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ABSTRACT 

 

 

Implications of Carbonate Petrology and Geochemistry for the Origin of Coal Balls from 

the Kalo Formation (Moscovian, Pennsylvanian) of Iowa. (August 2012) 

Courtney Page Jones, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Anne Raymond 

 

 

Coal balls are carbonate concretions formed in peat during the Pennsylvanian and 

early Permian. Microprobe and microscope analysis reveal that polycrystals of high-Mg 

calcite (HMC), which are also high in Sr, are the earliest calcium carbonate to form in 

the Williamson No. 3 coal balls from the Kalo formation in Iowa. This HMC has early 

diagenetic rims of ferroan and non-ferroan low-Mg calcite (LMC) suggesting diagenesis 

in meteoric water.  The combination of HMC followed by LMC suggests the earliest coal 

ball carbonate formed in a hydrologically dynamic environment, where saltwater influx 

into the mire was followed by a return to meteoric pore water.  Subsequent generations 

of carbonate are ferroan and non-ferroan LMC and appear to result from diagenesis of 

the original HMC fabric with LMC rims. HMC polycrystals from coal balls are among 

the first abiotic HMC to be reported from the mid-Pennsylvanian; coal balls may be a 

good source of Pennsylvanian HMC. Coal balls that formed in porous peat (i.e. wood 

and surficial leaf mats) commonly have abundant radiating arrays of HMC polycrystals. 
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Coal balls that formed in matrix-rich, low porosity peats consist primarily of 

permineralizing anhedral calcite, which is ferroan LMC. The link between the HMC and 

porous permeable peat is supported by the distribution of HMC and ferroan LMC in 

plant cells.  Wood cells, which have porous walls, are filled with HMC; fiber cells, 

which have impermeable walls, are filled with ferroan LMC.  This study demonstrates a 

link between pore volume, porosity, plant cell type, and carbonate fabric. 
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1. INTRODUCTION 

Coal balls, carbonate concretions that formed in ancient peat, are spectacular 

examples of carbonate and pyrite permineralization of land plants. They contain a highly 

diverse assortment of land plants (lycopsids, sphenopsids, ferns, seed-ferns and 

cordaites) and a wide range of plant organs, including leaves, stems, roots, cones, 

sporangia and seeds. Recent studies of coal-ball petrology have focused on the 

specificity of land-plant permineralization and the role of plant organs and cell walls in 

carbonate and pyrite permineralization as well as silicification (Zodrow and Cleal, 1999; 

Zodrow et al., 2002; Boyce et al., 2010; Raymond et al., 2012). Coal balls from the 

Williamson No. 3 Mine (Kalo Formation) in south-central Iowa preserve a 

decomposition gradient in which the availability of pore space can be linked to both the 

taxonomic composition of the peat and the degree of decomposition. Cordaitean peat 

from the Williamson No. 3 Mine provides an ideal opportunity to investigate how pore 

size and connectivity influence the precipitation of pyrite and carbonate minerals during 

coal ball formation.  

Many have studied the origin, carbonate petrology, geochemistry, and stable 

isotope composition of coal balls (Stopes and Watson, 1908; Mamay and Yochelson, 

1962; Brownlee, 1973; Rao, 1979; Anderson et al., 1981; DeMaris et al., 1983; DeMaris, 

2000; Scott and Rex, 1985; Scott et al., 1996; Zodrow et al., 1996; Zodrow and Cleal,  
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1999; Zodrow et al., 2004; Boyce et al., 2010). However, few have considered the 

paragenetic sequence of coal-ball carbonate in detail. Because the paragenetic sequence 

of most coal ball deposits has not been fully interpreted, there is no consensus on how 

coal balls form, despite the large amount of research. There are three major challenges in 

forming an overarching theory of coal ball formation 1) Coal balls have been found in 65 

Upper Carboniferous coal seams from over 200 locations in 9 countries (Scott and Rex, 

1985); 2) Coal balls contain a wide range of authigenic minerals including pyrite, HMC 

(high-magnesium calcite), LMC (low-magnesium calcite), dolomite, and siderite; and 3) 

Based on their stable isotopic signatures, coal balls have been interpreted as freshwater 

carbonates; however, diagenetic alteration may have reset the original isotopic signatures 

of coal-ball carbonates. Based on carbonate geochemistry and the paragenetic sequence 

of carbonate fabrics and pyrite, Raymond et al. (2012) suggested that the Kalo 

Formation coal balls formed in a hydrologically dynamic environment, such that the 

earliest calcite precipitated from marine water and was diagenetically altered by oxic and 

anoxic meteoric water.  

Porosity and permeability may be important in the formation of coal balls (Scott 

et al., 1996; Raymond et al., 2001; Raymond et al., 2012). In modern and ancient peat, 

pore size is controlled by plant organ and decomposition state, which typically correlates 

with depth in the mire. Near the surface of the peat mire, plant tissues retain their 

original form and porosity. Interparticle porosity occurs between plant organs. 

Intraparticle porosity depends on the plant tissues present in the deposit and is related to 

cavities within plant organs (e.g. pith cavities, seed chambers, sporangial cavities, and 
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root aerenchyma) and to the presence of porous plant tissues (e.g. tracheids, which are 

water conducting cells that form open channels in stems, wood, and in the vascular 

bundles of leaves, seeds, and other organs). 

As decomposition proceeds, the porosity and permeability of peat decreases 

(Boelter, 1969; Clymo, 1983; Levesque and Mathur, 1979). Microbial attack weakens or 

destroys the structural biomolecules of plants (lignin, hemicellulose and cellulose), 

causing the plant debris to soften and deform, decreasing interparticle porosity. Peat 

compaction caused by the continued deposition of plant debris on the mire surface also 

contributes to the loss of interparticle porosity. Fungal decomposition weakens tracheid 

walls, causing them to crumple and collapse, once again, decreasing intraparticle 

porosity.  

Although the net effect of peat decomposition is the loss of porosity, taphonomic 

processes can create porosity and enhance permeability. Fungal decomposition by 

simultaneous decay fungi destroys tracheid walls (Rayner and Boddy, 1998), increasing 

intraparticle porosity and permeability. Fungal decomposition by selective decay fungi 

destroy the middle lamina, which is found between tracheids, creating narrow pore 

spaces in wood (Rayner and Boddy, 1998). Aerenchymatous roots growing down 

through the peat increase the porosity and permeability of peat (Scott et al., 1996; 

Raymond et al., 2001). Finally, invertebrate detritivores that tunnel in wood and leaves, 

or that burrow in peat can increase both inter- and intraparticle porosity of peat 

(Raymond, 2012).  
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In this paper we investigate the relationship between the pore size and 

permeability of peat, the distribution of pyrite, and the carbonate geochemistry, of 

cordaites-dominated coal balls from the Williamson No. 3 Mine in the Kalo Formation 

(mid-Muscovian, Pennsylvanian) of Iowa. We show that the distribution of carbonate 

fabrics is linked to the size and distribution of pore spaces in peat due to three processes: 

1) formation of HMC polycrystals inside tracheids; in cavities formed by plant organs 

(seed cavities, empty sporangia, pith cavities of stems, among others), and in cavities 

created by plant decomposition; 2) permineralization of plant cell walls by LMC; and 3) 

preferential recrystallization of HMC polycrystals to permineralizing anhedral LMC 

during burial diagenesis. 
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2. MATERIALS AND METHODS 

2.1  Materials 

This study builds on taphonomic and petrographic studies of permineralized peat 

(coal balls) from the Williamson No. 3 Mine in Lucas County, Iowa, which was part of 

the Pennsylvanian Western Interior Basin (Raymond, Cutlip and Sweet, 2001; Raymond 

et al., 2012; Fig. 1). This mine exploited a single coal seam, which could have been 

either the Blackoak, or the Cliffland coal of the Kalo Formation (Raymond et al., 2010). 

The Kalo Formation is mid Moscovian in age, and the North American Atokan-

Desmoinesian stage boundary lies within the formation, such that the older Blackoak 

coal is latest Atokan in age, and the younger Cliffland coal is earliest Desmoinesian in 

age (Fig. 2). Coal balls were collected from the Williamson No. 3 Mine between 1930 

and 1950, and donated to the Botanical Museum of Harvard University by F. O. 

Thompson, as part of the Thompson – Darrah Collection. Initially, these coal balls were 

gathered by miners, and there is no record of the stratigraphic position of individual 

specimens within the coal seam. 
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Figure 1. Location Map of the Williamson No. 3 Mine.  Map of Iowa with the location 
of the reclaimed Williamson No. 3 Mine near Williamson, Iowa in Lucas County, 
adapted from Raymond et al. (2012). 
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Figure 2. Stratigraphic Column of Kalo Formation. Stratigraphic position of the 
Williamson No. 3 coal ball deposit, which comes from one of the two Kalo Formation 
coals, either the Blackoak or the Cliffland coal, adapted from Raymond et al. (2012). 
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In order to investigate the carbonate petrology and geochemistry along a 

taphonomic gradient from pristine, well preserved peat to highly decomposed peat, we 

investigated the petrology and carbonate geochemistry of coal balls which contained: 1, 

cordaitean wood (2 coal balls, 5 polished thin sections); 2, pristine leaf mats invaded by 

cordaitean roots (2 coal balls, 4 polished thin sections); 3, decayed leaf mats in which 

individual leaves could still be discerned (2 coal balls, 3 polished thin sections); and 4, 

matrix rich peat consisting of peat matrix (organic particles with all dimensions ≤ 10 

μm) roots and wood (1 coal ball, 1 polished thin-section; Fig. 3). The matrix rich peat 

sampled for this study consisted primarily of matrix. These four coal balls belong to 

three of the six types found in Williamson No. 3 coal balls based on the most common 

organic constituent in each: cordaitean wood; cordaitean leaf mat; cordaitean root; 

medullosan stem; medullosan root; and matrix (Raymond et al, 2001).  

The peat types investigated for this study fall along a porosity gradient from 

porous, permeable leaf mat and wood peats to less porous and less permeable decayed 

leaf mat and matrix rich peat. 
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Figure 3. Optical scans of study thin sections. a) Pristine wood (W3-9dx); b) decayed 
wood (W3-3dx). Arrow indicates a vein of microcrystalline calcite B expanding as it 
crosses a vein of calcite 1; c) pristine leaf mat (W3-97-1); d) decayed leaf mat (Wood-
97-19); e) matrix dominated (W3-5D). 
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2.2  Petrology and Geochemistry of Kalo Fm. Coal Balls 

We used a Zeiss Axioplan 2 microscope with attached AxioCam HRc digital 

camera in orthoscopic mode for photomicroscopy and most petrology. We determined 

compositions of our samples using a Cameca SX50 electron microprobe equipped with 

four wavelength-dispersive X-ray spectrometers, a PGT energy-dispersive X-ray system 

and a panchromatic cathodoluminescence detector, housed in the Department of 

Geology and Geophysics at Texas A&M University. Standardizations and analyses were 

performed at an accelerating voltage of 15 kV, at a beam current of 10 or 50 nA, and at a 

beam diameter of 5 or 10 microns, depending on the sizes of the features available for 

analysis. Standardization and analysis conditions were matched for all analyses. 

Standardizations were carried out using well characterized carbonate mineral standards 

and silicates. Concentrations of the major elements (>10 wt %) are accurate to +/- 1-2 wt 

%. Statistical limits of detection for the minor and trace elements are as follows. The 

minor constituents MgCO3 and FeCO3 have detection limits of 0.05 and 0.10 mole %, 

respectively for the leaf peat analyses, and 0.01 and 0.03 mole %, respectively for all 

other analyses. The trace element Sr has a statistical limit of detection of 200 ppm by 

weight for all analyses. We include some major and minor element concentration data 

from a 1998 microprobe session, but have not used Sr data from this session due to the 

high statistical lower detection limit under the analytic conditions used at that time (900 

ppm).  

We augmented the 160 wavelength-dispersive compositional measurements with 

backscattered electron imaging (BSE).  In BSE images pyrite is white or extremely light 
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grey; LMC is medium grey; HMC is dark grey; and dolomite is very dark grey.  Void 

spaces, epoxy, and organic carbon walls are black. However unless otherwise noted, on 

BSE images used in this contribution, black represents organic carbon. 

We used wavelength-dispersive elemental X-ray imaging to map the distribution 

of key elements. X-ray elemental distribution “maps” were obtained at 15 kV and 20 nA 

beam current in either beam or stage scanning mode, using the wavelength-dispersive X-

ray spectrometers with one spectrometer each set on the Mg, Ca or Fe K alpha X-ray 

peak position. This yielded a separate image for each element showing where that 

element’s X-rays were being emitted from the sample; a matching BSE image was also 

generated. For the 1mm map, the stage was rastered beneath the beam in a 512 by 512 

point grid, with a grid spacing of 2 microns and a dwell time of approximately 15 

milliseconds at each point. For the 2000x (46 μm) maps, the stage remained fixed and 

the beam was rastered in a 256 by 256 point grid, with a grid spacing of 0.24 microns 

and a total acquisition time of 300 seconds.  

False-color X-ray maps were generated by combining the three binary 

thresholded Ca, Mg, and Fe images. In the resulting images, if only high Ca was 

detected, then low-Mg calcite was indicated, and a light green color was assigned to 

those pixels. When both high Ca and moderately high Mg were detected, then high-Mg 

calcite was indicated, and the color blue was used. When both high Ca and high Mg 

were detected, then non-ferroan dolomite was indicated, and the color green was used. 

When high Ca, high Mg and high Fe were all detected, then ferroan dolomite was 

indicated, and the color red was used. The presence of only high Fe corresponded to the 
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presence of pyrite, and the color brown was used. Finally, the color black was used to 

indicate the presence of organic carbon, epoxy cement or fractures. In the false-color 

images shown here, black indicates concentrations of organic carbon. 

  In addition to characterizing samples with the electron microprobe, we used a 

scanning electron microscope, the FEI Quanta 600 FE-SEM housed in the Microscopy 

and Imaging Center of Texas A&M University, to observe grain boundaries in decayed 

wood.  

2.3  Paragenetic Sequence 

Our paragenetic sequence for Williamson No. 3 coal balls builds on that of 

Raymond et al., (2012), and relies on cross-cutting relations in the wood and pristine leaf 

mat samples (Fig. 3a-c).  Both these samples contain a range of carbonate fabrics.  In 

addition, the wood samples have uniform and predictable pore space, and the orientation 

of wood cells has influenced the orientation of carbonate veins, making it easier to 

determine the generations of mineralization and diagenesis, and to define cross-cutting 

relationships.  
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3. RESULTS 

3.1  Forms of Pyrite 

Three forms of pyrite occur in cordaitean peat from the Williamson No. 3 mine 

in Iowa: 1) small euhedral pyrite found in wood and in the peat matrix (Fig. 4a); 2) 

framboidal pyrite found in the peat matrix (Fig. 4b); 3) massive anhedral accumulations 

of pyrite replacing carbonate fabrics, occasionally associated with cracks in the coal ball 

(Fig. 4c). Small euhedral pyrite crystals often occur inside cells.  In some cases, small 

euhedral pyrite crystals indicate the presence of open pits (pores in plant cells that enable 

fluids to move between cells) in tracheids and parenchyma cells (Fig. 4a).  This pyrite 

must have formed in early diagenesis, before calcite filled the cell lumina. The cell 

lumen (plural, lumina) is the space enclosed by the plant cell wall.  In rare cases, 

framboidal structure is preserved (Fig. 4b); most framboidal pyrite occurs in the peat 

matrix of pristine leaf peat, rather than within plant cells.  In samples of wood peat and 

in the pristine leaf mat, calcite 1 engulfs small euhedral pyrite crystals and framboidal 

pyrite. The third form of pyrite, massive anhedral pyrite, occurs along cracks and cuts 

across cell walls (Fig. 4c).  Massive anhedral pyrite may replace all carbonate fabrics in 

certain Williamson No. 3 mine coal balls. 
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Figure 4. Pyrite. a) BSE image of pyrite in the decayed leaf sample preserving pits in 
cell walls (arrow). b) BSE image of framboidal pyrite in the pristine wood sample. c) 
BSE image of massive pyritization in a pristine leaf mat.  
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3.2  Carbonate Fabrics 

Six carbonate fabrics occur in Cordaites-dominated coal balls from the 

Williamson No. 3 Mine.  

Calcite 1.—This fabric consists of non-ferroan HMC polycrystals with an unusual 

triangular shape in the basal plane, perpendicular to the c-axis (Fig. 5a-d). These 

polycrystals have rims of LMC that can be either ferroan or non-ferroan, which make the 

unusual triangular shape of the polycrystals more pronounced. The HMC of calcite 1 

contains between 7.8-16.8 mole% Mg, <0.05-1.06 mole% Fe, and 500-1550 ppm Sr. The 

LMC rims have Mg contents ranging from 0.2-5.0 mole%, Fe contents ranging from 

<0.05-2.56 mole%, and <200-990 ppm Sr (Tables 1-3). 

 The HMC cores of calcite 1 polycrystals consist of micron-sized crystals (Fig 

5e). When examined at high magnification using the BSE detector on the SEM, 

individual crystals within the HMC cores have different grey values, suggesting that they 

contain varying amounts of magnesium (Fig 5e). The HMC cores of calcite 1 

polycrystals also contain micro-dolomite rhombs. The LMC rims of calcite 1 

polycrystals have larger crystals than the cores, 10-20µm, and prominent vugs (Fig. 5d-

e).  

 Calcite 1 occurs in all Cordaites-dominated coal balls, and is the major 

permineralizing fabric in cordaitean wood and leaf peats. It fills most tracheids and 

natural cavities in plant organs (e.g. pith cavities, seed cavities and sporangia). It also 

fills cavities formed by decomposition (e.g. the open areas between the vascular bundles 

in leaves created by the decomposition of the leaf mesophyll cells) and interparticle pore 
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space between leaves and roots. This fabric contains approximately 15% vuggy porosity 

in cores and rims (Fig. 5d-e). 

 

 
 
Figure 5. Calcite 1. a) Micrograph of triangular shape viewed down the c-axis of calcite 
1 polycrystals in the decayed wood sample. b) BSE image of triangular calcite 1 
polycrystals with a higher amount of retained HMC in the matrix rich sample. c) BSE 
image of calcite 1 polycrystals in the decayed leaf sample where much of the HMC was 
replaced by LMC rims. d) BSE image of grain size differences in HMC cores and LMC 
rims. e) BSE image of micron-sized grains in the HMC cores of calcite 1 polycrystals.  f) 
Micrograph of decayed wood showing a narrow vein of calcite 1 that has ripped apart 
tracheid walls in formation; arrows designate broken tracheid walls. 
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Microcrystalline Calcite A—This fabric consists of microcrystalline LMC, which is 

generally ferroan but which may be non-ferroan, with rare islands of calcite that are 

higher in magnesium. The LMC regions have Mg content ranging from 0.25-3.68 

mole%, Fe content ranging from 0.1-2.06 mole%, and Sr content ranging from <200-

1100 ppm. The HMC regions have Mg content ranging from 4.13-8.1 mole%, Fe content 

ranging from <0.05-1.1 mole%, and Sr content ranging from <200-770 ppm (Tables 1-

3).   

Microcrystalline calcite A fills veins in the wood and leaf peats, and small spaces 

between leaves and other plant organs. In veins, individual crystals range from 10-20µm 

in size; in cell walls, crystals are often smaller, 5-10µm across. In the decayed wood 

sample, this fabric fills the narrow pore spaces between tracheid walls. Microcrystalline 

calcite A appears to permineralize most cell walls.  Micron-sized crystals of 

microcrystalline calcite A have formed within the cell walls of tracheids, fragmenting 

the walls (Fig. 6a). This fabric also permineralizes parenchyma cells in roots, and the 

vascular bundle supports of Cordaites leaves (Fig. 6b).  Dolomite rims are often present 

around leaf and wood cells that have been permineralized by microcrystalline calcite A 

(Fig. 6b-c). Finally, microcrystalline calcite A forms spheroids and ovoids in 

parenchyma cells of wood (ray cells) and leaves that are filled with organic carbon (Fig. 

6d). 
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Figure 6. Microcrystalline Calcite A. a) BSE image of microcrystalline calcite A in cell 
walls (arrow) and between pulled apart root tracheids in the pristine leaf sample. b) BSE 
image of microcrystalline calcite A in vascular bundle supports of leaves in the pristine 
leaf sample. Dark rims are dolomite (arrow). c) BSE image of wood tracheid with a 
dolomite rim (arrow) in the decayed wood sample. d) BSE image of spheroids and 
ovoids in a wood ray cell surrounded by dense organic carbon in the decayed wood 
sample. 

 

 

Radial Fibrous Calcite.—Radial fibrous calcite consists of ferroan LMC with islands of 

non-ferroan HMC (Fig 7a-b). The ferroan LMC of radial fibrous calcite ranges from 



19 
 

0.55-4.92 mole% Mg, 0.55-2.4 mole% Fe, and <200-710 ppm Sr; HMC ranges from 

8.54-15.58 mole% Mg, <0.05-0.4 mole% Fe, and 470-940 ppm Sr (Tables 1-3). 

 BSE images of radial fibrous calcite veins in decayed wood reveal a 

microcrystalline fabric similar to the HMC cores of calcite 1 polycrystals, suggesting 

that radial fibrous calcite is a neomorph of calcite 1 (Fig. 5e; Fig. 7b). The HMC grains 

are micron scale in size and the LMC rims range from 5-10 µm across.  

Radial fibrous calcite occurs only in the pristine and decayed wood samples. This 

fabric always forms linear crystals at the edge of veins that grow inward from both sides. 

Wide veins have a rim of radial fibrous calcite surrounding calcite 1. Narrow veins may 

be entirely filled with radial fibrous calcite (Fig. 7c). In some veins, there is typically a 

seam in the middle where the two edges of radiating crystals meet.  In the decayed 

wood, the centers of veins filled with radial fibrous calcite sometimes contain 

microcrystalline calcite B or clear anhedral calcite (Fig. 8a). 
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Figure 7. Radial Fibrous Calcite. a) BSE image of a radial fibrous vein in the decayed 
wood sample. b) BSE image of radial fibrous HMC cores and LMC rims. c) Micrograph 
with crossed nicols of a radial fibrous vein in the decayed wood sample. 
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Microcrystalline Calcite B.—Microcrystalline calcite B consists of non-ferroan HMC 

and ferroan LMC with a high volume of finely disseminated decayed organic matter and 

small euhedral pyrite crystals (Fig. 8b). The LMC phase contains between 1.66-2.21 

mole% Mg, 1.46-1.71 mole% Fe, and <200-400 ppm Sr. The HMC phase contains 

between 7.64-14.66 mole% Mg, <0.05-0.4 mole% Fe, and 530-830 ppm Sr (Tables 1-3). 

Individual crystals range from 10-20 µm in size. 

 Microcrystalline calcite B fills narrow veins in the wood, which sometimes 

expand when crossing veins of calcite 1 (Fig. 8b). Frequently, veins of microcrystalline 

calcite B have rims of radial fibrous calcite. In veins of microcrystalline calcite B 

without radial fibrous calcite rims, the microcrystalline calcite B at the edge of the veins 

has more organic particles making it darker in color (Fig. 8a). 

Permineralizing Anhedral Calcite.—Permineralizing anhedral calcite consists of ferroan 

LMC with occasional small islands of non-ferroan HMC (Fig. 9a). The LMC regions 

contain 0.3-3.71 mole% Mg, 0.6-3.23 mole% Fe, and <200-700 ppm Sr. The HMC 

regions contain 12.05-14.28 mole% Mg, <0.05-0.5 mole% Fe, and 650-1410 ppm Sr 

(Tables 1-3).  

The grain size is of permineralizing anhedral calcite ranges from small (<10 m 

in diameter) to large (~ 100 µm in diameter), and grains often have curved boundaries 

(Fig. 9b-c).  This fabric is the most common fabric in matrix peat, but also occurs in 

matrix-rich areas of leaf and wood peat, which consist of small organic particles and 

have small pore spaces. 
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Figure 8. Microcrystalline Calcite B. a) Micrograph of a vein of microcrystalline 
calcite B (MB) lined with radial fibrous calcite (RF) crossing a vein of calcite 1 (C1) in 
the decayed wood sample. A small patch of clear anhedral calcite (CA) is present in the 
microcrystalline calcite B vein. b) BSE image of a microcrystalline calcite B (MB) vein 
cutting a vein of calcite 1 (C1) in the decayed wood sample. 
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Figure 9. Permineralizing Anhedral Calcite. a) BSE image of permineralizing 
anhedral calcite in the matrix rich sample. b) Micrograph of permineralizing anhedral 
calcite in the matrix rich sample under crossed nicols. Arrow marks a curved grain 
boundary. c) Micrograph of permineralizing anhedral calcite in reflected light from the 
matrix rich sample. 
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Clear Anhedral Calcite.—Clear anhedral calcite is non-ferroan LMC containing between 

1.55-3.25 mole% Mg, <0.05-0.05 mole% Fe, and <200-340 ppm Sr (Tables 1-3). This 

fabric forms 50-200 µm anhedral calcite crystals without color or organics (Fig. 10a) and 

occurs at the intersection of veins in decayed wood peat (Fig. 8a) and in veins that cut 

across fabrics in other peat types (e.g. Psaronius root peat).  

 
3.3  Paragenetic Sequence 

 Fig. 11 shows the paragenetic sequence of coal balls from the Williamson No. 3 

Mine.  Cross-cutting relationships in the two wood samples and the pristine leaf mat 

enabled us to place framboidal pyrite, small euhedral pyrite crystals, calcite 1, 

microcrystalline calcite A, radial fibrous calcite, microcrystalline calcite B, clear 

anhedral calcite, and massive pyrite in the paragenetic sequence.   Permineralizing 

anhedral calcite, which contains islands of HMC, clearly occurs after calcite 1 in the 

paragenetic sequence, but does not cut across other calcite fabrics.  The curving grain 

boundaries and wide range of grain sizes in permineralizing anhedral calcite suggest that 

this fabric results from burial diagenesis (Tucker and Wright, 1990).  The presence of 

islands of HMC suggests that it results from burial diagenesis of calcite 1.  Accordingly, 

we place permineralizing anhedral calcite relatively late in the paragenetic sequence.  

Massive anhedral pyrite can replace all carbonate fabrics in certain Williamson No. 3 

coal balls, and occurs after the formation of permineralizing anhedral calcite.  We 

discuss the placement of clear anhedral calcite in the paragenetic sequence below. 
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Figure 10. Clear Anhedral Calcite, Fusain, Geode-like Structure. a) Micrograph with 
crossed nicols of clear anhedral calcite in the decayed wood sample. b) BSE image of 
fusainized tracheids from the pristine leaf sample. Tracheids are filled with calcite 1 and 
have thin dolomite rims. Box marks region c. c) Closer BSE image of the same area of 
fusainized tracheids from the pristine leaf. Dolomite rims (arrow) are pronounced and 
small dolomite rhombs (arrow) occur in the interior of the tracheids. d) BSE image of a 
geode-like structure filling a leaf fiber cell. 
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Figure 11. Paragenetic sequence for the Williamson No. 3 Coal Balls. C1= calcite 1; 
MA= microcrystalline calcite A; Dolo= dolomite; RF= radial fibrous calcite; MB= 
microcrystalline calcite B; PAC= permineralizing anhedral calcite; CA= clear anhedral 
calcite. 
 

  



27 
 

4. DISCUSSION  

The trace minerals and the magnesium, strontium and iron content of carbonate 

fabrics in coal balls from the Williamson No. 3 Mine indicate their environment of 

formation.  Small euhedral pyrite crystals in plant cells and framboidal pyrite in peat and 

coal indicate the presence of brackish water during, or soon after peat accumulation 

(Spackman and Cohen, 1977; Horne et al., 1978; Howarth, 1979; Altschuler et al., 

1983).  HMC with high strontium levels forms from marine water; LMC with low 

strontium levels forms in freshwater (Tucker and Wright, 1990).  Ferroan calcite (Fe > 

0.5 mol %) precipitates from anoxic fluids; calcite that precipitates in water containing 

dissolved oxygen has low Fe levels (Tucker and Wright, 1990).   In marine carbonates, 

ferroan LMC often forms during burial diagenesis (Tucker and Wright, 1990).  However 

in anoxic peat substrates, ferroan LMC could form during early diagenesis from anoxic 

pore waters.   In peat deposits, the catotelm is the lower, anoxic zone of the peat that lies 

below the permanent water table (Clymo, 1983).  Early diagenetic calcite that formed in 

the catotelm would be expected to be ferroan LMC.  The acrotelm is the upper, 

oxygenated layer of the peat, which generally lies above the permanent water table.  Due 

to seasonal fluctuations in the height of the mire water table, which occur even in 

tropical mires, the acrotelm-catotelm transition experiences both anoxic and oxic 

microenvironments (Bragg, 1997; Takahashi and Yonetani, 1997).   Thus, ferroan and 

non-ferroan LMC could have formed in the acrotelm during early diagenesis.   

Small euhedral pyrite crystals in Williamson No. 3 coal balls occur within cells 

and extend into, and in some cases through, open pits, indicating that this pyrite 
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precipitated before carbonate filled the cells.  As previously discussed, framboidal pyrite 

generally forms during early diagenesis (Howarth, 1979; Kenrick and Edwards, 1988; 

Grimes et al., 2002).  In these coal balls, small euhedral pyrite crystals and framboidal 

pyrite occur in all carbonate fabrics except radial fibrous calcite, suggesting that both 

formed before carbonate permineralization.  Small euhedral pyrite crystals and 

framboidal pyrite in peat indicate the presence of brackish or marine water in the mire 

(Horne et al., 1978; Altschuler et al., 1983).  

The earliest carbonate fabric in Williamson No. 3 coal balls consists of calcite 1 

polycrystals with HMC cores and LMC rims that are usually ferroan, but which may be 

non-ferroan. Calcite 1 is the earliest carbonate fabric in the paragenetic sequence for two 

reasons: it is cross-cut by all other carbonate fabrics except permineralizing anhedral 

calcite; and all other carbonate fabrics except clear anhedral calcite contain islands of 

HMC, suggesting that they formed in part due to diagenetic alteration of calcite 1 

(Raymond et al., 2012:  Fig. 6a; 7a-b; 8b; 9a). Magnesium and strontium concentrations 

in the HMC cores of calcite 1 polycrystals indicate precipitation in marine water.  The 

LMC rims indicate early diagenesis in meteoric water that was usually anoxic, resulting 

in ferroan LMC rims, but which occasionally contained oxygen, resulting in non-ferroan 

LMC rims.  Non-ferroan LMC rims occur only in the pristine leaf mat and decayed 

wood samples, suggesting that these samples lay at the boundary between the acrotelm 

and catotelm during permineralization.  Calcite 1 in all other samples appears to have 

formed in the catotelm. 
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High-Mg calcite 1 fills large voids in all peat types, but occurs most commonly 

in wood and pristine leaf peat.  In all peat types, calcite 1 fills the lumina of tracheids 

(the water-conducting cells of wood), which have porous walls.  In matrix peat, calcite 1 

occurs in roots and burrows that may have acted as conduits, introducing marine water 

into decomposed peat of the catotelm, which had smaller particles and low porosity. 

Thus the abundance of calcite 1 may be a permeability signal, indicating connected pore 

spaces within peat at the time of permineralization. 

The distribution of calcite 1 and microcrystalline calcite A within cell lumina 

supports the hypothesis that calcite 1 formed in connected pore spaces.  In wood, both 

the parenchymatous ray cells and tracheids have pits (Esau, 1977); and in cordaitean 

wood samples calcite 1 fills nearly all tracheids and most parenchymatous ray cells.  

However, ray cells that are filled with organic carbon, decreasing their permeability, 

contain microcrystalline calcite A, a ferroan LMC, rather than calcite 1.  Similarly, in 

pristine Cordaites leaves, calcite 1 fills the space between vascular bundles that was 

originally occupied by thin-walled mesophyll cells, whereas microcrystalline calcite A 

fills the thick-walled fibers of the vascular bundle supports, which do not have porous 

walls, and epidermal cells occluded with organic carbon.  Thin-walled parenchyma cells 

(e.g. root cortex cells and leaf mesophyll) may be filled with calcite 1 or with 

microcrystalline calcite A. 

The growth of calcite 1 polycrystals broke cells walls in the decayed wood 

specimen (Fig 6f).  Calcite 1 also formed displacive arrays of radiating polycrystals at 

the lower edge of the pristine leaf mat, which are surrounded by zones of poorly 
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preserved, incompletely permineralized peat.  The largest radiating arrays of calcite 1 in 

our samples grew down from the well-preserved leaf mat into a region of matrix rich 

peat (i.e. peat composed of unidentifiable plant fragments, many of which are less than 

100 µm in their largest dimension: Cohen and Spackman, 1977).  

Calcite 1 polycrystals have an unusual growth habit that has only been observed 

in coal balls from the Williamson No. 3 Mine, seen best in planar section perpendicular 

to the c-axis, (Raymond et al., 2012: Fig 5a-c).  However, calcite 1 polycrystals from 

coal balls are similar in shape to HMC polycrystals precipitated experimentally from 

fluids containing malic acid by Meldrum and Hyde (2001), and to naturally-occurring 

HMC polycrystals in subsurface sediments between the saltmarsh and coastal dunes in 

the area of Grand Isle, LA, found by Kocurko (1980; 1982) and pictured by Given and 

Wilkinson (1985).  In both cases, the distinctive shape of these modern HMC 

polycrystals may result from the presence of organic acids during calcite precipitation.  

Calcite 1 polycrystals from coal balls do not retain the internal structure of the 

polycrystals precipitated by Meldrum and Hyde (2001) or found by Kocurko (1980, 

1982: Fig 5e).  However, calcite 1 polycrystals may be pseudomorphs of similar HMC 

polycrystals precipitated from fluids containing organic acids.  

The presence of significant amounts of abiotic HMC in coal balls from the 

Williamson No. 3 Mine is surprising.  However, Zodrow et al. (2002) described HMC in 

coal balls from the Donetz Basin of Russia. BSE images of calcite 1 reveal vuggy HMC 

cores with tiny crystals and possible microdolomite surrounded by LMC rims with larger 

crystals (Fig. 5d-e).  These LMC rims may have shielded HMC cores of calcite 1 from 
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diagenetic alteration.  In coal balls with large amounts of permineralizing anhedral 

calcite, a ferroan LMC, the HMC cores of calcite 1 polycrystals are often very small 

(Fig. 5e), and the eventual fate of calcite 1 polycrystals may be to become radiating 

arrays of bladed calcite as observed by Schopf (1975), Brownlee (1973), and Rao (1979) 

in coal balls from the Illinois Basin.  These early studies did not report the magnesium 

content of the bladed calcite crystals.   

The next fabric in the paragenetic sequence, microcrystalline calcite A, has a 

freshwater magnesium and strontium signature.  Microcrystalline A is generally ferroan, 

but may be non-ferroan in the pristine leaf mat sample.  As previously discussed, this 

fabric occurs in the lumina of cells occluded with organic carbon and cells with 

nonporous walls.  It also appears to be the original permineralizing fabric of cell walls 

including parenchyma cells, fiber cells in the vascular bundle supports of Cordaites 

leaves, and tracheids (Fig. 6). Some microcrystalline calcite A results from diagenetic 

alteration of calcite 1:  veins of microcrystalline calcite A in the pristine leaf mat and 

decayed wood have islands of HMC, indicating that the original permineralizing fabric 

was calcite 1.  In some regions of the decayed wood sample, the microcrystalline calcite 

A found between tracheids in the position of the missing middle lamina contains islands 

of HMC and may result from the diagenetic alteration of calcite 1.  However, in other 

parts of this specimen microcrystalline calcite A does not have regions of HMC and may 

have been the original permineralizing fabric (Raymond et al., 2012). 

Raymond et al. (2012) suggested that the fluids responsible for the precipitation 

of microcrystalline calcite A also formed the LMC rims of calcite 1 polycrystals.  The 
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LMC rims of calcite 1 polycrystals in decayed wood and pristine leaf peat and 

microcrystalline calcite A in the pristine leaf mat are the only LMC fabrics that have 

variable iron content, suggesting that these samples lay at the boundary between the 

acrotelm and catotelm when they experienced meteoric diagenesis.   Variable iron 

contents in the LMC rims of calcite 1 and in microcrystalline calcite A suggest that both 

formed early in diagenesis. Our paragenetic sequence implies that the cell lumina of 

tracheids and ray cells in wood and root cortex cells filled with calcite 1 before 

permineralization of the cell walls.  

The fiber cells of Cordaites leaves permineralized by microcrystalline calcite A 

often have thin dolomite rims (Fig. 6b).  Dolomite occasionally rims cavities between 

fiber cells, suggesting that these were open pores at the time of dolomite formation.  

However, the rims are not continuous around all fiber cells, suggesting that rims formed 

after initial compaction and deformation of the fiber cells. Raymond et al. (2012) 

reported that dolomite rims occurred only associated with the fiber cells of Cordaites 

principalis leaves; however, new research suggests that narrow dolomite rims also occur 

in decayed cordaitean wood and in tracheids from the pristine leaf mat (Fig. 6b-c).  

Zodrow et al. (2002) observed dolomite rims in coal balls from the Donetz Basin. Less 

frequently, dolomite rhombs are present in the LMC rims of calcite 1 (Fig. 10c). Though 

coal balls from the Kalo formation have retained a significant amount of their original 

HMC, most remaining HMC is rimmed by LMC, which may have acted as a shield to 

further diagenetic alteration.  
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The next two fabrics in the paragenetic sequence, radial fibrous calcite and 

microcrystalline calcite B, are ferroan LMC with islands of HMC (Fig 7a; 8b).  They are 

constrained in the paragenetic sequence by cross-cutting relationships defined in the 

decayed wood sample. Both are considered neomorphs of calcite 1 that formed in fresh 

pore waters because they contain islands of HMC. Radial fibrous and microcrystalline 

calcite B occur only in large cracks in wood, and microcrystalline calcite B is specific to 

the decayed wood sample.  Both radial fibrous calcite and microcrystalline calcite B fill 

radial and tangential veins in decayed Cordaites wood.  Veins filled with 

microcrystalline calcite B are narrow in wood and may expand when cutting across 

calcite 1veins, suggesting that the presence of tracheid walls and microcrystalline calcite 

A constrained the formation of microcrystalline calcite B veins (Fig 3b).    

Permineralizing anhedral calcite forms in matrix rich peat and in decayed leaf 

mats, which have small pores and probably low permeability.  It also occurs in matrix 

rich regions of the pristine leaf mat and wood peat. It is primarily ferroan LMC, but may 

contain small islands of HMC, suggesting that some permineralizing anhedral calcite is a 

neomorph of calcite 1.  This fabric has curving grain boundaries and a wide range in 

grain sizes consistent with burial diagenesis (Tucker and Wright, 1990; Fig 9b).  The 

placement of permineralizing anhedral calcite in the paragenetic sequence is not 

constrained by cross-cutting relationships with other fabrics.  It is placed late in the 

paragenetic sequence because it is the only carbonate fabric in Williamson No. 3 coal 

balls that appears to result from burial diagenesis (Tucker and Wright, 1990).  
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Some coal balls from the Williamson No. 3 Mine experienced secondary 

pyritization by massive anhedral pyrite, which affects all carbonate fabrics in these coal 

balls.  This pyrite forms preferentially along fractures and on the edges of coal balls as a 

result of a change in pore water geochemisty after the formation of permineralizing 

anhedral calcite (Fig. 4c).   

The final fabric in the paragenetic sequence is clear anhedral calcite, which is 

LMC with the lowest levels of strontium and by far the lowest levels of iron compared to 

the other carbonate fabrics.   It is completely free of organic matter and probably formed 

after coalification of the Williamson No. 3 coal deposit, from fresh, meteoric pore water 

in the presence of oxygen.  

4.1  Cellular Controls on Carbonate Permineralization

BSE images provide new insight into the process of permineralization (Scott and 

Collinson, 2003; Boyce et al., 2010). The features of tracheids are preserved with the 

most detail by early diagenetic pyrite, which can fill cells, forming molds of the pits in 

tracheid walls (Fig. 4a).  In peat permineralized by calcium carbonate, cell walls are 

commonly preserved by microcrystalline calcite A.  Micron-sized calcite crystals 

regularly break up tracheid walls during permineralization, frequently destroying 

detailed features such as pits (Fig. 6a). Fossil charcoal (fusain) is an exception. Tracheid 

walls of fusainized wood are surrounded by microcrystalline calcite A, but appear solid 

and are not interrupted by micron-sized crystals (Fig. 10b-c).  Tracheid walls of 

fusainized wood often have thin dolomite rims (Fig. 10c). In BSE images, the distinction 



35 
 

between burned and decayed tracheids within coal balls is immediately apparent (Figs. 

6a; 10b-c). 

In contrast to tracheid walls, the cell walls of collenchyma fibers in the vascular 

bundle supports of Cordaites leaves are preserved as solid rims of microcrystalline 

calcite A with micron-sized calcite crystals and organic carbon filling the cell lumina.  

These two different styles of cell wall preservation suggest different original cell wall 

configurations and compositions:  porous and lignitic for tracheids, non-porous and 

cellulosic for collenchyma fibers in Cordaites leaves (Esau, 1977).  

Raymond et al. (2012) noted the correlation between large pores, permeability 

and calcite 1 (HMC) in Williamson No. 3 coal balls. However, because most subsequent 

carbonate fabrics in coal balls incorporate some calcite 1, as evidenced by the 

persistence of islands of HMC, they felt that HMC may have occurred widely but is 

preserved today only in wood and large pore spaces. The correlation between cell wall 

porosity and carbonate fabrics suggests that the presence of calcite 1 filling large pore 

spaces in permeable peat and conduits in less permeable matrix rich peat, such as wood 

and burrows, reflects its original distribution and is not a diagenetic signal. We also 

recognize that even in surficial leaf mats, which must have been among the most 

permeable Pennsylvanian peats, cell walls and certain cells (lumina, collenchyma, fiber 

and parenchyma cells filled with organic matter) are permineralized by microcrystalline 

calcite A. 

Parenchyma cells are typically well preserved and look, in general, like thin-

walled fossil charcoal. Cells filled with organic carbon display several different forms of 
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calcite, which may be linked to the types of organic acids present in each cell (Meldrum 

and Hyde, 2001). Some parenchyma cells in wood and leaves are filled with small 

spheres and chains of spheres composed of microcrystalline calcite A in a dense organic 

matrix (Fig. 6d). These spheres may preserve the shape of fungal hyphae that attacked 

cells in life or after death.  Possibly, they occur widely in coal balls, but can only be 

discerned in cells filled with organic matter; or, the organic carbon filling these cells 

may have been a response to fungal infection. Cohen and Spackman (1980) documented 

the infilling of parenchyma cells and water conducting cells of peat constituents after 

death during coalification. Other filled parenchyma cells exhibit jagged geode-like 

structures with dense organic matter in the center (Fig.10d).  As previously described, 

the lumina of collenchyma cells are filled with micron-sized calcite crystals and organic 

matter. The different types of carbonate crystals filling individual cells are complex and 

not fully understood.  

Although permineralizing anhedral calcite apparently results from burial 

diagenesis, its distribution correlates with the occurrence of matrix rich peat. Islands of 

HMC within permineralizing anhedral calcite suggest that some is a neomorph of calcite 

1. However, in the degraded leaf mat and matrix rich samples, most permineralizing 

anhedral calcite consists of LMC with finely disseminated organic matter and plant 

fibers. Permineralizing anhedral calcite, which is ferroan LMC, may be a neomorph of 

microcrystalline calcite A. If so, microcrystalline calcite A may have been the 

predominant carbonate fabric in low porosity, low permeability peat. However based on 

strontium and iron content, the HMC and LMC regions of permineralizing anhedral 



37 
 

calcite most closely resemble the geochemical composition of calcite 1 HMC cores and 

LMC rims (Tables 2-3;  Fig 12).  Resolution of the source of permineralizing anhedral 

calcite requires more research.  

 

 
 
Figure 12. Strontium vs. Iron plot. Fabric’s separated into LMC, Int HMC and HMC 
(for values, see Tables 1-3).  

 

 

4.2  Implications for Coal Ball Formation 

A number of mechanisms for coal ball formation have been proposed (Scott et 

al., 1996). Raymond et al. (2012) outlined three general models of coal ball formation:  

salt-water incursions into freshwater swamps (Stopes and Watson, 1909; Rao, 1979); 

introduction of marine pore water into buried freshwater peat (Spicer, 1989); erosional 
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unroofing of buried peat (DeMaris, 1983).   The paragenetic sequence of Williamson 

No. 3 coal balls suggests that these coal balls formed due to the introduction of marine 

water into a freshwater swamp. Although the Williamson No. 3 peat probably 

accumulated in a freshwater mire (Raymond et al., 2010), small euhedral pyrite crystals 

and framboidal pyrite indicate the occasional presence of marine water in the 

Williamson No. 3 mire.  Sporadic marine incursions acted as a catalyst for the 

precipitation of HMC (calcite 1) in this predominately fresh water system. Coal-ball 

carbonates then experienced early meteoric diagenesis, forming the LMC rims of calcite 

1, microcrystalline calcite A, radial fibrous calcite and microcrystalline calcite B.  

Permineralizing anhedral calcite formed in response to burial diagenesis in fresh pore 

waters, which suggests that the pore waters of the Williamson No. 3 coal remained fresh 

even after burial.  Rao (1979) proposed a similar origin for coal balls from the Illinois 

Basin.  In the Williamson No. 3 deposit, late stage secondary pyritization by anhedral 

pyrite provides evidence for the introduction of anoxic, iron-rich formational waters 

during late diagenesis. 

The Moscovian sediments of the mid-continent record repeated 4th and 5th order 

transgressive-regressive cycles (known as cyclothems), probably driven by the advance 

and retreat of continental ice sheets (Heckel, 1977, 1986).  The Kalo Formation 

preserves two transgressive-regressive cycles that were probably driven by glacial-

eustatic sea level fluctuations (Raymond et al., 2010).  The carbonate geochemistry of 

coal balls from the Kalo Formation of Iowa and from the Illinois Basin (Rao, 1979) 

suggests that they formed in peat deposits that retained fresh pore waters even after 
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burial by marine sediments. This hypothesis of coal ball formation implies heavy rainfall 

in Pennsylvanian mires.  In areas with significant rainfall, the hydraulic head is high and 

buried sediments retain fresh pore waters even after marine transgression and burial by 

marine sediments (Meisler et al., 1988). Salt water enters fresh water formations when 

the hydraulic head of the fresh water package is low (Meisler et al., 1988).  Neuzil et al., 

(1993) observed fresh pore water in a tropical freshwater peat from Indonesia that had 

been submerged in marine water due to sea level rise. 

This model also requires the deposition of impermeable marine sediments 

overlying the freshwater sediments that contain the freshwater lens (in the case of the 

Kalo Formation – peat).  Near New Jersey, USA, fresh water wedges in Cretaceous 

fluvial-deltaic sands, capped by marine confining beds, extend up to 90 km off the coast 

(Meisler et al., 1988). In the Kalo Formation, marine transgressive shales and carbonates 

may have acted as confining beds.  

In the paragenetic sequence of Williamson No. 3 coal balls, the formation of 

massive anhedral pyrite marks the introduction of anoxic, iron-rich formational fluids 

into the system.  Clear anhedral calcite, which is also non-ferroan, probably forms from 

meteoric pore water in the presence of oxygen, after the uplift and exposure of 

Pennsylvanian strata.  In Pennsylvanian coal balls from the Donetz and Illinois Basins, 

clear anhedral calcite shared the same stable isotopic composition as cleat calcite from 

the source coals (i.e. calcite formed in cracks in coal seams:  Brownlee, 1975; Zodrow et 

al., 2002).   
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5. CONCLUSIONS 

The distribution of trace minerals and the carbonate petrology and geochemistry 

of Williamson No. 3 coal balls enable us to determine their environment of formation.  

Although the Williamson No. 3 coal probably accumulated in a freshwater mire 

(Raymond et al., 2010), the widespread occurrence of small euhedral calcite crystals and 

framboidal pyrite in Williamson No. 3 coal balls suggests the presence of salt or 

brackish water in the mire.  The earliest carbonate fabric in our sample set from the 

Williamson No. 3 Mine consists of HMC polycrystals (calcite 1) with an unusual growth 

habit, similar to HMC experimentally precipitated from solutions containing malic acids 

by Meldrum and Hyde (2001) and to modern HMC precipitated adjacent to a saltmarsh 

along the coast of Louisiana (Kocurko, 1980, 1982; Given and Wilkinson, 1985).  The 

high magnesium and strontium content of this calcite coupled with low iron content 

indicate precipitation from marine water in the presence of dissolved oxygen.  Though 

the polycrystals have been recrystallized, they retain the general bladed, triangular shape 

of the Kocurko (1980, 1982) crystals, made even more pronounced by LMC rims, which 

are generally ferroan but may be non-ferroan in the decayed wood and pristine leaf mat 

samples.  These LMC rims indicate early diagenesis of HMC polycrystals (calcite 1) in 

meteoric water.  

Like the LMC rims of calcite 1, the second carbonate fabric to form, 

microcrystalline calcite A, is generally ferroan LMC, but may be non-ferroan in the 

pristine leaf mat.   Subsequent generations of calcite in Williamson No. 3 coal balls 

reflect diagenesis in meteoric water.  The curved grain boundaries and wide range of 
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grain sizes in permineralizing anhedral calcite reflect burial diagenesis in fresh pore 

water.   

Detailed study of carbonate fabrics in relation to plant cell type and the size of 

peat particles revealed several distinct correlations. Calcite 1 appears to fill pores in 

porous, permeable peat, while microcrystalline calcite A permineralizes cell walls and 

fills cells with restricted fluid flow. Permineralizing anhedral calcite is a neomorph of 

calcite 1 that forms in matrix rich peat.  Plant taxonomy and the availability of pore 

space play an important role in determining the carbonate fabric and diagenetic 

alteration of coal balls.  

Our results have implications for the paleohydrogeology of Pennsylvanian 

sediments.  The diagenetic history of Williamson No. 3 coal balls suggest that this coal 

maintained a persistent freshwater lens, possibly because the overlying marine shale 

acted as a confining bed. Meisler et al. (1988) reported persistent freshwater lenses in 

fluvial-deltaic Cretaceous sediments overlain by marine muds along the coast of New 

Jersey and suggested that high rainfall during the Cretaceous contributed to the presence 

and persistence of the freshwater lens.  

Our results suggest that many isotopic values previously reported from coal balls 

have fresh water signatures because the stable isotopic values of the original marine 

cement, calcite 1, were reset by fresh water that remained in the peat for an extended 

time after burial. Our results are consistent with Scott et al. (1996), who concluded that 

the stable isotopes of coal-ball calcite represent mixing between marine and fresh water. 
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A probable next step in this project is to isolate the HMC regions and the other carbonate 

fabrics for stable isotopic analyses.  
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APPENDIX 

 

Tables 

 

Table 1. Magnesium composition by carbonate fabric. 

  HMC Int HMC: ( 4-9.7 mole %, 1-2.5 wt% Mg) LMC 

Fabric 
# of 

analyses  
Ave Mg 
mole% 

Range Mg 
mole% 

# of 
analyses  

Ave Mg 
mole% 

Range Mg 
mole% 

# of 
analyses  

Ave Mg 
mole% 

Range Mg 
mole% 

Calcite 1 196 14.2 11.2-16.8 5 7.11 4.46-9.28 171 1.34 0.2-3.52 
Micro A 0 n/a n/a 5 5.99 4.13-8.1 47 1.49 0.25-3.68 
Perm 
Anhedral 22 13.6 12.1-14.4 0 n/a n/a 55 1.13 0.3-3.71 
Radial 
Fibrous 19 12.1 9.76-15.6 6 8.4 4.92-9.65 28 1.51 0.55-3.52 
Micro B 2 12.9 11.1-14.7 1 7.64 7.64 5 2.05 1.66-2.21 
Clear 
Anhedral 0 n/a n/a 0 n/a n/a 5 2.4 1.55-3.25 
Totals 238 13.2   17 7.29   311 1.65   
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Table 2. Iron composition by carbonate fabric. Lower limit of detection is 0.05 mole%. 

  HMC Int HMC: ( 4-9.7 mole %, 1-2.5 wt% Mg) LMC 

Fabric 
# of 

analyses  
Ave Fe 
mole% Range Fe mole% 

# of 
analyses  

Ave Fe 
mole% 

Range Fe 
mole% 

# of 
analyses  

Ave Fe 
mole% 

Range Fe 
mole% 

Calcite 1 195 0.1 <0.05-1.06 5 0.48 <0.05-1.35 171 1.61 <0.05-2.56 
Micro A 0 n/a n/a 5 0.43 <0.05-1.1 47 1.32 0.1-2.06 
Perm 
Anhedral 22 0.9 <0.05-0.5 0 n/a n/a 55 1.59 0.06-3.23 
Radial 
Fibrous 19 0.11 <0.05-0.4 6 0.31 <0.05-1.16 28 1.63 0.55-2.4 
Micro B 2 0.23 <0.05-0.4 1 0.2 0.2 5 1.62 1.46-1.71 
Clear 
Anhedral 0 n/a n/a 0 n/a n/a 5 0.01 <0.05-.0.05 
Totals 238 0.34   17   0.20 311 1.30   
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Table 3. Strontium composition by carbonate fabric. Lower limit of detection is 200 ppm. 

  HMC Int HMC: ( 4-9.7 mole %, 1-2.5 wt% Mg) LMC 

Fabric 
# of 

analyses  
Ave Sr 
(ppm) 

Range Sr 
(ppm) 

# of 
analyses  

Ave Sr 
(ppm) 

Range Sr 
(ppm) 

# of 
analyses  

Ave Sr 
(ppm) 

Range Sr 
(ppm) 

Calcite 1 195 1000 500-1550 5 760 330-1130 171 350 <200-990 
Micro A 0 n/a n/a 5 520 <200-770 47 300 <200-1100 
Perm 
Anhedral 22 990 650-1410 0 n/a n/a 55 320 <200-700 
Radial 
Fibrous 19 700 470-940 6 600 480-600 28 430 <200-710 
Micro B 2 680 530-830 1 660 660 5 250 <200-400 
Clear 
Anhedral 0 n/a n/a 0 n/a n/a 5 210 <200-340 
Totals 238 843   17 635   311 310   
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