
 

 

 

OVER- AND UNDER-DISPERSED CRASH DATA: COMPARING THE 

CONWAY-MAXWELL-POISSON AND DOUBLE-POISSON DISTRIBUTIONS 

 

 

A Thesis  

by 

YAOTIAN ZOU 

 

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

August 2012 

 

 

Major Subject: Civil Engineering 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Over- and Under-dispersed Crash Data: Comparing the Conway-Maxwell-Poisson and 

Double-Poisson Distributions 

Copyright 2012 Yaotian Zou 



 

 

OVER- AND UNDER-DISPERSED CRASH DATA: COMPARING THE 

CONWAY-MAXWELL-POISSON AND DOUBLE-POISSON DISTRIBUTIONS 

 

A Thesis 

by 

YAOTIAN ZOU 

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  Dominique Lord 

Committee Members, Yunlong Zhang 

 Thomas E. Wehrly  

Head of Department, John Niedzwecki 

 

August 2012 

 

Major Subject: Civil Engineering 

 



iii 
 

ABSTRACT 

 

Over- and Under-dispersed Crash Data: Comparing the Conway-Maxwell-Poisson  

and Double-Poisson Distributions. (August 2012) 

Yaotian Zou, B.E., Southeast University 

Chair of Advisory Committee: Dr. Dominique Lord 

 

In traffic safety analysis, a large number of distributions have been proposed to 

analyze motor vehicle crashes. Among those distributions, the traditional Poisson and 

Negative Binomial (NB) distributions have been the most commonly used. Although the 

Poisson and NB models possess desirable statistical properties, their application on 

modeling motor vehicle crashes are associated with limitations. In practice, traffic crash 

data are often over-dispersed. On rare occasions, they have shown to be under-dispersed. 

The over-dispersed and under-dispersed data can lead to the inconsistent standard errors 

of parameter estimates using the traditional Poisson distribution. Although the NB has 

been found to be able to model over-dispersed data, it cannot handle under-dispersed 

data. Among those distributions proposed to handle over-dispersed and under-dispersed 

datasets, the Conway-Maxwell-Poisson (COM-Poisson) and double Poisson (DP) 

distributions are particularly noteworthy. The DP distribution and its generalized linear 

model (GLM) framework has seldom been investigated and applied since its first 

introduction 25 years ago. 
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The objectives of this study are to: 1) examine the applicability of the DP 

distribution and its regression model for analyzing crash data characterized by over- and 

under-dispersion, and 2) compare the performances of the DP distribution and DP GLM 

with those of the COM-Poisson distribution and COM-Poisson GLM in terms of 

goodness-of-fit (GOF) and theoretical soundness. All the DP GLMs in this study were 

developed based on the approximate probability mass function (PMF) of the DP 

distribution.  

Based on the simulated data, it was found that the COM-Poisson distribution 

performed better than the DP distribution for all nine mean-dispersion scenarios and that 

the DP distribution worked better for high mean scenarios independent of the type of 

dispersion. Using two over-dispersed empirical datasets, the results demonstrated that 

the DP GLM fitted the over-dispersed data almost the same as the NB model and COM-

Poisson GLM. With the use of the under-dispersed empirical crash data, it was found 

that the overall performance of the DP GLM was much better than that of the COM-

Poisson GLM in handling the under-dispersed crash data. Furthermore, it was found that 

the mathematics to manipulate the DP GLM was much easier than for the COM-Poisson 

GLM and that the DP GLM always gave smaller standard errors for the estimated 

coefficients.  
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1. INTRODUCTION 

 

Traffic crashes have been huge negative impacts on the human health and 

economic development. Much time and effort have been devoted by researchers to 

pinpoint factors that influence traffic crashes and propose countermeasures to reduce the 

crash occurrences. However, due to the limited access of individual driver’s information, 

it is difficult to identify factors influencing the number and severity of crashes and 

evaluate their effects on traffic safety. Instead of focusing on the individual information, 

most researchers approach the crash cause study from a long-term statistical view. They 

have been trying to associate the factors of interest with the frequency of crashes that 

occurs in a given space (roadway or intersection) and time period (Lord and Mannering, 

2010). Therefore, statistical models have been widely used to analyze the relationship 

between traffic crashes and factors such as road section geometric design, traffic flow, 

weather, etc. The most important application of those statistical models established on 

the historical data lies in its capability of predicting the number of crashes on the newly 

built or upgraded roads (Lord, 2000).  

The Poisson distribution is commonly used to model count data. In traffic safety 

analysis, it has been frequently used to model the number of crashes for various entities 

such as roadway segments and intersections over a given time period. However, the 

Poisson distribution has only one parameter which requires the variance equals the mean  

____________ 

This thesis follows the style of Accident Analysis and Prevention. 
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and it does not allow for the flexibility of variance varying independently of the mean.  

In practice, traffic crash data are often over-dispersed (i.e., the sample variance is larger 

than the sample mean) (Lord et al. 2005). On rare occasions they have been shown to be 

under-dispersed (i.e., the sample variance is smaller than the sample mean) and this 

often happens when the sample mean value is low (Lord and Mannering, 2010). The 

over-dispersed and under-dispersed data would lead to the inconsistent standard errors of 

parameter estimates using the traditional Poisson distribution (Cameron and Trivedi, 

1998). 

In light of the limitations of the traditional Poisson models and the wide presence 

of under- and over-dispersion in traffic crash data, it is important for researchers to 

examine the application of innovative statistical methods for analyzing crash data. In 

order to handle the over-dispersion, a large number of statistical methods have been 

proposed ranging from the most commonly used model mixed-Poisson (such as the 

negative binomial or NB) to those most recent models such as the neural and Bayesian 

neural networks, latent class or mixture model, gamma count model and support vector 

machine model (Abdelwahab and Abdel-Aty, 2002; Xie et al., 2007; Depaire et al., 2008; 

Park and Lord, 2008; Oh et al., 2006; Li et al., 2008). The NB is the most widely used 

model because it has closed form equation and the mathematical relationship between 

the mean and the variance is very easy to manipulate (Hauer, 1997). It should be noted 

that traditional distributions such as the Poisson or NB cannot handle under-dispersion. 

To handle the data characterized by under-dispersion, researchers proposed 

alternative models such as the weighed Poisson (Castillo and Perezcasany, 2005), the 
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generalized Poisson models (Consul, 1989) and the gamma count distribution 

(Winkelmann, 1995). However, these models suffered from their theoretical or logical 

soundness. In the generalized Poisson model, the bounded dispersion parameter when 

under-dispersion occurs greatly diminishes its applicability to count data (Famoye, 1993). 

As for the gamma distribution, two parameterizations have been proposed by researchers. 

One parameterization is based on the continuous gamma density function (Daniels et al., 

2010), which does not allow the count to be equal to zero. Based on gamma waiting time 

distribution, another parameterization assumes that observations are not independent 

where the observation for time t-1 would affect the observation for time t (Winkelmann, 

1995; Cameron, 1998). This would become unrealistic if the time gap between the two 

observations is large. 

Among the distributions that have been examined in the literature, two 

distributions that can handle both under- and over-dispersion are particularly noteworthy. 

One is the Conway-Maxwell-Poisson (COM-Poisson) (Conway and Maxwell, 1962; 

Shmueli, 2005; Kadane et al., 2006) and the other is the Double-Poisson (DP) (Efron, 

1986). Albeit first introduced in 1962, the statistical properties of the COM-Poisson have 

not been extensively investigated until recently the COM-Poisson distribution and its 

generalized regression model (GLM) have been found to be very flexible to handle count 

data (Guikema and Coffelt, 2008; Geedipally, 2008; Sellers et al., 2011; Francis et al. 

2012). As for the DP, its distribution has seldom been investigated and applied since its 

first introduction 25 years ago. 
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1.1 Problem Statement 

In traffic safety analysis, a large number of distributions have been proposed to 

analyze the number of crashes on various entities, such as roadway segments and 

intersections, for a given time period. In practice, traffic crash data are often over-

dispersed. On rare occasions, they have shown to be under-dispersed. The over-

dispersed and under-dispersed data can lead to the inconsistent standard errors of 

parameter estimates using the traditional Poisson distribution. Although the NB 

distribution has been found to be able to model over-dispersed data, it cannot handle 

under-dispersed data.  

Among the distributions that can handle under-dispersed data, two distributions are 

particularly noteworthy. They are the COM-Poisson and DP, both of which can handle 

data characterized by under-, equi- and over-dispersion. The COM-Poisson distribution 

and COM-Poisson GLM have been found to be very flexible to handle count data. While 

for the DP, its distribution has seldom been investigated and applied since its first 

introduction 25 years ago.  

Therefore, it is of interest to examine the applicability of the DP distribution and 

its regression model for analyzing crash data characterized by over- and under-

dispersion. For a new distribution like the DP, it is important to first evaluate the 

distribution before dealing with the regression model. So there is a need to compare the 

performances of the DP distribution and DP GLM with those of the COM-Poisson 

distribution and COM-Poisson GLM in terms of goodness-of-fit (GOF) and theoretical 

soundness. 
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1.2 Study Objectives 

This study focuses on the applicability of different distributions and their GLMs 

for analyzing the crash data characterized by under- and over-dispersion. Specifically, 

the DP and COM-Poisson models will be further explored and compared in terms of 

their potential capability of handling both under- and over-dispersed data. 

 Evaluating of the Performance of the DP Distribution  

The performance of the DP distribution will be assessed and compared to other  

distributions with no covariates considered. Nine scenarios of simulated data 

with three means (high, medium and low) and three levels of dispersion (under-, 

equi-, and over- dispersion) will be examined in this study. The simulated data 

will be generated by different distributions. Comparisons on GOF statistics of 

simulated data fitted by the DP and COM-Poisson will be conducted. The GOF 

statistics of simulated data fitted by other distributions such as the Poisson, NB, 

and gamma count model will also be given as a reference. 

 

 Comparing the GLM Performance for Over-dispersed Data 

The performance of the DP GLM in handling over-dispersed crash data will be 

compared with that of the NB model and COM-Poisson GLM. Two observed 

over-dispersed datasets along with two different and commonly used link 

functions will be used to establish the GLMs in order to eliminate the potential 

bias of using only one dataset or one link function.  
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 Comparing the GLM Performance for Under-dispersed Data 

The performance of the DP GLM in handling under-dispersed crash data will be 

compared with that of the NB model and COM-Poisson GLM. Pairwise 

comparisons will be first conducted between the DP GLM with other two models. 

Then an overall comparison among the three models will be provided. 

 

1.3 Outline of the Thesis 

The outline of this thesis is as follows: 

Section 2 provides an overview on the statistical models proposed to handle the 

over-and under-dispersion of traffic crash data. The limitation of each model will also be 

discussed. The COM-Poisson and DP models will be mainly introduced at the end of this 

section. 

Section 3 evaluates the performance of the DP distribution using nine mean-

dispersion scenarios of simulated data. The performance of the DP distribution is 

compared to that of the COM-Poisson distribution. The GOF statistics of simulated data 

fitted by other distributions such as the Poisson, NB, and gamma count are also given as 

a reference. 

Section 4 summarizes the performance of the DP GLM in analyzing the traffic 

crash data characterized by over-dispersion. The results on the NB model and COM-

Poisson GLM are also presented. This section further investigates the effects of the key 

covariates and conducts the residual checking and the variance analysis. At the end of 
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this section, the use of the normalizing constant in the probability mass function of the 

DP GLM will be discussed.  

Section 5 investigates the performance of the DP GLM in analyzing the under-

dispersed traffic crash data. The comparison results with the COM-Poisson GLM and 

gamma count model are also summarized. Further interpretation on the effects of key 

covariates is also given.  

Section 6 summarizes the main findings of this research. It also documents future 

work directions at the end.  
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2. BACKGROUND 

 

This section provides an overview on the statistical models proposed to handle the 

over- and under-dispersion of traffic crash data. The characterization of each model and 

their corresponding GLM framework will be described. The limitation of each model 

will also be discussed. The COM-Poisson and DP models will be mainly introduced at 

the end of this section.  

 

2.1 Poisson Model 

The Poisson distribution is a discrete probability distribution to describe the 

number of occurrences in a given interval of time or space. The average rate of the 

occurrences is known and the occurrence of one event is independent of the occurrence 

of others. Crashes are mostly characterized by rareness, discreteness and randomness. 

Lord et al. (2005) indicated that crashes can be best characterized as Bernoulli trails with 

low probability and large number, which makes the number of crashes can be 

characterized as Poisson trials. The Poisson distribution is frequently used to model the 

crash data characterized by the variance increasing with the increase of the mean.  

The probability mass function (PMF) of the Poisson distribution is: 

exp( )
( )

!

iy

i i
i i

i

P y
y

 





 

(2.1) 

where iy
 
is the number of crashes per year for site i, and i  

is the mean crashes per year. 
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The mean and variance of the Poisson distribution is given by: 

( ) ( ) iE Y Var Y  
 

(2.2) 

For the Poisson regression model, the expected number of crashes per year 
i  is 

linked to the explanatory variables 
ix  such as the traffic flows and geometric design 

factors by the following link function: 

exp( )i ix 
 

(2.3) 

where the vector   is the coefficients to be estimated. 

The limitation of the Poisson model lies in that it requires the variance is equal to 

the mean. In practice, traffic crash data are often over-dispersed which means the 

variance is larger than the mean. The over-dispersion arises from the unobserved 

differences across sites (Washington et al., 2003) and unmeasured uncertainties 

associated with the observed or unobservable variables (Lord and Park, 2008). On rare 

occasions the crash data have been shown to be under-dispersed and this often happens 

when the sample mean value is low (Lord and Mannering, 2010). The over-dispersed 

and under-dispersed data would lead to the inconsistent standard errors for the parameter 

estimates using the traditional Poisson distribution (Cameron and Trivedi, 1998). 

 

2.2 Negative Binomial Model 

The NB (or Poisson-gamma) is the most widely used model in analyzing crash 

data. It has been found to serve as a good alternative to handle over-dispersion and the 

mathematics to manipulate the relationship between the mean and variance is relatively 
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simple (Hauer, 1997). Furthermore, its regression model has been well incorporated in 

many statistical software such as SAS (SAS Institute Inc., 2002) and R (R Development 

Core Team, 2006).  

The NB distribution was first used to model the random number of successes   

until a predefined number of   of failures based on a sequence of Bernoulli trials. The 

PMF of the NB distribution is: 

1
( ; , ) (1 ) ( ) ; 0,1,2,...,0 1r y

y r
P Y y r p p p r p

y

  
      

   

(2.4) 

The parameter   is the probability of success in each trial and it is calculated as: 

r
p

r


  
(2.5) 

where,  

 = E(Y) = mean of the observations;  

r = inverse of the dispersion parameter alpha (i.e. 1/r  ). 

When the parameter r  is extended to a real, positive number, its PMF can be 

rewritten using the gamma function: 

( )
( ; , ) (1 ) ( ) ; 0,0 1

( ) !

r yr y
P Y y r p p p r p

r y

 
     

   
(2.6) 

And it can be shown (Casella and Berger, 1990): 

2

2

1
( )

(1 )

p
Var Y r

p r
   

  
(2.7) 

Based on the Equations (2.4) and (2.5), the PMF of the NB distribution can be re-

parameterized as: 
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( )
( ; , ) ( ) ( ) ; 0,0 1

( ) ( 1)

r yr y r
P Y y r r p

r y r r




 

 
    

      
   (2.8) 

This PMF shown in Equation (2.8) has been frequently used to model vehicle 

crash count data.  

In the NB regression model,   is linked to the covariates: 

exp( )i ix 
 (2.9) 

The NB distribution is also known as the Poisson-gamma distribution. The 

Poisson-gamma distribution is based on another parameterization in which the number 

of crashes iY  is Poisson distributed with its conditioned  mean i : 

( ), 1,2,...,i i iY Po i n  
 

(2.10) 

The mean of the crashes is given by: 

exp( )i i i  
 

(2.11) 

The exp( )i  is assumed to follow a gamma distribution for all site i: 

exp( ) ( , )i gamma r r 
 

(2.12) 

Despite of its popularity in traffic crash data analysis, the NB models suffers 

limitation in fitting data characterized by under-dispersion. The NB could theoretically 

handle under-dispersion by setting its shape parameter as negative 

(
2( ) ( )Var Y      ). However, doing that would make the conditioned mean of the 

Poisson no longer gamma distributed and lead to a misspecification of its PDF (Clark 

and Perry, 1989; Saha and Paul, 2005) and unreliable parameter estimates (Lord et al, 

2010). 
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2.3 Gamma Count Model 

The gamma count model was proposed by Winkelmann (1995) to model over- and 

under-dispersed count data. Oh et al. (2006) applied the gamma count model to analyze 

rail-highway crossing crashes and the data were found to be under-dispersed. The 

gamma count model for count data is given as: 

Pr( ) ( , ) ( , )i i iy j Gamma j Gamma j       
 (2.13) 

where exp( )i iX   and 
i  is the mean of the crashes.  

( , ) 1,iGamma j   if 0,j   (2.14) 

1

0

1
( , ) ,

( )

i

j u

iGamma j u e du
j



 


 
  if 0,j   (2.15) 

where   is the dispersion parameter. If 1  , there is over-dispersion, if 1   there is 

under-dispersion, and if 1  , there is equi-dispersion and the gamma count model 

collapses to the Poisson model.  

The conditional mean function is given by: 

1

[ ] ( , )i i i

i

E y X jGamma j 





 

(2.16) 

The cumulative distribution function is given by: 

1

0

1

0

( , ) , 0, 0
( )

1
, 0,1,...

( )

( , )

i

i

T j
uji

i i

T

j u

i

F T u e du
j

u e du j
j

Gamma j T









   





 



 

  


 








 

(2.17) 
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Even though the gamma count model can provide a good fit for the crash data, its 

assumption has limited its applicability. The gamma count model assumes that 

observations are not independent where the observation for time t-1 would affect the 

observation for time t (Winkelmann, 1995; Cameron, 1998). This would become 

unrealistic if the time gap between the two observations is large. For instance, a crash 

that occurred at time t cannot directly influence another one that will occur six months 

after the first event. 

 

2.4 The Conway-Maxwell-Poisson Model 

In order to model queues and service rates, Conway and Maxwell (1962) first 

introduced the COM-Poisson distribution as a generation of the Poisson distribution. 

However, this distribution was not widely used until Shmueli et al. (2005) further 

examined its statistical and probabilistic properties. Kadane et al. (2006) developed the 

conjugate distributions for the parameters of the COM-Poisson distribution. The PMF of 

the COM-Poisson for the discrete count can be given by Equations (2.18) and (2.19): 
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(2.19) 

For 0   and 0  . Where y is a discrete count;   is a centering parameter which is 

often approximately equal to the mean;   is the shape parameter of the COM-Poisson 

distribution. The COM-Poisson distribution allows for both under-dispersed ( 1  ) and 

over-dispersed ( 1  ) data, and it is a generalization of some well-known distributions. 
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In the formulation, setting 0  , 1   yields the geometric distribution; v  yields 

the Bernoulli distribution in the limit; and 1   yields the Poisson distribution. The 

flexibility of the COM-Poisson distribution greatly expands its use for count data. 

The first two central moments of the COM-Poisson distribution are given by 

Equations (2.20) and (2.21): 

log
[ ]
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Z
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


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  

(2.20) 
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(2.21) 

The COM-Poisson distribution does not have closed-form expressions for its 

moments in terms of the parameters   and  . The approximation of the mean can be 

achieved by different approaches including (i) using the mode, (ii) including only the 

first few terms of Z when   is large, (iii) bounding E[Y] when   is small, and (iv) 

using an asymptotic expression for Z in Equation (2.18). Using the last approach, 

Shmueli et al. (2005) derived the approximation in Equations (2.22) and (2.23). 

1/ 1 1
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(2.23) 

When   is close to one, the centering parameter   is approximately equal to the 

mean. When   gets small,   differs substantially form the mean. For the over-dispersed 

data,   would be expected to be small and thus a COM-Poisson GLM based on the 
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original COM-Poisson formulation would be very difficult to interpret and use for the 

over-dispersed data. 

In order to circumvent the problem, Guikema and Coffelt (2008) proposed a re-

parameterization of the COM-Poisson distribution to provide a clear centering parameter. 

They substituted 
1/v   and then the new formulation of the COM-Poisson distribution 

is summarized in Equations (2.24) and (2.25): 
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(2.25) 

Correspondingly, the mean and variance of Y are given by Equations (2.26) and 

(2.27) in terms of the new information and the asymptotic approximations of the mean 

and variance of Y are given by Equations (2.28) and (2.29): 
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(2.27) 

[ ] 1/ 2 1/ 2E Y v    (2.28) 

[ ] /Var Y v  (2.29) 

The approximations are especially accurate once 10  . This new 

parameterization makes the integral part of   the mode and   as a reasonable centering 

parameter. The substitution allows   to keep its role as a shape parameter. That is, 1   

leads to over-dispersion and 1   to under-dispersion. 
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Based on the new parameterization, Guikema and Coffelt (2008) developed a 

COM-Poisson GLM framework to model discrete count data using Bayesian framework 

in WinBUGS (Spiegelhalter, 2003). The modeling framework is shown in Equations 

(2.30) and (2.31). It should be noted that the model framework is a dual-link GLM in 

which both the mean and variance depend on the covariates. 
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(2.30) 
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(2.31) 

The established GLM framework can handle under- and over-dispersed datasets, 

as well as datasets that contain intermingled under- and over-dispersed counts (only for 

dual-link models because the dispersion characteristic is captured using the covariate-

dependent shape parameter). In the dual-link GLM, the variance can vary with the 

covariate values, which is especially useful when high values of some covariates tend to 

be variance-decreasing and low values of other covariates tend to be variance-increasing 

or vice versa. It should be noted that parameter estimation for the dual-link GLM is 

complex and difficult.  

With the derivation of the likelihood function of the COM-Poisson GLM by 

Sellers and Shmueli (2010), the maximum likelihood estimation (MLE) of the 

parameters of a COM-Poisson GLM was greatly simplified compared with the Bayesian 

estimating method. The MLE formulation did not allow for a varying shape parameter. 

The MLE codes in R for the COM-Poisson GLM could be found here: http://cran.r-

project.org/web/packages/compoisson/index.html (R Development Core Team, 2006). 

http://cran.r-project.org/web/packages/compoisson/index.html
http://cran.r-project.org/web/packages/compoisson/index.html
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Geedipally (2008) examined the performance of the COM-Poisson GLM in the context 

of single link.   

 

2.5 The Double Poisson Model 

Based on the double exponential family, Efron (1986) proposed the double 

Poisson distribution. The double Poisson model has two parameters   and  , with its 

approximate probability mass function given as: 

1/2
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(2.32) 

The exact double Poisson density is given as: 
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(2.33) 

where the factor ( , )c    can be calculated as: 
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(2.34) 

With ( , )c    which is a normalizing constant nearly equal to 1. The constant ( , )c  

ensures that the density sums to unity. The expected value and the standard deviation 

(SD) referring to the exact density 
,

( )f y 
 are: 

( ) ,E Y   (2.35) 

1/2( ) ( )SD Y





 
(2.36) 
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Thus, the double Poisson model allows for both over-dispersion ( 1  ) and under-

dispersion ( 1  ). When 1  , the double Poisson distribution collapses to the Poisson 

distribution. 

Based on the approximate probability mass function, i.e. Equation (2.32), the 

maximum likelihood estimation (MLE) for   and   is given as: 
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(2.37) 
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(2.38) 

where 
yn denotes the observed frequency of count equal to y. 

It should be noted that the MLE for   does not seem to be applicable when 0y   

due to the presence of ln( )y in Equation (2.38). However, the limit of ln( )y y

approaches 0 when y is getting close to 0, thus ln( ) 0yn y y    approximately equals 0. 

For the DP GLM, the expected number of crashes per year i  is linked to the 

explanatory variables ix  by the following link function (similar to the traditional 

Poisson): 

exp( )i ix 
 (2.39) 

where the vector  is the coefficients to be estimated. 

A disadvantage of the DP distribution is that its results are not exact since the 

normalizing constant ( , )c    has no closed form solution (Winkelmann, 2008; Hilbe, 
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2011). Considering the inclusion of the normalizing constant would substantially 

increase the non-linearity of the PMF which makes the MLE is difficult to achieve, all 

the DP GLMs in this thesis are developed based on the PMF without the NC. More 

discussions on the use of the normalizing constant could be found in Section 4.5.3.  

 

2.6 Other Models 

Apart from the aforementioned models, researchers have introduced other 

statistical count models for analyzing vehicle crash data. These models include: the zero-

inflated model (Shankar et al, 1997; Carson and Mannering, 2001; Qin et al, 2004), 

Poisson-lognormal model (Miaou et al., 2003; Lord and Miranda-Moreno, 2008), 

Bayesian neural networks (Abdelwahab and Abdel-Aty, 2002; Xie et al., 2007), latent 

class or mixture model (Depaire et al., 2008; Park and Lord, 2008), support vector 

machine model (Li et al., 2008), multivariate models (Tunaru, 2002; Park and Lord, 

2007), etc.  

It should be noted that the zero-inflated model is a dual-state model and its zero 

state cannot appropriately reflect the actual crash-data generating process (Lord et al., 

2005; Wedagama et al., 2006; Ma et al, 2008).  Other aforementioned models are 

complex and most of them do not have a closed form, which causes difficulty in 

estimating parameters. 
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2.7 Summary 

This section has provided a brief overview on a variety of statistical models that 

have been proposed to model traffic crash data. The NB has been the most popularly 

used model due to the wide presence of over-dispersed crash data. However, most 

models such as the NB have difficulty in handling the crash data characterized by under-

dispersion. The models proposed to handle the under-dispersed data were mainly 

introduced in this section. The focus of this section was to present the statistical 

properties and GLM frameworks of two models, the DP model and COM-Poisson model, 

both of which can handle over-, equi- and under-dispersed count data. The limitations of 

the commonly used models were also discussed in this section.  

Since the DP model has seldom been investigated and applied after its introduction 

25 years ago, it is of great interest to examine the applicability of the DP distribution and 

its regression model for analyzing crash data. Meanwhile, there is also a need to 

compare its performances with those of the COM-Poisson model and other models that 

can handle either over- or under-dispersed count data. Thus, the following sections 

provide the results on the detailed comparisons between the DP and other models in 

handling simulated count data (Section 3) as well as observed crash data characterized 

by over-dispersion (Section 4) and under-dispersion (Section 5).  
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3. PERFORMANCE OF THE DOUBLE-POISSON DISTRIBUTION 

 

Of all the available distributions that have been proposed in the literature, two 

distributions that can handle both over- and under-dispersion are of interest. They are the 

COM-Poisson (Conway and Maxwell, 1962; Shmueli et al., 2005; Kadane et al., 2006) 

and DP distributions (Efron, 1986) (note: the distribution proposed by Efron should not 

to be confused with the Double Poisson model documented in Lao et al. (2011)). The 

properties of the COM-Poisson have been investigated extensively and several 

researchers have found that both the distribution and regression model are very flexible 

to handle count data (Sellers et al., 2011; Francis et al., 2012). On the other hand, 

although the DP has been introduced over 25 years ago, this distribution has never been 

fully investigated. In fact, very few researchers have applied or used the DP distribution 

or model for analyzing count data since its introduction. 

The primary objective of this section is to examine the potential applicability of 

the DP distribution for analyzing count data characterized by both over- and under-

dispersion. The study objective was accomplished using simulated data for nine different 

mean-variance relationships (or scenarios). Before tackling the performance of the 

regression model, it is important to first evaluate the performance of the distribution, 

similar to how other new distributions have first been investigated in the past (Shmueli 

et al., 2005; Lord and Geedipally, 2011). This section focuses on the distribution only 

and covariates will not be considered. The DP distribution was compared with the COM-

Poisson distribution using various GOF statistics. Although the gamma count model is 
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technically not adequate, the DP distribution was also compared with this distribution for 

the under-dispersed simulated datasets. For over-dispersion, the DP distribution was 

compared with the NB distribution. 

 

3.1 Simulation Protocol 

In order to compare the general performance of different distributions before the 

development of GLMs, simulated data were first generated due to its flexibility to 

control the mean and dispersion level.  

Nine scenarios were examined for three sample mean levels (high, medium and 

low) and three levels of dispersion (under-, equi- and over-dispersion). The discrete 

count data were initially simulated using the COM-Poisson distribution, since this 

distribution has already been shown to handle under-, equi- and over-dispersion. To 

examine potential bias with using only one distribution to simulate data, counts were 

also simulated using the traditional Poisson and NB distributions for the equi-dispersion 

and over-dispersion respectively. A total of 2,000 observations were simulated for each 

scenario. The three mean values were obtained by setting  = 0.5, 1, and 5 (recall that 

1/v   in the COM-Poisson;   is also defined as the mode). The levels of dispersion 

were: ν = 1.3, 1 and 0.5 representing under-, equi- and over-dispersion, respectively. 

Corresponding input values of the Poisson and NB parameters were set to get the similar 

simulated data characteristics (i.e., the mean and variance/mean ratio) with that of the 

COM-Poisson.  
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For each scenario, different distributions were fitted based on their characteristics 

of handling dispersion. All scenarios were fitted using the DP and COM-Poisson 

distributions. The gamma count, Poisson and NB distributions were only employed to fit 

the under-dispersed data, equi-dispersed data and over-dispersed data, respectively. 

Recall that the gamma count is technically a distribution that is not adequate for crash 

data analysis, since crash data rarely influence each other directly at different time 

periods. For each of the aforementioned scenarios, five simulation runs were conducted. 

The GOF measures for each run were computed and then the average GOF values for all 

five runs. 

 

3.2 Parameter Estimation 

In order to fit the double Poisson distribution, parameters were first estimated 

based on the observed frequency for each count using Equations (2.37) and (2.38). Then, 

the approximated predicted probabilities and frequencies were calculated for each count 

using Equation (2.32). After considering the normalizing constant documented in 

Equations (2.33) and (2.34), the exact predicted probability and frequency for each count 

were calculated.  

For the COM-Poisson distribution, the estimated parameters can be calculated 

according to the mean and variance of the data with Equations (2.22) and (2.23). 

However, the mean and variance are just the approximations and will not provide the 

proper estimates. Thus, the MCMC implementation of the COM-Poisson GLM proposed 
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by Guikema and Coffelt (2008) in MATLAB (2011) was used for the parameter 

estimation and likelihood calculation.  

Since there are no closed forms for the expected value and variance of gamma 

count distribution, the software LIMDEP 8.0 was used to obtain the predicted likelihood 

for each count (Greene, 2002). The ‘gamma probabilities’ under the ‘Poisson’ command 

in LIMDEP can be used to fit the given count data. The NB distribution was assessed 

using the well-known method documented in various textbooks (Cameron and Trivedi, 

1998). 

 

3.3 Goodness-of-fit 

Different methods were used to assess the GOF of the distributions. They include: 

the Pearson’s Chi-squared test, the likelihood ratio test and the log-likelihood value. 

Like the Pearson’s Chi-squared statistic (Chi-Sq), the likelihood Ratio statistic (LR) has 

approximately a Chi-squared distribution and the null hypothesis is rejected for a 

reasonable fit for large values of likelihood ratio statistic. The log-likelihood statistic 

(LogL) was calculated by taking the logarithm of the estimated likelihood for each 

observation. The sum of those log-likelihoods was then obtained for comparing those 

different distributions. 

Besides, given that the degree of freedom (DF) for different distributions might 

differ within the same scenario, the value of Chi-Sq divided by DF (Chi-Sq/DF) was also 

provided as an alternative for those three GOFs. The smaller the Chi-Sq/DF, the better 

the fit. Those GOF statistics are given as: 
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( 1)DF n p    (3.5) 

where, 

   is the observed frequency for the category of count equal to i; 

   is the expected frequency for the category of count equal to i; 

   is the expected likelihood for the category of count equal to i; 

n  is the number of total categories; 

p  is the number of parameters used in fitting the distribution. 

 

3.4 Comparison of Results 

Nine scenarios of simulated data with three means (high, medium and low) and 

three levels of dispersion (under-, equi-, and over- dispersion) were examined in this 

study. Comparisons on GOFs of simulated data fitted by the DP and COM-Poisson 

distributions were conducted. The GOFs of simulated data fitted by other distributions 

such as NB, gamma and Poisson were also be given as a reference. The results were 
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presented by the level of dispersion: under-, equi- and over-dispersion. GOFs for each 

run as well as the average on all five runs were included. 

 

3.4.1 Under-dispersion 

All the under-dispersed data were simulated under the COM-Poisson distribution. 

Tables A.1 to A.3 in Appendix show the results for under-dispersed simulated data for 

the high, medium and low sample means, respectively. In each table, all five runs show 

consistent comparison results. The three tables show that the COM-Poisson and gamma 

count distributions provide better fit than that for the DP distribution. Since the 

estimated parameter is the mode of the COM-Poisson, this may not always be equal to 

the sample mean. This characteristic nonetheless does not directly affect the GOF 

analyses. Additional information about this characteristic can be found in Lord et al. 

(2008a). 

Table 3.1 summarizes the GOF statistics of the averaged five run values for all the 

under-dispersion scenarios using COM-Poisson simulated data. In terms of the ratio Chi-

Sq/DF, the DP distribution seems to provide a good fit, but only when the mean is high. 

The difference in fit is larger for the Chi-Sq and LR than for the LogL. It is interesting to 

note that the gamma count distribution works better than the DP distribution for under-

dispersion. 
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Table 3.1 Summary of GOFs for under-dispersion (COM-Poisson simulated data) 

Mean Type Distributions 
GOF 

Chi-Sq LR LogL Chi-Sq/DF 

High 

DP 8.8 9.2 -4165.2 0.98 

COM-P 7.6 7.7 -4164.4 0.85 

Gamma 7.3 7.4 -4164.3 0.81 

Medium 

DP 23.0 24.7 -3186.0 4.99 

COM-P 3.7 3.7 -3175.4 0.92 

Gamma 3.7 3.7 -3175.4 0.93 

Low 

DP 3.6 3.4 -1585.9 3.58 

COM-P 1.1 1.1 -1584.7 1.12 

Gamma 1.0 1.0 -1584.6 1.03 

 

 

3.4.2 Equi-dispersion 

Two distributions, the COM-Poisson and traditional Poisson were used to generate 

the equi-dispersed data. Tables A.4 to A.6 in Appendix tabulate the results for the equi-

dispersed COM-Poisson simulated data for the high, medium and low sample means 

based on each run, respectively. Table 3.2 summarizes the GOF statistics averaged on 

the five runs for all the equi-dispersion scenarios using the COM-Poisson simulated data. 

Likewise, Tables A.7 to A.9 in Appendix tabulate the results for the Poisson simulated 

data for each run and Table 3.3 summarizes the GOF statistics averaged on the five runs 

for all equi-dispersion scenarios.  

As can be seen from Tables 3.2 and 3.3, the COM-Poisson simulated data and 

Poisson simulated data give similar comparison results. The COM-Poisson and Poisson 

provides a good fit, while the DP is not as good as the other two.  Comparing the sample 
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mean values, the DP works better for the high sample mean. Although the values of Chi-

Sq, LR and LogL for the COM-Poisson are smaller than those for the Poisson, we cannot 

arbitrarily conclude that the COM-Poisson is better than Poisson. Rather, when one 

needs to take into account the number of estimated parameters, which show the Poisson 

to be very close to the COM-Poisson. The reason the Poisson not the best distribution 

overall is explained by the fact that the mean and variance are not exactly equal for all 

three simulated datasets. 

 

Table 3.2 Summary of GOFs for equi-dispersion (COM-Poisson simulated data) 

Mean Type Distributions 
GOF 

Chi-Sq LR LogL Chi-Sq/DF 

High 

DP 11.9 12.4 -4415.7 1.14 

COM-P 9.6 9.6 -4414.4 0.96 

Poisson 10.3 10.3 -4414.7 0.93 

Medium 

DP 22.3 23.4 -3440.1 4.29 

COM-P 6.5 6.5 -3431.6 1.31 

Poisson 8.9 8.8 -3432.6 1.49 

Low 

DP 1.3 1.3 -1863.5 1.33 

COM-P 0.9 0.9 -1863.3 0.87 

Poisson 1.7 1.7 -1863.8 0.86 
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Table 3.3 Summary of GOFs for equi-dispersion (Poisson simulated data) 

Mean Type Distributions 
Goodness-of-Fit 

Chi-Sq LR LogL Chi-Sq/DF 

High 

DP 10.8 11.4 -4416.6 1.05 

COM-P 9.1 9.2 -4415.4 0.89 

Poisson 10.3 10.3 -4416.0 0.94 

Medium 

DP 20.3 21.6 -3430.6 4.05 

COM-P 4.4 4.5 -3422.0 0.89 

Poisson 6.3 6.4 -3422.9 1.06 

Low 

DP 0.6 0.6 -1837.9 0.62 

COM-P 0.5 0.5 -1837.9 0.53 

Poisson 0.8 0.8 -1838.0 0.39 

 

 

3.4.3 Over-dispersion 

Two distributions, the COM-Poisson and NB, were used to generate the over-

dispersed data. Tables A.10 to A.12 in Appendix tabulate the results for the over-

dispersed COM-Poisson simulated data for the high, medium and low sample means 

based on each run, respectively. Table 3.4 summarizes the GOF statistics averaged on 

the five runs for all the over-dispersion scenarios using the COM-Poisson simulated data. 

Likewise, Tables A.13 to A.15 in Appendix tabulate the results for the NB simulated 

data for each run and Table 3.5 summarizes the GOF statistics averaged on the five runs 

for all over-dispersion scenarios.  

As can be seen from Tables 3.4 and 3.5, the COM-Poisson simulated data and NB 

simulated data give similar comparison results. The COM-Poisson and NB provide a 

good fit for all mean values, while the DP is not as good for the medium mean and low 
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sample mean values, especially when fitting the NB simulated data. For the high sample 

mean, the DP provides a good fit.  

 

Table 3.4 Summary of GOFs for over-dispersion (COM-Poisson simulated data) 

Mean Type Distributions 
GOF 

Chi-Sq LR LogL Chi-Sq/DF 

High 

DP 25.1 26.9 -5041.9 1.77 

COM-P 14.7 14.9 -5021.1 1.05 

NB 27.4 27.2 -5027.0 1.88 

Medium 

DP 18.7 19.3 -4008.6 2.34 

COM-P 7.8 8.0 -4003.0 0.98 

NB 13.9 14.4 -4006.0 1.62 

Low 

DP 6.4 6.5 -2638.3 2.13 

COM-P 3.1 3.1 -2635.4 0.86 

NB 2.9 2.9 -2635.1 0.72 

 

 

Table 3.5 Summary of GOFs for over-dispersion (NB simulated data) 

Mean Type Distributions 
GOF 

Chi-Sq LR LogL Chi-Sq/DF 

High 

DP 31.5 33.6 -4807.3 2.46 

COM-P 18.7 17.7 -4799.4 1.48 

NB 9.9 9.7 -4795.8 0.76 

Medium 

DP 23.4 23.7 -3616.1 3.90 

COM-P 9.4 9.3 -3682.8 1.47 

NB 9.3 9.4 -3608.7 1.46 

Low 

DP 13.9 13.2 -1906.3 8.69 

COM-P 3.3 3.4 -1899.8 1.67 

NB 2.7 2.7 -1899.4 1.35 
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3.5 Discussion 

For all nine scenarios, the COM-Poisson performs better than the DP. The DP has 

been shown to provide a better fit when the mean is high for all types of dispersion. It 

should be noted that the COM-Poisson may be expected to be better than the DP in 

fitting COM-Poisson simulated data. The primary reason why the DP works better for 

high sample mean values is related to the observations that are equal to zero. In 

calculating the values of Chi-Sq and LR, all the observations are grouped into several 

categories, and the final values of Chi-Sq and LR are aggregated based on the value of 

the Chi-Sq and LR for each of those categories. In this study, it was found that very 

often the category for observations equal to zero had exceptionally large Chi-Sq and LR 

values compared to other categories. This artificially increases the total or final Chi-Sq 

and LR values, indicating a poorer fit. When the mean increases, the total Chi-Sq and 

LR values get less affected since the proportion of zeros becomes smaller.  

The hypothesis as to why DP cannot provide a good fit when the observations 

equal to zero might be related to the approach used for calculating the likelihood. In the 

approximate PMF of Efron’s DP distribution (see Equation (2.32)), the denominator is 

zero for observations equal to zero, which is not solvable. To circumvent this problem, 

the author calculated the limits of the likelihood when observation value approached 

zero in writing the thesis. The validity and accuracy of this approach might need to be 

further examined.     

Overall, the differences observed in statistical fit between the DP and COM-

Poisson distributions were not enormous, especially when you compare the differences 
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in fit between the NB and the recently introduced Negative-Binomial-Lindley 

distribution used for analyzing crash data characterized by a large amount of zeros (Lord 

and Geedipally, 2011; Geedipally et al. 2011). The latter comparison shows a wider 

difference between the two distributions (NB and NB-L) and the gap increases as the 

data become more dispersed. The fact that the DP is not clearly superior to existing 

distributions, such as the NB distribution, probably explains why it has not been used 

extensively by researchers and practitioners. 

Although the COM-Poisson fits all the data much better than the DP, the 

comparison on their performance of handling under-dispersed data is yet to be 

determined since all the under-dispersed data in this section were simulated by the 

COM-Poisson distribution and the COM-Poisson may be expected to generate better 

results than other distributions. Thus, it is of great interest to examine the GLMs, 

particularly in terms of their performance of handling under-dispersion. Besides, the DP 

GLM has already been developed by the original author who developed this distribution 

(Efron, 1986) and it is possible to examine its stability in the context of a regression 

model. 

 

3.6 Summary 

The primary objective of this section was to examine the potential applicability of 

the DP distribution for analyzing count data characterized by both over- and under-

dispersion. The study objective was accomplished using simulated data for nine different 

mean-dispersion relationships (or scenarios). Five runs each with 2,000 observations 
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were simulated under each scenario by different distributions. The under-dispersed data 

were simulated by the COM-Poisson distribution; the equi-dispersed data were 

simulated by the COM-Poisson and Poisson distributions; and the over-dispersed data 

were simulated by the COM-Poisson and NB distributions.  

For each scenario, different distributions were fitted based on their characteristics 

of handling dispersion. All scenarios of data were fitted using the DP and COM-Poisson. 

The gamma count model, Poisson and NB were only employed to fit under-dispersed 

data, equi-dispersed data and over-dispersed data, respectively. Four different GOF 

statistics were used to evaluate and compare the performances of different distributions.  

The simulation results showed that the COM-Poisson performs better than the DP 

for all nine scenarios, and that the DP works better for high mean scenarios independent 

of the type of dispersion. The lack of fit for the DP in low mean scenarios is due to its 

inadequacy for fitting “zero” observations. It should be noted that the comparison on 

their performance of handling under-dispersed count data is yet to be determined since 

all the under-dispersed data in this section was simulated by the COM-Poisson 

distribution and the COM-Poisson may be expected to generate better results than other 

distributions. Thus, it is of great interest to examine the DP GLMs, particularly in terms 

of their performance of handling under-dispersion. Next section will investigate the 

applicability of the DP GLMs in handling over-dispersed data. 
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4. APPLICATION OF THE DOUBLE POISSON GLM TO CRASH DATA 

CHARACTERIZED BY OVER-DISPERSION 

 

Over-dispersion is a commonly seen characteristic in traffic crash data. Its 

presence has made the traditional Poisson distribution unable to handle traffic crash data 

in most cases. Unlike the Poisson, the NB distribution allows its variance varying 

independent of the mean by including a dispersion parameter (
2( )Var Y    ), which 

has made the NB the most widely applied distribution in handling crash data. Recently, 

the COM-Poisson distribution has been examined in terms of its capability of handling 

over-dispersed and under-dispersed data (Shmueli et al., 2005; Kadane et al., 2006; 

Guikema and Coffelt, 2008; Geedipally, 2008). It has been found that the COM-Poisson 

GLMs can fit the over-dispersed data as well as the NB models (Guikema and Coffelt, 

2008; Lord et al., 2008a).  

The objectives of this section are to evaluate the application of the DP GLMs for 

analyzing motor vehicle crash data characterized by over-dispersion and conduct the 

comparison analysis between the DP GLMs, NB models and COM-Poisson GLMs. 

Although the results in Section 3 have showed that the DP distribution can handle over-, 

equi-, and under-dispersed count data, it is of more interest to see how good the DP 

GLM can link the crash data to the variables that affect traffic safety and how much 

influence those variables can affect the expected crash data. In this section, all the results 

of the DP GLMs are compared with those of the NB models. Two over-dispersed 

datasets along with two different and commonly used link functions are examined in 
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order to eliminate the potential bias of using only one dataset or one link function. The 

performance of the COM-Poisson GLMs is also given as a reference in the second 

dataset. All the DP GLMs in this thesis are developed based on the PMF without the 

normalizing constant. At the end of this section, a discussion is provided about whether 

or not the inclusion of the normalizing constant in the DP GLM improves the 

performance of the model.  

 

4.1 Data Description 

In this section, two over-dispersed datasets were used to examine the performance 

of the DP GLMs and compare those with other models. It should be noted that the two 

datasets were collected for different transportation elements: one for the intersection 

(crashes occurred within 250ft of the intersection center) and the other for the roadway 

segment (crashes occurred beyond the 250ft of the intersection center). Given that the 

variables that contribute to the occurrences in intersection related crashes and non-

intersection related crashes are different (Highway Safety Manual – AASHTO, 2010), 

two link functions were employed to conduct the GLM analysis for the two datasets 

respectively.   

The first dataset (Texas segment data or Texas data) recorded crashes that 

occurred on 4-lane rural undivided and divided roadway segments for five years (from 

1997 to 2001) in Texas. The dataset has been used to develop the statistical models and 

accident modification factors in the project NCHRP 17-29 (Lord et al., 2008b). The 

dataset were provided by the Texas Department of Public Safety (DPS) and the Texas 
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Department of Transportation (TxDOT). Only undivided segments crash data were used 

in this study. Other than the crash number records classified by the year and severity 

level, information about variables such as annual average daily traffic (AADT), shoulder 

width, number of intersections was also reported along those segments. Table 4.1 shows 

the summary statistics for the key variables in this dataset.   

 

Table 4.1 Summary statistics of variables for the Texas data 

Variables Min. Max. Mean Std Err Obs 

Response 
KABCO a Crashes for Five Years 0 97 2.84 5.69 1499 

KAB b Crashes for Five Years 0 19 0.63 1.60 1499 

Offset Segment Length (Miles) 0.1 6.275 0.55 0.67 1499 

Variables 

AADT (veh/day) 402 24800 6613.61 4010.01 1499 

Lane Width (ft) 9.75 16.5 12.57 1.59 1499 

Shoulder Width (Right + Left) (ft) 0 40 9.96 8.02 1499 

Right Shoulder Width (ft) 0 24 13.65 3.65 1499 

Median Width (ft) 1 240 47.71 28.87 1499 

Number of Intersections 0 47 2.33 2.62 1499 

Number of Horizontal Curves 0 16 0.70 1.32 1499 
a KABCO crashes: crashes with severity level of fatality, injury type A, injury type B, injury type 

C and property damage only 
b KAB crashes: crashes with severity level of fatality, injury type A, injury type B 

 

 

The second over-dispersed dataset (Toronto intersection data or Toronto data) 

were collected on urban 4-legged signalized intersections in Ontario, Toronto from the 

year 1990 to 1995. A total number of 54, 869 crashes that occur on 868 intersections 

were reported. The dataset were found to be of good quality and then applied to many 
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studies (Lord, 2000; Miaou and Lord, 2003). The crash data for the year 1995 with a 

total number of 10,030 crashes were used in this study. Traffic flow data from both 

major approaches (Major AADT) and minor approaches (Minor AADT) were recorded 

in the crash report. Table 4.2 shows the summary statistics for the key variables in this 

dataset.   

 

Table 4.2 Summary statistics of variables for the Toronto data 

Variables Min. Max. Mean Std Err Obs  

Response Crashes 0 54 11.56 10.02 868 

Variables 
AADT for Major Approach (veh/day) 5469 72178 28044.8 10660.4 868 

AADT for Minor Approach (veh/day) 53 42644 11010.2 8599.4 868 

 

 

4.2 Link Function 

For the Texas data, the GLM frameworks are developed for the DP and NB 

models. Although Lord et al. (2008a) established the COM-Poisson GLM with the same 

dataset, its link function is not the same as that in this study and thus the results of the 

COM-Poisson GLM are not included for this dataset. In this study, the response variable 

is the mean of KABCO crashes (crashes with severity level of fatality, injury type A, 

injury type B, injury type C and property damage only) or KAB crashes (crashes with 

severity level of fatality, injury type A, injury type B). The unit for both response 

variables is in crashes per year. It should be noted that the length of the segment and the 

year number 5 are handled as the offset term. The link function for the two models is the 

same as that in the project NCHRP 17-29 (Lord et al., 2008b): 
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(4.1) 

where, 

i = the mean number of KABCO crashes or KAB crashes per year for segment i; 

iL = length of the segment in miles for segment i; 

iF = the traffic flow volume (or AADT) in veh/day for segment i; 

iLW = lane width in ft for segment i, 

iSW = total shoulder width (both sides) in ft for segment i; 

_ iCURVE DEN = number of horizontal curves per mile located on the segment i, 

0 1 2 3 4 = coefficients 

For the other dataset, the Toronto data, the GLM frameworks are established for 

the DP, NB and COM-Poisson models. It should be noted that the response variable for 

the DP GLM and NB model is different than that for the COM-Poisson GLM. The 

response variable    for the former two models is the mean of crashes per year (see 

Equations (2.35) and (2.39) for the DP model, and see Equations (2.10) and (2.12) for 

the NB model), whereas the response variable    for the COM-Poisson model is the 

mode of crashes per year (see Equation (2.30)). The link function is: 

1 2

0 _ _i Maj i Min iF F
  

 
(4.2) 
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where, 

i = the mean (for the NB model and DP GLM) or the mode (for the COM-Poisson 

GLM) of crashes per year for intersection i; 

_Maj iF = entering flow for the major approach (or AADT) for intersection i ; 

_Min iF = entering flow for the minor approach (or AADT) for intersection i ; 

0 1 2, ,   = coefficients. 

Since the link function for the COM-Poisson GLM is established on the mode not 

on the mean as the case with the DP GLM and NB model, the coefficients of the COM-

Poisson GLM cannot be directly compared to the other two models. However, the mean 

and variance for the COM-Poisson GLM can be obtained (see Equations (2.26) and 

(2.27)) or approximated (see Equations (2.28) and (2.29)) according to their relationship 

to the mode    and shape parameter  , making the direct comparisons on GOF statistics 

of the three models comparable.  

Instead of calculating the predicted mean and variance of the COM-Poisson 

models according those equations, the researcher simulated 100,000 samples with the 

estimated    and   obtained from the COM-Poisson GLMs and then took the mean and 

variance of those samples as the predicted mean and variance in this study. 

 

4.3 Goodness-of-fit 

The GOF statistics of the DP GLM and COM-Poisson GLM will be compared for 

both under- and over-dispersed data as the following: 
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 Akaike Information Criterion (AIC) 

As a measure of GOF considering the influence of parameters for estimated 

models, AIC is defined as: 

2log 2AIC L p    (4.3) 

where L is the maximized value of the likelihood function for the estimated 

model, and p is the number of parameters in the statistical model. By penalizing 

models with a large number of parameters, the AIC attempts to select the model 

that best explains the data with a minimum of parameters. Lower the AIC, better 

the model. 

 

 Mean Prediction Bias (MPB) 

MPB is used to measure the magnitude and direction of the average model bias. 

MPB is calculated using the following equation: 

1

1
ˆ( )

n

i i

i

MPB y y
n 

 
 

(4.4) 

where n is the sample size, ˆ
iy
 
and iy  are the predicted and observed crashes at 

site i respectively. When the model over-predicts crashes, MPB is positive and 

when the model under-predicts crashes, MPB is negative. 
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 Mean Absolute Deviance (MAD) 

MAD is the average of the absolute deviations and it measures the average mis-

prediction of the model. The model closest to 0 is considered to be the best.  It is 

computed by the following equation: 

1

1
ˆ

n

i i

i

MAD y y
n 
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(4.5) 

 

 Mean Squared Predictive Error (MSPE) 

MSPE is often used to access the error associated with a validation or external 

data set. The model closest to 0 is considered to be the best.  It can be calculated 

by the following equation: 

2

1

1
ˆ( )

n

i i

i

MSPE y y
n 
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(4.6) 

 

4.4 Parameter Estimation Method 

The parameters of the DP GLMs were estimated using the NLMIXED procedure 

in SAS (SAS Institute Inc., 2002). The NLMIXED procedure was designed to fit 

nonlinear mixed models, that is, models with nonlinear random and fixed effects. The 

statement PROC NLMIXED offers an interface for specifying and coding a user-defined 

conditional distribution. PROC NLMIXED provides a variety of optimization techniques 

to maximize an approximation to the likelihood.  

In this study, the approximate PMF of the DP distribution and its GLM link 

function were coded using SAS programing statements. The default quasi-Newton 
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algorithm was applied to obtain estimated parameters along with their approximate 

standard errors. Although NLMIXED procedure was often intended for mixed effects 

model, in this study it was used to fit models with only fixed effects. It should be noted 

that for the COM-Poisson GLM, its coefficients were estimated using the Bayesian 

framework in WinBUGS (Spiegelhalter et al., 2003). For the NB model, the GENMOD 

procedure in SAS was used to obtain the estimated parameters using MLE. 

 

4.5 Comparison Results 

The comparison results between the three models for the Texas data and Toronto 

data will be presented. The comparison conducted between the DP GLM with and 

without the normalizing constant will also be given at the end of this subsection.  

 

4.5.1 Texas data 

Although there are a variety of models that can handle data characterized by over-

dispersion, the NB is the most widely applied model to establish the link between 

crashes and covariates in traffic crash data analysis. And the mathematics to manipulate 

the relationship between the mean and the variance structures for the NB model is very 

simple (Hauer, 1997). So in this subsection, the DP GLMs was first compared with the 

NB models in terms of GOF statistics. All those conclusions are based on the 

significance level as 0.1.   

Table 4.3 summarizes the results of the DP GLMs and NB models in fitting the 

Texas data. As shown in the table, the NB models and DP GLMs established under the 
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two response scenarios (KABCO crashes as the response variable and KAB crashes as 

the response variable) generate consistent comparison results between the two models. 

The shape parameters of the DP GLMs in both scenarios are significantly less than 1, 

indicating the presence of the over-dispersion.  

 

Table 4.3 Comparison of results between DP GLMs and NB models using the Texas data 

Estimated Parameters and Standard Errors 

Variables 
KABCO as response variable KAB as response variable 

NB
a
 DP NB DP 

Intercept (
0( )Ln  ) 

-7.9488 
(0.4060)b 

-7.8341 
(0.3713) 

-6.8242 
(0.5470) 

-6.8743 
(0.4793) 

F ( 1 ) 
0.9749 

(0.0440) 

0.9773 

(0.0400) 

0.7768 

(0.0580) 

0.8021 

(0.0507) 

LW ( 2 ) 
-0.0533 
(0.0170) 

-0.06497 
(0.0146) 

-0.0844 
(0.0230) 

-0.0957 
(0.0199) 

SW ( 3 ) 
-0.0100 
(0.0030) 

-0.01049 
(0.0029) 

-0.0114 
(0.0050) 

-0.0125 
(0.0038) 

CURVE_DEN ( 4 ) 
0.0675 

(0.0120) 

0.09291 

(0.0106) 

0.0635 

(0.0160) 

0.0876 

(0.0140) 

Dispersion Parameter 
0.3906 
(0.0360) 

0.5099 
(0.0186) 

0.3793 
(0.0570) 

0.8204 
(0.0300) 

Goodness-of-fit Statistics 

AIC 5134.772 5266.1 3198.728 3324.7 

MAD 1.702 1.714 0.826 0.835 

MSPE 11.236 10.631 2.727 2.559 
a The results for NB models are directly taken from the project NCHRP 17-29 (Lord et al., 

2008b). 
b Values in parentheses are the standard errors for the estimated parameters.  

 

 

As for the GOF statistics in both scenarios shown in Table 4.3, the values of 

MSPE for the DP GLMs are slightly less than those for the NB models whereas the 

values of AIC and MAD for the DP GLMs are bigger than those for the NB models. So 
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we can infer that the DP GLMs fits the data almost the same or slightly worse than the 

NB models especially considering the difference in GOF statistics between the two 

models is not pronounced. It should be noted that even though the values of coefficients 

are very similar for the two models, the standard errors of those coefficients for the DP 

GLMs are always smaller than those for the NB models in the two response scenarios.  

Figure 4.1 presents the distributions of crash numbers for the observed and 

predicted crashes in two response scenarios. Most sites have KABCO and KAB crashes 

less than 5. The observed crashes are more scattered than the predicted crashes.  

Figure 4.2 shows the scatter plots for the predicted vs. observed crashes in the two 

response scenarios. It can be seen from both scenarios that all the data points are quite 

evenly scattered along the reference line Y=X, and that both the DP GLMs and NB 

models can give an equally reasonably good fit to the data. It is interesting to note that 

compared with the NB models, the data points for the DP GLMs are more closer to the 

reference line when observed crashes is larger than 10 in KABCO crashes and larger 

than 5 in KAB crashes, which indicates that the DP GLMs provide more accuracy in 

predicting larger crash numbers than the NB models. 
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Figure 4.1 Frequencies of observed and predicted crashes for the Texas data 

(KABCO and KAB crashes) 
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Figure 4.2 Predicted vs. observed crashes for the Texas data  

(KABCO crashes and KAB crashes) 
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Figure 4.3 illustrates the DP GLM and NB model predicted crashes against the 

variable AADT for the two response scenarios when controlling other variables at their 

average. It can be seen that the estimates of the DP GLMs are slightly higher than those 

of the NB models. The difference on the predictions between the two models increases 

with the increase of the AADT.  

Figure 4.4 shows the cumulative residual (CURE) plots for the AADT variable 

under the two response scenarios of the Texas data. A CURE plot can be used to 

measure how the model fits the data with respect to each covariate by plotting the trend 

of the cumulative residuals with the increase of the interested variable (Hauer and Bamfo, 

1997). Cumulative residuals oscillating closely around the value zero indicates a better 

fit to the data. In Figure 4.4, the plots were adjusted to make the final cumulative value 

equal to zero. It can be seen from both scenarios that the DP GLMs and NB models can 

give a similarly good fit to the data. The DP GLMs have smaller bias than the NB model 

when the AADT is larger than 15000 but perform slightly worse when the AADT is in 

the region from 8000 to 15000.  

Figures 4.5 and 4.6 show the comparison on the crash variance predicted by the 

DP GLMs and NB models under the two response scenarios respectively. The predicted 

crash variance is calculated as the square of the residual for each model. The residual is 

equal to the difference between the predicted and the observed crashes. The reference 

line in each figure shows the theoretical relationship between the mean and variance for 

each model (for the DP, ( ) ( ) /Var Y E Y  ); for the NB, 
2( ) ( ) ( )Var Y E Y E Y   ). As 
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we can see from the Figures 4.5 and 4.6, most data points fall evenly along their own 

theoretical line.  

 

 

 

Figure 4.3 Estimated values (crashes/year) for the Texas data (KABCO crashes and 

KAB crashes) 
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Figure 4.4 Cumulative residual plots for the Texas data against variable AADT 

(KABCO crashes and KAB crashes) 

Note: Dotted lines represent ±2 standard deviance 
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a) DP GLM 

 
b) NB model 

 
Figure 4.5 Predicted crash variance vs. predicted crash mean for the Texas data  

(KABCO crashes) 

 

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40 45 50

P
re

d
ic

te
d

 C
ra

sh
 V

ar
ia

n
ce

 

Predicted Crash Mean 

KABCO 

DP Var

Linear (DP Reference Line)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35 40 45

P
re

d
ic

te
d

 C
ra

sh
 V

ar
ia

n
ce

 

Predicted Crash Mean 

KABCO 

NB Var

Quadratic (NB Reference Line)



51 
 

 
a) DP GLM 

 

 
b) NB model 

 
Figure 4.6 Predicted crash variance vs. predicted crash mean for the Texas data 

(KAB crashes) 

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

P
re

d
ic

te
d

 C
ra

sh
 V

ar
ia

n
ce

 

Predicted Crash Mean 

KAB 

DP Var

Linear (DP Reference Line)

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16

P
re

d
ic

te
d

 C
ra

sh
 V

ar
ia

n
ce

 

Predicted Crash Mean 

KAB 

NB Var

Quadratic (NB Reference Line)



52 
 

4.5.2 Toronto data 

Recently it has been found that the COM-Poisson GLM can fit the over-dispersed 

data as well as the NB model (Guikema and Coffelt, 2008; Lord et al. 2008a). Table 4.4 

summarizes the comparison results of the DP GLM, NB model, and COM-Poisson GLM 

using the Toronto data.  

 

Table 4.4 Comparison of results between the DP GLM, NB model, and COM-Poisson GLM 

using the Toronto data 

Estimated Parameters and Standard Errors 

 

DP NB
a
 COM-Poisson

b
 

Estimate Std Error Estimate Std Error Estimate Std Error 

0( )Ln   -10.2342 0.4518  -10.2458 0.465 -11.53 0.4159 

1  0.6029 0.0458  0.6207 0.046 0.635 0.04742 

2  0.7038 0.0223  0.6853 0.0211 0.795 0.03101 

Shape Parameter 0.3944 0.0189  0.1398 0.0122 0.3408 0.02083 

Goodness-of-fit Statistics 

AIC 5066 5077.3  -- 

DIC  --  -- 4953.7 

MAD 4.138 4.142 4.129 

MSPE 32.600 32.699 33.664 
a Based on the modeling results for NB model documented in Lord et al. (2008a). 
b Based on the modeling results for COM-Poisson GLM documented in Lord et al. (2008a). 

 

 

As shown in Table 4.4, the DP GLM gives a slightly better fit than the NB model 

since all the GOF statistics for the DP GLM are smaller than those for the NB model.  

The COM-Poisson GLM fits the data slightly better than the other two since it has 

lowest value of DIC (it is assumed that DIC is equivalent to AIC) and MAD. Similar to 
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what we have found for the Texas data, the DP GLM provides the smallest standard 

errors of almost all estimated coefficients.  The coefficients estimated by the DP GLM 

are very similar to those by the NB model, while the coefficients estimated by the COM-

Poisson are somewhat different than those for the other two. This difference could be 

explained by the fact that the coefficients for the COM-Poisson are directly linked to the 

mode rather than the mean as the case with the DP GLM and NB model (see the link 

function for the COM-Poisson GLM in Section 4.2). It should be also noted that the 

parameters of the COM-Poisson GLM were estimated using the Bayesian framework 

whereas the estimated parameters for the other two models were developed based on 

MLE.   

Figure 4.7 shows the distributions of crash numbers (means) for the observed and 

predicted crashes of the three models for the Toronto data. The predicted crash means of 

the COM-Poisson GLM were obtained using the method we mentioned at the end of 

Section 4.2. The observed crashes are more scattered than the predicted crashes.  

Figure 4.8 presents the scatter plot for the predicted vs. observed crashes for each 

site. All the three models give a good fit to the data with their data points in the scatter 

plot fall evenly along the Y=X reference line. It can be clearly seen that when the 

observed crashes is larger than 20, the DP GLM tends to predict more crashes than the 

NB model but less crashes than the COM-Poisson GLM. The fact that the DP GLM 

always gives a higher prediction than the NB model is consistent with that for the Texas 

data (see Figure 4.2). Moreover, the difference on each prediction for the three models is 

considerably minor, especially for the DP GLM and the NB model.  
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Figure 4.7 Frequencies of observed and predicted crashes for the Toronto Data  

 

 

Figure 4.8 Predicted vs. observed crashes for the Toronto data 
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Figures 4.9 and 4.10 demonstrate the predicted crashes of the three models against 

the variable Major AADT and Minor AADT respectively.  In Figure 4.9, three models 

have very similar trend to predict crashes. The DP GLM always has higher prediction 

than the COM-Poisson GLM but lower prediction than the NB model. The difference of 

the predictions of the DP GLM compared to the NB model is much less pronounced than 

those compared to the COM-Poisson GLM. The absolute differences among the three 

models increase when the Major AADT gets larger, whereas the relative differences 

among the three models decrease when the Minor AADT gets larger.  

In Figure 4.10, three models give very close predicted crashes on the whole 

spectrum of the Minor AADT in all three scenarios of the Major AADT. The DP GLM 

always has higher prediction than the other two models. It should be noted that in 

Figures 4.9 and 4.10, the predicted crashes of the COM-Poisson GLM are meant for the 

mode, rather than the mean as the case with the DP GLM and NB model. The curves of 

three models would have been closer if the posterior mean value were used for the 

COM-Poisson instead of the mode (i.e. using the method introduced at the end of the 

Section 4.2). 
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a) Minor AADT = 500 Veh/day 

b) Minor AADT = 3000 Veh/day 

c) Minor AADT = 5000 Veh/day 

Figure 4.9 Estimated values for the Toronto data (against Major AADT)  
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a) Major AADT = 500 Veh/day 

b) Major AADT = 3000 Veh/day 

c) Major AADT = 5000 Veh/da 

Figure 4.10 Estimated values for the Toronto data (against Minor AADT) 
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Figures 4.11a and 4.11b show the adjusted CURE plots for the Major AADT and 

Minor AADT respectively. In Figure 4.11a, the three models give almost equally good 

fit to the data. The difference between the DP GLM and the NB model is slightly smaller 

than that when the NB is compared to the other two models. In Figure 4.11b, the DP 

GLM fits the data as good as the COM-Poisson model, with curves of both models 

oscillating closely around the X axis for the most part of the range of Minor AADT 

variable. The performance of the NB model is worse than the other two models, with 

most part of its curve are the farther away from the X axis.   

Figure 4.12 presents the comparison on the variances predicted by the three 

models. The way the predicted crash variance is calculated here is the same as that for 

the Texas data in Figures 4.5 and 4.6. For the COM-Poisson GLM, the predicted value 

obtained directly from its link function is the mode (  ). The predicted mean of the 

COM-Poisson for each site was obtained by taking the mean of 100,000 simulated 

samples with the estimated     and   from the output of the COM-Poisson GLM. The 

theoretical relationship between the mean and variance for the COM-Poisson 

distribution is ( ) ( ) 1/ (2 ) 1/ 2E Y VAR Y v    , which is based on the Equations (2.28) 

and (2.29). We can see from the figure that the data points of the NB presents a quadratic 

relationship pattern between its variance and its mean, while the predicted variance of 

the DP and COM-Poisson is related to its mean in a linear pattern. 
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a) Against variable Major AADT 

b) Against Variable Minor AADT 

Figure 4.11 Cumulative residual plots for the Toronto data 

Note: Dotted lines represent ±2 standard deviance 
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a) DP GLM 

b) NB Model 

c) COM-Poisson GLM 

Figure 4.12 Predicted crash variance vs. predicted crash mean for the Toronto data  
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4.5.3 DP GLM with or without the normalizing constant 

As documented in Section 2.5, Equation (2.34) demonstrates the expression and 

approximate solution to the normalizing constant (NC) in the DP distribution. Since the 

exact NC is an infinite sum, the inclusion of the NC in the PMF of the DP increases the 

non-linearity and poses computational challenges. It has been found that even the 

inclusion of the closed form approximation to the NC incurs a convergence issue on 

solving for the MLE in SAS in many cases. For all the datasets investigated in this study, 

only the Toronto data converged successfully when incorporating the approximate 

solution to the NC in the PMF of DP distribution.  

Given the computational challenges from the inclusion of the NC, all the DP 

GLMs in this thesis were developed based on the PMF without the NC. Efron (1986) 

also pointed out that the PMF without the NC is highly accurate for the case      . 

The objective of the study in this subsection is to verify if including the close-formed 

approximate solution to the NC in the PMF of the DP would improve the DP GLMs. The 

dataset and the corresponding link function are those based on which we developed the 

DP GLMs for the Toronto data. Likewise, the GOF statistics and parameter estimation 

method documented in Sections 4.3 and 4.4 respectively are used.  

Table 4.5 summarizes the results of the DP GLM with and without the NC for the 

Toronto data. The NC here refers to its closed form approximate solution. The two 

models provide very similar estimated coefficients. The standard errors of the estimated 

parameters in the DP GLM with the NC are slightly smaller than those without the NC. 

In terms of the GOF, it is interesting to see that all the GOF statistics for the DP GLM 
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without the NC is slightly smaller than those with the NC, indicating the DP GLM 

without the NC performs better than that with the NC. The difference between the two 

models is very minor though, which is also confirmed by the scatter plot for the 

predicted vs. observed crashes of the two models as shown in Figure 4.13. In Figure 4.13, 

the data point of each observation for one model is very close to that for the other model 

and the smaller the observed crash, the smaller the difference of predictions made by the 

two models.  

 

Table 4.5 Comparison between the DP with and without normalizing constant using the 

Toronto data 

Estimated Parameters and Standard Errors 

 

DP without NC DP with NC 

Estimate Std Error Estimate Std Error 

0( )Ln   -10.2342 0.4518 -10.0000 0.4248 

1  0.6029 0.0458 0.5988 0.0431 

2  0.7038 0.0223 0.6843 0.0207 

Shape Parameter 0.3944 0.0189 0.4334 0.0189 

Goodness-of-fit Statistics 

AIC 5066.0 5115.8 

MPB -2.75765E-16 0.074 

MAD 4.138 4.152 

MSPE 32.600 32.685 
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Figure 4.13 Predicted vs. Observed Crashes for the DP with and without normalizing 

Constant 
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small number of summations to achieve high accuracy, it would not pose great 

computation challenges and could expand the application of the DP GLMs from a 

practical perspective. Therefore, it is worth further investigating on the accurate 

approximation of the NC.  

 

4.6 Discussion 

This subsection provides a detailed discussion on the overall performances of the 

DP GLM, COM-Poisson GLM and NB model for analyzing over-dispersed data based 

on the previous results.  

 Goodness of fit 

The DP GLM fits the over-dispersed data almost the same as the NB model and 

COM-Poisson GLM. In the first dataset the DP GLM gives a slightly worse fit 

than the NB GLM while for the second dataset, the former is slightly better than 

the latter. Given that the differences in GOF statistics between the two models 

are not pronounced, we conclude that the DP GLM can provide as good fit to the 

over-dispersed data as the NB model. Given that the comparison results are very 

similar for the two different datasets using different link functions, the above 

conclusion seems to hold in spite of the form of the link function. Meanwhile, it 

has been found that the COM-Poisson GLM performs as well as the NB model 

(Guikema and Coffelt, 2008; Lord et al. 2008a) in terms of the GOF statistics and 

predictive performance, we further conclude that the DP GLM fits the over-

dispersed almost the same as the NB model and COM-Poisson GLM.  
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In this section, it has also been found that all the three models tend to over-

predict crashes for smaller mean values and under-predict crashes for larger 

mean values. The investigation on the use of the normalizing constant in the 

PMF of the DP distribution indicates that the inclusion of the closed form 

approximation to the normalizing constant proposed by Efron (1986) does not 

improve the DP GLM in terms of GOF.  

 

 Estimated parameters and standard errors 

The results of both datasets indicate that the DP GLM can detect the presence of 

over-dispersion with its estimated shape parameter being significantly less than 1 

(for the DP, ( ) /Var Y   ), which is similar to the shape parameter of the NB 

model. The DP GLM also gives very similar estimates for those coefficients as 

the NB model. One advantage the DP GLM over the NB model and COM-

Poisson GLM is that the DP GLM tends to always give the smallest standard 

errors for its estimated coefficients.  

 

Besides, the parameter estimation method in this study is very similar between 

the DP GLM and NB model, since they both estimate their parameters based on 

MLE and they both use the software SAS to code their mathematical functions. 

To be exact, the MLE for the DP GLM in this study is an approximation since it 

uses the approximate PMF in which the normalizing constant was not considered. 

Although Sellers and Shmueli (2010) developed the code for the COM-Poisson 
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GLM using MLE, its GLM framework was based the parameter   as shown in 

Equations (2.18) and (2.19), which cannot provide a clear centering parameter 

(Guikema and Coffelt, 2008). Although the re-parameterization of the COM-

Poisson proposed by the Guikama and Coffelt (2008) was based on a more 

clearer centering parameter which is the mode  , it is still not intuitive  to 

interpret as the use of the mean in the DP GLM and COM-Poisson. In this 

section, the COM-Poisson GLMs estimate their parameters   and   based on the 

Bayesian method in the software WinBUGS (Guikema and Coffelt, 2008).  

 

 Mathematical relationship 

All the three models we discussed in this section have two parameters: a 

centering parameter and shape parameter (or dispersion parameter). As we 

mentioned before, the COM-Poisson model first used the parameter   in its 

parameterization and it cannot provide a clear centering parameter as the mean of 

the DP GLM and NB model. Although the results of the COM-Poisson GLM in 

this section come from another parameterization of the COM-Poisson which was 

recently proposed and based on the mode (Guikema and Coffelt, 2008), its 

corresponding GLM framework was directly linked to the mode rather than the 

mean, and this framework was established under the Bayesian framework which 

costs much time to calculate the estimated parameters (discussion on the 

computational time presented in next subsection).  
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For the NB model, it could theoretically handle under-dispersion by setting its 

shape parameter as negative (
2( ) ( )Var Y      ). However, doing that would 

lead to a misspecification of its PDF (Clark and Perry, 1989; Saha and Paul, 2005) 

and unreliable parameter estimates (Lord et al, 2010). Therefore, the shape 

parameter of the NB model is only limited to measure the over-dispersion, 

whereas the shape parameter of the DP model is very flexible and it can handle 

under-, equi-, and over-dispersion ( ( ) / ,Var Y   1   for under-dispersion; 

1   for equi-dispersion; 1   for over-dispersion). The capability of the DP 

GLM of handling under-dispersed data is presented in the next section. 

 

 Computational time 

As we discussed earlier, both the DP GLMs and NB models are developed based 

on MLE using SAS.  The computational time for generating the results in those 

two models is within ten seconds. The COM-Poisson GLMs in this study, 

however, normally take several hours to generate the outputs in WinBUGS 

which is based on the Bayesian method (Guikema and Coffelt, 2008, Lord at al, 

2008). As mentioned earlier, although recently the MLE code of the COM-

Poisson GLM has been developed in R (Sellers and Shmueli, 2010; Francis et al. 

2012) and the computational time has been greatly reduced, its GLM framework 

was established based on the parameter   as the response variable (in next 

section, the MLE based COM-Poisson GLM will be compared with the DP 

GLM). The use of the parameter   in establishing GLM is not intuitive as the 
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use of mean, and its corresponding estimated coefficients cannot compare 

directly with those estimated with mean as the response variable. 

 

4.7 Summary 

This section evaluated the application of the DP GLM in analyzing motor vehicle 

crash data characterized by over-dispersion. In most cases, crash data are over-dispersed. 

The NB is the most widely applied distribution in handling over-dispersed crash data. 

The focus of the study in this section is to compare the performance of the DP GLM 

with that of the NB model in handling over-dispersed crash data. Previous research has 

found that the COM-Poisson GLM can fit the over-dispersed data as well as the NB 

model. Thus, the results of the COM-Poisson GLM were also provided as a reference.  

Two datasets, the Texas data and Toronto data were used to develop those modes. 

The crashes in the Texas data occurred on the roadway segments (non-intersection 

related crash data) whereas the crashes in the Toronto data occurred on the intersections 

(intersection related data). Correspondingly, two commonly used link functions were 

employed in this section, one for modeling roadway segment crashes and the other for 

modeling intersection crashes. For the Texas data, two response variables were used 

(KABCO crashes and KAB crashes). Several measures of GOF were used to compare 

the performances of the models that can handle over-dispersed data.  

The comparison results for both the datasets indicate that the DP GLM fits the 

over-dispersed data almost the same as the NB GLM and COM-Poisson GLM. The DP 

GLM provides very similar estimates for those coefficients as the NB GLM. However, 
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the standard errors of estimated parameters for the DP GLM are smaller than those for 

the other two models. The mathematics to manipulate the DP GLM is very simple and 

very similar to the NB model, since both of the two models use the mean as the 

centering parameter and have a shape parameter to handle the presence of dispersion. 

The shape parameter of the NB model was only intended for the over-dispersed data 

while the shape parameter for the DP GLM can handle over-, equi-, and under-

dispersion (the performance of the DP GLM handling under-dispersed data is presented 

in next section). Moreover, both the DP GLM and NB model were developed based on 

the MLE, which was not the case with the COM-Poisson GLM developed on the 

Bayesian framework in this section. Although the MLE recently becomes available for 

the COM-Poisson, its corresponding GLM framework is linked to the parameter which 

cannot serve as a clear centering parameter as the mean in the DP GLM and NB model. 

The computational time for the DP GLM and NB GLM using MLE framework was 

substantially quicker than that for the COM-Poisson GLM using Bayesian framework.  

Thus, the overall performance of the DP GLM is better than that of the COM-

Poisson GLM and the same or slightly better than that of the NB model (the DP GLM 

always gives the smallest standard errors) in handling the over-dispersed crash data. It 

should be noted that all the DP GLMs in this thesis were developed based on the 

approximate PMF and thus the MLE for the DP GLMs is an approximation. Considering 

the shape parameter of the DP distribution can handle under-, equi-, and over-dispersed 

data, it is of great interest to examine the performance of the DP GLM in handling 
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under-dispersed data. The next section will investigate the applicability of the DP GLMs 

in handling under-dispersed data. 
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5. APPLICATION OF THE DOUBLE-POISSON GLM TO CRASH DATA 

CHARACTERIZED BY UNDER-DISPERSION 

 

On rare occasions, traffic crash data are characterized by under-dispersion (Lord 

and Mannering, 2010). The presence of data characterized by under-dispersion makes 

the most commonly used models such as the Poisson and NB unable or very difficult to 

handle those traffic crash data (Clark and Perry, 1989; Saha and Paul, 2005). Recently, 

the gamma count model (Oh et al., 2006) and the COM-Poisson model (Kadane et al., 

2006; Sellers and Shmueli, 2010; Guikema and Coffelt, 2008; Geedipally et al., 2008) 

has been applied to handle the under-dispersed data. Particularly, the COM-Poisson 

distribution and GLM has been found very flexible to handle under-dispersed data.  

The study in this section aims to examine the performance of the DP GLM for 

analyzing traffic crash data characterized by under-dispersion. Pairwise comparisons are 

first conducted between the DP GLM with other two models (the COM-Poisson GLM 

and gamma count model) that can handle under-dispersed data. Then an overall 

comparison among the three models is provided. All the comparisons conducted in this 

section are based on the same dataset, with which Oh et al. (2006) developed the gamma 

count model to examine the safety effects of railway-highway crossing elements. 

 

5.1 Data Description 

The dataset used for modeling under-dispersion were collected at railway-highway 

crossings in Korea (Korea data). This dataset were found to be under-dispersed and were 



72 
 

used for establishing the gamma count models to examine factors associated with 

railroad crossing crashes (Oh et al., 2006). Traffic accident records were recorded at a 

total of 162 railway-highway crossings in the 5-year period from 1998 to 2002. A total 

of 56 continuous and categorical explanatory variables including average daily traffic 

(ADT) were collected through site visits and investigations. Tables 5.1 and 5.2 

summarize the key continuous and categorical variables of that dataset respectively.  

 

Table 5.1 Summary statistics of continuous variables for Korea data 

Variables Min. Max. Average Std. Dev Obs 

Crashes* 0 3 0.33 0.60 162 

Number of Tracks 1 2 1.38 0.49 162 

ADT (vehicles per day) 10 61199 4617.00 10391.57 162 

Average daily railway traffic (trains per day) 32 203 70.29 -37.34 162 

Gradient of Road -20 10.5 -1.30 3.73 162 

Train detector distance (m) 0 1329 824.50 328.38 162 

Time duration between the activation of warning 

signals and gates (s) 
0 232 25.46 25.71 162 

*Response variable. 

 

Table 5.2 Summary statistics of categorical variables for Korea data 

Variables Coding Frequency Percentage 

Presence of commercial area 
1 (yes) 149 91.98% 

0 (no) 13 8.02% 

Presence of track circuit controller 
1 (yes) 134 82.72% 

0 (no) 28 17.28% 

Presence of guide 
1 (yes) 113 69.75% 

0 (no) 49 30.25% 

Presence of speed hump 
1 (yes) 126 77.78% 

0 (no) 36 22.22% 
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5.2 Link Function 

This subsection describes how the response variables are linked to explanatory 

variables. The functional form used by Oh et al. (2006) in developing gamma count 

models was applied to the DP GLM and gamma count model (for gamma count, 
i  is 

the same as the 
i  in Equation (2.13)) by the following equation: 

0 1

1

exp( ln( ) )
n

i i j i j

j

F x   


  
 

(5.1) 

where,  

i = the mean of crashes in 5 years for the crossing i; 

iF = average daily vehicle or ADT traffic on crossing I (vehicles/day); 

i jx = the jth covariate for crossing i; 

j = estimated coefficients across covariates j=1,…,n. 

It should be noted the link function used for the COM-Poisson GLM in this section 

(MLE-based) is different with that in the last section (Bayesian-based). In this section, 

the link function for the COM-Poisson was established based on the parameter   

(Sellers and Shmueli, 2010): 

0 1

1

exp( ln( ) )
n

i i j i j

j

F x   


  
 

(5.2) 

where,  

i = approximately the mean of crashes in 5 years for the crossing i; 

iF = average daily vehicle or ADT traffic on crossing i (vehicles/day); 
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i jx = the jth covariate for crossing i; 

j = estimated coefficients across covariates j=1,…,n. 

This method proposed by Sellers and Shmueli (2010) was used to establish a 

single-link COM-Poisson GLM based on MLE. Recall that the link function of the 

COM-Poisson GLM in last section was based on Bayesian framework (Guikema and 

Coffelt, 2008).  

 

5.3 Goodness-of-fit 

The GOF statistics of the DP GLM for fitting under-dispersed data are the same 

with those for fitting over-dispersed data. Details are presented in Section 4.  

 

5.4 Parameter Estimation Method 

For the DP GLM, the way how parameters were estimated in this section (for 

under-dispersed data) was exactly the same as that in the Section 4 (for over-dispersed 

data). Different with the Section 4, the parameters for the COM-Poisson GLM in this 

section were estimated using the R code developed by Sellers and Shmueli (2010) which 

is based on MLE. It should be noted that the estimated coefficients for the DP GLM and 

those for the COM-Poisson GLM in this section cannot be compared directly due to the 

difference on the response variable between their link functions as shown in Equations 

5.1 and 5.2.  
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5.5 Comparison Results 

In this subsection, results on pairwise comparisons (DP GLM vs. gamma count 

model and DP GLM vs. COM-Poisson GLM) will be first presented. Then results on an 

overall comparison among the three models will be provided.   

 

5.5.1 Pairwise comparison 

Given that this under-dispersed dataset were originally used for establishing the 

gamma count model to analyze railway-highway crashes, this study first compared the 

DP GLM with the gamma count model using the variables originally found significant in 

the gamma count model (it should be noted that the variables found significant in the 

gamma count model are not necessarily significant in the DP GLM).  

Table 5.3 shows the comparison results between the DP GLM and gamma count 

model using the Korea railway-highway crossing crash data. In Table 5.3, the DP GLM 

provides smaller values for all the GOF statistics compared with the gamma count model. 

It can be inferred that the DP GLM fits the under-dispersed data much better than the 

gamma count model albeit only including the variables found significant in the gamma 

count model. Meanwhile, the estimated coefficients indicate that the marginal effect for 

each variable in the DP GLM tends to be larger than that in the gamma count model with 

the exception of the variable presence of speed hump.   
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Table 5.3 Comparison between the DP GLM and gamma count model using Korea data 

Estimated Parameters and Standard Errors 

Variables Gamma
 a
 DP 

Constant -3.438 (1.008) b -5.3360 (0.7489)
 c
 

Ln(ADT) 0.230 (0.076) 0.3443 (0.0668) 

Average daily railway traffic 0.004 (0.0024) 0.0052 (0.0027) 

Presence of commercial area 0.651 (0.287) 0.9666 (0.3010) 

Train detector distance 0.001 (0.0004) 0.0014 (0.0004) 

Time duration between the activation of 
warning signals and gates 

0.004 (0.002) 0.0047 (0.0026) 

Presence of speed hump -1.58 (0.859) -0.8530 (0.3464) 

Shape parameter 2.062 (0.758) 1.5033 (0.1670) 

Goodness-of-fit Statistics 

AIC 211.38 205.9 

MPB  0.179 -1.2963E-06 

MAD  0.459 0.378  

MSPE  0.308 0.260  
a Based on the modeling results for gamma count model documented in Oh et al. (2006). 
b Values in parentheses are the standard errors for the estimated parameters. 
c Bolded value indicates the related variable in the DP GLM is significant at the significance 

level of 0.10. 

 

 

Table 5.4 shows the comparison results on the estimated parameters (coefficients 

and shape parameters) and standard errors for the variables that found to be significant in 

the COM-Poisson model (Lord et al., 2010). Again, the variables found significant in the 

COM-Poisson GLM are not necessarily significant in the DP GLM. But coincidently, all 

those variables happen to be significant in the DP GLM at the significance level of 0.10. 

The shape parameters in both models are significantly larger than 1, both of which 

confirm the data are under-dispersed.  
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Table 5.4 Comparison between the DP GLM and Com-Poisson GLM using Korea data 

Estimated Parameters and Standard Errors 

Variables COM-Poisson DP 

Constant -6.657 (1.206) -5.2031 (0.7363)
 c
 

Ln(AADT) 0.648 (0.139) 0.4393 (0.07231) 

Presence of commercial area 1.474 (0.513) 0.8725 (0.3023) 

Train detector distance 0.0021 (0.0007) 0.0017 (0.0005) 

Presence of track circuit controller -1.305 (0.431) -0.7121 (0.2491) 

Presence of guide -0.998 (0.512) -0.5852 (0.3184) 

Presence of speed hump -1.495 (0.531) -1.0977 (0.3476) 

Shape parameter 2.349 (0.634) 1.5344 (0.1705) 

Goodness-of-fit Statistics 

AIC 210.7 202.5 

MPB -0.007 1.60748E-11 

MAD 0.348 0.363 

MSPE 0.236 0.253 
a Based on the modeling results for the COM-Poisson GLM documented in Lord et al. (2010). 
b Values in parentheses are the standard errors for the estimated parameters. 
c Bolded value indicates the related variable in the DP GLM is significant at the significance  

level of 0.10. 

 

 

As for the GOF statistics, the two models are almost the same. The DP GLM has 

smaller values for AIC and MPB while the COM-Poisson GLM has slightly smaller 

values of MAD and MSPE. So at this time, there is no conclusions made on one model is 

better than the other. It is important to note that all the estimated coefficients in the 

COM-Poisson GLM are for its centering parameter “  ” (Sellers and Shmueli, 2010) and 

not for the mean, as in the case of the DP GLM. So the coefficients for the two models 

are somewhat different and they cannot be compared directly. But this does not affect 
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the comparison on the GOF, since the mode   in the COM-Poisson GLM can be 

calculated from the predicted   and   (recall that 
1/v  ) and then the predicted 

mean of the COM-Poisson can be obtained by the method we documented in Section 4.2.  

 

5.5.2 Overall comparison 

Given that in the above comparisons the DP GLM only includes the variables that 

make the gamma count model or the COM-Poisson GLM to be optimal, the DP GLM 

still has the potential to be better by adding or deleting other explanatory variables. Thus, 

there is a need to compare the models each of which is at their optimal. By penalizing 

models with number of parameters, AIC was used to select the most parsimonious model 

that can best explain the data with a minimum of parameters. The model with a certain 

combination of variables that achieves the smallest value of AIC was deemed as its 

optimal. It should be noted that all the models in this study are the main effects model 

and interaction effects are not considered in this study. To avoid multicollinearity, the 

correlation matrix between variables was analyzed to delete redundant variables in those 

models. The level of significance for variable selection was 0.10.  

Table 5.5 shows that different models achieve at their own optimal with different 

significant variables. The optimal DP GLM, COM-Poisson GLM and gamma count 

model have a total of 8, 6 and 6 significant variables respectively. The variables that are 

significant in all of the three models are: Ln(ADT), presence of commercial area, train 

detector distance, and presence of speed hump. The variables that are only significant in 

the DP GLM are: number of tracks and gradient of road. The variables found to be only 
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significant in the gamma count model are: average daily railway traffic and time 

duration between the activation of warning signals and gates. All the variables found to 

be significant in the COM-Poisson are also significant in the DP model.  

 

Table 5.5 Significant variables in three different models 

Variables COM-Poisson Gamma DP 

Number of Tracks - - + 

Ln(ADT) + + + 

Average daily railway traffic - + - 

Gradient of Road - - + 

Presence of commercial area + + + 

Train detector distance + + + 

Time duration between the activation of 

warning signals and gates 
- + - 

Presence of track circuit controller + - + 

Presence of guide + - + 

Presence of speed hump + + + 

Note: “+” for “significant” and “-” for “not significant” at the significance level of 0.10. 

 

 

Table 5.6 shows the comparison results among all the three models when each 

model achieves their optimal. In Table 5.6, the DP GLM is shown to better fit the data 

than any other two models since it has the smallest value in all the GOF statistics. 

Another interesting point is the variable number of tracks which are found to be only 

significant in the DP GLM are highly significant and has an great marginal effect. 

According to the coefficients of the variable number of tracks in the DP GLM, 

increasing one track would lead to 2.55 (=exp(0.9343)) times increase in the expected 
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crash number.  According to the signs of the estimated parameters found significant in 

all of the three models, the increase in AADT and train detector distance would enhance 

the expected crash number. The presence of commercial area would increase the 

expected crash number whereas the presence of speed hump would decrease the 

expected crash number.  

 

Table 5.6 Comparison among three models when each model at their optimal 

Estimated Parameters and Standard Errors 

Variables COM-Poisson
 a
 Gamma

 b
 DP 

Constant -6.657 (1.206) c -3.438 (1.008) -7.1506 (0.8921) 

Number of Tracks - - 0.9343 (0.2466) 

Ln(ADT) 0.648 (0.139) 0.230 (0.076) 0.5225 (0.0748) 

Average daily railway traffic - 0.004 (0.0024) - 

Gradient of Road - - -0.0657 (0.0310) 

Presence of commercial area 1.474 (0.513) 0.651 (0.287) 1.0354 (0.3063) 

Train detector distance 0.0021 (0.0007) 0.001 (0.0004) 0.0015 (0.0005) 

Time duration between the activation of 

warning signals and gates 
- 0.004 (0.002) - 

Presence of track circuit controller -1.305 (0.431) - -0.6554 (0.2314) 

Presence of guide -0.998 (0.512) - -0.5338 (0.3702) 

Presence of speed hump -1.495 (0.531) -1.58 (0.859) -1.2149 (0.3359) 

Shape parameter 2.349 (0.634) 2.062 (0.758) 1.6835 (0.1875) 

Goodness-of-fit Statistics 

AIC 210.7 211.38 191.5 

MPB -0.007 0.179 2.98357E-11 

MAD 0.348 0.459 0.334  

MSPE 0.236 0.308 0.234  
a Based on the modeling results for COM-Poisson GLM documented in Lord et al. (2010). 
b Based on the modeling results for gamma count model documented in Lord et al. (2010).  
c Values in parentheses are the standard errors for the estimated parameters. 
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Figure 5.1 shows the distributions of crash numbers for the observed and predicted 

crashes of the three models each at their optimal for Korea data. The observed crashes 

are more scattered than the three types of predicted crashes.  

 

 

Figure 5.1 Frequencies of observed and predicted crashes for the Korea Data  

 

 

Figure 5.2 illustrates the scatter plot for the predicted vs. observed crashes for each 

site. All the three models have shown to over-predict the crashes when observed crash 

number is equal to 0 and under-predict the crashes when observed crash number is equal 

to 2. Since most of the data points are with the range of the observed crashes equal to 0, 

1 and 2, there is much overlapping between the data predicted by the three models and 

0

20

40

60

80

100

120

140

160

180

0-1 1-2 2-3 >3

Fr
e

q
u

en
cy

 

Crash Number 

Observed

DP Predicted

Gamma Predicted

COM-Poisson Predicted



82 
 

thus we cannot draw conclusions on the comparison among those models from Figure 

5.2. 

 

 

Figure 5.2 Predicted vs. observed crashes for the Korea Data 
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Figure 5.3 demonstrates the predicted crashes of the three models each at their 

optimal against the variable ADT when controlling other significant variables at their 

average. Thus, a direct comparison cannot be conducted since each model uses different 

input variables. Figure 5.3 shows that the three models share a similar trend on how the 

predicted crashes vary with the increase of the ADT. 

 

 

Figure 5.3 Estimated values for the Korea data (against ADT variable) 

 

 

Figure 5.4 shows the adjusted CURE plot for the variable ADT. The DP GLM and 

the COM-Poisson GLM provide a similarly good fit to the data with curves of both 

models oscillating closely around the X axis. The performance of the gamma count 

model has been found to be worse than the other two models, since the difference 
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between the predicted and observed crashes for the gamma count model is almost always 

negative when Ln(ADT) is less than 6 and positive when Ln(ADT) is larger than 6.   

 

 

Figure 5.4 Cumulative residual plots for the Korea data (against ADT variable) 

Note: Dotted lines represent ±2 standard deviance 

 

 

Figure 5.5 presents the comparison on the variances predicted by the DP GLM and 

the COM-Poisson GLM. Due to the limitation of the sample size, however, we cannot 

see if the predicted crash variance vs. predicted mean follow the pattern of their 

theoretical relationship.  
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a) DP GLM 

b) COM-Poisson GLM 

Figure 5.5 Predicted crash variance vs. predicted crash mean for the Korea data  
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5.6 Discussion 

This subsection will give a detailed discussion on the overall performances of the 

DP GLM, COM-Poisson GLM and gamma count model for analyzing under-dispersed 

data based on the previous results.  

 Goodness-of-fit 

A pairwise comparison between the DP GLM and the gamma count model using 

the variables originally found significant in the gamma count model (Oh et al., 

2006) was first conducted. It shows that the DP GLM is found to provide a better 

fit than the gamma count model. From another similar pairwise comparison 

between the DP GLM and COM-Poisson GLM using the variables originally 

found significant in the COM-Poisson GLM (Lord et al., 2010), the DP GLM fits 

the data as well as the COM-Poisson GLM. Given that in the above two pairwise 

comparisons the DP GLM is not at its optimal as the case with the other two 

models, we further conduct an overall comparison among the three models in 

which each model achieves at their optimal. The overall comparison shows that 

the DP GLM fits the data much better than the other two models with its smallest 

values in all the different GOF statistics. It should be noted that in the overall 

comparison, the difference in the GOF statistics between the DP GLM and 

COM-Poisson GLM is minor with the exception of the AIC value. 

 

 

 



87 
 

 Estimated Parameters and Standard Errors 

The results of the estimated parameters for the DP GLMs indicate that the DP 

GLM can detect the presence of under-dispersion with its estimated shape 

parameter being significantly bigger than 1 ( ( ) /Var Y   ). The DP GLMs in 

this section estimate their parameters based on MLE and use the software SAS to 

code their mathematical functions. As we mentioned in Section 4, MLE of the 

DP GLM was an approximation and it was achieved based on the approximate 

PMF of the DP distribution.  

 

The COM-Poisson GLM in this section was developed based on MLE in R 

(Sellers and Shmueli, 2010) which is different with that in Section 4. However, 

its use of the parameter   rather than the mean in the link function is not 

intuitive and much more complex.  

 

In this section and the last section, it has been found that the DP GLM tends to 

provide smaller standard errors of the estimated coefficients than other models. 

This makes the DP GLM more prone to threat variables as being significant. The 

dominance of the DP GLM in this section might be related to its inclusion of 

more significant variables than the other models. For those variables only 

significant in the DP GLM, adding them very likely reduces the AIC value more 

substantially than does for the other GOF statistics. This might explain why the 

difference in the AIC value between the DP GLM and COM-Poisson GLM is 
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much larger than the other GOF statistics. It should be noted that we cannot 

directly compare the estimated parameters and standard errors of the DP GLM to 

those of the COM-Poisson GLM due to the different choices of centering 

parameter and corresponding link function in the two models in this section. 

 

 Mathematical Relationship 

All the three models we discussed in this section have two parameters: a 

centering parameter and shape parameter (or dispersion parameter). For the DP 

GLM, it uses the mean as its centering parameter. The shape parameter of the DP 

GLM has been found to be very flexible and it can handle under-, equi-, and 

over-dispersion ( ( ) /Var Y   , 1   for under-dispersion; 1   for equi-

dispersion; 1   for over-dispersion).  

 

As we mentioned before, the COM-Poisson model in this section used the 

parameterization which cannot provide a clear centering parameter as the mean 

of the DP model. For the gamma count model, it assumes the observations are 

dependent where the observation at time t-1 directly influences the observation at 

time t. This assumption is possible for some datasets but not realistic for most 

datasets. For instance, a crash occurred at time t cannot directly influence another 

one that will occur six months after the first event. 
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 Computational Time 

The computational time for the DP GLM in this section (under-dispersed data) is 

consistent with that in the last section (over-dispersed data). With the use of 

MLE-based GLM framework, the computational time for the COM-Poisson 

GLM in this section was greatly reduced compared with that under the Bayesian-

based framework in Section 4. However, it still takes several minutes to converge 

and much longer than the DP GLM which generates the result in less than ten 

seconds.  

 

5.7 Summary 

This section evaluated the application of the DP GLM in analyzing motor vehicle 

crash data characterized by under-dispersion. In rare occasions, the traffic crash data are 

under-dispersed. The presence of data characterized by under-dispersion makes the most 

commonly used models such as the Poisson and NB unable to handle those traffic crash 

data. The objective of the study in this section is to compare the performance of the DP 

GLM with other models in handling data characterized by under-dispersion. Comparison 

analysis was conducted between the three models (the DP GLM, COM-Poisson GLM 

and gamma count model) that can handle under-dispersed data. The under-dispersed 

dataset comes from Oh et al.’s study (2006), in which the data were used for establishing 

the gamma count model. Several GOF statistics were used to compare the performances 

of those models. 
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In pairwise comparisons, the DP GLM only includes the variables found 

significant in the models to which DP GLM compares. The pairwise comparison results 

indicate that the DP GLM fits the data much better than the gamma count model and 

almost the same with the COM-Poisson GLM. For the overall comparison in which the 

three models are put together and each achieves their own optimal, the DP GLM has 

been found to give a much better fit than the other two.  

Considering all the comparison results obtained from this section, we can conclude 

that the DP GLM fits the data better than the gamma count model and COM-Poisson 

GLM. The DP GLM can detect the presence of under-dispersion. The shape parameter 

of the DP GLM has been found to be very flexible and it can handle under-, equi-, and 

over-dispersion ( ( ) /Var Y   , 1   for under-dispersion; 1   for equi-dispersion; 

1   for over-dispersion). The centering parameter in the COM-Poisson distribution 

based on which the COM-Poisson GLM is developed is not intuitive as that for the DP 

distribution. The gamma count model on the other hand suffers greatly from its 

theoretical background. The computational time for the DP GLM was a little bit quicker 

than that for the COM-Poisson in this section. 

Thus, the overall performance of the DP GLM is much better than that of the 

COM-Poisson GLM and gamma count model in handling the under-dispersed crash data.  
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6. SUMMARY AND CONCLUSIONS 

 

In traffic safety analysis, a large number of distributions have been proposed to 

analyze the number of vehicle crashes. Among those distributions, the traditional 

Poisson and Negative Binomial have been the most commonly used probabilistic 

structures of models. Although the Poisson and NB models possess desirable statistical 

properties, their application on modeling motor vehicle crashes are associated with 

limitations. In practice, traffic crash data are often over-dispersed. On rare occasions, 

they have shown to be under-dispersed. The over-dispersed and under-dispersed data 

would lead to the inconsistent standard errors of parameter estimates using the 

traditional Poisson distribution. Although the NB has been found to be able to model 

over-dispersed data, it cannot handle under-dispersed data.  

In light of the difficulties raised by the Poisson and NB models, many new 

statistical methods have been proposed to handle the over-dispersed and under-dispersed 

count data. Among those distributions proposed to handle under-dispersed data, the 

COM-Poisson and DP distributions are particularly noteworthy with each distribution 

being capable of handling data characterized by under-, equi- and over-dispersion. The 

COM-Poisson distribution and its GLM have been found to be very flexible to handle 

count data. While for the DP, its distribution and GLM framework has seldom been 

investigated and applied since its first introduction 25 years ago.  

Therefore, the primary objectives of this research were to: 1) examine the 

applicability of the DP distribution and its regression model for analyzing crash data 
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characterized by over- and under-dispersion, and 2) compare the performances of the DP 

distribution and DP GLM with those of the COM-Poisson distribution and COM-

Poisson GLM in terms of GOF and theoretical soundness. 

This section first presents the summary of work in this research and then discusses 

the possible directions for the future work. 

 

6.1 Summary of Work 

This subsection briefly describes how the research was conducted and highlights 

the main findings in this research.   

 

6.1.1 Evaluation of the performance of the DP distribution  

The first part of the research work on this thesis was documented in Section 3 and 

related to the evaluation of the performance of the DP distribution with no covariates 

considered. As discussed in Sections 1 and 2, very few researchers have applied or used 

the DP distribution or its regression model for analyzing count data since its introduction. 

For a new distribution like the DP, it is important to first evaluate the distribution under 

the wide variety of situations before dealing with the regression model.  

This part of research work was accomplished using simulated data for nine 

different mean-dispersion relationships (or scenarios). Five runs each with 2,000 

observations were simulated under each scenario by different distributions. The under-

dispersed data were simulated by the COM-Poisson distribution; the equi-dispersed data 

were simulated by the COM-Poisson and Poisson distributions; and the over-dispersed 
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data were simulated by the COM-Poisson and NB distributions. For each scenario, 

different distributions were fitted based on their characteristics of handling dispersion. 

All scenarios of data were fitted using the DP and COM-Poisson. The gamma count, 

Poisson and NB were only employed to fit under-dispersed data, equi-dispersed data and 

over-dispersed data, respectively. Four different GOF statistics were used to evaluate 

and compare the performances of different distributions.  

It was found that the COM-Poisson performs better than the DP for all nine 

scenarios. It should be noted that the comparison on their performance of handling 

under-dispersed count data is yet to be determined since all the under-dispersed data in 

this section were simulated by the COM-Poisson and the COM-Poisson may be expected 

to generate better results than other distributions. Another main finding is that the DP 

works better for high mean scenarios independent of the type of dispersion. The lack of 

fit for the DP in low mean scenarios is due to its inadequacy for fitting “zero” 

observations.  

 

6.1.2 Comparison of GLM performance for over-dispersed data 

The second part of research work on this thesis was documented in Section 4. It 

was related to the application of the DP GLM for analyzing motor vehicle crash data 

characterized by over-dispersion, and the comparison analysis between the DP GLM, 

NB model and COM-Poisson GLM. This study was motivated by the fact that no model 

was able to replace the NB models for analyzing over-dispersed data. Previous research 

has found that the COM-Poisson GLM can fit the over-dispersed data as well as the NB 
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model. Thus, the results of the COM-Poisson GLM were also provided as a reference. 

Although the results in Section 3 has demonstrated that the DP distribution can handle 

over-, equi-, and under-dispersed count data, it is of more interest to see how good the 

DP GLM can link the crash data to the variables that affect traffic safety and how much 

influence those variables can affect the expected crashes.  

Two observed over-dispersed datasets along with two different and commonly 

used link functions were used to establish the GLMs in order to eliminate the potential 

bias of using only one dataset or one link function. Several measures of GOF were used 

to compare performances of the DP GLM, NB model and COM-Poisson GLM. 

It was found that the DP GLM fits the over-dispersed data almost the same as the 

NB model and COM-Poisson GLM. The DP GLM provides very similar estimates for 

those coefficients as the NB model. The mathematics to manipulate the DP GLM is very 

simple and very similar to the NB model, since both of the two models use the mean as 

the centering parameter and have a shape parameter to handle the presence of dispersion. 

The advantage of the DP GLM over the NB model lies in the smaller standard 

errors of its estimated coefficients and the flexibility of its shape parameter. The 

standard errors of estimated parameters for the DP GLM were found to be smaller than 

those for the other two models, indicating the DP GLM can more precisely describe the 

effects of the interested covariates. Moreover, the shape parameter of the NB model was 

only intended for the over-dispersed data (
2( )Var Y    ) while the shape parameter 

for the DP GLM can handle under-, equi-, and over-dispersion ( ( ) /Var Y   ) (the 

performance of the DP GLM handling under-dispersed data is presented in Section 5). 
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The advantage of the DP GLM over the COM-Poisson is found to be related to the 

parameter estimation method. The DP GLM and NB model were developed based on the 

MLE, which was not the case with the COM-Poisson GLM developed on the Bayesian 

framework in this section. The computational time for the DP GLM and NB GLM using 

MLE framework was substantially quicker than that for the COM-Poisson GLM using 

Bayesian framework. Although the MLE recently becomes available and the 

computational time has been greatly reduced for the COM-Poisson, its corresponding 

GLM framework is linked to the parameter which cannot serve as a clear centering 

parameter as the mean in the DP GLM and NB model.  

 

6.1.3 Comparison of GLM performance for under-dispersed data 

The third part of research work on this thesis was documented in Section 5. It was 

related to the application of the DP GLM for analyzing motor vehicle crash data 

characterized by under-dispersion, and the comparison analysis between the DP GLM, 

COM-Poisson GLM and gamma count model. This research was motivated by the fact 

that the DP and COM-Poisson models can overcome the difficulty of handling under-

dispersed data raised by the NB model.  

The under-dispersed dataset comes from Oh et al.’s study (2006), in which the data 

were used for establishing the gamma count model. Several GOF statistics were used to 

compare the performances of those models. Pairwise comparisons were first conducted 

between the DP GLM with other two models (the COM-Poisson GLM and gamma count 

model) that can handle under-dispersed data. In pairwise comparisons, the DP GLM 
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only includes the variables found significant in the models to which the DP GLM 

compares. Then an overall comparison among the three models was provided. In the 

overall comparison, the three models are put together and each achieves their own 

optimal with different input variables.  

It was found from the pairwise comparisons that the DP GLM fits the data much 

better than gamma count model and almost the same with the COM-Poisson GLM. For 

the overall comparison in which each model achieves their own optimal, the DP GLM 

was found to provide a much better fit than the other two. Considering all the 

comparison results in Section 5, a conclusion was made that the DP GLM fits the data 

better than the gamma count model and COM-Poisson GLM.  

It is important to note that the DP GLM also has its theoretical appeal. The shape 

parameter of the DP GLM was found to be very flexible and it can handle under-, equi-, 

and over-dispersion ( ( ) /Var Y   , 1   for under-dispersion; 1   for equi-

dispersion; 1   for over-dispersion). The centering parameter of the DP GLM is the 

mean, and it is more intuitive to interpret than the mode as the centering parameter in the 

COM-Poisson GLM. The gamma count model on the other hand suffers from its 

theoretical background.  

 

6.2 Future Research Areas 

According to the limitations of this research, the following recommendations are 

provided for future research: 
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 As discussed in Section 3, the lack of fit for the DP distribution in low mean 

scenarios is due to its inadequacy for fitting “zero” observations. Further research 

should be conducted on explaining the effects of data characterized by low 

sample mean on the DP model. Due to the wide existence of large number of 

zeros in crash data, it is important to investigate how much the GOF, parameter 

estimates and confidence intervals might be biased when fitting the DP model to 

the data characterized by the low sample mean.  

 

 As mentioned in Section 3, in the approximate PMF of the DP distribution (see 

Equation (2.32)), the denominator is zero for observation equal to zero, which is 

not solvable. To circumvent this problem, the author calculated the limits of the 

likelihood when observation value approached zero in writing the thesis. The 

validity and accuracy of this approach worth further investigation      

 

 The difference of the exact and approximate DP distribution lies in if the 

normalizing constant (see Equation (2.34)) is used. The normalizing constant was 

not considered in developing the DP GLM in Sections 4 and 5 due to the 

increased non-linearity in the PMF when using it. Since it has been found that the 

inclusion of the approximation to the normalizing constant proposed by Efron 

(1986) does not improve the model in Section 4, it is recommended to conduct 

research on the more accurate approximation methods for the normalizing 

constant and evaluate their effects on the DP GLM.  
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 Bayesian method has been commonly used for crash models to estimate their 

parameters. The research on the DP models could be extended by developing the 

DP GLM based on the Bayesian framework. Since the Bayesian estimation 

method is capable of handling very complex models, it has the potential to 

overcome the difficulty in estimating the parameters of the exact DP distribution, 

whose PMF incorporates the normalizing constant and poses computation 

challenges when using MLE in SAS.  

 

 In this study, the GLM of each distribution is only linked to the centering 

parameter. Further research could be conducted on assessing the performance of 

the double-link DP model, in which both the centering parameter and shape 

parameter are linked to covariates.   

 

 The NLMIXED procedure in SAS has an interface to include the random effects 

in the regression model. Corresponding research could be conducted on assessing 

the performance of the random effects DP model.  
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APPENDIX 

THE SIMULATION RESULTS FOR COMPARING DIFFERENT  

DISTRIBUTIONS 

 

TABLE A.1 Results of Under-dispersion and High Mean Scenario 

(COM-Poisson Simulated Data) 

Run # 

Characteristics of  

Simulated Data 
Distributions 

Estimated 

Parameters* 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 4.856 3.773 0.777 

DP 4.856 1.225 12.7 13.1 -4148.9 9 1.41 

COM-P 4.979 1.304 10.7 10.8 -4147.8 9 1.19 

Gamma -- -- 10.3 10.4 -4147.7 9 1.15 

Run2 4.856 3.922 0.808 

DP 4.856 1.186 7.0 7.3 -4179.4 9 0.78 

COM-P 4.962 1.262 5.3 5.4 -4178.4 9 0.59 

Gamma -- -- 5.2 5.2 -4178.4 9 0.58 

Run3 4.880 3.850 0.789 

DP 4.880 1.223 10.5 11.4 -4157.3 9 1.17 

COM-P 4.962 1.301 10.6 10.8 -4156.9 9 1.17 

Gamma -- -- 9.7 10.1 -4156.5 9 1.08 

Run4 4.905 3.936 0.803 

DP 4.905 1.199 6.5 6.6 -4182.1 9 0.72 

COM-P 5.018 1.271 5.9 6.0 -4181.7 9 0.66 

Gamma -- -- 6.0 6.1 -4181.7 9 0.66 

Run5 4.885 3.8317 0.784 

DP 4.885 1.222 7.4 7.4 -4158.2 9 0.82 

COM-P 5.011 1.304 5.6 5.6 -4157.2 9 0.63 

Gamma -- -- 5.4 5.4 -4157.1 9 0.60 

Average -- -- -- 

DP -- -- 8.8 9.2 -4165.2 9 0.98 

COM-P -- -- 7.6 7.7 -4164.4 9 0.85 

Gamma -- -- 7.3† 7.4 -4164.3 9 0.81 

*For the DP, the estimated parameters are µ and θ; for COM-Poisson, the estimated parameters are µ and 

ν. (Note: same for all other tables.)
 

†
Bold value indicates best goodness-of-fit. (Note: same for all other tables.) 
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TABLE A.2 Results of Under-dispersion and Medium Mean Scenario 

(COM-Poisson Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 1.896 1.501 0.792 

DP 1.896 1.095 22.3 24.7 -3177.9 4 5.58  

COM-P 2.046 1.374 5.0 5.0 -3167.8 4 1.24  

Gamma -- -- 5.0 5.0 -3167.8 4 1.26  

Run2 1.838 1.564 0.851 

DP 1.838 1.023 22.2 23.6 -3198.5 5 4.45  

COM-P 1.956 1.263 1.3 1.3 -3187.9 4 0.31  

Gamma -- -- 1.3 1.3 -3187.9 4 0.31  

Run3 1.890 1.540 0.815 

DP 1.890 1.070 22.4 24.8 -3194.4 5 4.48  

COM-P 2.031 1.338 5.7 5.5 -3184.6 4 1.42  

Gamma -- -- 5.8 5.7 -3184.7 4 1.45  

Run4 1.828 1.509 0.826 

DP 1.828 1.049 23.7 24.1 -3170.1 4 5.91  

COM-P 1.960 1.312 3.8 3.7 -3159.1 4 0.96  

Gamma -- -- 3.9 3.8 -3159.1 4 0.98  

Run5 1.855 1.521 0.820 

DP 1.855 1.043 24.2 26.5 -3189.3 5 4.84  

COM-P 1.984 1.304 2.8 2.8 -3177.8 4 0.69  

Gamma -- -- 2.6 2.6 -3177.7 4 0.65  

Average -- -- -- 

DP -- -- 23.0 24.7 -3186.0 4.6 4.99  

COM-P -- -- 3.7 3.7 -3175.4 4.0 0.92  

Gamma -- -- 3.7 3.7 -3175.4 4.0 0.93  
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TABLEA.3 Results of Under-dispersion and Low Mean Scenario 

(COM-Poisson Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 0.383 0.363 0.950 

DP 0.383 1.112 3.6 3.4 -1583.4 1 3.65  

COM-P 0.454 1.183 2.3 2.3 -1582.9 1 2.32  

Gamma -- -- 2.1 2.0 -1582.7 1 2.09  

Run2 0.393 0.363 0.924 

DP 0.393 1.115 3.2 3.2 -1600.2 1 3.17  

COM-P 0.533 1.363 0.4 0.4 -1598.8 1 0.38  

Gamma -- -- 0.4 0.4 -1598.8 1 0.37  

Run3 0.361 0.342 0.948 

DP 0.361 1.137 5.1 4.6 -1529.6 1 5.11  

COM-P 0.453 1.237 2.6 2.4 -1528.5 1 2.56  

Gamma -- -- 2.5 2.3 -1528.4 1 2.46  

Run4 0.401 0.361 0.902 

DP 0.401 1.120 4.3 4.3 -1612.0 1 4.35  

COM-P 0.575 1.470 0.1 0.1 -1609.7 1 0.06  

Gamma -- -- 0.0 0.0 -1609.7 1 0.01  

Run5 0.391 0.3713 0.950 

DP 0.391 1.101 1.6 1.6 -1604.3 1 1.63  

COM-P 0.477 1.208 0.3 0.3 -1603.6 1 0.28  

Gamma -- -- 0.2 0.2 -1603.6 1 0.23  

Average -- -- -- 

DP -- -- 3.6 3.4 -1585.9 1.0 3.58  

COM-P -- -- 1.1 1.1 -1584.7 1.0 1.12  

Gamma -- -- 1.0 1.0 -1584.6 1.0 1.03  
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TABLE A.4 Results of Equi-dispersion and High Mean Scenario 

(COM-Poisson Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters* 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 5.025 5.241 1.043 

DP 5.025 0.927 12.9 13.2 -4445.5 11 1.17  

COM-P 5.003 0.966 10.0 9.9 -4444.1 10 1.00  

Poisson 5.025 -- 11.4 11.3 -4444.6 11 1.03  

Run2 4.897 5.062 1.034 

DP 4.897 0.915 8.9 9.3 -4425.4 11 0.81  

COM-P 4.874 0.954 6.4 6.4 -4424.0 10 0.64  

Poisson 4.897 -- 8.2 8.1 -4424.8 11 0.74  

Run3 4.995 4.951 0.991 

DP 4.995 0.973 18.7 20.0 -4393.5 10 1.87  

COM-P 4.997 1.016 17.1 17.4 -4392.5 10 1.71  

Poisson 4.995 -- 17.2 17.9 -4392.6 11 1.56  

Run4 4.971 4.972 1.000 

DP 4.971 0.958 12.9 13.1 -4400.9 10 1.29  

COM-P 4.964 1.001 10.9 10.6 -4399.7 10 1.09  

Poisson 4.971 -- 10.8 10.6 -4399.7 11 0.98  

Run5 4.986 5.089 1.021 

DP 4.986 0.951 6.1 6.3 -4413.1 10 0.61  

COM-P 4.980 0.995 3.8 3.7 -4411.9 10 0.38  

Poisson 4.986 -- 3.9 3.7 -4411.9 11 0.35  

Average -- -- -- 

DP -- -- 11.9 12.4 -4415.7 10.4 1.14  

COM-P -- -- 9.6 9.6 -4414.4 10.0 0.96  

Poisson -- -- 10.3 10.3 -4414.7 11.0 0.93  

*For Poisson, the estimated parameter is the mean λ. All other variables are, as described in the previous 

tables. (Note: same for all other tables below.)
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TABLE A.5 Results of Equi-dispersion and Medium Mean Scenario  

(COM-Poisson Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 2.022 2.127 1.052 

DP 2.022 0.830 18.0 19.1 -3471.3 6 2.99  

COM-P 1.969 0.917 3.5 3.6 -3463.4 5 0.69  

Poisson 2.022 -- 7.4 7.2 -3465.1 6 1.24  

Run2 1.998 2.129 1.066 

DP 1.998 0.838 24.4 25.3 -3455.2 5 4.87  

COM-P 1.944 0.920 8.5 8.8 -3446.6 5 1.70  

Poisson 1.998 -- 12.4 12.1 -3448.1 6 2.06  

Run3 2.000 2.049 1.025 

DP 2.000 0.867 25.5 26.5 -3430.3 5 5.10  

COM-P 1.984 0.975 9.4 9.3 -3421.6 5 1.87  

Poisson 2.000 -- 9.8 9.6 -3421.7 6 1.64  

Run4 2.020 2.024 1.002 

DP 2.020 0.892 24.6 26.1 -3423.4 5 4.92  

COM-P 2.023 1.012 8.8 8.4 -3414.7 5 1.75  

Poisson 2.020 -- 8.7 8.5 -3414.7 6 1.46  

Run5 2.083 1.9841 0.953 

DP 2.083 0.935 19.1 20.1 -3420.3 5 3.83  

COM-P 2.124 1.080 2.6 2.6 -3411.8 5 0.53  

Poisson 2.083 -- 6.2 6.4 -3413.6 6 1.04  

Average -- -- -- 

DP -- -- 22.3 23.4 -3440.1 5.2 4.29  

COM-P -- -- 6.5 6.5 -3431.6 5.0 1.31  

Poisson -- -- 8.9 8.8 -3432.6 6.0 1.49  
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TABLEA.6 Results of Equi-dispersion and Low Mean Scenario 

(COM-Poisson Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 0.504 0.474 0.942 

DP 0.504 1.027 4.0 4.0 -1842.8 1 4.03  

COM-P 0.605 1.232 1.4 1.4 -1841.5 1 1.41  

Poisson 0.504 -- 5.6 5.7 -1843.7 2 2.82  

Run2 0.518 0.524 1.012 

DP 0.518 0.974 0.3 0.3 -1894.6 1 0.31  

COM-P 0.482 0.937 0.3 0.3 -1894.6 1 0.32  

Poisson 0.518 -- 0.6 0.6 -1894.7 2 0.31  

Run3 0.502 0.498 0.994 

DP 0.502 0.993 1.1 1.2 -1857.2 1 1.13  

COM-P 0.484 0.974 1.3 1.3 -1857.3 1 1.31  

Poisson 0.502 -- 1.1 1.1 -1857.2 2 0.55  

Run4 0.491 0.482 0.983 

DP 0.491 1.005 1.0 1.0 -1831.9 1 0.96  

COM-P 0.516 1.056 0.8 0.8 -1831.8 1 0.83  

Poisson 0.491 -- 1.0 1.0 -1831.9 2 0.50  

Run5 0.515 0.529 1.028 

DP 0.515 0.973 0.2 0.2 -1891.1 1 0.21  

COM-P 0.454 0.893 0.5 0.5 -1891.1 1 0.50  

Poisson 0.515 -- 0.2 0.2 -1891.3 2 0.11  

Average -- -- -- 

DP -- -- 1.3 1.3 -1863.5 1.0 1.33  

COM-P -- -- 0.9 0.9 -1863.3 1.0 0.87  

Poisson -- -- 1.7 1.7 -1863.8 2.0 0.86  
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TABLEA.7 Results of Equi-dispersion and High Mean Scenario 

(Poisson Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 4.968  5.309  1.069  

DP 4.968  0.894  11.0 11.4 -4462.3 11 1.00  

COM-P 4.926  0.930  9.0 8.8 -4460.9 11 0.82  

Poisson 4.968  
 

14.5 13.1 -4463.0 11 1.32  

Run2 4.962  5.008  1.009  

DP 4.962  0.948  21.8 23.1 -4410.7 10 2.18  

COM-P 4.954  0.991  20.0 20.5 -4409.4 10 2.00  

Poisson 4.962  
 

20.1 20.5 -4409.5 11 1.83  

Run3 5.077  4.918  0.969  

DP 5.077  0.984  8.1 8.7 -4400.5 10 0.81  

COM-P 5.090  1.032  6.7 6.8 -4399.5 10 0.67  

Poisson 5.077  
 

7.1 7.5 -4399.9 11 0.65  

Run4 4.936  4.976  1.008  

DP 4.936  0.954  6.2 6.8 -4400.2 10 0.62  

COM-P 4.936  0.994  4.4 4.5 -4399.0 10 0.44  

Poisson 4.936  
 

4.4 4.6 -4399.0 11 0.40  

Run5 5.096  4.987  0.979  

DP 5.096  0.979  6.6 6.8 -4409.2 10 0.66  

COM-P 5.108  1.023  5.4 5.3 -4408.2 10 0.54  

Poisson 5.096  
 

5.5 5.6 -4408.4 11 0.50  

Average 
   

DP 
  

10.8 11.4 -4416.6 10.2 1.05 

COM-P 
  

9.1 9.2 -4415.4 10.2 0.89 

Poisson 
  

10.3 10.3 -4416.0 11 0.94 
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TABLE A.8 Results of Equi-dispersion and Medium Mean Scenario 

(Poisson Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 4.968  5.309  1.069  

DP 4.968  0.894  11.0 11.4 -4462.3 11 1.00  

COM-P 4.926  0.930  9.0 8.8 -4460.9 11 0.82  

Poisson 4.968  
 

14.5 13.1 -4463.0 11 1.32  

Run2 4.962  5.008  1.009  

DP 4.962  0.948  21.8 23.1 -4410.7 10 2.18  

COM-P 4.954  0.991  20.0 20.5 -4409.4 10 2.00  

Poisson 4.962  
 

20.1 20.5 -4409.5 11 1.83  

Run3 5.077  4.918  0.969  

DP 5.077  0.984  8.1 8.7 -4400.5 10 0.81  

COM-P 5.090  1.032  6.7 6.8 -4399.5 10 0.67  

Poisson 5.077  
 

7.1 7.5 -4399.9 11 0.65  

Run4 4.936  4.976  1.008  

DP 4.936  0.954  6.2 6.8 -4400.2 10 0.62  

COM-P 4.936  0.994  4.4 4.5 -4399.0 10 0.44  

Poisson 4.936  
 

4.4 4.6 -4399.0 11 0.40  

Run5 5.096  4.987  0.979  

DP 5.096  0.979  6.6 6.8 -4409.2 10 0.66  

COM-P 5.108  1.023  5.4 5.3 -4408.2 10 0.54  

Poisson 5.096  
 

5.5 5.6 -4408.4 11 0.50  

Average 
   

DP 
  

10.8 11.4 -4416.6 10.2 1.05 

COM-P 
  

9.1 9.2 -4415.4 10.2 0.89 

Poisson 
  

10.3 10.3 -4416.0 11 0.94 
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TABLEA.9 Results of Equi-dispersion and Low Mean Scenario 

(Poisson Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 0.489  0.499  1.021  

DP 0.489  0.989  0.8 0.8 -1838.9 1 0.80  

COM-P 0.413  0.867  0.5 0.5 -1838.9 1 0.55  

Poisson 0.489  
 

1.1 1.0 -1839.0 2 0.54  

Run2 0.494  0.478  0.968  

DP 0.494  1.013  0.4 0.4 -1834.0 1 0.45  

COM-P 0.542  1.104  0.0 0.0 -1833.7 1 0.01  

Poisson 0.494  
 

0.7 0.7 -1834.2 2 0.36  

Run3 0.503  0.499  0.993  

DP 0.503  0.991  0.1 0.1 -1860.6 1 0.05  

COM-P 0.495  0.992  0.2 0.2 -1860.6 1 0.18  

Poisson 0.503  
 

0.1 0.1 -1860.6 2 0.06  

Run4 0.491  0.487  0.993  

DP 0.491  0.998  0.8 0.8 -1835.5 1 0.83  

COM-P 0.476  0.977  0.9 0.9 -1835.5 1 0.90  

Poisson 0.491  
 

0.8 0.8 -1835.5 2 0.42  

Run5 0.486  0.477  0.982  

DP 0.486  1.013  1.0 1.0 -1820.7 1 0.99  

COM-P 0.507  1.052  1.0 1.0 -1820.6 1 1.02  

Poisson 0.486  
 

1.1 1.2 -1820.8 2 0.57  

Average 
   

DP 
  

0.6 0.6 -1837.9 1 0.62 

COM-P 
  

0.5 0.5 -1837.9 1 0.53 

Poisson 
  

0.8 0.8 -1838.0 2 0.39 
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TABLEA.10 Results of Over-dispersion and High Mean Scenario 

(COM-Poisson Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters* 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 5.523 10.018 1.814 

DP 5.523 0.530 26.1 27.7 -5040.8 14 1.86  

COM-P 4.967 0.496 11.8 11.7 -5032.8 14 0.84  

NB 6.785 0.449 13.5 13.2 -5033.9 15 0.90  

Run2 5.706 10.194 1.786 

DP 5.706 0.535 25.9 27.3 -5067.3 15 1.73  

COM-P 5.176 0.506 12.5 13.0 -5061.7 14 0.89  

NB 7.255 0.440 26.5 26.0 -5066.2 15 1.77  

Run3 5.556 10.242 1.844 

DP 5.556 0.517 24.4 26.4 -5065.9 14 1.74  

COM-P 4.967 0.481 11.5 11.8 -5058.6 14 0.82  

NB 6.586 0.458 21.9 21.7 -5063.3 15 1.46  

Run4 5.523 10.018 1.814 

DP 5.523 0.530 26.1 27.7 -5040.8 14 1.86  

COM-P 5.079 0.557 22.2 21.9 -4962.1 14 1.59  

NB 8.701 0.388 38.4 37.9 -4970.4 14 2.75  

Run5 5.426 9.348 1.723 

DP 5.426 0.542 23.2 25.5 -4994.9 14 1.66  

COM-P 4.919 0.515 15.3 16.3 -4990.3 14 1.09  

NB 7.504 0.420 36.9 37.1 -5001.0 14 2.63  

Average -- -- -- 

DP -- -- 25.1 26.9 -5041.9 14.2 1.77  

COM-P -- -- 14.7 14.9 -5021.1 14.0 1.05  

NB -- -- 27.4 27.2 -5027.0 14.6 1.88  

*For NB, the estimated parameters are the inverse dispersion parameter ϕ and the probability of success p. 

(Note: same for all other tables)
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TABLE A.11 Results of Over-dispersion and Medium Mean Scenario  

(COM-Poisson Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 2.597 4.070 1.567 

DP 2.597 0.582 15.5 16.4 -4027.1 8 1.93  

COM-P 2.028 0.498 9.3 9.9 -4023.7 8 1.17  

NB 4.580 0.362 21.6 22.8 -4029.5 9 2.40  

Run2 2.515 4.152 1.651 

DP 2.515 0.567 20.8 21.0 -4010.1 8 2.60  

COM-P 1.852 0.459 5.1 5.1 -4002.3 8 0.64  

NB 3.862 0.394 6.9 7.7 -4002.9 9 0.76  

Run3 2.539 4.096 1.613 

DP 2.539 0.573 23.2 23.6 -4012.4 8 2.90  

COM-P 1.914 0.475 11.5 11.5 -4006.3 8 1.43  

NB 4.142 0.380 18.2 18.2 -4009.2 9 2.03  

Run4 2.541 3.906 1.538 

DP 2.541 0.599 19.9 20.8 -3985.3 8 2.49  

COM-P 2.021 0.522 8.7 9.0 -3979.4 8 1.09  

NB 4.725 0.350 12.7 13.2 -3981.7 8 1.59  

Run5 2.583 3.976 1.539 

DP 2.583 0.596 14.2 14.8 -4008.2 8 1.78  

COM-P 2.058 0.518 4.4 4.5 -4003.1 8 0.54  

NB 4.789 0.350 10.2 10.1 -4006.6 8 1.28  

Average -- -- -- 

DP -- -- 18.7 19.3 -4008.6 8.0 2.34  

COM-P -- -- 7.8 8.0 -4003.0 8.0 0.98  

NB -- -- 13.9 14.4 -4006.0 8.6 1.62  
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TABLE A.12 Results of Over-dispersion and Low Mean Scenario 

(COM-Poisson Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 0.926 1.176 1.270 

DP 0.926 0.756 7.2 7.2 -2609.7 3 2.39  

COM-P 0.526 0.540 3.6 3.7 -2607.3 3 1.20  

NB 3.426 0.213 3.7 3.6 -2606.4 4 0.92  

Run2 0.934 1.306 1.399 

DP 0.934 0.703 11.6 11.7 -2651.5 3 3.87  

COM-P 0.316 0.383 1.1 1.1 -2645.7 4 0.27  

NB 2.343 0.285 1.3 1.2 -2645.9 4 0.32  

Run3 0.964 1.226 1.272 

DP 0.964 0.744 4.5 4.7 -2661.8 3 1.50  

COM-P 0.549 0.533 4.1 3.9 -2660.1 4 1.02  

NB 3.543 0.214 3.4 3.3 -2660.1 4 0.84  

Run4 0.936 1.190 1.272 

DP 0.936 0.744 4.9 5.0 -2627.3 3 1.63  

COM-P 0.515 0.524 1.2 1.2 -2625.6 3 0.41  

NB 3.442 0.214 1.9 1.9 -2626.2 4 0.47  

Run5 0.941 1.240 1.318 

DP 0.941 0.735 3.7 3.8 -2641.0 3 1.25  

COM-P 0.450 0.474 5.5 5.6 -2638.0 4 1.37  

NB 2.960 0.241 4.1 4.6 -2637.1 4 1.04  

Average -- -- -- 

DP -- -- 6.4 6.5 -2638.3 3.0 2.13  

COM-P -- -- 3.1 3.1 -2635.4 3.6 0.86  

NB -- -- 2.9 2.9 -2635.1 4.0 0.72  
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TABLEA.13 Results of Over-dispersion and High Mean Scenario 

(NB Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 4.973  7.921  1.593  

DP 4.973  0.601  21.9 23.1 -4813.9 13 1.68  

COM-P 4.581  0.580  9.7 9.4 -4807.0 13 0.75  

NB 8.387  0.372  8.4 8.3 -4807.0 13 0.65  

Run2 5.089  7.414  1.457  

DP 5.089  0.658  22.0 22.1 -4759.8 12 1.84  

COM-P 4.802  0.653  15.6 14.2 -4755.8 12 1.30  

NB 11.140  0.314  12.9 12.3 -4755.4 13 0.99  

Run3 5.013  7.887  1.573  

DP 5.013  0.624  37.9 41.4 -4799.8 13 2.92  

COM-P 4.656  0.603  22.5 22.3 -4790.3 12 1.88  

NB 8.745  0.364  7.9 7.9 -4783.5 13 0.60  

Run4 5.009  8.007  1.599  

DP 5.009  0.609  36.7 39.4 -4817.3 13 2.83  

COM-P 4.631  0.588  23.0 21.3 -4808.2 13 1.77  

NB 8.369  0.374  12.2 12.0 -4804.2 13 0.94  

Run5 5.026  8.322  1.656  

DP 5.026  0.592  39.1 41.7 -4845.8 13 3.00  

COM-P 4.604  0.567  22.5 21.3 -4835.6 13 1.73  

NB 7.661  0.396  7.9 7.9 -4829.0 13 0.61  

Average 
   

DP 
  

31.5 33.6 -4807.3 12.8 2.46 

COM-P 
  

18.7 17.7 -4799.4 12.6 1.48 

NB 
  

9.9 9.7 -4795.8 13 0.76 
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TABLEA.14 Results of Over-dispersion and Medium Mean Scenario 

(NB Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 1.988  2.570  1.293  

DP 1.988  0.699  17.8 18.1 -3573.5 6 2.97  

COM-P 1.702  0.669  7.2 7.2 -3568.1 6 1.21  

NB 6.786  0.227  8.1 8.0 -3568.4 6 1.34  

Run2 2.013  2.740  1.361  

DP 2.013  0.682  34.3 34.1 -3615.1 6 5.72  

COM-P 1.667  0.624  16.7 16.5 -3606.3 6 2.78  

NB 5.572  0.265  10.4 10.3 -3603.5 6 1.73  

Run3 2.015  2.739  1.359  

DP 2.015  0.687  32.8 32.9 -3611.3 6 5.47  

COM-P 1.678  0.631  15.7 15.4 -3602.7 6 2.62  

NB 5.604  0.264  9.7 9.7 -3599.0 6 1.62  

Run4 2.019  2.810  1.392  

DP 2.019  0.650  10.8 11.0 -3637.8 6 1.80  

COM-P 1.607  0.578  3.0 3.0 -3633.8 6 0.50  

NB 5.150  0.282  7.6 7.6 -3636.1 7 1.09  

Run5 2.057  2.791  1.357  

DP 2.057  0.673  21.2 22.4 -3642.6 6 3.54  

COM-P 2.058  0.518  4.4 4.5 -4003.1 8 0.54  

NB 5.763  0.263  10.9 11.3 -3636.6 7 1.55  

Average 
   

DP 
  

23.4 23.7 -3616.1 6.0 3.90 

COM-P 
  

9.4 9.3 -3682.8 6.4 1.47 

NB 
  

9.3 9.4 -3608.7 6.4 1.46 
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TABLEA.15 Results of Over-dispersion and Low Mean Scenario 

(NB Simulated Data) 

Run # 

Characteristics of  
Simulated Data 

Distributions 
Estimated 

Parameters 

Goodness-of-Fit 
DF 

Chi-

Sq/DF 
Mean Var Var/Mean Chi-Sq LR LogL 

Run1 0.505  0.571  1.131  

DP 0.505  0.926  10.3 9.9 -1899.5 2 5.13  

COM-P 0.227  0.564  1.4 1.4 -1895.7 2 0.70  

NB 3.849  0.116  1.7 1.6 -1895.9 2 0.84  

Run2 0.485  0.581  1.198  

DP 0.485  0.918  11.9 12.0 -1869.9 1 11.95  

COM-P 0.123  0.434  1.0 1.1 -1861.6 2 0.51  

NB 2.449  0.165  0.9 0.9 -1861.2 2 0.45  

Run3 0.520  0.618  1.188  

DP 0.520  0.899  17.9 17.0 -1940.8 2 8.94  

COM-P 0.128  0.418  5.7 6.0 -1934.6 2 2.84  

NB 2.762  0.158  5.1 5.0 -1934.0 2 2.55  

Run4 0.515  0.609  1.184  

DP 0.515  0.906  13.1 11.8 -1927.8 2 6.57  

COM-P 0.188  0.505  0.8 0.8 -1921.5 2 0.38  

NB 2.798  0.155  0.4 0.4 -1921.2 2 0.22  

Run5 0.497  0.596  1.201  

DP 0.497  0.916  16.3 15.6 -1893.3 1 16.29  

COM-P 0.111  0.410  7.8 7.9 -1885.6 2 3.90  

NB 2.470  0.167  5.4 5.4 -1884.4 2 2.71  

Average 
   

DP 
  

13.9 13.2 -1906.3 1.6 8.69 

COM-P 
  

3.3 3.4 -1899.8 2.0 1.67 

NB 
  

2.7 2.7 -1899.4 2.0 1.35 
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