINASE-RELATED 

Sb08g004460 PTHR23258 
SERINE-THREONINE PROTEIN KINASE, PLANT-
TYPE 

Sb08g004450 PTHR23258 
SERINE-THREONINE PROTEIN KINASE, PLANT-
TYPE 

Sb08g004720 PTHR10641 MYB-RELATED 
Sb08g004900 PTHR11085 CHROMATIN REGULATORY PROTEIN SIR2 

Sb08g004550 PTHR23258 
SERINE-THREONINE PROTEIN KINASE, PLANT-
TYPE 

Sb08g004940 PTHR23258 
SERINE-THREONINE PROTEIN KINASE, PLANT-
TYPE 

Sb08g004830 PTHR23258 
SERINE-THREONINE PROTEIN KINASE, PLANT-
TYPE 

Sb08g004700 PTHR23258 
SERINE-THREONINE PROTEIN KINASE, PLANT-
TYPE 

Sb08g004790 PTHR12802 SWI/SNF COMPLEX-RELATED 
 
 
 
 Examination was also undertaken on the SC56 x Tx7000 population.  While QTL 

were far less numerous in this population, the cluster of QTL located on chromosome 10 

is amenable to a similar analysis.  This cluster encompasses the region from 

approximately 7.0-7.6 Mb, and contains 64 annotated genes (Appendix Table 5), for an 

average gene density of 10.17 genes/100 kbp.  16 of these genes lack a functional 
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annotation and of the remaining 48, only a single gene, Sb10g007420.1, is annotated as a 

putative transcription factor.   

Discussion 

 The shift to renewable biomass feedstock for production of biofuels will require 

a greater level of control over the composition of that feedstock.  Identifying the genes 

responsible for the variation in populations will allow breeders to create hybrids with 

optimized stem compositions for biofuels, silage, or other products.  While stem 

compositional estimates determined by NIR spectroscopy have not yet been correlated 

with biofuels production, the technique has shown its value in the ability to measure the 

composition of entire RIL populations in a rapid and repeatable fashion.      

 This study also establishes the presence of stem composition variability QTL in 

elite breeding lines of sorghum.  Previous work on lignin variation in sorghum has 

focused on cultivars containing the brown midrib family of mutations that reduce the 

ability of sorghum to manufacture monolignols (Oliver et al., 2005).  This work shows 

that QTL controlling stem lignin content can be identified in non-mutant lines, and even 

in similar grain-type sorghum cultivars, suggesting the existence of a stem composition 

control system already present in divergent sorghum lines.   

 Perhaps most interestingly, this work also indicates the potential for identifying 

the individual genes responsible for the observed phenotype.  Using the sequence-

derived markers described above, the physical location of the QTL can be identified.  

The number of markers allows the region to be reduced compared to traditional marker 

techniques, shrinking the pool of genes in the region.  In the case of the data presented 
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above, the region only contains 61 genes, and only 10 of them are predicted to be able to 

act in a regulatory fashion.  This small pool of genes allows for future experimentation 

in a more targeted fashion, presenting locations to look for sequence polymorphisms 

and/or expression variation.   
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SORGHUM GENOME RESEQUENCING 

 
Introduction 

 Quantitative Trait Loci (QTL) mapping has been used for nearly two decades to 

associate complex phenotypic variation with the region of the genome responsible for 

that variation (Miles and Wayne, 2008).  One of the limitations of this technique, 

however, is that the QTL often span several centimorgans (cM) and several megabase 

pairs (Mbp) of DNA (Miles and Wayne, 2008).  Given that sorghum has a gene density 

of approximately 8 genes/100 kb in the euchromatic regions, even a QTL that span only 

a few cM could still correspond to a region containing a hundred or more genes (Kim et 

al., 2005).  While annotations to the genome can help select potential gene candidates, 

dozens of genes will likely need to be screened for functional mutations that cause 

phenotypic variation associated with each QTL.   

 Once a region of the genome has been identified through QTL mapping, the 

process of fine mapping and gene identification becomes much more complicated, 

requiring the identification of additional markers and the use of larger populations (Lee 

and van der Werf, 2006; Nagy et al., 2007).  In some organisms it may be possible to 

look for polymorphisms by sequencing all the genes in the region of interest, but the 

intron-rich nature of many genes makes this largely impractical for significant numbers 

of gene candidates (Mourier, 2003; Paterson et al., 2009;).  Some of these issues can be 

avoided by sequencing cDNA representations of mRNA transcripts of these genes, but 

this introduces new problems in terms of splice variants and challenges in sample 

collection.   
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 A promising emerging technique that may solve this dilemma is whole genome 

re-sequencing.  Using short read next generation sequencing platforms such as Illumina 

and SOLiD, millions of short sequence reads can be aligned to pre-existing genome 

sequences rapidly, and these alignments used to identify sequence variants (Lunter and 

Goodson, 2011).  Re-sequencing projects in rice have demonstrated their ability to 

identify over a million sequence variants between even closely related cultivars, 

allowing for rapid identification of gene coding variants that may affect function (Xu et 

al., 2012).  While this technique may not currently be cost effective for all crop plants 

due to large genome sizes and repeat density, it has great potential for use in sorghum 

(~700Mb genome size) and rice (~400Mb), two of the most important grain crops in the 

world (FAO 1995).   

Each re-sequencing of a cultivar also provides valuable information regarding the 

lineage of that cultivar and the origin of different portions of the cultivar’s genome (Xu 

et al., 2012).  Moreover, the genomes can be compared to identify regions that have 

undergone selection (Tajima, 1989). This is especially relevant when dealing with 

cultivated sorghums in the United States, as most such sorghums are products of 

generations of breeding under selection for height, early maturity/photoperiod 

insensitivity and grain yield (Quinby, 1974; Smith and Frederiksen, 2000). 

The three genotypes used in this study (Tx7000, BTx623, and BTx642) share 

significant genetic heritage.  Tx7000 was derived from Blackhull Kafir, a Kafir race 

sorghum from Southern Africa, and Milo, a type of Durra sorghum.  BTx623 was 

derived from a cross of BTx3197 and SC170; BTx3197 originates from Blackhull Kafir,  
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Double Dwarf Kafir and Milo sorghums, while SC170 is from the Caudatum race.  

BTx642 was derived by conversion of IS12555 (Durra) using BTx406, a line with both 

Kafir and Durra background (Milo is a type of Durra), respectively (Smith and 

Frederiksen, 2000; Klein et al., 2008).  While the origins of these genotypes is known, 

the portions of each progenitor present in derived material is unknown.  By sequencing 

parental genomes and identifying variation in genetic diversity among the three 

genotypes, it was possible to identify with great accuracy the physical portions of the 

genome that are identical or nearly identical by descent. 

 
Results 

Sequencing and Mapping 

 The two sorghum genotypes BTx642 and RTx7000 have previously been used to 

identify QTL that contribute to the stay-green drought avoidance trait (Xu et al., 2000; 

Harris et al., 2007).  Significant resources exist for these populations, including an 

established RIL population and abundant marker and genetic data (Harris et al., 2007; 

Weers 2011) 

 Libraries of sheared genomic DNA were constructed from BTx642 and RTx7000 

and subjected to paired-end sequencing on an Illumina Hi-Seq sequencing device.  After 

quality trimming and mapping, approximately 60 million mapped reads from each 

genotype (Table 5) could be aligned to the published Sorghum bicolor BTx623 genome.  

Each line averaged 11 million reads that did not align, largely due to the quality criteria 

established for alignment: 80% of the sequence was required to match the reference 

sequence, meaning that for 150 bp reads 120bp must match perfectly.  When mapping 
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with reduced stringency of 70% sequence identity, the number of mapped reads only 

increased by approximately 1 million (Table 5). This indicates that the remainder of the 

non-aligned reads are likely not limited by poor quality but instead originate in regions 

of the genome where the reference genome contains no sequence data, from 

mitochondria or chloroplasts, or from the approximately 50 Mbp of genetic material that 

was not anchored to the reference genome during construction (Paterson et al., 2009) 

Significant variation in read depth was observed across the genome, with 

approximately 10 percent of the genome having no reads (Table 5).   Visualizing the 

read depth across each of the chromosomes shows that the bulk of zero read depth 

regions are localized near the regions identified as containing high levels of the Cen38 

pericentromeric repeat, or regions that were not assembled due to their high repeat 

content during the sorghum genome sequence construction. (Figure 26, Paterson et al., 

2009).   

 
 

Table 5:  Summary of sequencing for sorghum cultivars. 

 
 
 

 

Cultivar Similarity # Useable 
Reads 

Mapped 
Reads (bp) 

Average 
Coverage 
(excluding 
zero 
coverage 
regions) 

Fraction 
of 
reference 
covered 

Total zero 
coverage 
length (bp) 

# zero 
coverage 
regions 

Max 
Length of 
zero 
coverage 
region 

BTx642 80% 66,442,052 55,558,636 10.63 0.89 80,229,330 350648 4800003 
Tx7000 80% 70,497,898 62,218,713 11.85 0.9 74,149,696 277809 4800044 
BTx642 70% 66,442,052 56,908,091 10.74 0.89 78,700,128 360746 4800020 
Tx7000 70% 70,497,898 63,239,083 11.93 0.9 73,105,855 284141 4800044 
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Figure 26:  Read densities of Tx7000 (blue line) and BTx642 (orange line) from paired-
end read assembly.  Peak maximum represents depth >100 reads. 
 
 
 
Confirmation of Sequence Variants and Estimated SNP Coverage 

The BTx642 and Tx7000 re-sequenced genomes were compared to the BTx623 

reference genome sequence to identify putative SNPs and indels (Table 6).  Over one 

million SNPs and more than 100,000 indels were detected in each comparison.  A higher 

number of SNPs and indels were found when BTx642 was compared to BTx623 than 

when Tx7000 was compared to BTx623.  While an average of 10x coverage for both 
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genomes allows for the identification of a large number of SNPs, an unanswered 

question was how much of the sequence variation was not visible due to insufficient read 

depth.  To determine this, the sequences of previously identified and genetically mapped 

Digital Genotyping sequence markers that distinguish BTx642 and Tx7000 were 

compared to information obtain from genome resequencing (Weers, 2011). Genome 

resequencing identified SNPs corresponding to DG-markers with 94% accuracy (Table 

6).  Surprisingly, despite the higher number of SNPs discovered in BTx642, a lower 

percentage of the confirmed SNPs was discovered, with only 566 of the 1572 unique 

variants identified (Table 6).  If taken as an estimate of total SNP discovery rates across 

the genome, it can be seen that approximately 40% of the total SNP number was 

discovered in the Tx7000 genotype, versus 27% in BTx642. 

 

 
Table 6:  Number of SNPs and indels identified via resequencing that distinguish 
BTx642 or Tx7000 and BTx623. 
Name Avg. Read 

Depth 
# SNPs # Indel # Variants 

compared 
# Variants 
discovered 

% 
Matching 
SNPs 

Estimated 
% SNPs 
discovered 

BTx642 9.48 1,378,502 179,628 1572 566 94.0 27.09 
RTx7000 10.66 1,040,535 147,229 1009 553 94.2 40.03 

 
 
 
 
Variation Across the Sorghum Genome 

Initial SNP discovery was based on a comparison of the aligned reads from 

BTx642 or Tx7000 and the reference genome sequence of the BTx623 sorghum cultivar, 

so the variants discovered distinguish the newly sequenced lines and the reference 

sequence.  By comparing the variants from BTx642 to those of Tx7000, it is possible to 



	
  

	
  

74	
  

identify polymorphisms that vary between these cultivars.  Regions of the genome where 

BTx642, Tx7000 or BTx623 share variant identity could help identify genomic regions 

that derive from lines common to their respective pedigrees. 

Tx7000 and BTx3197, the immediate progenitor of the reference sorghum 

genotype BTx623 are relatively closely related because both have Kafir-Milo derived 

genetic material their pedigrees (Figure 27; Smith and Frederiksen, 2000; Klein et al., 

2008). BTx3197 was subsequently crossed to SC170, a Caudatum line, to generate 

BTx623.  Tx7000 and BTx623 are both grain type sorghums that were selected for early 

flowering, high grain yield, and short stature.  BTx642 originates from IS12555, a Durra 

(Milo) genotype that is a source of the stay-green drought resistance trait (Harris et al., 

2007). BTx642 was created by crossing IS12555 to BTx406 (Kafir-Milo).  BTx642 was 

a BC1 derived line from this cross that was early flowering and of short stature, traits 

inherited from BTx406. Therefore, regions of the Tx7000, BTx623 and BTx642 

genomes may be quite similar if they were derived from the small group of early Kafir-

Milo sorghum introductions used in the U.S. Other portions of these genomes derived 

from SC170 (Caudatum) and IS12555 (Durra) are likely to be quite different from 

regions of these genomes derived from Kafir-Milo genotypes. 

To determine whether this was the case, the assembled genomes of BTx642 and 

Tx7000 were compared to the BTx623 reference sequence (Paterson et al., 2009) to 

identify sequence variants.  When compared to the BTx623 reference, the Tx7000 

genotype shows less variation than BTx642, with approximately 75% as many SNPs and 

82% as many indels identified (Table 7).  
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Figure 27.  Simplified representation of the lineage of sorghum genotypes BTx623, 
Tx7000, and BTx642. The pedigrees indicate that genomic regions present in the three 
genotypes derived from Kafir-Milo progenitors will have greater genetic similarity than 
genomic regions derived from SC170 (Caudatum), present in BTx623, or IS12555 (a 
Durra) present in BTx642. 
  
 
 
Table 7:  Variant discovery and confirmation for sorghum cultivars. 

Name Similarity Avg. 
Read 
Depth 

# SNP # Indel 

BTx642 80% 9.48 1,378,502 179,628 
RTx7000 80% 10.66 1,040,535 147,229 
BTx642 70% 9.59 1,421,178 192,153 
RTx7000 70% 10.75 1,071,690 157,225 

 
 
 
BTx642 evinces significant divergence from the reference genotype, as shown by 

the high levels of sequence variation across much of the euchromatic regions of the 

genome (Fig. 28).  In general, regions of high genic density (Fig. 28, black line) have 

correspondingly high levels of genetic variation (Fig. 28, blue and red line).  Of note are 

the regions at the ends of chromosomes 7 and 9 that show high genic density but very 

low genetic variation, indicating that these regions may have originated from the same 

source early in the development of these genotypes.  
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Figure 28:  Read density, gene density, and the density of SNPs that distinguish the 
BTx642 cultivar from BTx623.  Inner line graph denotes read coverage, with a graph 
maximum of 50, averaged over 1kb stationary windows.  Green color denotes >30 
average read depth, red indicates <5.  Outer line graph indicates SNP density averaged 
over a 10kb stationary window, with a graph maximum of 60, and the red color 
indicating >30 SNP/10kb average.  Black line indicates genic density calculated over 
100kb stationary window, with a graph maximum of 15 genes/100kb.   
 
 
 

Tx7000 is more similar genetically to BTx623 than is BTx642, as shown by the 

lower total number of SNPs and indels that distinguish these lines (Table 7).  Notably, 

Tx7000 shares regions of low sequence variation and high genic density with BTx623, 

particularly the regions from ~7-12 Mb on chromosome 1 and the ends of chromosomes 

7 and 9 (Figure 29). 
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Figure 29:  Read density, gene density, and the density of SNPs that distinguish the 
Tx7000 cultivar from the BTx623 reference.  Inner line graph denotes read coverage, 
with a graph maximum of 50, averaged over 1kb stationary windows.  Green color 
denotes >30 average read depth, red indicates <5.  Outer line graph indicates SNP 
density averaged over a 10kb stationary window, with a graph maximum of 60, and the 
red color indicating >30 SNP/10kb average.  Black line indicates genic density 
calculated over 100kb stationary window, with a graph maximum of 15 genes/100kb.   
 
 
 
 In order to assist in identifying genomic regions of low diversity shared by 

BTx642 and Tx7000, the SNP densities were plotted against each other with a genic 

density overlay (Fig. 30).  This plot reveals several regions of low variation in 

euchromatic portions of the chromosomes that have high gene density.  As noted 



	
  

	
  

78	
  

previously, the region from ~7-12 Mb on chromosome 1 is such a location, as well as the 

terminal ~10 Mb on chromosomes 7 and 9, and numerous additional regions (Table 8).  

 

 

 
 
Figure 30:  Plot of SNPs in BTx642 and Tx7000 vs. BTx623, with gene density as 
comparison.  Outermost layer represents all 10 sorghum chromosomes, with base pair 
distances labeled on outer edge.  Second layer represents Tx7000 vs BTx623 SNP 
density in 10Kb stationary windows.  Red coloration represents >30 SNPs / 10KB, with 
the plot maxima set to 60 SNPs/10Kb.  Third later represents BTx642 vs BTx623 SNP 
density, with the same settings the outer layer.  Innermost black plot represents gene 
density per 100kb stationary window, with a plot maxima of 15 genes per 100kb.   
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 Table 8:  Regions of low genetic diversity between sequence cultivars and the reference 
genome 

 
 
 
BTx642 and Tx7000 Variant Analysis 

 DNA polymorphisms that distinguish BTx642 and Tx7000 were identified and 

their distribution analyzed.  Surprisingly, the total number of identical SNPs that 

distinguish these genomes from BTx623 approached 400,000, representing a substantial 

fraction of the observed variation (Table 9).  This is especially noticeable on 

chromosome 9, where over 75% of the SNPs identified distinguished both genotypes 

from BTx623.  

 
 

Table 9.  Distribution of common and unique SNPs across the BTx642 and Tx7000 
sorghum genomes.   

Line Chrom. 
1 

Chrom. 
2 

Chrom. 
3 

Chrom. 
4 

Chrom. 
5 

Chrom. 
6 

Chrom. 
7 

Chrom. 
8 

Chrom. 
9 

Chrom. 
10 Total 

Tx7000 26803 132199 40025 38266 54422 132771 15088 73913 29720 57916 601123 
BTx642 111092 43602 139005 149075 116173 45767 47751 76641 28598 121413 879117 
Common 45068 34668 29214 20972 46533 22674 8843 60492 92936 37572 398972 

 
 
 

 Plotting these shared SNPs on the genome reveals that, in general, the regions of 

shared SNPs are interspersed with regions of SNP density unique to either BTx642 vs. 

Chromosome Approx. Location # genes in region 
1 7-11 Mb 411 
2 7-8 Mb 51 
4 2.5-5 Mb 257 
5 12-15 Mb 68 
7 53-66 Mb 585 
9 50-58 Mb 890 
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BTx623 or Tx7000 vs. BTx623 (Fig. 31).   Regions of shared SNPs extend for nearly the 

entire length of chromosome 9, made up of nearly 70,000 common variants. 

  
 
 

 
Figure 31:  Plot of SNPs that distinguish Tx7000 and BTx642 (green line) from BTx623 
on the sorghum genome (colored solid bars). Inner lines represent, in descending order 
from solid bars:  SNPs uniquely discovered in Tx7000 vs BTx623,  SNPs uniquely 
discovered in BTx642 vs BTx623, and gene density. 
 
 
 

Looking more closely at chromosome 9, it can be seen that from 15 Mbp to 40 

Mbp, a vast majority of the SNP variation relative to BTx623 is in common to both 

BTx642 and Tx7000 (Fig. 32).  This contrasts with the region extending from ~51 Mbp 

to the end of the chromosome, which displays a high degree of similarity among all three 
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genotypes.   This indicates that the region of 15-40 Mbp was inherited from a source 

shared by BTx642 and Tx7000, but different from BTx623.  This contrasts with the 

region from 51 Mbp to the end of the chromosome, which is shared by all three 

genotypes.  The presence of such large regions of similarity could indicate the presence 

 
 

 
Figure 32:  Plot of SNPs between BTx642 and BTx623 (orange lines) and between 
Tx7000 and BTx623 (blue lines) on sorghum chromosome 9.  Outer green line 
represents SNPs in common between BTx642 and Tx7000. Outer blue and orange lines 
represent all SNPs present in each line versus BTx623.  Inner blue and orange lines 
represent SNPs versus BTx623 that are unique to each genotype.  
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of agronomically relevant traits that have been selected from various backgrounds and 

retained intact through the breeding process. 

 Chromosome 6 is a region of the genome that encodes maturity locus 1 

(Ma1/ma1) as well as a dwarfing locus, Dw2/dw2 (Lin et al., 1995; Klein et al., 2008).  

BTx406 is a source of dw2 and ma1.  The region spanning these QTL in BTx642 was 

previously shown to be derived from BTx406 (Klein et al., 2008).  Closer examination 

shows that there are multiple blocks of genetic material spread throughout the ma1 locus 

that are probably derived from BTx406 rather than one large homogeneous region 

(Figure 33).  Regions spanning the Ma2 locus that are probably identical by decent 

(IBD) with BTx623 are clearly visible in both BTx642 (~32-37 Mbp, ~40.5-42 Mbp) 

and in Tx7000 (~40-42 Mbp), separated by regions of non-IBD material.  The identity of 

ma1 has recently been determined to be SbPRR37, which is indicated in Figure 33 

(Murphy et al., 2011).  The region surrounding SbPRR37 can be seen to be of different 

origin in BTx642 than from Tx7000, which is consistent with the presence of the 

Sbprr37-1 allele in BTx406, while Tx7000 contains the Sbprr37-2 allele originating 

from Blackhull Kafir (Murphy et al., 2011).  Interestingly, the BTx623 allele is Sbprr37-

3, which varies from Tx7000, but can be seen in Figure 33 to be located in a region of 

low variation between Tx7000 and Btx623.  This is consistent with the proposal that 

Sbprr37-3 arose from Sbprr37-2 through an additional mutation (Murphy et al., 2011).   
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Figure 33.  Plot of SNPs between BTx642 and BTx623 (orange lines) and between 
Tx7000 and BTx623 (blue lines) on sorghum chromosome 6.  Outer green line 
represents SNPs in common between BTx642 and Tx7000. Outer blue and orange lines 
represent all SNPs present in each line versus BTx623.  Inner blue and orange lines 
represent SNPs versus BTx623 that are unique to each genotype. Solid red bar 
represents QTL for ma1, solid green bar represents QTL for dw2, red line indicates 
position of SbPRR37 (Klein et al., 2008, Murphy et al., 2011). 
 
 
 
Discussion 

Genome-wide identification and analysis of sequence variants that distinguish 

three widely studied cultivars of sorghum reveals some surprising insights into the 
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heritage of these lines. The development of the Tx7000 and BTx642 genotypes has been 

well documented by the breeders, but to this point the determination of the genomic 

makeup has been limited to pedigree and DNA marker analysis.  While flexible, genetic 

analysis is less precise than sequencing when characterizing the physical areas of the 

genome inherited from distant relatives, and genetic distances do not necessarily 

correlate with physical distance, especially in recombinationally poor regions.   

 The identification of more than 600,000 unique SNPs per sequenced line will 

provide an invaluable resource for future analysis, both from the standpoint of 

identifying variants located near or within genes, but also for identifying polymorphisms 

that can be used for fine mapping within an existing population.   

As BTx642, Tx7000, and BTx623 are products of the sorghum conversion 

project, it is unsurprising to detect shared genetic material between these cultivars.  What 

is striking, however, is the size of the retained shared material.  The most visible 

example is chromosome 9, which appears to contain large stretches of extremely similar 

material from the lineage of BTx642 and Tx7000 that is not shared with BTx623.  This 

can be contrasted with the regions detailed in Table 8, indicating material shared 

between all three genotypes.   It is well established that these cultivars have been under 

significant selective pressure (Menz et al., 2004), and these regions likely contain loci 

responsible for traits that were desirable during the generation of these cultivars.  

Chromosome 6 shows both a case and a caution to this hypothesis.  The area containing 

SbPRR37 is clearly divergent between BTx642 and Tx7000, which is consistent with the 

observed variation at the ma1 locus.  However, observation based on genetic similarity 
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alone could lead to the assumption of Tx7000 and BTx623 having the same alleles at 

that locus, which is not the case.  In such a situation, the actual sequencing data provided 

will allow for clarification once the gene candidate is identified, but phenotyping will be 

of critical importance until that stage. 
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MATERIALS AND METHODS 

 
Phloroglucinol Staining and Quantitation 

 2000 domestic and exotic sorghum accessions were planted in College Station in 

spring of 2007 by Dr. William Rooney, and grown under non-irrigated conditions.  In 

October, 351 of those lines were selected for sampling, with fresh stem segments frozen 

for staining.   Segments were sectioned by razor blade to approximately 1 cm thickness.  

Sections were then stained with a mixture of 2% w/v phloroglucinol in 95% EtOH –

concentrated HCl (5:1) for one hour under cover.  Samples were then photographed with 

an Olympus E-300 camera. 

Acetyl Bromide Lignin Extraction and Quantification 

41 lines were selected from the 351 lines sampled in October 2007. Whole stem 

tissues were dried in a forced air oven at 140F for a minimum of 48 hours, and the dried 

tissues ground in a Wiley mill until material could pass through a 1 mm screen.  Lignin 

extraction follows a modified protocol detailed in Iiyama and Wallis (1990).  12 mg (± 

0.1mg) of dried tissue was weighed on an analytical balance and transferred to a 

borosilicate tube.  10 mL DI H2O added and tube placed on a heat block set to 65 C for 

one hour, agitating every ten minutes.  Sample was then filtered through a GF/A glass 

fiber filter (Whatman Inc., Florham Park, NJ, USA) and rinsed three times with 

successive three minute rinses of DI H2O, ethanol, acetone, and diethyl ether.  Sample 

then dried in a Teflon capped scintillation vial overnight at 70 C.  3 mL 25% (v/v) acetyl 

bromide in glacial acetic acid added to each vial, tightly capped, and incubated at 50 C 
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for two hours, agitating every 30 minutes.  Transferred to 50 mL volumetric flasks 

containing 25 mL glacial acetic acid-NaOH (1.5:1) and filled to volume with glacial 

acetic acid.  Allowed to settle overnight and absorbance at 280 nm taken on Beckman 

DU-64 UV/VIS spectrophotometer. 

Generation of Lignin Standard Curve 

 Lignin standard curve was generated as described by Fukushima et al. (1991).  In 

brief, Indulin AT (Meadwestvaco, Richmond, VA, USA) was washed with boiling DI 

H2O until effluent was colorless and dried overnight at 50 C.  Material was then 

dissolved in acetyl bromide-glacial acetic acid as described previously, and absorbance 

measured at 280 nm.  Intervals were plotted and a linear regression was generated 

(Appendix Figure 34, Appendix Table 6). 

Identification of Sorghum Monolignol Biosynthetic Genes 

 Experimentally confirmed monolignol biosynthetic genes were identified through 

literature search and their nucleotide sequence compared to the published sorghum 

genome sequence using the discontiguous megablast function.  Results were selected 

where matches had at least 50% sequence coverage and e-values no greater than 1e-50. 

Plant Growth and DNA Extraction 

Sorghum seeds from SC56 x Tx7000 F9 RIL lines were obtained from Dr. 

William Rooney, and germinated in Metro Mix 200 growth media.  Leaf tissue was 

harvested 14 days after planting and genomic DNA extracted using a FastPrep extraction 

kit and FastPrep-24 device (MP Biomedicals LLC, Solon, OH, USA) according to 

manufacturer instructions. 
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Generation of Sequence Based Genetic Markers  

 Multiplex sequencing for marker generation was performed as in Morishige et al. 

(2012).  In brief, genomic DNA is digested by the Fse1 digestion enzyme, and each 

sample has an adapter unique to its destination pool ligated to the 3’ end.  Samples are 

sheared with a Bioruptor (Diagenode, Denville, NJ), purified, and size selected on an 

agarose gel.  Illumina adapters are ligated to samples and samples are pooled and 

sequenced according to Illumina protocols (Illumina Inc., San Diego, CA, USA).   

 Once generated, scripts separated sequences into groups and assigned to their 

originating RIL lines based on the previously assigned adapter sequences.  Perl scripts 

pooled identical sequences within each sample and discarded sequences present in less 

than 4 copies, as well as sequences not bearing the CCGGCC sequence at the 3’ end to 

ensure high quality marker assignment.  Sequences in the parental lines were compared, 

and identical sequences discarded as non-unique.  Remaining parental sequences were 

then compared to the sorghum reference sequence (downloaded from ftp://ftp.jgi-

psf.org/pub/JGI_data/phytozome/v6.0/Sbicolor/assembly/) using a local instance of the 

BLAST comparison algorithm on an Apple workstation.  Scripts identified uniquely 

mapping sequences containing polymorphisms, and compared them between parental 

lines, assigning each parental line either their polymorphism or the equivalent reference 

sequence if no equivalent polymorphism is present. 

 Scripts then compare each sequence from the RIL lines to the established 

markers, generating an output file consisting of assignments to the ‘A’ parent, ‘B’ 

parent, neither if no matches were found, or ‘Het’ if both markers were found, as well as 
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outputting the number of each sequence identified.  This file is sorted by RIL and also by 

physical location on the genome, allowing for rapid visual inspection of marker 

assignment.  Once inspection is complete, the file can easily be converted into the format 

used by MapMaker/EXP for genetic map generation.  Sequences used in mapping 

populations can be viewed in Appendix Table 1 and Weers (2011). 

Construction of SC56 x Tx7000 Genetic Map 

An F9 population of 200 individuals formed from the cross of the SC56 and 

Tx7000 inbred lines from the population created by Dr. Darrell Rosenow, and for those 

plants was obtained from Dr. William Rooney.  Genetic markers were determined as 

described previously, and assigned to chromosomes in the MapMaker program using the 

Map and Assign commands, using the Kosambi mapping function.  The genetic map 

generated can be found as Figure 22 and Appendix Figures A-1 and A-2.  Markers that 

had recombinational distances of 0 were removed as they can cause detrimental effects, 

yielding a total of 392 usable markers. 

Stem Composition Determination 

 SC56 x Tx7000 RIL population whole stems were harvested in the field in June 

2009 and 2010.  After stripping leaves and leaf sheath, visible internodes 2-6 of the stem 

were dried in a forced air oven at 160 F for a minimum of 48 hours.  Stems were then 

ground in a UDY mill to 1 mm size and scanned on a FOSS XDS near infrared 

reflectance spectroscopy system.  Spectra were interpreted using a calibration curve 

provided by the National Renewable Energy Laboratory to yield total stem composition 

(Rooney and Wolfrum, 2012).   
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 BTx642 x Tx7000 population whole stems were harvested in the field in June 

2010 and 2011.   After stripping leaves and leaf sheath, the whole stem was dried in a 

forced air oven at 160 F for a minimum of 48 hours.  Stems were ground in a UDY mill 

to a particle size of 1mm and scanned on a FOSS XDS near infrared reflectance 

spectroscopy system as described for the previous population. 

QTL Analysis 

 For both populations, genetic marker data and composition data as generated 

previously was analyzed using the WinQTL Cartographer software package.  QTL were 

detected using composite interval mapping, and significance thresholds were determined 

through permutation tests. 

Whole Genome Resequencing 

 BTx642 and Tx7000 genotypes were sequenced by the National Center for 

Genome Research on an Illumina HiSeq according to manufacturer instructions for 

paired end sequencing.  Resulting sequences were analyzed using the CLC Genomics 

Workbench (CLC Bio, Cambridge, MA, USA).  Reads were trimmed for quality using a 

quality threshold of 0.05 and an upper boundary of 2 ambiguous nucleotides per read, 

with a minimum read length of 20 bases.  Reads were then mapped to the BTx623 

reference genome downloaded from ftp://ftp.jgi-

psf.org/pub/JGI_data/phytozome/v6.0/Sbicolor/assembly/ with annotation track added 

from ftp://ftp.ensemblgenomes.org/pub/plants/release-13/gtf/sorghum_bicolor.  Reads 

were required to have similarity of at least 0.8 to the reference with overlap of at least 

0.75 in order to be mapped, with standard insertion, deletion, and mismatch costs.  
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Minimum paired-distance was 180 bp, and maximum distance was 1200 bp, with 

conflict resolution set to vote and global alignment and masking disabled. 

SNP Detection 

 SNP detection was performed using the CLC Genomics Workbench on Illumina 

HiSeq reads mapped as described previously.  Window length and maximum gap length 

and mismatch count were set to default. Minimum central and average quality were 

increased to 20 and 15, respectively.  Minimum coverage  set to 4, with minimum 

variant frequency set to 0.75 and maximum expected variation set to 2.  SNP codon 

merging was disabled. 

SNP and Coverage Plotting 

 To determine coverage data, reads were re-mapped using the Stampy alignment 

tool (Lunter and Goodson, 2011).  Resultant coverage statistics were determined using 

BEDtools (Quinlan and Hunter, 2010).  Custom scripts were used to determine the 

density of SNPs and coverage for various stationary window sizes.  Resulting 

information was plotted in graphical form using the Circos visualization package 

(Krzywinski et al., 2009). 
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CONCLUSIONS 

 
Sorghum Germplasm Screening and Lignin Analysis 

Lignin content variation in sorghum has been observed before, but most studies 

have compared single genotypes with lignin deficient brown midrib lines, or with other 

grass or plant species (Bucholtz et al., 1980; Iiyama and Wallis, 1990; Hatfield et al., 

1999; Oliver et al., 2004; Oliver et al., 2005).   These studies have identified significant 

lignin variation from one grass species to another, or between mutant sorghum lines and 

commercial cultivars, but little work has been done comparing sorghum genotypes to 

one another. 

 Given the extreme variation present in other aspects of sorghum physiology, it 

was hypothesized that variation in the amount and distribution of lignin throughout the 

sorghum stem would also vary significantly between genotypes.  Phloroglucinol staining 

of stems from 351 sorghum accessions revealed substantial variation both in the amount 

of staining, but also in the localization of staining.  Subsequent acetyl bromide extraction 

and quantification of lignin from 41 of the surveyed lines supported this hypothesis.  The 

variation in lignin content was even more pronounced than expected, with the spectrum 

of total stem lignin content stretching from 11% to 17%.  The lignin minimum is 

particularly surprising, as this represents a genotype that contains less lignin than a 

mutant line with compromised function in two of the steps of the monolignol 

biosynthetic pathway.  Taken together, these results indicate a potential source of both 

high and low lignin phenotypes, allowing for sorghum growers to customize the levels 

of lignin in their cultivar for various downstream applications. 
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 Identification of Sorghum Monolignol Biosynthetic Genes 

 Lignin is formed through the complex covalent linkage of three monolignols, 

alcohols that are largely synthesized by elements of the phenylpropanoid biosynthetic 

pathway (Boerjan et al., 2003).  The genes encoding three of the enzymes in this 

pathway have previously been identified in sorghum, but the remaining seven currently 

are not annotated (Bout and Vermerris, 2003; Boddu et al., 2004; Sattler et al., 2009).   

 Utilizing sequences from monolignol biosynthesis genes that had been identified 

in other species, it was possible to identify homologs of those genes in the sorghum 

genome.  Discontinuous mega-BLAST was used to identify genes that have undergone 

substantial divergence, since several of the genes had been identified in species not 

closely related to sorghum, such as Arabidopsis thaliana.  

 Using a minimum coverage of 50% and an e-value below 1e-50, we were able to 

identify putative homologs of all the remaining genes encoding monolignol biosynthesis 

enzymes in the sorghum genome.  The physical locations of these genes were also 

identified and plotted, making them easier to include or exclude from lignin QTL 

studies. 

Development of Genomic Tools 

 Next generation sequencing allows for the rapid generation of millions of 

sequences from genomic DNA, accelerating by several orders of magnitude the rate at 

which genetic markers can be discovered. Once generated, these markers must then be 

analyzed across a population in order to determine QTL within that population, and then 
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the output formatted in such a way that downstream processing for QTL detection can be 

performed.  

 Custom Perl scripts were written to allow generation of markers from any two 

homozygous parental populations.  Sequences from parental genotypes were compared 

and identical sequences removed, and remaining sequences compared to the reference 

BTx623 genotype using a local installation of the BLAST program (Altschul et al., 

1990).  Variants from the BTx623 reference were identified in each line and the other 

line assigned the value of the reference, and then these markers were compared with 

reads from the RIL population to be mapped.  Each RIL line was assigned an allele 

based on marker sequence at each marker location, allowing identification regions of the 

genome that originated from each parent.  This allele assignment was then output in a 

format compatible for human inspection and downstream genetic map generation. 

 Currently, NGS markers from parental lines are generated each time the 

population is analyzed.  In order to reduce delays in processing and save reagents, a 

database was constructed using marker sequences determined for a collection of 30 

sorghum accessions.  By placing these markers in a MySQL database and adding a web-

page frontend, users can now identify divergent markers between any two lines for any 

region of the genome.  This allows users to bypass the marker generation process, which 

is the most computationally intensive step in genetic map development. 

Quantitative Trait Locus Mapping for Stem Composition Traits 

 Sorghum has been proposed as a candidate crop for biofuels generation due to its 

rapid growth, drought tolerance, and high biomass yield (Farrel et al., 2006).  In order to 
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further improve sorghum as a biofuels crop, breeders need to be able to generate 

sorghum varieties with varying stem composition to optimize the feedstock for various 

biofuels conversion methods.  To allow such control, the genetic basis of stem 

composition must first be identified. 

 Two RIL populations of sorghum, SC56 x Tx7000 and BTx642 x Tx7000, were 

field grown in College Station.   Plants were harvested and their stems measured, dried, 

and ground, and the composition of the subsequent material determined though near 

infrared reflectance spectroscopy.   

 Genetic maps were created for these lines.  In the case of SC56 x Tx7000, 

genetic maps were constructed using 392 markers determined using the techniques 

described in Section 4.  For BTx642 x Tx7000, genetic maps were constructed by Brock 

Weers (Weers, 2011) and consisted of 566 markers.  These maps were combined with 

composition data to generate QTL, identifying 34 QTL in the BTx642 x Tx7000 

population and 6 QTL in the SC56 x Tx7000 population.   

 A QTL cluster identified on chromosome 8 of the BTx642 x Tx7000 population 

represents a region of the genome that controls six of the nine components analyzed.  

The region under the QTL cluster contains 61 annotated genes, of which 40 are 

functionally annotated, and only a single gene, Sb08g004720, is annotated as a 

transcription factor, reducing the list of candidate genes significantly.  A similar cluster 

on chromosome 10 in the SC56 x Tx7000 population also reveals a single transcription 

factor, indicating the function of transcription factors in the regulation of stem cell 

composition. 
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Sorghum Genome Resequencing 

 The BTx642 x Tx7000 population has been used extensively for mapping the 

stay-green family of drought resistance traits (Xu et al., 2000; Harris et al., 2007; Weers 

2011).  While a detailed genetic map exists for this population, even in a marker-rich 

region of the genome the requirement of QTL mapping that there be recombinational 

distance between these markers means neighboring markers may be separated by 

hundreds of kilobases, which may contain dozens or hundreds of genes.  Additionally 

these markers generally only provide information about heredity at a locus, not 

information about the genes themselves within this region, resulting in the need to 

laboriously clone and sequence any genes of interest within such a region.  By using 

NGS technologies to re-sequence the entire genome, many of these limitations have been 

overcome. 

 Libraries from the sorghum Tx7000 and BTx642 genotypes were sequenced and 

aligned to the reference sorghum BTx623 genome, yielding approximately 11x 

coverage.  These alignments were then analyzed for sequence variants versus the 

BTx623 reference sequence, yielding approximately 1.4 million variants for BTx642 and 

1 million variants for Tx7000.  These levels of variation agree with the known lineages 

of these cultivars: While Tx7000 descends from Kafir-Milo sorghums (Blackhull Kafir) 

and BTx623 descends from a Kafir-Milo x Caudatum cross (BTx3197 x SC170), 

BTx642 results from a Kafir-Milo x Durra cross (BTx398 x IS12555) that was then 

back-crossed to the Durra background, resulting in an apparently smaller amount of 

genetic material in common with BTx623.  Comparing these discovered variants with 
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known variants utilized in previous mapping studies, it was discovered that 

approximately 27% of the known variation had been uncovered in BTx642, and 40% in 

Tx7000.  Future sequencing projects will determine if these numbers are indicative of 

the discovery rate of the total number of variants, or an artifact of low coverage in the 

regions surrounding these markers. 

  Plotting the levels of variation between each line and the reference genome 

allowed for visualization of regions of identical by descent genetic material between 

BTx642, Tx7000, and BTx623, such as the region from ~51 Mbp – 59 Mbp on 

chromosome 9, which is nearly identical across all three genotypes.  This visualization 

also reveals introgressions within regions that previous marker-based genetic maps 

identified as being regions of single descent, such as the Ma1/ma1 and Dw2/dw2 locus 

on chromosome 6 (Klein et al., 2008).  This region of the genome is known to be under 

selective pressure, indicating that these introgressions may be the result of attempts to 

introduce and retain desired traits within the region (Menz et al., 2004). The 

identification of such small introgressions will prove valuable for fine mapping, as the 

variants used to detect the introgressions in this visualization project can also be used to 

generate genetic markers for mapping populations.  
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APPENDIX 
	
  

	
  
Figure A-1: Genetic map of chromosomes 1-3 for the SC56 x Tx7000 RIL population 
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Figure A-2: Genetic map of chromosomes 4, 5, 6, and 9 for the SC56 x Tx7000 RIL 
population 
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Table A-1: List of genes located within BTx642 x Tx7000 QTL boundaries described in 
Section 5 

Gene Name Panther ID Panther Description 
Gene 

Start (bp) 
Gene End 

(bp) 

Sb08g004510 PTHR22982 
CALCIUM/CALMODULIN-DEPENDENT PROTEIN 
KINASE-RELATED 5413386 5417550 

Sb08g004460 PTHR23258 SERINE-THREONINE PROTEIN KINASE, PLANT-TYPE 5339414 5345358 
Sb08g004890 PTHR11566 DYNAMIN 6067531 6074823 
Sb08g004450 PTHR23258 SERINE-THREONINE PROTEIN KINASE, PLANT-TYPE 5332351 5333913 

Sb08g004780 PTHR11669 
REPLICATION FACTOR C / DNA POLYMERASE III 
GAMMA-TAU SUBUNIT 5935588 5939608 

Sb08g004410 PTHR23421 BETA-GALACTOSIDASE RELATED 5275015 5291668 
Sb08g004690 PTHR12154 GLYCOSYL TRANSFERASE-RELATED 5640252 5643719 
Sb08g004955 

 
6222068 6223171 

Sb08g004930 PTHR19383 CYTOCHROME P450 6185629 6187809 

Sb08g004910 PTHR23413 
60S RIBOSOMAL PROTEIN L32 AND DNA-DIRECTED 
RNA POLYMERASE II, SUBUNIT N 6111731 6115200 

Sb08g004720 PTHR10641 MYB-RELATED 5750343 5751112 
Sb08g004745 

 
5895704 5896828 

Sb08g004560 
 

5476332 5477128 
Sb08g004600 

 
5518924 5520240 

Sb08g004990 PTHR22950 AMINO ACID TRANSPORTER 6281489 6283693 

Sb08g004470 PTHR11911 
INOSINE-5-MONOPHOSPHATE DEHYDROGENASE 
RELATED 5349758 5379686 

Sb08g004825 
 

6022410 6022649 
Sb08g004900 PTHR11085 CHROMATIN REGULATORY PROTEIN SIR2 6081334 6086296 
Sb08g004540 PTHR11929 ALPHA-(1,3)-FUCOSYLTRANSFERASE 5439756 5442535 
Sb08g004960 PTHR22950 AMINO ACID TRANSPORTER 6226628 6228271 
Sb08g004500 PTHR11627 FRUCTOSE-BISPHOSPHATE ALDOLASE 5410066 5411989 
Sb08g004400 PTHR11895 AMIDASE 5263138 5267799 
Sb08g004590 

 
5497346 5499285 

Sb08g004640 PTHR19446 REVERSE TRANSCRIPTASES 5570493 5572508 
Sb08g004870 

 
6052903 6056677 

Sb08g004630 
 

5561308 5567432 
Sb08g004550 PTHR23258 SERINE-THREONINE PROTEIN KINASE, PLANT-TYPE 5467097 5469610 
Sb08g004430 

 
5314574 5315860 

Sb08g004750 
 

5898817 5901176 
Sb08g004840 PTHR11699 ALDEHYDE DEHYDROGENASE-RELATED 6034374 6040509 
Sb08g004580 

 
5489787 5491840 

Sb08g004710 PTHR19134 PROTEIN-TYROSINE PHOSPHATASE 5681324 5687411 
Sb08g004760 

 
5921558 5922712 

Sb08g004860 
 

6046227 6048110 
Sb08g004915 PTHR22950 AMINO ACID TRANSPORTER 6154129 6155061 

Sb08g004730 PTHR10766 
TRANSMEMBRANE 9 SUPERFAMILY PROTEIN 
MEMBER 5816061 5821466 

Sb08g004570 PTHR13734 TRNA-NUCLEOTIDYLTRANSFERASE 1 5479797 5486707 
Sb08g004940 PTHR23258 SERINE-THREONINE PROTEIN KINASE, PLANT-TYPE 6195504 6198219 
Sb08g004810 PTHR22950 AMINO ACID TRANSPORTER 5976226 5977674 
    
     

 
 
 



	
  

	
  

117	
  

Table A-1 continued 
Gene Name Panther ID Panther Description 

Gene 
Start (bp) 

Gene End 
(bp) 

Sb08g004390 PTHR10263 VACUOLAR ATP SYNTHASE PROTEOLIPID SUBUNIT 5257369 5260353 
Sb08g004680 PTHR21495 NUCLEOPORIN-RELATED 5631814 5632383 
Sb08g004620 PTHR14107 WD REPEAT PROTEIN 5551601 5557990 
Sb08g004830 PTHR23258 SERINE-THREONINE PROTEIN KINASE, PLANT-TYPE 6026192 6028734 
Sb08g004905 

 
6110157 6111426 

Sb08g004700 PTHR23258 SERINE-THREONINE PROTEIN KINASE, PLANT-TYPE 5679283 5679745 
Sb08g004850 PTHR14221 WD REPEAT DOMAIN 44 6042857 6045827 
Sb08g004520 PTHR10361 SODIUM-BILE ACID COTRANSPORTER RELATED 5431149 5433505 
Sb08g004610 

 
5550733 5551262 

Sb08g004880 
 

6062693 6066807 
Sb08g004920 

 
6157839 6158613 

Sb08g004790 PTHR12802 SWI/SNF COMPLEX-RELATED 5942393 5949689 
Sb08g004800 PTHR13683 ASPARTYL PROTEASES 5972462 5975686 
Sb08g004950 PTHR11065 GUFA PROTEIN - RELATED 6214761 6218215 
Sb08g004670 PTHR21495 NUCLEOPORIN-RELATED 5624451 5624987 
Sb08g004650 

 
5577657 5582630 

Sb08g004570 PTHR13734 TRNA-NUCLEOTIDYLTRANSFERASE 1 5479797 5486306 
Sb08g004770 

	
  
5928250 5930715 

Sb08g004740 PTHR11178 
IRON-SULFUR CLUSTER SCAFFOLD PROTEIN NFU-
RELATED 5864125 5866178 

Sb08g004380 PTHR10263 VACUOLAR ATP SYNTHASE PROTEOLIPID SUBUNIT 5243063 5245675 
Sb08g004926 

 
6180403 6181200 

Sb08g004420 
 

5294545 5299196 
Sb08g004980 PTHR22950 AMINO ACID TRANSPORTER 6253081 6255105 

	
  
	
  
Table A-2: Listed of genes located within SC56 x Tx7000 QTL boundaries as described 
in Section 5 

Gene Name Panther ID Panther Description 
Gene Start 

(bp) 
Gene End 

(bp) 
Sb10g007290 PTHR22893 NADH OXIDOREDUCTASE-RELATED 7084056 7085665 
Sb10g007500 

 
7352447 7356315 

Sb10g007710 PTHR11926 GLUCOSYL/GLUCURONOSYL TRANSFERASES 7519172 7519801 
Sb10g007310 PTHR22893 NADH OXIDOREDUCTASE-RELATED 7125919 7127233 
Sb10g007660 

 
7471744 7472700 

Sb10g007590 PTHR11527 SMALL HEAT-SHOCK PROTEIN (HSP20) FAMILY 7429113 7430214 

Sb10g007420 PTHR12374 
TRANSCRIPTIONAL ADAPTOR 2 (ADA2)-
RELATED 7280665 7281800 

Sb10g007750 PTHR23354 
NUCLEOLAR PROTEIN 7/ESTROGEN RECEPTOR 
COACTIVATOR-RELATED 7605950 7610287 

Sb10g007228 PTHR23024 
MEMBER OF 'GDXG' FAMILY OF LIPOLYTIC 
ENZYMES 7015912 7017107 

Sb10g007370 PTHR13104 MED-6-RELATED 7201622 7205336 
Sb10g007296 PTHR22893:SF13 12-OXOPHYTODIENOATE REDUCTASE OPR 7114879 7115084 
Sb10g007460 PTHR12096 NUCLEAR PROTEIN SKIP-RELATED 7318537 7320021 
Sb10g007700 PTHR11926 GLUCOSYL/GLUCURONOSYL TRANSFERASES 7515796 7517602 
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Table A-2 continued 
Gene Name Panther ID Panther Description 

Gene Start 
(bp) 

Gene End 
(bp) 

Sb10g007565 
 

7416493 7420058 

Sb10g007340 PTHR23258 
SERINE-THREONINE PROTEIN KINASE, PLANT-
TYPE 7152271 7153897 

Sb10g007760 PTHR10502 ANNEXIN 7611042 7614980 
Sb10g007410 PTHR11071 CYCLOPHILIN 7261193 7267859 
Sb10g007520 

 
7367770 7368772 

Sb10g007226 PTHR23024 
MEMBER OF 'GDXG' FAMILY OF LIPOLYTIC 
ENZYMES 7013336 7015787 

Sb10g007360 PTHR16012 KINESIN HEAVY CHAIN 7162730 7178914 

Sb10g007270 PTHR11731 
PROTEASE FAMILY S9B,C DIPEPTIDYL-
PEPTIDASE IV-RELATED 7062751 7072010 

Sb10g007260 PTHR13173 WW DOMAIN BINDING PROTEIN 4 7052023 7060540 
Sb10g007300 PTHR22893 NADH OXIDOREDUCTASE-RELATED 7118677 7119912 
Sb10g007240 

 
7031242 7032584 

Sb10g007450 PTHR10177 CYCLINS 7306391 7308094 
Sb10g007550 

 
7393308 7394337 

Sb10g007190 PTHR21568:SF1 gb def: Hypothetical protein 6990492 6990830 
Sb10g007600 PTHR11527 SMALL HEAT-SHOCK PROTEIN (HSP20) FAMILY 7433097 7433914 
Sb10g007210 

 
6999381 7003729 

Sb10g007620 PTHR23365 POLY-A BINDING PROTEIN 2 7437934 7441972 

Sb10g007640 PTHR10483 
PENTATRICOPEPTIDE REPEAT-CONTAINING 
PROTEIN 7447676 7449764 

Sb10g007570 PTHR11527 SMALL HEAT-SHOCK PROTEIN (HSP20) FAMILY 7421552 7422367 

Sb10g007440 PTHR10483 
PENTATRICOPEPTIDE REPEAT-CONTAINING 
PROTEIN 7288988 7290966 

Sb10g007280 PTHR11731 
PROTEASE FAMILY S9B,C DIPEPTIDYL-
PEPTIDASE IV-RELATED 7073164 7080081 

Sb10g007350 PTHR10483 
PENTATRICOPEPTIDE REPEAT-CONTAINING 
PROTEIN 7155421 7158740 

Sb10g007222 PTHR23024:SF10 CARBOXYLESTERASE-RELATED 7005759 7006985 

Sb10g007224 PTHR23024 
MEMBER OF 'GDXG' FAMILY OF LIPOLYTIC 
ENZYMES 7010113 7011756 

Sb10g007680 PTHR12052 MITOSIS PROTEIN DIM1 7494163 7500919 
Sb10g007540 PTHR11630 DNA REPLICATION LICENSING FACTOR 7379034 7387662 
Sb10g007330 PTHR22893 NADH OXIDOREDUCTASE-RELATED 7136789 7138351 
Sb10g007305 PTHR22893:SF13 12-OXOPHYTODIENOATE REDUCTASE OPR 7122073 7122309 

Sb10g007390 PTHR23002 
ZINC FINGER CCHC DOMAIN CONTAINING 
PROTEIN 7220616 7223493 

Sb10g007480 PTHR11821 DNAJ/HSP40 7330581 7340900 
Sb10g007610 PTHR19139 AQUAPORIN TRANSPORTER 7434249 7435606 
Sb10g007670 

 
7475847 7476916 

Sb10g007650 PTHR10012 PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR 7466819 7470425 
Sb10g007630 PTHR11711 ARF-RELATED 7442221 7443165 
Sb10g007510 PTHR10026 CYCLIN 7358042 7361309 
Sb10g007430 

 
7288025 7288598 

Sb10g007220 
 

7004707 7005738 

Sb10g007280 PTHR11731 
PROTEASE FAMILY S9B,C DIPEPTIDYL-
PEPTIDASE IV-RELATED 7073164 7079946 

Sb10g007730 
 

7559672 7559932 
Sb10g007690 

 
7506195 7507541 
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Table A-2 continued 
Gene Name Panther ID Panther Description 

Gene Start 
(bp) 

Gene End 
(bp) 

Sb10g007250 
 

7049746 7051082 
Sb10g007740 

 
7599254 7601351 

 
Sb10g007750 PTHR23354 

NUCLEOLAR PROTEIN 7/ESTROGEN RECEPTOR 
COACTIVATOR-RELATED 7605950 7610287 

Sb10g007530 PTHR23125 F-BOX/LEUCINE RICH REPEAT PROTEIN 7369459 7372127 
Sb10g007580 PTHR11527 SMALL HEAT-SHOCK PROTEIN (HSP20) FAMILY 7425748 7426500 
Sb10g007230 PTHR22915 NADH DEHYDROGENASE-RELATED 7019500 7026365 
Sb10g007470 

 
7325563 7328559 

Sb10g007490 PTHR22765 
RING FINGER AND PROTEASE ASSOCIATED 
DOMAIN-CONTAINING 7346628 7348031 

Sb10g007725 PTHR11702:SF4 GTP-BINDING PROTEIN YLF2-RELATED 7531976 7540394 
Sb10g007320 PTHR22893 NADH OXIDOREDUCTASE-RELATED 7130453 7131702 
Sb10g007380 PTHR11945 MADS BOX PROTEIN 7213022 7220337 
Sb10g007293 

 
7111013 7111890 

 
Table A-3: Lignin standard curve used for calibration of acetyl bromide lignin 
quantification as described in Section 2 
Lignin Concentration (g/L) 0.060 0.040 0.020 0.010 0.005 
Absorbance @ 280nm 1.334 0.682 0.497 0.202 0.134 
Absorbance @ 280nm 1.400 0.827 0.554 0.209 0.083 
Absorbance @ 280nm 1.302 0.871 0.483 0.357 0.144 
Absorbance @ 280nm 1.396 0.864 0.457 0.242 0.223 
Absorbance @ 280nm 1.405 0.793 0.467 0.265 0.105 
Absorbance @ 280nm 1.068 0.829 0.595 0.214 0.133 
Absorbance @ 280nm 1.024 0.835 0.490 0.144 0.072 
Absorbance @ 280nm 1.327 0.798 0.400 0.214 0.320 

      Average Absorbance 1.282 0.812 0.493 0.231 0.152 
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Figure A-3: Plot and regression of lignin UV absorbance as described in Section 2 and 
Appendix Table 6 
	
  
	
  
Table	
  A-­‐4:	
  	
  604	
  genotyping	
  markers	
  described	
  in	
  Section	
  5	
  are	
  included	
  in	
  a	
  
separate	
  file.	
  
	
  
Table	
  A-­‐5:	
  	
  NIR	
  Compositional	
  data	
  for	
  SC56xTx7000	
  RILs	
  harvested	
  in	
  2009	
  is	
  
included	
  in	
  a	
  separate	
  file.	
  
	
  
Table	
  A-­‐6:	
  	
  NIR	
  Compositional	
  data	
  for	
  BTx642xTx7000	
  RILs	
  harvested	
  in	
  2009	
  is	
  
included	
  as	
  a	
  separate	
  file.	
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