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ABSTRACT

The Diversity of Variations in the Spectra of Type Ia Supernovae. (August 2012)

Andrew James Wagers, B.A., Berea College; M.S., Stephen F. Austin State

University

Chair of Advisory Committee: Dr. Lifan Wang

Type Ia supernovae (SNe Ia) are currently the best probe of the expansion history

of the universe. Their usefulness is due chiefly to their uniformity between super-

novae (SNe). However, there are some slight variations amongst SNe that have yet

to be understood and accounted for. The goal of this work is to uncover relation-

ships between the spectral features and the light curve decline rate, ∆m15. Wavelet

decomposition has been used to develop a new spectral index to measure spectral

line strengths independent of the continuum and easily corrected for noise. This new

method yields consistent results without the arbitrary uncertainties introduced by

current methods and is particularly useful for spectra which do not have a clearly

defined continuum. These techniques are applied to SN Ia spectra and correlations

are found between the spectral features and light curve decline rate.

The wavelet spectral indexes are used to measure the evolution of spectral features

which are characterized by 3 or 4 parameters for the most complicated evolution.

The three absorption features studied here are associated with sulfur and silicon

and all show a transition in strength between 1 to 2 weeks after B-band maximum.

Pearson correlation coefficients between spectral features and ∆m15 are found to be

significant within a week of maximum brightness and 3 to 4 weeks post-maximum.

These correlations are used to determine the principal components at each epoch

among the set of SN spectra in this work. The variation contained in the first

principal component (PC1) is found to be greater than 60% to 70% for most epochs
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and reaching as high as 80% to 90% for epochs with the highest correlations. The

same first principal component can be used to relate spectral feature strengths to the

decline rate. These relations were used to estimate a SN light curve decline rate from

a set of spectra taken over the course of the explosion, from a single spectrum, or from

even a single spectral feature. These relationships could be used for future surveys to

estimate spectral characteristics from light curve data, such as photometric redshift.
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1. INTRODUCTION

The current era of cosmology has been referred to as the era of precision cos-

mology. The current data sets have become big and robust enough to make fine

distinctions in plausible cosmological models. This has not always been the case.

Many strands of research have lead astronomers to this era. In the rest of this chap-

ter we will discuss discoveries and events that have lead up to the present work.

Chapter 2 introduces the Wavelet Spectral Index Method (WSIM) and Chapter 3

applies WSIM to SNe Ia subgroups, feature evolution, light curve shape estimates,

and Hubble dispersions. Chapter 4 summarizes the results and Chapter 5 discusses

possible future work that can be done with WSIM and the results presented here.

1.1 A Brief History of Supernovae

As the story is told, in 135 BC the Greek astronomer Hipparchus noticed what

he believed to be a new star in the constellation Cassiopeia. This was an incredible

event at the time because it was believed by many that the heavens were perfect and

therefore could not change. In order to be sure when another new star appeared,

Hipparchus created a catalog of over 1,000 stars and grouped them into 6 categories

which became the basis of our modern magnitude scale (Marschall 1988; Stephenson

& Green 2002). This “new star” was presumably a supernova. It was not until

185 AD that the Chinese made the first recorded observation of a supernova and

it would be over 800 years until a supernova bright enough to be observed and

recorded worldwide would occur. In 1572 and 1604, Tycho Brahe and Johannes

Kepler respectively each observed a supernova. Tycho wrote a detailed account of

his observations in a book entitled, De Stella Nova, meaning “the new star,” this was

the first instance of the word “nova” being used to describe these objects (Stephenson

& Green 2002).

This dissertation follows the style of the Astrophysical Journal.



2

I was not until the 1930’s that the term “supernovae” was coined. Walter Baade

and Fritz Zwicky wrote a series of papers in 1933 and 1934 that laid the founda-

tions for supernova astronomy (Baade & Zwicky 1934a,b; Koenig 2005). Using the

distance to M31, Baade and Zwicky were able to estimate the peak magnitude of

the supernova that occurred in that galaxy in 1885. From this astronomers realized

that the nova in M31 was several magnitudes higher than other novae. Much like

Hipparchus, Zwicky was inspired to begin a systematic search for more supernovae.

Before Zwicky’s survey began in 1934, only 20 SNe had been recorded, by the time

he died in 1974 over 400 had been discovered (more than 120 of those by Zwicky

himself). In conjunction with Baade and Zwicky, Rudolph Minkowski took spectra

with the 100-inch telescope at Mount Wilson (Marschall 1988). It was this ambitious

work that laid the foundations for today’s supernova research.

The first supernova spectrum observed was for SN 1885A in M31 but it was

much later before astronomers understood supernova spectra. The broad spectral

lines were difficult to identify. After more spectra were taken in the early twentieth

century, astronomers began to understand that the broad spectral lines were due to

rapidly expanding gaseous shells (Baade 1936; Branch 1990; Humason 1936).

It was Minkowski who laid the foundations for supernova types in his 1939 and

1941 papers, the former involving a detailed study of the spectra from SN 1937C and

SN 1937D (Minkowski 1939, 1941). SN 1937C was the original prototype for Type I

supernovae and later SN 1972E was added to define the Type I SNe (Kirshner et al.

1973; Minkowski 1939; Oke & Searle 1974). Type I supernovae are characterized by

a lack of Hydrogen in their spectra while Type II show Hydrogen. The Type I super-

novae proved to be a very heterogeneous group, while the Type II supernovae had

much more variety which led Zwicky to suggest adding Types III, IV, and V (Zwicky

1965), but the distinctions were not convincing to most astronomers and Minkowski’s

classification held (Marschall 1988; Oke & Searle 1974). A major endeavour to iden-

tify spectral lines in SNe I spectra was undertaken by Payne-Gaposchkin and Whipple
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(Payne-Gaposchkin & Whipple 1940). By 1965, astronomers were not much closer

to understanding SNe spectra than they were 2 decades previously as Zwicky himself

attested (Zwicky 1965).

Work done by McLaughlin suggested that there were strong He I lines in the

spectra of SN 1954A and this was confirmed by Branch (Branch 1972; McLaughlin

1963). The He I lines would later be used to identify the subclass of SNe known

as Type Ib. The line identifications that are most widely accepted today had their

origins in Pskovskii (1969) who identified the P-Cygni profiles of the Type I spectra

to be caused by low-excitation absorption. The sub-classification of Type I SNe did

not occur until the spectra of SN 1983N and SN 1984L were seen to be significantly

different than most other Type I SNe. Strong He I lines were found in both SNe

by Harkness et al. (1987). Elias et al. (1985) first applied the designation Type Ib

to these two SNe along with 1985F when all three showed similar nebular phase

spectra to those of Type II SNe. Yet another subclass, Ic, was proposed by Wheeler

& Harkness (1986) for SNe that show no signs of silicon or hydrogen and very weak

signs of helium. It is thought that SNe Ib and SNe Ic are physically similar events

distinguished only by the amount of helium present at the time of explosion (Wheeler

et al. 1987; Wheeler & Harkness 1990). More will be discussed about Type Ia SNe

spectra in Section 1.5.

1.2 The Cosmic Distance Ladder

Before Hipparchus was born, Aristarchus of Samos had proposed that the Sun,

rather than the Earth, was the center of the universe. His critics, however, pointed

out that the stars should show parallax — a shift of position in relation to background

objects — if the earth moved about the sun. Almost 2,000 years latter, similar

reasoning lead Tycho Brahe to believe that the earth was stationary, the sun orbited

the earth, and all other planets orbited the sun. Their reasoning was logical but

they had underestimated the vast distance between our sun and the nearest stars.
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It was not until the observations of Friedrich Bessel in 1838 that parallax of a star

was observed. Parallax distances are only reasonably obtainable out to a distance

of ∼ 100 parsecs (∼ 250 parsecs with adaptive optics) and so it is not useful for

measuring distances outside of our galaxy.

The next major rung on the cosmic distance ladder is based on Cepheid variable

stars. Cepheid variable stars are stars that periodically vary in brightness over the

course of a few days to several weeks. The relationship between the period and

the luminosity of Cepheids was first discovered by Henrietta Leavitt in 1912 (Leav-

itt & Pickering 1912). Shapley & Hearn (1952) (and relate works) used Leavitt’s

period/luminosity relation to determine the distance to clusters in the Milky Way.

It was through the distribution of these clusters that Shapley determined the ap-

proximate location of the center of our galaxy (Marschall 1988). It was these same

variable stars that allowed Edwin P. Hubble to determine the distance to the An-

dromeda Galaxy, M31, and prove that the mysterious “spiral nebulae” were, in fact,

located far beyond the edge of our galaxy and that our Milky Way was one galaxy

among many (Hubble 1929b). Cephieds allow us to measure distances to nearby

galaxies, some of which have had SNe Ia occur within them (Hubble 1929a; Macri et

al. 2001; Riess et al. 2012). Since we can use the Cepheid variables to measure the

distance to the host galaxy, we can then calibrate the SNe Ia. So far, SNe Ia are one

of the brightest and most promising rungs on the cosmic distance ladder.

Zwicky and Baade were the first to suggest that supernovae might be used as a

“standard candle.” A standard candle is an object with a known intrinsic luminosity.

With the intrinsic luminosity known we can estimate its luminosity distance from

the measured flux as shown in Eq. 1.1.

F =
L

4πd2
L

(1.1)

where F is the measured flux, L is the intrinsic luminosity, and dL is the luminosity

distance. Another way to parametrize the luminosity distance is by comparing the
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absolute and apparent magnitudes as shown in Eq. 1.2 with M as the absolute

magnitude and m being the apparent magnitude.

M = m− 5(log10dL − 1) (1.2)

The first to publish a Hubble Diagram using SNe I was Kowal (1968) with a

dispersion of magnitudes around the Hubble Law of ∼ 0.6 magnitudes. Branch and

Pattchett introduced a method analogous to Baade’s variable star standard candle

method for Type I supernovae, “on the assumptions that the light curve is due

to thermal emission from an expanding, optically thick photosphere and that the

temperature may be derived from the normal stellar colour-temperature relation,”

(Baade 1926; Branch & Patchett 1973). The figure on page 12 shows a simple model

of how a SN’s expanding envelope is treated.

As more SNe Ia were observed it became clear that they could not be used as

true standard candles. Almost 20% of SNe Ia were found to be peculiar by Branch et

al. (1993). The intrinsic scatter in the Hubble Diagram for SNe Ia was much larger

than those expected from measurement errors and the scatter became worse when

they were corrected for reddening under the assumption the SNe Ia were uniformly

blue at maximum (Sandage & Tammann 1993; van den Bergh & Pazder 1992). More

evidence that SNe were not as uniform as was thought became apparent when two

peculiar SNe were observed in 1991. SN 1991T was more luminous than the average

SNe Ia and it had a peculiar spectrum that exhibited very shallow silicon absorption

(Filippenko et al. 1992b; Phillips et al. 1992). The other peculiar SNe was SN 1991bg,

which was 2.5 magnitudes dimmer in the B-band and it also faded much faster than

its normal counterparts (Filippenko et al. 1992a; Leibundgut et al. 1993; Turatto et

al. 1996). It had become clear that SNe Ia were much more diverse than previously

anticipated.

Phillips (1993) found that the decline rate of the B-band magnitude from B-band

maximum until 15 days past maximum, parametrized as ∆m15 correlated strongly
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with the B-band peak magnitude. Expanding on Phillips’s effort, Hamuy et al. (1995,

1996a), using the data from the Calan/Tololo Supernova Search (CTSS), were able

to confirm and refine Phillips’ relation. Hamuy was able to reduce the scatter in

the Hubble Diagram to 0.17 magnitudes in the B-band. Other refinements of the

Phillips’ relation have been done by Phillips et al. (1999); Prieto et al. (2006).

A known way in which SNe Ia maximum magnitudes can be affected through

reddening. Reddening can be something intrinsic within the supernova itself or

produced through scattering by interstellar gas and dust. There are two ways of

approaching the problem of correcting for reddening, the first is to assume that these

two types of reddening cannot be distinguished and the second is to find a parameter

to distinguish the two. The first approach is taken by the SALT and SALT2 light

curve fitters (Guy et al. 2005, 2007). The SALT2 fitter parametrizes reddening as,

c, and uses Equation 1.3 to correct the maximum magnitude of SNe Ia. The second

approach to reddening corrections was taken by the Multicolor Light Curve Shape

(MLCS) method, later updated to the MLCS2k2 method (Jha et al. 2007; Riess

et al. 1996). The MLCS2k2 method used model reddening to compare the true

reddening to the observed reddening as the evolve during the explosion and was able

to bring dispersion down to 0.15 and even 0.12 magnitudes (Riess et al. 1996, 1999).

Equation 1.4 describes the corrections for magnitude in filter X. Unfortunately,

these two methods applied to recent data sets have given rise to a slight disparity

between values for cosmological parameters, which has been explained as differences

in extinction priors and U-band discrepancies between nearby and high-z samples

(Foley et al. 2012; Hicken et al. 2009b; Kessler et al. 2009).

µB = mMAX
B −M + αx × x1 − βc (1.3)

mX(t− t0) = M0
X + µ0 + ζX(αX +

βX
RV

)A0
V + PX∆ + QX∆2 (1.4)
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It has been shown that host galaxy properties correlate with some properties of

SNe Ia. This is important when constraining biases in the data. Shaw (1979) showed

that the radial position of SNe within the host galaxies is biased at higher redshift,

this is important if SNe luminosities are affected by metallicity since metallicity varies

with radius in galaxies. Some later studies confirmed this radial bias (Hatano et al.

1998; Wang, L. et al. 1997b), while others did not (Howell et al. 2009; Ivanov et

al. 2000). Relationships have been sought between SNe Ia properties (particularly

peak luminosity and Hubble residuals) and global galaxy properties such as host

galaxy mass (Kelly et al. 2010; Lampeitl et al. 2010; Sullivan et al. 2006, 2010),

luminosity (Gallagher et al. 2005), morphology (Bronder et al. 2008; Hicken et al.

2009b; Lampeitl et al. 2010; Sullivan et al. 2003), metallicity (Gallagher et al. 2005,

2008; Hamuy et al. 2000, 2001; Howell et al. 2009; Kelly et al. 2010; Prieto et al.

2008), age (Gallagher et al. 2008; Hamuy et al. 1995, 2000; Howell et al. 2009; Ivanov

et al. 2000; Kelly et al. 2010; Neill et al. 2009; Sullivan et al. 2006), size (Kelly et

al. 2010), star formation rate (Gallagher et al. 2005; Neill et al. 2009; Sullivan et

al. 2006, 2010), and dust (Commins 2004; Pennypacker et al. 2004; Sullivan et al.

2003). The main correlations have been shown to relate the diversity of SNe Ia

properties with host galaxy mass, host galaxy metallicity, and host galaxy age (see

previous references). However, these galactic properties are not independent of each

other. Consequently, there is some debate on the validity of some of these relations,

particularly host galaxy metallicity (see previous references). Only a few studies have

looked at the effect of host galaxy morphology and SNe Ia spectra. These studies

have found a link between only the Si II λ6355 feature and morphology (Branch &

van den Bergh 1993; Branch et al. 1996; Bronder et al. 2008).

1.3 Progenitor Models

It is generally believed that SNe Ia result from a runaway thermonuclear explo-

sion within a white dwarf, however the complete process is not understood (Pakmor
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et al. 2010b). The most widely accepted progenitor models are the single-degenerate

(Whelan & Iben 1973), double-degenerate (Iben & Tutukov 1984; Webbink 1984),

and the sub-Chandrasekhar mass models (Woosley & Weaver 1986). In the single

degenerate (SD) model, a white dwarf (WD) accretes matter from its giant com-

panion until the mass of the WD approaches the Chandrasekhar limit (∼ 1.4M�).

As the WD nears this limit, conditions become such that nuclear fusion begins and

propagates through the star below the sound speed (deflagration) and later will pre-

sumably begin to propagate supersonically (detonation) (Hoeflich & Khokhlov 1996;

Khokhlov 1991; Seitenzahl et al. 2011). This model is called the delayed detonation

model. One problem is the need for the accretion rate to be neither too slow or too

fast. It is expected that during the accretion process, SD progenitors should produce

significant amounts of X-rays prior to the explosion, this is not seen (Di Stefano

2010; Gilfanov & Bogdán 2010; Lepo & van Kerkwijk 2011).

The double-degenerate (DD) model begins with two WD’s orbiting about each

other. Eventually these two coalesce with a mutual mass greater than the Chan-

drasekhar limit after which the thermonuclear explosion progresses much like it does

in the single-degenerate system. The DD model of SNe Ia do not duplicate the ob-

served light curves and spectra as naturally as SD model (Saio & Nomoto 1985).

However, some recent models have shown the DD model to be more likely (Pakmor

et al. 2010a,b; van Kerkwijk et al. 2010), but the conditions necessary for this channel

of producing SNe Ia are not common enough to explain the entire SNe Ia rate.

The third likely channel for SNe Ia is a sub-Chandrasakar mass WD where He

detonation occurs on the surface in an accreted He shell, this causes a shock-wave to

travel through the WD and detonate the core. There are many advantages to this

model including the fact that very few C-O WD are near the Chandrasakar limit as is

needed for a SD progenitor, the range of 56Ni masses produced are also more readily

explained by the heterogeneous nature of initial masses (Pakmor et al. 2010b), it

avoids the deflagration to detonation transition which is not well characterized by
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other models (Pakmor et al. 2010a). Past work has shown that the sub-Chandrasakar

models give 56Ni masses that are consistently too low to reproduce SNe Ia data

(Nugent et al. 1997; Stritzinger et al. 2006). However, recent work has shown that

this problem can be overcome if the shell is thin enough but it requires a very narrow

mass window (Pakmor et al. 2010b; Shen et al. 2010; Sim et al. 2010). Another

short-coming of the sub-Chandrasakar models is that they show the production of

high-velocity iron-group elements which are not observed in SNe Ia spectra (Pakmor

et al. 2010b).

There are three possible channels to reach a SC WD: 1) a rapidly spinning WD can

reach masses higher than 1.4M� (Di Stefano et al. 2011; Hachisu et al. 2012; Yoon

& Langer 2005), 2) two WD merge into a signal massive object (Howell 2001; Raskin

et al. 2010; Tutukov & Yungelson 1994), and 3) asymmetric effects could mimic a SC

explosion (Hillebrandt et al. 2007; Maeda & Iwamoto 2009). Over the last decade,

only a handful of the super-Chadrasekhar-mass (SC) progenitors have been observed.

The first of these was SN 2003fg (SNLS-03D3bb) observed by the SuperNova Legacy

Survey (SNLS) and it was determined to be super-luminous by Howell et al. (2006).

The light curve of SN 2003fg did not hold to the Phillip’s relation, its decline rate was

slow (∆m15 = 0.84 converted from a stretch factor of s = 1.13 using the equation from

Perlmutter et al. 1997) compared to its luminosity (2.2 times higher than a typical

supernovae). The 56N mass required for this luminosity implied that the progenitor

was significantly above the Chadrasekhar limit (∼ 2.1M�). Since SN 2003fg, a few

more examples of SC SNe Ia have been observed including: SN 2006gz (Hicken et al.

2007), SN 2007if (Scalzo et al. 2010; Yuan et al. 2010), and SN 2009dc (Silverman et

al. 2011; Tanaka et al. 2010; Taubenberger et al. 2011; Yamanaka et al. 2009). Some

other common factors of this subclass of SNe Ia are the presence of C II lines and

low photosphere velocities as measured from the Si II line blueshifts. The presence of

carbon in the outer layers of the SNe suggests a large amount of unburned material

which is not seen in typical SNe Ia (Branch et al. 2003b; Khokhlov et al. 1993; Marion
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et al. 2006; Tanaka et al. 2008; Thomas et al. 2007). The slower photospheric velocity

runs contrary to the typical Chadrasekhar mass theory but can be explained by higher

binding energy in SC progenitors (Howell et al. 2006). It is difficult to speak too

dogmatically about SC SNe Ia until more examples are observed. Only one SC SNe

Ia is used in this work (SN 2006gz).

1.4 Supernovae and Dark Energy

The 2011 Nobel Prize in physics was awarded for the discovery of “dark energy”

(DE). Riess et al. (1998a) and Perlmutter et al. (1999) found that distant supernovae

were dimmer than was previously expected. The most widely accepted explanation

for the dimness is that there is a previously unknown force causing the universe

to accelerate its expansion. Two main physical explanations are being explored

either modifying current cosmological models, typically by adding back in Einstein’s

cosmological constant, or by modifying the force of gravity.

The most direct probe of DE is studying its equation of state, w. According

to current data and models, w ∼ −1 but it may vary as a function of redshift. In

order to measure w or w(z) an expansion history of the universe must be determined.

SNe Ia as standardizeable candles are currently one of the best tools available for

making a determination of the expansion history of the universe.

1.5 Supernovae Spectra

As discussed in Section 1.1, SNe spectra remained mysterious for sometime. Much

has been done in the past several decades to observe and interpret SNe Ia spectra.

SNe spectra are the most detailed probe of the chemical composition and struc-

ture of the explosion and can provide many clues to the explosion mechanism. Line

identifications are generally made by simulating the output spectra of an underlying

explosion model. By using the density structure and composition from the model,
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approximations can be made of the relative strength of spectral lines. The spectra of

Type Ia supernovae prior to maximum show broad P-Cygni spectral lines superim-

posed on a star-like blackbody continuum. The P-Cygni lines are produced by the

interaction of different regions of the expanding envelope moving at different veloci-

ties. Figure 1.1 shows a simple model of a SN’s expanding envelope. It is desirable

to speak of this period as the “photospheric epoch” where the physical origin of the

blackbody continuum is called the “photosphere” of the supernova. At latter times,

∼ 1 month after maximum, the spectra no longer have a continuum component and

are dominated by emission lines. This is referred to as the “nebular phase.” It is

widely agreed upon that the main contributors to SNe Ia spectra are intermediate

mass elements (IME) such as O, Mg, Si, S, Ca, and iron group elements, mainly Fe

and Co.

Fig. 1.1. Expanding Envelope Model. This figure shows a simple model of the
expanding envelope of a SNe explosion. This figure is adapted from Fisher (2000)
and Mihalas (1978).



12

The synthetic spectral code, SYNOW had earlier incarnations in the works of

Branch et al. (1983, 1985) and then presented in Fisher (2000). Similar methods

were also used by Mazzali et al. (1993). The PHOENIX code was developed by

Hauschildt and collaborators (see Baron & Hauschildt 1998; Hauschildt 1992, and

references therein) as a model of an expanding spherical atmosphere without the use

of the Sobolev approximation which is used in the previously mentioned methods.

These codes have been instrumental in making line identifications in SNe Ia spectra.

The spectral classification of supernovae was discussed in Section 1.1. Many

recent developments have been made in the study of Type Ia SNe spectra. One

such development is the establishment of sub-groupings of Type Ia SNe. Branch et

al. (2006) defined 4 sub-groupings of SNe based on line depths and shapes of the

Si II λ6355 line near maximum and the location of the SNe on the W(5750) vs.

W(6100) plot (se Figure 1 in Branch et al. 2006). Branch et al. (2009) revisited

these subgroups with a larger sample. The groups were still a valid sub-grouping but

the larger sample shows that the subgroups are not discrete.

An alternative sub-grouping was presented by Benetti et al. (2005) based on the

velocity evolution of the spectral lines. The supernovae where characterized as being

in one of three groups — FAINT, LVG, and HVG — by using clustering analysis on

five measured parameters: MB, ∆m15, R(Si II), v10, and v̇. The velocity gradient, v̇,

is defined as the average daily decrease in the expansion velocity. The low velocity

gradient (LVG) group is defined as those SNe with v̇ < 60−70kms−1day−1. As their

name implies, the FAINT subgroup is composed of fainter SNe and consequently this

group has on average a larger ∆m15. The high velocity gradient (HVG) group consist

of normal SNe with larger v̇. Tanaka et al. (2008) gives some possible explanations

for the differences between LVG and HVG SNe in differences in temperature and pos-

sibly asphericity. These two sub-groupings are complimentary to one another since

they are based on different measurements. The Core Normal and Shallow Silicon
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subgroups from Branch et al. (2006) correspond well with the LVG, while the Broad

Line and Cool subgroups correspond to HVG and FAINT subgroups respectively.

A third subgrouping was set forth by Wang, X. et al. (2009) which classified SNe

as “Normal” or “HV” where the second grouping have Si II absorption velocities

' 11, 800km
s

. It was found that a separate reddening law could be applied to the

two subgroups which yielded a Hubble dispersion ∼ 0.136. The discrepancy between

the two groups could be due to intrinsic color differences between the groups or

circumstellar dust.

Another use of spectral data is to constrain the extent of spherical symmetry in

the explosion through spectrapolarimetry. McCall (1985) originally made the case

that an increase in polarization should be seen near the minimum of P-Cygni spectral

features since the absorption would block some of the light from the unpolarized

continuum. The emission peak would be due to the emission of unpolarized light and

would therefore lower the overall polarization near the peak of the P-Cygni profile.

These effects were not seen, however, until in the mid-1990’s more concerted efforts

were made to observe SNe with spectrapolarimetry. Polarization in SNe Ia is weak

near maximum but can be observed pre-maximum. Also, the continuum polarization

is weak which suggests that SNe Ia are nearly spherical. Observations of SN 2001el

suggested that the polarizations of SNe Ia come from the outer layers implying that

the exterior layers are asymmetric but the inner layers are more symmetric (Wang, L.

et al. 2003). This asymmetry is re-enforced by the apparent clumpiness of Ca II in the

outer, high-velocity layers of the SN (Kasen et al. 2003; Leonard et al. 2005; Wang, L.

et al. 2003). The Si II λ6355 Å line is one of the most strongly polarized lines in

SNe Ia and was observed in 17 SNe by Wang, L. et al. (2007). The polarization of

the 17 SNe was shown to correlate with ∆m15. For a more thorough treatment of

spectrapolarimetry of supernovae see Wang, L. & Wheeler (2008).

There have been many efforts to find spectral luminosity indicators (some exam-

ples are compared in Table 1.1). Nugent et al. (1995) defined two line ratios that
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Table 1.1. Effects of Spectral Luminosity Indicators on Hubble Dispersions

Paper Method # of SNe σ

Riess et al. (1998b) Snapshot 7 0.18
Bongard et al. (2006) RCa 8 0.1 (0.25)
” RCaS 8 0.1 (0.19)
” RSi 8 0.07 (0.07)
” RSiS 8 0.09 (0.04)
” RSiSS 8 0.09 (0.05)
Foley et al. (2008) UV spectra 16 0.090 (0.140)
Bailey et al. (2009) R 642

443
58 0.12-0.13

Wang, X. et al. (2009) vSiII subgrouping 158 0.125
Foley & Kasen (2011) vSiII subgrouping 121 0.13

correlated with ∆m15, R(SiII) and R(CaII). In order to improve on the spec-

tral ratios, Bongard et al. (2006, 2008) suggested the R(SiS) as an alternative that

should be more sensitive to the underlying continuum level and therefore more sen-

sitive to temperature fluctuations. Hachinger et al. (2006) studied a wide variety of

spectral features and the ratios of their pseudo-equivalent widths. They showed that

the R(SiII) correlation with ∆m15 was driven mainly by the λ5972 Å feature from

Si II. Other spectral ratios were studied but these were all related to the same Si II

λ5972 Å feature. Taking spectral ratios even further, Bailey et al. (2009) made a sys-

tematic search for the best correlation between spectral ratios and peak magnitude.

The best flux ratio was found to be R 642
443

, the ratio of fluxes at 6420 Å and 4430 Å.

This particular ratio performed as well, if not better than SALT2 corrections using

x1 and c.

Clearly, spectral data contains much information about the explosion and its

progenitor. One important piece of information for cosmology is the redshift of each

SNe. This is typically found through follow-up on the host galaxy spectra or by

fitting the spectra of the SNe itself. However, this type of follow-up will no longer be
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feasible when large surveys like the LSST begin to discover ∼ 200, 000 SNe per year

(LSST Science Collaborations et al. 2009). Photometric redshift estimates will need

to be employed in order to make maximal use of the SNe data that will come out of

these surveys. Photometric redshift estimates of galaxies are commonly used. There

are two main methods of determining photometric redshifts for galaxies: empirical

methods using training sets and template fitting methods (see Budavári 2009, for

a more detailed discussion about different photo-z methods). These will be easily

modified for use with SNe Ia. The first method is to define redshift as a function

of multiple filter magnitudes and colors (an example for galaxies can be seen in

Connolly et al. 1995; Li & Yee 2008). A similar method was applied to SNe Ia by

Wang, Y. (2007); Wang, Y. et al. (2007), redshift was estimated from a function of

griz light curves focused on the flux at i-band maximum. The second method for

determining photometric redshift estimates involves using templates to fit the data

in question. Asztalos et al. (2010) presented a method using templates based on

the “Branch normal” set of template spectra from Nugent et al. (2002). One of the

motivations for the current work was to explore the relationships between spectral

features and other SNe Ia characteristics in order to create a heterogeneous set of

template spectra or a template spectra generator so that SNe Ia photo-z methods

could be tested more robustly.
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2. THE WAVELET SPECTRAL INDEX METHOD∗

2.1 Wavelet Introduction

A major difficulty in analyzing spectroscopic data with highly blended atomic

lines is to quantify the strength of certain spectral features. These spectral fea-

tures are superimposed on a continuum so line blending can make it difficult to

reliably define the continuum level. In the case of supernova spectra, the pre-nebular

phase spectra typically show P-Cygni profiles with both emission and absorption

components whereas the nebular phase spectra are dominated by broad overlapping

emission lines. The spectral features are therefore of various widths and strengths,

and neighboring features are heavily blended. Further, the data typically contain

observational noise, flux calibrations errors and uncertainties in the amount of dust

extinction. The noise makes the definition of a continuum very uncertain and accord-

ingly the calculation of equivalent width becomes unreliable. In many observations,

in particular those at high redshift, the observed supernova spectra are heavily con-

taminated by host galaxy spectra. This affects severely the definition of line depth.

For Type Ia supernovae, it is known that certain spectral line ratios such as the Si

II 5972/Si II 6355, and the Ca II H&K lines are sensitive to the intrinsic brightness of

the supernova Nugent et al. (1995). The measurement of the line strength is, however,

not trivial. For instance, to measure the Si II 5972/Si II 6355, and the Ca II ratio,

Nugent et al. (1995) employed a simple approach by drawing straight lines at the

local peaks of the spectral features and measure the depth of the absorption minima

from the straight line. However, the location of the straight line and the position

of the line minimum are not easy to define in the presence of observational errors.

It is for this reason the ratio is derived only for a number of very well observed

local supernovae. Pseudo-equivalent widths are typically estimated to measure the

∗Reprinted with permission from “QUANTIFYING SPECTRAL FEATURES OF TYPE Ia SU-
PERNOVAE” by Wagers, A., Wang, L., and Asztalos, S., 2010. Astrophysical Journal, 711, 711-730,
Copyright 2010 by The American Astronomical Society.
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strengths of spectral features . The continuum level is estimated by finding the

maxima on either side of the feature and a straight line is used to connect the two

maxima and then is used as the continuum level. In the past the maxima have

been found either by eye (Branch et al. 2006; Nugent et al. 1995) or by a simple

algorithm (Garavini et al. 2007a; Hachinger et al. 2006). Then the equivalent width

is calculated by finding the area and depth of the chosen region using the estimated

continuum level.

In this paper, the spectral features of Type Ia supernovae will be analyzed in-

stead through wavelet transformations. This technique avoids many of the challenges

mentioned above associated with identifying line strengths. Here wavelet transfor-

mations are applied to Type Ia supernovae spectra with the purpose to quantify the

spectral features for cosmological applications.

2.1.1 Wavelet Transform Algorithm

Wavelet decomposition, like Fourier decomposition, expresses a given function

in terms of the superposition of a set of simple basis functions. Unlike Fourier

decomposition, individual wavelet functions are localized in the spatial domain on

a scale that is variable. The transform is carried out in direct space so artifacts

related to periodicity are avoided. The reconstruction is trivial and again, unlike

the Fourier decomposition, there are a finite number of wavelets scales so that the

original function can be restored without distortion. The evolution of the transform

from one scale to the next is easy to follow and the interpretation of the spectrum

at each scale is straightforward.

There are a large number of functions that can be used for the wavelet transform.

It has been previously demonstrated that the à trous algorithm is a particularly use-

ful tool for studying spectral features (Holschneider et al. 1989; Shensa 1992; Starck

et al. 1995, 1997) and is thus adopted for our purposes. Taken literally, the French

term à trous is interpreted as “with holes”, expressing the fact that convolution is
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Fig. 2.1. Wavelet Decomposition of a Spectrum from SN 2001el. (a) The spectrum
of SN 2001el, (b-j) the wavelet scales 1 to 9, and (k) the smoothed array cp of the SN
2001el from top left to lower right. A sum of of scales (b) to (k) recovers the original
spectrum (a). The mean fluxes of each of the wavelet scales (b) to (j) are identically
zero.



19

interlaced. That is, the convolution mask retains the same number of points but

increases in scale as the decomposition is performed, resulting in holes within the

convolution mask. More technically, the à trous wavelet uses a dyadic wavelet to

merge non-dyadic data in a simple and efficient procedure. Assuming a scaling func-

tion φ(x) (which corresponds to a low pass filter also called the convolution mask),

the first filtering is performed on the original data c0(k) by a twice magnified scale

leading to the c1(k) set. This convolution mask for à trous wavelet is usually a trian-

gle function or a cubic spline function which amounts to a weighted average of a small

number of data points. The signal difference c0(k) - c1(k) is the wavelet scale w1(k)

and contains the information between these two scales (in this case the point-to-point

variation within the data). The result, w1(k), is the discrete set associated with the

wavelet transform corresponding to φ(x). The operation is performed successively

to obtain the wavelet scale wj(k) at each scale j until scale J is reached where 2J is

equal to the number of data points. The original spectrum c0 can be expressed as

the sum of all the wavelet scales and the last smoothed array cp:

c0(k) = cp(k) + Σp
j=1wj(k)

To demonstrate the basic features of the à trous wavelet transformation, we

show in Figure 2.1 the wavelet transformation of a well observed supernova SN

2001el. The data were obtained through the spectropolarimetry program at the

Very Large Telescope of the European Southern Observatory (Wang, L. et al. 2003).

The sampling step of the data is binned to 5Å. The signal to noise ratio (SNR)

of the data is everywhere above 150 - this unusually high SNR is a result of the

spectropolarimetry observations. The original data is show in Figure 2.1a, and the

consecutive wavelet scales for j = 1, 9 are shown in Figure 2.1b to 2.1j.

Figure 2.1k represents the smoothed array cp. The number of 5 Å bins in the

SN 2001el spectrum taken 1 day after B-band maximum is 864. In order to use the

à trous algorithm the data must have 2J data points, to meet this requirement the
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spectrum was padded at the red end with a decaying exponential so that the data

has 210 data points giving J = 10 and allowing only 10 wavelet scales. Further note

that each of the individual wavelet scales have zero mean. It can be seen that at

small scales the wavelet is dominated by observational noise and the supernova signal

starts to become significant only for j ≥ 3, and the broad spectral wiggles associated

with the supernova dominate the wavelet scales of j = 5, 6, and 7. The supernova

spectral features are typically a few hundred Å wide and are effectively isolated in

the decomposed spectra.

The spectral features of a supernova can be better described by a blend of several

wavelet scales. For this reason, we can calculate the sum of more than one scales to

reflect the existence of features of various width:

W{l} = Σj∈{l}wj,

where {l} is a subset of wavelet scales. Examples of these spectra are shown in Figure

2.2 for SN 2001el.

2.1.2 Normalization of Spectral Features

The wavelet scales, having the units of the original flux spectrum, need to be

normalized to construct quantities that measure the strength of the spectral features

that do not depend on the absolute flux level of the spectrum. There undoubtedly is

more than one way to normalize the scales. The simplest approach is to normalize

all the wavelet scales by dividing them by the smoothed array cp. This approach is

simple and will certainly work fine for data without host galaxy contamination. For

data with host galaxy contamination, or those with poor background subtraction,

this approach introduces systematic errors to the normalized scales.
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Fig. 2.2. Spectrum Reconstructed by Sums of 3 Wavelet Scales. Wavelet sums for
SN 2001el over (a) scales 1 to 3, (b) 2 to 4, (c) 3 to 5, (d) 4 to 6, (e) 5 to 7, (f) 6 to
8 and (g) 7 to 9. Running combinations of the different scales captures features of
varying width.
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In our approach, the normalized wavelet scale is defined using the standard de-

viations of the spectral features from any given wavelet scale:

Ŵ{l}(λ) = W{l}(λ)/
√

Σλ2
λ1
W 2
{l}(λ)/N12 (2.1)

= W{l}(λ)/σ{l}, (2.2)

where N12 is the number of data points between λ1 and λ2. The mean and standard

deviation of Ŵ{l} are zero and 1, respectively. This is effectively a self-normalization

that exploits only the intrinsic properties of the wavelet scales involved. Host galaxy

contamination (which does strongly affect cp) would not have a significant effect in

this context.

The spectral index Xj of any feature between λa and λb at a given scale j is

defined by averaging the normalized wavelet scale Ŵj:

X{l} = Σλb
λa
Ŵ{l}(λ)/Nab,

with Nab being the bin size in the wavelength region λa and λb. Xj defines a normal-

ized number which measures the strength of the spectral features in the normalized

wavelet scale Ŵj between λa and λb. Alternatively, one can also calculate the power

Pj between λa and λb for wavelet scale j:

P{l} = Σλb
λa
Ŵ 2
{l}(λ)/Nab.

P{l} and X{l} contain the same information. In this study, we will focus on X{l}.

One obvious advantage to using wavelet scales to estimate spectral feature strengths

is that they do not depend on the definition of the spectral continua. Furthermore,

since they can be estimated locally around a spectral feature, spectral indices are

useful in minimizing uncertainties due to errors in spectral flux calibrations. Simi-

larly, the spectral indices as defined here are less sensitive to errors of background
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subtraction, which is usually one of the dominate sources of uncertainty, especially

in the studies of high redshift supernovae.

2.1.3 Normalization Spectral Features of SN Ia

The wavelet technique is particularly well-suited for studying scattering-dominated

spectra of expanding atmospheres with P-Cygni spectral features: the net flux of the

P-Cygni feature is usually close to zero. Wavelet decomposition is consistent with

this as the mean flux is zero for the various wavelet scales. Wavelet transforms thus

makes it easy to separate emission and absorption components of a spectrum in a

mathematically robust way.

In this study, the supernova spectra are first decomposed into various scales as

described in the above section. In addition, to reflect the fact the spectral features

are a blend of different scales, the sum of the wavelet scales 3, 4, and 5 are used

as the primary spectrum for the analysis of spectral features (though other scales

have also been analyzed). All the decomposed spectra are normalized in a similar

way as given in Equation 2.2. To derive quantities that are less sensitive to errors of

flux calibration, we need to restrict calculation of the normalization factor to a small

wavelength region and yet to have large enough spectral coverage so that the feature

strengths will not be affected by boundary. In this study, the spectra are divided

into four regions: (A) 5500 to 6500 Å, (B) 4985 to 5985 Å, (C) 4850 to 5450 Å, and

(D) 4250 to 5200 Å; the variance in each of these sections of spectra is calculated

and used as the normalization factor. These regions are arbitrarily chosen to contain

the features listed below and are large enough to characterize the variance in that

spectrum around each feature. Interesting features include the Silicon II lines at 6355

and 5972 Å in region (A), the Sulfur II lines at 5433 Å and 5459 Å in region (B),

and the two strong peaks chosen because they are strong, clean peaks at 5150 Å and

4570 Å, in region (C) and (D), respectively. The two emission peaks arise in part

from P Cygni profiles of Si II at 5041 Å and Mg II at 4471 Å and are chosen as clean
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examples of emission features. The five spectral features are shown in Figure 2.3 and

are the main focus of subsequent analyses.

2.2 Biases and Errors

In practice, the observed data contain noise and estimates of Xj can be biased.

The noise affects Xj in two ways: First, when the noise is large, its effect can

propagate to all the wavelet scales and become a significant component at the wavelet

scale of interest. Secondly, it changes the normalization factor when calculating Ŵj

- data with larger noise can be systematically biased to give a larger normalization

factor because the additional power from shot noise. This bias is usually not a

problem for high SNR data, but can be significant for data with a low SNR. The

correction factor Π(j) for scale j is defined as:

σ0(j) = σ(j)Π1j, (2.3)

where σ0(j) is the variance at the jth scale in the ideal case of no photon shot

noise.

Typically, published spectroscopic data do not have associated noise spectra. One

instead has to rely on the flux spectrum to estimate the noise levels. A major advan-

tage of wavelet transformation is that it allows estimates of the noise characteristics

based on the spectral data itself. If we assume that all the continuum or spectral

features are much broader than the data sampling step, the spectral fluctuations

of the wavelet scale with j = 1 should then represent mostly shot noise. This is

generally reasonable as can be seen in Figure 2.1 (b) for the spectrum of Type Ia

supernova 2001el.

Recognizing that smaller wavelet scales contain more information of the noise

property than larger wavelet scales, we can define the spectral quality index (SQI)
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Fig. 2.3. Spectral Features for Sums of Differing Scales. Spectral features for Type
Ia supernovae. (a): l = 1,2,3. (b): l = 2,3,4, (c) l = 3,4,5, and (d) l = 4,5,6. The
spectral features are well resolved in (c) and (d).
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of the normalized wavelet scale {l} as the variance ratio of normalized scale {l} and

the lowest normalized scale {1}:

ρ{l}{1} = Σλ2
λ1Ŵ

2
{l}/Σ

λ2
λ1Ŵ

2
{1}, (2.4)

where the braces {} reflect that the various quantities are actually sums of various

wavelet scales. Specifically, Ŵ{1} is the normalized sum of three wavelet scales, where

{l} = 1,2,3 in this instance. The SQI measures the relative importance of noise

levels in estimating of the spectral feature index. It can be calculated directly from

the decomposed spectra without an error spectrum. Note that SQI is a quantity that

can be localized to certain wavelength intervals.

For a given spectrum {ci}, the dependence of the wavelet spectral indices X{l} and

the correction factor Π on SQI can be estimated through Monte-Carlo simulations.

2.2.1 Dependence of Spectral Features on Observational Noise

Monte Carlo simulations are required to quantify the dependence of X indices on

observational noise. The characteristic parameter of the noise is the SQI defined in

Equation 2.4 - the ratio of spectral variance of combined wavelet scales l = 3, 4, 5 to

that of the combined scales l = 1, 2, 3. To perform such these simulations one needs

a series of noise free spectra of supernova spectra. The spectropolarimetry program

at the ESO VLT has acquired several high quality spectra of SN Ia with SNRs

around 150 (Wang, L. et al. 2003). Spectra of SN 2001V and SN 2001el from the

spectropolarimetry program will be used in this simulation to quantify the relations

between X and SQI.

In the example shown in Figure 2.4, various levels of Poisson noises were added

to the spectrum of SN 2001el at day +1. The noise is added to the spectra, which are

then transformed to various wavelet scales and the various X indices are calculated.

The top panel in Figure 2.4 shows the relation between ρ and the assumed SNR with
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Table 2.1 The Coefficients for the Dependence of X on Data Errors
SN Day γ31(A) γ31(B) γ31(C) γ31(D) mean γ41(A) γ41(B) γ41(C) γ41(D) mean

01V −8 0.1132 0.1116 0.1183 0.1144 0.1144 0.0263 0.0240 0.0273 0.0259 0.0258
01el −4 0.1220 0.1236 0.1229 0.1224 0.1227 0.0567 0.0587 0.0566 0.0573 0.0573
01el +1 0.1220 0.1236 0.1229 0.1224 0.1227 0.0581 0.0583 0.0552 0.0551 0.0567
01el +9 0.1251 0.1273 0.1250 0.1240 0.1254 0.0585 0.0607 0.0599 0.0577 0.0592

the addition of Poisson noise. The SQI is calculated in the wavelength intervals of

550.0 nm to 650.0 nm, 498.5nm to 598.5 nm, and 425.0 to 520.0 nm. It can be seen

that ρ is correlates well with the SNR of the input data: reducing the SNR decreases

ρ. This confirms that the SQI can effectively capture effect the photon shot noise,

and can be used to quantify the noise level of the data.

The variances used to normalized the spectra at the various wavelet scales are

clearly correlated. This is shown in the middle panel of Figure 2.4, where the data

exhibit nearly identical slopes over the different wavelength regions. A linear rela-

tionship between σ2(1) and σ2(3), and between σ2(1) and σ2(4) is assumed for the

fits. The slopes γ1j extracted from these fits are given in Table 2.1.

The bottom panel in Figure 2.4 clearly demonstrates how the correction factor Π

increases dramatically for ρ approaching 2.82 (which corresponds to a SNR of below

1 per 0.5 nm bin). This implies that the spectral features are dominated by the

noise, hence it becomes impossible to extract the spectral indices reliably.

The correction factor for ρ can be fit well with a function

Π1j =
√

(1− γ1jρ2
1j), (2.5)

with the relevant coefficients taken from Table 2.2 for the various lines.

Table 2.2 The Coefficients for the Errors of X
SN Date η(6150) ψ(6150) η(5750) ψ(5750) η(5485) ψ(5485) η(5150) ψ(5150) η(4570) ψ(4570)

2001V −8 -0.02486 0.0469 -0.0156 0.0293 -0.0203 0.0601 -0.0373 0.0545 -0.0179 0.0453
2001el −4 -0.00625 0. 0367 -0.00628 0.05429 -0.02449 0.05892 -0.01626 0.06382 -0.01165 0.05248
2001el +1 0.133 1.248 0.212 1.188 0.160 1.412 0.176 1.533 0.157 1.531
2001el +9 0.159 1.276 0.194 1.282 0.234 1.279 0.203 1.442 0.177 1.672

2001el +1 0.145 1.194 0.265 1.322 0.175 1.295 0.181 1.500 0.216 1.408
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Fig. 2.4. Monte Carlo Results for SQI. (Top) The relation between the SQI and the
input SNR ratios. The solid lines show SQI of fourth wavelet scale and the dashed
line the third. (Middle) The relation between the variance of the third and first
wavelet scales. The effect of a large σ(1) propagates linearly to larger wavelet scales.
(Bottom) The correlation of the bias correction factor and SQI for the third wavelet
scale. The SNR was varied in all cases via the addition of noise in the Monte Carlo
simulations.
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2.2.2 Bias Corrections

The various X indices for the spectral features are derived from the Monte-Carlo

simulation of data with different SQI. As shown in Figure 2.5, the X indices (shown

as open squares apparently suffer strong bias when the data are noisy. The various

X indices after Π corrections are shown in Figure 2.5. The effect is generally small

for high SNR data, but becomes important for data with low SNR. In any case the

bias is effectively removed by applying the correction factor Π.

2.2.3 Error Estimates of the Spectral Indices

Assuming photon shot noise, the Monte Carlo simulations also give error esti-

mates for the X indices. The errors as a function of ρ are shown in Figure 2.6.

These errors are fitted with a function of the form:

σX = ηρψ, (2.6)

and the relevant coefficients η and ψ are shown in Table 2.2. Simulations were

performed for all of the SN 2001V and SN 2001el spectra and it was found that in

all cases the bias can be well corrected. Note that due to the lack of a completely

noise-free SN Ia spectrum, at extremely high SNR (such as those that are higher

than or comparable with the signal to noise ratio of the SN 2001el spectra as used

in the simulation) the Monte Carlo simulations do not give correct estimates of the

errors. Such cases are unlikely to be relevant as in such situations, the errors are

likely to be dominated by calibration systematics rather than shot noise. The error

function given above will be used for all cases here. As can be seen in Figure 2.6, the

above expression gives an excellent description of the dependence when the errors

are described by ρ.
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Fig. 2.5. Monte Carlo Results of Noise Corrections. Line indices corrected for ρ
dependence for important SN Type 1a spectral features. The X indices are derived
from the sum of of wavelets 3,4,5 of SN 2001el 1 day past optical maximum.
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Fig. 2.6. Monte Carlo Characterization of Uncorrected Errors. Errors of the X
indices as functions of ρ for SN 2001el at optical maximum.
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The ρ dependence of the X indices and their errors have a weak dependence

among the different varieties of supernovae and the epoch of the supernovae.

2.2.4 Procedure for Bias and Error Estimation

The procedure for removing bias and estimating errors from noisy supernovae

spectra is premised on extracting correction factors from a supernova with a large

SNR. Here we enumerate a correction recipe using wavelet scales l = 3, 4, 5 with

SN 2001 el as our reference spectrum.

1. Compute the ratio of the sum of the squares of wavelet scales 3,4,5 and 1,2,3

(ρ31 in Equation 2.4) for SN 2001el

ρ31 =
Ŵ 2
{3,4,5}

Ŵ 2
{1,2,3}

.

2. Degrade the SNR of SN 2001 el in multiple steps with the addition of Poisson

noise. Compute σ2
{1,2,3} and σ2

{3,4,5} at each step.

3. Extract γ31 by assuming a linear relationship between σ2
{1,2,3} and σ2

{3,4,5} (see

middle panel of Figure 2.4).

σ2
{3,4,5} = β + γ31 ∗ σ2

{1,2,3}

,

where σ{l} is defined in Equation 2.3.

4. Repeat each of the above steps over all regions of interest to extract a mean

value for γ31. Equivalently, use the values for γ31 by consulting Table 2.1.

5. Using Equation 2.5, compute ρ31 values for each SNe having typical values of

the SNR.
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6. Compute the correction factor Π31 using this value of ρ31 and the value of γ31

computed for SN 2001el

Π31 =
√

1− γ31ρ2
31

.

7. The spectral index of any supernovae feature can be corrected for bias by

dividing the uncorrected value by Π31 as in Equation 2.3.

Xcorr =
X

Π31

.

8. The error bars are determined from the same set of simulations. With σX

defined as in Equation 2.6 with parameters defined as in 2.2 construct the

relationship

log10(σX) = η + ψlog10(ρ31)

, where all quantities refer to a SNe with a large SNR (e.g. SN 2001 el).

Equivalently, use the values for η and ψ from Table 2.2.

9. With these values η and ψ compute the variance in the spectral index for a SN

with a typical value of SNR as

σX = 10ηρψ31

.

2.3 Applications to Type Ia Supernovae

Spectral indexes lend themselves to a quantitative analysis of the temporal and

magnitude evolution of the spectral lines. Nugent et al. (1995) measured the ratio
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of the depths of the SiII 6355 Å and 5972 Å features and established correlations

with ∆m15. Other studies of these and other spectral features have adopted slightly

more elaborate procedures based on equivalent (Hachinger et al. 2006) and pseudo

equivalent widths (EW) (Altavilla et al. 2009; Branch et al. 2009; Garavini et al.

2007a; Hachinger et al. 2006) to study these and other absorption features. Recently,

Arsenijevic et al. (2008); Stanishev et al. (2007) have used wavelets coupled with

the pseudo-EW technique to study a Si II absorption feature. Emission features

have received less attention than absorption features and usually involve a distinct

procedure from the absorption features Bongard et al. (2006); Nugent et al. (1995).

Recently, Bailey et al. (2009) described a variance of the above methods wherein

absorption and emission features in a training set of spectra are studied to extract

the optimal flux ratio to ∆m15 correlation. This ratio is then applied to correct the

magnitudes of other supernovae within a validation set.

The wavelet technique developed here differs in several important respects from

those described in the preceding paragraph. Our methodology is premised on the

existence of one (or more) very high SNR spectra. Spectral line strengths are first

extracted for this high SNR spectrum from a combination of intermediate wavelet

scales. Excluding the lowest and highest reduces the effects of noise and the con-

tinuum, respectively. Working with wavelets from a high SNR spectrum allows

corrections to be made to lower SNR spectra. Perhaps the most salient difference is

that performing our analysis entirely in wavelet space permits us to avoid definition

of the continuum (the mean of the wavelet scales is zero and integration is performed

from one zero on the leading to the next zero on the trailing edge of a feature). Con-

sequently, we are able to work directly with line strengths of the features themselves,

not their ratios. Lastly, this technique permits absorption and emission lines to be

treated democratically. It is our expectation that the wavelet method gives to a more

robust measure of line strength. In Sections 2.3.2 and 2.3.3 we apply this technique

to data described in the subsequent section.
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2.3.1 Data Sample

The supernovae included in this study are given in Table 2.3. A large number of

low-z spectra (z < 0.1) were collected from libraries that are publicly available, such

as the SUSPECT Supernova Databasea and the Center for Astrophysics Supernova

Archiveb, as well as other SNe that are available in the literature. The spectra are

corrected by the host galaxy redshift but no dust extinction correction is applied.

The original wavelength coverages, step sizes and SNRs of these spectra are vastly

different. In our analysis, all the spectra are first rebinned to 5 Å sampling step for

convenience. After wavelet decomposition was performed the spectra were checked

for edge effects that would distort calculations, the affected spectra were removed.

2.3.2 X Versus the Epochs

The evolution of spectral features in Type Ia SNe has been a topic of much study

but due to the limitations of the pseudo-equivalent width method and small sample

sizes it has been mainly a qualitative study (for some more recent examples see

Branch et al. 2005; Garavini et al. 2007b; Matheson et al. 2008; Pastorello et al.

2007; Quimby et al. 2007; Wang, X. et al. 2008). However some Mg II, Fe II, and

Ca II features have been studied quantitatively by Folatelli (2004) and Garavini et

al. (2007a) using the pseudo-equivalent method. It is the hope of the authors that

the wavelet spectral indexes described here will facilitate more quantitative studies

of SNe Ia spectra.

An example of the time evolution of X indices is shown in Figure 2.7 for SN 2005cf

- a normal Type Ia supernova with ∆m15 = 1.16. For a spectroscopically normal

supernovae like SN 2005cf, X6150 and X5750 exhibit little evolution in line strength

for roughly ±8 days around maximum. These two spectral indexes are associated

ahttp://bruford.nhn.ou.edu/ suspect/index1.html
bhttp://www.cfa.harvard.edu/supernova/SNarchive.html
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Table 2.3: The Spectroscopic Sample of SNe Ia

SN ∆m15
a Branch

Subtypeb

X6150 X5750 X5485 X5150 X4570 Spectra

Sourceo

1981B 1.125(0.010) BL -56.645(0.157) -10.339(0.298) -48.941(0.245) 42.956(0.175) 43.306(0.184) 1
1983G 1.37(0.01)b · · · -59.818(0.649) -13.890(3.411) · · · k 49.532(0.483) · · · k 2
1984A 1.294(0.063) BL -63.615(0.974) -5.166(1.167) -39.319(0.489) 45.827(0.573) 43.895(0.781) 3
1986G 1.643(0.022) CL -49.109(0.295) -20.165(0.534) -32.227(0.456) 40.231(0.386) 51.494(0.521) 4
1989B 1.262(0.017) CL -54.202(0.486) -13.218(0.428) -47.078(0.424) 41.870(0.216) 46.161(0.318) 5,6
1990N 1.138(0.024) CN -53.751(0.112) -9.683(1.763) · · · k 39.630(0.312) · · · k 7,8
1991T 0.986(0.009) SS -52.505(0.274) -2.976(0.499) -29.806(0.829) 34.860(0.159) 21.783(0.474) 9,10,11
1991bg 1.857(0.125) CL -46.461(0.324) -25.588(0.582) -22.972(0.382) 24.081(0.436) 51.622(0.367) 12,13,14
1992A 1.320(0.015) BL -54.040(0.242) -16.239(0.517) -46.671(0.447) 41.067(0.300) 36.031(0.336) 15
1993H 1.70(0.10)c · · · -46.790(6.947) -21.166(3.053) -27.335(0.697) 35.324(0.093) 51.183(1.020) 16
1994D 1.558(0.013) CN -53.234(0.212) -14.450(0.182) -48.604(0.216) 37.600(0.114) 35.566(0.207) 17,18
1996X 1.299(0.009) CN -53.837(0.216) -9.917(0.400) -51.935(0.309) 41.193(0.271) 43.070(0.317) 19,20
1997bp 1.231(0.013) · · · -64.847(1.884) -3.015(1.935) · · · k 42.951(0.729) · · · k 21
1997br 1.141(0.021) SS -43.186(4.832) -21.652(3.106) · · · k 40.701(0.171) · · · k 22
1997do 1.099(0.237) BL -57.978(0.878) -11.934(0.186) · · · k 43.880(0.995) · · · k 23
1997dt 1.04(0.15)d CN -56.255(0.148) -8.051(0.475) -50.003(0.632) 41.675(0.655) 47.482(0.538) 23
1998V 1.150(0.025) CN -52.756(0.285) -10.737(0.517) -47.976(0.406) 42.455(0.300) 35.278(0.390) 23
1998aq 1.185(0.008) CN -53.695(0.218) -9.824(0.404) -51.130(0.322) 39.259(0.262) 31.908(0.403) 23,24
1998bp 1.903(0.013) CL -45.839(0.215) -28.182(0.399) -33.504(0.312) 27.849(0.458) 48.179(0.449) 23
1998bu 1.014(0.008) CN -53.743(0.137) -10.060(0.255) -48.582(1.067) 40.477(0.177) 32.800(1.149) 23,25,26,27
1998de 1.881(0.066) CL -48.672(0.294) -28.202(0.533) -21.675(0.329) 38.392(0.564) 56.127(0.232) 23
1998dh 1.258(0.038) BL -55.895(0.209) -10.240(0.388) -47.762(0.285) 43.403(0.257) 45.766(0.205) 23
1998dm 0.983(0.339) · · · -53.027(0.094) -12.198(3.126) · · · k 47.453(0.919) · · · k 23
1998ec 1.074(0.028) BL -62.305(0.121) -4.422(0.232) -47.332(0.591) 43.144(0.037) 42.297(0.887) 23
1998eg 1.15(0.09)e CN -53.627(0.317) -11.681(0.570) -52.964(0.531) 37.920(0.349) 39.311(0.394) 23
1998es 0.745(0.013) SS -52.360(0.668) -4.399(0.549) -45.227(0.306) 42.884(0.086) 31.574(0.194) 23
1999aa 0.811(0.014) SS -51.631(0.885) -5.908(0.408) -44.397(0.210) 43.020(0.087) 30.685(0.214) 23,28
1999ac 1.241(0.036) SS -56.123(0.280) -9.354(0.509) -44.465(0.327) 42.953(0.272) 44.159(0.183) 23,29
1999aw 0.814(0.018) SS -52.965(4.726) -1.590(0.431) · · · l · · · l · · · l 30
1999by 1.796(0.008) CL -46.242(0.484) -27.599(0.338) -23.743(0.369) 34.528(0.282) 56.148(0.363) 23
1999cc 1.567(0.102) BL -54.551(0.368) -17.619(0.654) -46.891(0.486) 40.408(0.439) 41.747(0.363) 23
1999cl 1.243(0.043) BL -59.260(0.397) -6.847(0.703) -38.325(0.538) 43.409(0.161) 46.195(0.193) 23
1999dq 0.973(0.030) SS -50.336(0.623) -6.492(0.359) -43.249(0.249) 43.592(0.086) 33.746(0.162) 23
1999ee 0.944(0.006) SS -52.461(0.418) -9.313(0.737) -48.746(0.446) 43.475(0.215) 39.278(0.177) 31
Continued on Next Page. . .

c∆m15 from Hachinger et al. (2006)
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Table 2.3 – Continued

SN ∆m15
a Branch

Subtypeb

X6150 X5750 X5485 X5150 X4570 Spectra

Sourceo

1999ej 1.446(0.018) BL -51.523(0.241) -21.127(0.443) -43.869(0.384) 36.897(0.338) 41.707(0.383) 23
1999gh 1.721(0.008) BL -53.856(2.065) -21.929(0.901) · · · k 39.822(3.692) · · · k 23
1999gp 1.029(0.186) SS -54.055(0.844) -3.634(1.409) -46.510(0.863) 41.516(0.449) 37.941(0.408) 23
2000E 1.079(0.021) SS -51.938(0.250) -7.507(0.493) -46.913(0.479) 42.393(0.248) 33.210(0.667) 32
2000cf 1.364(0.043) · · · -51.376(1.230) -13.827(0.031) -48.438(0.101) 41.395(0.424) 47.646(0.232) 23
2000cn 1.675(0.027) CL -51.405(0.250) -23.634(0.078) · · · k 38.841(1.773) · · · k 23
2000cx 0.971(0.006) SS -52.441(0.429) -4.527(0.755) -41.327(0.525) 44.369(0.285) 29.687(0.418) 23,33
2000dk 1.457(0.033) CL -50.096(0.017) -23.257(0.389) -39.544(0.354) 34.195(0.406) 38.875(0.413) 23
2000fa 1.140(0.027) CN -54.210(0.551) -9.293(1.827) -44.606(1.594) 40.845(1.452) 33.094(1.348) 23
2001V 0.743(0.034) SS -52.006(1.813) -5.376(2.106) -35.152(3.846) 39.213(4.099) 29.718(0.170) 23
2001ay 0.543(0.006) BL -63.993(0.203) -2.843(0.378) -30.552(0.265) 39.397(0.309) 59.731(0.666) 34
2001el 1.166(0.004) CN -52.317(0.744) -12.737(0.230) -50.087(0.342) 40.832(0.272) · · · m 35
2002bo 1.260(0.007) BL -61.527(0.322) -5.877(0.821) -41.535(0.730) 45.575(0.464) 41.272(0.458) 36
2002cx 1.145(0.016) SS -32.952(3.231) -19.216(6.785) -28.614(6.820) 20.330(2.847) 27.516(2.514) 37
2002dj 1.08(0.05)f BL -63.346(0.267) -2.519(2.441) -46.720(0.321) 46.987(1.460) 38.889(0.614) 38
2002el 1.423(0.018) · · · -54.749(0.349) -15.368(0.904) -45.108(0.855) 37.251(0.296) 37.339(0.567) 39
2002er 1.301(0.009) BL -56.853(0.227) -10.436(0.420) -49.949(0.369) 41.584(0.248) 45.197(0.332) 40
2003cg 1.25(0.05) CN -52.901(0.295) -8.980(0.506) -43.235(0.634) 38.695(0.223) 36.871(0.400) 41
2003du 1.151(0.037) CN -54.388(0.192) -7.664(0.360) -53.238(0.300) 40.229(0.287) 39.471(0.283) 42,43
2004S 1.210(0.016) CN -48.235(3.103) -18.474(5.782) · · · k 40.250(2.452) · · · k 45
2004dt 1.299(0.002) BL -64.706(0.662) -3.370(0.231) -41.069(0.266) 34.912(0.214) 45.159(0.400) 46
2004eo 1.417(0.004) CL -49.673(1.001) -20.883(0.351) -40.903(0.220) 41.306(0.303) 49.330(4.384) 47
2005bl 1.93(0.10) CL -45.532(3.327) -25.784(3.759) -17.737(3.337) 27.149(0.361) 40.669(1.949) 48
2005cf 1.161(0.006) CN -52.758(0.249) -11.505(0.457) -52.686(0.316) 40.237(0.356) 43.805(0.364) 49
2005cg 0.942(0.048)g SS -55.780(0.292) -6.463(0.528) · · · n · · · n · · · n 50
2005df 1.116(0.013) · · · -53.024(0.064) -9.486(3.441) -51.371(0.514) 46.312(2.108) 37.292(2.676) 51
2005hj 0.743(0.165)h SS -51.129(0.542) -4.260(0.935) -41.942(0.423) 49.066(0.336) 38.596(0.529) 52
2005hk 1.56(0.09)e SS -42.299(6.056) -27.804(1.861) -16.555(1.580) 31.749(0.302) 30.752(14.932) 53
2006gz 0.69(0.04)i SS -52.610(0.032) -7.209(0.217) · · · k 33.375(0.492) · · · k 54
2006X 1.17(0.04)j BL -66.111(0.252) -0.616(0.195) -25.726(0.209) 42.110(0.088) 38.500(0.186) 55
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a∆m15 values were calculated by the super-stretch method from Wang, L. et al. (2006a) unless otherwise noted.
bDesignations from Branch et al. (2009)
c∆m15 from Hachinger et al. (2006)
d∆m15 from Jha et al. (1999)
e∆m15 from Phillips et al. (2007)
f∆m15 from Pignata et al. (2008)
g∆m15 converted from stretch value, s, from Quimby et al. (2006) using the equation from Perlmutter et al. (1997)
h∆m15 converted from stretch value, s, from Quimby et al. (2007) using the equation from Perlmutter et al. (1997)
i∆m15 from Hicken et al. (2007)
j∆m15 from Wang, X. et al. (2008)
kThe 5485 Å and 4570 Å features show much more variance in their evolution, therefore the epoch range over which these features were fit
was smaller. These SNe are missing X5485 and X4570 values because they did not have enough spectra within the smaller epoch range.
lDue to noise or mis-calibration of the spectra at +3 days, there is not enough data to fit X5485, X5150, and X4570
mThe spectra for SN 2001el did not cover the wavelength region for this feature.
nNot enough of the spectra for SN 2005bl covered the wavelength regions for X5485, X5150, and X4570 for a good fit to be made.
oSpectra Source References: (1) Branch et al. (1983); (2) Harris et al. (1983); (3) Barbon et al. (1989); (4) Phillips et al. (1987); (5) Barbon
et al. (1990); (6) Wells et al. (1994); (7) Mazzali et al. (1993); (8) Leibundgut et al. (1991); (9) Filippenko et al. (1992a); (10) Phillips et
al. (1992); (11) Ruiz-Lapuente et al. (1992); (12) Leibundgut et al. (1993); (13) Filippenko et al. (1992b); (14) Turatto et al. (1996); (15)
Kirshner et al. (1993); (16) Wang unpublished; (17) Meikle et al. (1996); (18) Patat et al. (1996); (19) Wang, L. et al. (1997a); (20) Salvo et
al. (2001); (21) Anupama (1997); (22) Li et al. (1999); (23) Matheson et al. (2008); (24) Branch et al. (2003a); (25) Jha et al. (1999); (26)
Meikle & Hernandez (2000); (27) Hernandez et al. (2000); (28) Garavini et al. (2004); (29) Garavini et al. (2005); (30) Strolger et al. (2002);
(31) Hamuy et al. (2002); (32) Valentini et al. (2003); (33) Li et al. (2001); (34) Branch et al. (2006); (35) Wang, L. et al. (2003); (36) Benetti
et al. (2004); (37) Li et al. (2003); (38) Pignata et al. (2008); (39) Wang unpublished; (40) Kotak et al. (2005); (41) Elias-Rosa et al. (2006);
(42) Anupama et al. (2005); (43) Stanishev et al. (2007); (44) Howell et al. (2006); (45) Krisciunas et al. (2007); (46) Altavilla et al. (2007);
(47) Mazzali et al. (2008); (48) Taubenberger et al. (2008); (49) Garavini et al. (2007b); (50) Quimby et al. (2006); (51) Quain in progress;
(52) Quimby et al. (2007); (53) Phillips et al. (2007); (54) Hicken et al. (2007); (55) Wang, X. et al. (2008)
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at this epoch with the SiII 5972 and 6355 lines. After 8 days past maximum X5750

becomes stronger and X6150 weakens. Similarly, around 8 days past maximum X5485,

associated at maximum with the S II 5433/5459 Å “w” feature, begins to weaken

until it is completely obscured by 18 days past maximum. The emission features

at 4750 and 5150 Å for this same supernova, by contrast, show comparatively little

time evolution. These two emission features can be associated with P-Cygni profiles

of Mg II and Si II but are highly blended making identification difficult (Wang, L. et

al. 2006b).

Analysis of the time evolution is complicated by occasional large gaps between

epochs and the need to occasionally track spectral features manually due to the

decreasing velocity of the expanding photosphere. Consequently, a full analysis of

the temporal evolution of the remaining supernovae in Table 2.3 will be analyzed in

a separate paper.

2.3.3 X versus ∆m15

Figures 2.8 to 2.12 show the correlations between X and ∆m15 for the five spectral

features that we have adopted for our study. The line strengths in these figures are

those computed at maximum light. In instances where no spectrum at maximum

light exists a simple quadratic fit was made of all spectra within 8 days of maximum

(for features that are not a smoothly varying the fit was restricted to within 5 days

of maximum). The fits were checked for consistency and for supernovae with only

two spectra closely sampled in time, a mean was taken to avoid aberrant behavior

in the fit. Any supernova having only a single spectrum within the specified time

range was removed, unless that spectrum was taken at maximum.
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Fig. 2.7. Temporal Evolution of the X Indexes. The temporal evolution of the X
indices of SN 2005cf. In order these are: (a) the emission feature at 4570 Å associated
in part with the P Cygni profile of Mg II at 4471 Å , (b) the emission feature at 5150
associated in part with the P Cygni profile of Si II at 5041 Å , (c) the absorbtion “w”
around 5485 Å associated around maximum with the S II 5433/5459 Å feature, (d)
an absorption feature at 5750 Å associated around maximum with the Si II 5972 Å
line, and (e) a strong absorption feature at 6150 Å associated around maximum with
the Si II 6355 Å.
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Fig. 2.8. X6150 vs. ∆m15 Correlation. The correlation of the strength of X6150

(associated with the SiII 6355 Å feature) and ∆m15.
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2.3.3.1 X6150

It has been shown previously that the strength of the SiII 6355 Å line is not tightly

correlated with the intrinsic brightness Hachinger et al. (2006). The spectral index

associated with this feature is X6150 and Figure 2.8 confirms this observation in the

main. However, the X6150 indexes do show a modest trend of weaker spectral strength

for dimmer supernovae and supernovae with ∆m15 less than 1.5 show large variations

of the index strength. It merits mention that the several of these supernovae (e.g.,

SN 1997br, SN 2001ay, SN 2002cx, and SN 2005hk) are deviant with respect to the

majority of the sample. It has been noted that these are all peculiar supernovae

and it has been speculated that SN 1997br, SN 2002cx, and SN 2005hk may form

a group distinct from most typical Type Ia supernovae (Branch et al. 2004, 2006,

2009; Howell & Nugent 2004; Jha et al. 2006b; Li et al. 1999, 2003; Phillips et al.

2007; Sahu et al. 2008).

2.3.3.2 X5750

At maximum the X5750 index is a measure of the strength of the SiII absorption

at 5972 Å . It has previously been shown that the ratio of the strength of this

feature and that of the SiII 6355 Å line are well correlated with ∆m15 Hachinger

et al. (2006, 2008); Nugent et al. (1995). Using this correlation, a determination of

the supernovaes’ maximum luminosity may be determined on the basis of a single

spectra Riess et al. (1998b). These same two features have also been used to define

Ia SNe subgroups Benetti et al. (2005); Branch et al. (2006, 2009).

Figure 2.9 shows the correlations with ∆m15. The X indexes for this line correlate

tightly with ∆m15 even without having been divided by the strength of the SiII

6355 Å line (X6150 at maximum). Note however, that the X index for this feature

is normalized by the total variance of the wavelength scales from wavelength region

between 5500 Å and 6500 Å, the variations due to SiII 6355 Å line are partially
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Fig. 2.9. X5750 vs. ∆m15 Correlation. The correlation of the strength of X5750 (at
maximum associated with SiII 5972) and ∆m15.
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included in the derivations of the X indexes. The correlation between X and ∆m15

can be well described by a linear relation. There has been some discussion as to

what physical process causes this correlation (see Bongard et al. 2008; Branch et al.

2006; Garnavich et al. 2004; Hachinger et al. 2008, for some examples). We wish to

emphasize that the X index of this feature measures the total strength of this feature

and does not distinguish the physical origins of the feature.

2.3.3.3 X5485

The “w” shaped spectral feature SII 5433/5459 Å is another important line that

defines an SN Ia similar to the SiII 6355 lines (Bongard et al. 2006; Hachinger et al.

2006, 2008). The X5485 index is a measurement of this feature at maximum. Fig-

ure 2.10 suggests that the strength of this feature too may depend on ∆m15, though

correlation is much weaker than that for X5750. The deviant SNe are SN 1991T,

SN 2001ay, SN 2005hk, SN 2006X, SN 2001V and SN 2002cx. SN 1997br has a

similar spectral evolution to that of SN 1991T, but it has not been shown since it

has only one spectrum within 5 days of maximum. However the X value (−30) for

SN 1997br at 4 days before maximum is consistent with the X value for SN 1991T.

Other 1991T-like SNe (SN 1998es, SN 1999aa, SN 1999dq, SN 2000cx) have more

normal values but they still are on the upper edge of the distribution. There is

apparently some diversity among slow declining SNe.

The SII line is generally much stronger than the SiII 5972 line and is thus much

easier to measure. There is also much more evolution within this feature, conse-

quently Figure 2.10 is restricted to spectra taken within 5 days of maximum.

2.3.3.4 X5150

Figure 2.11 shows what might be interpreted as a slight dependence on ∆m15,

though the trend is not as apparent as it is with the SII line or the SiII associated
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Fig. 2.10. X5485 vs. ∆m15 Correlation. The correlation of the strength of X5485 (at
maximum associated with SII 5433/5459 Å “w” feature) and ∆m15.
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Fig. 2.11. 5150 Å Emission Peak vs. ∆m15 Correlation. The correlation of the
emission peak at 5150 Å and ∆m15.
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indexes. The X values do decrease notably with ∆m15 for the most sub-luminous

supernovae. A majority of the data are clustered with a large amount of scatter.

At maximum, X5150 is associated at least in part with the P Cygni profile of SiII at

5041 Å. The 5150 Å emission feature may not be a good indicator of decline rate.

2.3.3.5 X4570

Similar to Figure 2.11, Figure 2.12 shows what appears to be weak dependence on

∆m15 with the 4570 Å emission peak. This feature is partly associated with the MgII

feature at 4471 Å at maximum. As with Figures 2.9 and 2.10 the more deviant SNe

appear on the outer edges of the distribution. This tendency is somewhat stronger

than that found for the 5150 Å feature and is in the opposite direction: the X value

for 4570 Å is increasing with increasing ∆m15.

There is wide variation in early time evolution to this feature, consequently the

data comprising Figure 2.12 is restricted to spectra taken within 5 days of maximum.

Similar to the 5150 Å feature, the utility of the 4750 Å feature in specifying decline

rate is uncertain.

2.3.3.6 Ratio Between the X4570 and X5150

The suggestion of a correlation between ∆m15 and the ratio of these two features

appears in Figure 2.13, though it is also weak, particularly for the fast decliners. It

appears that the 4570 Å feature has a stronger effect on this ratio than the 5150 Å

feature.

Due to the restriction on the 4570 Å feature, the same restriction to spectra

within 5 days of maximum is applied to Figure 2.13. This ratio may be a useful

parameter for the slower decliners but not for fast decliners.
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Fig. 2.12. 4570 Å Emission Peak vs. ∆m15 Correlation. The correlation of the
strength of the emission peak at 4570 Å and ∆m15.
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Fig. 2.13. The Ratio of the Emission Peaks vs. ∆m15 Correlation. The correlation
of the ratio of the strength of the emission peak at 4570 Å and 5150 Å and ∆m15.
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Fig. 2.14. Spectral Feature Evolution with Reddening. Same as Figure 2.7, but
with the spectral indices recomputed separately for each of the 4 E(B-V) values.

2.3.4 Extinction

To explore the impact of reddening on the spectral indices, each spectra in the

supernova sample in Table 2.3 was reddened. Four values for E(B-V) were chosen:

-0.25, 0.25, 0.5, and 1.0. An identical procedure to that described in Section 2.2 was

applied to these reddened spectra and spectral indexes were recalculated.

Figures 2.14 and 2.15 are similar to Figures 2.7 and 2.8, but now include the

effects of various values of E(B-V). Figures 2.14 and 2.15 together demonstrate that

reddening has only a minor effect on spectral indices and is, in any event, an effect

that can be corrected.
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Fig. 2.15. Spectral Index Correlation with ∆m15 Adjusted for Reddening. Same as
Figure 2.8, but with the addition of four panels each displaying the spectral indices
for four values of E(B-V). The lower right panel overlays data from the first five
panels.
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3. APPLICATIONS OF WSIM

The previous chapter outlined the Wavelet Spectral Index Method (WSIM) and

some preliminary applications. In this section WSIM is used to explore SNe sub-

groups near maximum, evolution of spectral features during the explosion, correla-

tions between light curve shape and individual spectral features, and possible cor-

rections for the Hubble diagram.

3.1 Type Ia SNe Subgroups: A Test

In a series of papers, David Branch and collaborators have used spectra to explore

the existence of subgroups within Type Ia SNe. Branch et al. (2009) (from now on re-

ferred to as B5) divided Type Ia SNe into 4 subgroups using pseudo-equivalent widths

(pEW’s) and the appearance of SiII λ5750 and λ6150 features. These subgroups are:

Core Normal (CN), Broadline (BL), Cool (CL), and Shallow Silicon (SS). A new

category has been added in this work, “Known Peculiar,” (KP). The SNe comprising

this subgroup have been shown to be peculiar and include: SN 2001ay (Branch et al.

2006), SN 2002cx (Branch et al. 2004; Li et al. 2003), and SN 2005hk (Phillips et al.

2007). In B5, the 4 main subgroups were defined by where they lie on the W (5750)-

W (6100) plane (Figure 2 in B5). The wavelet spectral index method and the pseudo

equivalent-width method both measure the strength of individual spectral features

therefore it is expected that they would show similar results. Figure 3.1 recreates

Figure 2 from B5 using X5750 and X6150 values with our sample of SNe spectra. It

should be noted that in Figure 3.1 the Xλ values for SNe without spectra at B-band

maximum have been estimated through a simple fit as described in Chapter 2. There

are two SNe with unpublished spectra, SN 1993H and SN 2005df (see Table 2.3 in

Chapter 2 Wagers et al. 2010, and references therein for more information), included

in this set.
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Fig. 3.1. Branch Plot Using Spectral Indexes. The subgroups of Type Ia SNe as
defined by Branch et al. (2009) (referred to as B5) are indicated by the symbols.
This plot has the same distinct upside-down “Y” shape as Figure 2 in B5 but now
using the wavelet spectral index method as described in Chapter 2 (Wagers et al.
2010). The grouping is primarily the same as that in B5 with the addition of the
“Known Peculiar” subgroup containing those SNe that have already been shown to
be significantly divergent. The SNe designated by B5 as “Cool” appear weaker with
respect to the other SNe due to a normalization effect. This is shown by the gray
open circles and lines where the circle indicates the original position and the line
illustrates the shift in both Xλ values when the 5750 SiII feature is strengthened or
diminished artificially by a multiplicative constant across the feature.
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WSIM does indeed show similar results to the pEW method used in B5 with

a notable exception that the “Cool” SNe are measured to be weaker in X6150. An

explanation for this discrepancy may lie in the normalization used to calculate X5750

and X6150. As described in Chapter 2, both X5750 and X6150 share a common nor-

malization region (5500 Å ≤ λ ≤ 6500 Å). Since the normalization of each wavelet

spectral index is based on the standard deviation within the region, the strength

of both features will affect the normalization. To illustrate this, 6 SNe (SN 1986G,

SN 1991T, SN 1991bg, SN 1998aq, SN 1999cl, SN 2000cx) with spectra taken at

maximum and 1 SN (SN 2003cg) with a spectrum taken 1 day before maximum were

modified to test this effect. The 5750 Si II feature was strengthened or weakened by a

multiplicative constant applied to all pixels in the feature. Then the two spectral in-

dexes in the deformed spectrum were recalculated. In Figure 3.1 the large open gray

circles indicate the original position of the SNe that was used and the corresponding

lines show how the measured strength of these features shifted as the 5750 Å feature

was varied.

3.2 WSIM and Evolution

Discussions concerning the feature strengths using WSIM are not limited to the

time of maximum light. WSIM can also be used to study the evolution of the features

during the course of the supernova explosion. The evolution of spectral indexes is

shown in the figures that follow for all 64 SNe in our sample from 10 days before

maximum to 25 days post-maximum. Chapter 2 introduced this use of WSIM, here

simple fits to the wavelet spectral index evolution have been applied to quantitatively

characterize the evolution. The evolutions of all 5 features studied are homogeneous

for most SNe. Each one of these features can be fit with a simple function given by

Equations 3.1 through 3.5, where t is days from B band maximum. The fits were

preformed from t = −10 to t = +25 for X4570, and X6150; from t = −7 to t = +22 for

X5750; and from t = −10 to t = +15 for X5150 and X5485. These ranges were chosen
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due to high scatter outside of these epoch ranges. The scatter is due primarily to

other lines encroaching on the spectral index region. The tables that follow give

the fit parameters for each Xλ‘s for each SNe and average fits for all SNe in each

subgroup.

The most scatter is found in the evolution of the 4570 Å hump (see Figure 3.2),

however the shape of this feature’s evolution is nearly parabolic for all of the SNe

studied. Equation 3.1 works well for epochs beyond a week after maximum. Earlier

epochs show more complicated evolution. In particular the CN, BL, and CL SNe

all show stronger emission than the parabolic fit for the CN SNe while the SS and

KP SNe are weaker than the fit. At late time, 2 weeks past maximum, the CL SNe

have consistently weaker X4570 values while the SS SNe seem to be slightly stronger

implying a possible temporal (horizontal) shift and/or broadening in the parabolic

behavior with the CL SNe peaking earlier and the SS SNe peaking later. This is not

too surprising considering that CL SNe have a faster decline rate than CN and the

SS have a slower decline rate.

X4570(t) = A+B × t+ C × t2, −10days ≤ t ≤ +25days (3.1)

Table 3.1: Evolution Fit Parameters for X4570

SN Branch Subtype A B C

1990N CN 41.038(0.257) 1.001(0.034) -0.040(0.002)
1994D CN 42.607(0.082) 0.724(0.009) -0.038(0.000)
1996X CN 42.942(0.163) 0.810(0.035) -0.040(0.001)
1997dt CN 46.797(0.249) 0.618(0.080) 0.013(0.012)
1998V CN 35.649(0.235) 2.236(0.100) -0.095(0.007)
1998aq CN 36.396(0.122) 1.033(0.023) -0.030(0.001)
1998bu CN 39.738(0.110) 1.391(0.018) -0.060(0.001)
1998eg CN 42.001(0.302) 1.111(0.064) -0.047(0.003)
2000fa CN 40.991(0.168) 1.205(0.029) -0.043(0.002)
2001el CN · · · · · · · · · a

2003cg CN 39.719(0.120) 1.104(0.019) -0.062(0.001)
2003du CN 40.301(0.081) 1.038(0.015) -0.037(0.001)
2004S CN 43.591(0.333) 1.337(0.080) -0.060(0.004)
2005cf CN 43.744(0.085) 0.733(0.010) -0.033(0.001)
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Table 3.1 – Continued

SN Branch Subtype A B C

Mean Values CN 41.193(3.004) 1.103(0.413) -0.044(0.024)

1981B BL 43.358(0.166) 1.130(0.032) -0.045(0.001)
1984A BL 49.843(0.175) 0.458(0.023) -0.019(0.002)
1991M BL · · · · · · · · · a

1992A BL 40.479(0.136) 1.655(0.025) -0.077(0.001)
1997do BL 43.977(0.116) 0.675(0.012) -0.027(0.001)
1998dh BL 46.044(0.177) 1.091(0.104) 0.064(0.012)
1998ec BL 44.197(0.173) 1.082(0.034) -0.043(0.002)
1999cc BL 42.099(0.154) 0.986(0.076) -0.040(0.003)
1999cl BL 45.938(0.078) 0.470(0.013) 0.027(0.002)
1999ej BL 42.361(0.278) 1.931(0.110) -0.112(0.008)
1999gd BL · · · · · · · · · a

1999gh BL 52.751(0.742) 0.029(0.184) -0.046(0.011)
2000B BL · · · · · · · · · a

2002bf BL · · · · · · · · · a

2002bo BL 44.296(0.070) -0.198(0.006) 0.056(0.001)
2002dj BL 46.559(0.071) 0.599(0.006) -0.026(0.001)
2002er BL 47.127(0.058) 0.540(0.010) -0.040(0.001)
2004dt BL 42.911(0.133) 0.340(0.017) -0.017(0.001)

Mean Values BL 45.139(3.249) 0.771(0.586) -0.025(0.047)

1986G CL 48.472(0.202) 0.377(0.057) -0.042(0.003)
1989B CL 45.552(0.111) 1.192(0.019) -0.070(0.001)
1991bg CL 52.304(0.209) -1.403(0.076) 0.036(0.003)
1998bp CL 45.973(0.160) 0.139(0.036) -0.018(0.002)
1998de CL 56.416(0.205) -0.035(0.049) -0.062(0.017)
1999by CL 52.864(0.099) -0.164(0.021) -0.013(0.001)
2000cn CL 51.857(0.254) 0.470(0.020) -0.059(0.002)
2000dk CL 41.675(0.227) 1.873(0.054) -0.107(0.007)
2004eo CL 49.265(0.119) 0.474(0.020) -0.045(0.001)
2005bl CL 50.307(0.315) -1.418(0.064) 0.035(0.003)
1997cn CL · · · · · · · · · a

Mean Values CL 49.468(4.263) 0.151(1.017) -0.035(0.045)

1991T SS 36.803(0.075) 2.026(0.008) -0.067(0.000)
1998ab SS 56.563(20.539) -0.145(2.025) -0.015(0.050)
1998es SS 33.295(0.091) 1.177(0.012) -0.023(0.001)
1999aa SS 34.562(0.087) 1.555(0.012) -0.046(0.001)
1999ac SS 44.042(0.075) 0.670(0.013) -0.025(0.001)
1999aw SS 28.456(0.702) 1.524(0.099) -0.026(0.003)
1999dq SS 35.219(0.078) 1.308(0.013) -0.034(0.001)
1999ee SS 41.755(0.065) 1.185(0.010) -0.041(0.001)
1999gp SS 37.897(0.146) 2.105(0.043) -0.076(0.002)
2000E SS 36.442(0.272) 1.283(0.036) 0.015(0.008)
2000cx SS 28.034(0.115) 1.422(0.022) -0.017(0.001)
2001V SS 42.190(0.076) 1.466(0.009) -0.059(0.000)
2005cg SS · · · · · · · · · a

2005hj SS 39.192(0.295) 0.910(0.050) 0.195(0.014)
2006gz SS 36.729(0.609) 0.733(0.035) 0.010(0.007)

Mean Values SS 38.229(3.980) 1.451(0.494) -0.049(0.024)

1997br KP 37.963(0.086) 2.218(0.010) -0.093(0.001)
2001ay KP · · · · · · · · · a

2002cx KP 36.886(0.386) 1.453(0.047) -0.066(0.002)
2004S KP 43.591(0.333) 1.337(0.080) -0.060(0.004)
2005hk KP 35.631(0.173) 2.099(0.022) -0.086(0.001)

aThose SNe without fit parameters were not fit well by the function because the

data was too sparse for a good fit.
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Fig. 3.2. X4570 Evolution. The evolution of the X4570 spectral index. The top panel shows
measurements between 10 days before maximum to 25 days after maximum. The solid lines
are average fits of each SNe subgroup as defined in Branch et al. (2009) using a simple
quadratic fit (Equation 3.1) and the mean values given in Table 3.1. The mean values were
determined by fitting each SNe with the defined function from 10 days pre-maximum to 25
days post-maximum. The 5 panels below show the residuals of the data with the fit. Each
panel represents a different subgroup: “Core Normal” (CN), “Broad Line” (BL), “Cool”
(CL), “Shallow Silicon” (SS), and “Known Peculiar” (KP) respectively.
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The other emission hump (at 5150 Å) shows very subtle evolution (Figure 3.3) until

about 1–2 weeks after maximum. Some SNe show a discontinuous break, this is due

to an absorption feature which penetrates through the center of the emission hump

far enough to split it into two separate emission features. A linear fit (Equation

3.2) is used to describe the evolution from 10 days before maximum to 15 days after

maximum to avoid the discontinuity. The mean slope and mean intercept values for

CN SNe are listed in Table 3.2. Comparing the other subgroups to the CN mean fit

show that the BL SNe are stronger before maximum while the CL and SS SNe are

weaker over the same epochs. After maximum all SNe follow closely the CN mean

fit with the exception of the CL and KP SNe which are systematically weaker than

the CN fit.

X5150(t) = m× t+ b, −10days ≤ t ≤ +15days (3.2)

Table 3.2: Evolution Fit Parameters for X5150

SN Branch Subtype b m

1990N CN 40.521(0.164) 0.140(0.016)
1994D CN 41.328(0.058) 0.071(0.006)
1996X CN 40.290(0.102) 0.123(0.017)
1997dt CN 42.645(0.314) 0.293(0.056)
1998V CN 42.209(0.173) 0.180(0.016)
1998aq CN 39.565(0.085) 0.229(0.017)
1998bu CN 39.549(0.081) 0.029(0.010)
1998eg CN 38.630(0.292) 0.836(0.095)
2000fa CN 41.338(0.183) 0.095(0.019)
2001el CN 39.761(0.172) -0.586(0.031)
2003cg CN 38.169(0.089) 0.665(0.010)
2003du CN 39.461(0.068) 0.007(0.011)
2004S CN 35.169(0.305) 2.066(0.028)
2005cf CN 38.564(0.072) -0.132(0.009)

Mean Values CN 39.800(1.893) 0.287(0.610)

1981B BL · · · · · · a

1984A BL 46.990(0.176) -0.142(0.031)
1991M BL · · · · · · a

1992A BL 40.411(0.159) 0.039(0.022)
1997do BL 43.019(0.113) -0.169(0.009)
1998dh BL 43.100(0.188) 0.254(0.032)
1998ec BL · · · · · · a

1999cc BL 41.034(0.194) 0.357(0.105)



59

Table 3.2 – Continued

SN Branch Subtype b m

1999cl BL 42.566(0.047) 0.555(0.010)
1999ej BL 37.868(0.208) 0.089(0.026)
1999gd BL · · · · · · a

1999gh BL 64.895(0.200) -3.855(0.022)
2000B BL · · · · · · a

2002bf BL · · · · · · a

2002bo BL 45.455(0.035) 0.301(0.004)
2002dj BL 43.270(0.058) -0.060(0.006)
2002er BL 40.963(0.058) -0.150(0.008)
2004dt BL 43.382(0.095) -0.697(0.012)

Mean Values BL 44.413(6.868) -0.290(1.168)

1986G CL 39.093(0.178) 0.923(0.049)
1989B CL 38.124(0.104) -0.289(0.012)
1991bg CL 25.990(0.250) -1.989(0.048)
1998bp CL 26.975(0.169) -1.514(0.019)
1998de CL 35.908(0.220) -0.545(0.060)
1999by CL 27.991(0.149) -2.118(0.027)
2000cn CL 34.284(0.221) -0.774(0.022)
2000dk CL 33.779(0.164) -0.407(0.026)
2004eo CL 37.817(0.128) -1.094(0.013)
2005bl CL 28.672(0.574) -1.896(0.085)
1997cn CL · · · · · · a

Mean Values CL 32.863(5.015) -0.970(0.949)

1991T SS 37.326(0.037) 0.699(0.005)
1998ab SS · · · · · · a

1998es SS 41.424(0.055) 0.293(0.009)
1999aa SS 40.509(0.046) 0.302(0.006)
1999ac SS 41.117(0.058) -0.546(0.009)
1999aw SS · · · · · · a

1999dq SS 42.605(0.063) 0.487(0.012)
1999ee SS 45.758(0.050) 0.002(0.006)
1999gp SS 42.588(0.112) 0.508(0.029)
2000E SS 40.605(0.114) -0.315(0.023)
2000cx SS 42.797(0.074) 0.882(0.008)
2001V SS 40.496(0.052) 0.148(0.006)
2005cg SS · · · ) · · · a

2005hj SS 44.969(0.178) -0.840(0.038)
2006gz SS 31.503(0.258) -0.227(0.028)

Mean Values SS 41.609(2.546) 0.186(0.532)

1997br KP 39.090(0.049) 0.435(0.006)
2001ay KP · · · · · · a

2002cx KP 21.100(0.525) -0.245(0.053)
2004S KP · · · · · · a

2005hk KP 22.573(0.129) -0.201(0.018)

aThose SNe without fit parameters were not fit well by the

function because the data was too sparse for a good fit.

The three absorption features studied in this paper all show similar evolution.

They all have relatively no evolution until 1 week post maximum where they make

a rapid transition to another near constant strength (or disappear altogether as in
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Fig. 3.3. X5150 Evolution. The evolution of the X5150 spectral index. The top panel
shows measurements between 10 days before maximum to 25 days after maximum. The
solid lines are average fits of each SNe subgroups as defined in Branch et al. (2009) using a
simple linear fit (Equation 3.2) and the mean values given in Table 3.2. The mean values
were determined by fitting each SNe with the defined function from 10 days pre-maximum
to 15 days post-maximum. The 5 panels below show the residuals of the data with the
fit. Each panel represents a different subgroup: “Core Normal” (CN), “Broad Line” (BL),
“Cool” (CL), “Shallow Silicon” (SS), and “Known Peculiar” (KP) respectively.
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the S II feature at 5485 Å see Figure 3.4). The S II feature measured by X5485 has

much more scatter in its strength around maximum which was also seen in Chapter

2. In Figure 3.4 a fit to the CN SNe from 7 days before maximum to 20 days post-

maximum is shown as a solid black line. The CN mean parameter values used in the

fit are shown in Table 3.3. All SNe begin weaker than the fit at early time. The SS

and CN SNe become stronger before making a transition while the BL and CL SNe

stay relatively constant before the transition.

X5485(t) = α

(
1

1 + e
β−t
γ

− 1

)
, −7days ≤ t ≤ +20days (3.3)

Table 3.3: Evolution Fit Parameters for X5485

SN Branch Subtype α β γ

1990N CN 48.476(0.420) 9.295(0.094) 1.237(0.037)
1994D CN 49.490(0.103) 7.959(0.021) 1.461(0.017)
1996X CN 51.500(0.133) 8.011(0.033) 1.491(0.028)
1997dt CN · · · · · · · · · a

1998V CN 48.575(0.505) 5.287(0.700) 1.121(0.270)
1998aq CN 50.675(0.146) 9.054(0.220) 1.133(0.113)
1998bu CN 48.128(0.135) 8.105(0.022) 1.117(0.018)
1998eg CN · · · · · · · · · a

2000fa CN 48.109(0.572) 7.168(0.106) 2.147(0.067)
2001el CN 50.553(0.418) 8.345(0.154) 1.617(0.326)
2003cg CN 40.070(0.259) 7.888(0.066) 1.300(0.051)
2003du CN 52.582(0.106) 9.350(0.020) 1.691(0.019)
2004S CN 51.860(0.385) 8.189(0.049) 1.336(0.033)
2005cf CN 49.612(0.120) 9.021(0.026) 1.375(0.019)

Mean Values CN 49.462(3.306) 7.925(1.317) 1.321(0.452)

1981B BL · · · · · · · · · a

1984A BL · · · · · · · · · a

1991M BL · · · · · · · · · a

1992A BL 43.580(0.274) 8.335(0.036) 1.510(0.032)
1997do BL 44.186(0.225) 7.519(0.066) 2.466(0.046)
1998dh BL · · · · · · · · · a

1998ec BL · · · · · · · · · a

1999cc BL · · · · · · · · · a

1999cl BL 38.002(0.277) 5.066(0.209) 1.409(0.089)
1999ej BL 43.659(0.183) 8.878(0.030) 1.009(0.047)
1999gd BL · · · · · · · · · a

1999gh BL 31.483(0.622) 7.236(0.064) 1.232(0.042)
2000B BL · · · · · · · · · a

2002bf BL · · · · · · · · · a

2002bo BL · · · · · · · · · a

2002dj BL 44.630(0.115) 8.289(0.038) 1.188(0.035)
2002er BL 48.563(0.112) 8.621(0.034) 1.871(0.025)
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Table 3.3 – Continued

SN Branch Subtype α β γ

2004dt BL 38.792(0.109) 8.274(0.143) 1.068(0.077)

Mean Values BL 42.014(3.858) 7.878(1.319) 1.299(0.686)

1986G CL · · · · · · · · · a

1989B CL 45.980(0.212) 8.223(0.040) 1.456(0.040)
1991bg CL · · · · · · · · · a

1998bp CL 33.778(0.192) 2.124(1.050) 0.389(0.370)
1998de CL · · · · · · · · · a

1999by CL 43.000(8.737) 1.556(3.906) 9.113(2.237)
2000cn CL · · · · · · · · · a

2000dk CL 38.188(0.211) 6.968(0.105) 1.233(0.042)
2004eo CL 41.438(0.172) 6.985(0.033) 1.199(0.058)
2005bl CL · · · · · · · · ·
1997cn CL · · · · · · · · ·
Mean Values CL 39.898(5.075) 7.615(0.737) 1.113(0.383)

1991T SS 36.458(0.105) 9.744(0.028) 0.694(0.060)
1998ab SS · · · · · · · · · a

1998es SS · · · · · · · · · a

1999aa SS 40.554(0.110) 6.944(0.121) 0.704(0.082)
1999ac SS 40.529(0.120) 9.559(0.028) 1.196(0.029)
1999aw SS 50.203(1.614) 12.891(0.218) 2.143(0.450)
1999dq SS · · · · · · · · · a

1999ee SS 47.395(0.157) 7.493(0.051) 1.495(0.036)
1999gp SS 44.267(0.264) 8.310(0.236) 0.923(0.163)
2000E SS · · · · · · · · · a

2000cx SS 40.121(0.161) 8.956(0.028) 1.528(0.020)
2001V SS 31.583(0.169) 9.072(0.045) 1.621(0.040)
2005cg SS · · · · · · · · · a

2005hj SS 40.586(0.251) 8.632(0.084) 1.678(0.066)
2006gz SS 49.456(0.706) 9.151(0.081) 2.295(0.082)

Mean Values SS 38.661(4.476) 8.924(2.189) 1.064(0.586)

1997br KP 32.807(0.167) 8.440(0.032) 1.387(0.043)
2001ay KP · · · · · · · · · a

2002cx KP · · · · · · · · · a

2004S KP 51.860(0.385) 8.189(0.049) 1.336(0.033)
2005hk KP · · · · · · · · · a

aThose SNe without fit parameters were not fit well by the function because the

data was too sparse for a good fit.

The two Xλ‘s measuring the Si II absorption have less scatter. Previously, Fo-

latelli (2004) studied the evolution of the SiII features at 5750 Å and 6150 Å using

equivalent widths. It was found that the 5750 Å feature had no evolution within

12 days of maximum and this is consistent with the results found here, however a

gradual increase in the pEW of 6150 Å was found from 15 days before maximum

to 60 days after maximum which is in disagreement with the results of this paper.
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Fig. 3.4. X5485 Evolution. The evolution of the X5485 spectral index. The top panel
shows measurements between 10 days before maximum to 25 days after maximum. The
solid lines are average fits of each SNe subgroups as defined in Branch et al. (2009) using
a simple fit given by Equation 3.3 and the mean values given in Table 3.3. The mean
values were determined by fitting the function from 7 days pre-maximum to 20 days post-
maximum. The 5 panels below show the residuals of the data with the fit. Each panel
represents a different subgroup: “Core Normal” (CN), “Broad Line” (BL), “Cool” (CL),
“Shallow Silicon” (SS), and “Known Peculiar” (KP) respectively.
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Evolution of pEW for other spectral features has been found to be similar to the

evolution here using Xλ, see Folatelli (2004) and Bronder et al. (2007, 2008).

Figure 3.5 shows the evolution of the X5750 as a black solid line showing the

average fit for all CN SNe from 7 days before maximum and 20 days after maximum

as given in Equation 3.4 using the CN mean values in Table 3.4. From the residual

plots at the bottom of Figure 3.5 the BL SNe become weaker than the CN mean fit

1 week before maximum and then run parallel to the CN mean fit after that time.

Before the transition the CL SNe have much stronger absorption than the CN mean

fit but then they are weaker after the transition. This is due to the fact that the CL

SNe have little to no transition from early to late time. As their name implies, the

Shallow Silicon (SS) SNe start out much weaker than the rest of the sample but their

X5750 becomes stronger and is comparable to the CN mean fit around 5 days after

maximum. SS SNe are stronger after the transition due to a more drastic transition

in this subgroup compared to the CN mean fit. The KP SNe have no noticeable

transition which is evident in the residual plot where the KP SNe start stronger and

end weaker than the CN mean fit.

X5750(t) =
α

1 + e
β−t
γ

+ ε, −7days ≤ t ≤ +20days (3.4)

The reason that X5750 becomes stronger by a week after maximum is likely due to

contamination by Na ID which becomes progressively stronger after maximum. The

best fitting synthetic spectra suggest this contamination and is most prominently

seen in 1991bg-like SNe (Branch et al. 2005, 2006, 2008; Doull & Baron 2011; Filip-

penko et al. 1992b; Folatelli et al. 2012; Garnavich et al. 2004; Taubenberger et al.

2008). However, Mazzali et al. (1997) showed that the models do not naturally repro-

duce an appropriate absorption feature and the Na I distribution must be manually

manipulated. Leibundgut et al. (1993) suggested that this feature could be a blend

rather than Na ID. As the spectra evolve, this feature’s shape changes which supports

the idea that the feature is produced by a different element. The wavelet spectral
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Fig. 3.5. X5485 Evolution. The evolution of the X5750 spectral index. The top panel
shows measurements between 10 days before maximum to 25 days after maximum. The
solid lines are average fits of each SNe subgroups as defined in Branch et al. (2009) using
a simple fit given by Equation 3.4 and the mean values given in Table 3.4. The mean
values were determined by fitting the function from 7 days pre-maximum to 20 days post-
maximum. The 5 panels below show the residuals of the data with the fit. Each panel
represents a different subgroup: “Core Normal” (CN), “Broad Line” (BL), “Cool” (CL),
“Shallow Silicon” (SS), and “Known Peculiar” (KP) respectively.
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indexes are defined only by their approximate wavelength and not the mechanism to

produce their features. As a consequence, X5750 follows the absorption feature near

5750 Å and is insensitive to the origin of the feature.

Table 3.4: Evolution Fit Parameters for X5750

SN Branch Subtype α β γ ε

1990N CN -42.230(1.621) 11.723(0.258) 1.700(0.129) -8.454(0.500)
1994D CN -31.032(0.195) 8.455(0.045) 1.264(0.035) -15.715(0.125)
1996X CN -30.549(0.331) 9.606(0.125) 1.350(0.064) -10.647(0.153)
1997dt CN · · · · · · · · · · · · a

1998V CN -40.834(1.254) 10.411(0.376) 1.316(0.365) -10.243(0.291)
1998aq CN -41.486(0.387) 9.699(0.539) 1.386(0.262) -9.178(0.233)
1998bu CN -37.506(0.332) 9.497(0.045) 1.435(0.045) -10.382(0.148)
1998eg CN -38.322(0.694) 10.985(0.000) 0.156(0.000) -11.762(0.362)
2000fa CN -46.262(1.062) 11.152(0.131) 2.259(0.127) -8.546(0.447)
2001el CN -35.130(3.646) 11.339(1.264) 2.258(1.003) -12.544(0.405)
2003cg CN -31.517(0.940) 10.207(0.146) 1.541(0.122) -10.648(0.291)
2003du CN -44.629(0.304) 11.162(0.061) 2.091(0.048) -8.494(0.114)
2004S CN -56.908(11.259) 11.959(1.151) 6.307(1.496) -5.768(3.760)
2005cf CN -38.204(0.632) 10.994(0.100) 1.728(0.068) -11.485(0.151)

Mean Values CN -39.585(7.245) 10.553(1.015) 1.907(1.428) -10.297(2.410)

1981B BL · · · · · · · · · · · · a

1984A BL -31.736(0.701) 8.799(-0.000) 0.368(0.051) -10.870(0.334)
1991M BL · · · · · · · · · · · · a

1992A BL -27.422(0.378) 9.876(0.083) 1.181(0.109) -17.899(0.259)
1997do BL -38.758(0.434) 12.926(0.056) 1.735(0.047) -11.366(0.278)
1998dh BL -34.008(0.000) 21.197(0.000) 0.113(0.000) -12.115(0.181)
1998ec BL · · · · · · · · · · · · a

1999cc BL -36.254(0.000) 26.172(0.000) 0.267(0.000) -19.164(0.259)
1999cl BL · · · · · · · · · · · · a

1999ej BL · · · · · · · · · · · · a

1999gd BL · · · · · · · · · · · · a

1999gh BL -16.532(1.001) 10.147(0.155) 0.965(0.097) -21.376(0.211)
2000B BL · · · · · · · · · · · · a

2002bf BL · · · · · · · · · · · · a

2002bo BL · · · · · · · · · · · · a

2002dj BL -38.888(0.274) 11.705(0.043) 1.457(0.032) -8.398(0.166)
2002er BL -38.970(0.368) 12.965(0.063) 1.559(0.052) -12.445(0.124)
2004dt BL -30.987(0.371) 7.995(0.195) 2.115(0.104) -4.472(0.171)

Mean Values BL -33.362(5.447) 10.643(1.953) 1.270(0.646) -10.411(4.273)

1986G CL · · · · · · · · · · · · a

1989B CL -29.201(0.591) 9.518(0.130) 1.503(0.112) -15.174(0.247)
1991bg CL · · · · · · · · · · · · a

1998bp CL -0.767(0.436) 6.857(0.000) 0.256(0.000) -28.594(0.163)
1998de CL · · · · · · · · · · · · a

1999by CL · · · · · · · · · · · · a

2000cn CL -20.049(1.014) 9.302(0.089) 0.484(0.074) -23.730(0.617)
2000dk CL · · · · · · · · · · · · a

2004eo CL -27.682(1.160) 9.552(0.244) 1.676(0.149) -21.238(0.194)
2005bl CL · · · · · · · · · · · · a

1997cn CL · · · · · · · · · · · · a

Mean Values CL -25.644(4.904) 9.457(0.136) 1.221(0.644) -20.048(4.400)

1991T SS -48.959(1.467) 10.299(0.163) 2.053(0.145) -6.580(0.536)
1997br SS -27.590(0.870) 9.341(0.093) 0.853(0.066) -18.325(0.774)
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Table 3.4 – Continued

SN Branch Subtype α β γ ε

1998ab SS · · · · · · · · · · · · a

1998es SS -56.498(1.277) 10.566(0.295) 3.197(0.176) -2.041(0.529)
1999aa SS -50.388(0.664) 7.961(0.134) 2.714(0.116) -4.699(0.306)
1999ac SS -76.194(12.472) 14.724(1.505) 5.152(0.625) -4.579(0.898)
1999aw SS · · · · · · · · · · · · a

1999dq SS -56.530(5.148) 12.396(1.111) 3.681(0.484) -4.797(0.600)
1999ee SS -49.187(0.871) 10.518(0.128) 2.598(0.119) -7.251(0.340)
1999gp SS · · · · · · · · · · · · a

2000E SS -50.441(-0.000) 8.447(-0.000) 0.413(0.019) -8.841(0.229)
2000cx SS -56.639(0.621) 10.151(0.056) 2.015(0.050) -4.957(0.269)
2001V SS -47.499(0.563) 11.202(0.066) 2.035(0.078) -6.330(0.399)
2005cg SS · · · · · · · · · · · · a

2005hj SS -79.666(12.424) 13.579(1.428) 4.419(0.724) -1.992(1.501)
2006gz SS · · · · · · · · · · · · a

Mean Values SS -51.606(13.420) 10.876(2.023) 2.785(1.279) -6.825(4.918)

1997br KP -27.590(0.870) 9.341(0.093) 0.853(0.066) -18.325(0.774)
2001ay KP · · · · · · · · · · · · a

2002cx KP -91.571(-0.000) 20.205(-0.000) 0.078(0.005) -21.816(0.802)
2004S KP -56.908(11.259) 11.959(1.151) 6.307(1.496) -5.768(3.760)
2005hk KP · · · · · · · · · · · · a

aThose SNe without fit parameters were not fit well by the function because the data was too sparse

for a good fit.

The X6150 evolution (as shown in Figure 3.6) shows the least scatter for all SNe,

particularly around the time of maximum light. Due to their broader line profiles,

the BL SNe show much stronger values for X6150 but their evolution still parallels the

CN mean fit. These broader lines are thought to be due to a wider spatial range of

silicon in the ejecta (Benetti et al. 2005; Blondin et al. 2012; Branch et al. 2006, 2009;

Wang, X. et al. 2009). Being nearly consistent with the CN mean fit, the CL SNe

are slightly weaker around maximum and become much stronger after transitions.

As with X5750, this spectral index has a smaller transition for the CL SNe. The SS

SNe evolve very nearly the same as the CN mean fit with more scatter before 5 days

before maximum and after transition. There is only a hint of transition in the KP

SNe causing them to begin weaker and become stronger after transition.

X6150(t) =
α

1 + e
β−t
γ

+ ε, −10days ≤ t ≤ +25days (3.5)
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Fig. 3.6. X6150 Evolution. The evolution of the X6150 spectral index. The top panel
shows measurements between 10 days before maximum to 25 days after maximum. The
solid lines are average fits of each SNe subgroups as defined in Branch et al. (2009) using
a simple fit given by Equation 3.5 and the mean values given in Table 3.5. The mean
values were determined by fitting the function from 10 days pre-maximum to 25 days post-
maximum. The 5 panels below show the residuals of the data with the fit. Each panel
represents a different subgroup: “Core Normal” (CN), “Broad Line” (BL), “Cool” (CL),
“Shallow Silicon” (SS), and “Known Peculiar” (KP) respectively.
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Table 3.5: Evolution Fit Parameters for X6150

SN Branch Subtype α β γ ε

1990N CN 20.168(1.939) 13.232(0.223) 1.453(0.558) -54.011(0.373)
1994D CN 17.170(0.139) 9.775(0.068) 1.519(0.051) -54.406(0.082)
1996X CN · · · · · · · · · · · · a

1997dt CN · · · · · · · · · · · · a

1998V CN 24.723(2.385) 12.077(0.270) 1.633(0.425) -52.571(0.216)
1998aq CN 31.395(0.463) 13.186(0.292) 2.831(0.122) -53.785(0.148)
1998bu CN 25.550(0.296) 11.184(0.053) 1.429(0.042) -54.423(0.113)
1998eg CN 23.074(0.608) 11.717(1.101) 1.756(0.349) -53.596(0.397)
2000fa CN 18.038(0.635) 12.080(0.208) 1.860(0.163) -55.199(0.256)
2001el CN 42.240(0.785) 18.000(0.000) 3.566(0.211) -52.620(0.214)
2003cg CN · · · · · · · · · · · · a

2003du CN 26.017(0.215) 12.891(0.083) 1.982(0.061) -54.386(0.080)
2004S CN 22.609(0.530) 9.978(0.166) 1.865(0.109) -50.696(0.331)
2005cf CN 24.053(0.276) 12.217(0.108) 2.517(0.084) -54.215(0.109)

Mean Values CN 22.773(8.734) 12.187(2.102) 1.739(0.951) -53.517(1.170)

1981B BL · · · · · · · · · · · · a

1984A BL 12.727(4.994) 16.331(1.647) 2.101(1.566) -64.418(0.246)
1991M BL · · · · · · · · · · · · a

1992A BL 10.576(0.236) 10.971(0.229) 0.932(0.154) -54.445(0.144)
1997do BL 14.792(0.297) 11.957(0.110) 1.817(0.103) -59.057(0.184)
1998dh BL 27.650(0.000) 16.626(0.000) 0.688(0.000) -54.209(0.110)
1998ec BL · · · · · · · · · · · · a

1999cc BL · · · ) · · · · · · · · · a

1999cl BL · · · · · · · · · · · · a

1999ej BL · · · · · · · · · · · · a

1999gd BL · · · · · · · · · · · · a

1999gh BL 26.278(0.000) 21.087(0.000) 0.315(0.000) -55.461(0.083)
2000B BL · · · · · · · · · · · · a

2002bf BL · · · · · · · · · · · · a

2002bo BL · · · · · · · · · · · · a

2002dj BL 17.101(0.225) 12.746(0.077) 1.483(0.072) -60.508(0.102)
2002er BL · · · · · · · · · · · · a

2004dt BL 26.605(0.355) 10.400(0.159) 2.391(0.110) -65.443(0.111)

Mean Values BL 14.873(5.985) 12.284(2.071) 1.307(0.885) -59.979(4.207)

1986G CL 2.840(0.380) -1.149(0.322) 0.623(0.280) -52.045(0.218)
1989B CL 23.582(0.586) 11.496(0.167) 1.862(0.136) -55.087(0.186)
1991bg CL · · · · · · · · · · · · a

1998bp CL · · · · · · · · · · · · a

1998de CL · · · · · · · · · · · · a

1999by CL · · · · · · · · · · · · a

2000cn CL · · · · · · · · · · · · a

2000dk CL 3.342(0.914) 0.043(1.200) 1.390(1.091) -51.735(0.745)
2004eo CL 15.185(0.419) 10.495(0.295) 3.313(0.304) -50.940(0.212)
2005bl CL 11.980(1.020) 14.234(2.877) 1.052(1.304) -47.214(0.454)
1997cn CL · · · · · · · · · · · · a

Mean Values CL 20.841(4.899) 15.526(7.864) 3.851(2.307) -52.529(2.237)

1991T SS 21.332(0.337) 13.592(0.184) 1.171(0.132) -46.836(0.236)
1998ab SS · · · · · · · · · · · · a

1998es SS 28.755(0.530) 13.583(0.206) 2.199(0.225) -52.308(0.181)
1999aa SS 28.657(0.417) 13.896(0.094) 2.400(0.124) -46.411(0.144)
1999ac SS 39.508(0.458) 13.311(0.103) 2.572(0.074) -57.270(0.129)
1999aw SS · · · · · · · · · · · · a

1999dq SS 24.178(1.449) 12.485(1.493) 1.875(0.437) -50.510(0.190)
1999ee SS 23.252(0.271) 12.910(0.068) 0.615(0.041) -54.459(0.146)
1999gp SS · · · · · · · · · · · · a

2000E SS · · · · · · · · · · · · a
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Table 3.5 – Continued

SN Branch Subtype α β γ ε

2000cx SS 15.076(0.253) 10.623(0.093) 1.442(0.088) -51.597(0.159)
2001V SS 27.739(0.333) 13.860(0.102) 2.247(0.075) -53.843(0.211)
2005cg SS · · · · · · · · · · · · a

2005hj SS 27.062(0.991) 15.382(0.488) 2.321(0.299) -50.513(0.311)
2006gz SS 20.793(0.000) 29.059(0.000) 0.408(0.000) -52.804(0.176)

Mean Values SS 25.823(6.360) 13.666(1.687) 1.961(0.683) -51.026(3.658)

1997br KP 22.668(1.080) 17.014(0.290) 2.766(0.243) -46.513(0.345)
2001ay KP · · · · · · · · · · · · a

2002cx KP -5.506(1.110) 18.081(1.305) 1.962(1.263) -32.070(0.730)
2004S KP 22.609(0.530) 9.978(0.166) 1.865(0.109) -50.696(0.331)
2005hk KP · · · · · · · · · · · · a

aThose SNe without fit parameters were not fit well by the function because the data was too

sparse for a good fit.

3.3 Correlation Evolution

At B-band maximum there are several features that correlate with ∆m15(B) as

hinted in Chapter 2. A more detailed table of the calculated Pearson’s correlation

coefficients is given in Table 3.6. The first line of each row in Table 3.6 shows corre-

lations calculated using all SNe in our sample that were spectroscopically observed

at the time of B-band maximum. The second line in each row show the correlations

excluding any “Broad Line” and “Known Peculiar” SNe with spectra at maximum.

At maximum there are 23 SNe with spectra in our sample this implies that a Pear-

son’s correlation coefficient of 0.3961 has a 5% chance of occurring in purely random

data. Of these 23 SNe only 2, SN 1999cl and SN 2001ay, are within the BL or KP

subgroup. For 21 data points a Pearson’s correlation coefficient of 0.4132 has a 5%

probability. The last column of Table 3.6 indicates that most features correlate signif-

icantly with ∆m15(B) at the time of B-band maximum. Those that do not correlate

significantly with ∆m15(B) — X4570 and X5485 — still correlate with X5750, which

in turn strongly correlates with ∆m15(B). These correlations become stronger when

we exclude any “Broad Line” and “Known Peculiar” SNe, with a few exceptions.

Most strongly affected by the removal of the 2 SNe are correlations relating each of
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Table 3.6. Correlations between Spectral Indexes∗

X4570 X5150 X5485 X5750 X6150 ∆m15(B)

X4570 1 -0.23(0.08) 0.46(0.10) -0.49(0.10) -0.10(0.15) 0.38(0.15)
-0.27(0.12) 0.38(0.14) -0.76(0.03) 0.33(0.09) 0.75(0.03)

X5150 1 -0.51(0.08) 0.65(0.07) -0.52(0.10) -0.62(0.07)
-0.55(0.10) 0.67(0.07) -0.67(0.10) -0.70(0.07)

X5485 1 -0.47(0.09) 0.34(0.14) 0.39(0.11)
-0.61(0.08) 0.78(0.03) 0.61(0.08)

X5750 1 -0.68(0.05) -0.93(0.01)
-0.68(0.06) -0.95(0.01)

X6150 1 0.65(0.07)
0.58(0.09)

∆m15(B) 1

∗The correlations between spectral indexes and each other as well as ∆m15(B) are shown
for all 23 spectra taken at Bmax (top line in each row) and for 21 spectra (on the bottom line,
excluding SN 2001ay the only KP SN and SN 1999cl the only BL SN). Correlations of 0.3961
(for the top line) and 0.4132 (for the bottom line) have a 5% probability of occurring by a
random distribution. Only the previously classified SNe were used to find the correlations.

the Si II lines and ∆m15(B) with both X4570 and X5485. There were 2 correlations

that decreased, the X4570 vs. X5485 and the X6150 vs. ∆m15(B), but both changes

were not significant since the standard deviations (from a jack knife test) associated

with these Pearson’s correlation coefficients were larger than the change.

Following from the simple fits used to describe the evolution of the spectral index

values it should be expected that the correlations between spectral indexes would

evolve similarly. The evolution of the correlations with ∆m15(B) are shown in Figure

3.7. There are noticeably strong correlations within a week of maximum, particularly

between 5 days prior and 6 days after maximum as shown by the shaded region.

There are also some significant correlations around 2–3 weeks post maximum. It

appears that the correlations do not hold during the period from 1–2 weeks after

maximum when the spectral indexes associated with the absorption features make

their transitions. The most notable feature is the strong anti-correlation between

X5750 and ∆m15(B) which begins at 9 days pre-maximum and continues until 12 days

post-maximum. The two emission humps also have strong wide correlations/anti-
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correlations with ∆m15(B) around maximum. At late time the X5485 switches from

absorption to emission due to line blending such that the S II ‘w’ is lost so it is

no longer very reliable which explains its lack of significant correlations in the later

epochs. Similar results are shown when the spectral indexes are correlated with each

other.

There is a noticeable switch from anti-correlation to correlation of the X5750

feature from near maximum to 2–3 weeks post-maximum. A main reason for this

transition is that the Si II λ5750 feature is overtaken by a Na ID feature (Branch et

al. 2005; Doull & Baron 2011)see, and references above. However, this is explanation

is still debated (Leibundgut et al. 1993; Mazzali et al. 1997). If Na ID is the source

of this absorption, than why does it correlate with ∆m15? If it is not Na ID than

what is the source of this absorption? It should be noted that this is clearly not the

CSM Na I, the line is too broad and the velocity of the line corresponds to the ejecta

velocity (Garnavich et al. 2004).

3.4 PCA Evolution

From the strong correlations of each spectral index with each other and ∆m15(B)

this naturally leads to the conclusion that there may be a single main parameter

driving the evolution of spectral features. To this end, principal components analysis

(PCA) is employed to determine the dependence of the principal component on each

Xλ and ∆m15(B). The coefficients associated with each measurement for the 1st

(PC1) and 2nd (PC2) principal components are shown in Figure 3.8. The left two

panels in Figure 3.8 show the coefficients for PC1 and PC2 for all SNe in our sample,

while the right two panels show PC1 and PC2 for our sample without the BL and KP

SNe. The most striking characteristic of Figures 3.8(a) and 3.8(b) is the epochs from

5 days before maximum to 8 days after maximum, where all coefficients have similar

absolute values. This characteristic suggests that these features are all influenced

by one main parameter nearly equally during these epochs. The next two sections
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Fig. 3.7. ∆m15 Correlation Evolution. The evolution of correlation with ∆m15(B)
for all 5 spectral indexes. The red points have a probability of 5% or less to occur
randomly. The solid points are the correlations for all SNe with spectra at that
epoch while the open circles are the correlations with “Broad Line” and “Known
Peculiar” SNe removed. The shaded regions highlight the epochs of greatest corre-
lation. Similar results are seen when the spectral indexes are correlated with each
other.
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use this strong dependence on PC1 for two purposes: 1) predict light curve decline

rate (∆m15(B)) from spectral features, and 2) correct the Hubble diagram. Figures

3.8(c) and 3.8(d) show PC2 for the complete set of spectra and the set with BL and

KP SNe removed. PC2 shows much more scatter than PC1 and higher principal

components show more scatter. This confirms that the majority of variation within

our SNe sample is captured by PC1.

Principal component analysis provides a straight forward method to determine

the percentage of variation contained in each principal component. The evolution

of these percentages is shown in Figure 3.9. It can easily be seen that the first

principal component contains the most variation during the epochs that correspond

to the greatest correlation between the spectral index measurements. Within 5 days

of maximum, PC1 is the strongest and then from +18 to +22 days. There is a large

spike in the percentage of variation contained in PC1 at +21 days after maximum

but this is likely due to a small number of SNe with spectra on that day. From

Figure 3.9 it could be argued that the best epochs during which to obtain spectra

for a SNe Ia would be ± 5 days and between +18 and +22 days from maximum

with the earlier epoch range being the better of the two. The worst epochs would be

between +8 days and +14 days from maximum with day 11 being the absolute worst

since there is only a few percent difference in the amount of variation contained in

PC1 and PC2. This time also corresponds to the epochs when SNe Ia are the most

homogeneous.

3.5 Predicting Light Curve Decline Rate from Spectral Features Using WSIM

The correlations between all 5 spectral indexes and ∆m15(B) as well as their

equal weight to PC1 allow for a straight forward method to predict ∆m15(B), a light

curve characteristic, from a single spectrum or even a single spectral feature. The

procedure to predict ∆m15(B) is as follows:



75

(a) (b)

(c) (d)

Fig. 3.8. PC1 & PC2 Evolution. The evolution of the coefficients of the first and
second principle components. The colors represent the coefficients for each measure-
ment at that epoch. The plots on the left are for all spectra, and the plots on the
right are for the spectra without Broad Line SNe spectra.
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Fig. 3.9. Percent Variation Evolution. The percentage of variation contained in each
principal component as a function of epoch.
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1. Use all data to determine the Principal Components.

2. Collapse data to only the average first principal component (PC1) (averaged

over epochs within a week of Bmax).

3. Expand back into the X ′λ’s and ∆m15(B)′. This gives the relationship described

by:

∆m15(B)′ =
PC1ê∆m15(B)PC1êXλ

Xλ

′

(3.6)

4. Using Equation 3.6 to estimate ∆m15(B) from the original Xλ’s. Then the

estimates from each Xλ is averaged.

This procedure is used to estimate ∆m15(B) for each individual spectral feature

(solid colored circles) then these were averaged for each epoch (larger black open

circles). Five SNe are used as examples in Figure 3.10 to illustrate the results of the

above procedure. Steps 3 and 4 are necessary when we do not know the decline rate

for the SNe because we will not be able to calculate PC1 without it. With the data

at hand we can make a stronger estimate using multiple epochs shown by the open

circles on the left-hand side of Figure 3.10. The open black circle shows the average of

all epochs indiscriminately. Only reasonable ∆m15(B) values (0.5 ≤ ∆m15(B) ≤ 2.0)

are used to calculate the average shown by the open violet squares. The open blue-

gray diamonds are the average of reasonable values as was done for the violet square

but also, the average was restricted to epochs within 6 days of maximum and between

18 and 26 days after maximum. These three averages for all SNe are shown in Figure

3.11. An average of all epochs systematically underestimates ∆m15(B) while the

averages with cuts do better. This method can estimate ∆m15(B) but with low

precision and may be useful for SNe with very sparse data.
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Fig. 3.10. ∆m15 Prediction Examples. The simple relationship from Equation 3.6
is used to estimate ∆m15(B) for all SNe in our sample. Five examples are shown
in this figure. The filled symbols at each epoch represent the estimated ∆m15(B)
based on an individual spectral feature (magenta square - X4570, blue upside down
triangle- X5150, green triangle - X5485, orange diamond - X5750, and red circle - X6150)
while the large, black, open circle is the average of these 5 estimates for that epoch.
Three points on the far left of each plot represent the average of all data for that SNe
(black open circle), the average of all measurements with 0.5 ≤ ∆m15(B) ≤ 2.0 as
“reasonable” estimates (violet open square), and the average with the same ∆m15(B)
cuts for epochs within 6 days of maximum and epochs between 18 days and 26 days
after maximum to correspond with epochs of greatest correlations (blue-gray open
diamond).
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Fig. 3.11. ∆m15 Predictions for the Entire Dataset. Estimates of ∆m15(B) are made
here for the SNe in our sample. These estimates are made from the averages as shown
in Figure 3.10. The black open circles show the average estimate for all features over
all epochs available. A cut to “reasonable” ∆m15(B) values (0.5 ≤ ∆m15(B) ≤ 2.0)
is made and the resulting average is represented by the violet open squares. The
same ∆m15 cuts are made for the blue-gray open diamonds with additional cuts to
epochs within 6 days of maximum and between 18 and 26 days past maximum. Table
3.7 lists the estimated values alongside the ∆m15 values found in the literature.
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Table 3.7: Estimates of ∆m15(B) from WSIM and PCA

SN Branch

Subtype

〈∆m15(B)〉

(All)a

〈∆m15(B)〉 (first

cut)b

〈∆m15(B)〉 (sec-

ond cut)c

∆m15(B) Source

1990N CN 0.76(0.56) 1.14(0.15) · · · 1.138(0.050) Wang, L. et al. (2006a)
1994D CN 1.03(0.95) 1.27(0.22) 1.29(0.22) 1.558(0.050) Wang, L. et al. (2006a)
1996X CN 0.71(0.63) 1.23(0.22) 1.23(0.20) 1.299(0.009) Wang, L. et al. (2006a)
1997dt CN 1.19(0.23) 1.19(0.23) 1.16(0.32) 1.04(0.15) Jha et al. (2006a)
1998V CN 0.82(1.09) 1.16(0.16) 1.17(0.10) 1.150(0.025) Wang, L. et al. (2006a)
1998aq CN 0.51(0.60) 1.11(0.19) 1.09(0.18) 1.185(0.008) Wang, L. et al. (2006a)
1998bu CN 0.57(0.83) 1.19(0.23) 1.12(0.16) 1.014(0.008) Wang, L. et al. (2006a)
1998eg CN 1.40(1.39) 1.16(0.19) 1.15(0.14) 1.15(0.09) Jha et al. (2006a)
2000fa CN 0.77(0.62) 1.16(0.20) 1.17(0.18) 1.140(0.027) Wang, L. et al. (2006a)
2001el CN 0.80(0.55) 1.15(0.20) 1.17(0.16) 1.166(0.004) Wang, L. et al. (2006a)
2003cg CN 1.10(0.95) 1.23(0.25) 1.33(0.25) 1.25(0.05) Elias-Rosa et al. (2006)
2003du CN 0.60(0.59) 1.11(0.18) 1.09(0.18) 1.151(0.037) Wang, L. et al. (2006a)
2004S CN 1.30(2.17) 1.19(0.31) 1.17(0.28) 1.210(0.016) Wang, L. et al. (2006a)
2005cf CN 0.97(0.91) 1.22(0.22) 1.21(0.19) 1.161(0.003) Wang, L. et al. (2006a)
1981B BL 0.47(0.63) 1.07(0.23) 1.08(0.17) 1.125(0.070) Wang, L. et al. (2006a)
1984A BL 0.84(1.14) 1.13(0.27) 1.13(0.29) 1.294(0.100) Wang, L. et al. (2006a)
1991M BL 0.95(0.80) 1.33(0.43) 1.06(0.22) 1.510(0.100) Wang, L. et al. (2006a)
1992A BL 0.94(0.76) 1.21(0.23) 1.17(0.20) 1.320(0.050) Wang, L. et al. (2006a)
1997do BL 1.12(0.66) 1.17(0.18) 1.15(0.27) 1.099(0.238) Wang, L. et al. (2006a)
1998dh BL 0.72(0.62) 1.20(0.22) 1.18(0.24) 1.258(0.038) Wang, L. et al. (2006a)
1998ec BL 0.95(0.70) 1.11(0.26) 1.13(0.27) 1.074(0.028) Wang, L. et al. (2006a)
1999cc BL 0.91(2.26) 1.31(0.22) 1.29(0.20) 1.567(0.102) Wang, L. et al. (2006a)
1999cl BL 1.07(0.50) 1.22(0.28) 1.23(0.31) 1.243(0.043) Wang, L. et al. (2006a)
1999ej BL 1.36(0.40) 1.37(0.17) 1.44(0.13) 1.446(0.018) Wang, L. et al. (2006a)
1999gd BL 0.78(0.79) 1.27(0.24) 1.25(0.16) 1.170(0.041) Wang, L. et al. (2006a)
1999gh BL 0.69(0.83) 1.39(0.30) 1.33(0.21) 1.721(0.008) Wang, L. et al. (2006a)
2000B BL 0.75(1.82) 1.19(0.33) 1.32(0.09) 1.089(0.407) Wang, L. et al. (2006a)
2002bo BL 0.76(0.58) 1.15(0.27) 1.12(0.29) 1.260(0.007) Wang, L. et al. (2006a)
2002dj BL 0.79(0.70) 1.12(0.25) 1.13(0.27) 1.08(0.05) Pignata et al. (2008)
2002er BL 1.12(0.66) 1.20(0.22) 1.22(0.25) 1.301(0.010) Wang, L. et al. (2006a)
2004dt BL 0.96(0.58) 1.20(0.28) 1.19(0.28) 1.299(0.002) Wang, L. et al. (2006a)
2006X BL 0.57(0.99) 1.13(0.39) 1.12(0.36) 1.17(0.04) Wang, X. et al. (2008)
1986G CL 0.50(1.18) 1.52(0.23) 1.55(0.21) 1.643(0.070) Wang, L. et al. (2006a)
1989B CL 1.45(1.38) 1.27(0.21) 1.25(0.17) 1.262(0.070) Wang, L. et al. (2006a)
1991bg CL 0.58(0.88) 1.40(0.39) 1.56(0.34) 1.857(0.100) Wang, L. et al. (2006a)
1997cn CL 1.19(1.03) 1.48(0.47) 1.86(0.07) 1.86(0.10) Hachinger et al. (2006)



81

Table 3.7 – Continued

SN Branch

Subtype

〈∆m15(B)〉

(All)a

〈∆m15(B)〉 (first

cut)b

〈∆m15(B)〉 (sec-

ond cut)c

∆m15(B) Source

1998bp CL 1.63(0.66) 1.64(0.22) 1.67(0.20) 1.903(0.036) Wang, L. et al. (2006a)
1998de CL 1.77(0.47) 1.57(0.29) 1.57(0.29) 1.881(0.031) Wang, L. et al. (2006a)
1999by CL 1.34(0.77) 1.61(0.25) 1.63(0.21) 1.796(0.008) Wang, L. et al. (2006a)
2000cn CL 1.27(0.62) 1.36(0.27) 1.52(0.24) 1.675(0.027) Wang, L. et al. (2006a)
2000dk CL 0.81(0.75) 1.46(0.20) 1.47(0.21) 1.457(0.033) Wang, L. et al. (2006a)
2004eo CL 0.88(1.03) 1.40(0.24) 1.42(0.21) 1.417(0.005) Wang, L. et al. (2006a)
2005bl CL 1.33(1.13) 1.50(0.27) 1.51(0.25) 1.93(0.10) Taubenberger et al. (2008)
1991T SS 0.87(1.91) 1.16(0.31) 1.28(0.28) 0.940(0.050) Wang, L. et al. (2006a)
1997br SS 0.95(0.82) 1.24(0.26) 1.32(0.24) 1.141(0.011) Wang, L. et al. (2006a)
1998es SS 0.76(0.57) 1.04(0.22) 1.06(0.23) 0.745(0.013) Wang, L. et al. (2006a)
1999aa SS 0.88(0.59) 1.13(0.21) 1.17(0.22) 0.811(0.004) Wang, L. et al. (2006a)
1999ac SS 0.71(0.91) 1.20(0.21) 1.17(0.18) 1.241(0.030) Wang, L. et al. (2006a)
1999aw SS 0.47(0.77) 1.02(0.42) 0.95(0.46) 0.814(0.006) Wang, L. et al. (2006a)
1999dq SS 0.87(0.53) 1.13(0.25) 1.14(0.26) 0.973(0.013) Wang, L. et al. (2006a)
1999ee SS 0.85(0.58) 1.09(0.21) 1.06(0.15) 0.944(0.006) Wang, L. et al. (2006a)
1999gp SS 0.75(0.51) 1.07(0.17) 1.05(0.16) 1.029(0.135) Wang, L. et al. (2006a)
2000E SS 0.93(0.50) 1.16(0.18) 1.12(0.16) 1.079(0.021) Wang, L. et al. (2006a)
2000cx SS 0.65(0.88) 1.06(0.30) 1.07(0.32) 0.971(0.006) Wang, L. et al. (2006a)
2001V SS 0.66(1.07) 1.09(0.21) 1.05(0.18) 0.743(0.035) Wang, L. et al. (2006a)
2005cg SS 0.63(0.65) 1.11(0.14) 1.02(0.06) 0.94(0.05) Quimby et al. (2006)
2005hj SS 0.94(0.61) 1.16(0.29) 1.15(0.30) 0.74(0.17) Quimby et al. (2007)
2006gz SS 1.07(2.01) 1.12(0.34) · · · 0.69(0.04) Hicken et al. (2007)
2001ay KP 1.23(0.92) 1.32(0.46) 1.32(0.46) 0.543(0.006) Wang, L. et al. (2006a)
2002cx KP 1.41(1.05) 1.41(0.32) 1.52(0.32) 1.145(0.016) Wang, L. et al. (2006a)
2005hk KP 1.01(1.16) 1.52(0.28) 1.64(0.21) 1.56(0.09) Phillips et al. (2007)
1983G UK 0.84(0.88) 1.18(0.36) 1.29(0.47) 1.37(0.01) Hachinger et al. (2006)
1990O UK 0.30(1.47) 1.11(0.47) 1.20(0.61) 0.96(0.10) Hamuy et al. (1996b)
1991S UK 1.03(2.20) 1.13(0.32) · · · 1.04(0.10) Hamuy et al. (1996b)
1994Q UK 0.98(1.67) 1.39(0.22) · · · 0.8750( · · · ) Bronder et al. (2008) d

1994S UK 0.80(0.35) 0.95(0.15) 0.95(0.15) 1.10(0.10) Blondin et al. (2006)
1997I UK 0.40(0.62) 1.01(0.54) 1.01(0.54) 1.137(0.026) Knop et al. (2003)d

1997bp UK 0.71(1.17) 1.11(0.33) 1.14(0.43) 1.231(0.013) Wang, L. et al. (2006a)
1997bq UK 0.59(2.11) 1.15(0.00) 1.15(0.00) 1.174(0.022) Wang, L. et al. (2006a)
1998ab UK 0.60(0.80) 1.12(0.22) 1.12(0.23) 1.053(0.009) Wang, L. et al. (2006a)
1998dk UK 0.74(0.98) 1.13(0.24) 1.04(0.23) 1.344(0.077) Wang, L. et al. (2006a)

dfrom stretch using the conversion equation found in Perlmutter et al. (1997)
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Table 3.7 – Continued

SN Branch

Subtype

〈∆m15(B)〉

(All)a

〈∆m15(B)〉 (first

cut)b

〈∆m15(B)〉 (sec-

ond cut)c

∆m15(B) Source

1998dm UK 0.83(0.52) 1.08(0.20) 1.07(0.21) 0.983(0.339) Wang, L. et al. (2006a)
1998dx UK 1.23(0.22) 1.23(0.22) 1.23(0.22) 1.55( · · · ) Reindl et al. (2005)
1999X UK 1.09(1.14) 1.29(0.25) 1.12(0.08) 1.377(0.058) Wang, L. et al. (2006a)
1999ek UK 1.27(0.14) 1.27(0.14) 1.27(0.14) 1.21( · · · ) Hicken et al. (2009a)
2000cf UK 1.26(0.19) 1.26(0.19) 1.27(0.11) 1.364(0.043) Wang, L. et al. (2006a)
2001eh UK 1.24(0.32) 1.24(0.32) 1.24(0.32) 0.830(0.104) Foley et al. (2008)
2002el UK 1.21(0.14) 1.21(0.14) 1.21(0.14) 1.424(0.018) Wang, L. et al. (2006a)
2002ck UK 1.15(0.12) 1.15(0.12) 1.15(0.12) 1.120(0.024) Blondin et al. (2011)e

2002hd UK 1.42(0.25) 1.42(0.25) 1.42(0.25) 1.217(0.076) Blondin et al. (2011)e

2002hu UK 1.11(0.22) 1.11(0.22) 1.11(0.22) 1.04(0.07) Hicken et al. (2009a)
2002jy UK 1.03(0.09) 1.03(0.09) 1.03(0.09) 0.990(0.035) Blondin et al. (2011)e

2002kf UK 1.19(0.16) 1.19(0.16) 1.19(0.16) 1.355(0.031) Blondin et al. (2011)e

2003ch UK 1.22(0.17) 1.22(0.17) 1.22(0.17) 1.561(0.094) Blondin et al. (2011)e

2003it UK 1.19(0.10) 1.19(0.10) 1.19(0.10) 1.386(0.049) Blondin et al. (2011)e

2003iv UK 1.39(0.26) 1.36(0.21) 1.36(0.21) 1.417(0.060) Blondin et al. (2011)e

2003U UK 1.24(0.14) 1.24(0.14) 1.24(0.14) 1.548(0.081) Blondin et al. (2011)e

2004as UK 1.15(0.37) 1.15(0.37) 1.15(0.37) 1.093(0.034) Blondin et al. (2011)e

2004ef UK 1.45(0.66) 1.17(0.22) 1.17(0.22) 1.496(0.003) Wang, L. et al. (2006a)
2005df UK 1.15(1.71 1.16(0.23) 1.13(0.20) 1.116(0.013) Wang, L. et al. (2006a)
2005ki UK 1.18(0.15) 1.18(0.15) 1.18(0.15) 1.478(0.025) Blondin et al. (2011)e

2006ax UK 1.09(0.12) 1.09(0.12) 1.09(0.12) 1.08(0.05) Hicken et al. (2009a)
2006gj UK 1.49(0.18) 1.49(0.18) 1.49(0.18) 1.39(0.17) Hicken et al. (2009a)
2006sr UK 1.15(0.14) 1.15(0.14) 1.15(0.14) 1.26(0.09) Hicken et al. (2009a)
2007ca UK 1.08(0.11) 1.08(0.11) 1.08(0.11) 1.045(0.020) Blondin et al. (2011)e

2008bf UK 1.11(0.13) 1.11(0.13) 1.11(0.13) 1.01( · · · ) Hicken et al. (2009a)

ecalculated from SALT2 x1
aThe average of all ∆m15(B) estimates over all spectral indexes over all epochs.
bThe average of ∆m15(B) estimates were made over all spectral indexes over all epochs with a spectrum including only reasonable ∆m15(B)
values (0.5 ≤ ∆m15(B) ≤ 2.0).
cThe average of ∆m15(B) estimates were made over all spectral indexes from epochs within 6 days of maximum and from 18 to 26 days after
maximum including only reasonable ∆m15(B) values (0.5 ≤ ∆m15(B) ≤ 2.0).
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4. FUTURE WORK

4.1 WSIM in NIR and UV Spectra

One of the most straight forward extensions of this work would be to develop

the WSIM for other spectral ranges. In particular, the near-infrared (NIR) SNe Ia

spectra have been shown to be particularly useful by Marion et al. (2009). Results

using the pseudo-equivalent width measurements have shown a correlation of NIR

features with ∆m15. The initial application of WSIM, however did not show a similar

correlation. This may be due in part to different normalization and error corrections

required for the new spectral range. New Monte Carlo simulations need to be run

in order to characterize the effects of noise on WSIM at these wavelengths. Another

area of interest for SNe Ia spectra is the ultra-violet (UV) range. This range is

particularly useful for distant supernovae because the UV spectra will be redshifted

into the visible range. Characterizing UV spectra for nearby SNe will be crucial in

understanding the spectra of distant SNe (see, Foley et al. 2008).

4.2 Flux Ratios Applied to Wavelet Decomposed Spectra

Bailey et al. (2009) developed a systematic test of spectral flux ratios. They

were successful in finding ratios that correlated well for their sample and reduced the

residual of SNe Ia peak magnitudes. It was suggested by Blondin et al. (2011) that

the WSIM should be used in conjunction with Bailey’s method. The advantage of

using WSIM for Bailey’s method would be that the affects from noise and the overall

shape of the spectra on the flux ratios would be reduced.
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4.3 Photometric Redshifts and Template Spectra

One of the main initial motivations for developing WSIM was to build an al-

gorithm to generate template spectra for the testing the method of determining

redshift from photometric data (photo-z). There have been two proposed methods

of determining photometric redshifts for SNe Ia (Asztalos et al. 2010; Wang, Y. 2007;

Wang, Y. et al. 2007). The proposed template generator will use the PCA data from

WSIM as a lever by which new heterogeneous spectra can be generated by a small

number of parameters.

4.4 WSIM Applied to K-corrections

The ability to separate spectra into different wavelet scales has the potential to

be useful to characterize not only the scales relevant to spectral features but it also

gives the advantage of being able to characterize the large scale structure of the

spectra. Some work in this direction has been pursued by Arsenijevic (2011) where

the Daubechies wavelet coefficient for scale 15 was correlated to SALT2 color, c.

Another possibility would be to remove the scales related to the spectral features

and test the effects of spectral features on the calculation of K corrections (Hsiao et

al. 2007; Nugent et al. 2002).
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5. SUMMARY AND DISCUSSION

The study of Type Ia supernovae has been crucial in our understanding of the

universe as a whole and was the tool that lead to the concept of dark energy. SNe Ia

are uniformly bright which makes them ideal cosmological probes. Theory explains

this as being due to the uniform composition and mass of their progenitors. The

progenitor of a SN Ia is thought to be a C-O white dwarf which accretes matter

from a companion until, as it approaches the Chandrasakar limit (∼ 1.4M�), a

runaway thermonuclear explosion takes place and the WD is completely obliterated.

An alternate theory says that two WDs coalesce and overcome the Chandrasakar

limit. Whatever the progenitor is, it has been observed that SNe Ia are a highly

homogeneous set of events.

However, it has been seen that SNe Ia do show variations that can be corrected

for, making them a ‘standardizable candle.’ Currently, SNe Ia can be corrected

for the variations related to decline rate (parameterized as ∆m15 in this work) and

color. It has also been shown that the peak magnitude correlates with host galaxy

properties, namely morphology, age, and possibly metallicity. Some of this work is

directed towards expanding the search for spectral luminosity indicators using a new

technique of measuring line strengths, the Wavelet Spectral Index Method (WSIM).

Previous work has shown relationships between peak magnitude and ratios of spectral

flux or pseudo-equivalent width. The correlations that are found center around the

two Si II features at 5750 Å and 6150 Å.

In this work, WSIM has been introduced using à trous wavelet decomposition.

The power of the Wavelet Spectral Index Method is in the fact that it decomposes

the spectra into different wavelet scales. The smallest scales correspond to electronic

noise and the largest scales correspond to the overall shape of the spectra leaving the

medium scales to contain the most information about the spectral features them-

selves. WSIM can use lower resolution spectra since all spectra are set to 5 Å bins,
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in this work spectra with resolution as low as 8–9 Å has been used alongside spectra

with ¡ 1 Å resolution. Not only can WSIM isolate the important scales from the

noise, it is also able to use the noise scales to correct for bias in the measurements.

And the noise that cannot be corrected for can still be easily characterized. Another

advantage of the WSIM over previous work that has been done using the pseudo-

equivalent widths is that the wavelet spectral indexes are normalized in such a way

that the features can be measured from an objective zero level without having to

approximate a continuum.

Previous work which classified SNe Ia into separate subgroups using pseudo-

equivalent width has been reproduced using the WSIM. It is clearly shown that the

sub-groupings are not distinct but part of a continuous variation among SNe Ia. The

wavelet spectral indexes were also used to trace the evolution of spectral features dur-

ing the course of the weeks surrounding the light curve maximum. The correlations

between features are seen to be significant within a week of maximum and from 2–3

weeks post-maximum (more data needs to be collected to better establish the late

time correlations). These correlations are seen between spectral indexes and other

spectral indexes and also between spectral indexes and ∆m15. The X5750 corresponds

possibly to two different absorption features over the course of the evolution, Si II

near maximum and Na ID 2–3 weeks after maximum. This change is due most likely

to a change in the abundance of one or both of the ions or a change in the excitation

of these two ions. Si II anti-correlates with ∆m15 and Na ID correlates with ∆m15.

The late time identification of this line has been uncertain but the strong correlation

with ∆m15 shows that this feature should provide clues to the underlying physics of

the explosion.

These correlations were exploited using principal components analysis (PCA).

It is found that the most variation is contained in the first principal componant

(PC1) near maximum peaking at B-band maximum and a few days past maximum.

A secondary maximum in the variation contained in PC1 occurs 2–3 weeks past
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maximum. From this result the best time to obtain a spectrum of a SNe Ia is within

5 days of maximum and from +18 days to +22 days from maximum, with the earlier

epochs being the overall best epochs. The worst epochs to obtain a spectrum would

be +11 days after maximum (±3 days). During the best epochs only 2 PCs are

needed to describe ∼80–90% of the variation and ∼4 PCs are necessary to describe

the same percentage of the variation on the worst epochs.

Near maximum, all spectral indexes and ∆m15 are shown to contribute equally to

PC1. The PCA results allow the decline rate (∆m15) to be estimated from a single

spectra, and even a single spectral feature through the use of PC1. The statistics on

which these predictions are based are small and leave much room for improvement

but this could be a useful tool in understanding the relationship between spectra and

progenitors as well as generating heterogeneous spectral templates. This process

should be reversible so that a ∆m15 value could be used to estimate the spectral

indexes. It is one of the future goals of this work to develop such an algorithm to

generate a set of heterogeneous template spectra in order to test photometric redshift

methods for SNe Ia.

The future of the wavelet spectral index method as a tool for studying Type

Ia supernovae looks promising. The recent publication of new data could help to

given these calculations more statistically solid foundations. It is the hope of the

author to develop a publicly available GUI so that the community at large will

be able to perform the WSIM calculations. Possible avenues of future work include

using principal components to develop heterogeneous spectral templates, and develop

new spectral luminosity indicators to improve SNe Ia as standardizable candles.

The WSIM could easily be extended beyond the optical portion of SNe spectra,

particularly into the NIR and UV. Other optical features could be added to the set

of spectral indexes also. Building off previous work, flux ratios could be tested on

decomposed spectra similar to the method of Bailey et al. (2009) but now without

the continuum-like background after wavelet decomposition has been performed. The
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ability to separate out the continuum-like background wavelet scales could be used

to constrain the effects of spectral features on K-corrections. The higher wavelet

scales have also been shown to correlate with SNe colors (Arsenijevic 2011). And

the principal components analysis could be extended to include other SNe properties

such as host galaxy morphology as well as more light curve measurements. Overall,

the work has only begun for the WSIM.
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Shapley, H., & Hearn, A. B. 1952, in Proc. Natl. Acad. Sci., 38, 839

Shaw, R. L. 1979, A&A, 76, 188

Shen, K. J., Kasen, D., Weinberg, N. N., Bildsten, L., & Scannapieco, E. 2010, ApJ,

715, 767

Shensa, M. J. 1992, Proc. IEEE Transactions on Signal Processing, 40, 2464

Silverman, J. M., Ganeshalingam, M., Li, W., Filippenko, A. V., Miller, A. A., et al.

2011, MNRAS, 410, 585



103
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APPENDIX A

INTRODUCTION TO PCA AND ICA

A.1 Principal Components Analysis

Principal Components Analysis (PCA) is a statistical tool to characterize mul-

tidimensional data. PCA accomplishes this by transforming the data into a new,

uncorrelated coordinate system. In order to make the appropriate transformation,

PCA seeks to find correlations between measured variables. This also makes PCA an

ideal tool for reducing the dimensionality of data without reducing their variation.

The transformation matrix is calculated using the correlation matrix.

The original data can now be transformed into the new, uncorrelated variables

by the linear transformation given in Equation A.1:

−→y = P−→x (A.1)

Where −→x is the series of variable values for one object expressed as a vector, P is the

transformation matrix, and −→y is the data expressed in the new coordinate system,

as values in the principal components. Or, to express it a little differently:

yi =
n∑
j=0

pijxj (A.2)
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The resultant factor yi is one of the principal components, and the principal compo-

nent with the largest variance is called the first principal component (PC1).

To make sure that one parameter does not dominate the analysis due to a simple

difference in magnitude, all the data are standardized. Standardization is a process

where the data are first mean subtracted (giving a zero mean) and then normalized

by the standard deviation giving a variance of 1. Now all the data is equally weighted

regardless of the units being used. A covariance matrix, Cx is then constructed for

all the data vectors. It is the unit length eigenvectors of Cx that become the weight

vectors for each principal component and indicate the direction of each component.

The eigenvalues of Cx (d1, d2, . . . , dn) are measures of the amount of variance char-

acterized by each principal components. Which means that p1j is the unit vector

in the direction of the first principal component for all of the data vectors −→x . An

example of what this looks like in three dimensions is given in Figure A.1 showing

the principal component of two spectral indexes and ∆m15 from the data discussed

earlier in the text.

The results of PCA can be used to reduce the dimensionality of the data. To

do this only the necessary principal components, yi, are used and Equation A.1 is

solved for −→x as in Equation A.3.

−→xj =
m∑
i=0

yipji (A.3)

where m is the total number of principal components used to reconstruct the data.
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Fig. A.1. Here is an example of PCA being applied two three variables, ∆m15,
X5750, and X6150. The first principal component clearly points along the direction of
greatest variance.
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For more detailed mathematical treatment of PCA see Hyvärinen, Karhunen, &

Oja (2001), Mardia et al. (1979), and Murtagh & Heck (1987). For some applications

to other astronomical data sets see Boroson & Green (1992),Francis et al. (1992),

Francis & Wills (1999), Cormier & Davis (2011); Davis et al. (2007); James et al.

(2006), Mittaz et al. (1990), Whitney (1983).
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