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ABSTRACT 

Optimal Maneuvers for Distributed Aperture Imaging Systems. 

(August 2012) 

Danielle Marie Fitch, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. David C. Hyland 

 

Interest in space-borne, distributed multi-aperture interferometric systems is driven by a 

need for continuously sustained imaging with high resolution.  Amplitude interferometry 

systems measure the Fourier components of the image corresponding to the wave 

vectors (locations in the so-called u-v plane) that are proportional to the relative 

positions of the apertures. Imaging to specified resolution demands measurement of the 

Fourier components with adequate signal-to-noise ratio over the interior of a disk in the 

u-v plane (the resolution disk). In this paper we concentrate on the case in which 

interferometric measurements are made while the apertures are changing their relative 

positions. This work discusses heuristic maneuvers and strategies for a system of two 

space-borne telescopes to cover the frequency plane while optimizing a cost function 

that includes both a measure of image quality and propulsive effort. 

The current study is motivated by previous research in which the optimization 

problem was formulated and the first-order necessary conditions (FONC) derived. The 

earlier work obtained short time horizon solutions to the FONC for various simple 

situations, but the complexity of the integro-differential equations for optimal 
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maneuvering have heretofore prevented solution for an optimal maneuver for the entirety 

of the imaging process.  

In place of a direct attack on the FONC, the present work investigates various 

heuristic approaches to minimizing the cost function in the discretized state and 

discretized time domains in a hexagonal coordinate system. Using three classes of 

coverage rules, experimentation with a variety of maneuver strategies involving two 

apertures has led to a number of time-optimal or fuel-optimal solutions based on the 

initial conditions of the spacecraft. This thesis shows that an optimal maneuver can be 

determined from the starting positions of the spacecraft and that a self-spiral class of 

motion seems to be the most beneficial for long term strategies. Future work may focus 

on strategies for interferometric systems with more than two apertures and with a finer 

mesh of the hexagonal coordinate system. 
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NOMENCLATURE 

 

DP Dynamic Programming 

DSS Distributed Space Systems 

FONC First Order Necessary Conditions 

FT Fourier Transform 

IFT Inverse Fourier Transform 

MTF Modulation Transfer Function 

PSF Point Spread Function 
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CHAPTER I 

 
INTRODUCTION 

 
The motivation for finding optimal maneuvers for distributed aperture imaging systems 

stems from the need for sustained, fine resolution imaging. Extremely fine resolution 

imaging requires impractically large conventional telescopes; therefore a design of 

distributed aperture imaging systems with several small telescopes is preferred. A space-

bourne imaging system also has the advantage of continuous data collection [1]. Such 

distributed aperture imaging systems would employ techniques such as amplitude 

interferometry, by which the image is reconstructed using the measurement of its Fourier 

components. Amplitude interferometry using a sequence of measurements wherein the 

physical locations of the apertures are fixed during a given measurement period has been 

extensively studied [2]. In the Fourier, or so-called u-v plane, the Fourier components of 

the image must be determined at a sufficient number of points. This is the “u-v 

coverage” problem that is the focus of this study. While u-v coverage with a static 

pattern of aperture locations has been previously investigated by many authors – with 

many heuristic and some optimized solutions proposed, the development of an optimal 

solution for the coverage of the frequency plane has yet to be determined [3,4].  

 This thesis strives to make progress in the u-v coverage problem when the 

interferometric data is collected while the space-borne apertures are made to move 

relative to one another. The present work builds on previous, somewhat limited results in 

____________ 
This thesis follows the style of IEEE Transactions on Control Systems Technology. 
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this “dynamic u-v coverage” problem. The coverage of the frequency plane is related 

directly to the characteristics and dynamics of all the spacecraft and is also established 

by the desired image quality and the required signal-to-noise ratio [3, 4].  

The objective of this study is to achieve very fine resolution with less cost than 

one large aperture telescope by studying how the spacecraft maneuvers can optimally 

solve the dynamic u-v coverage problem. This is achieved in this study by investigating 

several heuristic classes of maneuver strategies that will result in the image of desired 

quality as well as optimal time and cost. This study has been idealized to include only 

two aperture systems and much more future work will be necessary to determine a more 

generalized optimal solution based on system parameters.  

Angular resolution is one of the greatest determining factors in obtaining a 

quality image. Angular resolution is defined as the angular distance between two objects 

such that the telescope can distinguish them as unique objects [5]. Larger telescopes 

have a greater ability to acquire higher resolution images, yet there are many limiting 

factorsDanielle Marie Fitch in the size of telescopes, including the technical challenges 

associated with creating large apertures. One technical challenge associated with large 

apertures is the cost and difficulty of manufacturing very large primary mirrors due to 

the need of accuracy to nanometer tolerances. It is also difficult to hold the figure of 

large mirrors for extended periods of time in the presence of thermal distortion and 

vibrations. Another limiting factor is the fairing size constraints on current launch 

vehicles [6]. One way to meet the payload dimension constraints is to deploy segmented 

telescopes after release from a launch vehicle; however this practice can lead to 
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misalignments of optical components. The strategy that will be presented in this study is 

the use of multiple aperture systems employing a number of small (< 1 meter in 

diameter) apertures. This approach also offers the advantage that the loss of a single 

satellite will not result in the failure of the entire mission [7].  

Interferometry is currently being considered for use in systems that need to 

image distant objects even beyond that of our solar system. Objects of this magnitude 

include exo-planets and binary star systems [8]. The method of interferometry converts 

collected light into digital signals that can be processed to compute the desired image 

[2]. The interferometry systems discussed in this study are classified as distributed space 

systems (DSS). A particular type of DSS is a formation flying system, in which the 

formation consists of a fuel-constrained design of formation geometry that meets the 

desired mission requirements. Formation flying missions are driven by the dynamic 

requirements of the relative motion which continues to be a major research area on the 

subject. Interferometry missions with distributed apertures, as is the case here, require 

continuous and precise control of the systems. There are two main ways to control 

satellites, through passive control or active control. The work presented here will focus 

on active control systems, where the guidance, navigation and control systems are 

critical to the success or failure of the mission [6]. For such interferometric systems, 

precise control is required. Current interferometric systems that are in service are the 

Sydney University Stellar Interferometer (SUSI) operated out of Australia, and the 

Infrared Spatial Interferometer (ISI) operated out of California; however, no current 

interferometric systems are presently in orbit [8,9].  
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This thesis strives to make progress in the dynamic u-v coverage problem for a 

distributed aperture system. It focuses on the development of maneuvers that lead to 

optimal motions for coverage of the frequency plane with two apertures. These 

maneuvers have time and fuel constraints that are predefined before launch of the system 

[10]. Future studies will also need to focus on resizing, retargeting or the rotation of the 

formation as well as systems with more than two apertures [11]. Besides image 

resolution requirements, fuel expenditure is a driving factor in determining the optimal 

maneuvers for such missions [1, 10, 12]. The present work builds on previous, yet 

somewhat limited results in this dynamic u-v coverage problem.  

 
A. Overview 

 
The method of interferometry by use of afocal telescopes will be discussed in this paper 

in order to illustrate the basic constraints on the u-v coverage problem. Light is collected 

as it passes through separate apertures and then combined to form an interference 

pattern, which is the Fourier Transform of said combined light [4]. It is important to note 

that the image quality and spatial maneuver analysis is performed on the Fourier 

Transform of the light collected, and is represented in the u-v plane as opposed to the 

physical plane. As a result, the equations described in this work will be formulated in the 

u-v plane. The relationship between the frequency and physical planes will be shown in 

Figure (3) in Chapter II. The images desired can be obtained through the Inverse Fourier 

Transform of the collected light. This study does not focus on the image processing of 

the system, but rather on the dynamics required to gather the data. Chapter II will also 
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describe the basic optimal concepts that are key to this study. In Chapter III, an overview 

of previous studies as found in [3] and [4] will be presented with an explanation of how 

previous studies relate to the current work. The problem formulation will be outlined in 

Chapter IV and the discrete time cost equation will be presented and compared to the 

previous continuous time formation. The results will be offered and summarized in 

Chapter V. Finally, Chapter VI will state the conclusions founded by this study and 

present future work that can be built from this study. 
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CHAPTER II 

BACKGROUND 

 
An interferometry system is described as technique in which the light waves are detected 

at different space-time points and the cross correlation of the wave amplitudes, called the 

mutual coherence, is measured. There are several different interferometry methods, such 

as amplitude interferometry, heterodyne interferometry and intensity correlation 

interferometry [8]. The dynamic u-v coverage problem is common to all three types of 

interferometry, but to illustrate the salient issues, this paper will focus on the technique 

of amplitude interferometry. The following sections will describe this method in more 

detail.  

 
A. Basics of Interferometry 

Interferometry is based on the wave nature of light. The basic principle was established 

by Young’s two-slit experiment. In this experiment a monochromatic point source of 

light arrives at a barrier having two pinholes. The light passing through the pinholes 

approximates the radiation from two point sources. It is made to fall on a screen where 

an undulating pattern of light and dark (“the interference pattern”) is observed [13].  

The ability to characterize light as waves permits the development of 

intereferometry. Wave characteristics are exhibited by the electric field at any point due 

to a light wave propagating along the z-direction by Equation (2.1). 

    , , , cos 2 /E x y z t a vt z      (2.1) 
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Where a is defined as the amplitude, v is defined as the frequency and λ is defined as the 

wavelength of the light.  

For a point source, such as that which is used in the description of Young’s two-

slit experiment, light uniformly radiates in all directions and is represented as an 

expanding sphere with time dependence and is described in Equation (2.2) in spherical 

coordinates [14]. 

    , cosa
E r t wt kr

r

 
  
 

 (2.2) 

Where 2 v   is known as the circular frequency, the constant k, defined as 2 /k  

is called the wavenumber, and r is the distance  between the source and the  observation 

point. It is often difficult to manipulate the above equations easily in the real domain and 

therefore it is often convenient to let the field variable be complex valued when making 

calculations, and then take the real part of the resulting solution. Hence a plane wave is 

represented by equation (2.3):  

    , , , Re i tE x y z t Ae   (2.3) 

Where iA ae  is the complex amplitude and 2 /z   .  

When two light waves are added together, or superposed, the resultant field is 

defined as the sum of the amplitudes of the two waves. The sum of the amplitude of two 

waves at any point in the interference pattern is defined in equation (2.4) as 

 1 2A A A   (2.4) 



 8 

A1 has the complex factor exp(ikp1) where p1 is the propagation path length from the 

source, through pinhole “1”, to the observation point on the screen. There is a similar 

factor for A2. This leads to the calculation of the resultant intensity as seen in equation 

(2.5). 

 
  

   

2

* *
1 2 1 2

2 2 * *
1 2 1 2 1 2

1/2
1 2 1 2

  

  

  2 cos

I A

A A A A

A A A A A A

I I I I 



  

   

   

 (2.5) 

Where I1 and I2 due to the waves acting separately and   is the phase difference 

defined as 1 2     . The optical path difference is:  

  

   

1 2

1 1 2 2

    / 2

    

p p p

n d n d

  

  

 

  

 (2.6) 

Where n1 and n2 are defined to be the refractive index of waves, and d1 and d2 are 

defined to be the lengths of the path 1 and path 2, respectfully [13]. On the plane of 

observation, the distribution of light due to the two pinholes is a simple cosinusoid. The 

inverse Fourier transform of this pattern is a pair of delta functions – replicating the 

distribution of light passing through the perforated barrier. This result generalizes to an 

arbitrary distribution of light intensity on a distant “image plane”, so that the mutual 

coherence is the Fourier transform of the image intensity distribution as seen in equation 

(2.13) later in the chapter. In this case, the light from a distant source is received by two 

separated apertures; the light they collect is brought together in a combiner device and 
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input to a detector. By changing the path length difference with the “optical trombone”, 

the detector output reveals the interference pattern that is the counterpart of the pattern 

on the observation screen in Young’s experiment. The maximum amplitude of the 

envelope of the interference pattern gives the mutual coherence magnitude. The path 

length difference of the interference pattern maximum gives the complex argument of 

the mutual coherence. If measurements of this kind are repeated for many baselines, the 

coherence can be measured for an extended source. By Fourier transformation, the 

image can be computed. Figure (1) shows a schematic of an interferometric imaging 

system with two apertures, where the path distance as denoted in equation (2.6) is 

presented in the box at the bottom right corner of the image. 

 

Figure 1: Schematic of Interferometer with Two Apertures. 
 



 10 

To summarize the above examples, interferometry measures the coherence, 

which, in accordance with the Zernike-van Cittert theorem, is the value of the Fourier 

transform of the image at the (u,v) plane points, and accumulates this data over time 

[15].  

 By implementing the technique of interferometry for multiple beam interference 

in sparse aperture systems, a better image resolution can be achieved. The following 

discussion on interferometry applies to any type of interferometric technique that is used. 

Here, a multiple aperture system with N circular apertures, with diameter DT, are used. 

The Aperture Function, A, is defined over the image acquisition period as the total 

aperture area. Here, 
px  is the position of a point in the physical plane, kx is the position 

of the k
th aperture and t is a generic function for the time period during which the 

imaging takes place.  

    
1

,
N

p T p k

k

A x t A x x


   (2.7) 

Where AT for a circular aperture is generally defined as 

  
1    for 
0    Otherwise T

x D
A x

 
 


 (2.8) 

To describe how closely a reconstructed image resembles the source, the 

modulation transfer function (MTF) is a useful tool. The MTF is defined as the ratio of 

the coherence magnitude measured by the image forming system to the true coherence 

magnitude and depends on the characteristics of the apertures as well as the formation of 
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the spacecraft involved [10]. Equation (2.9) shows the MTF as the convolution of the 

aperture functions, as defined previously in equation (2.8). 

      p k T p k T kM x dx A x x A x   (2.9) 

By the observation of a single point source, the impulse response can be 

determined for the imaging system. The reconstruction of the point source image results 

in a blurred image as opposed to the clear point due to the diffraction of light as the light 

passes through an aperture.  The MTF is the square of the magnitude of the Fourier 

transform of the point spread function (PSF). Both the PSF and MTF indicate the quality 

of the imaging system, but the MTF is the more incisive tool [10]. An example of a MTF 

for a circular aperture, known as a witch’s hat function, can be seen in Figure (2), which 

has been adapted from [8].  

 
Figure 2: The MTF for a Circular Aperture 
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 The MTF is an important measurement of the imaging system as it must assume 

significant values within the entire resolution disc in order to obtain the desired 

resolution. The MTF is a real positive function defined on the u-v plane. As figure (2) 

shows, the value of the MTF is zero outside of the circle radius of /D   for a circular 

aperture. This is what can be recognized as a deficiency in the “u-v coverage”, as it 

should be noted that when the value of the MTF is zero, the system is blind to the 

corresponding Fourier component in the image. The following section describes the 

relationship between the physical, or spatial, and u-v, or frequency, planes.  

 

B. Relationship between Spatial and Frequency Planes 

It has previously been shown in the discussion of the two-slit experiment that the Fourier 

transform of an image can be equated to the interference pattern measured on some 

observation plane due to light waves that are emitted by the target under study. 

A point on the frequency plane, also known as the wave-number plane, or u-v plane, 

is defined as the relative separation of the two apertures (on a plane normal to the line-

of-sight) divided by the center band wavelength: 

 

1 2

1 2

x x
u

y y
v











 (2.10) 

The correlation between the spatial and frequency planes is an inverse relationship 

which is defined by the Fourier Transform (FT) and the Inverse Fourier Transform (IFT) 
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[16]. The two-dimensional FT, known as F’, is defined in the frequency, or wave 

number, plane to be 

 2 ( )'( , ) ( , ) ux vy

y x

F u v F x y e dxdy

 



 

    (2.11) 

This FT shows the mathematical conversion from the physical plane to the 

frequency plane. And the IFT, known as F, is defined in the spatial, or physical, plane to 

be 

 2 ( )( , ) '( , ) ux vy

u v

F x y F u v e dvdu

 

 

 

    (2.12) 

The IFT shows the mathematical conversion from the frequency plane to the 

physical plane. The IFT of light collected from the apertures in the frequency plane is 

represented in the spatial plane by this association [5]. The relations between the 

frequency and physical planes can be seen in Figure (3). It should be noted, that while 

the figure only contains one aperture to show the relationships between the parameters, 

another disc would be mirrored in the plane. The Fourier transform relationship comes 

from the van Cittert-Zernike theorem which states that the cross-correlation of the field 

from all sources, that is the mutual coherence, is given in terms of the image intensity 

by: 

    

1 22

1 2
1 2

,

R R
i

S

e
J I x dx

R R




 

 
 
 

   (2.13) 
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where 2 1R R
ux vy




  , the term that is present in equations (2.11) and (2.12). 

Obviously, given the coherence the image can be recovered from the IFT. The angular 

resolution, θR, in Figure (3) is defined from Rayleigh’s Criterion, 

 
R

D


   (2.14) 

Where, D is the diameter of the aperture and λ is the wavelength. This value, angular 

resolution, is the smallest value that can be detected from two separate sources. It should 

be noted from Figure (3), due to the inverse relationship, the smallest feature in the 

frequency plane corresponds to the largest feature in the physical plane [5]. 

 

 
Figure 3: Graphical Representation of the Two Planes. Left, the physical plane (which contains the image) 

and right, the frequency, or (u-v) plane. 
 

While reconstruction of the image from the Fourier components does not require 

coverage of the entire u-v plane, complete coverage of the plane gives rise to an image of 

better quality.  



 15 

 Due to the finite size of the picture frame, for each interference measurement a 

“coverage disc” is established in the frequency plane. In the coverage disc the value of 

the Fourier coefficient is roughly constant. This means that the coherence does not have 

to be measured at every point on the u-v plane. The number of measurements we need is 

only the number of coverage discs that are sufficient to cover the whole resolution disc.  

 

C. Fixed vs. Movable Apertures 

Amplitude interferometry can be conducted with fixed or dynamic aperture systems. 

While this paper focuses on the dynamic apertures it is also important to understand the 

concept with fixed apertures. Fixed aperture systems, like the Golay-N and Circle 

configurations shown in table (1), adapted from [8], are optimized configurations that 

can compute the autocorrelation function with a minimal number of gaps. It is the ability 

to remove these gaps that make movable aperture systems appealing.  
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Table 1: Examples of Optimized Fixed Aperture Configurations. 

 
 

The Golay-N sparse aperture arrays are comprised of N circular and identical 

diffraction-limited pupils [17]. Figure (4), adapted from [8], shows an example of the 

Golay-6 (left) configuration and (right) the MTF associated with it. In order to acquire a 

good design for the sparse aperture system, the design must combine the optical fields to 

obtain a resolution that will be equivalent to that of a large single aperture with effective 

area Aeff. The ratio of the area of the sparse aperture array to a single filled aperture area 

is known as the fill factor, α. The fill factor is given by equation (2.10), where Deff is the 

effective diameter for a single filled aperture and N is the number of apertures in the 

sparse aperture system [17].  

 2
eff

N

D
   (2.15) 
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Figure 4: Golay-6 Representation. The full configuration of the Golay-6 array (left) and the MTF of the 

Golay-6 array (right). 
 

Another example of a fixed aperture formation is given in Figure (5), which 

shows (left) the configuration and (right) the MTF of the Circle 5 array. The inner ring in 

the MTF for the Circle 5 configuration is due to the relative positions of each individual 

aperture with respect to the aperture adjacent to it. The outer ring is due to the relative 

positions of each individual aperture with respect to the aperture opposite it. Both rings 

account in the MTF include the symmetry that is presented in the u-v plane [12].  



 18 

 
Figure 5: Circle-5 Representation. The full configuration of the Circle 5 array (left) and the MTF of the 

Circle 5 array (right). 
 

It can be seen that the Golay-N configurations gives the most desirable MTF for the 

fixed aperture examples outlined in this study.  

The gaps in the MTF from fixed sparse aperture configurations have led to the study 

of formation flying by various researchers. Formation flying provides a way for 

synchronized operations of multiple spacecraft systems. The sensing system is able to 

appear as a single system with a physical size that exceeds current barriers on single 

body systems [18]. The formations of the systems can be simple string formations or 

even more dynamic formations where several spacecraft orbit relative to a reference 

spacecraft [19]. An important advantage to formation flying is the ability for the mission 

to become much more robust. This occurs because formation flying eliminates single 

point failures to the mission [20]. Another important advantage is the capability of the 

system to change the baseline if needed or desired for multi-use missions. Other 
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advantages include flexibility and modularity, as well as the ability to expand the life 

span of the system with the addition of new units [18].  

Even with the advantages there are still disadvantages to dynamic systems as well, 

such as the need for orbit maintenance and station keeping of the individual satellites. 

Formation flying also requires tight control of relative distances, velocities and 

orientations to reduce the sensitivity to perturbations. The orbit maintenance and station 

keeping problems will not be discussed in this study, but rather this study will focus on 

the maneuvers needed to fill in the frequency plane.  

 
 
D. Summary 

 
This chapter provided a simplified background for the present study. An overview of 

interferometry was given as well as a discussion on fixed aperture systems and dynamic 

aperture systems. The relationship between the physical and frequency planes was 

discussed and will be integral in the understanding of the coming chapters.  
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CHAPTER III 

 
PREVIOUS WORK 

 
Previous work is this area has led to the development of optimal maneuvers that are 

discussed in this work. The topics that are discussed in this chapter are the foundation 

for the current study. The conclusions that were reached in both [3] and [4] are 

summarized in this chapter for the reader(s). Much of the information presented in this 

chapter is important for the complete understanding of the following chapters. The 

notation for the work in this chapter will closely follow that in [4], which includes minor 

changes from the original notation in [3].  

 
A. Image Quality Metric 

 
The work in [3] develops a definition for the image quality metric which is used 

throughout the work leading up to the formation of optimal maneuvers for the system. 

This metric was developed based on the measures of fuel and time required for the 

multiple aperture system to obtain a desired image quality.   

  
 

      
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1ˆ, ,
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


    




 

   
 

  (3.1) 

With Γ being a function of λ, the wavelength, u , the position of the coverage disc in 

the frequency plane, and m nχ  and χ .  Γ is the ratio of the SNR of the measured coherence 

at the u-v point, u , to the desired SNR. When Γ=1, the coherence measurement is 
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deemed of sufficient accuracy to be used in constructing the required image. The image 

quality metric is also a function of the MTF,  M u,t , which is formulated in equation 

(3.2) below. 

       
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,
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1ˆ,
t N N

m n p m n

m n

M u t d A u    
 

 
    

 
  (3.2) 

 Where m,nΩ is a piecewise function which equals 1 if a measurement is taken between 

apertures m and n, or 0 if no measurement is taken.  

 In all of the previous equations, ˆ
pA , the field-of-view function, which is the FT of 

the picture field-of-view function,  is defined as 

  
 

 

ˆ
ˆ

ˆ 0
p

p

p

A u
A u

A
  (3.3) 

This function, and the u-v area wherein it is not zero we have termed the “coverage 

disc”. 

 
B. Coverage Problem 

 
The coverage problem is also developed in [3]. The goal of the system is obtain a desired 

image quality. In order to achieve this, the coverage discs must generate a value of 1   

while sweeping over the entire resolution circle. To aid in visualizing this, imagine spray 

painting over a circular region with the purpose of fully saturating the entire region, yet 

not over-saturating as this is an inefficient use of both the paint and time.  
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  1CN N N   (3.4) 

where N is the total number of apertures in the system. Figure (6), adapted from [3] 

shows a coverage scenario for N=3 apertures, which corresponds to 6 coverage discs in 

the frequency plane. It should be noted that due to the mirrored nature of the frequency 

plane, while 6 coverage discs are seen, only three discs move independently.  

 
Figure 6: Location of Apertures. Example locations of the apertures in the (a) physical plane and 

corresponding coverage discs in the (b) wave number plane 
 
 

C. Coverage Algorithms 

 
There are a number of algorithms that can be used to cover the entire frequency plane, 

however, since space-borne telescopes have various limitations on cost, size and 

deployment, the algorithms need to be studied in greater detail.  The coverage could be 

performed by a large number of spacecraft, creating a large number of coverage discs in 

the resolution disc, or by a small number of spacecraft. It is desirable to cover the 

resolution disc with as few spacecraft as possible due to the large economic costs of 

launching multiple spacecraft.  
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 Various coverage strategies such as that of (a) linear straight line motion, where 

the spacecraft only turn when the boundaries of the resolution disc are reached or 

already covered territory is reaches, or (b) circular motion, where the coverage path 

spirals outward until reaching the same boundary conditions as that of the linear motion. 

The later chapters of this study focus on heuristic approaches for covering the resolution 

disc with the above mentioned methods. 

 
D. First Order Necessary Conditions 

 
The first order necessary conditions (FONC) will be summarized briefly in this section, 

however a more detailed derivation for the FONC can be found in Chapter V of [3]. 

Consider N-free flying spacecraft, each outfitted with a single aperture.  kx t , denotes 

the inertial position of the kth spacecraft at time t, and the motion of the spacecraft are 

defined by equations (3.5) 

 
k k k

k k k k

d
x x v

dt

d
v v x T

dt

 

  

 (3.5) 

where kv denotes the velocity, and 
kT denotes the control thrust on the kth spacecraft, for 

k=1,2,…,N. 

 Setting the image quality metric,  ,u t , as the image quality penalty, the cost 

function, J, can be defined as  
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where H is defined to be a saturation function that is based on each spacecraft location as 

defined in equation (3.7) below: 

  
  0 x 1

1   x 1     
x

H x
 

 
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 (3.7) 

The cost function is defined in the frequency domain, u , over a given time 

period for the entire resolution disc, DR. The cost can be divided into two main terms, 

the squared weighted norm of the control force and a measure of the coverage of the 

frequency plane. The portion of the cost function given in equation (3.6), as a measure of 

the frequency plane coverage, depends on the image quality metric,  ,u t , the partial 

coverage exponent, R, the time horizon discount factor, Th. The smaller values for R 

encourage partial coverage, while smaller values for Th place more emphasis on events 

that will occur in the near future. The control force portion of the cost function depends 

on the control thrust, 
kT , and the variable weighting factor, μ. The ultimate goal is to 

determine an optimal control algorithm for a large time horizon. The cost function will 

be discretized in Chapter IV.  

 The FONC are summarized as follows for m n : 

 
k kx T  (3.8) 

   00k kx x  (3.9) 

   00k kx x  (3.10) 
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Chapter V of [3] provides the derivation and more information on the general motion of 

the coverage disc.  
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E. Time-Dependent Velocity Equations 

 

Chapter IV in [4] provides a detailed development of the time-dependent velocity 

equations that will be summarized in following section.  Equations (3.17) – (3.20) define 

the expressions for the control force.  

  F t   (3.18) 
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    u pG u A u  (3.21) 

A simplification to one dimensional motion, which can be seen in detail in the study 

done in [4], leads to the expression for the control force to be that of equation (3.21). 
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where B is a simplified version of G . 
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This definition of the integral depends on a time interval, t  , as opposed to depending 

explicitly on either. The force itself depends on the current velocity, which can now be 

simplified as a constant, leading to simplified equations of motion for small accelerations.  

 

F. Thin Paintbrush Approximation 

 

The concept of a paintbrush painting a canvas has been used throughout this research as 

well as previous research in this area. The concept is used in [3] to describe the 

effectiveness of the coverage of the u-v plane as it is related to the desired signal-to-

noise ratio (SNR). This concept was then expanded in [4] to explain coverage behavior 

as the velocities approach zero.  

For the proposed thin paintbrush analysis, the brush crosses a point on the canvas 

instantaneously; similarly, a coverage disc passes through a point in the resolution disc 

almost instantaneously.  Using this analysis,  t may be replaced with the constant 

value, t  for the time range  0,t  . This allows for the velocity of the coverage disc 

to be approximated for a given point while in that disc.  

 

G. Projection of Spacecraft Positions 

 

It is useful to express the FONC in terms of the locations of the coverage discs in the u-v 

plane. This requires that we have a transformation that relates the aperture locations to 

the sets of all relative aperture locations. Then the FONC can be solved entirely in the u-

v plane. Then the reverse of the transformation is used to find the aperture locations 
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throughout the entire maneuver. The center location of each coverage disc,
mn , in the u-

v plane can be related to the position vectors of the spacecraft, 
ix , as: 

       
1

mn m nt x t x t


   (3.24) 

The relationship between the center of the coverage discs’ locations and the 

contributing spacecraft locations is simply the matrix transformation:  
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 Tx   (3.26) 

 The relationship for x  given  is also needed. It can be shown, from the 

derivation in [4], that the projection, τ, given in equation (3.28), can be used to describe 
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the relationship for x  given  . A projection is an idempotent matrix, i.e., τ obeys 

equation (3.27). 

 2   (3.27) 

τ is given by: 

  
1

2
TT T

N
   (3.28) 

If the centroid of all the spacecraft positions is constrained to be at the origin, it has been 

shown that x  is related to   by: 
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N
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This now constrains the control forces, and the coverage disc locations to satisfy the 

constraints on  implied by equation (3.25). 

 

H. Critical Speed Formulation 

 

The critical speed formulation has been shown to define the critical speed as where the 

un-weighted pseudo-force crosses zero for the simulations carried out in [3] and [4]. 

This indicates the critical speed for which the moving coverage discs achieve the optimal 

coverage efficiency. The study in [4] formulates these simulations through integrating 

the linearized FONC, as summarized previously, using a best-fit approach of the Runge-

Kutta method. Figure (7) shows the best fit of the control force for speeds less than the 

critical speed.  
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Figure 7: Critical Speed Formulation. 

 

In summary, the two-point boundary problem was solved and the solution detailed in 

[4] allows for a simple feedback control law to be implemented in future work. The 

critical speed is the value at which the coverage disc travels in the frequency plane to 

obtain approximately full coverage in the wake of the disc, with partial coverage at the 

outer edges of the coverage disc. This allows for the coverage disc to accumulate full 

coverage in regions of optimal overlap, as discussed in the next section. 

 
I. Optimal Overlap 

 

The overlap of the coverage path is ideal due to the fact that a coverage disc would not 

have to accumulate full coverage of the complete interior in any given path. Consider a 

coverage disc that is traveling along the outer edge of a path previously taken by a 

coverage disc. This scenario can be seen in Figure (8), where the higher values of Γ 
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correspond to the darker gray regions. The center of the moving coverage disc, where 

full coverage is achieved while traveling at the critical speed, is shown in white to help 

emphasize the overlap of the outer regions of the disc.  

 
Figure 8: Optimal Overlap for Partially Covered Regions. 

 

Considering this scenario the total value of the image quality metric, Γ is therefore 

 
t     (3.30) 

where t  is the coverage of the current traveling disc, and  is the coverage of the 

previously existing track. The derivation of these results can be found in [4]. 

 
J. Summary 

 

This chapter summarized the work of [3] and [4], which is the work upon which the 

current study was constructed. A metaphor of painting the resolution disc with the 

coverage discs was given to help visualize the optimal strategy for attaining the desired 
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quality image. The cost function and first-order necessary conditions were introduced 

and will be utilized throughout the remaining chapters of this paper. The transformation 

matrix for the relationship between the spatial positions and coverage disc positions was 

summarized to show that the current work is able to be completed directly in the u-v 

plane. Chapter IV and V will build upon the previous work of the coverage algorithms to 

help obtain an optimal coverage path for the spacecraft through heuristic maneuvers.  
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CHAPTER IV 

 
PROBLEM FORMULATION 

 
The goal of space borne multi-spacecraft interferometric imaging systems is to gather 

high quality images of a target. The system possesses the ability to resolve images at a 

higher resolution than ground based interferometers and conventional space based 

telescopes. Multi-spacecraft interferometric optical imaging systems are able to 

overcome the difficulties of resolving distant targets by utilizing a number of small 

relatively inexpensive apertures. The collection apertures are free flying and this allows 

for the system to have a large range of baselines.  

The previous research in [3] focused on developing first order necessary 

conditions (FONC) to determine the parameters for the desired system. The prior 

research in [4] used the FONC to determine a short time horizon solution for the optimal 

speed of motion of the coverage discs in the u-v plane. Similar work determined the 

optimal start-up conditions from rest to the critical speed and revealed the desirability of 

moving the coverage discs such that they overlap previously (partially) covered territory 

in the u-v plane. In this thesis, the short time horizon is removed, and a discretized 

approximation is used to understand optimal coverage disc motion from initial start-up 

to final coverage of the entire resolution disc in the u-v plane. The simulations and 

calculations in this work are limited to two aperture systems to facilitate a solution to the 

u-v coverage problem. Future work may analyze more complex conditions, including 

systems with more than two apertures.  
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This study does not try to solve the FONC, rather this study relies on the direct 

calculation of the cost function, assuming an infinite time horizon, for a comprehensive 

set of complete coverage maneuvers. Since the work is concentrated on the two-aperture 

case, the work at hand can focus on the maneuvers of the coverage discs in the u-v plane. 

Thanks to the previous formulation of the transformation between the physical and 

frequency planes, the formulation can readily be extended to a large number of apertures 

and this work is able to focus on maneuvers directly in the frequency plane.  

Even with only two apertures, the general problem at hand is difficult to analyze 

for infinite time horizons. Solution of the FONC can be achieved only for specialized 

cases of motion, but has otherwise proved intractable. A dynamic programming (DP) 

investigation of the problem also appears impractical because of the large dimensionality 

of the problem. In this case the system state comprises not only the spacecraft positions, 

but also the current degree of coverage of every point in the u-v plane. Two strategies 

are used to reduce the problem of dimensionality. The first approach is to discretize 

positions in the u-v plane by a hexagonal tessellation. A DP formulation of the set-up 

would still entail very large dimension. To overcome this, the second strategy is to 

formulate heuristic classes of dynamic coverage rules, and, for each class, enumerate all 

maneuvers in the class, and directly evaluate the cost function for each maneuver. The 

lowest cost reveals the optimal, beginning to end, control policy. The discretization 

approximation and cost function formulization is a translation of the original 

continuously-valued optimization problem into the discrete space and discrete time 

domain guided by the short-time horizon solutions obtained in earlier work.  
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 A. Development of Hexagonal Coordinate System 

 

A hexagonal coordinate system was developed in order to formulate the discrete space 

and discrete time cost function. The use of a hexagonal coordinate system offers a way 

to approximately preserve the relative distances between any two u-v plane points. This 

characteristic is not satisfied by a square grid. When using a rectangular coordinate 

system, there is a paradox created with regard to neighbor sets. In a rectangular 

coordinate system, a neighbor can be defined to be a four-neighbor, where the neighbors 

are above, below, left and right, or an eight-neighbor, which also includes the squares 

that only intersect at the corner [21]. A solution to this ambiguity is to establish a 

hexagonal coordinate system in which all neighbors are equally defined. For the system 

presented in this paper a hexagonal coordinate system was established with three 

coordinates, (r, g, b). Equations (4.3) – (4.5) define the coordinates using the typical (x, 

y) coordinate system. 

 
33

x y
r    (4.1) 

 
33

x y
g     (4.2) 

 2
3
y

b   (4.3) 

Figure (9) shows a physical description of the (r, g, b) coordinate system that has 

been established. Equivalently, x and y can be determined from the hexagonal 
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coordinates and the transformation can be seen in equations (4.6) and (4.7). The 

hexagonal coordinate system also has the advantage of providing equidistant neighbors.  

 

 13
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 (4.4) 

 3
2

y b   (4.5) 

 

 
Figure 9: Hexagonal Coordinate Definitions. 
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 B. Discretized Cost Formulation 

 

This section considers the approximation of the original cost function (with 
hT  ) 

within the discrete domain. It is supposed that each of the hexagonal coordinates is the 

center of the corresponding hexagonal area. The size of a hexagon represents the width 

of the region of complete coverage that is traced by a coverage disc moving at the 

optimum critical speed, as determined by the short time horizon FONC solution. This 

comes from the assumption that R, the partial coverage exponent, is large enough such 

that the small-time horizon solution to the FONC requires essentially full coverage in the 

wake of the coverage disc. The hexagon size is slightly less than the actual size of the 

coverage disc, such that the discretized domain is a slightly contracted version of the 

original u-v plane. This functions as a way to account for the need of coverage disc 

overlap, as revealed by previous FONC solutions. The time dimension is discretized 

such that one time unit is the time required for the coverage disc to move one hex 

diameter at the critical speed. If a coverage disc is moved n steps, the partial coverage 

within the traversed hexagons is 1/n. 

As before, the cost equation can be broken down into two penalties, a coverage 

penalty and a thrust penalty. Equation (4.6) is the continuous time cost function, while 

Equation (4.7) is the discrete time formulization of the cost function, 
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where 1( ) 1HEXP u
n

  , n being the number of steps in one time unit. k

r
T

t


 , where r 

is the radius of the turning angle, in this case r=1 unit length, θ is the turning angle with 

discrete values 0°, 60°, 120°, or 180°, and 1
t

n
 , n again being the number of steps in 

one time unit.  

In the continuous time expression in Equation (4.6), the cost is defined over the 

resolution disc, DR, over a particular time period in the frequency domain, u . The u-v 

integral is replaced by a summation over the hexagons. The partial coverage factor, 

  ,RH u t , is replaced with 1/ n  in the above discretization scheme. This yields 

1( ) 1HEXP u
n

   as the summand.  

 

C. Classes of Coverage Rules 

 

There are three different classes of maneuvers being studied here. These can be seen in 

the following figures. Figure (10) shows the motion of two apertures separately spiraling 

around themselves. Figure (11) shows two apertures spiraling around the u-v plane 

origin, while figure (12) shows a third strategy involving a linear, raster scan motion. 
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Figure 10: Class I, Self-Spiral Motion. 

 
 
 

 

Figure 11: Class II, Spiral about the Origin of the U-V Plane. 
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Figure 12: Class III, Linear Raster Scan Motion. 



 41 

CHAPTER V 

 
RESULTS 

 

This chapter will describe in detail the Matlab simulations that were used to obtain the 

results that follow from the discretized problem formulation. First, a discussion on the 

available maneuvers will be presented followed by an analysis of the cost function for 

the various maneuvers. Next, the weighting factor will be varied to obtain results for 

various weights on the control thrust. In the end, a heuristic comparison of the coverage 

strategies will be summarized.  

 
A. Overview of Maneuvers  

  
The first step was to develop reasonable classes of coverage strategies to perform the 

analysis on. There are three general types of motion that this study analyzes. The first 

class of motion that is analyzed is a spiral motion that starts at some initial point in the 

u,v plane and spirals around the starting point until reaching the boundary of the 

resolution disc, or already covered territory, at which point there can be more than one 

branch for the solution. The possible trajectories blossom out into multiple branches 

each of which is explored. An example of this ‘self-spiral’ motion in the u,v plane, in 

hexagonal coordinates, can be seen in the cartoon presented in figure (13). The blue 

‘disc’ is the mirror image of the red, due to the reflection property of the system. The 

first pane of figure (13) shows the initial step off and the beginning of the self-spiral 

motion. The second pane shows the continuation of the self-spiral as well as the 
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coverage disc reaching a boundary. The third pane shows the final randomized motion 

until complete coverage is achieved, which is shown in pane four. 

 

 

Figure 13: Cartoon of Self-Spiral Maneuver. 
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For the analysis of the ‘self-spiral’ there will be six different step off points for each 

initial point as each spiral is a function of its initial position as well as the first control 

action. Figure (14) shows the step off points labeled one through six.  

 

 
 

Figure 14: Possible Step Off Positions (in reference to initial condition). 

 

The second class of motion that will be analyzed is a spiral over the entire u,v plane 

circling the origin, (central hexagon). This motion will be analyzed for one starting 

position in each of the ‘rings’ of the hexagonal coordinates and will include a spiral in at 

twice the speed followed by a spiral out at twice the critical speed, only to be slowed to 

the critical speed when uncovered territory is reached, as well as the opposite, i.e., 

spiraling outward first at twice the speed with a spiral inward to follow, again slowing 

down once uncovered territory is reached. Both alternatives represent minimum time 

solutions. Figure (15) shows a cartoon for an example of this type of coverage. The first 

pane in figure (15) shows the spiral starting in ‘ring 2’ and progressively spiraling 

outward at twice the speed, hence the arrow travels two coordinates at a time. The 
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second pane shows the disc spiraling back inward, again at twice the critical speed. The 

third pane shows the disc slowing to the critical speed and covering the uncovered 

territory in ‘ring 1’. The final pane again shows that full coverage has been achieved.  

 

 
Figure 15: Cartoon of Spiral about the Origin of the U-V Plane Maneuver. 

 

The arrows shown in the first two panes of figure (15), progress through two 

coordinates at a time to show the coverage disc is traveling at twice the critical speed. In 
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pane 3 the arrows progress through only one coordinate at a time to reflect the slowing 

down of the coverage disc to the critical speed.  

The final class of motion is the linear raster scan motion, for which an example can 

be seen in figure (16).  

 
 

Figure 16: Cartoon of Linear Raster Scan Maneuver. 
 

 
B. Solution Results 

 
The maneuvers presented previously where then carried out in Matlab for the various 

initial conditions and the various initial control actions. The following pages show the 

results.   
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Table (2) shows the initial conditions, in both the (x,y) and (r, g, b) coordinate 

frames, for the self-spiral cases with the total cost for the most optimum step off 

position, which is also noted in the last column of the table. 

 
Table 2: Lowest Cost and Associated Step Off Points for Self-Spiral Class. 

(X,Y) 
Coordinate 

(r,g,b) 
Coordinate 

Lowest 
Cost  

Step Off 
Point(s) 

(-2.6,4.5) (-3,0,3) 61.4109 2, 5, 6 

(-0.9,4.5) (-2,-1,3) 63.1655 3 

(0.9,4.5) (-1,-2,3) 56.1471 1 

(-3.5,3) (-3,1,2) 59.6563 1,2 

(-1.75,3) (-2,0,2) 52.6379 1,2,4 

(0,3) (-1,-1,2) 56.1471 3 

(-4.3,1.5) (-3,2,1) 49.1287 2 

(-2.6,1.5) (-2,1,1) 49.1287 4 

(-1,1.5) (-1,0,1) 42.1103 2 

(-5.25,0) (-3,3,0) 52.6379 1 

(-3.5,0) (-2,2,0) 47.3741 6 

(-1.75,0) (-1,1,0) 35.0919 3,5 

(-4.5,-1.5) (-2,3,-1) 61.4109 3 

(-2.6,-1.5) (-1,2,-1) 31.5827 6 

(-1,-1.5) (0,1,-1) 24.5643 2 

(-3.5,-3) (-1,3,-2) 28.0735 3 

(-1.75,-3) (0,2,-2) 43.8649 1 

(-2.6,-4.5) (0,3,-3) 64.9201 2 
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 For simplicity, table (2) above is ordered by position of the initial condition in the u-

v plane starting from the top left and reading left to right, top to bottom, as seen in the 

two-dimensional plots in the following figures. A conclusion that can be made from the 

above table, is that for most of the initial conditions, there is one step off point that 

provides the most optimum coverage of the resolution disc.  

The top portion of the following figures shows the cost function in two dimensions, 

with each value is centered at the initial positions of the coverage discs. The bottom 

portion of the following figures shows the cost function in three dimensions, as a cone 

shape. The peak of the cone is the total cost of the maneuver, while the base of the cone 

is on the (x,v) coordinate in the resolution disc.  

Figures (17) through (22) show the cost functions for each initial condition as a 

function of the step off position, as denoted by figure (14). Figure (17) shows the cost 

function for step off 1. Figure (18) shows the cost function for step off 2. Figure (19) 

shows the cost function for step off 3. Figure (20) shows the cost function for step off 4. 

Figure (21) shows the cost function for step off 5. Lastly, Figure (22) shows the cost 

function for step off 6. 
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Figure 17: Cost Function at Step Off 1. 
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Figure 18: Cost Function at Step Off 2. 
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Figure 19: Cost Function at Step Off 3. 
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Figure 20: Cost Function at Step Off 4. 
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Figure 21: Cost Function at Step Off 5. 
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Figure 22: Cost Function at Step Off 6. 
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It can be seen from the above figures that the maneuvers that start towards the 

edge of the resolution disc generally result in higher cost functions as the disc reaches 

the edge of the resolution disc more quickly. These higher costs are also often associated 

with overlap of coverage due to the disc spiraling into a corner of the resolution disc.  

Figure (23) and (24) show the cost functions for the spiral about the origin. 

Figure (23) shows the spiral in then spiral out case, while figure (24) shows the opposite. 

 

Ring # (X, Y) (r, g, b) Cost 

1 (0.9,1.5) (0,-1,1) 26.3189 

2 (2.6,1.5) (1,-2,1) 393.7474 

3 (4.4,1.5) (2,-3,1) 629.0536 

Ring # (X, Y) (r, g, b) Cost 

2 (2.6,1.5) (1,-2,1) 793.4213 

3 (4.4,1.5) (2,-3,1) 589.6795 

4 (6,1.5) (3,-4,1) 35.0919 

Table 3: Spiral In – Spiral Out Maneuver Cost 

Table 4: Spiral Out – Spiral In Maneuver Cost 
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Figure 23: Cost Function for Spiral about the Origin, In then Out. 
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Figure 24: Cost Function for Spiral about the Origin, Out then In. 
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 In both figures above there is a noticeable drop in the cost when starting at the 

inner most region and spiraling outward as well as when starting at the outer most region 

and spiraling inward. This is caused by the large value of the thrust portion of the cost 

function. As the coverage discs move at twice the critical speed the control thrust is 

doubled causing a fairly large increase in the cost. This leads to the conclusion that 

lower thrust is more optimal for space-based motion, which has generally been found to 

be true. It should also be noted from figures (23) and (24) that there is a higher cost for 

the maneuvers as when compared to the self-spiral case. This is again caused by the high 

values of the thrust penalty. This class of maneuvers was studied in depth due to the 

benefit of optimal overlap in the continuous space and continuous time domain.  

 For linear coverage, the values of the cost function were found to be very similar 

to those of the self-spiral case, however the benefit of the self-spiral over the linear, 

raster scan motion, is the ability for optimal overlap to occur in the continuous time 

domain. Due to the extremely large number of initial conditions for the linear, raster 

scan motion, figure (25) only shows two cases. The first case is starts from a corner of 

the resolution disc, and the second case starts in the center of the resolution disc. The 

variation between costs is minimal for the starting positions as compared to those in the 

self-spiral case.  

 

(X,Y) 
Coordinate 

(r,g,b) 
Coordinate Cost  

(-1.75,0) (-1,1,0) 40.3557 

(-3.5,6) (-4,0,4) 43.8649 

Table 5: Linear, Raster Scan Maneuver Cost 
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Figure 25: Cost Function for Linear, Raster Scan Motion 
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C. Variable Weighting on Control Thrust 

 

The weighting on the control thrust for the original trials was selected to be µ=0.8, so 

that the order of magnitude was approximately one, yet a chance was given for the 

coverage penalty to be greater than the penalty on the control thrust. For varying the 

weight on the control thrust, one case from the self-spiral and one case from the large 

spiral were studied. Due to the assumption that the coverage disc moves one step at a 

time at the critical speed for the self-spiral, the weighting factor would need to be small 

such that the thrust penalty term is overcome by the coverage penalty. The order of 

magnitude would need to be times 10-3. This is similar for the large spiral about the 

origin as well due to the high values of the thrust that result from the faster speed. This 

leads to the need for lower thrust configurations for space-based systems.  

 

D. Summary 

 

This chapter showed the three different classes of motion in the u-v plane that were 

analyzed heuristically. These maneuvers were defined to be the best maneuvers for 

optimal time of coverage and also due to overlap that could be achieved when performed 

in the continuous space and continuous time domain.   

 These maneuvers were then carried out for a variety of initial conditions, as well 

as an assortment of initial control actions in the case of the self-spiral class of motion, 

and the cost function for each was examined.   
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 Multiple strategies of the coverage disc motion were used to determine the most 

effective manner in which to cover the resolution disc. The calculation of the cost 

function for each maneuver provided insightful results as to the most recommended class 

of maneuvers.   
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CHAPTER VI 

 
CONCLUSIONS 

 
This study explored different optimal maneuvers for space-borne interferometric 

imaging systems with multiple apertures. While further development is still needed to 

determine the most optimal maneuvers in real time, the discretized heuristic maneuvers 

studied here gave insight into the possible outcomes of each maneuver. This research 

continued the previous research of that in [3] and [4], both of which were summarized 

here to give the best foundation for the results in this current study. 

 This study also showed that an optimal path can be determined depending on the 

starting position of the spacecraft, which in turn shows that not all coverage maneuvers 

need to start from the same initial position. This allows for the system to be more 

flexible as the system can begin imaging of a new target based on the final position of 

the spacecraft after imaging a previous object. While these heuristic approaches still 

need more in depth work to determine the complete solution, this study was able to 

create a well-defined background to build on. 

Three different general maneuvers were studied in depth. While both the linear, 

raster scan maneuver and the self-spiral maneuver costs were of similar magnitude, in 

most cases the self-spiral is superior. The self-spiral case seemed to be the most 

beneficial for long term strategies for the lowest cost and fuel consumption. 

Future work should implement this strategy on configurations with more than 

two apertures for each of the classes of coverage rules presented here. It should also 
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evaluate the maneuvers on a larger domain in the resolution disc, i.e., increase the radius 

of the resolution disc such that Res HexR R . With a thorough implementation of a grid 

study, a finer mesh of hexagons can be implemented for the classes of coverage rules. 

Also, an in depth study of the effect of the control weighting should be carried out as this 

study was not provided with the time to fully carry it out. The control weighting should 

be varied for each of the three classes studied here on a larger resolution disc as well as 

other maneuvers to fully understand the control thrust. 
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