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ABSTRACT 

 

Dynamic Operational Risk Assessment with Bayesian Network. (August 2012) 

Shubharthi Barua, B.Sc., Bangladesh University of Engineering & Technology 

Chair of Advisory Committee: Dr. M. Sam Mannan 

 

Oil/gas and petrochemical plants are complicated and dynamic in nature. 

Dynamic characteristics include ageing of equipment/components, season changes, 

stochastic processes, operator response times, inspection and testing time intervals, 

sequential dependencies of equipment/components and timing of safety system 

operations, all of which are time dependent criteria that can influence dynamic 

processes. The conventional risk assessment methodologies can quantify dynamic 

changes in processes with limited capacity. Therefore, it is important to develop method 

that can address time-dependent effects. The primary objective of this study is to 

propose a risk assessment methodology for dynamic systems. In this study, a new 

technique for dynamic operational risk assessment is developed based on the Bayesian 

networks, a structure optimal suitable to organize cause-effect relations. The Bayesian 

network graphically describes the dependencies of variables and the dynamic Bayesian 

network capture change of variables over time. This study proposes to develop dynamic 

fault tree for a chemical process system/sub-system and then to map it in Bayesian 

network so that the developed method can capture dynamic operational changes in 
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process due to sequential dependency of one equipment/component on others. The 

developed Bayesian network is then extended to the dynamic Bayesian network to 

demonstrate dynamic operational risk assessment. A case study on a holdup tank 

problem is provided to illustrate the application of the method. A dryout scenario in the 

tank is quantified. It has been observed that the developed method is able to provide 

updated probability different equipment/component failure with time incorporating the 

sequential dependencies of event occurrence. Another objective of this study is to show 

parallelism of Bayesian network with other available risk assessment methods such as 

event tree, HAZOP, FMEA.  In this research, an event tree mapping procedure in 

Bayesian network is described. A case study on a chemical reactor system is provided to 

illustrate the mapping procedure and to identify factors that have significant influence on 

an event occurrence. Therefore, this study provides a method for dynamic operational 

risk assessment capable of providing updated probability of event occurrences 

considering sequential dependencies with time and a model for mapping event tree in 

Bayesian network.      
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1. INTRODUCTION 

 

1.1 Background 

 The offshore oil/gas, chemical, petrochemical, food, power, papermaking and 

other process industries consist of numerous equipment and unit operations, thousands 

of control loops, and exhibit dynamic behavior. These process facilities have to deal with 

different hazards and several types of risks. At the same time, they have to meet the 

demand for higher quality of products by following rigorous environmental and safety 

regulations. Failure to manage or minimize hazards can result into serious incidents. For 

example, process facilities involve a large number of pumps, compressors, separators, 

complex piping system and storage tanks, etc. in congested area. A small mistake by an 

operator or a problem in the process system may escalate into a disastrous event as the 

process area is congested with process equipment and piping systems, and has limited 

ventilation and escape routes.  Process plants are subjected to different types of risks in 

daily operations, which include process risks, risks due to reactivity, toxicity and 

mechanical hazards, fire and explosion risks. Therefore, it is very important to identify 

hazards, perform risk assessments, and take proper initiatives to minimize/remove 

hazards and risks; else a catastrophic accident may result.   

 

 

 

This thesis follows the style of Journal of Loss Prevention in the Process Industries. 
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From case histories, it has been observed that catastrophic accidents have a 

significant effect on people, environment, and society. Catastrophic accidents such as the 

Flixborough disaster, the Bhopal incident, and the Piper Alpha disaster caused fatalities 

and unbearable economic loss. The U.S. Chemical Safety Board (U.S. CSB, April 06, 

2012) completed investigation on sixty-five serious accidents that occurred in the U.S.A. 

since 1998. Investigations of catastrophic accidents have reported insufficient process 

safety, inadequate management of change and lack of risk reductions measures as root 

causes of these accidents. For example, a vapor cloud explosion taking place at BP 

Texas City refinery in 2005 resulted in 15 fatalities, 180 injuries and $1.5 billion in 

losses (U.S. CSB, 2007). The investigation revealed that insufficient process safety and 

lack of risk reduction measures contributed to this catastrophic accident. The U.S. CSB 

investigation on natural gas explosion at ConAgra foods processing facility North 

Carolina in 2009, and Kleen Energy power plant Connecticut in 2010, reported failure to 

adopt inherently safer method from fire and explosion hazard perspective led to 

explosions (Khakzad et al., 2011). In 2010, a fire and explosion, resulting from a 

blowout, at the Macondo well resulted in 11 deaths and 17 injuries (U.S. National 

Commission on BP accident, 2011). Also the continuous spill from the wellhead for 87 

days had disastrous effects on the environment and wildlife surrounding the Gulf of 

Mexico.  

Presently, The U.S. CSB has been conducting investigations on fourteen other 

major accidents in The U.S.A. Disastrous accidents in refineries, power plants and 

offshore platforms involved fatalities and great financial loss. The accidents have 
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significantly affected people’s perception, and contributed greatly to raise concern to 

emphasize process safety. It is explicit that effective risk assessment and adequate 

process safety management can prevent or reduce severity of accidents. Therefore, 

continuous attention should be provided to improve available risk assessment 

methodologies. Also, it is important to develop new risk assessment technique that can 

provide more information and flexibility to the industry for better risk management than 

the available techniques. The objective of this research is to propose a technique for 

dynamic operational risk assessment. The following sections in this chapter demonstrate 

the problem statement, objectives and contributions of this research.  

 

1.2 Problem Statement 

The oil/gas, chemical and petrochemical process industries are complicated and 

dynamic in nature. Dynamic characteristics involve various time-dependent effects such 

as changes in seasons, aging of process equipment/component, stochastic processes, 

human error, inspection and testing time intervals, hardware failures, process 

disturbances, sequential dependencies and timing of safety system operations. It is 

important to quantify risks arising from above stated time-dependent effects. But, 

conventional risk assessment methodologies have limited ability to quantify dynamic 

changes in processes. For example, fault tree or event tree describes the relationship 

between the final outcome and different component/equipment failure but failed to 

incorporate system dynamic response to time, variations of process variables, operator 

actions, sequential dependencies etc. Catastrophic accidents may result when critical 
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process parameters exceed the safe operating region without being detected (Yang,2010; 

Yang and Mannan, 2010) due to protective system failure or timing of safety system 

operations. Yang (2010) described BP Texas City refinery accident as an example of 

operational failure in process industry. Therefore, it can be stated that available 

methodologies are not able to provide accurate results because of their inadequate ability 

to describe the variation of operational risk as time-dependent deviations, or the changes 

occurring in the process. Hence, it is important to develop a method that has the ability 

to quantify risk arising due to different time-dependent effects.  

 

1.3 Research Objective 

The purpose of this study is to develop a dynamic operational risk assessment 

method that can provide updated risk with time, model sequential dependencies, 

demonstrate the effect of inspection and testing time intervals and incorporate other time 

dependent effects. Bayesian network is used to develop the new dynamic operational 

risk assessment method. The objectives of this research are to:  

 Develop a dynamic risk assessment methodology based on Bayesian network , 

which is a universally applicable probabilistic cause-effect model structure 

 Demonstrate parallelism of Bayesian network based risk assessment 

methodologies with other available methodologies  

 Describe advantages of Bayesian network based risk assessment methodology’s 

application in chemical process safety over other methods 
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GeNIe (Decision Systems Laboratory, 2010), an open source software developed 

by Decision System Laboratory, University of Pittsburgh, is used to fulfill the objectives.  

 

1.4 Research Contributions  

Conventional risk assessment methodologies are static in nature. They also have 

limited ability to quantify different time dependent effects such as, inspection and testing 

time interval, operator response times and equipment/component ageing. This research 

demonstrates the application of Bayesian network to develop a methodology that has the 

ability to provide continuous update of risk with time. Furthermore, developed approach 

allows us to incorporate changes in the failure probability of equipment based on 

inspection and testing time interval. Bayesian network has widespread application in the 

field of artificial intelligence, medical diagnostics, financial sector, etc. The application 

of Bayesian network in the field of chemical process safety, risk analysis and accident 

modeling is relatively new. Current available studies are only as follows: 

 Khakzad et al. (2011) described mapping of fault tree of process industry in 

Bayesian network based on the method provided by Bobbio et al. (2011) 

 Pasman and Rogers (2011) described incorporation of Bayesian network in Layer 

of Protection Analysis (LOPA) 

 Khakzad et al. (2012) further provided methodology for mapping bow-tie 

analysis in Bayesian network and demonstrate probability adapting 

However, the first two studies are static in nature. The authors in the last one 

described the method as dynamic risk assessment. This method can update probability in 
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presence of new information. But, this study did not consider the sequential dependency 

and the effect of time in the model. This research provides a methodology based on 

Bayesian network that has the ability to show the effect of time and provides updated 

probability with time in presence of new information. Therefore, this research will 

provide a new tool for dynamic operational risk assessment that can be useful for oil/gas, 

chemical, petrochemical and other industries for quantitative risk analysis.   

 

1.4.1 Relationship with previous research at MKOPSC 

In figure 1, researches since 2007 done on dynamic operational risk assessment 

and Bayesian statistics at Mary Kay O’Connor Process Safety Center (MKOPSC) are 

described.  

In 2007, Gen Woong Yun developed the Bayesian-LOPA methodology for 

performing risk assessment of a LNG importation terminal (Yun et al., 2009). This 

methodology employs Bayesian statistics to update general data obtained from databases 

with plant specific data. Generic data for equipment and component are obtained from 

several databases. LNG plant specific data are used for likelihood estimation and then 

combined with generic data to get posterior data.  

In 2010, Xiaole Yang developed a dynamic operational risk assessment (DORA) 

methodology that follows semi-markovian approaches (Yang, 2010; Yang and Mannan, 

2010). DORA methodology is mainly a stochastic simulation with the ability to quantify 

events. Component inspection and testing time interval is incorporated in the DORA 

method as a critical parameter. System state trajectory simulation is performed based on 
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Monte-Carlo method. The research also demonstrates application of Bayesian statistics 

for uncertainty reduction.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Researches on dynamic operational risk assessment and Bayesian statistics in 

MKOPSC 

 

 

In this research, a new method for dynamic operational risk assessment method is  

demonstrated through applying the Bayesian network, an important subset of the 

Bayesian statistics. The methodology describes how conventional technique such as 
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Fault tree, Event tree can be improved by mapping in the Bayesian network and 

demonstrates the dynamic Bayesian network’s ability to capture change in the values of 

different variables with time. The Bayesian statistics in previous researches are used to 

reduce uncertainty. In this study, by applying the Bayesian network, causal relationship 

between causes and effects are described by assigning conditional probability, and then 

the Bayesian statistics is used for probability estimation. Also, in previous studies, the 

Bayesian statistics is applied only for probability distribution, not for discrete values. 

This study has developed discrete time Bayesian network based dynamic operational risk 

assessment, and demonstrated the application of probability distribution for developing 

continuous-time Bayesian network based risk assessment method for future work.  

 

1.5 Organization of This Thesis 

Section 1 is an introductory chapter that provides background information, 

research scope and objectives. In Section 2, brief introduction on conventional risk 

assessment methodologies, previous researches on developing dynamic risk assessment 

techniques and Bayesian network’s application for reliability and risk analysis are 

discussed. The research methodology is presented in the following Section 3. In this 

chapter, overall research framework is explained. In Section 4, a case study is 

demonstrated to illustrate the application of developed method. In that chapter, an 

application of the developed method is provided to demonstrate the advantages of 

Bayesian network over other methods. In Section 5, an event tree generalization 

technique using Bayesian network is provided to illustrate parallelism with other 
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quantitative risk assessment techniques with Bayesian network. Section 6 provides 

overall summary and recommendations for future research.  
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2. LITERATURE REVIEW 

 

2.1 General Background 

The oil/gas, chemical, petrochemical and other process industries use equipment 

such as reactors, heat exchangers, distillation columns, storage vessels, pumps, 

compressors and complicated piping system. High level of heat and mass integration has 

made chemical process plant operation very complex and any small error can result 

catastrophic consequences. It is important to identify the hazards in the process and to 

know the risks posed by these hazards. Risk is a function of probability of any event 

occurrence and its consequence severity. Risk can be expressed as the measure of 

potential loss of property, human life, economic loss and other possible effects (Yang, 

2010; Yang and Mannan, 2010). The risk assessment process identifies possible risks, 

characterizes their nature and magnitude, evaluates their occurrence probability, 

analyzes contributing factors, and assesses risk reduction measures. Risk analysis 

consists of risk assessment, risk management and risk communication (Yang, 2010; 

Yang and Mannan, 2010). The objective of performing risk assessment is to identify 

what can go wrong, how it can go wrong and its likelihood. Several qualitative and 

quantitative methods are available to perform risk analysis. The risk analysis method to 

be performed for a process is chosen depending on the scope of study required. This 

chapter provides brief introduction of the available risk analysis methodologies and 

demonstrates their limited ability of addressing different time-dependent effects of 
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dynamic process. Then a concise description of dynamic risk assessment methodologies, 

their strength and weakness are provided.    

  

2.2 Conventional Risk Assessment Methodologies 

A checklist is a methodical approach that lists all possible hazards or problems 

that may exist in a process industry. It is one of the simplest hazard identification 

methods (Khan and Abbasi, 1998). A checklist questions are mainly based on the 

operation and maintenance of a process plant, previous incident history, review of 

different documents, inspection and interview of plant personnel or based on standards 

and codes. A checklist development is dependent on the experiences of the personnel 

and it is very likely that some important aspects can be overlooked in a checklist. A 

checklist focuses on a single item at a time and has limited ability to detect hazards due 

to different operating condition in different equipment or unit operations. For these 

limitations, checklist application is limited.  

What-if analysis is a systematic method that ask question starting with “what-

if…” to identify potential irregularity in the process. It provides qualitative descriptions 

of any activity or system problem those results from human errors, abnormal process 

conditions equipment failures, etc. What-if analysis is especially useful for relatively 

simple failure scenarios.  

A safety audit or review is done to detect safety problems in working zone i.e., 

process areas, laboratories etc. A safety review is conducted for new process or during 

modification of existing processes to identify any lacks in operating procedure or to 
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detect equipment conditions that may lead to an incident. The safety audit/review report 

provides insight into plant conditions from safety point of view and recommendations 

for improvements.  

 Hazard and Operability Study (HAZOP) is the most commonly used hazard 

identification methods. A multi-disciplinary team of experienced personnel from 

operations, maintenance and design review process flow diagrams, piping and 

instrumentation diagrams, process descriptions, operating procedures to identify possible 

consequences due to deviations from normal conditions and causes of deviations. 

HAZOP is based on different guidewords and provides primary ideas about hazards 

associated in a process with recommendations for minimizing or removing them. Like 

other qualitative methods, the quality of HAZOP is dependent on the experience of the 

people conducting it. The HAZOP procedure is briefly provided by Yang (2010). Khan 

and Abbasi (1998) described two main limitations of HAZOP, i.e., limited ability to 

incorporate spatial features with plant layout and requirement of long time to perform 

study. 

The Norwegian Petroleum Directorate (NPD) was the first to make quantitative 

risk assessment mandatory for ‘Concept Safety Evaluation’ in their guideline published 

in 1981 (Norwegian Petroleum Directorate, 1981). But, it has received wide-spread 

acceptance in the oil and gas industry after the Piper Alpha disaster in 1988. The Lord 

Cullen investigation report (1990) on the Piper Alpha disaster recommended formulating 

quantitative risk assessment as an official requirement for the oil and gas industry. The 

U.K. Safety Case Regulation 1992 (UK HSE, 1992) made quantitative risk analysis 
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(QRA) mandatory for all existing and new installation in North Sea region. Since then, 

operators in the North Sea have to perform QRA studies to demonstrate that the potential 

risk is below the acceptable risk criteria and that actions have been taken to minimize the 

risk to ‘as low as reasonably practicable’. Vinnem (1998) summarized the application of 

quantitative risk assessment for offshore installations. Several quantitative risk 

assessment methods are described in this section briefly.  

In 1961, Bell Telephone Laboratories developed the fault tree analysis (Khan and 

Abbasi, 1998). In 1975, the U.S. Nuclear Regulatory Commission introduced the fault 

tree for nuclear industry (The U.S. Nuclear Regulatory Commission, 1975). Later, the 

fault tree’s application has become extensive in reliability studies in the aerospace and 

chemical process industries. It is a graphical deductive process that starts reasoning from 

the top event to the undesirable events. In the conventional fault tree, there are two static 

gates, i.e. AND-gate, and OR-gate, that connect basic events failure with intermediate 

events and top event. In this approach, to understand failure mechanism explicitly, focus 

can be given to particular system failure at a time. But, the fault tree has some 

disadvantages as it can address common cause failures with limited ability (Khan and 

Abbasi, 1998). Fault tree has weakness in quantifying risks due to dynamically changing 

behavior or environment (Siu, 1994; Khan and Abbasi, 1998). Also, the conventional 

fault tree cannot adequately capture the sequential dependencies of 

equipment/components failure. Khan and Abbasi (1998) listed several studies that 

proposed improvement in conventional fault tree. Recently, Magott and Skrobanek 

(2012) proposed a fault tree based method which is capable of analyzing time-
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dependencies. An event tree is an inductive process that demonstrates the sequences of 

different safeguards and human response failure due to an initiating event that lead to 

undesired consequences. The U.S. Nuclear Regulatory Commission (1975) introduced 

the method for nuclear industry and its application in chemical process industry is 

described by AIChE (2000), Mannan (2005), Delvosalle et al. (2006). Event tree’s 

application is advantageous to determine possible consequences probability due to 

different initiating event and subsequent safety barriers and protection failure.  

The bow-tie method is a combination of an event tree and fault tree. It is a 

graphical representation of complete accident scenario in which fault tree provides 

different causes towards a critical event and the event tree describes possible 

consequences due to the critical event. Delvosalle et al. (2006) demonstrated Bow-tie 

method’s application for accident scenario identification in process industries. Mokhtari 

et al. (2011) proposed bow-tie based risk analysis method for sea ports and offshore 

terminals. Markowski and Kotynia (2011) demonstrated application of bow-tie model in 

layer of protection analysis (LOPA).       

Layer of protection analysis (LOPA) is a semi-quantitative method that provides 

qualitative results of consequence with failure frequency data. It is derived from safety 

philosophy in the nuclear industry and became introduced to the process industry in the 

late nineties. The objective of performing layer of protection analysis is to determine 

sufficient independent safeguards that are available to prevent incidents. It should be 

noted all safeguards are not always independent layers of protection. Center for 

Chemical Process Safety (2001) described criteria for safeguards to be considered as 
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independent layer. Details of LOPA procedure are available at Center for Chemical 

Process Safety (2001), Markowshi A.S. (2006). Yun, G.W. (2007) incorporated 

Bayesian statistics to propose Bayesian-LOPA methodology for risk assessment.   

 

2.3 Dynamic Risk Assessment Methods 

Conventional risk assessment methods are static in nature. The oil/gas, chemical, 

petrochemical and other process industries are dynamic in nature. The process condition 

is dependent on variation of certain process variables which is affected by several time-

dependent effects such as season changes, ageing of equipment/components, sequential 

dependencies, operator experiences and operation time, inspection and testing time 

interval etc. But, the conventional risk assessment methodologies have limited ability to 

quantify these time dependent effects. Siu (1994) summarized different methods 

developed for performing dynamic process systems risk assessment.  

The Markov modeling is one of the widely accepted methods for dynamic risk 

analysis. State transition diagram is constructed to represent possible system states and 

transition from one state to another. A transition matrix is developed to characterize the 

Markov process. One of the limitations of the Markov process is that with increase of the 

system size, number of states also increases. It makes construction of system state 

transition diagram and computation complex (Reliability Analysis Center, 2003). Also, 

the Markov theory based models do not consider the effect of inspection on system-state 

transitions. The Markov model does not define the effect of inspection/testing time 

schedule.  
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Dynamic Logical Analytical Methodology (DYLAM) approach was proposed by 

Cacciabue et al. (1986). Nivolianitou et al. (1986) demonstrated application of DYLAM 

approach in reliability analysis of chemical processes. This method has the ability to 

quantify different time dependent effects by incorporating dynamic aspects of a process. 

It integrates physical behavior of the system and probabilistic modeling for analysis. In 

DYLAM, physical model for the system and component models for system components 

are constructed to predict system process variables reactions due to variations in 

component states. After defining undesired system states, the system model is simulated 

for all possible accident sequences to detect all possible combinations of status and states 

and calculate their likelihood. The DYLAM has limited ability to treat large number of 

scenarios and scenario calculations can be lengthier and more costly (Siu, 1994).  

In the dynamic event tree, branching is allowed to take place at different points in 

time. Analyst defines the basis and required number of branches at any time step. Acosta 

and Siu (1993) described its application for accident sequence analysis.   

Yang and Mannan (2010) proposed a semi-markovian approach named dynamic 

operational risk assessment (DORA) methodology. The DORA addresses dynamic 

effects in process industry by integrating process dynamic and system stochastic 

behavior. It can quantify risks for both component failure and component’s abnormal 

events. The DORA method incorporated inspection/testing time schedule to understand 

its effect on risk. Monte Carlo simulation is performed to understand system abnormal 

condition due to each individual component’s transition from one state to another and 
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then prolonged simulation is performed to understand effect of inspection and testing 

time on the probability of component abnormal event.  

 

2.4 Overview of Bayesian Network Applications 

Bayesian network is a probabilistic reasoning technique that can be very useful to 

represent complex dependencies between random variables. Weber et al. (2012) 

provides a summary of Bayesian network’s application in the field of dependability, risk 

analysis and maintenance. Application of Bayesian network for process safety, accident 

analysis and risk assessment is relatively new. As described in section 1.4, Khakzad et 

al. (2011) described Bayesian network application in accident analysis in the field of 

process safety based on the work by Bobbio et al. (2001) that demonstrated application 

of Bayesian network in improvement of dependable system. In the field of 

dependability, Boudali and Dugan (2005) demonstrated sequential dependencies of 

events and Montani et al. (2005) included temporal aspects for analyzing reliability 

analysis. Pasman and Rogers (2011) incorporated Bayesian network in layer of 

protection analysis. Hudson et al. (2002) described Bayesian network application on 

anti-terrorism risk management planning. Summary of similar studies in risk analysis is 

provided by Weber et al. (2012). Khakzad et al. (2012) mapped bow-tie method into 

Bayesian network. Any study in process safety and risk analysis is yet to conduct on 

temporal aspects. Using the temporal reasoning, dynamic risk assessment methodology 

can be provided by incorporating effects of time. This study uses temporal reasoning for 
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proposing a dynamic operational risk assessment methodology that can easily quantify 

operational changes due to sequential dependencies of equipment/components.   
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3. THE DEVELOPMENT OF BAYESIAN NETWORK BASED DYNAMIC 

OPERATIONAL RISK ASSESSMENT METHODOLOGY 

 

In this section mapping procedure of conventional fault tree and dynamic fault 

tree in Bayesian network and then development dynamic operational risk assessment 

methodology based on Bayesian network is illustrated. This section demonstrates how to 

set up conditional probability tables for different dependent variables and Bayesian 

network ability to update prior probability with new information into posterior 

probability. This chapter provides brief introduction of fault tree, dynamic fault tree, 

Bayesian network and its characteristics and dynamic Bayesian network framework in 

section 3.1 and demonstrates the research framework with details of the mapping 

procedure in section 3.2.  

 

3.1 Introduction 

Bayesian network based dynamic operational risk assessment methodology, is a 

new technique developed in this research. This study demonstrates an advancement of 

application of Bayesian network in process safety. The methodology may provide more 

reliable description of different equipment or component failure probability with time for 

any oil/gas, chemical, petrochemical and other process industries. This method is very 

much helpful for those fields where availability of operational history is limited. In this 

section, brief description of fault tree, dynamic fault tree with characteristics and 

description of Bayesian network and dynamic Bayesian network is provided.  
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3.1.1 Dynamic fault tree 

Conventional fault tree has limited ability to capture sequence dependencies in 

the system. If a system consists of a primary (active) pump and a back-up (standby) 

pump, then in case of primary pump failure, the back-up pump can become active and 

continues the system operation. But, if the back-up pump fails before the active pump 

fails, then the back-up pump fails to become active to substitute primary pump and the 

system is in failed state when the primary pump fails. Therefore, the failure criteria of 

the overall system are dependent on both the sequence and combinations of events. 

Dugan et al. (1990) defined different sequence dependencies and Dugan et al. (1992) 

introduced dynamic fault tree for fault tolerant computer systems. Dynamic fault tree 

goes over conventional fault tree by defining following dynamic gates which capture the 

component’s sequential and functional dependencies - 

 The functional/probabilistic dependency gate (FDEP)/(PDEP) 

 The spare gates (Warm-WSP, Hot-HSP, Cold-CSP) 

 The priority AND gate (PAND) 

 The sequence enforcing gate (SEQ) 

This research work demonstrates development of dynamic fault tree using 

different dynamic gates introduced by Dugan et al. (1990, 1992). Brief descriptions of 

these gates are provided in this work.  

 
3.1.1.1 The functional/probabilistic dependency gate (FDEP/PDEP) 

In the functional dependency gate/probabilistic dependency gate, there is a 

trigger event on which some other events are dependent. The dependent events become 
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inaccessible in case of the trigger event occurrence. Figure 2 represents a 

function/probabilistic dependency gate. A trigger event can either be a basic event or 

output of another gate and its occurrence can cause two dependent events X and Y,  

 

 

 

 

 

 

 

 

Figure 2. Functional/probabilistic dependency gate 

 

 

inaccessible or unusable. Non-dependent output of the gate represents trigger event’s 

status.  

 
3.1.1.2 The spare gates 

A spare gate generally consists of a primary component/equipment that can be 

replaced with one or more standby similar component/equipment to perform the same 

function in case of its failure. Whenever primary equipment/component fails, then the 

first standby equipment/component becomes active to continue the operation. If the first 
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standby fails, the next (if available) standby becomes active and so forth. A system with 

spare gate 

 

 

 

 

 

 

 

 

Figure 3. Spare gates 

 

 

fails, if primary and all standby equipment fails. Also, a standby component can fail 

while it is not active, but its individual failure has no effect on the overall system until  

the primary and other standby equipment/component can perform the function.   

 Figure 3, shows a spare gate, where a primary input has two standby input S1 and 

S2. In case of primary input failure, at first S1 comes into operation and system continues 

to function. If S1 fails, then S2 comes into operation and if S2 fails, then the system fails. 

During Inactive state, the failure rate of the standby components/equipment is lower than 

that of in active state. Montani et al. (2005) defined dormancy factor, α, whose value can 

vary between 0 and 1, and stated that if the failure rate of a standby component is λ in 

Gate Output 

 
  

Primary S1 S2 

Spare Gate 
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active state, then its failure rate at inactive state is αλ. Spare gates are thus classified into 

three classes, i.e. Hot spare, Cold Spare and Warm Spare. If the standby component does 

not fail during inactive state, then it is called cold spare. But if the standby component 

fails during inactive state, then it is called hot spare. Different values of α, represents 

different spare gates. For, hot spare, α =1; for cold spare, α =0; and for warm spare, 

value of α is between 0 and 1. In figure 3, thus the standby input S1 and S2 may have 

dormancy factor, α with any value between 0 and 1, and their failure during inactive 

state is lower than that of active state. Also, failure of this standby equipment when 

primary input is active, does not have any effect on the overall system.   

 

3.1.1.3 The priority AND gate (PAND gate) 

The priority AND-gate (PAND gate) consists of an AND-gate and pre-assigned 

order of inputs failure. In figure 4, two events X and Y are in a PAND gate and it is 

assigned that for the gate failure X has to fail before Y. Therefore, the output of the 

PAND gate in figure 4 is in failed state if both X and Y fails and X fails before Y. If Y 

fails before X, then PAND-gate output remains in normal state.  
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Figure 4. Probability AND-Gate (PAND gate) 

 

 

3.1.1.4 The sequence enforcing gates (SEQ-gate) 

In sequence enforcing gates, the inputs are constrained to fail in a particular order 

to cause system failure or a critical event to occur. The sequence enforcing gate fails 

only if its input failure occurs from left to right order. This is the difference between 

PAND-gate and SEQ-gate. Also, SEQ gates can be represented as spare gates. The 

difference is that spare gates have one or multiple standby input that can perform the 

same function as the primary input. But, in SEQ gates, the inputs can be any input 

performing different function.  

 

 
3.1.2 Bayesian network  

Bayesian network is widely applied in Artificial Intelligence (Pearl, 1988;  

X Y 

Output 
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Neapolitan, 1990). Heckermann et al. (1995), Vomlel (2005) demonstrated some real life 

application of Bayesian network. Bobbio (2001) mapped fault trees into Bayesian 

network for dependability analysis and showed that Bayesian network has the ability to 

provide more precise reasoning with uncertainty. Recently, some authors applied 

Bayesian network in the field of process safety and accident modeling (Khakzad et al., 

2011; Pasman and Rogers, 2011; Khakzad et al. 2012). Khakzad et al. (2011) 

demonstrated parallelism between fault tree and Bayesian network and described several 

advantages of Bayesian network’s application in the field of accident modeling and 

process safety. Pasman and Rogers (2011) incorporated Bayesian network to improve 

Layer of Protection Analysis. Khakzad et al. (2012) mapped bow-tie analysis in 

Bayesian network. Bayesian network’s application in the field of process safety and risk 

analysis is still relatively new and therefore, there is a scope for Bayesian network 

application for different study in this field.      

A Bayesian network describes causal influence relations among variables via a 

directed acyclic graph. It represents a set of random variables in nodes and their 

conditional dependencies by drawing edges from one node to another. It has the ability 

to represent dependency among events clearly, accommodate multi- mode and 

continuous random variables, and incorporate information i.e. generic, system specific 

and expert judgment to support optimum decision making.  
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Figure 5. A simple Bayesian network 

 

 

A simple Bayesian network is shown in figure 5. In a binary network, nodes and 

arcs represents variables and causal relationships among different nodes. Conditional 

probability tables or defined probabilistic relationships among nodes represent how one 

variable is linked another one or multi-variables. The nodes that influence other 

variables and have unconditional probability are called parent or root nodes. Nodes that 

are conditionally dependent on their direct parents are called intermediate nodes. The top 

node is defined as a leaf node. 

Let         be a Bayesian network, where,         is a directed acyclic 

graph; V (random variables) represents nodes; and E represents edges between pairs of 

nodes of DAG. P represents probability distribution over V and                can 

be either discrete or continuous random variables (Donohue and Dugan, 2003). These 

random variables are assigned to the nodes and the edges. Bayesian networks can be  

represented by the joint probability distribution P(V);  

P(V) =                                        
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Here        = parent nodes of Xi. 

 A main advantage of the application of Bayesian networks in risk analysis is the 

ability to update prior data using Bayes’ theorem by incorporating new information. 

Also, Bayesian networks have an advantage of handling different types of uncertainty. 

Bayesian network can be a very useful tool for the fields where availability of data is 

limited and in case one wants to exploit the scarce information available best. 

 

3.1.3 Dynamic Bayesian network 

A general Bayesian network is static in nature, i.e., the joint probability 

distribution is usually a representation of a fixed point or an interval of time (McNaught 

and Zagorecki, 2010). A dynamic Bayesian network describes the evolution of joint 

probability distribution over time and thus extends general Bayesian network. Discrete 

time modeling to represent the progression of time in dynamic Bayesian network was 

proposed by Dean and Kanazawa (1989). In a dynamic Bayesian network, arcs links 

nodes from previous time slice to that of the next time slice to represent temporal 

dependencies among them.  

 Montani et al. (2005) provided detailed mapping procedure of dynamic fault tree 

into dynamic Bayesian network in dependability analysis. Kjaerulff (1995) demonstrated 

that Markov assumption can be held true for dynamic Bayesian network if the variable 

state at future time slice ‘(n+1)-th’ time slice is independent of past given the present ‘n-

th’ time slice. Boyen (1998) (Montani et al. 2005), Murphy (2002) described two-time 

slice Temporal Bayesian network.  
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 3.1.4 Software 

There are numbers of software available for developing and analyzing Bayesian 

network. Murphy (2007) provides a comparison among Bayesian network software. In 

this research, GeNIe 2.0, Bayesian network software developed by Decision Systems 

Laboratory (2010) is used for performing the analysis. This software is available free at 

http://genie.sis.pitt.edu/about.html and is compatible with other Bayesian network 

software. GeNIe supports both discrete and continuous variable though combination of 

both type of variables in a single network is still to be incorporated. GeNIe has temporal 

reasoning technique using which dynamic Bayesian network can be developed and 

analyzed. Other available software are: HUGIN (HUGIN EXPERT, 2012), BayesiaLab 

(BAYESIA SAS, 2010), Uninet (Lighttwist Software, 2008), BNT (Murphy,K., 2007) 

SAMIAM (AR Group-UCLA, 2010) etc.  

    

3.2 Research Framework 

Figure 6 shows overall framework to development dynamic operational risk 

assessment with Bayesian network. This method has the ability to automatically update 

probability if failure rate data is provided at the first time slice and conditional 

dependency is given.   
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 For developing dynamic operational risk assessment methodology based on 

Bayesian network, it is important to identify scope of work. It is also necessary to 

describe the system.  According to the requirement, the scope can vary from small scale 

to large scale of system. For system description, process information as process block 

diagram, process flow diagram (PFD), piping and instrumentation diagram (P&ID), 

equipment/components in the system and their failure modes should be stated.  

 

3.2.2 Identification of possible initiating event and component failure mode 

The next step is to identify possible initiating event that can lead to accident. To 

identify possible initiating event, it is required to perform any hazards identification 

method which can be used to develop scenarios. Yang (2010) summarized qualitative 

hazard identification methods and process of conducting them. The next task is to 

identify different components failure modes that contribute to the occurrence of top 

event. In this step it is required to obtain failure rate data for different component. For 

this research, generic data are gathered from Center for Chemical Process Safety 

reliability data (AIChE 1989) and Offshore Reliability Data Handbook (SINTEF 2002).  

It should be noted that generic data are historical data collected from similar 

industries and have limitation to properly reflect plant specific condition and 

characteristics of the plant equipment/component under consideration. 

  

3.2.1 Scope identification & system description 
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Figure 6. Framework for the dynamic Bayesian network based dynamic operational risk 

assessment method 

 

 

3.2.3 Development of dynamic fault tree 

Fault tree is a widely accepted method in oil/gas, chemical, petrochemical and 

other process plant for quantitative risk assessment. But, fault tree has limited capability 

to incorporate sequential dependencies. Therefore, this research proposes to develop 

dynamic fault tree for the system conceptually to capture sequential dependencies. 

Dynamic fault tree build-up is also a deductive process where top event is first identified 

Scope Identification and System Description 

Develop Dynamic Fault Tree 

Develop Bayesian Network 
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Network by Temporal Reasoning 
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Different Time Slice 
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Component Failure Mode 
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and then causes of that top event are detected. Sequential dependencies of different 

causes are identified and they are presented by dynamic gates as described in section 

3.1.2. Events without sequential dependencies are presented by static fault tree gates. 

Detailed developing procedure of dynamic fault tree is described by Dugan et al. (1992).   

 

3.2.4 Develop Bayesian network & dynamic Bayesian network 

 

3.2.4.1 Bayesian network mapping 

The next part is to map the dynamic fault tree into Bayesian network. 

Transforming dynamic fault tree in Bayesian network and eventually in dynamic 

Bayesian network is the important step for developing dynamic operational risk 

assessment with Bayesian network. The dynamic fault tree consists of two types of 

gates, i.e., the conventional fault tree gates and the dynamic gates. The conventional 

fault tree gates, i.e., OR-gate, AND-gate, K/M gates, involve equipment/component 

which does not show sequential dependencies. On the other hand, the dynamic gates i.e.,  
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spare gate, PAND gate, FDEP/PDEP gate and SEQ gate, describe sequential 

dependencies of different equipment/components.  

The static part of the dynamic fault tree is mapped in Bayesian network 

according to the method provided by Bobbio et al. (2001). The mapping algorithm 

consists of both graphical and quantitative transformation. For graphical mapping, all 

basic or primary events of fault tree root/parents nodes are created in the Bayesian 

network. Prior probability is calculated for the component using exponential distribution. 

Then, intermediate nodes and top event nodes are created for intermediate events and top 

event of the fault tree respectively. These event occurrences in Bayesian network are 

conditioned by assigning conditional probability table. In fault tree, the intermediate 

events are related to the basic or primary event through OR-gate and AND-gate. Figure 7 

represents parallel Bayesian network for the OR-gate and AND-gate and their 

corresponding conditional probability table.  Mapping of dynamic gates of dynamic fault 

tree are mainly based on Montani et al. (2005). Detailed description of different dynamic 

gates mapping in dynamic Bayesian network is discussed in section 3.2.4.2.  
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(a.1) AND-gate 
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(b.1) OR-gate 
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Figure 7. Mapping algorithm of AND-gate and OR-gate in Bayesian network 

 

 

3.2.4.2 Dynamic Bayesian network development 

The next step of the framework is to develop dynamic Bayesian network (DBN). 

In DBN, the nodes and their causal relationship are presented for various time slices.  
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The important step in development of dynamic Bayesian network is to map dynamic 

gates of dynamic fault tree in dynamic Bayesian network. The mapping procedure of 

dynamic gates in this study is based on Montani et al. (2005) and is discussed in section 

3.2.4.2.1. Then the network is expanded for different time slices as described in section 

3.2.4.3. 

 

3.2.4.2.1 Mapping spare gate in Bayesian network 

Figure 8 presents spare gates that has a primary component with two stand-by 

component S1 and S2 identical to the primary component. When primary component fails 

then, the first stand-by S1 becomes active. If S1 fails, then S2 becomes active and keeps 

the system operating. When primary and both stand-by S1 and S2 fail, then the warm 

spare gates represent failed state of the system. These root nodes are provided with prior 

probability by using failure rate data in exponential distribution. Then this network is 

expanded for another time slice.  

From figure 8, it is observed that each component node at next time slice is 

similar to that at the previous time slice. To represent the dependency of component state 

at different time-slices, an arc is drawn from primary component node, S1 node and S2 

node of ‘n-th’ time slice to primary component node, S1 node and S2 node of ‘(n+1)-th’ 

time slice. It demonstrates that component states at ‘(n+1)-th’ time slice are dependent 

on their state at previous time slice. According to WSP, generally the primary 

component is in operation and if it fails, then the standby component becomes active. If 

the first standby component fails, then second standby component comes into operation.  
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The dependency is shown by drawing an arc from the primary component of ‘n-th’ slice 

to the stand-by components, S1 and S2 at ‘(n+1)-th’ time slice. Also, as second standby 

component becomes active after first one’s failure, an arc is drawn from S1 of first time-

slice to S2 of next time slice.  Therefore, if the primary component is active at first time 

slice, then its failure rate will be λprimary and at that time standby component can fail with 

failure rate αλS1 and αλS2. If primary component fails at ‘n-th time’ slice, then S1 is active 

and it can fail at ‘(n+1)-th’ time slice with failure rate, λS1 and λS2 still have failure rate 

equal to αλS2. The overall system become non-operational when primary and its entire 

standby component fail.  

Conditional probability table for components states in spare gates at ‘(n+1)-th’ 

time slice given the component state at ‘n-th’ time slice is provided in tables 1, 2 and 3. 

In tables 1 to 6, Δt represents interval between two time slices, i.e., ‘(n+1)-th’ and ‘n-th’ 

time slice. If ‘n-th’ time slice is at 3 months, and the ‘(n+1)-th’ time slice is at 6 months, 

then the time interval between the slices is,  

Δt = (6-3) months = 3 months = 3×30×24 hours = 2160 hours 
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Figure 8. Spare gates of dynamic fault tree mapping in dynamic Bayesian network 

(Montani et al., 2005) 

 

 

Table 1 Conditional probability table for primary component state at ‘(n+1)-th’ time 

slice given its state at ‘n-th’ time slice 

Primary Component 
State at ‘n-th’ Time Slice 

Normal State Failed State 

State at ‘(n+1)-

th’ Time Slice 

Normal State Exp(-λprimary × Δt) 0 

Failed State 1- Exp(-λprimary × Δt) 1 

 

S2 

SP 

Primary 

S1 

S2 

Primary 
 

S1 

At ‘n-th’ time slice At ‘(n+1)-th’ time slice 
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Table 2 Conditional probability table for the first standby component state at ‘(n+1)-th’ 

time slice given the state of primary component and first standby component at ‘n-th’ 

time slice  

 State at ‘n-th’ Time Slice 

Primary Component Normal State Failed State 

First Standby Component Normal State 
Failed 

State 
Normal State 

Failed 

State 

 

State at ‘(n+1)-

th’ Time Slice 

Normal 

State 
Exp(-αλS1Δt) 0 Exp(-λS1Δt) 0 

Failed 

State 
1-Exp(-αλS1Δt) 1 1- Exp(-λS1Δt) 1 
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Table 3 Conditional probability for second standby component state at ‘(n+1)-th’ time 

slice given state of primary component, first standby and second standby components 

state at ‘n-th’ time slice 

 State at ‘n-th’ Time Slice 

Primary Normal Failed 

First Standby Normal Failed Normal Failed 

Second Standby Nor- 

mal 

Fai-

led 

Nor- 

mal 

Fai-

led 

Nor- 

mal 

Fai-

led 

Nor- 

mal 

Fai-

led 

At (n+1)-

th Time 

Slice 

Nor 

mal 

Exp(-

αλS2Δt) 

0 Exp(-

αλS2Δt) 

0 Exp(-

αλS2Δt) 

0 Exp(-

λS2Δt) 

0 

Faile

d 

1-Exp(-

αλS2Δt) 

1 1-Exp(-

αλS2Δt) 

1 1-Exp(-

αλS2Δt) 

1 1-Exp(-

λS2Δt) 

1 

 

 

  

If any system consists of a primary component and ‘n’ number of standby 

components, then the n-th standby component will have 2n states in conditional 

probability table.  

 The conditional probability given in tables 1, 2 and 3 holds true if the primary 

and standby equipment failure in spare gate are basic events. However, if they are 

intermediate events as shown in figure 9, then it is required to incorporate conditional 

dependency of intermediate events on their respective basic events.      
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Figure 9. Spare gates of dynamic fault tree with intermediate inputs mapping in 

dynamic Bayesian network  

 

 

If the basic events P1_t (failure rate, λP1_t) and P2_t (failure rate, λP2_t) are in an 

OR-gate with the intermediate event Primary_t ((failure probability, λoverall) ) at n-th time 

slice, then the overall failure rate of Primary_t at n-th time slice is the sum of basic 

events failure rate. If the basic event s P1_t (failure rate, λP1_t) and P2_t (failure rate, 

λP2_t) are in an AND-gate with the intermediate event Primary_t ((failure probability, 

λoverall) ) at n-th time slice, then the overall failure rate of Primary_t at n-th time slice is 

the product of basic events failure rate. The above statements are also true for standby 

equipment. Therefore, the primary event node i.e. Primary_t+1 at (n+1)-th time slice is 

dependent on Primary_t of n-th time slice, P1_t+1 and P2_t+1 of (n+1)-th time slice. 

Similar dependency exists for standby_t+1 node. The conditional probability table for  

At ‘n-th’ time slice At ‘(n+1)-th’ time slice 
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primary and standby node at (n+1)-th time slice are given in tables 4 and 5.  

 

 

Table 4 Conditional probability table for primary component state at ‘(n+1)-th’ time 

slice given its state at ‘n-th’ time slice for spare gate as in figure 9  

Primary_t N F 

P1_t+1 N F N F 

P2_t+1 N F N F N F N F 

Primary_t+1 
N exp(-λoverall× Δt) 0 0 0 0 0 0 0 

F 1- exp(-λoverall× Δt) 1 1 1 1 1 1 1 

 

 

 

Table 5 Conditional probability table for standby component state at ‘(n+1)-th’ time 

slice given its state at ‘n-th’ time slice for spare gate as in figure 9  

Primary_t N F 

Standby_t N F N F 

S1_t+1 N F N F N F N F 

S2_t+1 N F N F N F N F N F N F N F N F 

Primar

y_t+1 

N P1 0 0 0 0 0 0 0 P2 0 0 0 0 0 0 0 

F 1-P1 1 1 1 1 1 1 1 1-P2 1 1 1 1 1 1 1 
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The value of P1 and P2 are as follows: 

P1= exp(-λoverall_standby × Δt) 

P2= exp(-α × λoverall_standby × Δt) 

 

3.2.4.2.2 Mapping functional/probabilistic dependency gate in Bayesian network 

In function/probabilistic dependency gate (FDEP/PDEP), the status of the trigger  

event readily determines the states of the dependent event. The mapping procedure of 

FDEP/PDEP is based on work by Montani et al. (2005).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. FDEP/PDEP gate mapping in dynamic Bayesian network (Montani et al., 

2005) 
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In FDEP/PDEP gates, an arc connects the trigger event node at ‘n-th time slice’ 

with that node at the ‘(n+1)-th’ time slice. The dependent components, X and Y, on 

trigger event also have an arc from present to future time slice. Also, the trigger event 

has two arcs connected to the dependent components representing that the status of 

trigger event at a time-slice has impact on the dependent components. Detailed 

conditional probability table for FDEP/PDEP gate is provided in tables 6 and 7.   

 

 

Table 6 Conditional probability table for trigger event at ‘(n+1)-th’ time slice given its 

state at ‘n-th’ time slice 

Trigger Event 
State at ‘n-th’ Time Slice 

Normal State Failed State 

State at ‘(n+1)-th’ Time 

Slice 

Normal State Exp(-λT × Δt) 0 

Failed State 1- Exp(-λT × Δt) 1 

 

 

Here, ‘λT’ represents the failure rate data of the trigger event and Δt gives the 

time interval between (n+1)-th and n-th time slice.  
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Table 7 Conditional probability table for dependent components at ‘(n+1)-th’ time slice 

given the state of trigger event at ‘n-th’ time slice 

 
State Trigger Event and Dependent Component at ‘n-th’ 

Time Slice 

Trigger Event Normal State Failed State 

State of Component at 

‘(n+1)-th’ Time Slice  
Normal State 

Failed 

State 
Normal State 

Failed 

State 

First 

Dependent 

Component, 

X 

Normal 

State 
Exp(-λXΔt) 0 0 0 

Failed 

State 
1-Exp(-λXΔt) 1 1 1 

Second 

Dependent 

Component, 

Y 

Normal 

State 
Exp(-λYΔt) 0 0 0 

Failed 

State 
1-Exp(-λYΔt) 1 1 1 

 

 

 

The structure of conditional probability tables for all dependent components is 

same. Hence, if the system has more dependent components than shown above, they will 

also have a similar conditional probability table.  
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 3.2.4.2.3 Mapping priority AND-gate (PAND Gate) 

 The priority AND-gates require failure of all components in a pre-assigned order. 

Following are the conditional probability tables for the PAND-gate shown in figure 4, in 

which there are two components X and Y respectively and PAND-gate fails if X fails 

before Y fails.  

 

 

Table 8 Conditional probability table for component ‘X’ at ‘(n+1)-th’ time slice given 

its state at ‘n-th’ time slice 

Component ‘X’ 
State at ‘n-th’ Time Slice 

Normal State Failed State 

State at ‘(n+1)-th’ 

Time Slice 

Normal State Exp(-λX × Δt) 0 

Failed State 1- Exp(-λX × Δt) 1 

 

  

 According to Montani et al. (2005) component Y can stay in operating or failed 

state before component X fails or failed after component X state fails. PAND gate will 

result in failure only if component X and component Y both fail and X fails before Y. 

Therefore, the values to put in conditional probability tables for component Y are given 

below: 
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Pr{Y(t+1) = failed before X at (n+1)-th time slice | Y(t) = failed before X at n-th time 

slice} = 1 

Pr{Y(t+1) = failed before X at (n+1)-th time slice | X(t), X(t+1) and Y(t) = working} = 

1- exp (-λB×Δt) 

Pr{Y(t+1) = failed after X at (n+1)-th time slice | Y(t) = failed after X at n-th time slice} 

= 1 

Pr{Y(t+1) = failed after X at (n+1)-th time slice | X(t), X(t+1) and Y(t) = working} =  

1- exp (-λB×Δt) 

Pr{Y(t+1) = failed after X at (n+1)-th time slice | X(t)=failed at n-th time slice, X(t+1) 

and Y(t) = working} = 1- exp (-λB×Δt) 

Therefore, the final status of PAND-gate at (n+1)-th time slice depends will be in fail 

state if X at (n+1)-th time slice fails before Y at (n+1)-th time slice. Else, it will be in 

working state.  

 

3.2.4.3 Dynamic Bayesian network development for different time slices 

 To develop dynamic Bayesian network, the mapped dynamic fault tree according 

to the method described in section 3.2.4.1 is considered as the network for first time 

slice. Then this network from first time-slice is expanded to several time-slices. Network 

of present time slice has causal influence from the network of previous time slice. 

Number of time slices required is decided by the person performing the study.  
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3.2.5 Probability estimation 

Montani et al. (2005) demonstrated procedure for dynamic Bayesian network 

development. Full specification is given below:  

 Prior probabilities of all basic events at the first time slice (for a certain time) 

 Conditional  probability tables should be assigned for all intermediate events for 

the first time slice  

 Provide conditional probability tables for all basic and intermediate events for 

future time slices. Conditional probability table structure is discussed in section 

3.2.4.2 

 

GeNIe software is used to perform the analysis. When the network is developed 

and all nodes are provided either prior or conditional probability, then the software does 

the calculation and provides probability for all nodes. 
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4. APPLICATION OF THE METHODOLOGY 

 

 The application of the methodology is provided with a case study on a tank hold 

up problem. The problem is demonstrated step by step and then how inspection time 

interval can affect the risk is shown. Then possible effect of repair is incorporated in the 

model to describe modeling flexibility of the Bayesian network based model for risk 

analysis.  

 

4.1 Case Study: A Tank Holdup Problem 

 

4.1.1 Scope identification and system description 

A holdup tank problem shown in figure 11 is provided to illustrate the 

methodology. Similar types of holdup tank problem were studied by Aldemir (1987), Siu 

(1992) and Hurdle (2009). Under normal condition, the level of the system is maintained 

between ‘x1’ and ‘x2’. In normal circumstances, liquid flows out through the outlet 

valve, which is partially open. A primary pump supplies liquid to the system. Sensor, S1 

sends signal to controller C1, to actuate valve-, V1 either to open to supply more liquid or 

close to reduce supply of liquid to maintain the level between ‘x1’ and ‘x2’. If the liquid 

level goes above ‘h’, then an overflow scenario may happen. High level sensor, S2 

detects the level and sends signal to high level alarm, LAH. If high level alarm sounds, 

then an operator goes to open manual safety valve so that liquid also flows out through it 

to bring the liquid level in the desired region. When level comes to the operating region, 
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then the operator closes the manual safety valve.  If the liquid level goes below‘d’, then 

a dryout scenario may happen. Sensor S3 is low level sensor and if level goes beyond 

‘d’, then it sends a signal to the controller C3 to actuate valve, V3 to close so that liquid 

cannot go out the system and level can return to the desired operating region. When level 

stables, the outlet valve opens again to the previous condition. In case of primary pump 

failure, a standby pump starts and continues delivery of liquid to the system.  

 

4.1.2 Identification of possible top event and component failure mode 

Two types of scenario can occur in the system i.e., overflow and dry-out. Dry-out 

occurs in the system when the liquid level goes below ‘d’ due to no or less flow to the 

system, protection system fails and the outlet valve, V3 fails. If there is any leakage in 

the pipe or if the pump system fails, then there can be no or less flow to the system. 

Pump system failure can occur in two ways, i.e. either both pumps fails or flow control 

system associated with the pumps fails.  

In normal condition, the primary pump is supposed to deliver liquid to the 

system. So, if the primary pump is stopped spuriously then the standby pump has to start 

immediately to continue liquid supply to the system. If the standby pump fails to start on 

demand then there will be no flow from the pump to the system. Flow control system to 

the pump consists of a controller, level sensor and the control valve. Sensor can also 

have spurious operation and fail to send signal to the controller. Also, the controller can 

fail to actuate the valve or the valve can have mechanical failure. Equipment and 

components failure modes that lead to the dry-out, scenario in the system are listed in   
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table 9. Their failure rates are also provided in table 9. These data are generic data 

obtained from OREDA (OREDA 2002) and CCPS (AIChE 1989).   

 

4.1.3 Develop dynamic fault tree 

The next step in the framework is to develop a dynamic fault tree for the system. 

As the system has a primary pump system which can be substituted by a standby pump, 

the system experiences operational change while standby pump becomes active in case 

primary pump fails. Figure 12 represents developed dynamic fault tree for the tank 

holdup problem. It is discussed in the methodology that dynamic fault tree consists of 

both dynamic and static gates. The developed dynamic fault tree has one type of 

dynamic gate i.e., spare gate and two static gates, i.e., OR-gate and AND-gate.The top 

event of the tree is dry-out in the system. Dry-out can occur if protection system fails or 

less or no flow or outlet valve, V3 fails open. The low level sensor S3 and the controller 

C3 are part of automatic protection system against dry-out. Failure of anyone can result 

in the protection system’s failure. The system can experience no or less flow if there is 

any leakage in pipe or pump system fails. Pump system is the output of a spare gate that 

can be in failed state if the primary pumping system fail stop and the standby pump 

system fails to start of demand. Therefore, primary pumping system and the standby 

pumping system are input to the spare gate. Both the pumping systems consist of a 

pump, a level sensor S1, a controller (C1 for primary pump and C2 for standby pump) 

and a pump discharge valve.  

  



 

 
 

50 

 

 

V-1

h

x1

x2

d

Primary Pump
Standby Pump

P-2 P-5 

V-2

P-4

 

 

 

 

P-7

 

Manual Safety Valve
 

Outlet Valve

P-11

L

C2

S-2

S-3

L

S-4

C1

S-5

P-12

L

S-6

C3

S-8

 
S-9

LAH

P-19

 

Figure 11. A holdup tank (level control system) problem 

V3 

V1 V2 

High Level Sensor, S2 

Level Sensor, S1 

Low Level Sensor, S3 



51 
 

 
 

 Table 9 Component failure mode and failure rate data  

Component Failure Mode 
Failure Rate 

(per Hour) 
Data Source 

Primary pump Spurious stop 5.69×10-6 OREDA 

Standby Pump Fail to start on demand 2.52×10-6 OREDA 

Controller, C1 
Pneumatic controller 

failure 
4.34×10-5 CCPS 

Primary Pump 

Outlet Valve, V1 
Failed to regulate 5.5×10-7 OREDA 

Sensor, S1 
Failed to function on 

demand 
1.72×10-6 OREDA 

Controller, C2 
Pneumatic controller 

failure 
4.34×10-5 CCPS 

Standby Pump 

Outlet Valve, V1 
Failed to open on demand 2.81×10-6 OREDA 

Sensor, S3 Spurious operation 1.72×10-6 OREDA 

Controller, C3 
Pneumatic controller 

failure 
4.34×10-5 CCPS 

Pipe Leakage 
Leakage Lined pipe 

straight section 
0.442×10-6 CCPS 

Outlet Valve, V3 Fails open 2.31×10-6 OREDA 
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Figure 12. Dynamic fault tree for the holdup tank problem 
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4.1.4 Develop Bayesian network 

Bayesian network development is an important step of this study. Step by step 

procedure is as follows to demonstrate the procedure of Bayesian network development.  

 For each basic, intermediate and top event, root, intermediate and top event node are 

created respectively. They are shown in figure 13. 

 Intermediate nodes are connected by arcs from those root nodes that cause the 

intermediate events from the basic events. Then top event node is connected by arcs 

from intermediate nodes and from one root node, as it directly affects the final top 

event. It is shown in figure 14. 

 

4.1.5 Develop dynamic Bayesian network  

The developed Bayesian network represents the causal structure for a single time 

slice. Also, the sequential dependency of the primary pump and the standby pump 

cannot be demonstrated graphically in a single time slice, though the dependency can be 

captured in a conditional probability table. Dynamic Bayesian network can graphically 

represent that dependency. Also, the objective of the methodology is to provide a 

technique that can update the probability of different equipment/components failure with 

time. To make a dynamic network, the network has to be expanded over different time 

slices. For this case study, the dynamic Bayesian network is developed for 6 time slices: 

the first network representing 1 week, the next 1 month, 3 months, 6 months, 12 months 

and 24 months. To illustrate how a dynamic Bayesian network is developed, here only 

construction of two time slices is described to prevent complexity.  
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Figure 13. Root nodes, intermediate nodes and top event nodes in Bayesian network 
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Figure 14. Nodes connected through arcs 
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 A similar new network, developed in section 4.1.4, is developed. The first network is 

presented for first time slice and the new network is presented for second time slice. 

This is shown in figure 15. 

 Procedure of mapping a spare gate in Bayesian network is described in section 

3.2.4.2.1. From primary pump system node of first time slice two arcs connects 

primary pump system node and stand-by pump system node of second time slice. 

Then an arc is drawn from standby pump system node of first time slice to that of the 

next time slice to complete the mapping of spare gate. Mapped spare gate in 

Bayesian network is provided in figure 16. 

 Then, all root nodes of second time slice are connected with the nodes from first time 

slice to represent the conditional dependency of second time slice nodes on that of 

the first time slice. The complete dynamic Bayesian network is shown in figure 17.    

 

4.1.5 Probability estimation 

To estimate probability, the root nodes at first time slice are provided the prior 

probability calculated for a definite time. The prior probabilities of root nodes calculated 

for 1 week are given in table 10. Then, conditional probability tables for all intermediate 

and the complete dynamic Bayesian network is developed for six different inspection 

time intervals. They are 1 week, 1 month, 3 months, 6 months, 1 year and 2 years. For 

standby item, the dormancy factor, α = 0.5, is considered. It is observed that with the 

increase in inspection interval, the probability of top event, dryout of the system, 

increases with time.  It is shown in figure 18. top event nodes of first time slice are 
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provided following the methodology as described in section 3.2.4.2. The nodes in the 

second time slice are also given conditional probability values as described in the same 

section. Then the probabilities for all nodes are calculated in GeNIe software.   

From table 11 it is apparent that all equipment/components failure probability 

increase with the inspection time interval increase. Figure 18 represents the dry-out 

probability upon less or no flow, automatic protection system failure and outlet valve 

fails open, using different inspection interval. Dry-out probability increases with 

increase of inspection intervals due to occurrence of less or no flow probability, 

automatic protection system failure probability and outlet valve fails open probability.  

 In figure 19 it is observed that the failure, less or no flow occurrence, automatic 

protection system failure and outlet valve, V3, fails open probability increases with 

inspection interval increases. Less or no flow and automatic protection system failure are 

much more critical than the outlet valve fails open for dry-out scenario in the system. As 

less or no flow can occur due to pump system failure and pipe leakage, hence, their 

individual probability for different inspection intervals are plotted in figure 20.  From 

figure 20, it is apparent that pipe leakage probability is very low. Therefore, it can be 

concluded that the pump system failure is mainly responsible for less or no flow and 

leakage in pipe has negligible effect on that.  
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Figure 15. Dynamic Bayesian network with two time-slices without connection among nodes of two time-slices 
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Figure 16. Mapped spare gate in dynamic Bayesian network 
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Figure 17. Dynamic Bayesian network with two time-slices 
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Table 10 Prior probabilities of root nodes of first time slice at 1 Week  

Component 
Failure Rate 

(per Hour) 

Prior Probability at 1 

Week 

Primary pump 5.69×10-6 1×10-3 

Standby Pump 2.52×10-6 4×10-4 

Controller, C1 4.34×10-5 7×10-3 

Primary Pump Outlet Valve, V1 5.5×10-7 9×10-5 

Sensor, S1 1.72×10-6 3×10-4 

Controller, C2 4.34×10-5 7×10-3 

Standby Pump Outlet Valve, V1 2.81×10-6 5×10-4 

Sensor, S3 1.72×10-6 3×10-4 

Controller, C3 4.34×10-5 7×10-3 

Pipe Leakage 0.442×10-6 7×10-5 

Outlet Valve, V3 2.31×10-6 4×10-4 
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Table 11 Probability of system dry-out for different equipment/component failure using 

different inspection internals 

Component Weekly Monthly 3 
Months 

6 
Months 

1 
Year 2 Year 

Primary pump 1×10-3 4×10-3 0.012 0.024 0.048 0.094 

Standby Pump 4×10-4 0.002 0.005 0.011 0.022 0.043 

Controller, C1 7×10-3 0.031 0.089 0.171 0.313 0.53 

Primary Pump Outlet 

Valve, V1 
9×10-5 3.9×10-4 0.001 0.002 0.005 0.01 

Sensor, S1 3×10-4 0.001 0.004 0.007 0.015 0.029 

Controller, C2 7×10-3 0.031 0.089 0.171 0.313 0.53 

Standby Pump Outlet 

Valve, V1 
5×10-4 0.002 0.006 0.012 0.024 0.048 

Sensor, S3 3×10-4 0.001 0.004 0.007 0.015 0.029 

Controller, C3 7×10-3 0.031 0.089 0.171 0.313 0.53 

Pipe Leakage 7×10-5 3.1×10-4 0.00095 0.002 0.004 0.008 

Outlet Valve, V3 4×10-4 0.002 0.005 0.01 0.02 0.039 

Primary Pump System 0.008 0.063 0.192 0.353 0.585 0.831 

Standby Pump System 0.008 0.049 0.149 0.284 0.502 0.772 

Pump System 4×10-4 0.004 0.033 0.11 0.307 0.65 

Automatic Protection 

System 
0.007 0.032 0.093 0.177 0.323 0.544 

Less or No Flow 4×10-4 0.005 0.034 0.111 0.31 0.652 

Dry-out 0 0 1.6×10-5 0.0002 0.002 0.014 
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Figure 18. Dry-out probability upon different equipment/components failure using 

different inspection intervals: weekly, monthly, 3 months, 6 months, 1 year and every 2 

year 
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Figure 19. Less or no flow occurrence, automatic protection system failure and outlet 

valve fails open (failure) probability using different inspection intervals: weekly, 

monthly, 3 months, 6 months, 1 year and every 2 year 
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Figure 20. Pump system failure and pipe leakage probability using different inspection 

intervals 
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Figure 21. Primary pump and its system components failure probability using different 

inspection intervals 
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Figure 22. Standby Pump and its system components failure probability using different 

inspection intervals 
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and its system components failure probability using different inspection intervals are 
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4.2 Application of the Model 

Bobbio et al. (2001) demonstrated Bayesian network’s advantage in probability 

updating in presence of new information over other method. Khakzad et al. (2011) 

described other modeling prospects of Bayesian network such as incorporating multi-

state variables, uncertainty handling. Bobbio et al. (2005) discussed potential of 

integrating effect of repair on the overall system. In this study, analysis is done to 

examine the effects of maintenance/repair in the system. Following maintenance 

schedule analysis is performed to demonstrate how the developed tool can be useful to 

provide optimum maintenance schedule:  

 Every 3 months ( 3 months, 6 months, 9 months, 1 year) 

 Every 6 months (6 months and 1 year) 

For simplicity, it is assumed that maintenance work performed at any time slice 

will restore equipment/components conditional failure probability to the initial state i.e., 

failure probability will be equal to the failure probability of first time slice.   

To demonstrate maintenance effect on the overall system, a node, named quality 

maintenance, is created in the Bayesian network. It is a deterministic node with two 

states, i.e., maintenance work performed or not performed. Quality maintenance has arc 

on the nodes of primary and stand-by pump system and automatic protection system. It 

refers that if maintenance work is performed that these nodes are conditionally 

dependent on the quality maintenance node. All the nodes in all time slices are provided 

their respective conditional probability. Figure 23 presents two-time slice Bayesian 

network of the tank holdup problem with quality maintenance node.   
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Figure 23. Dynamic Bayesian network when maintenance/repair is performed at every 3 months interval (3 months, 6 months 

etc.) 
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Table 12 Probability of system dry-out for different equipment/components failure if   

maintenance/repair takes place at every 3 months 

Maintenance Schedule 3 Months 6 Months 9 Months 1 Year 

Maintenance/Repair Yes Yes Yes Yes 

Primary pump 0.011 0.012 0.012 0.012 

Standby Pump 0.005 0.006 0.006 0.006 

Controller, C1 0.082 0.009 0.009 0.009 

Primary Pump Outlet Valve, V1 0.001 0.00099 0.00099 0.00099 

Sensor, S1 0.003 0.004 0.004 0.004 

Controller, C2 0.082 0.082 0.082 0.082 

Standby Pump Outlet Valve, V1 0.006 0.006 0.006 0.006 

Sensor, S3 0.003 0.004 0.004 0.004 

Controller, C3 0.082 0.082 0.082 0.082 

Pipe Leakage 0.00097 0.002 0.003 0.005 

Outlet Valve, V3 0.005 0.01 0.015 0.02 

Primary Pump System Failure 0.13 0.213 0.314 0.465 

Standby Pump System Failure 0.116 0.239 0.361 0.502 

Pump System Failure 0.018 0.058 0.125 0.25 

Automatic Protection System 

Failure 
0.085 0.086 0.086 0.086 

Less or No Flow 0.019 0.06 0.128 0.254 

Dry-out 8.09×10-6 5.16×10-5 0.00016 0.00043 
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Table 13 Probability of system dry-out for different equipment/components failure if   

maintenance/repair takes place at every 6 months  

Maintenance Schedule 3 Months 6 Months 9 Months 1 Year 

Maintenance/Repair No Yes No Yes 

Primary pump 0.012 0.012 0.024 0.012 

Standby Pump 0.005 0.006 0.012 0.006 

Controller, C1 0.089 0.009 0.018 0.009 

Primary Pump Outlet Valve, V1 0.001 0.00099 0.002 0.00099 

Sensor, S1 0.004 0.004 0.008 0.004 

Controller, C2 0.089 0.082 0.163 0.076 

Standby Pump Outlet Valve, V1 0.006 0.006 0.012 0.006 

Sensor, S3 0.004 0.004 0.008 0.004 

Controller, C3 0.089 0.082 0.163 0.076 

Pipe Leakage 0.00097 0.002 0.003 0.005 

Outlet Valve, V3 0.005 0.01 0.015 0.02 

Primary Pump System Failure 0.13 0.213 0.314 0.0465 

Standby Pump System Failure 0.116 0.239 0.361 0.502 

Pump System Failure 0.018 0.058 0.125 0.25 

Automatic Protection System 

Failure 
0.093 0.085 0.17 0.079 

Less or No Flow 0.019 0.06 0.128 0.254 

Dry-out 8.79×10-6 5.13×10-5 0.00032 0.0004 
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Figure 24. Dryout probability in the system with no maintenance, maintenance work in 

every 3 months and in every 6 months 
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Figure 26. Automatic protection system failure probability in the system with no 

maintenance, maintenance in every 3 months and in every 6 months 

 

 

 
Figure 27. Pump system failure probability in the system with no maintenance, 

maintenance work in every 3 months and in every 6 months 
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In tables 12 and 13, the posterior probability obtained considering quality 

maintenance at every 3 months and 6 months are listed. Then the probabilities of dry-out 

in the system and major intermediate events, as automatic protection system failure, less 

or no flow probability, pump system failure probabilities after maintenance work at 

either 3 months or 6 months are plotted with the probability of equipment/component 

failure with no maintenance work in figure 24, 25, 26 and 27. From the figures, it is 

apparent that maintenance work can significantly reduce failure probability. Though, for 

this case study, maintenance work in every 3 months or 6 months does not provide 

significant differences. If cost of inspection, loss due to equipment downtime, parts 

replacement cost is available, then cost-benefit analysis should be done for optimum 

maintenance scheduling.  

 In this section, the application of developed method is demonstrated by case 

study on a tank hold up problem. Potential application of developed method and 

advantages are also described. It can be concluded that the developed method has the 

ability to quantify time-dependent effects on the process and provide updated probability 

with time.   
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5. GENERALIZING EVENT TREE IN BAYESIAN NETWORK 

 

5.1 Introduction 

An event tree graphically describes possible consequence scenarios if a critical 

event occurs and different safety barriers either function or not. It is an inductive 

approach that starts with an initiating event and it describes the sequences of different 

safeguards and human response. Application of event tree is very helpful to understand 

the logical relationship between the top event and safety barriers success or failure 

states. However, the event tree has limitation to explicitly represent all the factors that 

influence its construction and also to quantify the risk of dynamic system. Bayesian 

network has the ability to incorporate factors influencing event tree structure. In 

Bayesian network, the relationship of different events is described by the conditional 

probability table and clearly shows how an event is dependent on an earlier event. Also, 

any event tree mapped in Bayesian network can be expanded to include factors 

influencing all events occurrence. Thus precise estimation of risk can be obtained.  

This chapter at firstly demonstrates a methodology of event tree of a chemical 

process systems mapping in Bayesian network based on Bearfield and Marsh (2005). 

Then it provides a graphical structure that shows different influencing factors of event 

occurrence.   

 

5.2 Event Tree Mapping into Bayesian Network and Generalization Technique 

 Bearfield and Marsh (2005) described methodology of mapping event tree of  
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train derailment accident into Bayesian network and then provided some generalization 

procedure. Khakzad et al. (2012) adopted the procedure for demonstrating bow-tie 

analysis in Bayesian network. In section 5.2.1.1, general mapping procedure is 

demonstrated, followed by a case study in section 5.2.1.3 and then in section 5.2.1.4 

exploiting Bayesian network modeling’s capability to simplify procedure of mapping 

event tree is described. A case study on reactor system illustrates this procedure.   

 

5.2.1 Mapping 

The following procedure of mapping and generalizing event tree in Bayesian 

network is based on Bearfield and Marsh (2005): 

 Create individual nodes for initiating event and all safety functions/barriers, 

i.e., if there is an initiating event and ‘n’ numbers of safety functions/barriers 

available to respond to that initiating event, then create ‘n+1’ nodes 

representing the initiating event and all safety barriers/functions 

 All developed event nodes can have two states, i.e., failure and success.  

 Create either a single consequence nodes and define ‘p’ number of states for 

different consequences or create ‘p’ numbers of individual consequence 

nodes with two states i.e., occur or not occur 

 Connect arcs from one node to another depending on the events sequences 

and logical consequences 
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Figure 28. A general event tree 
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 All dependent nodes are provided with conditional dependency table  

 Setting up conditional probability is illustrated with an example of event tree 

given in figure 28 and the relative its mapped Bayesian network is shown in 

figure 29. Tables 14, 15, 16 presents conditional probability tables for 

different events. 

 

 

 

 
Figure 29. A general event tree mapped in Bayesian network 
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Table 14 Conditional probability table for Event node ‘A’ 

Failure Probability X1 

Success Probability 1-X1 

 

 

Table 15  Conditional probability table for event node ‘B’ depending on state of event 

node ‘A’ 

Event A Failure Success 

Event B 
Failure X2 X3 

Success 1- X2 1-X3 

 

 

Table 16 Conditional probability table for event node ‘C’ depending on state of event 

node ‘A’ and event node ‘B’  

Event A Failure Success 

Event B Failure Success Failure Success 

Event C 
X4 X5 X6 X7 

1- X4 1- X5 1- X6 1- X7 
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Table 17 Deterministic probability table for consequence node 

Event A Failure (F) Success (S) 

Event B Failure (F) Success (S) Failure (F) Success (S) 

Event C F S F S F S F S 

X 0 0 0 0 0 1 0 1 

Y 0 1 0 1 1 0 1 0 

Z 1 0 1 0 0 0 0 0 

 

 

 

If all the consequences are presented in a single consequence node, then the 

conditional probability for different consequences is assigned as table 17. If the 

consequences are presented in different nodes, then conditional probability table for each 

consequence node has to be assigned separately.   

 

5.2.2 Generalization 

 An arc from an event node to the consequence node can be removed if the 

logical formulae refers that the event has no effect on the consequence 

 An arc from one event node to another event node can be removed if that 

event’s failure or success probability does not depends on the  previous event 

node, i.e., the failure or success has the same probability of occurrence 

irrespective of the previous event state.  
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5.3 Case Study   

Crowl and Louvar (2002) described a reactor system as shown in figure 30. In 

this reactor system, the temperature of reactor increases due to cooling system failure 

can lead to a runway reaction with pressure above the reactor bursting pressure. The 

cooling system is employed to remove excess energy of reaction. There is a 

thermocouple to measure the temperature inside the reactor and a temperature controller 

to actuate a control valve to maintain cooling water flow rate. In case of automatic 

protection system failure, a high temperature alarm is provided to alert the operator. Four 

safety functions are available. The first safety function is high temperature alarm to alert 

operator and the rest three functions depend on operator actions such as operator 

noticing high temperature, restart cooling and manual shut down of the reactor. Figure 

31 is the event tree for the reactor system provided in figure 30. The success of failures 

of the safety barriers can lead to following three consequences: 

 

A: Continue operation 

B: Safe shutdown  

C: Runway reaction 
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Figure 30. A chemical reactor system (Crowl and Louvar, 2002) 

 

 

The description of the event tree is as follows:   

 Initiating event for the event tree in figure 31 is loss of cooling which can be 

observed as an increase of temperature. In figure 32, a node named ‘T 

increase’ is created to represent the initiating event 

 High temperature alarm alerts operator if alarm functions properly in case of  

temperature increases. Also, if alarm fails, then operator can either notice 

temperature increase by observing other indicators in the process or fails to 

notice it 

 If operator notices temperature increase, then he starts restarting cooling. If 

restart of cooling succeeds, then system operation will continue. If it fails, 
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then the operator has to shutdown the operation to prevent runaway reaction. 

But, if operator fails to shut-down properly, then a run-away reaction results.  

 

 

 
Figure 31. An event tree of a chemical reactor system 
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Figure 32. Mapped event tree in Bayesian network  

  

 

In figure 32, the event tree is mapped into Bayesian network. Mapping procedure 

is as follows:  

 For initiating event, temperature increase, a node is created and named ‘T 

increase’ 

 For four safety functions, four event nodes are created and three consequences 

nodes are created for three consequence states 

 Initiating event node has direct influence on the alarm and operator notices node. 

Therefore, two arcs from that node connects ‘alarm’ and ‘operator-notices’ node 

 All safety function nodes are connected among each other through arcs 
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 As different consequences results from the initiating event and subsequent safety 

barriers failure, arcs are connected from initiating event node and safety function 

nodes to each consequence nodes  

 Consequences nodes are also connected among themselves to represent their 

sequences 

Conditional probability table for each event is provided in following tables 18, 19, 20 

and 21.  

 

 

Table 18 Prior probability of initiating event (temperature increase)  

Event Not Occurred (No) 0 

Event Occurred (Yes) 1 

 

 

 

Table 19 Conditional probability table for alarm node given initiating event 

(temperature increases) node states  

Temperature increase No Yes 

Alarm 
Not sound 1 0.01 

Sounds 0 0.99 
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Table 20 Conditional probability table for event node ‘Operator_notices’ given states of 

initiating event and alarm node  

Temperature 

Increase 
No Yes 

Alarm Not Sound Sounds Not Sound Sounds 

Operator 

Notices 

Yes 0 0 0.75 0 

No 1 1 0.25 1 

 

 

 

Table 21 Conditional probability table for ‘operator re-starts cooling’ node given state 

of ‘operator_notices’ nodes  

Operator Notice Yes No 

Re-start 

Cooling 

Yes 0.75 0.75 

No 0.25 0.25 
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Table 22 Conditional probability table for ‘operator shutdowns reactor’ given states of 

‘operator notices temperature increase’ and ‘operator re-starts cooling’  

Operator notices No Yes 

Operator re-starts cooling Yes No Yes No 

Operator 

shutdowns 

reactor 

Yes 0 0.90 0 1 

No 1 0.10 1 0 

 

 

 

Table 23, 24 and 25 presents conditional probability tables for the consequence nodes.   

 

 

Table 23 Conditional probability table for ‘continue operation’ consequence node  

Temperature increases No Yes 

Operator re-starts cooling Yes No Yes No 

Continue 

Operation 

Not_continue 0 0 0 1 

Continued 1 1 1 0 
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Table 24 Conditional probability table for ‘Safe shutdown’ consequence node  

Shutdown Yes No 

Safe 

Shutdown 

Succeeds 1 0 

No-shutdown 0 1 

 

 

 

Table 25 Conditional probability table for ‘Runaway reaction’ consequence node  

Continue 

Operation 
Not_continue Continues 

Operator 

notices 

temperature 

increasing 

Yes No Yes No 

Safe 

Shutdo

wn 

 
Succee

ds 

No-

Shutdo

wn 

Suc

cee

ds 

No-

Shutdo

wn 

Succee

ds 

No-

Shutdo

wn 

Succee

ds 

No-

Shutdo

wn 

Yes 0 0 0 1 0 0 0 0 

No 1 1 1 0 1 1 1 1 
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Calculated final probabilities of the consequences are: 

A. continues operation probability is 0.748 

B. Safe shutdown probability is 0.224 

C. Runaway reaction probability in 0.027 

 

In this section, an event tree mapping in Bayesian network is discussed. Bayesian 

network can easily propagate the conditional dependency of one event occurrence on  

 

 

 
Figure 33. Bayesian network with ‘alarm’ node evidence value set to 1 
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another event and represent sequence of safety function/barriers failure results a 

particular consequence. For example, in Bayesian network, evidence can be set at any 

node and posterior probability and event propagation can be easily obtained. For 

example, in the Bayesian network shown in figure 33, the evidence of ‘alarm’ node is set 

up 1 which means that the alarm fails to alert the operator.  In table 26, the prior and 

posterior probability of different safety function/barriers failure after the observation 

 

 

Table 26 Prior and posterior probability table for all event and consequences  

Event and Consequences Prior 

Probability 

Posterior Probability 

Probability (Each event/consequence 

occurrence | alarm fails to alert operator) 

Temperature increase 1 1 

Alarm 0.01 1 

Operator notices 0.25 0.25 

Operator re-starts cooling 0.25 0.438 

Operator shut-down process 0.224 0.831 

Operation continues 0.75 0.57 

Safe shutdown 0.224 0.17 

Runaway reaction 0.027 0.26 
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that alarm fails alert the operator are provided. From table 26, it can be concluded that if 

alarm fails to alert the operator, then the probability of operator failure to re-start cooling 

and shut-down process increases largely. Therefore, the consequences probability also 

changes. The probability of operation continues decreases from 0.75 to 0.57 and safety 

shutdown probability also decreases from 0.224 to 0.17 while the chances of a runaway 

reaction increase largely from 0.027 to 0.26. Thus setting different evidence in every 

node, the effect on other nodes can be easily obtained in Bayesian network.   

Then, Bayesian network modeling is very flexible. The factors influencing each 

safety functions/barriers failure can be incorporated in Bayesian network using its 

modeling flexibility. For example, for above discusses case study, the initiating event is 

the increase in temperature due to loss of cooling. Different factors can cause loss of 

cooling i.e., cooling water supply system may fail, and pipeline may have blockage or 

leaks. The factors such as fatigue, job stress may cause operator failure to perform 

different actions. Conventional event tree has limitation to represent these factors which 

can be easily represented in Bayesian network. Thus, Bayesian network application 

provides advantages over event tree.  
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6. SUMMARY AND RECOMMENDATIONS 

 

Bayesian network is relatively new technique in the field of process safety and 

risk analysis. Application of Bayesian network in risk analysis is very advantageous as it 

can combine the expert judgment and quantitative knowledge to estimate risk. Also, 

Bayesian network demonstrates changes of variables with time through reasoning 

process. Bayesian network is very much helpful for the area where availability of data is 

limited.  

 This study demonstrates discrete time dynamic Bayesian network for dynamic 

operational risk assessment. This methodology has the ability to provide updated 

probability with time, to incorporate inspection and testing time interval, which shows 

its effect on the critical event probability. As this technique is based on Bayesian 

network, it has the advantages of flexibility in modeling. This technique is very efficient 

to estimate risk in comparison to other techniques with respect to time and efforts. A 

case study on tank holdup problem demonstrates its application. In the next part, event 

tree is mapped and generalized using Bayesian network so that different factors 

influencing event tree construction can be incorporated. Case studies are provided to 

demonstrate the method.  

 This method provides methodology of dynamic operational risk assessment on 

discrete-time Bayesian network. Therefore, future work is intended to develop 

methodology of dynamic operational risk assessment on continuous time Bayesian 

network. For continuous time Bayesian network, probability distribution is required. 
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Thus using the concept of Bayesian statistics, the probability distribution obtained from 

generic data bases can be combined with plant specific data to obtain posterior 

information. Boudali and Dugan (2006) and Nodelman et al. (2002, 2003 and 2005) will 

be good starting points for this work.  

 In this study, brief application of dynamic Bayesian network is demonstrated for 

optimum risk based maintenance scheduling. Weber et al (2012) described different 

researches in this field in brief, which can be used for further reference. Celeux et al. 

(2006) described designing preventive maintenance using Bayesian network and Jones et 

al. (2010) demonstrated an application of Bayesian network for manufacturing industry’s 

maintenance planning. There are scopes for detailed analysis for maintenance scheduling 

by incorporating different maintenance concepts such as “as good as new” and “as bad 

as old”, different factors such as maintenance actions for chemical process industries. 

Also cost-benefit analysis can be performed within GeNIe software if cost of inspection, 

downtime, repair etc. is available.  

Another dynamic aspect of process plant is equipment/components ageing 

phenomenon. In this research, the failure rate values are considered constant with time, 

but in practical life, due to ageing the failure rate tends to increase with time. Therefore, 

it is suggested to develop models in Bayesian network with the capability of quantifying 

ageing. It should be noted that when ageing is considered, then Weibull distribution is to 

be used in lieu of exponential distribution as the later one has memory-less property. 

 One of the objectives of this study is to demonstrate different risk assessment 

techniques parallelism with Bayesian network. In this study, mainly focus is given on 
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quantitative risk assessment techniques and their mapping in Bayesian network. For 

future work, it is recommended to map qualitative technique such as HAZOP, FMEA in 

Bayesian network and to develop risk ranking matrix based on the results. Therefore, 

Bayesian network may provide a unifying platform for risk analysis.   
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