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ABSTRACT

Multiscale Simulation and Uncertainty Quantification Techniques for Richards’

Equation in Heterogeneous Media. (August 2012 )

Seul Ki Kang, B.S., Korea Advanced Institute of Science and Technology

Co-Chairs of Advisory Committee: Dr. Yalchin Efendiev
Dr. Raytcho Lazarov

In this dissertation, we develop multiscale finite element methods and uncertainty

quantification technique for Richards’ equation, a mathematical model to describe

fluid flow in unsaturated porous media. Both coarse-level and fine-level numerical

computation techniques are presented. To develop an accurate coarse-scale numerical

method, we need to construct an effective multiscale map that is able to capture the

multiscale features of the large-scale solution without resolving the small scale details.

With a careful choice of the coarse spaces for multiscale finite element methods, we

can significantly reduce errors.

We introduce several methods to construct coarse spaces for multiscale finite

element methods. A coarse space based on local spectral problems is also presented.

The construction of coarse spaces begins with an initial choice of multiscale basis

functions supported in coarse regions. These basis functions are complemented using

weighted local spectral eigenfunctions. These newly constructed basis functions can

capture the small scale features of the solution within a coarse-grid block and give

us an accurate coarse-scale solution. However, it is expensive to compute the local

basis functions for each parameter value for a nonlinear equation. To overcome this

difficulty, local reduced basis method is discussed, which provides smaller dimension

spaces with which to compute the basis functions.

Robust solution techniques for Richards’ equation at a fine scale are discussed.

We construct iterative solvers for Richards’ equation, whose number of iterations
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is independent of the contrast. We employ two-level domain decomposition pre-

conditioners to solve linear systems arising in approximation of problems with high

contrast. We show that, by using the local spectral coarse space for the precondi-

tioners, the number of iterations for these solvers are independent of the physical

properties of the media. Several numerical experiments are given to support the

theoretical results.

Last, we present numerical methods for uncertainty quantification applications

for Richards’ equation. Numerical methods combined with stochastic solution tech-

niques are proposed to sample conductivities of porous media given in integrated

data. Our proposed algorithm is based on upscaling techniques and the Markov

chain Monte Carlo method. Sampling results are presented to prove the efficiency

and accuracy of our algorithm.
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1. INTRODUCTION

Studies on the unsaturated zone have been the subject of extensive research

in recent years. Much of this research has been carried out by soil scientists and

hydrologists in relation to issues such as crop irrigation and rainfall run-off. In all

the studies of unsaturated soil, it is assumed that Richards’ equation [62] is modeling

subsurface flow. This equation is a mathematical model that is derived by combining

Darcy’s law with a mass conservation equation of porous media.

A major problem of the flow in natural porous media is that it is largely affected

by multiple scales. Data that can be used for constructing flow models can vary over

a wide range of length scales. Laboratory studies are performed and soil samples

at the micron scale can be identified. Indirect measurements of the soil property

data varies on a scale of a foot to thousands of feet. Geophysical data, such as

precipitation, can be incorporated into soil properties over scales of several miles.

Therefore, it is desirable to develop flow simulations that can capture as many of the

scales as possible underlying the available data.

The numerical solution of Richards’ equation has received considerable attention

in recent years. However, the media properties often vary significantly which in-

troduces an additional level of complexity. A high contrast in the media properties

expressed as the ratio between low and high conductivity values brings an additional

small scale into the problem. For example, in flow through fractured porous media,

it is common to have several orders of magnitude of variations in the conductivity

within fractures. Moreover, fracture regions, that are the main carriers of the flow,

can have complex heterogeneities.

Numerical discretization of flow problems in heterogeneous media results in very

large ill-conditioned systems of linear equations and wherever large disparities in

spatial scales are found, the computation to get the numerical solution becomes much

This dissertation follows the style of SIAM Journal of Numerical Analysis.
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difficult. To construct a numerical model of coarse scale features for such problems,

we need to understand the physical characteristics of the media on different scales.

It is important to note that in this case traditional scale separation, such as classical

homogenization or upscaling techniques, cannot be straightforwardly applied because

they can not capture the high heterogeneity charateristics of the media. Therefore,

one needs to take into account the variation in the conductivities when designing

efficient coarse-grid simulation techniques. The same problems arise in constructing

robust iterative solvers.

In this dissertation, we are interested in modeling the flow of water into a porous

medium. Our motivation stems from Richards’ equation which describes the infil-

tration of water into a porous media whose pore spaces are filled with air and water.

Richards’ equation is given by

Dtθ(u)− div(κ(x, u)∇(u+ x3)) = f, x ∈ Ω, (1.1)

where θ(u) denotes the volumetric fluid content, u represents the pressure head and

κ(x, u) ≥ k0 > 0 is the relative hydraulic conductivity and k0 is a constant.

In this study, we will concentrate on solving the Richards’ equation (1.1) with

some boundary conditions. The objectives of the study are threefold:

(1) Develop a multiscale finite element method (MsFEM) to obtain an accurate so-

lution of Richards’ equation on a coarse grid.

(2) Construct robust iterative solvers for Richards’ equation which allows the con-

vergence of the numerical solution to be independent of the physical properties of

the media.

(3) Design efficient uncertainty quantification techniques in inverse problems for

Richards’ equation

Before we move on to detailed descriptions of each chapter, we want to motivate the

goal of this dissertation and give an overviews of the main results.
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Recently, a number of approaches have been introduced where the coupling of

small scale information is performed through a numerical formulation of the global

problem by incorporating the fine features of the problem into coarse elements. Some

approaches involve the solution on a coarse grid (e.g. [16,18,20,21,36,42,53,79]). In

these approaches, coarse-grid properties are computed to represent the media or the

solution on the coarse grid.

One of the commonly used approaches is upscaling methods (e.g. [79]) where

coarse-grid conductivities are computed, and then the flow equation is solved on this

coarse grid. Instead of coarse-grid conductivities, multiscale basis functions can be

used to represent the solution on a coarse grid [36,42]. In the latter, multiscale basis

functions are constructed on a coarse grid, and further the approximation for the

solution on a fine grid is sought on a finite dimensional space spanned by these basis

functions. Multiscale basis functions are typically constructed by solving the local

flow equation on a coarse grid subject to some boundary conditions.

A coarse space based on local spectral problems is constructed in [21, 22, 26].

In this dissertation, we discuss the coarse spaces that are used in multiscale finite

element methods (MsFEMs) for solving the problem on a coarse grid as well as

in two-level preconditioners for iterative solvers. The local spectral basis functions

are constructed by incorporating small-scale localizable features of the solution into

intial multiscale basis functions and they make us to capture the fine-scale features

of the media. Morevover, we prove that when these eigenfunctions are included in

the coarse space in the domain decomposition methods, the condition number of the

preconditioned matrix is bounded independently of the contrast.

We are also interested in studying efficient techniques for solving flows in highly

heterogeneous formations. In many cases, multiscale methods can not provide an

accurate approximation of the solution and one needs to solve for the fine-scale

solution. The solution of the fine-scale equation is typically prohibitively expensive

because of the small scales and high contrast in the conductivity field. For this
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reason, to reduce the number of iterations required for solving the fine-scale system

of equations, some type of preconditioning is needed.

The design and analysis of preconditioners that converge independently of the

contrast are important for many applcations. Domain decomposition techniques use

the solutions of local problems and a coarse problem in constructing preconditioners

for the fine-scale system. The number of iterations required by domain decomposition

preconditioners is largely affected by the high-variabilities of conductivity within

the coarse grid [31]. It is known that if high and low conductivity regions can be

encompassed within coarse grid blocks such that the variation of the conductivity

within each coarse region is bounded, domain decomposition preconditioners result

in a system with the condition number independent of the contrast (e.g., [48, 71]).

However, in the case of the problems that we are considering, the media has a complex

geometry so that it is hard to separate high and low conductivity regions. Therefore,

special techniques to handle this situation are required. Constructing a right coarse

space, which is used in constructing preconditioners, is a key point in making this

happen.

The reduced basis (RB) approach has been introduced to solve large parameter-

dependent problems [47, 64]. This technique is proposed to reduce the dimension

of the parameter space and make the computation for solving parameter dependent

problems much faster. The RB method can be modified and applied to MsFEM for

nonlinear equations. The main idea of this combined method is the construction

of local spectral basis functions for MsFEM for nonlinear equations, considered as

parameter-dependent equatons. This can reduce substantially the overall computa-

tion time to solve the equations .

We also consider the application of uncertainty quantification into the inverse

problem of Richards’ equation. In many engineering applications, one needs to solve

inverse problems of fluid dynamics to predict the movement of groundwater flow and

soil water content under the ground. These kinds of problems contain uncertainties
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which need to be quantified and minimized. We will perform some sampling tech-

niques which include prarameterization of uncertainty and an upscaling process for

cheap computation.

We want to outline the dissertation. In Chapter II, we introduce Richards’ equa-

tion, which is the basic equation describing underground water movement. We

present general formulations of the equation and give some popular models that

hydrologists use. Numerical solution techniques for the equation is introduced. Sev-

eral attempt to find a numerical solution for Richards’ equation has been introduced

in the past few decades, e.g., finite difference methods or finite element methods. In

our research, we discretized the equation and define the nonlinear fixed point itera-

tion. Further we show that under some conditions there exists a unique solution of

the discrete problem.

Chapter III gives a general overview of MsFEM. There are several ways to con-

struct coarse-scale basis functions and global formulations for MsFEM. We first in-

troduce linear boundary conditions multiscale finite element basis functions for linear

elliptic equations and show some examples. It is known that MsFEM can have large

errors if the boundary conditions for the basis functions do not reflect the under-

lying heterogeneities. Therefore, one of the ways to reduce resonance errors when

constructing the basis functions, oversampling methods can be introduced. Energy

minimizing basis functions for MsFEM also are presented.

We introduce local spectral basis functions. Newly constructed basis functions

were first introduced to overcome the difficulties aroused from high contrast problems.

The basic idea is that by complementing the standard finite element basis functions

with local spectral functions, we can capture the small scale properties of the media

with comparably few dimensions. The coarse spaces that are spanned by these basis

functions can be used in MsFEM for solving the problem on a coarse grid as well

as in two-level preconditioners for iterative solutions. In the last part, we show
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its applications to multiscale finite element methods for Richards’ equation. Some

numerical examples are presented.

Because of the nonlinearity of the problem, multiscale basis functions can be con-

structed using nonlinear mappings. Given nonlinear equations, which are considered

parameter-dependent equations, it can be solved using multiscale basis functions

with the help of reduced basis methods. The advantage of this method is that we

can save computational time by avoiding whole computations in constructing basis

functions for MsFEM. For example, if we compute local spectral basis functions for

each parameter value, the computation becomes so expensive. However, reduced

basis approach provides a smaller dimension space for which to compute basis func-

tions, and results in cheaper ways to get the desired solution with comparably small

errors.

In Chapter IV, we discuss robust solution techniques for separable Richards’ equa-

tion. We construct iterative solvers for a finite element approximation of Richards’

equation, where the number of iterations is independent of the contrast. The pro-

posed iterative procedure involves outer and inner iterations. Outer iterations are

designed to handle nonlinearities and inner iterations are employed to solve a linear

problem for every outer iteration. For the solution of the linear problem, we employ

two-level domain decomposition preconditioners. In particular, we show that the ro-

bust iterative techniques designed for a linear system can be re-used for every outer

iteration if the nonlinear coefficient function is smooth.

We employ two-level domain decomposition preconditioners. The key point in

making inner iterations independent of the contast is constructing a right coarse

space for the preconditioners. The local spectral coarse spaces, which are introduced

in Chapter III, are used for the preconditioners. By presenting several numerical

results, we can show that our developed iterative methods are robust with respect

to the contrast values.
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Last, in Chapter V, we discuss applications of uncertainty quantification tech-

niques to Richards’ equation. In many applications, one needs to solve inverse prob-

lems for Richards’ equation. Soil moisture prediction is one of the most common

applications of these kinds of problems. For predicting moisture content under soil,

some types of uncertainty come into this process. Quantifying and reducing this

uncertainty with proper techniques allow better predictions.

In this dissertation, we focus on sampling saturated conductivity conditioned on

some average flux data. For sampling, we use a Markov chain Monte Carlo (MCMC)

method. This method allows to simulate a dependent sequence of random samples

from very complex stochastic models. However, to perform MCMC, one needs to

compute a realization of the conductivity on a fine grid, which is extremely expensive.

Therefore, we employ a multiscale method to coarsen the saturated hyraulic conduc-

tivity to get a cheaper computation. Some numerical results support our theoretical

view.
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2. RICHARDS’ EQUATION

Attention to the unsaturated zone has increased in recent years because of growing

industrial and agricultural activities that largely affect the quality of the subsurface

environment. Fluid flow in unsaturated porous media is often modeled by Richards’

equation [62] to describe the relationship among fluid pressures, saturations, and

relative permeabilities [5,73]. This equation is a mathematical model that describes

a variably saturated flow and it is derived by combining Darcy’s law with a mass

conservation equation in porous media [41].

Analytical solutions of Richards’ equation have been studied [46, 49, 69]. How-

ever, analytic solutions are obtained in very limited cases under some simplifying

assumptions. Most of the analytic solutions were obtained using the exponential

hydraulic parameter model proposed by Gardner [30] (See also Section 2.3). Such

an exponential model allows us to linearize the governing flow equation, which make

us possible to find an analytical solution. A detailed review of this approach for un-

saturated flow problems was presented by Pullan [56]. Although analytical soltuions

may have limited practical applications, they do serve as a means for verifying many

numerical models for unsaturated flow. These are especially useful for infiltration in

very dry, layered soils where numerical models often suffer from lack of convergence

and mass balance problems. In addition, the analytical solutions may enhance our

understanding of the infiltration process under a transient state in layered soils.

The analytical solutions mentioned above are restrictive in nature and also limited

to one dimensional problems. Consequently, numerical treatments are needed to

solve more complicated problems. Numerical methods for solving Richards’ equation

have been developed in the last few decades. It is desirable to develop appropriate

numerical schemes for moisture flow in unsatruated porous media.

A number of finite difference and finite element methods which are the modern

tool for solving partial differential equatoins were developed [33, 34, 55, 67]. These
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methods often suffer to some degree from mass balance errors as well as from numer-

ical oscillations and dispersion. Additional numerical problems may appear when

the gravitational term becomes important. Finite elements are advantageous for

several domains in two and three-dimensions. In one dimension finite difference is

advantageous because it needs no mass lumping to prevent oscillations [57, 74]. A

mass conservative model for solving mixed form of Richards’ equation using a fi-

nite difference method has been presented in [10]. Other techniques have also been

implemented including a mixed finite element [3, 25].

Numerical simulation of ground water flow and transport requires solutions of

large, sparse systems of equations. Thus, the complexity and size of problems that

can be solved numerically are often constrained by the efficiency of the algorithm used

to solve the resulting systems of equations. A number of studies have compared the

efficiency of iterative algorithms used to solve a variety of two and three-dimensional,

linear and nonlinear ground water flow problems [35,44,50]. These investigations typ-

ically compared two or more iterative solvers such as the strongly implicit procedure

(SIP), successive over-relaxation (SOR),or conjugate gradient (CG) methods and

preconditioned CG methods. Results of these comparisons varied depending on the

specific problems, but there is general agreement that preconditioned CG methods

provide competitive convergence rates, with an added advantage of not requiring

operator-spedified parameters. However, even the preconditioned CG methods for

some problems suffer of cost of convergence or robustness that make them impracti-

cal, or inapplicable. To overcome this problem, in Chapter 4 we will construct robust

iterative solvers using preconditioned CG methods.
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2.1 Derivation of Richards’ equation using Darcy’s law

Richards’ equation is a simple consequence of two basic equations. The first one

is the fundamental mass conservation law

Dtθ + divVD = 0, (2.1)

where θ is the volumetric water content in the unit volume of soil (the liquid can be

water, oil or other fluid), and VD is the Darcy flux or fluid flow per unit area.

The second equation is a generalization of the empirical Darcy’s equation relating

the fluid flux, VD to the total energy potential H = u − x3 (see for example the

book [68])

VD = −κ(x, u)∇H = −κ(x, u)∇u+ κ(x, u)∇x3, (2.2)

where u represents pressure head and ∇x3 is the unit vector directed downward,

in the positive direction of the axis x3. The hydraulic conductivity κ(x, u) of an

unsaturated porous medium can be presented as a the product κ(x, u) = kskr(u, x),

where ks = kg/ν is the saturated hydraulic conductivity in which k is the medium

permeability, g is the acceleration due to gravity and ν is the fluid kinematic viscosity.

Another variable, kr(x, u), is the relative hydraulic conductivity of the unsaturated

medium, it depends on the volumetric fluid content and satisfies 0 ≤ kr(x, u) ≤ 1.

Note that the Darcy law was established originally for water percolation through

saturated soils. Later it was generalized to fluid flow through unsaturated porous

media with nonconstant hydraulic conductivity κ(u, x) depending on the volumetric

fluid content. Substituting VD from Eq. (2.2) into Eq. (2.1), one obtains

Dtθ = div[κ(x, u)∇(u+ x3)] (2.3)

This is commonly known as Richards’ equation [62], while Buckingham [6] derived

it almost quarter of century earlier.
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2.2 Several forms of Richards’ equation

Richards’ equation is given by

Dtθ(u)− div(κ(x, u)∇(u+ x3)) = f, x ∈ Ω. (2.4)

where θ(u) denotes the volumetric fluid content, u represents pressure head and

κ(x, u) ≥ k0 > 0 is the relative hydraulic conductivity and k0 is a constant. The

following are assumed [62] for (2.4): (1) the porous media and water are incompress-

ible; (2) the temporal variation of the water saturation is significantly larger than

the temporal variation of the water pressure; (3) the air phase is infinitely mobile so

that the air pressure remains constant ( in this case it is atmospheric pressure which

equals zero); and (4) neglect the source/sink terms.

The equation (2.4) is called the coupled form of Richards’ equation. This is also

called the mixed form of Richards’ equation, due to the fact that it involves two

variables, namely, the water content θ and the pressure head u. Taking advantage

of the differentiability of the soil retention function, one may rewrite (2.4) as follows

C(u)Dtu− div(κ(x, u)∇(u+ x3)) = f, x ∈ Ω, (2.5)

where C(u) = dθ/du is the specific moisture capacity. This version is referred to as

the head-form (h-form) of Richards’ equation. Another formulation of the Richards’

equation is based on the water content θ,

Dtθ − div(D(x, θ)∇θ)−Dx3κ = f, x ∈ Ω, (2.6)

where D(θ) = κ(θ)/(dθ/du) defines the diffusivity. This form is called the θ- form of

Richards’ equation.

The three versions of Richards’ equation written above have various advantages

and disadvantages which in general depend upon the physical situations of the prob-
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lems considered. The θ-form, for example, is a conservative form by construction,

i.e., it follows the mass conservation law. However, this form only applies to the

unsaturated zone, since in a saturated condition the water content becomes constant

and D approaches infinity. Furthermore, for multi-layered soils, θ cannot be guar-

anteed to be continuous across interfaces separating the layers. Thus, this form may

be useful only for a homogeneous media.

On the other hand, due to the fact that the pressure head is continuous even

for multi-layered soils, the head-form may be advantageous for heterogeneous soil

condition. It is also applicable for both unsaturated and saturated media. Never-

theless, as described above, the head-form does not maintain the global conservation

of mass. Recently, Rathfelder et al. [60] proposed a method to solve the head-form

equation that still maintains the global mass balance. The key to their method is a

different way of evaluating the specific moisture capacity C, the so called standard

chord slope approximation method.

The coupled-form of Richards’ equation is also mass conserved. It is applicable to

both saturated and unsaturated porous media. The authors of [10] proposed the so-

called modified Picard iteration to solve this equation, and made a comparison with

results from the h-form and showed that the coupled-form can maintain the mass

conservation throughout the time marching of the simulation. These advantages

have caused many researchers and engineers to use this version for various practi-

cal problems. Through this disseration, we will also use coupled-form of Richards’

equation.

2.3 Constitutive relations

Constitutive relations between θ and u and between κ and u are developted

appropriately, which consequently gives nonlinearity behavior in (1.1). Reliable ap-

proximations of these relations are in general challenging. Field measurements or

laboratory experiments to determine the parameters are relatively expensive, and
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furthermore, even if one can come up with such relationships from these works, they

will be somehow limited to the particular cases under consideration.

Perhaps the most widely used empirical constitutive relations for moisture content

and hydraulic conductivity is due to the work of van Genuchten [73]. He proposed a

method of determining the functional relationship of relative hydraulic conductivity

to the pressure head by using the field observation knowledge of moisture retention.

In turn, the procedure would require curve-fitting to the proposed moisture retention

function with the experimental/observational data to establish certain parameters

inherent to the resulting hydraulic conductivity model. There are several widely

known formulations of the constitutive relationship:

Haverkamp model [33] : This model is devloped by Haverkamp et al. (1977)

to characterize the hydraulic properties of a soil. They compared six models,

employing different ways of discretization of the non-linear infiltration equation

in terms of execution time, accuracy, and programming considerations. The

models were tested by comparing water content profiles calculated at given

times by each of the models with results obtained from an infiltration exper-

iment carried out in laboratory. All models yielded excellent agreement with

water content profiles measured at various times.

The following analytical expressions, obtained by a least square fit thorugh all

data points were chosen for characterizing the soil:

θ(u) =
α (θs − θr)
α + |u|β

+ θr, κ(x, u) = κs(x)
A

A+ |u|γ
. (2.7)

where κs = 34cm/h, A = 1.175×106, γ = 4.74, and θs = 0.287, θr = 0.075, α =

1.611× 106, β = 3.96.

Supscript s refers to saturation, i.e. the value of θ for which u = 0, and the

subscript r to residual water content.
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van Genuchten model [73] : van Genuchten model, motivated by the Mualem

[51], was developed for predicting the hydraulic conductivity from knowlege of

the soil-water retention curve and the conductivity at satruation. In [73], a

closed-form equation of hydarulic conductivity is derived using an equation for

the soil-water retention curve which is both continuous and has a continuous

slope. The resulting conductivity models generally contain three independent

parameters, m, n, and α, which may be obtained by matching the propsed

soil-water retention curve to experimental data. In [73], these parameters are

estimated as m = 0.5, n = 2, α = 0.005.

θ(u) =
α (θs − θr)

[1 + (α|u|)n]
m + θr, κ(x, u) = κs(x)

{
1− (α|u|)n−1 [1 + (α|u|)n]

−m}2

[1 + (α|u|)n]
m/2

.

(2.8)

Exponential model [77] : Exponential model was introduced in several papers

[30,58] with the aim to find an analytical solution for Richards’ equation. For

a limited range of values of the u, equation (2.9) can be fitted empirically to

match of the capillary conductivity data presently available, but it does not

hold well over a wide range of values. Empirical data gives α(units of L−1)

having value within the range 0.002 to 0.2 cm−1 [58].

θ(u) = θs e
βu, κ(x, u) = κs(x) eαu. (2.9)

The κs in the above model is also known as saturated hydraulic conductivity.

It was observed that the hydraulic conductivity has a broad range of values, which

together with the functional forms presented above confirm the nonlinear behavior

of the process. It can also be seen that the water content and hydraulic conductivity

approach zero as the pressure head goes to very large negative values. In other words,
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Richards’ equation has a tendency to degenerate in a very dry conditions with a large

negative pressure.

2.4 Numerical discretization of Richards’ equation

Now we consider the numerical discretization of Richards’ equation. From now

on we consider the steady-state Richards’ equation

−div(κ(x, u)∇(u+ x3)) = f, x ∈ Ω. (2.10)

In many practical cases, the heterogeneous portion of the relative conductivity is

given by a spatial field that does not depend on u, i.e., κ(x, u) = κ(x)λ(u). We

refer to this case as the separable Richards’ equation. By denoting, u+ x3 as a new

variable and assuming λ is smooth, we can write the above equation as

−div(κ(x)λ(x, u)∇u) = f, x ∈ Ω, (2.11)

where κ(x) is a function with high-variability and λ(x, u) is a smooth function that

varies moderately in both x and u.

2.4.1 Weak formulation

We multiply the equation (2.11) by a test function v ∈ H1
0 (Ω) and integrate over

the domain Ω. After applying divergence theorem, we get that the solution u satisfies

the following integral identity

∫
Ω

k(x)λ(x, u)∇u ·∇vdx =

∫
Ω

fvdx, for all v ∈ H1
0 (Ω).
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Now we define the space V = H1
0 (Ω), set of all functions with square inte-

grable generalized derivatives of first order vanishing on the boundary ∂Ω, the form

a( · , · ; · )

a(u, v;w) =

∫
Ω

k(x)λ(x,w)∇u ·∇vdx, (2.12)

and the linear functional F ( · )

F (v) =

∫
Ω

fvdx. (2.13)

Then the variational form of (2.11) is to find u ∈ V such that

a(u, v;u) = F (v), for all v ∈ V. (2.14)

2.4.2 Finite element discretization

Let Th be a triangulation of the domain Ω into a finite number of triangular

(tetrahedral) elements. We assume that Th quasiuniform and regular; see [13]. Let

V h be the finite dimensional subspace of V of piece-wise polynomials with respect

to Th. Let uh ∈ V h be a solution of the following discrete problem.

a(uh, v;uh) = F (v), for all v ∈ V h. (2.15)

Under suitable conditions, one can ensure the existence of a solution to the above

equation. Define the nonlinear map Th : V h → V h by

a(Thuh, v;uh) = F (v), for all v ∈ V h. (2.16)

This is well defined, since uh ∈ V h.
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2.4.3 A nonlinear fixed point iteration

In this section, we describe a numerical method to approximate the numerical

solutions of Richards’ equation (2.15). We use a fixed point iteration based on the

contractivity of the mapping Th defined in (2.16). The numerical solution uh can be

approximated to an arbitrary accuracy using Picard iteration.

Starting with an initial guess u0
h ∈ V h, we define the nonlinear fixed point itera-

tion by

un+1
h = Thu

n
h.

That is, given unh, the next approximation un+1
h is the solution of the linear elliptic

equation

a(un+1
h , w;unh) = F (w), for all w ∈ V h. (2.17)

In order to define the solution method, we reformulate the problem (2.17) in

terms of the linear operator An : V h → V h defined for any given unh ∈ V h as

a(v, w;unh) = (Anv, w), for all v, w ∈ V h, (2.18)

where ( · , · ) is the standard L2-inner product in V h. In a similar manner, we present

the linear functional F (w) in the form

F (w) = (b, w), for all w ∈ V h. (2.19)

Obviously, b is the L2-projection of the right hand side f of (2.11) on V h. Then the

equation (2.17) can be rewritten in the following operator form

Anun+1
h = b. (2.20)
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Note that equation (2.17) (and its operator counterpart (2.20)) is an approximation

of the linear equation −div(κ(x)λ(x, unh)∇un+1
h ) = f with unh being the previous

iterate.

2.4.4 Existence of the numerical solution

In this section, we show that there exists a solution of the discretization of

Richards’ equation, (2.15). First, for a given K > 0, we introduce the ball

V K,ph := {v ∈ Vh : ‖v‖W 1
p
≤ K}. (2.21)

The following three assumptions are used in the proofs of Theorems 1, and 2.

Assumption 1.

(A) C0 ≤ k(x) ≤M , where C0, and M is a constant.

(B) The function λ(x, u) satisfies the following conditions.

(a) λ(x, u) is Lipschitz continuous with respect to u, i.e., there exists a constant

C1 such that |λ(x, u)− λ(x, v)| ≤ C1|u− v|, for all u, v ∈ V , x ∈ Ω,

(b) λ(x, u) is bounded above, i.e. there is a constant C such that λ(x, u) ≤ C

for all x ∈ Ω and u ∈ L∞(Ω)

(c) λ(x, u) is bounded below, i.e. there is a constant C2 such that 0 < C2 ≤

λ(x, u) for all x ∈ Ω and u ∈ V .

Under these assumptions, we show the following theorems concerning the exis-

tence of the solution.

Theorem 1. Under the Assumption 1, there are constants α <∞, h0 > 0 and ε > 0

such that for all 0 < h ≤ h0 and uh ∈ V h

|uh|W 1
p (Ω) ≤ α sup

06=vh∈V h

a(uh, vh; · )

|vh|W 1
q (Ω)

, with a(u, v; · ) =

∫
Ω

k∇u∇v dx, (2.22)
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whenever |2− p| ≤ ε, q is the dual index to p, 1
p

+ 1
q

= 1 and | · |W 1
q (Ω) is a semi-norm

in W 1
q (Ω).

Proof. It was shown in [4] that for δ > 0 there exists ε > 0 such that

|uh|W 1
p (Ω) ≤ (1 + δ) sup

06=vh∈V h

〈∇uh,∇vh〉
|vh|W 1

q
(Ω)

, for all |2− p| ≤ ε, (2.23)

where 1
p

+ 1
q

= 1 and δ and ε are independent of h. Now, we consider a high-contrast

case via a perturbation argument.

Define a bilinear form B : W 1
p (Ω)×W 1

q (Ω)→ R by

B(u, v) := 〈∇u,∇v〉 − 1

M
a(u, v; · ).

It follows from Assumption 1 (A) and Hölder’s inequality that

B(u, v) ≤
(

1− C0

M

)∫
Ω

|∇u(x)∇v(x)|dx ≤
(

1− C0

M

)
|u|W 1

p (Ω)|v|W 1
q (Ω). (2.24)

Note that C0/M < 1. Then the identity 〈∇u,∇v〉 = B(u, v) +
1

M
a(u, v; · ), together

with estimates (2.23) and (2.24) yields

M

(
1

1 + δ
−
(

1− C0

M

))
|uh|W 1

p (Ω) ≤ sup
06=vh∈V h

a(uh, vh; ·)

|vh|W 1
q (Ω)

.

Let δ = C0

2M−C0
, and choose ε to be as given in (2.23) for this particular choice of δ.

Then, M
(

1
1+δ
−
(
1− C0

M

))
= C0/2. Recall that a(u, v; · ) can be very large because of

high contrast. Note that ε and α depend only on the constants C0, C
∗ and M , though

the coercivity bound is independent of the contrast M . This completes the proof. �

Theorem 2. Let the Assumption 1 hold. Then there exists K > 0, p > 2, h0 >

0, and δ > 0 such that for all F with ‖F‖W−1
p
≤ δ, Th maps V K,ph into itself for all 0 <
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h ≤ h0 and by Browder fixed point Theorem, there exists a solution ũh of equation

(2.15) and it satisfies

Thũh = ũh. (2.25)

Proof. For any uh ∈ V K,ph , k(x)λ(x, uh) satisfies the conditions of Theorem 1 with

a constant M0 such that

M0 = sup{k(x)λ(x, s) : ‖s‖L∞ ≤ cp| log h|K}, (2.26)

where h is the mesh-size of the partition Th and cp is the constant in Sobolev’s

inequality [4],

‖v‖L∞(Ω) ≤ cp| log h|‖v‖W 1
p (Ω), for all v ∈ W 1

p (Ω). (2.27)

The constantM0 exists due to Assumption 1. Then uh ∈ V K,ph implies that ‖uh‖L∞(Ω) ≤

cp| log h|‖uh‖W 1
p (Ω) ≤ cp| log h|K and hence sup{k(x)λ(x, uh)} ≤ M0. For sufficiently

small K (e.g., K = C/cp) there is a p > 2 such that the inequality (2.22) holds. Then

‖Thuh‖W 1
p (Ω) ≤ α sup

06=vh∈V h

a(Thuh, vh;uh)

|vh|W 1
q (Ω)

(from Theorem 1)

= α sup
06=vh∈V h

F (vh)

|vh|W 1
q (Ω)

≤ C‖F‖W−1
p (Ω).

Choose ‖F‖W−1
p (Ω) ≤ K/C to get ‖Thuh‖W 1

p (Ω) ≤ K, i.e., Th maps V K,ph into itself. By

Browder fixed point [15], there exists a solution ũh of equation (2.15) and it satisfies

Thũh = ũh. (2.28)

�
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3. MULTISCALE FINITE ELEMENT METHODS FOR SEPARABLE

COEFFICIENT RICHARDS’ EQUATION

The percolation of water in the soil varies greatly according to the soil structure

which has many variations depending on the location or environmental conditions.

The difficulty in analyzing groundwater transport is caused mainly by the hetero-

geneity of subsurface formations which may span many scales. These multiple scales

dominate simulation costs and therefore we need to construct solution techniques

which resolve all the small-scale effect into the large scales.

In this chaper, we introduce multiscale finite element methods (MsFEM) and

coarse spaces that are constructed using selected eigenvectors of a local spectral

problem. The main idea of MsFEM is to capture the multiscale structure of the

solution via localized basis functions and couple them through a global formulation

which will provide a faithful approximation of the solution. MsFEM basis functions

are associated with a coarse grid, a partition of the domain into finite elements, and

are designed to capture the multiscale features of the solution. Important multiscale

features of the solution are incorporated into these localized basis functions which

contain information about the scales. The finite element method based on these

basis functions provides an accurate approximation of the solution.

The main goal in this chapter is to develop coarse spaces for MsFEM that result

in accurate coarse-scale solutions. With careful choice of the coarse spaces, we can

significantly reduce the approximation error. It is known that boundary conditions

for basis functions need to be carefully chosen in order to obtain accurate coarse-scale

approximations of the solution (e.g., [17–19,29]). In particular, if the boundary con-

ditions for the basis functions do not reflect the underlying heterogeneities, MsFEM

can have large errors which come from the resonance between the coarse-grid size and

characteristic length scale of the problem. To reduce the resonance error, a number

of approaches have been proposed in the past, e.g. oversampling methods [17,36].
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We also consider basis functions obtained using global constraints [20, 53]. Spe-

cial partitions of unity function using energy minimizing methods [81] was first con-

structed to facilitate the two requirements of the coarse space in an algebraic multi-

grid algorithm, stability and approximation. The stability is addressed by minimizing

the total energy of the basis functions and the approximation property is maintained

by imposing the constraint
∑

i φi(x) = 1.

In this chapter, we take the approach in [21], where a coarse space based on local

spectral problems was introduced. The construction of coarse spaces starts with an

initial choice of multiscale basis functions that are supported in coarse regions sharing

a common node. These basis functions are complemented using some weighted local

spectral problems. These local spectral problems use the scalar conductivity as a

weight function. As a result, we get new sets of basis functions that include the

eigenvectors from local spectral problems. These newly constructed basis functions

can capture the important features of the solution within a coarse-grid block. Also

they can handle the high contrast property which is defined as the ratio between the

highest and lowest conductivity values witin a coarse grid.

3.1 Multiscale finite element methods for linear elliptic problems

In this section, we describe multiscale finite element method framework for linear

elliptic problems. MsFEM, as a numerical upscaling method, computes the coarse-

scale solution by using a multiscale basis functions. Two main aspects of MsFEMs

are the global formulation and the construction of basis functions. We can apply

this method also to nonlinear problems, such as steady-state Richards’ equation.
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3.1.1 Global Fomulation

Let Ω ⊂ R2(or R3) be a polygonal domain and TH = {K} is a coarse-grid

partition, where H denotes the size of the coarse grid. We consider the elliptic

equation with heterogeneous coefficients

−div(κ(x)∇u) = f, (3.1)

where κ(x) is a heterogeneous field with high contrast. In particular, we assume

that κ(x) ≥ c0 ≥ 0 (bounded below), while κ(x) can have very large variations. We

multiply the equation (3.1) by a test function v ∈ H1
0 (Ω) and integrate over the

domain Ω. By divergence theorem, we get the integral identity

∫
Ω

κ(x)∇u ·∇vdx =

∫
Ω

fvdx, for all v ∈ H1
0 (Ω).

We define the bilinear form a and the linear functional f by

a(u, v) =

∫
Ω

κ(x)∇u(x) ·∇v(x)dx, for all u, v ∈ H1
0 (Ω), (3.2)

and

f(v) =

∫
Ω

f(x)v(x)dx, for all v ∈ H1
0 (Ω). (3.3)

The variational formulation of this problem is: Find u ∈ H1
0 (Ω) such that

a(u, v) = f(v) for all v ∈ H1
0 (Ω). (3.4)

Let Th be a fine triangulation, which is a refinement of TH . We denote by V h(Ω)

the usual finite element discretization of piecewise linear continuous functions with

respect to the fine triangulation Th. Denote also by V h
0 (Ω) the subset of V h(Ω) with

vanishing values on ∂Ω.
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The Galerkin formulation of (3.4) is; find u ∈ V h
0 (Ω) such that

a(u, v) = f(v) for all v ∈ V h
0 (Ω) (3.5)

or in matrix form

Au = b, (3.6)

where for all u, v ∈ V h(Ω) we have

uTAv =

∫
Ω

κ∇u∇v and vT b =

∫
Ω

fv.

Here we denote by u, v the vectors and represent u, v ∈ V h(Ω) by its nodal basis

functions.

We denote by {yi}Nvi=1 the vertices of the coarse mesh TH and define the neigh-

borhood of the node yi by

ωi =
⋃
{Kj ∈ TH ; yi ∈ Kj}. (3.7)

and the neighborhood of the coarse element K by

ωK =
⋃
{ωj ∈ TH ; yi ∈ K}. (3.8)

For given Nc number of linearly independent functions {Φi}Nci=1 associated with the

coarse mesh TH , we define a coarse space V0 = span{Φi}Nci=1. Note that, in Ms-

FEM, the basis functions {Φi}Nci=1 are the functions defined on the fine-grid but are

supported in ωi.

MsFEM approximates the solution on a coarse grid as u0 =
∑

i ciΦi, where ci are

determined from

a(u0, v) = f(v) for all v ∈ V0.
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Once ci’s are determined, one can define a finite element approximation of the solu-

tion by reconstructing via basis functions, u0 =
∑

i ciΦi.

One can also views MsFEM in the following way. MsFEM solves the underlying

fine-scale equations on the coarse grid. Given coarse-scale basis functions, the coarse

matrix is given by

A0 = R0AR
T
0 where RT

0 = [Φ1, . . . ,ΦNc ]. (3.9)

Here Φi’s are discrete coarse-scale basis functions defined on a fine grid represented

by the vector forms. Multiscale finite element solution is the finite element projection

of the fine scale solution into the space V0. More precisely, multiscale solution u0 is

given by

A0u0 = f0 (3.10)

where f0 = RT
0 b.

3.1.2 Coarse space construction for MsFEM

In this section, we will discuss some coarse spaces constructed to capture the fine-

scale features of the solution. We will introduce three different ways to construct

the coarse spaces for MsFEM; linear boundary conditions multiscale coarse space,

oversampling techniques, and energy minimzing coarse space. Further, we discuss a

coarse space with local spectral information which complement the multiscale coarse

spaces. We obseve that using this coarse space, we can get an accurate coarse-scale

approximation.

3.1.2.1 Linear boundary conditions

First, let Φ0
i be the nodal basis of the standard finite element space WH with

respect to the coarse triangulation TH . For example, WH consists of piecewise linear
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functions if TH consists of triangles or tetrahedra or WH consists of piecewise bi-linear

functions if TH consists of rectangles or bricks. Next we define standard multiscale

finite element basis functions Φms
i that coincide with Φ0

i on the boundaries of the

coarse mesh. Namely, for each K ∈ ωi

div(κ∇Φms
i ) = 0 in K ∈ ωi, Φms

i = Φ0
i in ∂K, ∀ K ∈ ωi, (3.11)

where K is a coarse grid block within ωi. Now define the linear boundary conditions

multiscale coarse spaces

V ms
0 = span{Φms

i }. (3.12)

Note that multiscale basis functions coincide with standard finite element basis

functions on the boundaries of coarse grid blocks, and may be oscillatory in the inte-

rior of each coarse grid block depending on κ. Even though the choice of Φ0
i can be

quite arbitrary, our main assumption is that the basis functions satisfy the leading

order homogeneous equations. We remark that the MsFEM formulation allows one

to take advantage of scale separation. In particular K in (3.11) can be chosen to be

a volume smaller than the coarse grid [17].

One-dimensional example: We consider

−(κ(x)u′)′ = f, (3.13)

u(x) = u(1) = 0, where ′ refers to the spatial derivative. We assume that the interval

[0,1] is divided into N segments 0 = x0 < x1 < x2 < · · · < xi < xi+1 < · · · < xN = 1.

The multiscale basis function for the node i is given by

(κ(x)(Φms
i )′)′ = 0 (3.14)
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with the support on [xi−1, xi+1]. In the interval [xi−1, xi], the boundary conditions

for the basis function Φms
i are defined as Φms

i (xi−1) = 0,Φms
i (xi) = 1. In the interval

[xi, xi+1], the boundary conditions for the basis function Φms
i are defined as Φms

i (xi) =

1,Φms
i (xi=1) = 0, which are the boundary conditions for standard finite element basis

functions. The elements of the stiffness matrix A0 (see (3.9)) are given by

(a0)ij =

∫ xi

xi−1

κ(x)(Φms
i )′(Φ0

j)
′dx+

∫ xi+1

xi

κ(x)(Φms
i )′(Φ0

j)
′dx.

Note that for the computation of the elements of the stiffness marix, we do not need

an explicit expression of Φms
i and instead, we simply need to compute κ(x)(Φms

i )′.

From (3.14), it is easy to see that κ(x)(Φms
i )′ = const, where the constants are

different in [xi−1, xi] and [xi, xi+1]. This constant can be easily computed by writing

(Φms
i )′ = const/κ(x) and integrating it over [xi−1, xi]. This yields

κ(x)(Φms
i )′ =

1∫ xi
xi−1

dx
κ(x)

, x ∈ [xi−1, xi],

κ(x)(Φms
i )′ = − 1∫ xi

xi−1

dx
κ(x)

, x ∈ [xi, xi+1].

We set,

(a0)ij =

∫ xi

xi−1

κ(x)(Φms
i )′(Φ0

j)
′dx+

∫ xi+1

xi

κ(x)(Φms
i )′(Φ0

j)
′dx (3.15)

=
1∫ xi

xi−1

dx
κ(x)

∫ xi

xi−1

(Φ0
j)
′dx− 1∫ xi+1

xi

dx
κ(x)

∫ xi+1

xi

(Φ0
j)
′dx. (3.16)

Taking into account that
∫ xi
xi−1

(Φ0
i−1)′dx = −1,

∫ xi
xi−1

(Φ0
i )
′dx = 1,

∫ xi+1

xi
(Φ0

i )
′dx =

−1,
∫ xi+1

xi
(Φ0

i+1)′dx = 1, we have

(a0)i,i−1 = − 1∫ xi
xi−1

dx
κ(x)

, (a0)i,i =
1∫ xi

xi−1

dx
κ(x)

+
1∫ xi+1

xi

dx
κ(x)

, (a0)i,i+1 = − 1∫ xi+1

xi

dx
κ(x)

.
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Fig. 3.1. Left: Conductivity field. Middle: Fine-scale solution.
Right: Coarse-scale solution with multiscale basis functions that have
linear boundary conditions.

3.1.2.2 Oversampling technique

A common difficulty in numerical upscaling methods is that large errors result

from the resonance between the grid scale and the scales of the continuous problem.

When the coefficient κ(x) is a periodic function varying over ε-scale (κ(x) = κ(x/ε)),

the convergence rate of MsFEM contains a term ε/H, which is large when H ≈ ε, [38].

Recall that H is the coarse mesh size. A previous analysis [38] showed that the error

due to the resonance is expressed as a ratio between the wavelength of the small scale

oscillation and the grid size. It suggests also that by a judicious choice of boundary

conditions for the base function, one can reduce the resonance errors significantly.

This concept is illustrated on Figure 3.1, showing the permeability field (left fig-

ure), fine-scale solution (middle figure), and multiscale solution with linear boundary

conditions (right figure) computed on a 3×3 coarse grid. We can see that the multi-

scale solution with linear boundary conditions does not capture the fine-scale features

of the solution along the boundaries of the coarse grid. This can lead to large errors.

To overcome the difficulty due to scale resonance, an over-sampling method was

proposed [36]. The idea is quite simple. To reduce the errors coming from boundary
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Fig. 3.2. Schematic description of oversampled regions.

layers, we can sample in a domain with a size larger than h and use only the interior

sampled information to construct the bases.

Here is the brief description. Let ΦE
j be the basis functions satisfying the homo-

geneous elliptic equation in the larger domain KE ⊃ K(see Figure 3.2). We then

form the actual basis Φi by linear combination of ΦE
j ,

Φi =
∑
j

cijΦ
E
j .

The coefficients cij are determined by condition Φi(xj) = δij, where xj are nodal

points. Note that this method is nonconforming method, i.e. it could generate a

noncoforming error. The analysis [36] show that the nonconforming error is indeed

small.

Other boundary conditions have been introduced and analyzed in the literature.

For example, reduced boundary conditions are found to be efficient in many porous

media applications, see [42].
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3.1.2.3 Energy minimizing methods

Energy minimizing has been considered in an algebraic multigrid method for solv-

ing large scale algebraic systems. The construction of coarse spaces, a key issue in

an algebraic multigrid algorithm, has two major regulations, stability and approxi-

mation. In [82], an energy minimizing basis was first constructed to facilitate these

two requirements. The stability is addressed by minimizing the total energy of all

basis functions

min
∑
i

‖φi‖2
a (3.17)

where ‖ · ‖a is the energy norm associated with the given elliptic boundary value

problem. The approximation property is maintained by imposing the partition of

unity constraint ∑
i

φi(x) = 1. (3.18)

Extensive numerical experiments reported in [76] show that this energy minimizing

basis leads to uniformly convergent multigrid methods for many problems of practical

interest such as problems with rough coefficients.

As indicated in (3.17), and (3.18), the energy minimizing basis is given in a

global optimization problem with a pointwise constaint. A major concern with this

approach is the cost for solving this constraint optimization problem. We will follow

a procedure similar to that proposed in [81], which provides an easy and efficient

method for solving this optimization problem.

To construct the energy minimizing multiscale basis, we solve the following min-

imization problem

min
∑
i

∫
ωi

κ|∇Φem
i |2 (3.19)
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subject to
∑

i Φ
em
i = 1 with Supp(Φem

i ) ⊂ ωi, i = 1, . . . , Nv. We can define energy

minimizing coarse space V EM
0 as

V em
0 = span{Φem

i }. (3.20)

We note that to compute these basis functions, one needs to solve a global linear

system. This is where expensive compared to the local computation of multiscale

finite element basis functions with linear boundary conditions Φms
i .

3.1.3 A coarse space with local spectral information

We motivate the choice of the coarse spaces based on the analysis presented

in [26–28]. Its motivation stems from flow problems that occur in heterogeneous

porous media. In flow problems, the high conductivity regions are the main car-

rieres of the fluid. Often, there are low permeability layers inside of these high

conductivity regions and their complicated connectivities make the flow in such me-

dia complicated. Therefore, it is often impossible to separate them into coarse grid

blocks without significantly increasing the computational effort.

The coarse spaces discussed in [26–28] complement the original multiscale coarse

spaces(e.g. linear boundary multiscale space or energy minizing space) and improve

the accuracy of the approximation, especailly in flow problems in heterogeneous

porous media. Here is the breif description:

For fixed ωi consider the eigenvalue problem

−div(κ∇ψωi` ) = µωi` κ̃ψ
ωi
` , (3.21)

where µωi` and ψωi` are eigenvalues and eigenvectors in ωi and κ̃ is defined by

κ̃ =
1

H2
κ

Nc∑
j=1

|∇Φin
j |2. (3.22)
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Fig. 3.3. Schematic description of basis function construction. Left:
subdomain ωi. Right-Top: Selected eigenvector ψ`i with small eigen-
value. Right-Bottom: product Φiψ

`
i where Φi is the initial basis

function of node i.

We recall that Φin
j (simply denoted by Φj in further discussions) are the initial mul-

tiscale basis functions (either multiscale basis functions with linear boundary condi-

tions or energy minimizing basis functions) and Nc is the number of the coarse nodes.

The eigenvalue problem considered above is solved with zero Neumann boundary

condition and understood in a discrete setting. Assume eigenvalues are given by

µωi1 ≤ µωi2 ≤ ....

Basis functions are computed by selecting a number of eigenvalues (starting with

small ones) and multiplying corresponding eigenvectors by Φi. Thus, multiscale

space is defined for each i as the span of Φiψ
ωi
` , ` = 1, ..., Li, where Li is the number

of selected eigenvectors (see Figure 3.3 for an illustration).

We note that {ωi}yi∈T H is a covering of Ω. Let {Φi}Nci=1 be a partition of unity

subordinated to the covering {ωi} such that Φi ∈ V h
0 (ωi) and |∇Φi| ≤ 1

H
, i =

1, . . . , Nc. Define the set of coarse basis functions

Ψi,` = Ih(Φiψ
ωi
` ), for 1 ≤ ` ≤ Li and 1 ≤ i ≤ Nc, (3.23)
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where Ih is the fine-grid nodal value interpolation and Li is an integer number spec-

ified for each i = 1, . . . , Nc. Note that in this case, there might be several basis

functions per coarse node. The number of basis functions per node is defined via the

eigenvalue problem (3.21). Denote by V0 the local spectral multiscale space

V lsm
0 = span{Ψi,` : 1 ≤ ` ≤ Li and 1 ≤ i ≤ Nc}. (3.24)

3.1.3.1 Reduced dimension coarse spaces

We note that the eigenvalues of (3.21) depend on the initial basis functions Φi

since the weight function κ̃ is determined by the initial basis functions. Basis func-

tions are computed by selecting a number of eigenvalues (starting with small ones)

and multiplying corresponding eigenvectors by Φi (see Figure 3.3 for the illustration).

Thus, multiscale space is defined for each i as the span of Φiψ
ωi
l , l = 1, ..., Li, where

Li is the number of the selected eigenvectors.

Therefore, the dimension of the coarse space depends on the choice of κ̃. Thus

it is important to have a good choice of κ̃ for the local eigenvalue problem (3.21).

In this study, we designed κ̃ using initial multiscale basis functions. The special

form of the weight function κ̃, (3.22), is motivated by the analysis of the energy

stability of the coarse interpolant and the analysis of the stable decomposition in

the DD method. From [27], we know that the number of eigenvectors of (3.21) is

related to the number of high conductivity inclusions/channels inside of the coarse

regions. It is shown that the number of small eigenvalues is the same as the number

of high-conductivity regions.

Therefore, we are interested in the partition of unity functions that can elimiate

isolated high-conductivity inclusions and thus reduce the dimension of the coarse

space. This can be achieved by minimizing the high-conductivity components in

κ̃. In particular, by choosing linear boundary multiscale basis functions or energy
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minizing basis functions, we can eliminate all isolated high-conductivity inclusions,

while preserving the channels.

These newly introduced multiscale techniques in constructing initial basis help to

reduce the dimension of the coarse space needed to achieve contrast-independent two-

level domain decomposition preconditioners and more accurate coarse-grid solutions.

We will show an application of this technique to Richards’ equation and show some

numerical examples.

3.2 Application of MsFEM to Richards’ equation with separable coefficient and

numerical examples

As we mentioned earlier in Chapter 2, there are several approaches solving this

nonlinear partial differential equation numerically with several different boundary

conditions. The finite element, finite volume, and finite difference methods are most

commonly used to generate the discretized equation. In our research, we used multi-

scale finite element approach to obtain a discretized numerical solution for Richards’

equation. In [17], MsFVEM is used to solve Richards’ equation on the coarse grid.

Basically, in this approach, multiscale bases are constructed and global formulation

is developed under finite volume conditions and numerical results show that this

methods can be used with success in predicting the solution on the coarse grid.

Here we consider the steady-state equation

div(κ(x, u)∇(u+ x3)) = f, x ∈ Ω, (3.25)

Since the equation involves nonlinearity, several assumptions for the coefficient κ(x, u)

have been made to show the existence of the solution. Together with the ellipticity,

a Lipschitz-like continuity condition was assumed for the coefficient [17], and it is

shown that there exists a unique solution for this kind of equation.
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Here we consider the case when the conductivity κ(x, u) has large variations.

More specifically we study the case that κ(x, u) = κ(x)λ(u) where κ(x) has high-

variability while λ(u) is a smooth function that varies moderately in both x and

u. The computational time to get a numerical solution highly depends on the large

variability of the conductivity. Therefore, we need a careful treatment for these kinds

of conductivities.

By denoting, u + x3 as a new variable and assuming λ is smooth, we can write

the above equation as

div(κ(x)λ(x, u)∇u) = f, x ∈ Ω. (3.26)

Now we want to find the solution of variational form of (3.26), a( · , · ; · ), which is

given at (2.14).

3.2.1 Coarse-scale Fixed Point Iteration

Define a coarse space VH by VH = span{Φi}Nci=1 ,a span of coarse basis functions

{Φi}Nci=1 and let uH ∈ VH be a solution of the following discrete problem,

a(uH , v;uH) = F (v), for all v ∈ VH , (3.27)

We know that under suitable conditions, one can ensure the existence of a solution

to the above equation. The solution uH may be written as

uH =
Nc∑
i=1

αiΦi for some α = (α1, α2, · · · , αNc) ∈ RNc . (3.28)

Now we want to approximate a numerical solution of the discretized Richards’

equation (3.27) using a fixed point iteration technique. We describe a fixed point
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iteration based on the contractivity of the nonlinear mapping TH : VH → VH defined

as

a(THuH , v;uH) = F (v), for all v ∈ VH . (3.29)

The fixed point iteration is derived from the lineariation of (3.27), i.e., given an

initial guess u0
H =

∑Nc
i=1 α

0
iΦi ∈ VH , we define the nonlinear fixed point iteration by

un+1
H = THu

n
H . (3.30)

That is, given unH , the next approximation un+1
H can be obtained by solving the linear

elliptic equation

a(un+1
H , v;unH) = F (v), for all v ∈ V H . (3.31)

Using the linear expansion (3.28),the probelm (3.31) can be written as

AnHα
n+1 = bH , (3.32)

where the linear operator AnH : V H → V H is defined as

(AnH)ij =

∫
Ω

k(x)λ(x, unH)∇Φi ·∇Φjdx, (3.33)

and the right hand side b is

(bH)j =

∫
Ω

fΦjdx. (3.34)

Here αn+1 = (αn+1
1 , αn+1

2 , · · · , αn+1
Nc

) is a coefficient of the linear expansion of un+1
H .

The proposed iterative procedure involves outer iterations and inner iterations. Outer

iterations are designed to handle nonlinearities by linearizing the equation around the

previous state. The simplest is Picard iteration is described by div(k(x)λ(x, un)∇un+1) =

f , where n denotes the outer iteration number. For every outer iteration n, a linear

problem needs to be solved. Iterations to solve the linear system are called inner

iterations. Since the conductivitiy k(x, u) has complicated heterogenity and there
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Fig. 3.4. (Left): Conductivity field 1. Blue designates the regions
where the coefficient is 1 and other colors designates the regions where
the coefficient is a random number between η and 10 ∗ η. (Right):
Conductivity field 2. Blue designates the regions where the coefficient
is 1 and red designates the regions where the coefficient is η.

are some small scale properties inside of the coarse-grid, big error can be generated

during the computation of the coarse-scale discrete solution. Therefore, to reduce

the error, we need to construct a suitable coarse space.

3.2.2 Numerical examples

In this section we present some representative numerical examples. We solve the

Richards’ equation (3.27) in Ω = [0, 1]×[0, 1] with f(x) = 1 and homogeneous Dirich-

let boundary conditions. We consider several models for the hydraulic conductivity:

the Haverkamp, van Genuchten, and Exponential model (see, (2.7),(2.8),(2.9)). The

coarse mesh TH is obtained by dividing Ω into 10× 10 mesh. The fine triangulation

is obtained by dividing each coarse-mesh element into 10 × 10 squares and further

dividing each square into two triangles. Thus, the fine-mesh step size is h = 1/100.
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In all numerical experiments we use the initial approximation for the iterative

process u0
h that solves

a(u0
h, v; 0) = F (v), for all v ∈ V h. (3.35)

We apply the coarse-scale multiscale method to Richards’ equation with three

different coarse spaces:

1. The coarse space V ms
0 described in Section; 3.1.2.1.

2. The coarse space V em
0 described in Section; 3.1.2.3.

3. The coarse space V lsm
0 described in Section 3.1.3.

We consider different conductivities with complex high-contrast configurations, see

Figure 3.4. A number of parameter values in the nonlinearity of the hydraulic con-

ductivity are tested in our simulations. In particular, for each experiment we chose a

different set of parameters for the model and a set of contrast values for the hydraulic

conductivity. We note that, for each outer iteration we use a PCG iteration. The

inner PCG iteration is convergent when the initial residual is reduced by a factor of

tolin = 1e − 10 while the outer tolerance is set to tolout = 1e − 8. We consider the

followings to indicate the performance of coarse-scale solution:

� Coarse space dimension;

� The ratio between the energy norm of the gradient of the error and the gradient

of the fine scale solution.

� The ratio between the energy norm of the error and the fine scale solution.
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3.2.2.1 Haverkamp model

First, we consider Haverkamp model (see, e.g. [33]) with hydraulic conductivity

is given by

k(x, u) = ks(x)
A

A+ (|u|/B)γ
. (3.36)

The first set of numerical results is presented in Tables 3.1 and 3.2. We use

the coarse space V ms
0 for MsFEM. We observe that the ratio between the energy

norm of the gradient of the error and the gradient of the fine scale solution is quite

big with different contrast value η and so is the ratio between the energy norm

of the error and the fine scale solution. We observe that the error becomes larger

when B and γ (see (4.26)) decrease. This is because the smaller values of B and γ

increase the magnitude of the conductivity that comes from its nonlinear component

which makes the error larger. Comparing the results in Tables 3.1 and 3.2 that use

different conductivity fields, we see that the error in Table 3.2 are smaller than the

error in Table 3.1. This is because conductivity field 2 (see Figure 3.4) has simpler

heterogeneity structure compared conductivity field 1.

Next, we repeat the above numerical experiments using the coarse space V em
0 .

Numerical results are presented in Tables 3.3 and 3.4. We observe that, as before,

the ratio between the energy norm of the gradient of the error and the gradient of

the fine scale solution is comparably big and so is the ratio between the energy norm

of the error and the fine scale solution.

Further, we show the numerical experiment using the spectral coarse space V lsm
0 .

Numerical results are presented in Tables 3.5 and 3.6. We observe in this case energy

ratio becomes much smaller than the previous cases. Especially, the ratio between the

energy norm of the error and the fine scale solution approaches to almost zero value.

These results indicate that when we use loscal spectral coarse space for MsFEM, we

can get a very accurate coarse-scale solution.
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Table 3.1
Numerical results using V ms

0 . Here we use the Haverkamp model
κ(x, u) = κ(x) A

A+(|u|/B)γ
with κ depicted in left picture of Figure 3.4.

The coarse space dimension is 81.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.9847 0.9956 0.9952 0.9982

104 0.9873 0.9991 0.9965 0.9996

105 0.9876 0.9994 0.9966 0.9998

Table 3.2
Numerical results using V ms

0 . Here we use the Haverkamp model
κ(x, u) = κ(x) A

A+(|u|/B)γ
with κ depicted in right picture of Figure

3.4. The coarse space dimension is 81.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5

η r
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.8729 0.8020 0.9065 0.8865

104 0.8730 0.8024 0.9066 0.8868

105 0.8731 0.8024 0.9066 0.8868

Table 3.3
Numerical results using V em

0 . Here we use the Haverkamp model
κ(x, u) = κ(x) A

A+(|u|/B)γ
with κ depicted in left picture of Figure 3.4.

The coarse space dimension is 81.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.8162 0.6424 0.8577 0.7544

104 0.8188 0.6457 0.8594 0.7569

105 0.8191 0.6460 0.8596 0.7571
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Table 3.4
Numerical results using V em

0 . Here we use the Haverkamp model
κ(x, u) = κ(x) A

A+(|u|/B)γ
with κ depicted in right picture of Figure

3.4. The coarse space dimension is 81.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.8511 0.7502 0.9277 0.8635

104 0.8544 0.7575 0.9321 0.8688

105 0.8547 0.7583 0.9325 0.8694

Table 3.5
Numerical results using V lsm

0 . Here we use the Haverkamp model
κ(x, u) = κ(x) A

A+(|u|/B)γ
with κ depicted in left picture of Figure 3.4.

The coarse space dimension is 158.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.1827 0.0113 0.1193 0.0201

104 0.1829 0.0113 0.1192 0.0201

105 0.1829 0.0113 0.1192 0.0201

Table 3.6
Numerical results using V lsm

0 . Here we use the Haverkamp model
κ(x, u) = κ(x) A

A+(|u|/B)γ
with κ depicted in right picture of Figure

3.4. The coarse space dimension is 158.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.0575 0.0011 0.4624 0.4343

104 0.0575 0.0011 0.0644 0.0023

105 0.0575 0.0011 0.0644 0.0023
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3.2.2.2 Exponential model

We present numerical results for exponential model where hydraulic conductivity

depend exponentially on the pressure head u;

k(x, u) = ks(x)eαu/B. (3.37)

We present the first set of numerical results in Tables 3.7 and 3.8. First, we use

the the coarse space V ms
0 for MsFEM. We observe the ratio between the energy norm

of the gradient of the error and the gradient of the fine scale solution is relatively

large and so is the ratio between the energy norm of the error and the fine scale

solution.

We can see from Tables 3.7 and 3.8 (these use different conductivity fields) that

the errors in Table 3.8 are smaller than the corresponding errors in Table 3.7. This is

because conductivity field 2 has simpler subgrid structure, i.e. it has less complicated

channel structure and smaller contrast value, compared to conductivity field 1.

Next, we repeat the numerical experiment using the coarse space V em
0 and the

coarse space V lsm
0 . Numerical results for the coarse space V em

0 are presented in Tables

3.9 and 3.10 while the results for V lsm
0 are presented in Tables 3.11 and 3.12. For

space V em
0 , the errors are comparably big. On the other hand, the errors are quite

small when V lsm
0 is used as a coarse space. In conclusion, V lsm

0 provides an accurate

coarse-scale solution.

3.2.2.3 VanGenutchen model

Next, we consider Van Genuchten model (see [73]) with hydraulic conductivity

which is given by

k(x, u) = ks(x)
{1− (α|u|/B)n−1[1 + (α|u|)n]−m}2

[1 + (α|u|)n]
m
2

. (3.38)
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Table 3.7
Numerical results using V ms

0 . Here we use the Exponential model
κ(x, u) = κ(x)eα(u/B) with κ depicted in left picture of Figure 3.4.
The coarse space dimension is 81.

α = 1, B = 1 α = 2, B = 1

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.9841 0.9955 0.9838 0.9955

104 0.9868 0.9990 0.9865 0.9990

105 0.9871 0.9994 0.9868 0.9994

Table 3.8
Numerical results using V ms

0 . Here we use the Exponential model
κ(x, u) = κ(x)eα(u/B) with κ depicted in right picture of Figure 3.4.
The coarse space dimension is 81.

α = 1, B = 1 α = 2, B = 1

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

r
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.8720 0.7962 0.8713 0.7933

104 0.8721 0.7966 0.8718 0.7937

105 0.8721 0.7966 0.8718 0.7938

Table 3.9
Numerical results using V em

0 . Here we use the Exponential model
κ(x, u) = κ(x)eα(u/B) with κ depicted in left picture of Figure 3.4.
The coarse space dimension is 81.

α = 1, B = 1 α = 2, B = 1

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.8154 0.6373 0.8151 0.6348

104 0.8180 0.6406 0.8177 0.6382

105 0.8183 0.6410 0.8179 0.6385
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Table 3.10
Numerical results using V em

0 . Here we use the Exponential model
κ(x, u) = κ(x)eα(u/B) with κ depicted in right picture of Figure 3.4.
The coarse space dimension is 81.

α = 1, B = 1 α = 2, B = 1

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.8472 0.7429 0.8450 0.7393

104 0.8490 0.7504 0.8481 0.7469

105 0.8507 0.7512 0.8484 0.7477

Table 3.11
Numerical results using V lsm

0 . Here we use the Exponential model
κ(x, u) = κ(x)eα(u/B) with κ depicted in left picture of Figure 3.4.
The coarse space dimension is 158.

α = 1, B = 1 α = 2, B = 1

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.1872 0.0108 0.1894 0.0105

104 0.1873 0.0108 0.1896 0.0105

105 0.1873 0.0108 0.1896 0.0105

Table 3.12
Numerical results using V lsm

0 . Here we use the Exponential model
κ(x, u) = κ(x)eα(u/B) with κ depicted in right picture of Figure 3.4.
The coarse space dimension is 158.

α = 1, B = 1 α = 2, B = 1

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.0605 0.0011 0.0622 0.0010

104 0.0605 0.0011 0.0622 0.0010

105 0.0605 0.0011 0.0622 0.0010
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As before, we present numerical results for all three coarse spaces. First, in Tables

3.13 and 3.14 we present the numerical results for the coarse space V ms
0 . We observe

the ratio between the energy norm of the gradient of the error and the gradient

of the fine scale solution is comparably big and so is the ratio between the energy

norm of the error and the fine scale solution. Now we compare Table 3.13 and Table

3.14 for two different conductivity fields shown in Figure 3.4. We observe that the

errors presented in Table 3.14 is smaller than those presented in Table 3.13 which is

consistent with our previous observations.

Numerical results for the coarse spaceV em
0 are presented in Tables 3.15 and 3.16,

while numerical results for the coarse space V lsm
0 are presented in Tables 3.17 and

3.18. We observe that the errors bewteen the coars-scale solution and the fine-scale

solution is quite small which make us to conclude that spectral coarse space gives an

accurate MsFEM coarse scale solution.

Table 3.13
Numerical results using V ms

0 . Here we use the van Genuchten model

κ(x, u) = κ(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with κ depicted in left

picture of Figure 3.4. The coarse space dimension is 81.

α = 0.005, B = 1, n = 2, m = 0.5

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.9840 0.9956

104 0.9864 0.9991

105 0.9867 0.9994
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Table 3.14
Numerical results using V ms

0 . Here we use the van Genuchten model

κ(x, u) = κ(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with κ depicted in right

picture of Figure 3.4. The coarse space dimension is 81.

α = 0.005, B = 1, n = 2, m = 0.5

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.8719 0.7991

104 0.8720 0.7995

105 0.8720 0.7995

Table 3.15
Numerical results using V em

0 . Here we use the van Genuchten model

κ(x, u) = κ(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with κ depicted in left

picture of Figure 3.4. The coarse space dimension is 81.

α = 0.005, B = 1, n = 2, m = 0.5

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.8169 0.6398

104 0.8195 0.6432

105 0.8194 0.6435

Table 3.16
Numerical results using V em

0 . Here we use the van Genuchten model

κ(x, u) = κ(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with κ depicted in right

picture of Figure 3.4. The coarse space dimension is 81.

α = 0.005, B = 1, n = 2, m = 0.5

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.8475 0.7466

104 0.8507 0.7540

105 0.8510 0.7548
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Table 3.17
Numerical results using V lsm

0 . Here we use the van Genuchten model

κ(x, u) = κ(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with κ depicted in left

picture of Figure 3.4. The coarse space dimension is 158.

α = 0.005, B = 1, n = 2, m = 0.5

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.1849 0.0110

104 0.1851 0.0110

105 0.1851 0.0110

Table 3.18
Numerical results using V lsm

0 . Here we use the van Genuchten model

κ(x, u) = κ(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with κ depicted in right

picture of Figure 3.4. The coarse space dimension is 158.

α = 0.005, B = 1, n = 2, m = 0.5

η
∫
κ|∇e|2∫
κ|∇uf |2

∫
κ|e|2∫
κ|uf |2

103 0.1753 0.0110

104 0.1754 0.0110

105 0.1754 0.0110

3.3 MsFEM for Richards’ equation with non-separable coefficient

In this section, we consider the numerical discretization of Richards’ equation

with non-separable coefficient, i.e., we will try to find the numerical solution of

steady-state Richards’ equation

−div(κ(x, u)∇u) = 0 in Ω (3.39)

with nonlinear coefficient κ(x, u) which has a high-conductivity charateristic.
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3.3.1 MsFEMs for nonlinear equations

MsFEM for nonlinear problems, like as MsFEM for linear problems, has two main

ingredients, a global formulation and localized multiscale basis functions. However,

unlike MsFEM for linear problems, basis functions for nonlinear problems need to be

defined via nonlinear maps that map coarse-scale functions into fine-scale functions.

3.3.1.1 Multiscale basis construction

Recall that multiscale basis functions for linear elliptic equation are found by

solving

div(κ(x)∇Φms
i ) = 0. (3.40)

In the case of nonlinear equations, the basis functions construction is a little bit

different.

Let’s WH be the standard finite element space with respect to the coarse triangu-

lation TH and define the multiscale space as Vh. We can define the nonlinear mapping

Tms : WH → Vh in the following way. For each coarse-scale function uH ∈ WH , we

denote by ur,h the corresponding fine-scale response, ur,h = TmsuH that satisfies the

following equation solved approximately on the fine grid

div(κ(x, ηuH )∇ur,h) = 0 in K (3.41)

where ur,h = uH on ∂K and ηuH = (1/|K|)
∫
K
uHdx for each K. The map Tms is

nonlinear; however, for a fixed uH , this map is linear. One can represent ur,h using

multiscale basis functions as ur,h =
∑

i αiΦ
uH
i , where αi = uH(xi), xi being nodal

points) and ΦuH
i are multiscale basis functions defined by

div(κ(x, ηuH )∇ΦuH
i ) = 0 in K, ΦuH

i = Φ0
i on ∂K. (3.42)
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where Φ0 is a standard finite element basis.

3.3.1.2 Numerical formulation

One can use various global formulations for MsFEM. In this section, we present

the following global numerical formulation: Find uH ∈ WH (consequently, ur,h =

TmsuH) such that

< κr,huH , vH >=

∫
Ω

fvHdx, ∀vH ∈ WH , (3.43)

where

< κr,huH , vH >=

∫
Ω

κ(x, ηuH )∇ur,h ·∇vHdx (3.44)

Take vH = Φ0
i , then the equation (3.43) can be written as a nonlinear system of

equatitons,

Ar,h(uH) = fr,h (3.45)

such that

Ar,h(uH) =

∫
Ω

κ(x, ηuH )∇ur,h ·∇Φ0
i dx (3.46)

and

fr,h =

∫
Ω

fΦ0
i dx. (3.47)

One-dimensional example: We consider a simple one-dimensional case

−(κ(x, u)u′)′ = f, (3.48)
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u(0) = u(1) = 0. We assume that the interval [0, 1] is divided into N segments

0 = x0 < x1 < x2 < · · · < xi < xi+1 < · · · < xN = 1. For a given uH ∈ WH , ur,h is

the solution of

(κ(x, ηuH )u′r,h)
′ = 0, (3.49)

where ur,h(xi) = uH(xi) for every interior node xi. In the interval [xi−1, xi], the equa-

tion (3.49) can be solved. To compute (3.44), we only need to evaluate κ(x, ηuH )u′r,h.

Noting that this quantity is constant, κ(x, ηuH )u′r,h = c(xi−2, xi), we can easily find

that

u′r,h = c(xi−2, xi)/κ(x, ηuH ), (3.50)

where ηuH = 1
2
(uH(xi−1) + uH(xi)). Taking the integral of (3.50) over [xi−1, xi], we

have

uH(xi)− uH(xi−1) = c(xi−2, xi)

∫ xi

xi−1

1

κ(x, ηuH )
dx.

Consequently,

c(xi−2, xi) = κ(x, ηuH )u′r,h =
uH(xi)− uH(xi−1)∫ xi

xi−1

1
κ(x,ηuH )

dx
.

To evaluate (3.45), we have

Ar,h(uH) =

∫ xi

xi−1

c(xi−1, xi)(Φ
0
i )
′dx+

∫ xi+1

xi

c(xi, xi+1)(Φ0
i )
′dx

=
uH(xi)− uH(xi−1)∫ xi

xi−1

1
κ(x,ηuH )

dx

∫ xi

xi−1

(Φ0
i )
′dx+

uH(xi+1)− uH(xi)∫ xi+1

xi

1
κ(x,ηuH )

dx

∫ xi+1

xi

(Φ0
i )
′dx

Taking into account that
∫ xi
xi−1

(Φ0
i )
′dx = 1,

∫ xi+1

xi
(Φ0

i )
′dx = −1, we have

Ar,h(uH) =
uH(xi)− uH(xi−1)∫ xi

xi−1

1
κ(x,ηuH )

dx
− uH(xi+1)− uH(xi)∫ xi+1

xi

1
κ(x,ηuH )

dx
. (3.51)



51

3.3.2 Multiscale methods for Richards’ equation. Parameter dependent flows

3.3.2.1 Motivation

For designing a numerical method for Richards’ equation with nonseparable co-

efficient, we will use the fixed point iteration, as we have done for the separable

coefficient case (see (3.31)),

div(κ(x, un)∇un+1) = 0, (3.52)

i.e., given un, we need to find the next iterative solution un+1.

We can see this problem in the following form

div(κ(x, µ)∇u) = 0, (3.53)

thus, we consider a parameter-dependent elliptic equation. We assume that the

coefficients have both small scales and high contrast. In a similar fashion to solving

the separable coefficient case, we will construct local basis functions that encode the

local features to approximate the solution of the parameter-dependent flow equation.

To construct local basis functions, we first find initial multiscale basis functions and

construct local spectral problems for complementing the initial coarse space.

However, for parameter dependent problems, solving the local eigenvalue problem

for each parameter can be expensive, especially in the cases of large size coarse blocks.

Therefore we need a special techniques to compute basis functions inexpensively.

Here, we will borrow some ideas from Reduced Basis (RB) approach.

RB approach is proposed in [47,64] to solve many parameter-dependent problems

and reduce the computational effort needed to obtain a solution. The main idea of

RB method is that, instead of applying a original discretization method, a surrogate

method that will allow to approximate the behavior of the solution is used. This

is done by offline computations which involves the solution of global problems that
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are used to compute new basis functions. Note that online procedures, a process to

find the solutions, should be largely appreciated by offline computations because lots

of computation time can be saved due to these offline steps. Here, we will use RB

techniques for solving local problems across the parameter space.

In many parameter-dependent problems, the method has been successfully appied

and proved to be efficient. This method is valid in case when the set U = {u(µ), µ ∈

Λ} has a simple structure and the solution u(µ) is regular with respect to µ. The

complexity of the problem resulting from this approach should lead to a simplification

of the original problem.

3.3.2.2 Problem Setting

We consider the following parameter-dependent equation

−div(k(x, µ)∇u) = f, x ∈ Ω, µ ∈ Λ ⊂ Rp (3.54)

with homogeneous Dirichlet boundary conditions. This equation represents Richards’

equation if µ is replaced by u. The weak formulation of the problem (3.54) is: find

u ∈ H1
0 (Ω) such that

a(u, v;µ) = F (v), for all v ∈ H1
0 (Ω), (3.55)

with

a(u, v;µ) =

∫
Ω

k(x, µ)∇u∇vdx, for all u, v ∈ H1
0 (Ω), (3.56)

and

F (v) =

∫
Ω

fvdx, for all v ∈ H1
0 (Ω). (3.57)
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Our objective is to construct a coarse-grid reduced order model, so that for any

values of the parameter µ and any value of the right hand side f are able to compute,

in a inexpensive way, the solution of (3.54).

In the reduced model, we compute a set of multiscale basis functions Ψj
i (=

Ψj
i (x;µ)) which strongly depend on µ. It is often expensive to compute multiscale

basis functions as one may need to solve local spectral problems to find the appro-

priate number of basis functions. Moreover, in order the MsFEM to be accurate,

we need to define a new basis for each single value of the parameter µ. For this

purpose, we will construct a reduced order problem to compute the basis functions.

The construction of the basis functions involves the approximation of local para-

metric eigenvalue problems. We will apply reduced basis techniques to these local

parametric eigenvalue problems posed on coarse regions.

In [52], RB methods and associated a posteriori error estimation procedures have

been developed for parameter dependent ellliptic PDEs with affine parameter depen-

dence, in particular, problems which accept an affine decomposition hypothesis: for

some finite (preferably small) integer Q, a may be expressed as

a(u, v;µ) =

Q∑
q=1

Θq(µ)aq(u, v), ∀ω, v ∈ H1
0 (Ω),∀µ ∈ Λ (3.58)

=

Q∑
q=1

Θq(µ)

∫
Ω

κq(x)∇u ·∇vdx, (3.59)

where Θq : Λ → R and κq(x) is the heterogeneous spatial field with multiple scales

and high contrast.
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3.3.2.3 Algorithm

We shall describe the overall procedure [24] which consists of two parts: offline

process and online process. In offline process, we get a reduced dimension of the

eigenvalue problem and in the online process, we solve those reduced dimension

eigenvalue problem to get local spectral basis. These further are used for solving the

coarse-grid system of Richards’ equation.

Offline Process We assume here that a fine grid, on which κ is resolved, is given.

We also assume that we know the parameter space µ ∈ Λ, a threshold τ and a

number Nrb, that corresponds to the number of selected parameter value. We

then proceed as follows:

1. Define a coarse mesh TH and the standard finite element model

basis functions, Φ0
i so that WH = span{Φ0

i }.

2. Define Λtrial as a discrete subset of Λ.

3. Choose a partition of unity {Φi}1≤i≤Nc . Here we choose the linear

basis function (Φ0
i ), but other choices can be made, as well.

4. For each coarse region ωi,

5. Compute on the fine grid the following stiffness and mass

matrices for all 1 ≤ q ≤ Q

vTAωiq u :=

∫
ωi

κq(x)∇u∇vdx (3.60)

vTMωi
q u :=

∫
ωi

κq(x)
Nc∑
k=1

|∇Φk|2uvdx. (3.61)

6. Define the sequence {µm}1≤m≤Nrb , using a Greedy procedure

(see Algoritm 3.3.2.4), and solve

Q∑
q=1

Θq(µj)(A
ωi
q − λ

ωi
` (µm)Mωi

q )ψωi` (µm) = 0, λωi` (µm) ≤ τ. (3.62)
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7. Construct the matrix

RT
ωi

:= [ψωi` (µm), λωi` (µm) ≤ τ, 1 ≤ m ≤ Nrb]. (3.63)

8. end for

9. Outputs of the offline stage are Rωi , A
ωi
q ,M

ωi
q and RT

0 := [Φi, 1 ≤

i ≤ Nc]

Online process The purpose of this setp is to compute the solution for a given

value of µ and a give f :

1. For each coarse region ωi

2. Solve the reduced order eigenvalue problem and keep only

some eigenvectors that correspond to eigenvalues below a certain

thereshold λωi,Nrb` (µ) ≤ τ

Q∑
q=1

Θq(µ)(RT
ωi
Aωiq Rωi − λ

ωi,Nrb
` (µ)RT

ωi
Mωi

q Rωi)ψ
ωi,Nrb
` (µ) = 0 (3.64)

3. Compute the multiscale basis functions

Ψj
i := Φiψ

ωi,Nrb
j (3.65)

4. end for

5. Solve the coarse-grid system.

3.3.2.4 Reduced Basis for eigenvalue problems

As we mentioned eariler, RB method is used for solving the eigenvalue problem

with much smaller dimension so that we can get local spectral basis functions with

a much reduced workload. In the RB method, we first need to get a space ΣNrb that
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can approximate the manifold {ψωi` (x;µ), with ψωi` solution to (3.62), µ ∈ Λtrial}.

i.e.,

ΣNrb := Span{ψωi` (µm), 1 ≤ m ≤ Nrb, λ
ωi
` (µm) ≤ τ}. (3.66)

It is spanned by Nrb global basis functions ζn, 1 ≤ n ≤ Nrb where Nrb is small.

Typically, these basis functions are constructed from a ’snapshot set’ which consists

of solutions of the underlying eigenvalue problem at seleted parameter points.

If ΣNrb is constructed, we solve the reduced eigenvalue problem within this space,

namely,

∫
ωi

κ(x, µ)∇ψωi,Nrb` ∇vdx = λωi,Nrb`

∫
ωi

κ̃(x, µ)ψωi,Nrb` vdx ∀v ∈ ΣNrb , (3.67)

where ψωi,Nrb` ∈ ΣNrb , λ
ωi,Nrb
` ∈ R.

A Greedy algorithm is used to select iteratively the snapshots. Here is a breif

description. We want to choose the set of parameter {µm}1≤m≤Nrb which makes

the error between the solution and the reduced basis approximation minimal. Let’s

denote the error function

e(µ) = ‖ψωi` (µ)− ψωi,Nrb` (µ)‖H1(ωi) (3.68)

Then the judicious choice of µ would be

{µm}1≤m≤Nrb = infµ∈ΛNrb (supµ∈Λe(µ)) (3.69)

However, choosing µ from the set Λ which can be a continuous set is difficult and

expensive procedure. Also finding the eigenfunctions ψωi` for given value µ might be

computationaly very expensive. Therefore, we discretize the set Λ and try to get the

parameter sets {µm}1≤m≤Nrb solving the following infsup problem,

{µm}1≤m≤Nrb = inf
µ∈Λ

Nrb
trial

(supµ∈Λtrial
∆Nrb(µ)) (3.70)
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where Λtrial is a discret subset of Λ and ∆Nrb(µ) is an estimator of the error e(µ).

In [24], the judicious choice of the estimator ∆Nrb(µ) is described. We use this

estimator in our numerical simulation.

Now we choose the parameter set {µm}1≤m≤Nrb iteratively using the following

process, called Greedy procedure.

1: Choose µ1 ∈ Λtrial

2: Solve (3.62) with µ = µ1 to define Σ1 := span(ψωi` (µ1), λωi` (µ1) ≤ τ),
3: for m = 2toNrb do do
4: Choose µm := maxµ∈Λtrial∆m−1(µ),
5: Solve (3.62) with µ = µm to define Σm := span(ψωi` (µj), λ

ωi
` (µj) ≤ τ, 1 ≤ j ≤

m),
6: end for

Algorithm 1
Greedy Procedure

3.3.2.5 Computing Spectral Multiscale basis using RB technique

In this section, we will use RB techniques to compute cheap online approximations

for the eigenvalue problem and get a parameter dependent spectral multiscale basis.

Recall the construction of spectal multiscale space from the Section 3.1.3. In this

problematic settings, we will have parameter dependent coarse space for the the

coarse-scale solution.

First we choose the initial coarse basis function Φi. Note that a possible choice

for the inital basis function is to select a reasonable value of µ0 and for each element

Ki ∈ TH compute the following multiscale partiton of unity functions:

−div(κ(x, µ0)∇Φi(x)) = 0 in Ki, Φi = Φ0
i on ∂Ki, (3.71)

where Φ0
i is a standard finite element basis function. We need to complement this

coarse basis if more accurate coarse-scale solutions are sought and this completion
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is accomplished via local spectral problems. For the case of parameter-dependent

elliptic problems, this completion is done at the online stage.

After finding out the eigenpairs of the eigenvalue problem (3.62) with cheap

computation using RB tehcniques, we can construct multiscale basis functions. The

multiscale basis functions are constructed as

Ψ`
i = Φ`

i(x;µ) = Φiψ
ωi,Nrb
` , for 1 ≤ ` ≤ Li and 1 ≤ i ≤ Nc. (3.72)

Then we define the coarse-grid spaces as

V0 = V0(µ) = span(Ψ`
i). (3.73)

and use it for solving the global problem.

3.3.3 Numerical examples for Richards’ equation with nonseparable

heterogeneities and nonlinearities

In this section, we present numerical results for

−div(κ(x, u)∇u) = f(x),

with u = 0 on ∂Ω, f(x) = 1 and

κ(x, u) = λ0(u) (κ1(x) + (eαu − 1)κ2(x)) , (3.74)

where κ1(x) and κ2(x) are defined as in the previous example.( See Figure 3.4. Left

picture represents κ1(x) and Right picture represents κ2(x).) We take λ0(u) = e2u

and α = 1 in this numerical experiment. In this example, we will take the average

of u, ū, being a parameter in each coarse-grid block as discussed in Section 3.3.1.1.
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Table 3.19
Relative errors in energy norm and the coarse space dimension in
the last iteration. LSM+n indicates that the coarse spaces include
eigenvectors corresponding to small, asymptotically vanishing eigen-
values, and additional n eigenvectors corresponding to the next n
eigenvalues. Here, h = 0.001 and η = 106 .

H = 0.1 Nrb = 1 Nrb = 2 Nrb = 3

LSM+0 8.13e− 005(104) 3.44e− 005(141) 9.88e− 006(156)
LSM+1 9.42e− 005(226) 3.55e− 005(218) 3.83e− 006(237)
LSM+2 9.34e− 005(308) 2.29e− 005(302) 3.68e− 006(318)

Recall the bilinear form a( · , · ; · ) and the linear functional F ( · ) from (3.56) and

(3.57).

The numerical solution uh can be approximated to an arbitrary accuracy using a

Picard iteration. Starting with an initial guess u0
h ∈ V h, we define the nonlinear fixed

point iteration as follows. Given unh, the next approximation un+1
h is the solution of

the linear elliptic equation

a(un+1
h , w;unh) = F (w), for all w ∈ V h. (3.75)

where unh = 1
|Ki|

∫
Ki
unhdx, Ki ∈ TH . This is an approximation of the linear equation

−div(k(x)λ(x, unh)∇un+1
h ) = f with unh being the previous iterate.

We reformulate the iteration (3.75) in matrix form. Define An by

a(v, w;unh) = wTAnv, for all v, w ∈ V h, (3.76)

and define the vector F by

F (w) = wT b, for all w ∈ V h. (3.77)
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Then the equation (3.75) can be rewritten in the following matrix form

Anun+1
h = b. (3.78)

Furthermore, we solve (3.78) using reduced basis MsFEM and we show our numerical

results next.

In Table 3.19, we present numerical results for the accuracy of our proposed

MsFEM. Relative errors in energy norm and the coarse space dimension in the last

iteration is displayed. We consider two cases for Nrb, a number of basis functions for

online computations, Nrb = 1, Nrb = 2 and Nrb = 3.

We observe that, in all three cases, the relative error is comparably small when

the multiscale basis functions and local spectral problems are solved with reduced

basis. However, the computation cost at the online stage is much lower. In particular,

when Nrb = 3, we notice that the errors are small and decrease as we increase the

dimension of the local spectral coarse spaces. It indicates that the more number

of basis functions are used in the proposed procedure, the more fine scale features

can be captured. The case Nrb = 3 still gives a good approximation with reduced

computational cost.
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4. ROBUST SOLUTION TECHNIQUE FOR SEPARABLE COEFFICIENT

RICHARDS’ EQUATION

4.1 Introduction

In this section, we present robust preconditioners for the finite element system

resulting from the discretization of nonlinear equations when κ(x, u) is heterogeneous

with respect to space. We consider the steady-state separable Richards’ equation

−div(κ(x)λ(x, u)∇u) = f, x ∈ Ω, (4.1)

where κ(x) is a have high-variability, while λ(x, u) is a smooth function that varies

moderately in both x and u.

Various iterative methods for solving nonlinear equations have been proposed

and studied in the past, e.g. [7, 8, 14, 43, 70, 80]. For example, in [7, 70], a nonlinear

iterative procedure has been proposed and its optimality has been established, in [43],

multilevel iterative methods have been studied for Richards’ equation, in [14], two-

level domain decomposition methods have been proposed and analyzed. To the

best of our knowledge, the techniques developed in the previous works have not

considered robustness with respect to the contrast in the case of highly heterogeneous

conductivity fields, which is the main objective of this paper.

The proposed iterative procedure involves outer iterations and inner iterations, a

technique that is commonly used in the literature. Outer iterations are designed to

handle nonlinearities by linearizing the equation around the previous state. The sim-

plest is Picard iteration that is described by −div(κ(x)λ(x, un)∇un+1) = f , where

n denotes the outer iteration number. For every outer iteration n, a linear prob-

lem needs to be solved. For the solution of the linear problem, we employ two-level

domain decomposition preconditioners within conjugate gradient (CG) iterative tech-

nique. Both inner and outer iteration can, in general, depend on the contrast and
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small scales. One of our main goals is to construct iterative process that converges

independently of both, the small scales and the contrast. In particular, we show that

the robust iterative techniques designed for a linear system can be re-used for every

outer iteration if λ is a smooth function. Therefore, it is important to use efficient

preconditioners for solving the linear system arising in approximation of a problem

with highly heterogeneous coefficients. Such preconditioners, designed in the earlier

works [26–28], are discussed below.

For every outer iteration, the resulting linear system on the fine scale is solved

using two-level domain decomposition preconditioner (e.g., [48, 71]), which involves

local (subdomain) and global (coarse) problems. The number of iterations required

by domain decomposition preconditioners is typically affected by the contrast in the

media properties (e.g., [48,71]) that are within each coarse grid block. Because of the

complex geometry of fine-scale features, it is often impossible to separate low and

high conductivity regions into different coarse grid blocks. Consequently, without

proper preconditioner, the number of iterations can be very large, which substantially

reduces the efficiency of the iterative method, particularly for nonlinear flows.

In this section, for every outer iteration we use the preconditioners designed

in [26,27]. The main idea of these preconditioners consists of augmenting the coarse

space in the domain decomposition methods. In particular, a coarse space based on

local spectral problems using multiscale functions is constructed. We prove that when

the coarse space in the domain decomposition methods includes these eigenfunctions,

the condition number of the preconditioned matrix is bounded independently of the

contrast. The choice of multiscale space is important to achieve small dimensional

coarse spaces. By incorporating small-scale localizable features of the solution into

initial multiscale basis functions, we have shown that one can achieve coarse spaces

of lower dimension without sacrificing the convergence properties of the precondi-

tioners. Initial multiscale spaces can employ constructions proposed for multiscale

finite element methods in [17,19,36,42].
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We show that both, the number of outer iterations and the number of inner iter-

ations, are bounded independently of physical parameters, such as the contrast and

small spatial scales. We first prove that under some assumptions the number of outer

iterations depends on the contraction constant that is independent of the contrast

in the conductivity field. Our reasoning takes into account the high variations of

the contrast in the conductivity field and follows the standard for such nonlinear

problems technique, e.g., [4]. As for inner iterations, we use two-level precondition-

ers developed in [26, 27] that provide independent of the contrast condition number

for every outer iteration. We use the same preconditioner for every outer iterations

repeatedly without sacrificing the convergence of the overall method.

4.2 Problem setting

4.2.1 Finite Element Discretization

We follow the settings from Section 3.1.1, i.e., we consider the variational form of

(4.1), a( · , · ; · ), defined on (3.4). Let Th be a triangulation of the domain Ω into a

finite number of triangular (tetrahedral) elements. We assume that Th quasiuniform

and regular; see [13]. Let V h be the finite dimensional subspace of V of piece-wise

polynomials with respect to Th. Let uh ∈ V h be a solution of the following discrete

problem.

a(uh, v;uh) = F (v), for all v ∈ V h. (4.2)

We know that under suitable conditions, one can ensure the existence of a solution

to the above equation. Define the nonlinear map Th : V h → V h by

a(Thuh, v;uh) = F (v), for all v ∈ V h. (4.3)

This is well defined, since uh ∈ V h.
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4.2.2 A nonlinear fixed point iteration

In this section we describe a robust numerical method to approximate the numer-

ical solutions of the Richards’ equation (4.2). We use a fixed point iteration based

on the contractivity of the mapping Th defined in (4.3). The numerical solution uh

can be approximated to an arbitrary accuracy via using Picard iteration.

Starting with an initial guess u0
h ∈ V h, we define the nonlinear fixed point itera-

tion by

un+1
h = Thu

n
h.

That is, given unh, the next approximation un+1
h is the solution of the linear elliptic

equation

a(un+1
h , w;unh) = F (w), for all w ∈ V h. (4.4)

In order to define the solution method, we reformulate the problem (4.4) in terms

of the linear operator An : V h → V h defined for any given unh ∈ V h as

a(v, w;unh) = (Anv, w), for all v, w ∈ V h, (4.5)

where ( · , · ) is the standard L2-inner product in V h. In a similar manner, we present

the linear functional F (w) in the form

F (w) = (b, w), for all w ∈ V h. (4.6)

Obviously, b is the L2-projection of the right hand side f of (4.1) on V h. Then the

equation (4.4) can be rewritten in the following operator form

Anun+1
h = b. (4.7)

Note that equation (4.4) (and its operator counterpart (4.7)) is an approxima-

tion of the linear equation −div(κ(x)λ(x, unh)∇un+1
h ) = f with unh being the previous
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iterate. It is known that the presence of the high-contrast coefficient κ(x) makes

computationally difficult to construct appropriated robust linear solvers for comput-

ing un+1
h . Moreover, taking into account the contractivity of the operator Th, in order

to get a robust method to compute the solution of the Richards’ equation (4.3), we

only need a robust method for solving the linear problem (4.4).

The hydraulic conductivity κ(x) has small scale features and high-contrast. Be-

cause of the small scales and high contrast in the conductivity field, the solution

of this system (of size proportional the fine grid points) is prohibitively expensive.

Therefore, an adequate robust iterative method is needed.

The construction of robust solvers for high-contrast linear elliptic equation has

been considered by many authors. We will use as a preconditioner a two-level domain

decomposition method proposed in [26–28], which involves solutions of appropriate

local spectral problems. If B−1 is the preconditioner, our goal is to have the condition

number of B−1An bounded independent of the contrast and n (i.e, independent of

unh). Now we describe a construction of such preconditioner for (4.7), which will give

a robust with respect to the contrast method for Richards’ equation.

4.3 Finite element discretization and two level domain decomposition

preconditioner

4.3.1 Finite element approximation and local spaces

First, we provide an overview of the use of domain decomposition techniques for

constructing preconditioners for multiscale finite element approximations of high-

contrast elliptic equations (cf., [26–28,31,32]). For an extension to multilevel meth-

ods, we refer to [22]. Next, we briefly describe two-level domain decomposition

setting that we use and introduce the local spaces and the coarse space.

Let TH and Th be coarse and fine partitions of Ω into finite elements K (or

nonoverlapping subdomains) that consists of triangles, quadrilaterals, etc.. We as-
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sume that the coarse elements of TH consist of a number of fine elements from Th.

Practically, we first introduce the coarse-grid TH and then obtain the fine grid Th by

partitioning each coarse element into a number of smaller ones. Let Φi be the nodal

basis of the standard finite element space with respect to the coarse triangulation

TH . We denote by Nc the number of coarse nodes, by {yi}Nci=1 the vertices of the

coarse mesh TH , and define a neighborhood of each node yi by

ωi =
⋃
{Kj ∈ TH ; yi ∈ Kj}. (4.8)

Let V h
0 (ωi) ⊂ V h be the set of finite element functions with support in ωi and

RT
i : V h

0 (ωi)→ V h denote the extension by zero operator.

We define, for later use, the one level additive preconditioner (e.g. [48,71])

B−1
1 =

Nv∑
i=1

RT
i (A0

i )
−1Ri, (4.9)

where the operators A0
i : V h

0 (ωi)→ V h
0 (ωi) are defined by

(A0
i v, w) = a(v, w;u0

h), for all v, w ∈ V h
0 (ωi), i = 1, . . . , Nv. (4.10)

The application of the preconditioner B−1
1 involves (A0

i )
−1 which means solving local

problems subdomain-wise in each iteration. The operator A0
i , defined by the bilinear

form a( · , · ;u0
h) restricted to V h

0 (ωi), is local and invertible.

4.3.2 Coarse space construction

For given Mc number of linearly independent functions {Φi}Nci=1 associated with

the coarse mesh TH (these will be introduced later), we define a coarse space V0 by

V0 = span{Φi}Nci=1. (4.11)
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Below we shall give three choices of sets {Φi}Nci=1, that have been already used in the

construction of a robust preconditioner for An. These are: (1) multiscale coarse space

(see, e.g. [17] and the references therein), (2) energy minimizing coarse space (see,

e.g. [81]), and (3) a coarse space with local spectral information, (see, e.g. [26–28]).

On an abstract level, the main assumption is that Φi ∈ V h, but the support of each

Φi is related to the coarse mesh TH so that Mc << dimV h. Below we refer to the

Φi’s as coarse-scale basis functions. The coarse space V0 defines an operator

Ac : V0 → V0, (Acv, w;u0
h) = a(v, w;u0

h), ∀v, w ∈ V0.

Note that if RT
c : V0 → V h is the natural interpolation operator then we have

Ac = RcA
0RT

c with A0 defined by (4.5) for n = 0. (4.12)

Note that the operator Ac uses the initial guess u0
h ∈ V h and is constructed only

once at the beginning of the fixed point nonlinear iteration. Likewise, the coarse

basis functions {Φi}Nci=1 are related to the form a( · , · ;u0
h) and are constructed only

one time. These can be regarded as a preprocessing step. Once the coarse space V0

is constructed and the coarse-scale operator Ac is defined, we can use the two level

additive preconditioner of the form

B−1 = RT
c A
−1
c Rc +

Nv∑
i=1

RT
i (A0

i )
−1Ri = RT

c A
−1
c Rc +B−1

1 . (4.13)

The preconditioner B−1 involves solving one coarse-scale system and Nv local prob-

lems in each overlapping subdomain ωi, i = 1, . . . , Nv. The goal is to reduce the

number of iterations in the iterative procedure, e.g., a preconditioned conjugate gra-

dient. An appropriate construction of the coarse space V0 plays a key role in obtaining

robust iterative domain decomposition method. In the next Section 4.3.3 we present
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examples of such coarse space constructions. We summarize the fixed point iteration

in Algorithm 2.

1: Initialize: Choose u0
h ∈ V h and compute the residual r0 = b− A0u0

h.
2: Construct the coarse basis {Φj}, the coarse space V0 in (4.11), and the coarse

operator Ac in (4.12) .
3: for n = 1, 2, . . . until convergence do
4: Set the linear system Anun+1

h = b (see (4.7)).
5: Using PCG with preconditioner B−1 in (4.13) solve the linear system in 4: to

get un+1
h .

6: Compute the residual rn+1 = b− An+1un+1
h .

7: end for

Algorithm 2
Fixed point iteration

Remark 1. In the abstract domain decomposition method setting the overlapping

subdomains {ωi} could be chosen independently of the coarse triangulation T H . How-

ever, in this dissertation, we will only consider the partition introduced above.

4.3.3 Some multiscale coarse spaces

In this subsection we review several possibilities for construction of coarse basis

functions that have been used in design of two level preconditioners that are robust

with respect to the contrast.

4.3.3.1 Linear boundary conditions multiscale coarse spaces

Recall the linear boundary multiscale finite element basis functions Φms
i from

3.1.2.1. Then we can define linear boundary conditions multiscale coarse spaces V ms
0

as following:

V ms
0 = span{Φms

i }. (4.14)
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Note that these multiscale basis functions coincide with standard finite element

basis functions on the boundaries of coarse grid blocks, while are oscillatory in the

interior of each coarse grid block.

4.3.3.2 Energy minimizing coarse spaces

Coarse basis functions can be obtained by minimizing the energy of the basis func-

tions subject to a global constraint (see, [81]). More precise construction of energy

minimizing functions Φem
i are described in 3.1.2.3. Now define energy minimizing

coarse space V em
0 as

V em
0 = span{Φem

i }. (4.15)

We note that the computation of these basis functions requires the solution of a

global linear system, a procedure more expensive compared to the local computation

of multiscale finite element basis functions with linear boundary conditions Φms
i .

4.3.3.3 A coarse space with local spectral information

A coarse space with local spectral information is described in 3.1.3. Local spec-

tral basis functions Ψi,` are computed by selecting a number of eigenvalues from the

eigenvalue problem (3.21) and multiplying corresponding eigenvectors by initial mul-

tiscale basis functions Φi, i.e. Ψi,` = Φiψ
ωi
` . Thus, multiscale space is defined for each

i as the span of Ψi,`, ` = 1, ..., Li, where Li is the number of selected eigenvectors.

Denote by V lsm
0 the local spectral multiscale space

V lsm
0 = span{Ψi,` : 1 ≤ ` ≤ Li and 1 ≤ i ≤ Nv}. (4.16)
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4.3.4 Condition number estimates

In this section, we present a theoretical result which shows that the number of

outer iterations is independent of the contrast. Recall the bounded ball V K,ph for a

given K > 0 from (2.21). The following three assumptions are used in the proofs of

Theorems 3 and 4.

Assumption 2.

(A) See Assumption 1

(B) See (4.21).

Under these assumptions, we show the following theorems concerning the bound-

edness of the contraction constant.

Theorem 3. Let the Assumption 2 holds. Then The map Th : V K,ph → V K,ph is a

contraction and the contraction constant is independent of the contrast.

Proof. We shall show the mapping Th is contraction and also that the contrac-

tivity constant is independent of the contrast.

Suppose uh, vh ∈ V K,ph satisfy a(Thuh, w;uh) = F (w) and a(Thvh, w; vh) = F (w).

Thus,

a(Thuh, w;uh)− a(Thvh, w; vh) = 0. (4.17)

Since a( · , · , · ) is a bilinear form, from equation (4.17) we get

a(Thuh − Thvh, w;uh) = a(Thvh, w; vh)− a(Thvh, w;uh). (4.18)
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Now using the definition of a( · , · , · ), the right hand side of the equation (4.18) can

be written as∫
Ω

k(x)(λ(x, vh)− λ(x, uh))∇Thvh∇wdx

≤
(∫

Ω

k(x)(∇Thvh)2|λ(x, vh)− λ(x, uh)|2dx
) 1

2
(∫

Ω

k(x)(∇w)2dx

) 1
2

≤
(∫

Ω

|k(x)|q|∇Thvh|2qdx
) 1

2q

(By Hőlder’s inequality,
1

q
+

1

q′
= 1)

�

(∫
Ω

|λ(x, vh)− λ(x, uh)|2q
′
dx

) 1
2q′
(∫

Ω

k(x)(∇w)2dx

) 1
2

:= A

(4.19)

Then using Lipschitz continuity of λ,

A = ≤
(∫

Ω

|k(x)|q|∇Thvh|2qdx
) 1

2q
(
C1

∫
Ω

|vh − uh|2q
′
dx

) 1
2q′

�

(∫
Ω

k(x)(∇w)2dx

) 1
2

≤
(∫

Ω

|k(x)|q|∇Thvh|2qdx
) 1

2q
(
C1C2q′

∫
Ω

(∇(vh − uh))2dx

) 1
2

�

(∫
Ω

k(x)(∇w)2dx

) 1
2

, (by Sobolev inequality),

(4.20)

where we have used the Sobolev inequality ‖u‖L2q′ (Ω) ≤ C2q′‖Du‖L2(Ω) with 2q′ ∈

[1,∞] for function u with bounded mean oscillation. Next, we want to bound(∫
Ω
|k(x)|q|∇Thvh|2qdx

) 1
2q with some constant which is independent of the contrast,

i.e., the constant doesn’t depend on k( · ).

Now we make the following assumption.

Assumption 3. Given the equation a(Thvh, Thvh, vh) = F (Thvh) (see (4.3)), we

assume that ∫
Ω

(k(x)|∇Thvh|2)q/2dx ≤ Cq
F , (4.21)

where Cq
F → 0 as ‖F‖W−1

q (Ω) → 0 for some q > 2.
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We note that when F = 0 then C2
F = 0, thus, Thvh is zero almost everywhere.

Moreover, if ‖F‖W−1
2 (Ω) is small, then C2

F is small and C2
F converges to zero as

‖F‖W−1
2 (Ω) goes to zero. The inequality (4.21) assumes that we have continuity of

Cq
F with respect to ‖F‖W−1

2 (Ω) for any q > 2 that is sufficiently close to 2. We note

that ‖Thvh‖W 1
q (Ω) is bounded by ‖F‖W−1

q (Ω) as shown above. This is typically used

to show the contractivity of the map Th.

Now, we can conclude that∫
Ω

k(x)(λ(x, vh)−λ(x, uh))∇Thvh∇wdx

≤ C

(∫
Ω

(∇(vh − uh))2dx

) 1
2
(∫

Ω

k(x)(∇w)2dx

) 1
2

,

(4.22)

where the constant C depends on Lipschitz constant C1.

Now put w = Thuh − Thvh, then left hand side of (4.18) is bounded below,

a(Thuh − Thvh, Thuh − Thvh, uh) =

∫
Ω

(k(x)λ(x, uh)(∇(Thuh − Thvh))2dx

≥ C2

∫
Ω

k(x)(∇(Thuh − Thvh))2dx.

(4.23)

Combine equations (4.22) and (4.23), then we get

∫
Ω

k(x)(∇(Thuh − Thvh))2dx ≤ C−1
2 C

(∫
Ω

(∇(vh − uh))2dx

) 1
2

�

(∫
Ω

k(x)(∇(Thuh − Thvh))2dx

) 1
2

.

Then using the Assumption 2 (a), we get

C
1
2
0

(∫
Ω

(∇(Thuh − Thvh)2dx

) 1
2

≤ C−1
2 C

(∫
Ω

(∇(vh − uh))2dx

) 1
2

.
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So we can deduce that

|Thuh − Thvh|W 1
2
≤ C

− 1
2

0 C−1
2 C|uh − vh|W 1

2
, (4.24)

i.e., the mapping Th is a contraction if C is chosen sufficiently small (see Assumption

3). �

Theorem 4. Under the assumptions of Theorem 1, we have cond(B−1An) ≤ C,

where C is independent of the contrast.

Proof. From Lemma 1 and Lemma 10 of [26] we have that there is a stable

decomposition, that is, there exists v0 ∈ V lsm
0 , vi ∈ V h

0 (ωi), i = 1, . . . , Nv, such that

∫
D

κ|∇v0|+
Nv∑
i=1

∫
ωi

κ|∇vi|2 ≤ C0

(
1 +

1

H2µL+1

)∫
D

κ|∇v|2,

for some positive constant independent of the contrast and µL+1 = mini µLi+1. Here

we select the first Li smallest eigenvalues of (3.21). Then, for a fixed w we have

stable decomposition,

∫
D

λ(x,w)κ(x)|∇v0(x)|+
Nv∑
i=1

∫
ωi

λ(x,w)κ(x)|∇vi|2

≤ C0
maxx∈D λ(x,w)

minx∈D λ(x, ω)

(
1 +

1

H2µL+1

)∫
D

λ(x,w)k(x)|∇v|2.

According to the abstract theory of domain decomposition, see [48,71], we conclude

that the condition number of the preconditioned matrix is of order

cond(B−1A) ≤ C0
maxx∈D λ(x,w)

minx∈D λ(x, ω)

(
1 +

1

H2µL+1

)
.
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Further noting that the number of nonlinear outer iterations is bounded (see Theo-

rem 2), we conclude that the proposed iterative procedure converges independent of

the contrast. �

Remark 2 (Degenerate case). In some practical cases the diffusion coefficient of the

Richards’ equation can approach to zero. For the analysis of mixed finite element

approximations of such problems we refer to e.g. [1, 61]. In general the proposed

in this paper methods are not directly applicable. Nevertheless, in some cases, our

algorithms will yield robust results. These cases includes coefficients where the regions

of degeneracy can be resolved by the coarse grid, or when those regions are union of

isolated inclusions. However, when the region of degeneracy is complex and cannot

be resolved by the coarse grid, additional basis functions or some refinement may

be required in order to get contrast-independent preconditioners. And since we use

a fixed point iteration, our outer loop will allow us to determine approximately the

region of degeneracy. We note that this requires additional analysis and is a subject

of future research.

4.4 Numerical examples

In this section we present some representative numerical examples. We solve the

Richards’ equation (4.2) in Ω = [0, 1]×[0, 1] with f(x) = 1 and homogeneous Dirichlet

boundary conditions. We consider several models for the hydraulic conductivity:

the Haverkamp, van Genuchten, and Exponential model (see, e.g. [11,33,59,73]), as

introduced below. The coarse mesh TH is obtained by dividing Ω into 10× 10 mesh.

The fine triangulation is obtained by dividing each coarse-mesh element into 10× 10

squares and further dividing each square into two triangles. Thus, the fine-mesh step



75

size is h = 1/100. In all the numerical experiments we use the initial approximation

for the iterative process u0
h that solves

a(u0
h, v; 0) = F (v), for all v ∈ V h. (4.25)

We apply the Algorithm (2). As stated in Algorithm (2) we use the preconditioner

B−1 in (4.13) with three different coarse spaces:

1. The coarse space V ms
0 described in Section 4.3.3.1. In this case B−1 is denoted

by B−1
ms;

2. The coarse space V em
0 described in Section 4.3.3.2. In this case B−1 is denoted

by B−1
em;

3. The coarse space V lsm
0 described in Section 4.3.3.3. In this case B−1 is denoted

by B−1
lsm.

We study the performance of Algorithm 2 with initial guess u0
h and preconditioners

B−1
ms, B

−1
em, and B−1

lsm. We consider different permeabilities with complex high-contrast

configurations, see Figure 3.4. A number of parameter values in the nonlinearity of

the hydraulic conductivity are tested in our simulations. In particular, for each

experiment we chose a different set of parameters for the model and a set of contrast

values for the hydraulic conductivity. We note that, for each outer iteration in

Algorithm 2 we have a PCG iteration. The inner PCG iteration is convergent when

the initial residual is reduced by a factor of tolin = 1e− 10 while the outer tolerance

is set to tolout = 1e− 8.

We consider the following indicators for the performance of the preconditioners:

� Coarse space dimension;

� The number of outer iterations of the nonlinear fixed point iteration (R-iter);
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� The maximum and minimum number of inner PCG iterations over all outer

iterations (CG-iter) and the estimated maximum condition numbers (Cond).

We also verify numerically our main assumption in the proof of Theorem 1. That is,

for every outer iteration update we compute EN := ‖
√
κ|∇u|‖pp =

∫
D

(
√
κ|∇u|)p dx,

p = 1, 2, 3, . . . , 10. We observe that this quantity remains bounded in all experiments.

4.4.1 Haverkamp model

First, we will study Haverkamp model. In the Haverkamp model, (see, e.g. [33]),

the hydraulic conductivity is given by

k(x, u) = ks(x)
A

A+ (|u|/B)γ
. (4.26)

We present the first set of numerical results in Tables 4.1 and 4.2. We use the

preconditioner B−1
ms based on the coarse space V ms

0 . We observe from these tables that

the numbers of outer iterations do not change when the contrast value η increases.

However, the condition number of the preconditioned system grows as η increases.

We also observe that the quantity ‖
√
κ|∇u|‖pp, p = 1, 2, 3, . . . , 10, that is related to

the number of outer iterations, is bounded. We observe that the number of outer

iterations is larger when B and γ (see (4.26)) decrease. This is because the smaller

values of B and γ increase the magnitude of the conductivity that comes from its

nonlinear component. Comparing Tables 4.1 and 4.2 that use different conductivity

fields, we see that the condition numbers in Table 4.2 are smaller than the condition

numbers in Table 4.1. This is because conductivity field 2 (see Figure 3.4) has simpler

heterogeneity structure compared conductivity field 1.

Next, we repeat the above numerical experiments using the preconditioner B−1
em

based on the coarse space V em
0 . Numerical results are presented in Tables 4.3 and 4.4.

We observe that, as before, the number of outer iterations is fixed with increasing η.

On the other hand, the condition number of the PCG iteration grows as the contrast
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increases. This condition number is much larger compared to the case when spectral

basis functions are used as presented in the next tables.

Further, we show the numerical experiment using the preconditioner B−1
lsm based

on the spectral coarse space V lsm
0 . Numerical results are presented in Tables 4.5

and 4.6. As before, we observe that the number of outer iterations is independent

of the contrast. We observe that the condition number is also independent of the

contrast. Note that the condition number is substantially smaller than the one of

the preconditioned system using B−1
ms or B−1

em. In general, the number of inner PCG

iterations is much smaller compared to those when other coarse spaces are used.

Table 4.1
Numerical results for preconditioner B−1

ms. Here we use the
Haverkamp model κ(x, u) = κ(x) A

A+(|u|/B)γ
with κ depicted in left

picture of Figure 3.4. The coarse space dimension is 81.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 4 119, 124 1.1e+ 3 0.12 11 131, 139 1.4e+ 3 0.12

104 4 166, 178 1.1e+ 4 0.12 11 179, 199 1.4e+ 4 0.12

105 4 224, 224 1.1e+ 5 0.12 11 224, 224 1.4e+ 5 0.12

106 4 278, 278 1.1e+ 6 0.12 11 278, 278 1.4e+ 6 0.12

4.4.2 van Genuchten Model

Next, we consider Van Genuchten model (see [73]) that is one of widely used

empirical constitutive relations. In this model, the hydraulic conductivity is given

by

k(x, u) = ks(x)
{1− (α|u|/B)n−1[1 + (α|u|)n]−m}2

[1 + (α|u|)n]
m
2

. (4.27)
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Table 4.2
Numerical results for preconditioner B−1

ms. Here we use the
Haverkamp model κ(x, u) = κ(x) A

A+(|u|/B)γ
with κ depicted in right

picture of Figure 3.4. The coarse space dimension is 81.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 4 113, 113 2.6e+ 2 0.13 11 107, 123 3.9e+ 2 0.13

104 4 163, 171 2.5e+ 3 0.13 11 180, 193 3.6e+ 3 0.13

105 4 224, 232 2.5e+ 4 0.13 11 238, 255 3.6e+ 4 0.13

106 4 288, 295 2.5e+ 5 0.13 11 308, 324 3.6e+ 5 0.13

Table 4.3
Numerical results for preconditioner B−1

em. Here we use the
Haverkamp model κ(x, u) = κ(x) A

A+(|u|/B)γ
with κ depicted in left

picture of Figure 3.4. The coarse space dimension is 81.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 3 83, 83 1.3e+ 2 0.12 8 90, 102 1.9e+ 2 0.12

104 3 88, 88 2.5e+ 2 0.12 8 95, 109 3.9e+ 2 0.12

105 3 89, 90 3.0e+ 2 0.12 8 97, 113 4.6e+ 2 0.12

106 3 95, 103 3.1e+ 2 0.12 8 103, 115 4.7e+ 2 0.12

Table 4.4
Numerical results for preconditioner B−1

em. Here we use the
Haverkamp model κ(x, u) = κ(x) A

A+(|u|/B)γ
with κ depicted in right

picture of Figure 3.4. The coarse space dimension is 81.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 3 90, 90 1.6e+ 2 0.13 8 84, 98 2.7e+ 2 0.13

104 3 94, 94 3.7e+ 2 0.13 8 88, 102 6.2e+ 2 0.13

105 3 95, 95 4.2e+ 2 0.13 8 89, 103 7.1e+ 2 0.13

106 3 96, 96 4.3e+ 2 0.13 8 91, 104 7.2e+ 2 0.13
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Table 4.5
Numerical results for preconditioner B−1

lsm. Here we use the
Haverkamp model κ(x, u) = κ(x) A

A+(|u|/B)γ
with κ depicted in left

picture of Figure 3.4. The coarse space dimension is 166.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 4 34, 34 6.9 0.13 8 37, 39 9.6 0.13

104 4 35, 35 7.0 0.13 8 39, 41 9.7 0.13

105 4 35, 37 7.0 0.13 8 40, 42 9.7 0.13

106 4 36, 36 7.0 0.13 8 41, 44 9.7 0.13

Table 4.6
Numerical results for preconditioner B−1

lsm. Here we use the
Haverkamp model κ(x, u) = κ(x) A

A+(|u|/B)γ
with κ depicted in right

picture of Figure 3.4. The coarse space dimension is 184.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 3 31, 31 6.2 0.13 8 35, 37 8.1 0.13

104 3 33, 33 6.3 0.13 8 36, 37 8.0 0.13

105 3 33, 33 6.3 0.13 8 38, 43 8.0 0.13

106 3 34, 34 6.3 0.13 8 38, 41 8.0 0.13

As before, we will present numerical results for all three coarse spaces. First, in

Tables 4.7 and 4.8 we present the numerical results for the preconditioner B−1
ms. We

observe that the number of outer iterations is smaller compared to the other two

models. The number of outer iterations stays the same while increasing η. On the

other hand, the condition number of the linearized system increases as η increases.

We observe that the value ‖
√
κ|∇u|‖pp, p = 1, 2, 3, . . . , 10 is bounded independent of

the contrast. Now we compare Table 4.7 and Table 4.8 for two different conductivity

fields depicted in Figure 3.4. We observe that the condition numbers presented in
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Table 4.8 is smaller than those presented in Table 4.7 which is consistent with our

previous observations.

Numerical results for the preconditioner B−1
em are presented in Tables 4.9 and 4.10,

while numerical results for the preconditioner B−1
lsm are presented in Tables 4.11 and

4.12. As before, we observe that the number of outer iteration does not change with

η increasing. However, the condition number of the inner iteration is increasing for

B−1
em, while the condition number of the inner iteration does not change (and is much

smaller) for B−1
lsm.

Table 4.7
Numerical results for preconditioner B−1

ms. Here we use the van

Genuchten model κ(x, u) = κ(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with

κ depicted in left picture of Figure 3.4. The coarse space dimension
is 81.

α = 0.005, B = 1, n = 2, m = 0.5 α = 0.01, B = 1, n = 4, m = 0.75

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 2 116, 116 1.1e+ 3 0.13 2 115, 116 1.1e+ 3 0.13

104 2 168, 168 1.1e+ 4 0.13 2 174, 174 1.1e+ 4 0.13

105 2 219, 219 1.1e+ 5 0.13 2 219, 219 1.1e+ 5 0.13

106 2 273, 290 1.1e+ 6 0.13 2 267, 272 1.1e+ 6 0.13

4.4.3 Exponential Model

Finally, we present numerical results for exponential model. Here the hydraulic

conductivity depend exponentially on the pressure head u, that is,

k(x, u) = ks(x)eαu/B. (4.28)
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Table 4.8
Numerical results for preconditioner B−1

ms. Here we use the van

Genuchten model κ(x, u) = κ(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with

κ depicted in right picture of Figure 3.4. The coarse space dimension
is 81.

α = 0.005, B = 1, n = 2, m = 0.5 α = 0.01, B = 1, n = 4, m = 0.75

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 2 98, 99 2.5e+ 2 0.13 2 99, 99 2.5e+ 2 0.13

104 2 134, 134 2.5e+ 3 0.13 2 160, 160 2.5e+ 3 0.13

105 2 183, 184 2.5e+ 4 0.13 2 219, 223 2.5e+ 4 0.13

106 2 222, 225 2.5e+ 5 0.13 2 286, 287 2.5e+ 5 0.13

Table 4.9
Numerical results for preconditioner B−1

em. Here we use the van

Genuchten model κ(x, u) = κ(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with

κ depicted in left picture of Figure 3.4. The coarse space dimension
is 81.

α = 0.005, B = 1, n = 2, m = 0.5 α = 0.01, B = 1, n = 4, m = 0.75

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 2 82, 82 1.3e+ 2 0.13 1 81 1.3e+ 2 0.13

104 2 85, 85 2.5e+ 2 0.13 1 84 2.5e+ 2 0.13

105 2 88, 88 3.0e+ 2 0.13 1 87 3.0e+ 2 0.13

106 2 93, 101 3.1e+ 2 0.13 1 95 3.1e+ 2 0.13

This nonlinear equation can also be derived by homogenizing Stokes equation in

porous media when the fluid viscosity exponentially depends on the pressure [59].

We present the first set of numerical results in Tables 4.13 and 4.14. First, we use

the preconditioner B−1
ms based on the coarse space V ms

0 . We observe that the number

of the outer iterations does not change when the contrast η increases. However, the

condition number of the preconditioned system increases proportional to η. We also

observe that the quantity ‖
√
κ|∇u|‖pp, p = 1, 2, 3, . . . , 10 is bounded independent of

contrast η. We see that the number of outer iterations stays the same for both set
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Table 4.10
Numerical results for preconditioner B−1

em. Here we use the van

Genuchten model κ(x, u) = κ(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with

κ depicted in right picture of Figure 3.4. The coarse space dimension
is 81.

α = 0.005, B = 1, n = 2, m = 0.5 α = 0.01, B = 1, n = 4, m = 0.75

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 2 76, 76 1.6e+ 2 0.13 1 88 1.6e+ 2 0.13

104 2 79, 79 3.6e+ 2 0.13 1 90 3.6e+ 2 0.13

105 2 79, 79 4.2e+ 2 0.13 1 87 4.1e+ 2 0.13

106 2 80, 81 4.2e+ 2 0.13 1 90 4.2e+ 2 0.13

Table 4.11
Numerical results for preconditioner B−1

lsm. Here we use the van

Genuchten model κ(x, u) = κ(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with

κ depicted in left picture of Figure 3.4. The coarse space dimension
is 166.

α = 0.005, B = 1, n = 2, m = 0.5 α = 0.01, B = 1, n = 4, m = 0.75

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 2 33, 33 6.8 0.13 1 33 6.8 0.13

104 2 34, 34 6.8 0.13 1 34 6.8 0.13

105 2 35, 35 6.8 0.13 1 35 6.8 0.13

106 2 36, 36 6.8 0.13 1 36 6.8 0.13

of parameters for nonlinearities which means larger α values do not affect the outer

iterations. We observe from Tables 4.13 and 4.14 (these use different conductivity

fields) that the condition numbers in Table 4.14 are smaller than the corresponding

condition numbers in Table 4.13. This is because conductivity field 2 has simpler

subgrid structure compared to conductivity field 1.

Next, we repeat the numerical experiment using the preconditioner B−1
em based

on the coarse space V em
0 and B−1

lsm with coarse space V lsm
0 . Numerical results for the

coarse space B−1
em are presented in Tables 4.15 and 4.16 while the results for V lsm

0
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Table 4.12
Numerical results for preconditioner B−1

lsm. Here we use the van

Genuchten model κ(x, u) = κ(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with

κ depicted in right picture of Figure 3.4. The coarse space dimension
is 184.

α = 0.005, B = 1, n = 2, m = 0.5 α = 0.01, B = 1, n = 4, m = 0.75

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 2 32, 32 6.5 0.14 1 31 6.2 0.13

104 2 33, 33 6.6 0.13 1 32 6.3 0.13

105 2 33, 33 6.6 0.13 1 33 6.3 0.13

106 2 35, 35 6.6 0.13 1 34 6.3 0.13

are presented in Tables 4.17 and 4.18. As before, we observe that the number of

outer iterations is independent of the contrast. However, for space V em
0 the condi-

tion number increases as we increase the contrast. On the other hand, the condition

number is independent of contrast when V lsm
0 is used as a coarse space. Moreover,

we observe that the condition number produced by V lsm
0 , is only 6 while the condi-

tion number for V em
0 is about 400 for η = 106. In conclusion, B−1

lsm provides truly

independent-of-contrast solver.

Table 4.13
Numerical results for preconditioner B−1

ms. Here we use the Exponen-
tial model κ(x, u) = κ(x)eα(u/B) with κ depicted in left picture of
Figure 3.4. The coarse space dimension is 81.

α = 1, B = 1 α = 2, B = 1

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 4 119, 120 1.0e+ 3 0.13 4 120, 122 1.1e+ 3 0.13

104 4 166, 178 1.1e+ 4 0.13 4 173, 181 1.1e+ 4 0.13

105 4 224, 224 1.1e+ 5 0.13 4 226, 227 1.1e+ 5 0.13

106 4 274, 284 1.1e+ 6 0.13 4 277, 287 1.1e+ 6 0.13
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Table 4.14
Numerical results for preconditioner B−1

ms. Here we use the Exponen-
tial model κ(x, u) = κ(x)eα(u/B) with κ depicted in right picture of
Figure 3.4. The coarse space dimension is 81.

α = 1, B = 1 α = 2, B = 1

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 4 113, 113 2.5e+ 2 0.13 4 114, 115 2.5e+ 2 0.13

104 4 164, 164 2.5e+ 3 0.13 4 164, 164 2.5e+ 3 0.13

105 4 223, 232 2.5e+ 4 0.13 4 227, 231 2.5e+ 4 0.13

106 4 290, 294 2.5e+ 5 0.13 4 289, 302 2.5e+ 5 0.13

Table 4.15
Numerical results for preconditioner B−1

em. Here we use the Exponen-
tial model κ(x, u) = κ(x)eα(u/B) with κ depicted in left picture of
Figure 3.4. The coarse space dimension is 81.

α = 1, B = 1 α = 2, B = 1

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 3 83, 84 1.3e+ 2 0.13 3 84, 84 1.3e+ 2 0.13

104 3 88, 88 2.5e+ 2 0.13 3 89, 90 2.6e+ 2 0.13

105 3 90, 91 3.0e+ 2 0.13 3 92, 92 3.1e+ 2 0.13

106 3 96, 97 3.1e+ 2 0.13 3 97, 98 3.1e+ 2 0.13

Table 4.16
Numerical results for preconditioner B−1

em. Here we use the Exponen-
tial model κ(x, u) = κ(x)eα(u/B) with κ depicted in right picture of
Figure 3.4. The coarse space dimension is 81.

α = 1, B = 1 α = 2, B = 1

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 3 91, 91 1.6e+ 2 0.13 3 91, 92 1.6e+ 2 0.13

104 3 95, 95 3.6e+ 2 0.13 3 95, 96 3.7e+ 2 0.13

105 3 95, 95 4.2e+ 2 0.13 3 98, 99 4.2e+ 2 0.13

106 3 98, 98 4.2e+ 2 0.13 3 99, 99 4.3e+ 2 0.13
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Table 4.17
Numerical results for preconditioner B−1

lsm. Here we use the Expo-
nential model κ(x, u) = κ(x)eα(u/B) with κ depicted in left picture of
Figure 3.4. The coarse space dimension is 166.

α = 1, B = 1 α = 2, B = 1

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 3 33, 33 6.8 0.13 3 34, 34 6.8 0.13

104 3 35, 35 6.8 0.13 3 35, 35 6.8 0.13

105 3 36, 36 6.8 0.13 3 36, 36 6.9 0.13

106 3 37, 37 6.8 0.13 3 37, 37 6.9 0.13

Table 4.18
Numerical results for preconditioner B−1

lsm. Here we use the Expo-
nential model κ(x, u) = κ(x)eα(u/B) with κ depicted in right picture
of Figure 3.4. The coarse space dimension is 184.

α = 1, B = 1 α = 2, B = 1

η R-iter CG-iter Max Cond EN R-iter CG-iter Max Cond EN

103 3 32, 32 6.4 0.13 3 32, 32 6.6 0.13

104 3 34, 34 6.8 0.13 3 34, 34 6.7 0.13

105 3 34, 34 6.5 0.13 3 35, 35 6.7 0.13

106 3 36, 36 6.8 0.13 3 35, 36 6.7 0.13

4.5 Reduced Basis approach for nonseparable coefficient Richards’ equation

In this section, we apply the approach in Section 3.3 to construct robust itera-

tive methods of the domain decomposition type. Recall that this approach helps to

construct a reduced dimensional local approximation that allows quick computation

of the local spectral problem. This process is also necessary for constructing a ro-

bust iterative method of the fine-scale system of nonseparable coefficient Richards’

equation.

For every outer iteration, we need to solve inner iterations using a preconditioner

which is constructed based on the local spectral space. However, when the equation is
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parameter-dependent, then constructing a preconditioner for each parameter value

is extremely computationaly expensive. Therefore, we need the RB technique to

reduce this computational time in multiscale basis calculations.

In this approach, via offline computations, one reduces the costs associated with

computing local solutions. We speed-up basis computations reducing these parameter-

dependent problems to much smaller dimensional ones at the online stage. Moreover

we have lower computational costs compared to standard RB approaches that use

global solutions.

4.5.1 Problem setting

Recall the nonseparable coefficient Richards’ equation (3.39). To get a fine-scale

solution of the nonlinear elliptic equation, we use the fixed point iteration, (3.52),

and this can be considered as parameter-dependent elliptic equation, like (3.53).

We will use coarse spaces constructed via the RB techniques (see Section 3.3.2.5)

in two-level additive Schwarz preconditioners. We brefly describe the two-level do-

main decomposition setting. Let TH and Th be coarse and fine partitions of Ω into

finite elements K (or nonoverlapping subdomains) that consists of triangles, quadri-

laterals, etc.. We assume that the coarse elements of TH consist of a number of fine

elements from Th. Define V h be the finite dimensional subspace of H1
0 of piece-wise

polynomials with respect to Th. Let Φi be the nodal basis of the standard finite

element space with respect to the coarse triangulation TH . We denote by Nv the

number of coarse nodes, by {yi}Nvi=1 the vertices of the coarse mesh TH , and define a

neighborhood of each node yi by ωi which is defined on (4.8). Let V h
0 (ωi) ⊂ V h be

the set of finite element functions with support in ωi and RT
i : V h

0 (ωi)→ V h denote

the extension by zero operator.

We consider iterative methods to find the solution of the fine-grid finite element

problem

a(u, v;µ) = f(v), ∀v ∈ V h, (4.29)
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where the bilinear form a defined in (3.56). The matrix of this linear systems is

written as

A(µ)u(µ) = b. (4.30)

We note that we are representing finite element functions and their vector of coordi-

nates by the same symbols. We can solve the fine-scale linear system iteratively with

the preconditioned conjugate gradient(PCG) method. Any other suitable iterative

scheme can be used as well. We introduce the two level additive preconditioner of

the form

B−1(µ) = RT
0 (µ)A−1

0 (µ)R0(µ) +
Nv∑
i=1

Ri(µ)TA−1
i (µ)Ri(µ), (4.31)

where the local matrices are defined by

uAi(µ)v = a(u, v;µ), for allu, v ∈ V i
0 (ωi). (4.32)

The coarse projection matrix RT
0 is defined by RT

0 = RT
0 (µ) = [Φ1, . . . ,ΦNc ] and

A0(µ) = R0(µ)A(µ)RT
0 (µ). The columns Φi’s are fine-grid coordinate vectors corre-

sponding to the basis functions{Φj
i}. We will use RB procedures to construct the

coarse space basis, i.e., R0(µ), for any given value of the parameter µ.

4.5.2 Constructing preconditioner using RB techniques

In Section 4.3, we observed that constructing a right coarse space V0 = span{Φi}Nci=1

plays a key role in obtaining robust iterative domain decomposition method. This

fact is also applicapable to the parameter-dependent fine-scale problem. We are go-

ing to use local spectral space for our preconditioner. The problem is, when you

solve the local spectral problem on each subdomain to get multiscale bases, it can

be expensive to compute realization-by-realization, i.e. computing multiscale bases

for each realization could be very high-priced.



88

Therefore, we use earlier proposed technique to get a reduced-dimensional eigen-

value problem and we can rapidly solve the local spectral problem to constrct mul-

tiscale basis functions. This approach is especially can be effectively used when the

parameter µ is a coarse-grid spatial function, i.e. µ varies on a coarse grid.

We compute the coarse space using the method described in Section 3.3.2. Us-

ing these coarse spaces we can design preconditioners for our fine-scale systems of

equation. Two-level additive Schwarz preconditioners are constructed

B−1(µ) = (RRB
0 (µ))T (ARB0 (µ))−1RRB

0 (µ) +
M∑
i=1

Ri(µ)TA−1
i (µ)Ri(µ), (4.33)

where RRB and ARB are computed by the basis functions which is constructed in

Section 3.3.2. The local matrices Ai(µ) correspond to the exact local solver for

each µ as in the standard two-level additive Schwarz. We will show that these

preconditioners are optimal with respect to the contrast, i.e. cond(B−1(µ)A(µ)) is

bounded independent of the contrast.We are currently implementing this.
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5. APPLICATION OF UNCERTAINTY QUANTIFICATION TECHNIQUES

FOR RICHARDS’ EQUATION

5.1 Introduction

In large applications of soil moisture problems, one needs to solve inverse problems

for Richards’ equation. These problems are motivated by applications of soil moisture

predictions. To predict future moisture content under the soil or water flow through

the subsurface, we need to conjecture the hydraulic conductivity conditioned to some

average dynamic data( e.g. average flux). There is uncertainty under this process.

To make a better decision in water flow management, one requires a method for

quantifying and reducing the uncertainty.

Since predicting water flow in porous media is nonlinear, it is generally difficult to

calculate directly the posterior probability distribution of soil moisture. Instead, we

estimate this probability distribution from the outcomes of flow predictions for a large

number of realizations of the media. Therefore, it is essential that the conductivity

realizations used in the flow simulation adequately reflect the uncertainty in the

porous media.

The prediction of conductivity fields based on dynamic data is a challenging

problem because conductivity fields are typically defined on a large number of grid

blocks. Moreover, flow dynamic data is typically measured at different scales varying

from point scale to remote sensing scale. Therefore, we need some judicious methods

to link these two values.

In this chapter, we want to predict saturated hydraulic conductivity fields condi-

toined to some average dynamic data. In a probability context, this problem can be

regarded as conditioning the saturated conductivity Ks, to the dynamic data F with

measurement error. We would like to sample the saturated conductivity Ks from

the conditional distribution P (Ks|F ). We used Markov chain Monte Carlo (MCMC)

methods to perform this samplng process. MCMC methods permit a practitioner to
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simulate a dependent sequence of random draws from very complicated stochastic

models. The good thing about an MCMC algorithm is that it can generate a Markov

chain {Ks} whose stationary distribution is its target distribution P (Ks|F ).

In our sampling process, to compute a realization of the conductivity field, one

needs a computation on a scale fine enough to determine the dynamic data fileds ac-

curately. However, the need for fine-scale computations at each step of the MCMC

algorithm makes the problems computationaly very expensive. Therefore, we need

some coarsening process. In our research, we employed an upscaling method to

coarsen the saturated hydraulic conductivity field using flow-based techniques. As

for the nonlinear parameters of the conductivity term, we used simple volume av-

eraging. Based upon this coarsening process, we proposed the two-stage MCMC

algorithm which makes the entire computation much faster. Using this methodol-

ogy, we can screen out bad proposals for the sampling by just doing the coarse-scale

computations.

In many practical applications one wishes to express the saturated conductivity

Ks as an expression of some parameters, rather than simply a function in physical

space. In this dissertation, we discuss a particular type of expansion, known as the

Karhunen-Loéve expansion, or KLE. Using the KLE, the high-dimensional conduc-

tivity field can be represented by a small number of parameters. Log-conductivity

values which are used in sampling can be written as a linear comination of eigenvec-

tors of the covariance matrix times the square root of the eigenvalues.

5.2 Fine-scale model

In this section we introduce the fine-scale models for Richards’ equation. Recall

that the formula describing Richards’ equation under some assumptions is given by

Dtθ(u)− div(κ(x, u)Dx(u+ x3)) = 0 in Ω, (5.1)
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where θ(u) is volumetric water content and u is the pressure head. Constitutive

relations between θ and u and between κ and u are developed appropriately, which

consequently gives nonlinearity behavior in (5.1). See Section 2.3

There are several widely known formulations of the constitutive relations e.g.

Haverkamp model, Exponential model (See (2.7), (2.9)) but in this paper, we use

van Genuchten model, whose θ(u) and κ(x, u) are described in (2.8)

5.2.1 Parametrization

In this section, we describe the model parametrization. It is known that model

parameters vary depending on the soil properties. We consider heterogeneous soil

environment where the soil consists of sand, silt, and clay and each component has

heterogeneous spatial distribution. Depending on the fraction of sand, silt, and

clay, the model parameters, θr(x), θs(x), α(x), n(x), Ks(x) (see (2.8)) will vary

spatially. Next, we will describe the spatial parametrization. For simplicity of further

discussions, we denote by Ψ, Ψ(x) = {θr(x), θs(x), α(x), n(x), Ks(x)},where θr, θs,

α, and n are the parameter values for van Genuchten model and Ks is saturated

conductivity.

For the distribution of each component sand, silt, and clay, we assume that each

has a log-normal Gaussian distribution and independent. In our future work, we plan

to investigate the correlation among these parameters. Let Yi(x) = log[Xi(x)] where

Xi is the distribution of each sand,silt, and clay, where Yi ,(i = 1, 2, 3), has a log-

normal Gaussian distribution. Further, we denote by pi, (i = 1, 2, 3), the percentage

of ith component of the soil and assume that it is described by two-point correlation

function (that will be introduced in the next section). The percentages pi can be

represented by

pi =
exp(Yi)

exp(Y1) + exp(Y2) + exp(Y3)
× 100, i = 1, 2, 3. (5.2)
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Equipped with these percentages, ROSETTA database [66] can be used to get the ma-

terial parameters θr, θs, α, and n, which are the parameter values for van Genuchten

model, and Ks, saturated conductivity of the field. Material properties are computed

using the ROSETTA software for soil hydraulic parameters [66]. The ROSETTA pro-

gram is an artificial neural networks-based pedotransfer function that allows for the

estimation of the van Genuchten soil hydraulic parameters using different levels of

input data such as the soil textural class, soil textural composition, and/or more such

details as bulk density, and water contents at specific pressure heads. In this study,

we use ROSETTA to estimate the soil hydraulic parameters from the soil textural

composition (percentages of sand, silt, and clay), denoted as the pi ’s above.

As for the forward solve, we use SWMS-3D [39] to solve Richards’ equation using

these material parameters. The SWMS-3D package is designed to simulate water

and solute transport through the porous media (soils) by numerically solving the

Richards’ equations for water flow and the convection-dispersion equation (CDE) for

solute transport. As the title signifies, the program handles the flow and transport

phenomena in three dimensions. The flow equation is solved using a Galerkin-type

linear finite element model. Further details about the structure and development of

the program can be found in the work of Simunek et al [39].

As for boundary conditions, the top surface of the study domain is assigned an

atmospheric boundary condition which allows for the flow of water into and out of

the domain based on the environmental conditions (precipitation, evaporation, etc.).

The bottom boundary of the domain was assigned a variable flux condition with a

water table at 1m below the surface. The vertical sides of the domain were held

impermeable, with no flow going into or out of the domain from these boundaries.

5.2.2 Karhunen-Loève expansion

Next, we describe the parametrization based on two-point statistics. We as-

sume that for each component the spatial covariance description is prescribed by
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Ci
`m = E[Yi(x`)Yi(xm)], (`,m = 1, 2, . . . , Nf ), where x` and xm is the mesh points

corresponding to the fine-scale model and E is the expectation operator. For sim-

plicity, we assume that E[Yi] = 0. We are interested in an orthonormal basis {φik}

which makes Yi(x`) and Yi(xm), ` 6= m uncorrelated. The basis functions {φik} are

found by solving following eigenvalue problem,

Ci
`mφ

i
k(x`) = λikφ

i
k(x`), k = 1, 2, . . . , Nf . (5.3)

Using this basis, we can get the Karhunen-Loève expansion (KLE) of Yi,

Yi(x`, ω) =

Nf∑
k=1

αik(ω)φik(x`), ` = 1, 2, . . . , Nf .

Denote zik = αik/
√
λik, then zik satisfy E(zik) = 0 and E(zikz

i
l ) = δkl. It follows that

Yi(xl, ω) =

Nf∑
k=1

√
λikz

i
k(ω)φik(xl), ` = 1, 2, . . . , Nf . (5.4)

Generally, we only need to keep the leading order terms (quantified by the mag-

nitude of λik) and still capture most of the energy of the stochastic process Yi. For

an N -term KLE approximation (N < Nf )

Y N
i =

N∑
k=1

√
λikz

i
kφ

i
k, (5.5)

define the energy ratio of the approximation as

ei(N) :=
E‖Y N

i ‖2

E‖Yi‖2
=

∑N
k=1 λ

i
k∑∞

k=1 λ
j
k

.

Since the eigenvalues can decay fast, the truncated KLE approximates the stochastic

process Yi fairly well in the L2 sense. Therefore, we can sample Yi from the truncated

KLE (5.5) by generating the random variables zik.
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The advantages of the truncated KLE is that, first, we can use uncorrelated ran-

dom variable to sample a realization and, second, it allows dimension reduction as we

can remove small eigenvalues. Once Y N
i ’s are sampled, we compute the percentages

pi based on (5.2) and then Ψ.

5.3 Bayesian approach

5.3.1 Markov chain Monte Carlo

In this section, we will briefly introduce Markov chain Monte Carlo algorithm.

We will use Ψ to denote the parameters as defined earlier,

Ψ(x) = {θr(x), θs(x), α(x), n(x), Ks(x)},

where θr, θs, α, and n are the parameter values for van Genuchten model and Ks

is saturated conductivity. Note that Ψ is determined by Yi’s that represent the

percentages of silt, sand, and clay. The problem under consideration consists of

sampling the Ψ, with given measured data.

Measured data is taken as the soil moisture on the surface. While we use a

synthetically generated case as the ground conditions for this study, data such as

soil moisture are widely available, or easily measured, using ground/in-situ moisture

sensors, or air-borne or satellite-based remote sensors. Measured soil moisture values

are used as state variables and inputs for hydrologic modeling, and using that as the

known data is thus appropriate. We denote the measured data by F . We would

like to note that our method is not limited to this type of measurement and various

measurements can be used in a straightforward way within the proposed techniques.

Since the data are provided as an integrated response, the map from the data to the

super-parameter value is not one-to-one. Hence this problem is ill-posed in the sense

that there exist many different realizations for the given data.
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From the probabilistic point of view, our problem can be regarded as conditioning

Ψ to the measured data with associated measurement errors. Consequently, our goal

is to sample from the conditional distribution P (Ψ|F ).

Using the Bayes formula we can write

P (Ψ|F ) ∝ P (F |Ψ)P (Ψ), (5.6)

where P (Ψ) is the prior distribution. In practice, the measured fluxes contain mea-

surement errors. In this paper, we assume that the measurement error satisfies a

Gaussian distribution; thus, the likelihood function P (F |Ψ) takes the form

P (F |Ψ) ∝ exp
(
−‖Fobs − FΨ‖2

σ2
f

)
, (5.7)

where Fobs is observed data, FΨ is the response calculated using the parameter Ψ,

and σf is the measurement precision.

Since both Fobs and FΨ are functions of time and space (denoted by x and t), the

norm ‖Fobs − FΨ‖2 is defined as the L2 norm

‖Fobs − FΨ‖2 =

∫ X

0

∫ T

0

[Fobs(x, t)− FΨ(x, t)]2 dtdx.

Denote the sampling target distribution as

π(Ψ) = P (Ψ|F ) ∝ exp
(
−‖Fobs − FΨ‖2

σ2
f

)
P (Ψ). (5.8)

Since different spatial fields Ψ can give the same average flux response, the distri-

bution π(Ψ) is a function of Ψ with multiple local maxima. Sampling from the

distribution π(Ψ) can be accomplished by the Markov chain Monte Carlo (MCMC)

method. For a given proposal distribution q(y|x), the Metropolis-Hastings MCMC

algorithm (see, e.g., [65]) consists of the following steps.
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K 

Fig. 5.1. Schematic description of the upscaling. Bold lines illus-
trate a coarse-scale partitioning, while thin lines show a fine-scale
partitioning within coarse-grid cells.

Algorithm I (Metropolis-Hastings MCMC, Robert and Casella [65])

� Step 1. At Ψn generate Y from q(Y |Ψn).

� Step 2. Accept Y as a sample with probability

p(Ψn, Y ) = min

(
1,
q(Ψn|Y )π(Y )

q(Y |Ψn)π(Ψn)

)
, (5.9)

i.e. take Ψn+1 = Y with probability p(Ψn, Y ), and Ψn+1 = Ψn with probability

1− p(Ψn, Y ).

The MCMC algorithm generates a Markov chain {Ψn} whose stationary distribution

is π(Ψ).

5.3.2 A multiscale approach for surrogate modeling

The link between the coarse and the fine-scale conductivity fields is usually non-

trivial because one needs to take into account the effects of all the scales present at

the fine level. In this paper, we seek an inexpensive upscaling/multiscale procedure



97

that can screen out the proposals and avoid unnecessary fine-scale simulations. In

our coarse-scale model, we will only upscale saturated hydraulic conductivity field

using flow-based techniques [79]. As for nonlinear parameters, we will use simple vol-

ume averaging. This corresponds to a multiscale procedure where multiscale basis

functions are used for pressure equation [17]. One can use nonlinear homogenization

techniques for upscaling these parameters; however, this will make the upscaling CPU

demanding. Later, we will discuss the effects of upscaling errors on our sampling.

First, we briefly describe flow-based upscaling techniques [79] which is one of

the commonly used multiscale methods in several researches. In these techniques,

coarse-grid conductivities are computed rather than multiscale basis functions are

constructed on a coarse grid. The flow equation is solved on the coarse grid with

these computed coarse-grid conductivities. Here is the brief description.

Consider the fine-scale hydraulic conductivity that is defined in the domain with

underlying fine grid as shown in Figure 5.1. On the same graph we illustrate a coarse-

scale partition of the domain. To calculate the coarse-scale saturated hydraulic

conductivity field at this level we need to determine it for each coarse block, K. The

coarse block conductivity can be defined both using the solutions of local or global

problems. The main idea of the calculation of a coarse-scale conductivity is that

it delivers the same average response as that of the underlying fine-scale problem

locally. The calculation of the coarse-scale conductivity based on local solutions is

schematically depicted in Figure 5.1. For each coarse domain K we solve the local

problems

div(Ks(x)∇φj) = 0, (5.10)

with some coarse-scale boundary conditions. One of such boundary conditions is

given by φj = 1 and φj = 0 on the opposite sides along the direction ej and no flow
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boundary conditions on all other sides. For these boundary conditions the coarse-

scale conductivity is given by

(K∗s (x)ej, el) =
1

|K|

∫
K

(Ks(x)∇φj(x), el)dx, (5.11)

where φj is the solution of (5.10) with prescribed boundary conditions. Various

boundary conditions can have some influence on the accuracy of the calculations,

including periodic, Dirichlet and etc. These issues have been discussed in [79]. In

particular, for determining the coarse-scale conductivity field one can choose the local

domains that are larger than target coarse block, K, for (5.10). Further (5.11) is used

in the domain K, where φm are computed in the larger domains with correct scaling

(see [79]). This way one reduces the effects of the artificial boundary conditions

imposed on K. These issues have been also discussed, for example, in [79].

As for parameters representing nonlinearities, we use volume averaging. More

precisely, we define

θ∗r =
1

|K|

∫
K

θr.

Similarly, we average the other quantities θs, α, n and get the volume averaging

value θ∗s , α
∗, n∗. Furthermore, these coarse-grid quantities are used to solve Richards’

equation on a coarse grid. This computation is inexpensive as it involves fewer coarse

domains. For example, elapsed time to solve Richards’ equation on the coarse grid

for one sample is 6.7 seconds. On the other hand, it takes 115.6 seconds to solve it

on the fine grid. Next, we briefly demonstrate some numerical results that compare

coarse- and fine-grid simulations results. In Figures 5.2 and 5.3, we depict the soil

moisture response on the top surface (measured data) for fine and coarse models. The

figures on the left represent the soil moisture distribution for the fine-scale model.

The figures in the middle represent the average fine-scale model. The figures on

the right represent the response from coarse-grid models. As we see that our coarse

model captures the main features of the fine-scale models.
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Fig. 5.2. (Left): Soil moisture on the fine grid. (Middle): Fine-scale
soil moisture averaged on a coarse grid. (Right): Coarse-scale soil
moisture data obtained using upscaled model.

Note that the upscaled model will be used as a preconditioner in the sampling

process. For the efficiency of the algorithm, we need to be able to predict the results

of the fine-scale simulations based on the results of upscaled models. One can use

a different upscaling strategy, e.g., average Yi and Xi. We did not compare various

upscaled methods in this paper and would like to use flow-based upscaling technique

to speed-up the sampling procedure.
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u

Fig. 5.3. (Left): Soil moisture on the fine grid. (Middle): Fine-scale
soil moisture averaged on a coarse grid. (Right): Coarse-scale soil
moisture data obtained using upscaled model.

5.3.3 Two-stage algorithm

To introduce two-stage algorithm, we consider the posterior probability distribu-

tion that corresponds to the coarse-grid model. It is given by

π∗(Ψ) ∝ exp

(
−
∫ Tfinal

0
(F ∗Ψ(t)− Fobs(t))2dt

σ2
c

)
P (Ψ), (5.12)

where F ∗Ψ(t) is an average flux value calculated with the parameter Ψ on the coarse

grid, Fobs is the measured flux data as defined earlier, and σf is modified error

measurement for the coarse-grid response. This quantity can be computed based
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on correlation between fine-scale and coarse-scale results performed based on a few

simulations. Also consider the posterior probability distribution that corresponds to

the fine-grid model given by

π(Ψ) ∝ exp

(
−
∫ Tfinal

0
(FΨ(t)− Fobs(t))2dt

σ2
f

)
P (Ψ),

where FΨ(t) is an average flux value calculated with the parameter Ψ on the fine grid.

For a given proposal distribution q(y|x), the two stage Metropolis-Hasting MCMC

method can be defined as following.

Algorithm II (Two stage Metropolis-Hasting MCMC)

� Step1. Given parameter Ψn generate Y from q(Y |Ψn).

� Step2. Accept Y with probability

Pr1 = min

(
1,
q(Ψn|Y )π∗(Y )

q(Y |Ψn)π∗(Ψn)

)
,

� Step3. If Y is accepted at the step2, accept Y as a sample with probability

Pr2 = min

(
1,
π(Y )π∗(Ψn)

π(Ψn)π∗(Y )

)
,

The advantage of the two-stage MCMC is that we can screen out bad proposals

based on the upscaled models that are cheap to implement.

5.4 Numerical Experiments

5.4.1 Numerical implementation

In this section we discuss the numerical implementation for the two stage MCMC

algorithm.
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The domain we take for the implementation is the box with the dimensions

100m × 100m × 3.31m. We discretize the domain with a rectangular mesh. We

take a 15 × 15 and 25 × 25 fine scale model, and a 5 × 5 coarse scale model. We

assume that the heterogeneities are only in the horizontal direction aerially, and not

vertical (layering). We thus perform only areal coarsening. However, for the solu-

tion of the finite element mesh, 44 layers are introduced in the domain, with finer

discretization near the top and bottom boundaries, and coarser in the center of the

domain.

In our implementation,we assume that the distribution of each component, sand,

silt, and clay, has a log-normal Gaussian distribution., which means that Yi(x, ω) is

a Gaussian process with the covariance kernel. We take a Gaussian covariance kernel

for the KLE for each material (sand, silt, and clay),

Ci(x, y) = σ2 exp
(
−|x1 − y1|2

2L2
1i

− |x2 − y2|2

2L2
2i

)
, (5.13)

with correlation lengths L11 = 0.3, L21 = 0.5, L12 = 0.6, L22 = 0.3, L13 = 0.3, and

L23 = 0.3 respectively for sand, silt, and clay, and a constant σ2 = E(Y 2
i ) = 2. Note

that one can choose different correlation lengths and also assume the correlation

lengths to be random within the proposed framework.

We take zik (see (5.4)) to be independent standard Gaussian random variables.

Now given initial value z0, we get the next proposal

zn+1 = zn + δN(0, 1), (5.14)

where δ is a constant and N(0, 1) is a standard normal distribution. We keep 25

terms for the truncated KLE for each constituent. We impose hard constraints on

the distributions of sand, silt, and clay and assume that their values are given at

some fixed locations. This is done by solving a linear system resulting in a linear

subspace of our parameter space (a hyperplane). For example, if we have truncated
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KLE which consists of 25 terms, the expansion for Yi can be represented by following

matrix multiplication.

Φizn = [φi1(x`), φ
i
2(x`), . . . , φ

i
25(x`)]z

n,

where φij, (j = 1, . . . 25) are eigenfunctions from the eigenvalue problem (5.3), x`,

(` = 1, . . . Nf ) are grid points on the fine-scale and zn is a random vector proposal

defined on (5.14). However, if Yi values are known at 6 locations, one needs to choose

19 of elements of zn randomly and solve the 6 equations with 6 unknowns, i.e. we

need to solve (Φi)
′
x = bi where (Φi)

′
is a truncated matrix from the matrix Φi and

bi is the known Yi values at the specific locations. In our simulations, we search

6×6 matrices in 6×25 matrix with the lowest condition number. This can be easily

done using QR decomposition. Now using these expansion parameters, we get KL

expansion of Yi , i = 1, 2, 3 for each material sand, silt, and clay.

After obtaining the KLE for each material, we compute the percentage of each

and get the material parameters using ROSETTA program equipped with these

percentages. We run SWMS-3D to solve Richards’ equation on the coarse grid. We

have the volume averaging material parameter values and upscaled conductivity field

for the input of SWMS-3D. We get nodal values of the water content for a output of

SWMS-3D. Now let us define

G∗(zn) =

∫ T

0

(F ∗zn(t)− Fobs(t))2dt.

where F ∗zn is an average flux value calculated on the coarse grid with the proposal

zn. We accept the trial zn+1 with probability

Pr = exp(−G
∗(zn+1)−G∗(zn)

σ2
c

).
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Now if this sample is accepted, we run the SWMS-3D on the fine grid and get the

water content value for the fine grid vertices. Then we compute

G(zn) =

∫ T

0

(Fzn(t)− Fobs(t))2dt.

where Fzn is an average flux value calculated on the fine grid with the proposal zn.

We accept this sample with probability

Pr = exp

(
(−G(zn+1)

σ2
f

)− (−G(zn)

σ2
f

) + (−G
∗(zn+1)

σ2
c

)− (−G
∗(zn)

σ2
c

)

)
.

In our implementation, we take σc = σf = σ though one can choose a different σc

depending on some initial runs. We test 10,000 samples in the MCMC for every

simulation.

5.4.2 Numerical results

We present numerical results for four cases:

� 15× 15: σ = 0.005 and δ = 0.1 (Figure 5.4)

� 25× 25: σ = 0.01 and δ = 0.1 (Figure 5.5, 5.6, 5.7, 5.8)

� 25× 25: σ = 0.02 and δ = 0.1 (Figure 5.10, 5.11, 5.12, 5.13)

� 25× 25: σ = 0.02 and δ = 0.2 (Figure 5.15, 5.16, 5.17, 5.18)

Here 15 × 15 means that we used 15 × 15 discretized domain as our fine-scale

model. In every case, we use 5× 5 disctretized domain as our coarse-domain model.

σ is a measurement precision and δ is a variance of the proposal distribution.

The acceptance rate for each case is presented as: which can be calculated by

the ratio of the number of the accepted trials at the first stage to the number of the
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Table 5.1
Accepted rate

Mesh size σ δ acceptance rate
15× 15 0.01 0.1 0.1010
25× 25 0.01 0.1 0.0317
25× 25 0.02 0.1 0.0156
25× 25 0.02 0.2 0.0038

accepted trials at the second stage. Note that using single-stage MCMC based on

fine-scale runs, these computations are difficult to perform due to long CPU times.

In the Table 5.1, we can observe that the acceptance ratio is higher when the fine

grid is taken to be 15× 15 instead of 25× 25. This is because the coarse-scale model

gives more accurate results for 15× 15 as we use the less coarsening. The table also

shows that when we use smaller δ, the acceptance rate is higher. This is because at

each proposal step, the new proposal value is closer to the previous proposal value

when you use the smaller δ. We also observe that larger σ gives less acceptance rate.

This is because using larger measurement precision means we need more accurate

sampled data to the real observed data. So our proposal needs to be closer to the

reference response that means we accept only accurate samples. This is the reason

why the acceptance rate is smaller when we use the larger precision value σ.

For each case we present the plots for the average errors G(zn) and some saturated

conductivity realizations. Figures 5.4, 5.5, 5.10 and 5.15 show that the preceding

algorithm gives us convergences to steady states. We can observe that all the average

errors with different σ and δ show the convergence. Moreover, we can see that the the

results with smaller δ value show more rapid convergence. This is because smaller

δ makes the next trial be close from the previous trial and it makes the difference

between the global errors of previous and next steps smaller. For example, if we

get a good sample from some trial, then next trial would be chosen closely from

the good sample if we use a small δ value. When we compare Figures 5.5 and 5.10,
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we see that larger σ value give less fluctuational error movement. We notice that

larger σ gives smaller accepted probability which results in more accurate samples

for each iterative step. Therefore, the error between the previous trial and next trial

is smaller with larger σ value.

In Figures 5.6, 5.11, 5.16, the reference and three accepted distributions of the

saturated conductivities are presented. Also, in Figures 5.7, 5.8, 5.9, 5.12, 5.13, 5.14

and 5.17, 5.18, 5.19, the reference configuration is shown in the upper left, and three

accepted distributions from the preceding algorithm are presented in the rest of plots

for sand, silt, and clay, respectively. We can observe good sampling results especially

with smaller σ and δ values. Let’s compare the cases, Figures 5.7-5.9 and Figure

5.12-5.14. As we mentioned above, larger σ value allow us to accept only accurate

samples. Therefore, the case, Figures 5.7-5.9, only accepts 130 samples out of 10,000

trials but the case, Figures 5.12-5.14, accepts 160 samples. This is why smaller σ

gives a bit better sampling results out of limited number of trials. Also we observe

from Figures 5.12-5.14 and 5.17-5.19 that larger δ gives worse sampling results. This

is because larger δ makes the next trial be far way from the previous trial and it

makes the error big which results in poor sampling.
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Fig. 5.4. Average errors for the case of 15× 15: σ = 0.005 and δ = 0.1

Fig. 5.5. Average errors for the case of 25× 25: σ = 0.01 and δ = 0.1
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Fig. 5.6. Reference (upper left) and three different accepted ks
distribution for the case of 25× 25: σ = 0.01 and δ = 0.1

Fig. 5.7. Reference (upper left) and three different accepted sand
distribution for the case of 25× 25: σ = 0.01 and δ = 0.1
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Fig. 5.8. Reference (upper left) and three different accepted silt
distribution for the case of 25× 25: σ = 0.01 and δ = 0.1

Fig. 5.9. Reference (upper left) and three different accepted clay
distribution for the case of 25× 25: σ = 0.01 and δ = 0.1
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Fig. 5.10. Average errors for the case of 25× 25: σ = 0.02 and δ = 0.1
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Fig. 5.11. Reference (upper left) and three different accepted ks
distribution for the case of 25× 25: σ = 0.02 and δ = 0.1

Fig. 5.12. Reference (upper left) and three different accepted sand
distribution for the case of 25× 25: σ = 0.02 and δ = 0.1
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Fig. 5.13. Reference (upper left) and three different accepted silt
distribution for the case of 25× 25: σ = 0.02 and δ = 0.1

Fig. 5.14. Reference (upper left) and three different accepted clay
distribution for the case of 25× 25: σ = 0.02 and δ = 0.1
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Fig. 5.15. Average errors for the case of 25× 25: σ = 0.02 and δ = 0.2
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Fig. 5.16. Reference (upper left) and three different accepted ks
distribution for the case of 25× 25: σ = 0.02 and δ = 0.2

Fig. 5.17. Reference (upper left) and three different accepted sand
distribution for the case of 25× 25: σ = 0.02 and δ = 0.2
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Fig. 5.18. Reference (upper left) and three different accepted silt
distribution for the case of 25× 25: σ = 0.02 and δ = 0.2

Fig. 5.19. Reference (upper left) and three different accepted clay
distribution for the case of 25× 25: σ = 0.02 and δ = 0.2
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6. CONCLUSION

6.1 Summary

This dissertation concentrates on designing multiscale finite element methods and

uncertainty quantification techniques for Richards’ equation especially in the highly

heterogeneous porous media. In Chapter II, we presented Richards’ equation, a

mathematical model that describes fluid flow in unsaturated porous media. There

are several formulations of the Richards’ equation, such as the head-form, θ-form, and

the coupled-form and through this dissertation we used coupled-form of Richards’

equation due to its charateristics of mass conservancy. Also there are several con-

stitutive relations for the moisture content and hydraulic conductivity which are

the main components to model Richards’ equation. Haverkamp model, exponential

model, and van Genuchten model are the most widely used empiricaly construced

models that describes the functional relation of relative hydraulic conductivity to

the pressure head. For our numerical simulations in this dissertation, we used these

three models for Richards’ equation. In this chapter, we also described the finite

element based numerical discretization of Richards’ equation. We have shown that

under suitable conditions, there exists a unique solution for this discretized equation.

In Chapter III, MsFEM for Richards’ equation has been presented. MsFEM con-

sists of two parts; constructing basis functions that capture the multiscale structure

of the solution and developing a global formulation which couples the basis functions

to provide a reasonable approximation of the solution. Many coarse spaces have

been introduced and constructed to capture the fine-scale features and give an accu-

rate coarse-scale solution. We introduced three differerent coarse spaces for MsFEM,

linear boundary conditions coarse space, coarse space from oversampling techniques

and energy minimizing coarse space. Further, we presented coarse spaces with local

spectral information which gives faithful coarse-scale approximaion by complement-

ing the multiscale coarse space. We applied MsFEM to Richards’ equation with
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separable coefficient and displayed some numerical examples using introduced coarse

spaces. We observed from the numerical results that using local spectral spaces for

MsFEM, we can get an accurate coarse-scale solution for Richards’ equation.

We used MsFEM for parameter-dependent problems for numerical simulation of

Richards’ equation. In this simulation, nonseparable Richards’ equation has been

considered and we regarded it as a parameter-dependent elliptic equation. One of

the main difficulties to solve this equation using MsFEM is expensive computational

time to construct the basis functions. To overcome this problem, we employed tech-

niques from RB which gives an efficient way to solve local spectral problems for

each parameter value by constructing the solution of the eigenvalue problem using

eigenvectors for parameter values computed in the offline stage.

In Chapter IV, we study robust iterative solvers for finite element discretizations

of steady-state Richards’ equation. We assume that the nonlinear conductivity field

can be written as a product of a nonlinear function and a heterogeneous spatial

function that has high contrast. Due to spatial heterogeneities, the number of itera-

tions in an iterative method, in general, will depend on the contrast. To alleviate this

problem, we design and investigate iterative solvers that converge independent of the

physical parameters (small spatial scales and large contrast). The proposed iterative

solvers consist of outer and inner iterations, as it is commonly done in the literature.

Outer iterations, designed to handle nonlinearities, linearize the equation around the

previous solution state. We show that this linearization yields contrast independent

iterative procedure. For inner iterations, we constructed domain decomposition pre-

conditioners to solve this problem. Especially we used the local spectral space for our

preconditioner and show that it makes the inner iterations of our iterative solver be

independent of the contrast. Since the same preconditioner was used for every outer

iteration, this makes the overall solution process quite efficient. Numerical results

are presented to confirm the theoretical findings.
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Lastly, uncertainty quantification techniques for Richards’ equation is introduced

in Chapter V. We are interested in sampling hydraulic conductivities conditioned

on given flux data. We performed MCMC algorithm to sample the conductivities.

For each step of MCMC, we need to solve Richards’ equation with given realization

of the conductivity field, which results in huge computational time especially on a

fine grid. Therefore, we need some coarsening process. We performed an upscaling

method, one of the commonly used multiscale methods, to coarsen the conductivity

field and suggeted a two-stage MCMC algorithm. Compared to one-stage MCMC,

two-stage MCMC can screen out all the bad proposals by just computing solution on

a coarse-grid and gives much faster sampling process. Several sampling results with

different parameter values are presented and showed that our sampling technique is

efficient.



119

REFERENCES

[1] T. Arbogast, M.F. Wheeler, and N.Y. Zhang, A nonlinear mixed finite element
method for a degenerate parabolic equationarising in flow in porous media, SIAM
J. Numer. Anal., 33 (1996), pp. 1669-1687.

[2] A. Abdulle, and G. Vilmart, A priori error estimates for finite element methods
with numerical quadrature for nonmonotone non linear elliptic problems, Nu-
merische Mathematik, 121 (2012) , pp. 397-431. Submitted for publication.

[3] M. Bause, and P. Knabner, Computation of variably saturated subsurface flow by
adaptive mixed hybrid finite element methods Advances in Water Resources, 27
(2004), pp. 565-581.

[4] S.C. Brenner, and L.R. Scott, The Mathemethical Theory of Finite Element Meth-
ods, Springer-Verlag, Berlin,1994.

[5] R.H. Brooks, and A.T. Corey, Properties of porous media affecting fluid flow,
Journal of the Irrigation and Drainage Division, Vol. 92(1966), pp. 61-90.

[6] E. Buckingham E. Studies on the movement of soil moisture, U.S. Dept. of Agri-
culture Bureau of Soils Bulletin, 38 (1907), pp. 28-61.

[7] X.C. Cai, and D.E. Keyes, Nonlinearly preconditioned inexact Newton algorithms,
SIAM J. Sci. Comput., 24 (2002), pp. 183-200.

[8] X.C. Cai, L. Marcinkowski, and P. Vassilevski, An element agglomeration nonlin-
ear additive Schwarz preconditioned Newton method for unstructured finite ele-
ment problems, Appl. Math., 50 (2005), pp. 247–275.

[9] V. Calo, Y. Efendiev, and J. Galvis, A note on vatiational multiscale methods for
high-contrast heterogeneous flows with rough source terms, Advances in Water
Resources, 34 (2011), pp. 1177-1185.

[10] M.A. Celia, E.T. Bouloutas, and R.L. Zarba, A general mass-conservative nu-
merical solution for the unsaturated flow equation, Water Resources Research, 26
(1990), pp. 1483-1496.

[11] G. Chavent. and J. Jaffré, h Mathematical Models and Finite Elements for Reser-
voir Simulation; Single Phase, Multiphase and Multicomponent Flows through
Porous Media, Elsevier Science Publishers, New York, 1986.

[12] Z. Chen, W.B. Deng, and H. Ye, Upscaling of a class of nonlinear parabolic equa-
tions for the flow transport in heterogeneous porous media, Communications in
Mathematical Sciences 3 (2005), pp. 493-515.

[13] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadel-
phia, 2002.

[14] M. Dryja, and W. Hackbusch, On the nonlinear domain decomposition method,
BIT Numerical Mathematics, Volume 37 (1997), pp. 296-311.



120

[15] J. Dugundgi, Topology, Allyn and Bacon, Boston, 1966.

[16] L.J. Durlofsky, Coarse scale models of two-phase flow in heterogeneous reser-
voirs: Volume averaged equations and their relation to existing upscaling tech-
niques, Comp. Geosciences 2 (1998), pp. 73-92.

[17] Y .Efendiev, and T. Hou, Multiscale Finite Element Methods, Theory and Ap-
plications, Springer, New York, 2009.

[18] Y. Efendiev, T. Hou, and V. Ginting, Mutlscale finite element methods for non-
linear problems and their applications, Comm. Math. Sci. 2 (2004), pp. 553-589.

[19] Y. Efendiev, T. Hou, and X.H. Wu, Convergence of a nonconforming multiscale
finite lement method, SIAM J. Numer. Anal. 37 (2000), pp. 888-910.

[20] Y. Efendiev, V. Ginting, T. Hou, and R. Ewing, Accurate multiscale finite ele-
ment methods for two-phase flow simulations, J. Comp. Physics, 220 (2006), pp.
155-174.

[21] Y. Efendiev, J. Galvis, and X. H. Wu, Multiscale finite element methods for high-
contrast problems using local spectral basis functions, Journal of Computational
Physics, 230 (2011), pp. 937-955.

[22] Y. Efendiev, J. Galvis, and P. Vassielvski, Spectral Element Agglomerate Alge-
braic Multigrid Methods for Elliptic Problems with High-Contrast Coefficients,
Domain Decomposition Methods in Science and Engineering XIX, 78 (2011), pp.
407-414.

[23] Y. Efendiev, and J. Galvis, A domain decomposition preconditioner for multi-
scale high-contrast problems, in Domain Decomposition Methods in Science and
Engineering XIX 78 (2011), pp. 189-196.

[24] Y. Efendiev, J. Galvis and F. Thomines, A systematic coarse-scale model re-
duction technique for parameter-dependent flows in highly heterogeneous media
and its applications, accepted, 2012.

[25] M.W. Farthing, C.E. Kees, and C.T. Miller, Mixed finite element methods and
higher order temporal approximations for variably saturated groundwater flow,
Advances in Water Resources, 26 (2003), pp. 373-394.

[26] J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale
flows in high contrast media, SIAM MMS, 8 (2010), pp. 1461-1483.

[27] J. Galvis, and Y. Efendiev, Domain decomposition preconditioners for multiscale
flows in high-contrast media: Reduced dimension coarse spaces, SIAM MMS,
Volume 8 (2010), pp. 1621-1644 .

[28] J. Galvis, and Y. Efendiev, Domain decomposition preconditioners for multiscale
flows in high contrast media. Reduced dimension coarse spaces, Multiscale Model.
Simul. 8 (2010), pp. 1621-1644.

[29] J. Galvis, and Y. Efendiev, Domain decomposition preconditioners for multi-
scale flows in high contrast media, Multiscale Model. Simul. 8 (2010), pp. 1461-
1483.



121

[30] W.R. Gardner, Some steady-state solutions of the unsaturated mositure flow
equation with application to evaporation from a water table, Soil Sci. 85 (1958),
pp. 228-232.

[31] I.G. Graham, P.O. Lechner, and R. Scheichl, Domain decomposition for multi-
scale PDEs, Numer. Math., 106 (2007), pp. 589-626.

[32] I.G. Graham, and R. Scheichl, Robust domain decomposition algorithms for mul-
tiscale PDEs, Numer. Methods Partial Differential Equations, 23 (2007), pp. 859-
878.

[33] R. Haverkamp, M. Vauclin, J. Touma, P. Weirenga, and G. Vachaud, Comparison
of numerical simulation models for one-dimensional infiltration, Soil Sci. Soc.
Am. J., 41 (1977), pp. 285-294.

[34] R. Haverkamp, and M. Vauclin, A note on estimating finite difference interblock
hydraulic conductivity values for transient unsaturated flow problems, Water Re-
sources Research, 15 (1979), pp. 181-187.

[35] M.C. Hill, Solving groundwater flow problems by conjugate gradient methods
and the strongly implicit procedure, Water Resources Research 26 (1990), pp.
1961-1969.

[36] T. Hou, and X.H. Wu, A multiscale finite element method for elliptic problems
in composite materials and porous media, J. Comput. Phys. 134 (1997), pp. 169-
189.

[37] T.Y. Hou, X.H. Wu, and Y. Zhang, Removing the cell resonance error in the
multiscale finite element method via a Petrov-Galerkin formulation, Communica-
tions in Mathematical Sciences (2004), pp. 185-205.

[38] T.Y. Hou, X.H. Wu, and Z. Cai, Convergence of a Multiscale Finite Element
Method for Elliptic Problems With Rapidly Oscillating Coefficients, Math. Com-
put., 68 (1999), pp. 913-943.

[39] J. K. Huang, and M. Th. van Genuchten, The SWMS-3D Code for Simulating
Water Flow and Solute Transport in Three-Dimensional Variably-Saturated Me-
dia, Version 1.0, Research Report No. 139, U.S. Salinity Laboratory, USDA-ARS,
Riverside, California, 1995.

[40] K. Huang, R. Zhang, and M.T. Van Genuchten, An Eulerian-Lagrangian ap-
proach with an adaptively corrected method of characteristics to simulate variably
saturated water flow, Water Resources Research, 30 (1994): pp. 499-507.

[41] P.S. Huyakorn, and G.F. Pinder, Computational methods in subsurface flow,
Academic Press,San Diego, 1985.

[42] P. Jenny, S.H. Lee, and H. Tchelepi, Multi-scale finite volume method for elliptic
problems in subsurface flow simulation, J. Comput. Phys., 187 (2003), pp. 47-67.

[43] T. Kim, J. Pasciak, and P. Vassilevski, Mesh-independent convergence of the
modified inexact Newton method for a second order non-linear problem, Numer.
Linear Algebra Appl., 13 (2006), pp. 23-47.



122

[44] L.K. Kuiper, A comparison of iterative methods as applied to the solution of
the nonlinear three-dimensional groundwater flow equation., SIAM Journal of
Scientific and Statistical Computing 8 (1987), pp. 521-528.
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