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ABSTRACT 

 

Effect of Initial Conditions on the Compound  

Shear- and Buoyancy-driven Mixing. (August 2012) 

Beth Ann Placette, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Devesh Ranjan 

 

The effect of initial conditions in combined shear- and buoyancy- driven mixing 

was investigated through the use of an implicit large eddy simulation code under active 

development at Los Alamos National Laboratory and Texas A&M University.  

Alterations were done over several months both at Los Alamos National Laboratory and 

at the Texas A&M University campus, and include a transition from tilted rig to 

convective channel arrangement, introduction of an inertial reference frame, alteration of 

boundary conditions, etc.  This work resulted in the development of a numerical 

framework with the capability to model various shear and Atwood number arrangements 

such as those seen in an inertial confinement fusion environment. 

In order to validate the code, it was compared to three published experiments, 

one with Atwood number 0.46, one with high Atwood number 0.6, and one with very 

low Atwood number 0.032.  Upon validating the code, pure Rayleigh-Taylor and pure 

Kelvin-Helmholtz instabilities were modeled along with five intermediate cases of 

increasing shear and constant density gradient.  Plots of mixing width, Richardson 

number, growth parameter, and molecular mixing were compared in order to determine 
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at what level of shear the minimum amount of mixing occurs.  The results of height 

gradient and Reynolds number were to previous experiments and theory.   

The least amount of molecular mixing at the centerline was found to be when the 

system had a low Atwood number (0.032) and a multimode initial interface perturbation.  

While the increase in modes of the interface perturbation did not result in a significant 

change in the growth parameter, the level of molecular mixing at the centerline 

substantially decreased.  As shear was increased in the system, the mixing width and 

molecular mixing subsequently increased.  For this reason, the shear in the system 

should be eliminated, or at least minimized, if at possible so as to prevent any additional 

amalgamation in the system.  Analysis of the Reynolds number revealed that with an 

increase in velocity difference between the fluid layers, the value consequently 

increased.  This trend matches with theoretical results as the value is a function of the 

mixing width and velocity, thus further validating the code.  Analysis of the transitional 

Richardson number revealed that it had a smaller value in the computational case over 

the experiment, but this fact can be attributed the difference in mixing width between the 

two methods.  The development of the numerical framework with the capability to 

model various shear and Atwood number arrangements offers the platform for future 

study of hydrodynamic instabilities.  
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1. INTRODUCTION 

1.1 Overview and Motivation 

 

Fluid mixing can be seen in a number of occurrences throughout the universe, from large 

scale structures such as super novas, to everyday items like water falling from a faucet, 

to micro-scale interactions such as inertial confinement fusion (ICF) capsules.  With 

such a vast range of length and time scales over which the interaction can occur, the 

study of multi-material mixing is rather complex and underdeveloped.  The presence of 

turbulence further complicates the matter, as nonlinearity and chaotic processes are 

introduced into the problem.  These mixing instabilities can be split into three main 

categories: buoyancy-, shear-, and shock-driven turbulence.  The first two have been a 

subject of interest for the better half of a century (Rayleigh 1883; Kelvin 1871), yet 

much is still left to be discovered.  Current efforts are being made experimentally, 

numerically, and computationally to gain a better understanding of these phenomena 

(Smeeton & Youngs 1987; Youngs 1984; Dimonte & Schneider 2000; Banerjee & 

Andrews 2009).   

The motivation behind this investigation comes primarily from the increased 

interest in ICF technology.  This process involves the heating of a capsule filled with a 

combustible fluid, typically through the application of lasers.  The increased temperature 

causes the external shell of the capsule to explode, creating an inward force which 

compresses the fuel.  This inward motion, combined with subsequent shock waves,  
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compresses the fuel and causes ignition, releasing large amounts of energy in the process 

(Meyer-ter-Vehn 1999).  The initial energy input can either be applied directly to the 

capsule (direct drive), or to an enclosure surrounding the capsule (indirect drive).  Direct 

drive provides more energy, but is sensitive to the spatial quality of the laser beams, 

whereas indirect drive provides more uniform heating and is less prone to hydrodynamic 

instabilities (Lindl, McCrory, & Campbell  1992; Lindl 1995).  For these reasons, the 

main focus of investigation for ICF has been heating with indirect drive.  However, even 

with this method high-yield ICF is not currently obtainable due in part to the still present 

mixing within the capsule during the compression process.  This fluid amalgamation acts 

to hinder the formation of a heat concentration at the center of the fuel cell, thus 

changing the yield and burn temperature and preventing the spatial density of the capsule 

from reaching the required value for combustion (Oron, Alon, & Shvarts 1998; Wilson 

et al. 2004).  Of these hydrodynamic instabilities, the most prevalent and detrimental is 

the Rayleigh-Taylor buoyancy-driven instability and the subsequent Kelvin-Helmholtz 

shear-driven instability rollups (Keefe 1982; Kilkenny et al. 1994; Betti et al. 1998).  

Should it be possible to control these phenomena, and thus the level of mixing within the 

fuel capsule, high yield ICF could potentially be obtainable. 

In order to control the interactions occurring within the capsule, the way in which 

the perturbations begin and grow must be fully understood.  Many computational 

simulations have been used in an attempt to solve this problem, yet because of the 

elimination of important characteristics in the Reynolds-averaged-Navier-Stokes model 

and the computational requirement of direct numerical simulation, large eddy 
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simulation, and particularly implicit large eddy simulation, appears to be the best 

technique for modeling hydrodynamic instabilities (Moin & Mahesh 1998; Ristorcelli & 

Clark 2004; Grinstein, Margolin, & Rider 2007; Cheng 2009).  The present effort is 

driven by the motivation to predict fluid interaction through the creation of mixing 

models for buoyancy- and shear-driven instabilities.  This work combines experimental 

data and computational results to examine Rayleigh-Taylor and Kelvin-Helmholtz 

instabilities and to determine ways to decrease these instabilities’ mixing.  Previous 

experimental data was used to obtain appropriate initial conditions for the computational 

implicit large eddy simulation problem, which was then used to predict the effect of 

changing various parameters on the mixing width. 

 

1.2 The Rayleigh-Taylor Instability 

 

Buoyancy-driven instabilities occur when one fluid of density ρ1 is accelerated into a 

second fluid of density ρ2.  This change in velocity can be caused by a natural 

acceleration such as gravity acting on a body or by a prescribed acceleration such as a 

device physically advancing the two fluids.  For the Rayleigh-Taylor hydrodynamic 

instability in particular, the unsteadiness is caused by a heavier fluid being positioned 

above a lighter fluid relative to the acceleration such that        , where p is the 

pressure of the system (Rayleigh 1883; Taylor 1950).  This instability evolves in three 

distinct steps: initial exponential growth, non-linear saturation, and multi-mode mixing 

(Sharp 1984).   From linear stability theory, an initial sinusoidal perturbation of 

wavelength λ begins to grow exponentially; it is important to note that even in an 

unstable configuration some perturbation of the interface is necessary for a 
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hydrodynamic instability to begin to mix (Chandrasekhar 1961).  The description of the 

instability using a linear stability scheme is only appropriate for small amplitudes (0.1λ 

to 0.5λ), after which point the disturbances become non-linear and saturate (Sharp 1984; 

Youngs 1984).  This non-linear interaction creates structures that have come to be 

associated with Rayleigh-Taylor instabilities: fluid of lower density rising to a height 

“hb” from the interface is termed a “bubble”, whereas higher density fluid falling to a 

height of “hs” from the interface is known as a “spike” (Kull 1991).  These forms can 

arise either from the initial conditions or, if the initial perturbation is relatively small, 

from the non-linear interactions.  As the bubbles and spikes continue to penetrate the 

fluid, secondary interactions known as Kelvin-Helmholtz instabilities appear along the 

edges of the aforementioned structures (Helmholtz 1868; Kelvin 1871).  The 

observations described pertain to single mode initial condition disturbances.  Because 

lower wavelengths saturate to non-linearity first, they are soon overtaken by longer 

wavelengths which are still growing exponentially.  This occurrence results in multi-

mode mixing, producing a number of length scales within the instability.  These 

structures of assorted sizes then begin to interact through bubble competition and 

growth, wherein larger bubbles absorb smaller ones resulting in increases in size and 

velocity for the subsequent bubble (Sharp 1984).  This process has been studied 

numerically (Freed et al. 1991; Bernstein & Book 1978; Sharp 1984), experimentally 

(Emmons, Chang, & Watson 1960; Dalziel, Linden, & Youngs 1999; Dimonte & 

Schneider 2000; Read 1984), and through simulations (Ristorcelli & Clark 2004; 
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Youngs 1984; Cook, Cabot, & Miller 2004; Kadau et al. 2010) to deduce a relationship 

for the late time heights of bubbles and spikes as 

hb,s = αb,sAtgt
2
 (1.1) 

where αb,s is the growth parameter for the bubble or spike, respectively, At ≡ (ρ1-ρ2)/ 

(ρ1+ρ2) is the Atwood number for the system, g is the imposed acceleration, and t is time.  

For small Atwood numbers (At < 0.2), α = αb = αs and h = hb = hs, resulting in a self-

similar growth of the instability.  An image depicting the evolution of the Rayleigh-

Taylor instability can be seen in Figure 1. 

 

 

Figure 1.1. Rayleigh-Taylor instability simulation with At = 0.67 at times ((a) top to 

bottom) 0 τ, 4.6 τ, 9.2 τ, 13.8 τ and ((b) top to bottom) 18.4 τ, 22.95 τ, 27.5 

τ, and 31.1 τ where τ is the exponential growth time of the most unstable 

mode (Kadau et al. 2010). 
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 Rayleigh-Taylor instabilities can be seen throughout the universe in all scales of 

time and space.  Among the largest in spectral scale are super nova remnants, in which 

Rayleigh-Taylor instabilities enhance the radial magnetic field and modify the geometry 

of the structure (Blondin & Ellison 2001; Fraschetti, Teyssier, Ballet, & Decourchelle 

2010).  One of the largest in temporal scales are oil trapping salt domes which develop 

over 30 million years from kilometers of dense earth compressing underground salt, 

causing it to flow upwards (Zaleski & Julien 1992).  A smaller instance of spectral scale 

can be seen in droplet disintegration when exposed to a high velocity airstream.  As the 

drag force decelerates the fluid, an unstable interface with a density gradient is created, 

thus forming the Rayleigh-Taylor instability (Bayvel & Orzechowski 1993; Baumgarten 

2006).  Among the smallest temporal and spectral scaled Rayleigh-Taylor interactions 

are those created during implosion of the ICF fuel capsule, a process which only lasts 

around 10 seconds.  As mentioned previously, this instability prevents the formation of a 

heat concentration at the center of the fuel cell, thus inhibiting high-yield ICF from being 

obtained (Oron, Alon, & Shvarts 1998; Wilson et al. 2004).  Despite the large range of 

applications for the Rayleigh-Taylor phenomenon, much is still left unknown about this 

buoyancy-driven instability. 

 

1.3 The Kelvin-Helmholtz Instability 

 

Shear-driven instabilities occur when one or more horizontally stratified fluids are 

streaming at a constant but different velocity for each fluid layer.  For the Kelvin-

Helmholtz instability in particular, a fluid of density ρ1 moving with velocity U1 is 

positioned above either the same fluid or a second fluid of density ρ2 > ρ1 which is 
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moving with velocity U2 (Helmholtz 1868; Kelvin 1871).  Since the density of the lower 

fluid is greater than or equal to that of the top fluid,        , where p is the pressure 

of the system, and no Rayleigh-Taylor instability is present.  The two velocities can be 

modeled as equal and opposite vectors moving along the interface with a speed of (U1-

U2)/2.  This setup results in the generation of a vorticity (equation (1.2)) which is 

positive when the relative velocity is greater than zero and negative if it is less than zero.   

  ⃗⃗  
       

  
 (1.2) 

A positive vorticity causes fluid to be swept away from that location while a 

negative one causes fluid to be pulled towards that point (Batchelor 1967).  This process 

results in fluid-accumulating sites which rotate clockwise or counterclockwise, 

depending on which stream has the greater velocity, thus amplifying the interface 

displacement (Drazin 2002).  As this instability continues to develop, exponential 

growth of the interface presents, followed by multi-scaled turbulent motions; the rollups 

then begin to overlap and merge into a single disturbance before diffusing out (Woods & 

Wiley 1972).  A schematic depicting the growth of the Kelvin-Helmholtz instability can 

be seen in Figure 1.2.  
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Figure 1.2. Kelvin-Helmholtz instability schematic developing with time.  a: initial 

interface disturbance, b: interface rolls up due to applied shear, c: multi-

scaled turbulence arises in structure, d: turbulence spreads throughout 

interface, e: turbulent rollups merge into a single disturbance, f: molecular 

diffusion removes high wavenumber components (Woods & Wiley 1972). 

 

Kelvin-Helmholtz instabilities can be seen in all length scales throughout the 

universe.  One of the largest scales occurs at the boundary between the sun’s surface and 

its corona, a plasma atmosphere protruding millions of kilometers from the star’s surface 

(Ofman & Thompson 2011).  As the eruption transpires, a velocity shear is created 

between the two planes, thus creating the instability.  On a slightly smaller scale, the 

magnetopause between a planet’s magnetosphere and plasma is highly inclined to shear-

driven instabilities.  The specific location of this structure is determined by the opposing 

planetary magnetic field pressure and the dynamic solar wind pressure (Amerstorfer et 

al. 2007).  As the solar wind fluctuates, the magnetopause accordingly changes, creating 

a perturbation which combined with the solar wind causes the instability to develop 
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(Walker 1981).  One of the most common instances of Kelvin-Helmholtz instability on 

Earth is gravity waves, such as in clouds or on the ocean, caused by wind flowing over a 

denser fluid (Miles 1957).  This variety can extend in size anywhere from a few 

kilometers (such as clouds or large waves) down to a few millimeters for water ripples.  

One of the smallest instances of Kelvin-Helmholtz instabilities results from Rayleigh-

Taylor instabilities in ICF.  As the bubbles and spikes rise and fall in the fluid, 

respectively, a shear layer between the two structures is created.  This action results in 

the widening of the two entities and gives rise to the mushroom structure that is 

associated with non-linear Rayleigh-Taylor instabilities (Emery et. al 1982; Sharp 1984).  

Much like the Rayleigh-Taylor instability, much is still left to be discovered with this 

shear-driven instability. 

 

1.4 Previous Work 

 

Hydrodynamic instabilities have been a subject of research for the past few centuries 

because of their application to both everyday experiences and state-of-the-art 

innovations.  Some examples from the former category include flow in pipes (Orszag 

1971; Wang & Rusak 1996; Hof et al. 2004), combustion (Sivashinsky 1977; 

Sivashinsky & Clavin 1987; Gutman & Sivashinsky 1990), solute transfer (Sternling & 

Scriven 1959), and evaporation (Palmer 1976).  As for the latter, instabilities play a role 

in ink jet technology (Moseler & Landman 2000; Duineveld 2003), capillary liquid 

bridges used for crystal growth and material science (Kuhlmann & Rath 1993), ICF 

(Tabak, Munro, & Lindl 1990; Remington et al. 1993; Azechi et al. 1997), and 

astrophysics (Perri & Cameron 1974; Lai, Rasio, & Shapiro 1993; Ji et al. 2006).  The 
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previous investigations into hydrodynamic instabilities can be split into three categories: 

experimental, numerical, and computational modeling. 

 

1.4.1 Experimental studies of hydrodynamic instabilities 

 

The diversity and complexity of buoyancy-driven instabilities has evolved in time as 

acceleration and imaging mechanisms have continued to develop.  One of the first 

experimental investigations of Rayleigh-Taylor instability was conducted by Lewis 

(1950) using compressed air to create accelerations up to 75 times that of gravity and 

shadow photography to capture the images for later analysis.  He then examined the 

photographs to evaluate the mixing width of the instability for different degrees of 

acceleration.  From his results, Lewis was able to conclude that the instability initiates as 

exponential growth according to linear stability theory, followed by a transitional period 

in which the amplitude increases and the surface disturbance accordingly changes, until 

finally a uniform velocity is reached.   

The development of the rocket rig in 1983 advanced the world of buoyancy-

driven experiments as it is less expensive in cost and manufacturing time over 

compressed air, and it allows for near-constant acceleration over a long distance (Read 

1984).  The apparatus consists of a tank initially arranged in a stable configuration, with 

a fluid of lower density positioned above one with higher density.  On the frame are two 

rocket motors which utilize solid fuel to propel the tank downward faster than the 

acceleration of gravity, thus causing       to be less than zero, creating the 

instability.  Photographs taken at 200 frames per second were used along with a distance 

scale on the rocket rig frame to evaluate the degree of fluid mixing.   
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From this new technology, multiple experiments with various fluid combinations 

became available (Smeeton & Youngs 1987).  A three-fluid experiment with the same 

Atwood number between the top and middle as well as middle and bottom fluids was 

conducted.  Results were shown to compare well with previous experiments and allowed 

for the creation of equations to compare the mixing widths of the top- and bottom-most 

fluids.  A tilted rig experiment was run at two different angles to evaluate and validate 

two dimensional dominant flows, with an increasing angle relating to a greater degree of 

two dimensional effects.  Comparing the resulting mixing width to an experiment with 

identical conditions minus the tilt, the values match at early times, but the former 

eventually levels out as the spike growth slows down.  This trend has been seen in 

previous experiments, but not at such a prominent drop off.  Experiments under constant 

acceleration, acceleration then coast, and acceleration then deceleration were evaluated 

to determine the change in the volume fraction with time, which was expected to evolve 

primarily in a linear fashion.  The growth rate was linear when acceleration was 

constant, leveled off when coasting and decreased when the rig was decelerated.  

Experiments with miscible fluids demonstrated significant molecular mixing, and the use 

of compressed SF6 allowed for trials with Atwood numbers up to 0.94.  For all cases, the 

growth rate was consistently around 0.06. 

The level of mixing does not purely rest on the Atwood number; the initial 

condition of the interface between the two fluids has a large effect.  If the interface is 

perfectly flat, the instability will not proceed to blend as neither fluid is able to break the 

boundary.  Further, two perturbations which deviate slightly from one another can have 
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instabilities which evolve in vastly different ways.  As such, initial conditions have been 

the subject of focus as of late. Though it is difficult to determine the initial perturbations 

in ICF, experiments can be created with prescribed conditions, and the resulting late time 

behavior can be studied.  One such example was carried out by White et al. using 

magnetorheological fluid positioned over a fluid of lower density (2010).  A mold was 

created in the shape of a sine wave with amplitude of 0.16 cm and wavelength of 2.12 

cm, upon which water was poured and allowed to freeze.  The mold was then removed, 

magnetorheological was placed on top of the ice and immobilized with magnets, and the 

ice was allowed to melt.  This left the system with an unstable configuration with 

Atwood number of 0.46 once the magnets were removed.  After the magnetorheological 

fluid is immobilized, the water can be drained to give an air interface with Atwood 

number of almost one.  Optical and x-ray visualization techniques are utilized to capture 

the instability advancement.  Results show asymmetry in the saturated growth rates, as is 

the case with several other papers, giving validity to the findings.  The capability of the 

setup to obtain repeatable and precise initial conditions through the creation of molds 

provides a great step in determining the relationship between initial perturbations and 

late term growth of Rayleigh-Taylor instabilities. 

Kelvin-Helmholtz instabilities, which present in nature independently, also occur 

at the boundary layer of Rayleigh-Taylor instabilities.  With the focus of buoyancy-

driven instabilities increasing, shear-driven instabilities have consequently gathered 

more attention.  Experiments have been conducted to study this phenomenon and 

compare it to those occurring in nature (De Silva et al. 1996).  In this example, a 
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rectangular box with its long axis in the vertical direction is filled with two fluids of 

different densities in a stable arrangement.  The box is then tilted by a certain angle, 

forcing the fluid to stretch and produce the instability.  Imaging was accomplished using 

recorded video as well as photographs near the center of the tank to avoid wall effects.  

Through dye selection and laser induced fluorescence, the degree of mixing throughout 

the rollup can be observed and is shown to be greatest at the center.  Eventually, the 

center of the rollup breaks down to a spot of turbulence which ultimately spreads 

throughout the structure. 

One of the key players in Kelvin-Helmholtz instability is vorticity, which acts to 

create the rollups typically associated with the instability.  However, the vortex sheet 

that forms at the interface of the two fluids is not stable, thus producing outcomes 

contrary to those predicted in Kelvin’s initial theory.  By studying fluids in which 

vorticity is almost zero, namely supercritical flows, the theory and physical experiments 

can be better compared (Blaauwgeers et al. 2002).  Using two phases of supercritical 

helium, the former with solid-body like rotation and the latter with vortex-free status, the 

rotational velocity can be increased to the point at which instability is reached for 

observation.  The arrangement, which is at magnetically stabilized, initially experiences 

rotation in the upper fluid of solid-body rotation.  Once the degree of revolution causes 

the upper fluid to extend into the lower fluid free of vortexes, the arrangement becomes 

unstable and the instability begins to develop.  The result is the transmission of vorticity 

across the interface, thus creating perturbations in the interface which further pull the 

vortex lines through the boundary of the two fluids.  To further study the effect of 



14 

vorticity in Kelvin-Helmholtz instability, vorticity probes have been used to quantify the 

effect this occurrence has in the flow field (Horton et al. 2005).  Shear is created using 

magnetic and electric fields, and the probe is used to collect vorticity data as the 

instability develops.  From the experiment, it was determined that the vorticity exhibits 

large values for most of the run, and also changes signs in multiple locations throughout 

the interface.  This asymmetric quality is at the core of Kelvin-Helmholtz theory.  

With the construction of the Texas A&M University water channel device in 

1994, and later the gas channel in 2006, statistically steady hydrodynamic instabilities 

with large data collection times could be studied (Snider & Andrews 1994; Banerjee & 

Andrews 2006).  The channel allows for an unstable configuration initially separated by 

a splitter plate to begin mixing once it enters the test section.  Since the channel is 

convective in nature, the flow is steady in time but not in space as the instability 

continues to develop as the fluid moves downstream.  The density of the bottom stream 

can be decreased by heating it for the water channel or injecting helium into it for the gas 

channel, thus creating an unstable arrangement.  Proceeding in this manner provides 

Atwood numbers ranging from 0.00034 to 0.0014 for the former and 0.03 to 0.75 for the 

latter.  Fog is added to the bottom stream for visualization and for aid in determining the 

volume fractions.  Using a wedge calibration system, with the bottom stream having the 

least intensity and the top stream the most, the mixture fraction and growth rates 

throughout the flow field can be determined.  Both channels have the capability to 

produce a shear between the two flow streams through increasing or decreasing the exit 

velocity of one of the fluids.  In doing so, Kelvin-Helmholtz instabilities are created, and 
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if coupled with the density difference mentioned above Kelvin-Helmholtz Rayleigh-

Taylor combined instabilities present. 

 

1.4.2 Simulation studies of hydrodynamic instabilities 

 

With the advent and development of computational technology, the study of 

hydrodynamic instabilities through simulation and modeling has rapidly progressed.  

David Youngs, a pioneer in the field of buoyancy-driven instabilities, utilized this new 

equipment to model the instability and compared it to the works of his colleague Read 

discussed earlier (Youngs 1984).  At the time, the computational resources could only 

model up to two-dimensions, offering understanding of the large scale structures and 

behaviors but preventing the study of small eddies which undergo viscosity dampening.  

The multi-mode simulations, which are more complex and require more computational 

resources, closer replicate physical experiments.  Further, with multi-mode perturbations 

the mixing rate soon becomes insensitive to the initial conditions and follows a simple 

pattern of progression.  In 1995, Andrews employed the Van Leer method to compute 

the convective fluxes in two-phase flows (Andrews 1995).  This method uses meshes to 

approximate the initial pressure distribution and ensure that it is conserved.  The 

distribution is then convected, the mesh is remapped, and weights on the functions are 

applied based on least squares fitting (Van Leer 1977).  Since the scheme prevents 

erroneous extremes and operates under higher order accuracy, the physical actuality is 

maintained.  This attribute is especially important when there are multiple fluids in the 

simulation, as the fraction of fluids must always be between zero and unity.  This code 

was then further modified to determine the effect of initial conditions on mixing 
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(Banerjee & Andrews 2009).  Three types of perturbations were utilized in the study 

(spectral bandwidth, spectral shape, and discrete banded spectra) to evaluate their effect 

on growth rates.  It was determined that when the initial perturbation contained more 

energy in the higher wavenumbers the instability grew faster.  Conversely, when the 

initial condition had more energy in the low wavenumbers the instability proceeded 

slowly.  Further, as the longest wavelength in the system was increased, the bubble 

growth rate directly increased as well.  These results, along with other findings, 

authenticates that the total growth of the system relies heavily on the initial perturbations 

of the fluid interface. 

 Taylor, a forerunner in the field of buoyancy-driven instabilities, was also 

investigating the effect of shear on different layers of stably arranged fluids (Taylor 

1931).  He investigated the effect varying the density in the different layers had on the 

behavior and stability of the total system.  In his work, he solved numerous equations for 

cases with varying degrees of density, velocity, and phases; he then reportd the 

necessary conditions to produce unstable configurations for all situations considered.  

One of the first simulations of shear-driven instabilities was conducted to gain a better 

understanding of why the characteristic rollup structures occur in nature.  The research 

team used a finite difference technique to solve the Boussinesq equations and modeled 

the results on a rectangular two-dimensional grid (Patnaik et al. 1976).  The findings 

support the linear stability theory at the low amplitude, early time stage of the instability, 

as well as the combination of rollups into subsequent structures.  The team notes that this 

incorporation depends on the phase shift between the rollups and the relative rate of 
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growth, among other factors, but does not have the capabilities to explore the modal 

interactions in depth.  To develop a deeper understanding of the instability, it must be 

modeled in three dimensions to capture secondary disturbances that arise.  Scinocca 

undertook this task to investigate how mass and momentum mix throughout the roll up 

process (Scinocca 1995).  Through this technique, he was able to gain some 

understanding of the development of secondary structures, for instance that the 

instability begins in the outermost layer of the rollup, then transitions inward as time 

progresses.  Further, as the Richardson number, ratio of Rayleigh-Taylor to Kelvin-

Helmholtz effects, decreases the flow tends toward producing highly defined vortex 

structures.  This tendency can be explained through the absorption of rollups until only 

the strongest, most prominent forms remain.  The system’s behavior was concluded to be 

highly dependent on the strength of the fluid stratification shear; the mixing efficiency as 

well as mass and momentum flux increased as the shear between the fluid layers was 

increased.  This trend can be contributed to a higher growth rate of the instability with 

rising shear, thus producing a greater degree of instability and an increased likelihood of 

fluid mixing. 

 Of utmost interest as of late is modeling how buoyancy- and shear-driven 

instabilities interact when combined in the same system.  In 1981, Emery et al.  

investigated the effect of laser ablation on a flat interface and the resulting 

hydrodynamic instabilities that arise from the process (Emery et al. 1982).  This task 

was carried out by utilizing a two-dimensional Cartesian based code with variable grid 

spacing.  As the code progresses in time, it transitions to the nonlinear regime and 
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depicts the characteristic bubble and spike Rayleigh-Taylor structures observed in 

physical experiments.  As these entities continue to grow, the relative shear produces 

secondary Kelvin-Helmholtz instabilities at their interface, causing their penetration to 

slow as their width increases.  Through analysis of velocity, density, and temperature 

plots, the effect of the two instabilities and how they interact can be investigated in 

depth.  The results demonstrate the stabilizing effect the shear has on the bubble and 

spike structures and suggest this may be the key to stagnating the fluid mixing before the 

shell is completely fragmented.  An alternative way to investigate the combined effect of 

buoyancy- and shear-driven instabilities is in Z-pinch implosions.  As the magnetic field 

compresses the plasma, a Rayleigh-Taylor instability is created in the system.  In an 

attempt to mitigate this effect, Shumlak and Roderick investigated adding a parallel 

shear to the arrangement in order to stabilize the reaction, much the way the Kelvin-

Helmholtz instability slowed the bubble and spike growth discussed earlier (Shumlak & 

Roderick 1998).  Using a magnetohydrodynamic model, a Z-pinch with an unstable 

density arrangement is configured, and then a parallel velocity is imposed on the overall 

system.  The velocity given to the Z-pinch is increased to higher and higher values until 

the amplitude of the bubbles and spikes is shown to decrease dramatically.  The addition 

of the Kelvin-Helmholtz instability is thus shown to mitigate the effect of the Rayleigh-

Taylor instability, offering a solution to preventing this unwanted side effect and 

confirming previous simulations with similar provisions.  An alternative way to contain 

both instabilities in a scheme is to have the two interacting perpendicular to one another.  

In this scenario, the theory predicts an increased growth rate over a pure Rayleigh-
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Taylor interaction.  However, Olson and his collaborators strove to prove this concept to 

be untrue and that the growth rate actually decreased initially with shear before later 

expanding as the level of shear increased (Olson et al. 2011).  In order to accomplish this 

task, they utilized a large eddy simulation and ran six different cases with increasing 

shear.  Through the analysis of growth rates, mixing rates, mixing efficiency, and density 

contours, the effect of different levels of shear can be evaluated throughout the stages of 

the instability.  Analysis of the results demonstrated an initial decrease in mixing rate 

during the nonlinear growth phase when the shear was low.  This trend can be attributed 

to the change in shape from mushrooms to rollups with the addition of shear.  As the 

shear increases, the energy in the system increases and allows the mixing width to thus 

grow further than a purely buoyancy-driven system.  These findings provide the hope 

that the effects of Rayleigh-Taylor instability can be limited with the addition of a 

controlled Kelvin-Helmholtz instability to the system. 

 

1.5 Research Objectives 

 

The objective of this research expedition is to investigate the effect of initial conditions 

on the level of mixing in the hydrodynamic instability.  This mission was undertaken in 

order to solve the following quandaries: 

1. What role does the Atwood number play in fluid amalgamation?  

2. What effect does the initial condition of the fluid interface have on mixing?  In 

particular, how does mixing width and level of molecular mixing vary as the 

number of initial modes is changed?   

3. What effect does initial velocity fluctuation have on Kelvin-Helmholtz mixing? 
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4. What effect does shear have on the growth rate, mixing width, and Richardson 

number of the system?  What is the transitional Richardson number at different 

shears, and is there any correlation for this characteristic? 

5. Using the results obtained from the previous items, is there a potential way to 

control the level of fluid mixing through the selection of specific initial 

conditions? 

These questions have been resolved through the combined use of an implicit large eddy 

simulation computational code under active development at Los Alamos National 

Laboratory and Texas A&M University.  Experimental data obtained from the Texas 

A&M University gas channel have been utilized for initial condition selection as well as 

comparison to the computational results.  The ways in which the above queries were 

investigated are as follows: 

1.  Run cases with Atwood numbers ranging from very low (0.032) to high (0.6), 

and compare mixing width and molecular mixing parameter θ (when applicable). 

2. Run cases with identical settings apart from the initial boundary condition.   

Assign one variety with a single mode initial boundary perturbation and another 

with initial conditions based upon the density power spectrum taken just after the 

splitter plate in the Texas A&M University gas channel (Akula et al. 2012).  

Compare the mixing width and molecular mixing. 

3. Run cases with varying levels of vertical velocity fluctuations based on hot wire 

anemometry data.  Compare with experimental data for mixing width and height 

gradient. 
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4. Run cases with identical settings apart from the relative shear in the two fluid 

layers.   Compare the growth parameter, mixing width, molecular mixing, and 

the Richardson number.  Analyze the derivative of the mixing width to determine 

how it changes with regard to the Richardson number.  

5. Analyze the results obtained from the above methods and investigate the 

techniques which result in the smallest mixing width, molecular mixing, and 

growth parameter. 

 

1.6 Outline of Thesis 

 

First, the implicit large eddy simulation computational code under active development at 

Los Alamos National Laboratory and Texas A&M University was modified to replicate 

buoyancy- and shear-driven instabilities.  Using this updated code, three cases based on 

published experimental Rayleigh-Taylor data were used to analyze different Atwood 

number problems with values of 0.032, 0.46, and 0.6.  Comparisons of these results were 

utilized to authenticate the code and to evaluate how the degree of fluid mixing changes 

as the density difference between the two layers increases.  Next, the 0.032 Atwood 

number case was investigated in depth with two different interface perturbations, four 

different velocity fluctuations, and six different amounts of shear.  The relative shear 

between the fluids was 0m/s (pure Rayleigh-Taylor case), 0.2 m/s, 0.35 m/s, 0.5 m/s, 

0.65 m/s, and 0.8 m/s.  A pure Kelvin-Helmholtz case with relative shear of 0.8 m/s was 

also studied and contrasted against the six previously mentioned cases.  Differences in 

mixing widths, molecular mixing, growth parameter, and Richardson number for the 

initial conditions were obtained and utilized to investigate relationships with fluid 
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mixing.  In addition, the height gradient of the mixing width was utilized to determine 

the relative levels of Rayleigh-Taylor and Kelvin-Helmholtz effects and at what 

transitional Richardson number these come into play. 
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2. CODE VALIDATION AND ANALYSIS OF ATWOOD NUMBER EFFECT 

2.1 Overview of Goals and Methodology 

 

The first step taken to complete the tasks laid out above was to transform the provided 

computational code into a vehicle to model the desired problems at hand.  Upon 

converting the code into a more versatile version, the ability of the program to accurately 

model hydrodynamic instabilities needed to be verified.  This duty was accomplished 

through comparison of the code to physical experiments as well as to proven theory.  

Upon gaining confidence in the capabilities of the code, three different Atwood number 

cases were considered in order to determine the role density plays on fluid mixing.  

Relationships of the mixing width and molecular mixing of the three instances to 

physical experiments as well as to each other were investigated. 

 The mixing width of the system was calculated as the height difference between 

the locations of bottom stream fluid volume fraction contours at 0.05 and 0.95.  The 

volume fractions are calculated as 

    
    

     
,           (2.1, 2.2) 

where f1 is the top fluid’s volume fraction, f2 is the bottom fluid’s volume fraction, ρ is 

the density value at the current point, ρ1 is the density of the top fluid, and ρ2 is the 

density of the bottom fluid.  The amount of molecular mixing in the fluids is found by 

taking into account both the effect of mixing due to molecular diffusion and the 

condition that would result if both fluids were immiscible and thus no molecular mixing 

occurred.  The former can be seen in equation (2.3) where T is the total system time,  ̅ is 

the average density, and ∆ρ is the density difference; the latter is shown in equation 
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(2.4). Combining these two equations results in the equality for the molecular mix 

fraction θ measured at the centerline (2.5). 

         
 

 
∫ (   ̅)        

 
 (2.3) 

     (    ) (2.4) 

     
  

  
 (2.5) 

 Inside the mixing width, θ equals zero if the two fluids are immiscible and equals 

one if the two fluids are completely mixed molecularly.  At the centerline, B2 tends 

toward its maximum value (0.25), meaning both fluids are equally present.  This 

parameter becomes smaller the further it gets from the centerline, with its minimum 

value occurring at the edge of the mixture.  B0 is equal to zero when either the fluids are 

completely mixed or when only one fluid is present. 

 

2.2 Code Description 

 

The initial code (called RTI3D) provided from Los Alamos National Laboratory is a 

research program which is currently under active development jointly at Los Alamos and 

Texas A&M University.  This implicit large-eddy simulation framework is commonly 

used to model fluid instabilities (Banerjee & Andrews 2009).  RTI3D utilizes a finite 

volume technique with third order Van-Leer equations for flux calculations and a multi-

grid solution method to resolve pressure terms.  This code solves three-dimensional 

incompressible Euler equations, although the option of applying Navier-Stokes 

equations is also available.  The implicit large-eddy simulation scheme exploits 

numerical dissipation to model turbulent diffusion.  This technique serves to dissipate 
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small scales in a manner similar to physical viscosity.  The program is capable of 

modeling cyclic boundary conditions in both the x and y planar directions, while the z 

boundary is held under a free-slip condition (see Figure 2.1).  The initial framework was 

set up to model a tilted rig instability, a Rayleigh-Taylor density instability where the 

interface between the two fluids is slanted.  

 

 
Figure 2.1. Depiction of computational box with cyclic x and y and free-slip z 

boundaries. 

 

 The incompressible Eulerian governing equations can be seen in volume 

conservation (equation (2.6)), scalar transport (equation (2.7)), and momentum balance 

(equation (2.8)), where  ⃗  is the three component velocity vector, f is a scalar, t is time, ρ 

is density, P is pressure, and  ⃗  is the three component gravity vector.  This combination 

results in five equations with six unknowns; the sixth equation comes from the 

assignment of the scalar to the mix fraction as described in (2.1). 

    ⃗    (2.6) 

 
  

  
   (2.7) 

x 
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 (  ⃗⃗ )

  
       ⃗  (2.8) 

 The code works to first solve the advection terms then update the Lagrangian 

source terms; this is done using a fractional time step technique.  For the first segment, 

the three dimensional transport is split into steps for each component.  This technique 

simplifies the problem to a series of one-dimensional updates, resulting in higher order 

calculations of cell fluxes with the Van Leer method.  Starting with the x-component of 

the scalar transport, the advection is given by 

   
    

        (         ) (2.9) 

where p is the center of the control volume, e and w is the east and west face, 

respectively, n is the current time step, and * is the intermediate time step.  The velocity 

values at the faces are known, and the scalar quantities at the faces can be found from a 

second order approximation using Van Leer limiting so as to avoid non-physical 

oscillation.  This equality and subsequent definition of terms can be seen below.  

Because the gradient of the cell profile (D) is computed with a central difference 

method, the scheme is second order.  Following this technique, the other components of 

the scalar transport can be found, and similar advection steps can be performed for the 

momentum. 
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 The second fraction of the time step is used to update the Lagrangian momentum 

source term.  The equation for the w component is 
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 )     (2.17) 

where n+1/2 is the intermediate value from the previous advection calculation and * is 

the intermediate value which may or may not satisfy continuity.  The velocity and 

pressure corrections, respectively, are 

     
        

        (2.18) 

   
      

      (2.19) 

 Substituting these equations into the volume conservation relation and removing 

the momentum equation results in the Poisson equation for pressure corrections set equal 

to the divergence of the intermediate velocity values which do not necessarily satisfy 

continuity: 

                                    (2.20) 

This equation is solved with a multi-grid method then the resulting pressure 

corrections are used along with the SIMPLE algorithm to update the velocities and 

pressures while ensuring momentum and velocity is conserved. 
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2.3 Code Modification 

 

Upon receiving of the RTI3D code described above, a number of modifications were 

implemented in order to model the desired instability.  First, the slanted interface 

characteristic of the tilted rig was removed.  In its place, the code was set up with a 

velocity perturbation in the form of a sine wave.  A single mode had the form of: 

          (   )      | |   (2.21) 

where sgn is positive or negative depending on if the location is on top or bottom of the 

interface, respectively, k is equal to the wavenumber, and z is the current height location.  

Multiple perturbations with a similar form can be added to the code to provide a multi-

mode initial interface condition.  The next step in the process to model the fluid 

instabilities was to allow for shear in the system.  The code was initially set to input one 

velocity value, which was then distributed across the height of the modeled instability.  

The program was then modified to allow for two separate velocity values, one for each 

stream, which were transitioned near the interface in order to prevent discontinuities 

where the fluids met.  With this arrangement, the fluid was assembled with an actual 

reference frame, in which a setup with top fluid moving at 1m/s and bottom fluid 

moving with bottom velocity of 0.2 m/s is modeled directly with those velocities.  An 

alternative technique is to utilize an inertial reference frame, in which the average 

velocity is subtracted from each value, resulting in equal and opposite values, ±0.4 m/s 

in this instance.  Due to convection inconsistencies within the code, it was determined 

that the inertial reference frame provided the most realistic results.  The initial interface 

perturbation was thus set up with this arrangement for all cases.  Additional code 
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segments were created to capture various data points for future modeling, including 

bubble and spike heights, molecular mixing, Richardson number, velocity values, etc.  

The final modification to the code was done in the input file where the density and 

velocity values were set to match those in the physical experiments. 

 

2.4 Comparison to University of Wisconsin-Madison Experiment, Atwood Number 0.46 

 

The first goal with the newly updated code segments was to model published physical 

experiments in order to validate that all changes were carried out correctly and result in 

physiologically accurate outcomes.  The first paper chosen was White et al.’s work on a 

Rayleigh-Taylor instability with sharply defined initial interface perturbation (White et 

al. 2010).   

 

2.4.1 Description of physical experiment 

 

The two fluids used in the experiment were magnetorheological fluid, which has a 

density of 2735 kg/m
3
, and water with a density of 1000 kg/m

3
.  The instability was 

created using a metal sheet formed in the shape of a sine wave with amplitude 0.08 cm 

and wavelength of 2.12 cm.  The sheet was placed in the middle of the experimental 

container, and water was pumped into the lower half and frozen.  The sheet was then 

removed and magnetorheological fluid was added on top of the ice and held in place 

with two magnets.  The ice was then allowed to completely melt and the water to return 

to room temperature, at which point the magnets were retracted and the two fluids were 

allowed to interact.  The resulting images from this experiment can be seen in Figure 

2.2.  
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Figure 2.2. Images taken from experimental run by White et al. using 

magnetorheological fluid over water.  From left to right, time after magnet 

retraction is: 0 ms, 52 ms, 116 ms, 152 ms, and 176 ms. 

 

Optical and x-ray visualization techniques are utilized to capture the instability 

advancement.  Results show the characteristic mushroom structures as well as 

asymmetry in the saturated growth rates.  Through analysis of captured images, the 

mixing width and terminal velocity can be measured.  Further, the results can be used to 

calculate the Froude number, a ratio of interita to gravitational forces which illustrates 

the resistance of an object’s motion through water.  The capability of the setup to obtain 

repeatable and precise initial conditions through the creation of molds provides a great 

step in determining the relationship between initial perturbations and late term growth of 

Rayleigh-Taylor instabilities. 

 

2.4.2 Description of problem setup 

 

In order to recreate this experiment computationally, a box with dimensions 7.6 cm x 

1.27 cm x 20.3 cm was created with grid spacing of 64 x 16 x 256 to give a resolution of 

1.188 mm x 0.794 mm x 0.793 mm in the x, y, and z directions, respectively.  All grid 

spacings subsequent resolutions were determined based on the resolution study 

conducted by Banerjee and Andrews (Banerjee & Andrews 2009).  The top fluid was 

given a density of 2735 kg/m
3
 and a velocity of 0m/s while the bottom fluid was set to 
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density of 1000 kg/m
3
 and velocity of 0 m/s.  The program was set to run for a physical 

time of 168 ms with 180000 time steps, which took 30 minutes to compute, and was 

given the same perturbation as described above, resulting in a single mode in the form of  

              (   )      | | (2.22) 

where amp=0.08 cm and k = 2π/λ = 2π/2.12 cm.  The x and y planar boundaries were set 

to be non-cyclic as the physical and computational dimensions matched. 

 

2.4.3 Results from computational code 

 

The mushroom structures characteristic of the Rayleigh-Taylor instability can be seen in 

the computational output (Figure 2.3) and match those in the images by White et al.  

Towards the end of the run, the mushrooms begin to tilt inward in both the experimental 

and computational cases, which together with the former give much validity to the code 

operating precisely with the new modifications.  The only visible difference between the 

two cases is in the time it takes each one to reach the respective stages, with the 

computational code unraveling much faster than the physical experiment.  This quality 

can be attributed to the residual magnetic impact in the magnetorheological fluid.  

Unlike in theory where when the magnets are retracted the fluids begin to mix 

instantaneously, in reality there is a residual magnetic force which is felt by the fluid, 

thus delaying the mixing in the system. 
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Figure 2.3. Images taken from computational run based on data from White et al. using 

magnetorheological fluid over water.  From left to right, time after start of 

fluid interaction is: 6.65 ms, 21.6 ms, 40 ms, 60 ms, and 98 ms. 

 

 To further compare the two cases, the bubble and spike heights can be plotted 

against a normalized time t/t′ (Figure 2.4) where t′ is shown in equation (2.23).  The 

bubbles and spikes have grown farther in the computational case due to the lack of 

residual magnetic effects described above.  The above instances provide confidence to 

the ability of the code to model Rayleigh-Taylor experiments successfully. 

     √
 

   
 (2.23) 

 

     

Figure 2.4. Depiction of bubble and spike amplitude height (η) versus normalized time.  

Left: experimental data, right: computational data. 
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 The computational method offers a number of benefits and detriments over the 

physical experiment.  For the former, the computation is able to evaluate up to a further 

time since the code is not limited by an imaging window (see Figure 2.5).  As for the 

latter, the inability to know the exact initial conditions of the experiment hinder the code, 

as can be seen in the convex appearance of the amplitude heights at early time (2.4, 

right).  The difference from the specifically set conditions in the experiment could be 

due to imperfections created when removing the mold or melting the ice and require 

further evaluation to perfect. 

 

         

Figure 2.5. Late time images taken from computational run based on data from White 

et al. using magnetorheological fluid over water.  From left to right, time 

after start of fluid interaction is: 114.2 ms, 127.7 ms, 141.1 ms, 154.6 ms, 

and 168 ms. 

 

2.5 Comparison to Texas A&M University Experiment, Atwood Number 0.6 

 

With the ability to model Rayleigh-Taylor instabilities proven, the next step was to 

increase the Atwood number to test the codes limitations.  The paper chosen for this task 

was Banerjee and Andrews work in a statistically steady gas channel (Banerjee et al. 

2010). 
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2.5.1 Description of physical experiment 

 

The remaining experiments presented in this paper were carried out at the Texas A&M 

University gas channel mentioned earlier in the previous works section.  Air enters the 

channel, which is split into two sections by a splitter plate, and flows through numerous 

meshes to ensure the flow is straightened (Figure 2.6).  Upon exiting the meshes, the two 

fluids are allowed to mix and images are captured for future data analysis.  Helium can 

be added to the bottom section as it enters the channel to create a density instability, or 

the flow can be altered to create a velocity difference between the two streams.  The 

dimensions of the test section are 2 m x 0.6 m x 1.2 m. 

 

 

Figure 2.6. Schematic of Texas A&M University gas channel, side view. 

 

 The density of air in the experiment, and thus the density of the top fluid, is 1.14 

kg/m
3
.  In order to obtain an Atwood number of 0.6, helium needed to be added to the 

z 
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bottom stream until it reached a density of 0.285 kg/m
3
.  Unlike in White et al.’s 

experiment, the initial interface is not sharp and well defined.  A picture of the run can 

be seen in Figure 2.7 while an image of the mixing width at two different locations is 

shown in Figure 2.8. 

 

 

Figure 2.7. Image of test section from gas channel with Atwood number 0.6. 

 

 

Figure 2.8. Plot of mixing width fraction versus distance from centerline for two axial 

locations. 
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 Since the channel is convective in nature, the flow is steady in time but not in 

space as the instability continues to develop as the fluid moves downstream.  This 

statistically steady hydrodynamic instability allows for large data collection times to be 

studied.  Fog is added to the bottom stream for visualization and for aid in determining 

the volume fractions.  Using a wedge calibration system, with the bottom stream having 

the least intensity and the top stream the most, the mixture fraction and growth rates 

throughout the flow field can be determined using ensemble averaging of captured 

images.  Velocity and density information at certain points throughout the flow field can 

be obtained from hot wire anemometry data, and temperature information can be 

obtained from thermocouples. 

 

2.5.2 Description of problem setup 

 

To model this experiment, a computational box with dimensions 0.3 m x 0.3 m x 1.2 m 

was created with grid spacing of 128 x 64 x 512 to provide a resolution of 2.344 mm x 

4.688 mm x 2.344 mm in the x, y, and z dimensions, respectively. The top fluid was set 

to have a density of 1.14 kg/m
3
 and a velocity of 2 m/s while the bottom fluid was given 

a density of 0.285 kg/m
3
 and velocity of 2 m/s.  The program was set to run for a 

physical time of 1 s with 55000 time steps, which took 2.5 hours to complete, and was 

given the same perturbation as in the White et al. case since the gas channel does not 

have well defined initial conditions.  The x and y planar boundaries were set to be cyclic 

as the physical dimensions would require too much computational power to model 

exactly. 
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2.5.3 Results from computational code 

 

The bubble and spike heights based on 5% and 95% volume fractions are shown versus 

the distance from the splitter plate in Figure 2.9.  Comparing this image with Figure 2.8, 

at 50 cm the mixing width is nearly the same, with a value of approximately 16 cm for 

the experiment and 13 cm for the model.  Further down the channel, however, the 

computation seems to saturate while the experiment continues to grow exponentially, 

leading to a height of 50 cm for the experiment versus 33cm for the computation at a 

distance of 125 cm.  Looking at an image developing throughout the run, the mushroom 

structures are much more developed than in the 0.46 Atwood number case (see Figure 

2.10).  Comparing to Figure 2.7, the mixing width in both instances is larger on the left 

side of the image, showing that the Rayleigh-Taylor instability is causing the fluids to 

mix as they move downstream. 

 

 

Figure 2.9. Mixing width based on 5% and 95% volume fractions for Atwood number 

0.6 case. 
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Figure 2.10. Image taken equivalent to a distance of (a) 2 cm, (b) 26 cm, (c) 52 cm, (d) 

76 cm, (e) 102 cm, (f) 126 cm, (g) 152 cm, (h) 176 cm, (i) 200 cm from the 

splitter plate for Atwood number 0.6 case. 

(a) 

(e) 

(b) 

(d) 

(c) 

(f) 

(h) (g) (i) 
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2.6 Comparison to Texas A&M University Experiment, Atwood Number 0.032 

 

The final goal of this segment was to model a low Atwood number case since the 

accuracy of the medium and high numbers has been validated.  For this reason, a pure 

Rayleigh-Taylor case with Atwood number of 0.032, based on Akula et al.’s paper with 

an Atwood number of 0.035 also dealing with the gas channel, was selected (Akula et al. 

2012). 

 

2.6.1 Description of physical experiment 

 

The experimental facility utilized in this work is the same as was operated in Banerjee et 

al.’s paper.  The top fluid is still pure air with density of 1.14 kg/m
3
 but is now moving 

with a velocity of 0.63 m/s.  The bottom fluid only needs enough helium to create a 

density of 1.063 kg/m
3
 and is also moving with a velocity of 0.63 m/s.  A picture of the 

run can be seen in Figure 2.11 while an image of the mixing width throughout the 

channel is shown in Figure 2.12. 

 

 

Figure 2.11. Image of test section from gas channel with Atwood number 0.035. 
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Figure 2.12. Mixing width based on 5% and 95% volume fractions for Atwood number 

0.035. 

 

2.6.2 Description of problem setup 

 

To model this experiment computationally, a box with dimensions 0.3 m x 0.3 m x 1.2 m 

was created with grid spacing of 128 x 64 x 512 to provide a resolution of 2.344 mm x 

4.688 mm x 2.344 mm in the x, y, and z dimensions, respectively. The top fluid was set 

to have a density of 1.14 kg/m
3
 and a velocity of 1 m/s while the bottom fluid was given 

a density of 1.07 kg/m
3
 and velocity of 1 m/s.  This provided the system with an Atwood 

number of 0.032 and no shear in the system.  The program was set to run for a physical 

time of 3 s with 85000 time steps, which took 3.5 hours to complete, and was given the 

same perturbation as in the White et al. case since the gas channel does not have well 

defined initial conditions.  The x and y planar boundaries were set to be cyclic as the 

physical dimensions would require too much computational power to model exactly. 
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2.6.3 Results from computational code 

 

Comparing the mixing width of the computational run (Figure 2.13) to that from the 

experiment (Figure 2.12), the former is shown to be much smaller than the latter at 

nearly a third of the value.  This information suggests that the initial interface 

perturbations are not adequate for recreating the experimental data.  Comparing the flow 

development throughout the test section (Figure 2.14) to the previous images of the 

computational run, the mushrooms in the Atwood number 0.032 case are much less 

developed than the two higher Atwood number cases.  

 

 

Figure 2.13. Mixing width based on 5% and 95% volume fractions for Atwood number 

0.032 case. 
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Figure 2.14. Image taken equivalent to a distance of (a) 1.94 cm, (b) 25.22 cm, (c) 50.44 

cm, (d) 73.72 cm, (e) 98.94 cm, (f) 122.22 cm, (g) 147.44 cm, (h) 170.72 

cm, (i) 194 cm from the splitter plate for Atwood number 0.032 case. 

 

(a) 

(e) 

(b) 

(d) 

(c) 

(f) 

(h) (g) (i) 
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2.7 Comparison of Atwood Number 0.6 to Atwood Number 0.032 

 

Since the works of Banerjee et al. and Akula et al. utilize the same experimental facility, 

it is easy and beneficial to compare the two cases in order to analyze the effect of 

Atwood number on fluid mixing.  Figure 2.15 illustrates the total mixing width versus 

distance from splitter plate for both Atwood numbers.  As can be seen, the amount of 

mixing greatly increasing when the density difference between the two fluids is larger. 

 

 

Figure 2.15. Total mixing width comparison of Atwood numbers 0.6 and 0.032. 

 

An alternative way to inspect the fluid amalgamation is to look at the molecular 

mixing parameter θ.  In order to better compare the two Atwood numbers, the time from 

the start of mixing is nondimensionalized as 

    √
    

 
 (2.24) 
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where t is the time after the start of the run and H is the total height of the channel.  The 

plot of this value measured at the centerline can be seen in Figure 2.16 and depicts the 

lower Atwood number case as having a higher value.  This circumstance illustrates that 

while the Atwood number 0.6 case has a higher mixing width, there is more molecular 

mixing occurring in the Atwood number 0.032 case.  Thus, the degree of mixing in each 

fluid is different for each case depending on whether molecular or macroscopic 

amalgamation is the parameter of interest. 

 

 

Figure 2.16. Comparison of molecular mixing at the centerline versus 

nondimensionalized time for Atwood numbers 0.6 and 0.032. 
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3. ALTERNATIVE INITIAL INTERFACE CONDITIONS AND THE EFFECT 

OF SHEAR ON THE SYSTEM  

3.1 Overview of Goals and Methodology 

 

With the code validated and pure Rayleigh-Taylor instabilities investigated, the next step 

was to modify the boundary perturbation to better represent the physical experiments 

whose fluid interfaces were not clearly defined.  In order to accomplish this task, hot 

wire anemometry was used on the gas channel to collect velocity and density data, which 

were then transformed into a power spectrum to provide insight into the energy delivered 

to the interface.  The two methods of modeling the interface were then compared for the 

parameters of mixing width, and θ. 

 Next, the power spectrum was further investigated by looking at initial velocity 

fluctuations that do not appear in the spectrum data.  Different fractions of fluctuations 

obtained from hot wire anemometry were compared in order to determine which 

provided the most realistic representation of the results.  Experimental data was 

compared against the different fluctuations for mixing width and mixing width gradient.  

The latter is utilized to determine the magnitude of Rayleigh-Taylor, which grows 

exponentially, and Kelvin-Helmholtz, which grows linearly, effects on the flow. 

 Finally, the level of shear in the system was increased in order to determine the 

effect of this condition on fluid mixing.  Seven cases were investigated, one with no 

velocity (Atwood number 0.032), one with no density difference (shear of 0.8 m/s) and 

five cases with intermediate levels of shear (0.2 m/s, 0.35 m/s, 0.5 m/s, 0.65 m/s and 0.8 

m/s) and Atwood number 0.032.  The growth parameter, mixing width, molecular 
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mixing, Richardson number, and Reynolds number were compared, as well as how the 

mixing width gradient changes with regard to the Richardson number.  The growth 

parameter α can be found by solving for the value directly from equation 1.1 and gives 

      
    

    
 
 (3.1) 

while the Richardson number is the ratio of potential to kinetic energy, equivalent to the 

ratio of Rayleigh-Taylor to Kelvin-Helmholtz effects, and can be described by 

    
  (

  

  
)

 (
  

  
)
  

         

 ̅    
 (3.2) 

where the negative sign used for the definition of unstably stratified flows. 

 

3.2 Single versus Multimode Interface Perturbation 

 

The first step taken to ensure a realistic interface perturbation was to obtain hot wire data 

from the physical gas channel experiment.  From this information, the computational 

code was modified and ran with various cases of shear to compare the differences 

between the two methods. 

 

3.2.1 Obtaining the power spectrum and subsequent code modification 

 

Hot wire anemometry can be broken into two categories: constant current or constant 

temperature.  For constant current, the change in voltage is due to a change in resistance, 

which is indirectly related to a change in temperature.  For constant temperature, a 

specific resistance for the system is set, and the resulting voltage change through the 

wire is measured.  For both systems, calibration curves must be created in order to 

determine the relationship between the measured voltage and system’s density or 
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velocity, respectively, for each specific experimental variation.  These variations include 

overheat ratio, fraction of different gasses, etc.   

For a constant temperature system, a calibration scheme must be used to obtain 

the parameters in King’s Law (E
2
=bU

0.5
) where U is the known input velocity, E is the 

resulting voltage values from the hot wire probe, and b is the calibration constant.  It is 

also highly critical to ensure the hot wire is lined up with the flow field so that the proper 

calibration relationship is obtained.  Once the square root of the known calibration mean 

velocity data is plotted versus the resulting squared voltage values, a line of best fit can 

be used to obtain the parameter b.  Again, these values are only for the specific 

variations in which they are measured, and multiple calibration curves for all 

combinations of variations must be obtained.  This requirement results in different 

values of parameter b depending on the percentage of helium in the system (and thus the 

Atwood number).  Proceeding in this manner, all appropriate calibration curves were 

acquired for the various Atwood numbers, and the gas channel experiment was 

conducted with a three wire constant temperature hot wire to find the velocity from 

King’s Law as now the voltage and b are known.   

With the velocities U1, U2, and U3 at each of the three probes now obtained, the 

x, y, and z components of the flow velocity at the measured location can be found.  The 

equalities for these values for gold plated hot wire sensors can be seen in equations (3.3) 

to (3.5), respectively.  

 U = U1 * cos(54.74) + U2 * cos(54.74) + U3 * cos(54.74) (3.3) 

 V = -U1 * cos(45) - U2 * cos(135) + U3 * cos(90) (3.4) 
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 W = -U1 * cos(114.09) - U2 * cos(114.09) - U3 * cos(35.26) (3.5) 

A single wire constant current hot wire was utilized to obtain the temperature at 

the same point as the three probe constant temperature hot wire, which was then related 

to the density from the calibration data.  Both anemometry measurements were taken 

half an inch from the splitter plate in order to best determine the initial conditions of the 

fluids upon their first interaction (see Figure 3.1). 

 

 

Figure 3.1. Image of hot wire anemometer collecting data half an inch from the splitter 

plate in the gas channel. 

 

Using the density information gained from the hot wire anemometry, a fast 

Fourier transform of the density fluctuations was obtained for half of the measured 

values due to the limitations of the Nyquist frequency.  This method produced a plot of 

the density power spectrum versus wavenumber that was then used to create the 
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multimode perturbation (Figure 3.2).  Of the power spectrum data collected, 

wavelengths up to 4Δx (9.376 mm) can be used, after which point the viscosity damps 

out the eddies.  This value is equivalent to a wavenumber of π/2Δx or 0.67 mm
-1

.  The 

equation for the velocity perturbation then becomes: 

   √            (   )      | |   (3.6) 

where k is the current wavenumber, Mk is the mode at that wavenumber, b is the slope at 

that wavenumber, and a is the value when k = 1. 

 

 

Figure 3.2. Density power spectrum obtained half an inch from the splitter plate in the 

Texas A&M University gas channel. 

 

From the physical data collected, a number of changes were implemented into 

the computational code besides those listed above for the interface perturbation.  As with 

the previous Atwood number 0.032 case, a box with dimensions 0.3 m x 0.3 m x 1.2 m 

was created with grid spacing of 128 x 64 x 512 to provide a resolution of 2.344 mm x 

4.688 mm x 2.344 mm in the x, y, and z dimensions, respectively. The top fluid was set 
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to have a density of 1.14 kg/m
3
 and a velocity of 1 m/s while the bottom fluid was given 

a density of 1.07 kg/m
3
 and velocity 1 m/s.  This assignment provided the system with 

an Atwood number of 0.032 and no shear, in other words a pure Rayleigh-Taylor 

arrangement.  The program was set to run for a physical time of 3 s with 85000 time 

steps and took 5.5 hours to complete.  The x and y planar boundaries were set to be 

cyclic as the physical dimensions would require too much computational power to model 

exactly.   

 

3.2.2 Results from computational code 

 

The total computational mixing width can be seen in Figure 3.3 and is about half of that 

in the physical experiment shown in Figure 2.12.  Images throughout the gas channel are 

shown in Figure 3.4.  As can be seen, a few of modes dominate while smaller modes 

continue to develop in their midst.  These dominant modes will continue to grow and 

will soon take over the smaller structures.   

 

 

Figure 3.3. Mixing width based on 5% and 95% volume fractions for no shear Atwood 

number 0.032 case with power spectrum interface perturbation. 
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Figure 3.4. Image taken an equivalent distance of (a) 3.6 cm, (b) 28.2 cm, (c) 53.4 cm, 

(d) 78 cm, (e) 103.2 cm, (f) 127.8 cm, (g) 153 cm, (h) 177.6 cm, (i) 199.8 

cm from splitter plate for the Atwood number 0.032 power spectrum case. 
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  In spite of this fact, however, the gradient of the mixing width (Figure 3.5) grows 

linearly, indicating parabolic growth of the mixing width which is typical of Rayleigh-

Taylor instabilities.  The linear growth stops around 140 cm past the splitter plate and 

transitions to a constant value.  This growth in the height gradient is indicative of a linear 

evolution of the mixing width, characteristic of Kelvin-Helmholtz instability, and 

illustrates a saturation of the Rayleigh-Taylor bubble growth.  Because of this saturation, 

code involving density instabilities is only valid up to 140 cm from the splitter plate. The 

height gradient from the physical experiment in Section 2.5 can be seen in Figure 3.6 

and shows the same linear growth as the computational run.   

 

   

Figure 3.5. Mixing width height gradient for no shear Atwood number 0.032 case with 

power spectrum interface perturbation. 
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Figure 3.6. Mixing width height gradient for no shear Atwood number 0.035 

experimental data. 

 

3.2.3 Comparison of single and multimode perturbation 

 

Comparing the mixing widths of the single and multiple sine wave interface perturbation 

results in the image shown in Figure 3.7.  At first the single mode has a greater mixing 

width, but around 120 cm past the splitter plate the multimode case overtakes.  This 

switch can be attributed to the parabolic growth seen in the power spectrum scenario, 

which matches better with theory and experiments for pure Rayleigh-Taylor data.  

Further, because of this greater rate of growth, the total mixing width of the density 

spectrum matches closer to physical experiments. 
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Figure 3.7. Comparison of mixing width with a single and multimode interface 

perturbation with no shear and Atwood number 0.032. 

 

 An alternative manner in which to compare the two cases is to investigate the 

level of molecular mixing at the centerline (Figure 3.8).  As with before, one scenario 

has a smaller mixing width but larger molecular mixing and the other the opposite.  Due 

to the accuracy of the power spectrum height gradient compared to physical data and 

theory, this case provides a better computational representation of the physical 

happenings and will be used from here on out. 
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Figure 3.8. Comparison of molecular mixing at the centerline versus 

nondimensionalized time for single and density spectrum fluid interface 

perturbation for no shear Atwood number 0.032. 

 

3.3 Vertical Velocity Fluctuations in Power Spectrum Perturbation 

 

With pure Rayleigh-Taylor instabilities fully investigated, a pure Kelvin-Helmholtz case 

was explored.  However, when the code was computed using the aforementioned 

techniques, the bubble and spike growth stagnated prior than it theoretically should have.  

Investigation into the code suggested an insufficiency in the input vertical energy which 

drives the Kelvin-Helmholtz instability.  Thus, a parametric study with four levels of 

vertical velocity fluctuation was conducted in order to determine which method provided 

the most realistic results. 

 

3.3.1 Obtaining velocity fluctuations and subsequent code modification 

 

The data used to determine the best velocity fluctuation in the computational code was 

the hot wire anemometry data obtained in Section 3.2.  From measurements taken at 0.5 
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and 1.5 inches from the splitter plate, linear interpolation was used to find the velocity 

fluctuation at the splitter plate.  This value was found to be (0.0856, 0.05665, 0.06240) 

m/s in the x, y, and z directions, respectively.  To implement this into the code, the 

numbers were simply added onto the original velocity components for the top and 

bottom fluids.  As the vertical component is the most important, variations of a half, 

fourth, and eighth of this component were also modeled with the other two components 

held constant. 

 Similar to the previous cases, to model this shear instability a computational box 

with dimensions 0.3 m x 0.3 m x 1.2 m was created with grid spacing of 128 x 64 x 512 

to provide a resolution of 2.344 mm x 4.688 mm x 2.344 mm in the x, y, and z 

dimensions, respectively. The top fluid was set to have a density of 1.14 kg/m
3
 and a 

velocity of 1 m/s while the bottom fluid was given a density of 1.14 kg/m
3
 and velocity 

of 0.2 m/s.  The program was set to run for a physical time of 3 s with 55000 time steps, 

and the completion time ranged from 5.25 to 7 hours for the four different fluctuations.  

The x and y planar boundaries were set to be cyclic as the physical dimensions would 

require too much computational power to model exactly. 

 

3.3.2 Results from computational code 

 

The mixing width from the Texas A&M University gas channel experiment with shear 

of 0.65 m/s is shown in Figure 3.9 (Akula et al. 2012).  The initial mixing width prior to 

the addition of velocity fluctuations can be seen in Figure 3.10; the mixing widths for the 

four velocity fluctuations can be seen in Figure 3.11.  While the initial run stops its 

linear growth around 60cm, the updated code has a near-constant linear growth.  
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However, the mixing width is about twice as large in the presence of velocity 

fluctuations, regardless of the magnitude of the vertical value, than in the previous case 

with no fluctuation.  Comparing to the experimental data, the mixing width matches best 

with the case without velocity fluctuations, but the linear growth matches best with the 

velocity fluctuation methods.  

 

 

Figure 3.9. Mixing width from Kelvin-Helmholtz experimental data with shear of 0.65 

m/s. 
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Figure 3.10. Mixing width of Kelvin-Helmholtz instability with no velocity fluctuations. 

 

 

Figure 3.11. Mixing width of Kelvin-Helmholtz instability with vertical velocity 

fluctuation of (a) full, (b) half, (c) quarter, and (d) eighth value. 

(a) (b) 

(d) (c) 
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 A better way to visualize the linear growth characteristic of Kelvin-Helmholtz 

instability is by comparing the height gradients of the mixing widths to each other and to 

the physical experiment.  The former can be seen in Figure 3.12 and the latter in Figure 

3.13.  While the experimental height gradient has a value around 0.15 cm/cm, the 

computational data ranges near 0.25 cm/cm and decreases slightly as the vertical 

velocity is decreased.  Regardless, all fluctuation cases possess the near-constant growth 

of the height gradient, corresponding to a linear growth of the mixing width, which is 

characteristic of the Kelvin-Helmholtz instability.  For this reason, the velocity 

fluctuation method is best for modeling shear instabilities. 

 

  

Figure 3.12. Mixing width height gradient of Kelvin-Helmholtz instability with vertical 

velocity fluctuation of (a) full, (b) half, (c) quarter, and (d) eighth value. 

(a) 

) 

(b) 

(d) (c) 
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`  

Figure 3.13. Height gradient of experimental shear instability with shear of 0.65 m/s. 

 

 Finally, the total mixing widths of the four velocity fluctuation cases were 

compared on one plot (Figure 3.14).  The methods are near identical up to 50cm from 

the splitter plate, but then begin to spread out.  The fractions of the linear interpolation 

case present on either side of the whole value of the mixing width.  In order to determine 

which method provides the most accurate results, experiment and theory can be recalled.  

Comparing the mixing widths to the former, a smaller mixing width is ideal.  Comparing 

the height gradient to the latter, a constant value matches best with Kelvin-Helmholtz 

instability.  The method which provides the best fit for these criteria is the full valued 

vertical velocity fluctuation. 
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Figure 3.14. Total mixing widths for four vertical velocity fluctuations in shear 

instability. 

 

3.4 Effect of Increased Shear on Rayleigh-Taylor Kelvin-Helmholtz Instability 

 

With both Rayleigh-Taylor and Kelvin-Helmholtz cases now fully explored, 

intermediate cases with both instabilities were investigated.  The two extremes of no 

shear with density difference (Section 3.2) and shear with no density difference (Section 

3.3) were used with five intermediate cases where the shear was increased from 0 m/s to 

0.8 m/s. 

 

3.4.1 Code modification 

 

For all five intermediate cases, a box with dimensions 0.3 m x 0.3 m x 1.2 m was created 

with grid spacing of 128 x 64 x 512 to provide a resolution of 2.344 mm x 4.688 mm x 

2.344 mm in the x, y, and z dimensions, respectively. The top fluid was set to have a 

density of 1.14 kg/m
3
 and a velocity of 1 m/s while the bottom fluid was given a density 

of 1.07 kg/m
3
 and velocity ranging from 0.8 m/s to 0.2 m/s in five decrements.  This 
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provided the system with an Atwood number of 0.032 and a shear in the system 0.2 m/s, 

0.35 m/s, 0.5 m/s, 0.65 m/s, and 0.8 m/s.    The program was set to run for a physical 

time of 3 s with 85000 time steps, and completion time ranged from to 5.25 to 6.25 

hours for the five cases.  The x and y planar boundaries were set to be cyclic as the 

physical dimensions would require too much computational power to model exactly.   

 

3.4.2 Results from computational code 

 

Images from the computational run taken an equivalent distance of 2 cm (Figure 3.15), 

60 cm (Figure 3.16), and 200 cm (Figure 3.17) from the splitter plate can be seen for the 

increasing levels of shear along with the pure Kelvin-Helmholtz case with the full 

velocity fluctuation.  As the shear in the system increases, the rollup structures become 

more and more dominant, illustrating the greater influence of Kelvin-Helmholz effects in 

the flow.  The increase in shear effects can further be seen by comparing how the 

Richardson number changes with distance from the splitter plate (Figure 3.18).  As the 

shear increases in the system, the Richardson number decreases.  Since this value is the 

ratio of Rayleigh-Taylor to Kelvin-Helmholtz effects, this trend indicates that the 

Kelvin-Helmholtz impact is increasing.  Note that the pure Rayleigh-Taylor and pure 

Kelvin-Helmholtz case is not present Figure 3.16 as the value of the former is undefined 

and the latter is zero. 
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Figure 3.15. Image of computational run equivalent to 10 cm from the splitter plate for 

Atwood number 0.032 and shear of (a) 0.2 m/s, (b) 0.35 m/s, (c) 0.5 m/s, 

(d) 0.65 m/s, (e) 0.8 m/s, and (f) Kelvin-Helmholtz shear of 0.8 m/s. 

(a) 

(e) 

(b) 

(d) 

(c) 

(f) 
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Figure 3.16. Image of computational run equivalent to 60 cm from the splitter plate for 

Atwood number 0.032 and shear of (a) 0.2 m/s, (b) 0.35 m/s, (c) 0.5 m/s, 

(d) 0.65 m/s, (e) 0.8 m/s, and (f) Kelvin-Helmholtz shear of 0.8 m/s. 

(a) 

(e) 

(b) 

(d) 

(c) 

(f) 
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Figure 3.17. Image of computational run equivalent to 200 cm from the splitter plate for 

Atwood number 0.032 and shear of (a) 0.2 m/s, (b) 0.35 m/s, (c) 0.5 m/s, 

(d) 0.65 m/s, (e) 0.8 m/s, and (f) Kelvin-Helmholtz shear of 0.8 m/s. 

 

(a) 

(e) 

(b) 

(d) 

(c) 

(f) 
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Figure 3.18. Plot of Richardson number as it changes from the splitter plate, where 

KHRT_0## corresponds to the Rayleigh-Taylor Kelvin-Helmholtz 

combined instability with bottom velocity 0.## (ex: KHRT_080, bottom 

velocity 0.8 m/s). 

 

 The mixing in the various levels of shear can be seen in the mixing widths and 

level of molecular mixing for the seven cases (Figure 3.19 and 3.20, respectively).  As 

the shear in the system increases, the mixing width subsequently increases.  This element 

is because the time required for the parabolic growth of the Rayleigh-Taylor instability 

to take over the linear growth of the Kelvin-Helmholtz instability has not yet been 

reached.  When the density difference between the two fluids is removed, the mixing 

width decreases versus the same shear with a density gradient.  This detail can be 

explained by the energy put into the amalgamation due to the instability.  The Kelvin-

Helmholtz Rayleigh-Taylor instability has two instabilities, causing it to mix more than a 

pure Kelvin-Helmholtz case.  Similarly, as the shear increases the level of molecular 

mixing at the centerline also increases.  This trend is the opposite of the previous cases 



67 

(Atwood number and modal comparison) where higher mixing widths had lower 

molecular mixing and vice versa. 

 

 

Figure 3.19. Mixing width for (left) pure Rayleigh-Taylor (RT_100), pure Kelvin-

Helmholtz (KH_020), and five intermediate as described in Figure 3.18 and 

(right) pure Rayleigh-Taylor, pure Kelvin-Helmholtz, and minimum and 

maximum intermediate shears. 

 

 

Figure 3.20. Level of molecular mixing at the centerline for (left) pure Rayleigh-Taylor 

(RT_100) and five intermediate as described in Figure 3.18. 
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The final way to compare the shear mixing is to investigate how the growth 

parameter α changes with the distance from the splitter plate (Figure 3.21).  The values 

trend toward a quantity between 0.05 and 0.1, which matches well with experimental 

data and theory (Banerjee et al. 2010).  The asymptotic value rises slightly with 

increased shear then lowers again, but always remains within the small range listed in 

other reports. 

 

 

Figure 3.21. Growth parameter (left) pure Rayleigh-Taylor (RT_100) and five 

intermediate as described in Figure 3.18 and (right) pure Rayleigh-Taylor 

and minimum and maximum intermediate shears. 

 

3.5 Comparison to Texas A&M University gas channel experiment 

 

In order to prove the accuracy of the combined techniques listed in the previous section 

(density spectrum interface perturbation, initial velocity fluctuation, combine Rayleigh-

Taylor and Kelvin-Helmholtz fluid instabilities, etc.), cases most similar to those 

considered in Akula et al. were compared. 
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3.5.1 Mixing width comparison 

 

In Akula et al.’s work, three cases of combined shear and density instability were 

considered along with the pure Rayleigh-Taylor and pure Kelvin-Helmholtz instabilities 

mentioned earlier.  All had an Atwood number of 0.035, similar to the computational run 

with Atwood number 0.032.  KH+RT1 had shear of 0.23 m/s, similar to computational 

KHRT_080 with shear of 0.2 m/s; KH+RT2 had shear of 0.4 m/s, similar to 

computational KHRT_065 with shear of 0.35 m/s; KH+RT3 had shear of 0.62 m/s, 

similar to computational KHRT_035 with shear of 0.65 m/s.  The mixing widths for both 

experiment and computation can be seen in Figure 3.22. 

Looking at the trend of the two curves in (a), as more and more shear is added to 

the system, the experimental mixing width decreases but the computational mixing 

width increases.  Looking at an early time outlook of the mixing width (b), the same 

trend can be seen.  If instead the mixing widths are plotted against the equivalent time 

from the start of the instability, the two runs follow the same inclination of increased 

shear creating an increase in the mixing width.  This difference can be explained by the 

conversion from time to space using  the average velocity, which differs between the 

experimental and computational runs even though the shear match closely.  For this 

reason, other methods of conversion need to be considered or time based comparisons 

should be used. 
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Figure 3.22. Mixing width comparison of experimental (left) and computational (right) 

run for (a) mixing width versus distance from splitter plate, (b) zoomed in 

section of mixing width versus distance, and (c) mixing width versus time 

from splitter plate. 

(a) 

(b) 

(c) 
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3.5.2 Growth parameter comparison 

 

Comparisons of the growth parameter for flows with density instabilities can provide 

insight into whether the rate of development of the computational code is operating 

correctly.  Figure 3.23 shows a side by side comparison of the growth parameter for the 

pure Rayleigh-Taylor case as well as two of the combined shear instances.  In the 

experiment, the growth parameter decreases with increased shear, but the computational 

code illustrates the opposite trend, instead increasing with the addition of shear.  As this 

opposite inclination is the same as with the mixing width comparison, it is highly likely 

that a comparison of the growth parameter versus time from fluid interaction would 

provide results following the same track.  However, in both experimental and 

computation cases, the growth parameter approaches a value between 0.05 and 0.1, 

which matches well with theory and previous experiments and provides further validity 

to the code’s capabilities. 

 

  

Figure 3.23. Growth parameter from experimental (left) and computational (right) run 

with legends as described in text and Figure 3.18. 
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3.5.3 Molecular mixing comparison 

 

Another element to compare between the computational run and the experimental data is 

the level of molecular mixing at the centerline.  Evaluation of Figure 3.24 shows similar 

elements between the two appraisal methods.  At early nondimensionalized time, the 

order of mixing level is the same, namely as shear increases molecular mixing increases.  

As the time progresses, the values converge for all three levels of shear.  In the 

experimental version, the three methods meet in the middle of the mixing levels that 

were observed prior to the convergence.  For the computational data, the values are 

lower and thus all three techniques increase to their final assignment.  The culmination 

value for both the experimental and computational cases are the same, around 0.75. 

 

  

Figure 3.24. Level of molecular mixing at centerline for experiment (left) and 

computation (right) for pure Rayleigh-Taylor and combined shear-density 

instabilities. 
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 3.5.4 Height gradient and the transitional Richardson number 

 

The height gradient for the different levels of shear can be seen in Figure 3.25.  Unlike 

the linear trend of the Rayleigh-Taylor height gradient (Figure 3.5) and the constant 

value height gradient of the Kelvin-Helmholtz instability (Figure 3.12), the height 

gradient with the combined instability has both linear and constant segments.  As the 

shear in the system increases, the fraction of constant height gradient subsequently 

increases in both the experimental and computational varieties.  This result makes sense 

theoretically as increased shear corresponds to a rise in Kelvin-Helmholtz effect, which 

is represented by a straight height gradient.  Where the experiment and computation 

vary, however, is the location from the splitter plate where the transition from constant 

to linear height gradient occurs.  The increased distance in the experiment, about 1.5 

times the computational value, could be attributed to the difference in average velocity. 
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Figure 3.25. Height gradient of experimental (left) and computational (right) runs for (a) 

shear of 0.023 m/s and 0.2 m/s, respectively, and (b) shear of 0.4 m/s and 

0.35 m/s, respectively. 

 

Some believe the transition from the constant to linear trend occurs at a specific 

Richardson number, termed the transitional Richardson number.  Comparing Figures 

3.18 and 3.25, it can be seen that for the combined shear and density instabilities the 

transitional Richardson number ranges from -0.5 to -1.  This value is lower than that of 

the experiment (-1.5 to -2.5); the difference can be described by the dependence of the 

Richardson number on the mixing width (equation 2.3).  Since the mixing width of the 

experiment is larger than that of the computational run when compared versus the 
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distance from the splitter plate (Figure 3.22a), the Richardson number is consequently 

larger in the gas channel than the in the computational run. 

 

3.5.5 Transitional Reynolds number 

 

The final element to compare is the evolution of the Reynolds number as the shear in the 

system is increased.  This value can be described as in equation (3.7) and in the mixing 

width as in (3.8). 

    
    

 
 (3.7) 

    
    ⁄

 
√

   

 
 (3.8) 

where h is the total mixing width, v  is the velocity fluctuation,   is the kinematic 

viscosity, g is gravity, and At is the Atwood number.  As the shear in the system 

increases, the Reynolds number consequently increases (Figure 3.26).  Because this 

value is directly dependent on the mixing width, which increases with shear, this is the 

trend that is expected.  Looking at the transition from constant to linear growth of the 

height gradient (Figure 3.25) and relating it to the Reynolds number, the transition 

occurs at a range of 500 and 2900.  The transitional range in the Akula et al. experiment 

occurs between 800 to 1500 which falls within the larger range found computationally. 
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Figure 3.26. Reynolds number versus nondimensionalized time for (left) pure Rayleigh-

Taylor (RT_100) and five intermediate shears as described in Figure 3.18 

and (right) pure Rayleigh-Taylor and minimum and maximum intermediate 

shears.  
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4. CONCLUSIONS 

4.1 Summary 

 

This work utilized an implicit large eddy simulation code RTI3D under active 

development at Los Alamos National Laboratories and Texas A&M University to model 

numerous hydrodynamic instabilities.  A summary of the accomplishments and 

conclusions from this work is provided below. 

1. The computational code originally provided from Los Alamos National 

Laboratories was subsequently modified in order to have the capabilities 

necessary for modeling shear- and buoyancy-driven instabilities.  Modifications 

include alteration of the fluid interface, assignment of initial conditions, 

adjustment of boundary conditions, and revision of velocity assignment methods, 

to name a few.  The code was then validated using three published papers dealing 

with experimental Rayleigh-Taylor instabilities. 

2. The effect of the Atwood number, and thus the level of density variation in the 

two fluids, was analyzed using identical setting excluding the density 

assignments for two cases based off of the gas channel experiment at Texas 

A&M University.  One case had an Atwood number of 0.6 while the other a 

value of 0.032.  Comparisons of mixing widths and level of molecular mixing at 

the centerline illustrated the low Atwood number case having a smaller mixing 

width but larger level of molecular mixing compared to its larger brethren. 

3. To further improve the code’s capabilities of replicating a physical experiment, 

investigation began on analyzing the spectrum of initial perturbation present at 
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the interface.  A hot wire anemometer was used to obtain a power spectrum of 

the gas channel experiment, which was then utilized to create a multimode input 

perturbation for the code.  Comparison of the results to the previous single mode 

case illustrated a larger mixing width but smaller molecular mixing with the 

density spectrum perturbation for the updated segment.  This trend is the opposite 

of that seen with the low Atwood number, which was used for both modal 

components.  The power spectrum data matched better with experimental data 

and theory and was thus used from there out. 

4. While the code provided a closer match to experimental data with the modal 

increase, the Kelvin-Helmholtz instability replication was not completely 

accurate when compared to theory.  It was determined that velocity fluctuations 

needed to be added to the system in order to spur the fluids into continual 

mixing, as the flow was lacking adequate input energy.  The baseline fluctuation 

at the splitter plate was obtained from linear interpolation using two location 

measurements of the hot wire anemometer.  Because the mixing growth in the 

vertical direction is most sensitive to vertical velocity fluctuations, three fractions 

of this component were also compared in order to determine which method 

provided the most accurate representation.  The addition of velocity fluctuations 

provided the linear growth characteristic of shear based instabilities, and the full 

vertical fluctuation provided the closest match to experiment and theory for the 

mixing width and height gradient. 
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5. The combined Rayleigh-Taylor and Kelvin-Helmholtz instability was then 

investigated in order to both determine the abilities of the computational code as 

well as to understand the effect of shear on this compound driven flows.  Five 

intermediate levels of shear transitioning between the pure Rayleigh-Taylor and 

pure Kelvin-Helmholtz instabilities mentioned earlier were explored.  It was 

determined that increased shear resulted in a subsequent increased mixing width, 

which is to be expected due to the larger amount of energy in the system.  As the 

shear in the system continued to rise, so did the level of molecular mixing at the 

centerline.  Three specific cases of shear were compared to similar levels shown 

in experimental data from the Texas A&M gas channel.  Mixing width, 

Richardson number, growth parameter, height gradient, and molecular mixing 

parameter all followed the same trends, thus proving the capabilities of the code 

and the accuracies of the work done. 

6. Combining the information obtained above, namely that larger Atwood numbers 

and multiple modes are associated with larger mixing widths and less molecular 

mixing than their counterparts and that increased shear is associated with 

increased mixing width and molecular mixing, an optimal fuel pellet can be 

designed.  The amount of shear in the system should be limited, and ideally none 

should be present.  The multiple mode case combined with the small Atwood 

number provided a smaller level of molecular mixing than the single mode small 

Atwood number combination.  This former setting should thus be aimed for 

through selection of fuels with very similar densities and through pellet 
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construction.  It is important to note that the multimode assignment contained 

numerous perturbations (670 to be exact), so machining the inertial confinement 

fusion pellet with this level of undulations would be quite a task.  Further, care 

must be taken if direct drive implosion techniques are used to ensure the 

distribution of the lasers’ force as much as possible.  This dissemination is 

important so as to avoid locations of concentrated energy which may create 

fewer modes with large amplitudes which would go against the optimal level of 

modes desired. 

 

4.2 Sources of Error 

 

Unlike experiments which rely heavily on equipment for data collection, and are thus 

reliant on the accuracies of these machines, computational investigation depends mainly 

on the computer upon which it is run.  Still, there are numerous errors that can occur 

throughout the evaluation process. 

1. The first potential source of error arises from the reliance on numerical 

dissipation to mimic viscosity in the evaluation of the fluid mixing.  This process 

provides approximate dissipation and will not be identical to that seen in reality 

2. The code is not capable to replicating inconsistencies between theory and nature.  

For instance, when modeling the magnetorheological fluid, in theory once the 

magnets are removed the fluid should begin to mix instantaneously.  In reality, 

however, there is a residual magnetic impact and thus the mixing is delayed.  In 

the code, the initial magnetic field is not modeled, while in nature there might be 

some residual field remaining which retards the growth at early time. 
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3. When the code is set to have velocity values as would be seen in nature rather 

than an inertial reference frame (such as top velocity 1 m/s, bottom velocity 0.5 

m/s versus top velocity 0.25 m/s, bottom velocity -0.25 m/s, respectively), issues 

with advection arise.  The cause for this error can be attributed to the fluid 

moving through more than one computational cell per time step due to the larger 

value of velocity.  Running the code in the inertial reference frame helps fix the 

problem, but it is only a temporary patch to the problem.  Further, there is still 

the potential for the advection issue to arise if the inertial reference frame 

velocity reaches a high enough value. 

4. The last source of error described here, but certainly not the last source of error 

possible, is the fact that the code can only model up to 140 cm past the splitter 

plate when a density gradient is present.  As mentioned earlier, the reason for this 

discrepancy is that the bubbles and spikes of the Rayleigh-Taylor instability 

saturate, causing the flow to transition from parabolic to linear growth.  While 

this does not discredit the ability of the code to correctly model fluid mixing 

before this point, the capabilities are limited by only being able to analyze flows 

up to 140 cm. 

 

4.3 Future Work 

 

Based on the summary, conclusions, and sources of error, the following illustrates the 

future work to be done with the use of the computational code. 

1. First and foremost, there are a number of corrections that need to be carried out 

on the code in order to better perfect its capabilities and expand its proficiencies.  
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The advection issue within the code needs to be permanently fixed rather than 

temporarily patched.  Potential solutions include creating a method for grid 

refinement at trouble spots or simply putting in a test statement to insure the 

proper grid spacing for a given input velocity.  Second, the saturation of bubbles 

and spikes in flows containing Rayleigh-Taylor instabilities needs to be resolved.  

Potential reasons for this issue include disagreement between velocity 

fluctuations of experiment and computation as well as inconsistencies in 

interface perturbations.  This issue could also be affected by the advection issue 

mentioned previously. 

2. The next path to take is to investigate the conversion from space to time when 

comparing experimental and computational works.  While two methods can be 

compared as long as the relative shear between the two fluids is similar, the 

conversion process currently involves the average velocity.  Ways in which to 

correct this is to model flows with similar shear and average velocity, or 

potentially look for a method of nondimensionalized time dealing with system 

conditions in order to avoid this issue. 

3. As mentioned previously, Atwood number variations were compared, then modal 

components were compared.  However, the arrangement of the two parameters in 

different combinations was not investigated.  Testing of multimode interface 

perturbation with different Atwood numbers needs to be done in order to 

determine which trend wins out or if they simply combine.  Namely, with 
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combined settings is the mixing width large and molecular mixing small, vice 

versa, or some combination of the two. 

4. With the above information and that already obtained, the optimal density ratio 

could be obtained.  It has already been determined that the shear should be 

minimal in the system, but as only two Atwood numbers were compared it is 

hard to draw conclusions for the density ratio as a whole.  At least five other 

Atwood numbers should be compared and mixing widths and molecular mixing 

parameters plotted to observe the resulting trends. 

5. While the multimode component was shown to be optimal over the single mode, 

there is the potential for an ideal number of modes, such that they combine and 

cancel each other out and minimize fluid mixing.  Testing of alternative modal 

components should be done in order to determine the best perturbation for the 

successful implosion of an ICF capsule. 
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APPENDIX A 

 

 

NOMENCLATURE 

 

amp amplitude 

 

At Atwood number 

 

b Calibration constant from hot wire anemometry 

 

B0 Effect of mixing due to molecular diffusion 

 

B2 Resulting condition if both fluids were immiscible 

 

E Voltage value from hot wire anemometry probe 

 

f1 Volume fraction of fluid one 

 

f2  Volume fraction of fluid two   

 

g Gravitational acceleration 

 

h Half of mixing width 

 

H   Height of the gas channel 

 

hb   Width of mixing layer on bubble side of mixing layer 

 

hs  Width of mixing layer on spike side of mixing layer 

 

ICF Inertial confinement fusion 

 

k Wavenumber 

 

Mk Modal component at wavenumber k 

 

P Pressure 

 

Re Reynolds number 

 

Ri Richardson number 

 

t Time 
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t′ Time value used for normalization  

 

x Downstream distance 

 

y Distance into the gas channel 

 

z Vertical height within the gas channel 

 

α Growth parameter  

 

αb Bubble growth parameter  

 

αs Spike growth parameter  

 

ΔU Velocity difference between the two flow streams 

 

Δρ Velocity difference between the two flow streams 

 

η Amplitude height 

 

θ Molecular mixing parameter 

 

λ Wavelength 

 

ρ Density at current location 

 

ρ1 Density of fluid one 

 

ρ2 Density of fluid two 

 

 ̅  Average density between the two flow streams 

 

τ  Nondimensionalized time used for modeling molecular mixing 
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