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ABSTRACT

Efficient Semiparametric Estimators for Nonlinear Regressions

and Models Under Sample Selection Bias. (August 2012)

Mi Jeong Kim, B.S., Ewha University;

M.S., Ewha University

Chair of Advisory Committee: Dr. Yanyuan Ma

We study the consistency, robustness and efficiency of parameter estimation in

different but related models via semiparametric approach. First, we revisit the second-

order least squares estimator proposed in Wang and Leblanc (2008) and show that

the estimator reaches the semiparametric efficiency. We further extend the method

to the heteroscedastic error models and propose a semiparametric efficient estimator

in this more general setting. Second, we study a class of semiparametric skewed

distributions arising when the sample selection process causes sampling bias for the

observations. We begin by assuming the anti-symmetric property to the skewing

function. Taking into account the symmetric nature of the population distribution,

we propose consistent estimators for the center of the symmetric population. These

estimators are robust to model mis-specification and reach the minimum possible

estimation variance. Next, we extend the model to permit a more flexible skewing

structure. Without assuming a particular form of the skewing function, we propose

both consistent and efficient estimators for the center of the symmetric population

using a semiparametric method. We also analyze the asymptotic properties and derive

the corresponding inference procedures. Numerical results are provided to support

the results and illustrate the finite sample performance of the proposed estimators.
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CHAPTER I

INTRODUCTION

We study the consistency, robustness and efficiency of parameter estimation in non-

linear regressions and models under sample selection bias using the semiparametric

method. In Chapter 2, we consider the model proposed in Wang and Leblanc (2008).

Wang and Leblanc introduced a second-order least squares estimator which minimizes

the distances of the response variable and the squared response variable to its first and

second conditional moments simultaneously. We are interested that their estimator

indeed reaches the efficiency bound in the sense of semiparametrics. We also propose

the semiparametric efficient estimator and show its asymptotic properties under the

same assumptions Wang and Leblanc made. Furthermore, we extend the model to

the heteroscedastic error model and demonstrate our estimator is consistent, robust

and efficient. In Chapter 3 and 4, we propose methods of estimation for the center of

a symmetric population when a representative sample of the population is unavailable

due to selection mechanism. We do not impose any parametric form on the population

distribution. In Chapter 3, we assume the anti-symmetric property to the selection

function, i.e., π(t, β) + π(−t, β) = 1 for all t ∈ R. In Chapter 4, we consider a more

general form of the selection function. Based on semiparametric theory and taking

into account the symmetric nature of the population distribution, we propose consis-

tent, robust, and efficient estimators. In order to improve the efficiency, we adopt a

The style of this dissertation follows Annals of the Institute of Statistical Mathematics.
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modified nonparametric kernel density estimation. We demonstrate the theoretical

properties of our estimators through asymptotic analysis. Numerical experiments are

provided to advocate our theory and a real data analysis is also given to illustrate

the applicability of the methods in practice.

In this chapter, we first present semiparametric theory in Section A, and intro-

duce the second-order least squares estimator proposed in Wang and Leblanc (2008)

in Section B. In Section C, we describe the selection bias issues in sampling.

A. Overview of Semiparametric Theory

A large class of estimators in semiparametric models is defined by regular asymptoti-

cally linear (RAL) estimators (Newey, 1990). An RAL estimator θ̂ is uniquely linked

to an influence function through

√
n(θ̂ − θ0) =

1

n

n∑
i=1

ψ(Xi; θ0) + op(1),

where θ0 denotes the true value of the finite-dimensional parameter of interest θ, and

ψ(Xi; θ0) is the influence function associated with the ith observation, Xi, i = 1, . . . , n.

For RAL estimators, the corresponding influence function satisfies E(ψ) = 0 and

E(ψψT ) is finite and nonsingular. Here and later, when not explicitly pointed out, all

the expectations are calculated under the density that defines the true data generation

process. The relation between RAL estimators and influence functions allows one to

construct RAL estimators through finding influence functions.

A geometric approach taken in Bickel et al. (1993) views all the mean zero,

finite variance functions as a Hilbert space, where inner product is defined to be the

covariance. The Hilbert space is then decomposed into a nuisance tangent space Λ and

its orthogonal complement Λ⊥. It further establishes that every non-zero function in
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Λ⊥ can be normalized to a valid influence function, and the orthogonal projection of

the score function to Λ⊥ corresponds to the efficient influence function: the influence

function with the minimum variance.

To find the nuisance tangent space Λ, we first construct parametric submodels

which are models included in the semiparametric model and contain the true density.

The nuisance tangent space Λ is the closed subspace generated by the linear span

of the nuisance score functions of all such parametric submodels. Then Λ⊥ is the

orthogonal complement of Λ in the Hilbert space.

B. The Second-order Least Squares Estimator

Wang and Leblanc considered the general regression model

Y = m(X; β) + ε,

where Y ∈ R is the response variable, X ∈ Rk is the predictor variable, β ∈ Rp is

the unknown regression parameter and ε is the random error satisfying E(ε|X) =

0 and E(ε2|X) = σ2. Y and ε are assumed to have finite fourth moments. The

parameter vector and the parameter space are denoted as θ = (βT , σ2)T and Θ ⊂

Rp+1, respectively. The true parameter value is denoted by θ0 = (βT0 , σ
2
0)T ∈ Θ.

Assume (Yi, X
T
i ), i = 1, 2, · · · , n is an i.i.d. random sample. Then the second-

order least squares estimator (SLSE) θ̂ is defined as the measurable function that

minimizes

Qn(θ) =
n∑
i=1

ρTi (θ)Wiρi(θ),

where ρi(θ) = (Yi −m(Xi; β), Y 2
i −m2(Xi; β)− σ2)

T
and Wi = W (Xi) is a 2 × 2

nonnegative definite matrix. Under the assumptions they made in Wang and Leblanc
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(2008), they demonstrated consistency of SLSE and calculated the optimal weighting

matrix W corresponding to the most efficient SLSE.

The asymptotic variance of the most efficient SLSE of each parameter is given

by

V (β̂SLS) =

(
σ2

0 −
µ2

3

µ4 − σ4
0

)(
M2 −

µ2
3

σ2
0(µ4 − σ4

0)
M1M

T
1

)−1

,

V (σ̂2
SLS) =

(µ4 − σ4
0){σ2

0(µ4 − σ2
0)− µ2

3}
σ2

0(µ4 − σ4
0)− µ2

3M
T
1 M

−1
2 M1

,

where µ3 and µ4 are the third and the fourth moment of ε respectively and

M1 = E

[
∂m(X; β0)

∂β

]
, M2 = E

[
∂m(X; β0)

∂β

∂m(X; β0)

∂βT

]
.

They have proved the SLSE of β is more efficient than the ordinary least squares

estimator. Our goal is to verify that SLSE reaches the optimal efficiency bound

concerning the estimation variability. We approach the model using a semiparametric

method and propose a semiparametric efficient estimator in Chapter 2. By comparing

variances of SLSE and our estimator, we investigate whether SLSE is efficient or not.

Furthermore, we extend the model to the heteroscedastic error model.

C. Sample Selection Bias

Estimating the population center is an important issue in sampling. If a random

sample precisely mirrors the data in the population, it is not a difficult problem to

estimate the population of interest using a sample. However, in reality, a biased

sample might be obtained even if the sampling and measuring are conducted with

accuracy because it is not a census but a sample. Selection bias can be produced if a

sample is obtained from a selected part of the population. Selection bias often occurs

when a sample is truncated, censored or includes missing data. A classic example of
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a selection bias is telephone surveys conducted in an age where telephones were not

prevalent to most ordinary people.

We consider the following model which reflects selection bias. Assume biased

observations X1, · · · , Xn are independent and identically distributed with density

g(x;β,α) = f(x;β)
w(x;β,α)

E{w(x;β,α)}
, (1.1)

where f is the population density and β is a q-dimensional vector of unknown pa-

rameters. Although the population density is f , a sample has a density g because

sampling bias is caused by the sample selection process. A weight function w captures

such a selection mechanism and α denotes some r-dimensional vector of additional

unknown parameter. This model is called a selection model. For instance, consider

two independent random variables X∗ and Y , each symmetrically distributed around

zero, with X∗ having density f and Y having cumulative distribution function H.

We observe X if and only if Y < βX∗, β ∈ R, in which case we set X = X∗. Then

pr(X ≤ x) = pr(X∗ ≤ x|Y < βX∗), we have w(x; β) = H(βx) in the above model.

When f = φ and H = Φ, g is a skew-normal distribution.

Selection bias issues have been acknowledged and modeled extensively, see for

example Rao (1985) and more recently Arellano-Valle et al. (2006). When special

restrictions are imposed on either the population model f or the selection weights w,

it reduces to various special models in the literature. For example, when w satisfies

an anti-symmetric property, w(x;β,α) + w(x;β,α) = 1 for all x ∈ R, Copas and Li

(1997), Arnold and Beaver (2002), Azzalini and Capitanio (2003), Ma and Genton

(2004), Wang et al. (2004) and many others have described the types of selection

mechanisms that lead to (1.1). When f is further assumed to belong to the elliptical

family, (4.1) is reduced to the generalized skew-elliptical distribution (Genton and

Loperfido, 2005), which includes the well-known skew-normal distribution introduced
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by Azzalini (1985); see the edited book by Genton (2004) and the review by Azzalini

(2005), and references therein, for further details. Other special cases of (1.1) that do

not satisfy the anti-symmetric property of w include extended skew-elliptical distribu-

tions (Arellano-Valle and Genton, 2010a) and their specific members such as extended

skew-t distributions (Arellano-Valle and Genton, 2010b) and extended skew-normal

distributions (Azzalini, 1985). The link between extended skew-elliptical distribu-

tions and Heckman-type selection models has been recently described by Marchenko

and Genton (2012).

In Chapter 3 and 4, we assume the population density f is unknown but sym-

metric and do not impose parametric form on f . We aim at estimating the population

center under the following assumptions on the selection function. In Chapter 3, we

assume anti-symmetric property, i.e., w(x;β,α) + w(−x;β,α) = 1. To relax the re-

striction on w, we consider a more general form of the selection function w in Chapter

4.
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CHAPTER II

THE EFFICIENCY OF THE SECOND-ORDER NONLINEAR LEAST SQUARES

ESTIMATOR AND ITS EXTENSION∗

Wang and Leblanc (2008) considered a regression model with a parametric mean

function and a constant variance:

Y = m(X; β) + ε, (2.1)

where they assumed that Y is a one-dimensional continuous response variable, and X

is a covariate vector that can be continuous, discrete, or mixed. The mean function

m is a known function up to the d-dimensional parameter β and the model error ε

satisfies the usual mean zero assumption E(ε|X) = 0. In addition, they also assumed

that ε has a constant yet unknown variance σ2, that is, E(ε2|X) = σ2. The observa-

tions are denoted (X1, Y1), . . . , (Xn, Yn), each satisfies (2.1) and the n observations are

independent of each other. Without the additional homoscedastic assumption, this is

the usual semiparametric regression problem, or sometimes named the restricted mo-

ment model, and the consistent estimator family, as well as the efficient estimator for

β is known. See, for example, Tsiatis (2006, p 53). With the additional assumption

of homoscedasticity, Wang and Leblanc (2008) proposed a second-order least squares

(SLS) type estimation procedure where they take advantage of the knowledge of the

* Reprinted with permission from “The efficiency of the second-order nonlinear least
squares estimator and its extension” by Kim, M. and Ma, Y., 2011, Annals of the
Institute of Statistical Mathematics, DOI: 10.1007/s10463-011-0332-y, Copyright by
the Institute of Statistical Mathematics.
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second moment of Y −m(X; β). They showed that this SLS estimation of β indeed

yields improvement over classical least squares estimation.

This naturally motivates us to ask: Can further improvement be obtained? In

other words, we are curious to find out whether or not the Wang and Leblanc (2008)

estimator reaches the optimal efficiency bound in the sense of Bickel et al. (1993).

Studying the semiparametric efficiency bound is important in understanding a model.

It provides an ultimate conclusion when searching for estimators or trying to improve

existing procedures. Only when an efficient estimator is obtained, the procedure of

estimation can be considered to have reached certain optimality. Researchers have

been searching for optimal estimators in various problems, the most familiar example

being the ordinary and weighted least square estimators in the regression setting. Ef-

ficiency issues are also considered in more complex problems such as the Cox model

(Tsiatis, 2006, Chapter 5.2, p 113), a class of general survival models (Zeng and Lin,

2008), problems in case control designs (Rabinowitz, 2000, Ma, 2010) or involving

auxiliary information (Chen et al, 2008), the partially linear models (Chamberlaine,

1992, Ma et al., 2006), the latent variable models (Ma and Genton, 2010), the func-

tional estimation in semiparametric models (Maity et al., 2007, Müller, 2009), the

regression with missing covariates (Robins et al., 1994), the skewed distribution fami-

lies (Ma et al., 2005, Ma and Hart, 2006), the quantile regression models (Newey and

Powell, 1990) and the measurement error models (Tsiatis and Ma, 2004, Ma and Car-

roll, 2006). To answer the question of optimality in our problem, we view the model

in (2.1) as a semiparametric problem and take a geometric approach. We construct

the locally efficient semiparametric estimators, and proceed to identify the optimal

semiparametric efficient (SE) estimator. The SE has the classical root-n convergence

rate and is asymptotically normal. We further derive the estimation variance of the

SE estimator, which reaches the semiparametric efficiency bound and compare with
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the result in Wang and Leblanc (2008). It demonstrates that the SLS estimator by

Wang and Leblanc (2008) is semiparametrically efficient as well and is thus optimal

asymptotically. The resulting estimator, which is asymptotically optimal, is new in

literature.

In order to relax the homoscedasticity assumption on ε, we subsequently assume

E(ε2|X) = σ2(X; γ), which is a function of X with unknown parameter γ. Note that

here σ2 has a known functional form. This model certainly includes the constant

variance model as a special case. Although the model is more complex, we can easily

adapt the analysis we performed and derive the optimal efficient estimator. The

estimator and its asymptotic optimality is also new in literature.

The rest of the chapter is organized as the following. We introduce the semi-

parametric method and show the efficiency of the SLS estimator in Section A. In

Section B, we adapt our method to the heteroscedastic error models and propose

the efficient estimators and the corresponding variance estimation. We also show the

asymptotic optimality of the generalized estimator in this section. Numerical exper-

iments are provided in Section C, and we discuss some possible further extensions in

Section E. Technical details are provided in an Appendix A.

A. Efficiency Results

For convenience, we denote the augmented parameter θ = (βT , σ2)T , and aim at

finding the class of consistent semiparametric estimators for θ and identifying the

most efficient one within this class. The probability density function (pdf) of a single

observation (X, Y ), ignoring the subscripts, can be written as

pX,Y (x, y) = pX(x)pε|X {y −m(x; β)|X = x} = η1(x)η2 {y −m(x; β), x} , (2.2)
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where η2(·) satisfies
∫
εη2(ε, x)dε = 0,

∫
ε2η2(ε, x)dε = σ2, and the third and fourth

moments of ε conditional on X are constants. Here we use η1(·), η2(·, ·) to denote

the pdf of X and the conditional pdf of ε given X. This emphasizes that these

pdfs are infinite-dimensional nuisance parameters. We sometimes write pX,Y (x, y) as

pX,Y (x, y; θ, η1, η2) to emphasize that the pdf contains a finite dimensional param-

eter θ and infinite dimensional parameters η1, η2. We also use ε and Y − m(X; β)

interchangeably, and use a subscript 0 to denote the true parameter value.

The geometric approach to semiparametric regression analysis consists of defining

a Hilbert space H and finding two subspaces of H, namely the nuisance tangent

space Λ and its orthogonal complement Λ⊥. Here, the Hilbert space is the space of

all mean zero, length d, finite variance functions of (X, Y ). Here and after, all the

expectations are calculated under the true distribution. The subspace Λ is a space

spanned by the nuisance score functions (the score function obtained through taking

derivative of the logarithm of the pdf with respect to the nuisance parameter) of

all the parametric submodels of (2.2) and their limiting points. The subspace Λ⊥

is a space consisting of all the functions that are orthogonal to all the functions in

Λ. See Tsiatis (2006, Chapter 4) for an elaborated explanation of these concepts.

Once Λ and Λ⊥ are obtained, we then project the score function Sθ = ∂logpX,Y /∂θ

onto Λ⊥ to obtain Seff. The orthogonal projection of the score function onto Λ⊥, i.e.

Seff, is usually referred to as the efficient score function. If it can be constructed,∑n
i=1 Seff(Xi, Yi; β, η10, η20) = 0 will then be the estimating equation that will yield

the optimal estimator of θ.
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For model (2.1), a careful analysis yields Λ = Λη1 ⊕ Λη2 , where

Λη1 = {f(X) : E(f) = 0},

Λη2 = {g(ε,X) : E(g|X) = 0, E(εg|X) = 0, E(ε2g|X) = 0},

and Λ⊥ = {h(ε,X) : h = a(X)ε+ b(X)(ε2 − σ2)},

where a, b, f are all length d functions of X, and g, h are length d functions of ε,X.

The derivation details are in Appendix A1. Taking derivative of the logarithm of the

pdf with respect to θ gives us the score function

Sθ(X, Y ) = (STβ , Sσ2)T =

{
− ∂η2(ε,X)

η2(ε,X)∂ε

∂m(X; β)

∂βT
,
∂η2(ε,X)

η2(ε,X)∂σ2

}T
. (2.3)

As pointed out in Appendix A2, the projection of an arbitrary function h(X, Y ) ∈ H

onto Λ⊥ can be calculated as

Π(h|Λ⊥) =
E(εh|X)

σ2
ε+

E(Ch|X)

E(C2|X)
C, (2.4)

where C = ε2 − σ2 −E(ε3 − εσ2|X)ε/σ2. Letting h(X, Y ) = Sθ(X, Y ), we can obtain

Seff = (STβ,eff, Sσ2,eff)T . Further solving
∑n

i=1 Seff(Xi, Yi) = 0 gives the SE estimator,

and the asymptotic covariance matrix of
√
nθ̂ is

ncov(θ̂) = {E(SeffS
T
eff)}−1.

More specifically, we have

Theorem 1. The efficient score functions for β and σ2 have the form

Sβ,eff(X, Y ) =
∂m(X; β)

∂β

{
ε

σ2
− E(ε3|X)C

σ2E(C2|X)

}
,

Sσ2,eff(X, Y ) =
C

E(C2|X)
. (2.5)



12

The estimation covariance matrix is

E(SeffS
T
eff|θ=θ0)−1

=


(
σ2

0 −
µ23

µ4−σ4
0

){
B − µ23

σ2
0(µ4−σ4

0)
AAT

}−1
µ3{σ2

0(µ4−σ4
0)−µ23}B−1A

σ2
0(µ4−σ4

0)−µ23ATB−1A

µ3{σ2
0(µ4−σ4

0)−µ23}ATB−1

σ2
0(µ4−σ4

0)−µ23ATB−1A

(µ4−σ4
0){σ2

0(µ4−σ4
0)−µ23}

σ2
0(µ4−σ4

0)−µ23ATB−1A

 , (2.6)

where µ3 = E(ε3|X), µ4 = E(ε4|X), and

A = E

{
∂m(X; β0)

∂β

}
, B = E

{
∂m(X; β0)

∂β

∂m(X; β0)

∂βT

}
.

The proof of Theorem 1 consists the derivation of the efficient score (2.5) , given

in Appendix A3, and the derivation of (2.6), given in Appendix A4. Comparing the

variances in (2.6), and (7), (8) in Wang and Leblanc (2008), we obtain that their SLS

estimator is indeed efficient.

We would like to point out that for convenience, we have assumed both µ3 and µ4

are constants, and we estimate them using the residuals from an initial OLS estimator.

The same assumptions are made in Wang and Leblanc (2008). If however, these

assumptions are not valid, we still have E(C|X) = E(ε2|X)−σ2−µ∗3E(ε|X)/σ2 = 0,

where we use µ∗3 to denote E(ε3 − εσ2|X) calculated under the wrong model. From

the efficient score in (2.5), it is easily verified that we still have E(Seff|X) = 0, hence

our estimator remains consistent. On the other hand, if these assumptions are indeed

valid, then our procedure achieves the optimal efficiency.

B. Extension

In Section A, we developed the efficient semiparametric estimator and its estimation

variance in the model (2.1) with the homoscedasticity error. In this Section, we

extend the results to the heteroscedastic error case. We assume E(ε2|X) = σ2(X; γ),

where the variance function σ2 is known up to an unknown parameter γ. We denote
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the parameter θ = (βT , γT )T . In this case, similar derivations show that the nuisance

tangent space, now denoted Ω, can still be expressed as Ω = Ωη1 + Ωη2 , where Ωη1 =

Λη1 is unchanged from the homoscedastic case, and

Ωη2 =
{
g(ε,X) : E(g|X) = 0, E(εg|X) = 0, E

[
{ε2 − σ2(X; γ)}g|X

]
= 0
}
.

Consequently,

Ω⊥ =
{
h(ε,X) : h = a(X)ε+ b(X){ε2 − σ2(X; γ)}

}
.

Here, a, b, g, h are all length d functions.

The score function

Sθ(X, Y ) = (STβ , S
T
γ )T =

{
− ∂η2(ε,X)

η2(ε,X)∂ε

∂m(X; β)

∂βT
,
∂η2(ε,X)

η2(ε,X)∂σ2

∂σ2(X; γ)

∂γT

}T
can be similarly calculated by differentiating the logarithm of the pdf with respect

to θ. The projection of an arbitrary function h(X, Y ) ∈ H onto Ω⊥ also has a form

similar to (2.4), that is

Π(h|Ω⊥) =
E(εh|X)

σ2(X; γ)
ε+

E(Ch|X)

E(C2|X)
C,

where C = ε2−σ2(X; γ)−E{ε3−εσ2(X; γ)|X}ε/σ2(X; γ). Projecting Sθ onto Ω⊥, we

can obtain Seff = (STβ,eff, S
T
γ,eff)T . The SE estimator can therefore be obtained through

solving
∑n

i=1 Seff(Xi, Yi) = 0, and the asymptotic covariance matrix of the resulting

estimator satisfies ncov(θ̂) = {E(SeffS
T
eff)}−1 evaluated at θ = θ0. We summarize the

results parallel to Theorem 1 in Theorem 2, but omit the detailed proofs.
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Theorem 2. The efficient score functions for β and γ have the form

Sβ,eff(X, Y ) =
∂m(X; β)

∂β

{
ε

σ2(X; γ)
− E(ε3|X)C

σ2(X; γ)E(C2|X)

}
,

Sγ,eff(X, Y ) =
C

E(C2|X)

∂σ2(X; γ)

∂γ
.

The estimation covariance matrix is

E
(
SeffS

T
eff

)
= E

 ∂m(X;β0)
∂β

∂m(X;β0)

∂βT
1

σ2(X;γ0)

{
1 +

µ2
3

σ2(X;γ0)E(C2|X)

}
− µ3
σ2(X;γ0)E(C2|X)

∂m(X;β0)
∂β

∂σ2(X;γ0)

∂γT

− µ3
σ2(X;γ0)E(C2|X)

∂σ2(X;γ0)
∂γ

∂m(X;β0)

∂βT
1

E(C2|X)

∂σ2(X;γ0)
∂γ

∂σ2(X;γ0)

∂γT

 ,
where µ3 is defined after (2.6).

The upper-left block of the inverse of E(SeffS
T
eff) gives the covariance matrix of

the efficient estimator nβ̂. Specifically, denote

U1 = m′β(X; β0)µ3σ
−2(X; γ0)/

√
E(C2|X),

U2 =
∂σ2(X; γ0)

∂γ
/
√
E(C2|X),

where m′β(X; β0) denotes ∂m(X; β)/∂βT evaluated at β = β0, we have

ncov(β̂) =

[
E
{
m′β(X;β0)m′β(X;β0)T σ−2(X; γ0)

}
+ E(U1U

T
1 )− E(U1U

T
2 )
{
E(U2U

T
2 )
}−1

E(U1U2)T
]−1

.

In contrast to the efficient semiparametric estimator, we inspect the usual weighted

least square (WLS) estimator where
∑n

i=1 wi{Yi−m(Xi; β)}2 is minimized to obtain

the WLS estimator β̃. In this case, it is well known that the optimal weights are

wi = 1/σ2(Xi; γ0), and the corresponding optimal estimator in the WLS family has

asymptotic estimation covariance matrix

ncov(β̃) = E
{
σ−2(Xi; γ0)m′β(Xi; β0)m′β(Xi; β0)T

}−1
.

The covariance matrices of the two estimators are obviously different. In fact, it
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is easy to verify that

{
ncov(β̂)

}−1

−
{
ncov(β̃)

}−1

= E(U1U
T
1 )− E(U1U

T
2 )
{
E(U2U

T
2 )
}−1

E(U1U2)T

= cov
[
U1 − E(U1U

T
2 )
{
E(U2U

T
2 )
}−1

U2

]
,

hence ncov(β̃)− ncov(β̂) is nonnegative-definite. This shows that although the opti-

mal WLS is the most efficient among the WLS estimator family, it is in general not

as efficient as the SE estimator that we have derived. The practical improvement of

the estimation variance will be demonstrated in the simulation studies in Section 1.

Unlike in the homoscedastic error case, it is no longer reasonable to assume µ3

and µ4 to be constants. Similarly to σ2, they are usually functions of the covariate

X, say µ3(X) and µ4(X). Implementing our efficient estimator requires plugging in

µ3(X) and µ4(X), which are generally unknown. In practice, we could first obtain

the residual ri’s of the model from an initial OLS estimator, then fit parametric or

nonparametric models for (Xi, r
3
i ) and (Xi, r

4
i ) to obtain µ̂3(X), µ̂4(X). We then

proceed with the estimation on β, γ. Similarly to the homoscedastic case, even if

the parametric models are misspecified, or the estimation of µ3(X) and µ4(X) are

completely wrong, our estimator remains consistent. This is because E(Seff|X) = 0 is

guaranteed by E(ε|X) = 0 and E(ε2|X) = σ2(X; γ), it does not rely on the correctness

of µ3(X) and µ4(X). However, when the model is correct, our estimator is efficient,

even when µ3(X), µ4(X) are estimated rather crudely.

C. Numerical Results

We carry out simulations to study the finite sample performance of the various esti-

mators. The first two simulations focus on homoscedastic error models, as studied in

Section A, and the last two simulations on heteroscedastic error models as studied in
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Section B.

The mean in simulation one has an exponential form, and the model is

Y = β1 exp(β2X) + ε, (2.7)

with the true parameter values β1 = 10, β2 = −0.6 and a constant error variance

σ2 = 2. In simulation two, we considered a growth model

Y =
β1

1 + exp(β2 + β3X)
+ ε, (2.8)

with the true parameter values β1 = 10, β2 = 1.5, β3 = −0.8 and σ2 = 2. Models (2.7)

and (2.8) are identical to the simulation settings in Wang and Leblanc (2008). In both

models, xi’s are generated from a uniform distribution in (0, 20) and εi = (ei−3)/
√

3,

where ei’s are generated from a χ2(3) distribution. Thus, εi’s have mean zero and

variance 2 but are asymmetrically distributed. The asymmetry insures that the third

moment E(ε3|X) does not vanish, hence the SE or SLS does not degenerate to the

WLS estimator. We implemented the OLS, the SLS and the SE estimators, and report

the sample mean and sample variance of these estimates. For the SE estimator, we

also calculated the estimated variance.

We used a sample size n = 200, and generated 1000 data sets. The simulation

results are presented in Table I. These results clearly indicate that all three estimators

are consistent, while both the SLS and the SE estimators outperform the OLS in terms

of estimation variance. The estimation variances of the SLS and the SE estimator

are very close, which supports our claim that both are efficient. Finally, our variance

estimation is reasonably precise, in that the sample variance, calculated using the

1000 estimates via standard sample variance calculation, and the estimated variance,

calculated as the mean of the 1000 estimated variances, are very close. To further

demonstrate the impact of the sample size n, we increased n to 500. The numerical
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Table I. Simulation results for exponential and growth mean model with homoscedas-

tic error. The average and sample variance (VAR) of 1000 OLS, SLS and SE

estimators, as well as the average of the 1000 estimated variances (VAR1) for

the SE estimator are presented. Results are based on a sample size of 200.

OLS VAR SLS VAR SE VAR VAR1

Exponential model
β1 = 10 10.0768 0.5572 10.0938 0.3418 10.0889 0.3379 0.3721
β2 = −0.6 -0.6068 0.0038 -0.6070 0.0024 -0.6068 0.0024 0.0024
σ2 = 2 1.9597 0.1024 1.9418 0.0714 1.9319 0.0726 0.0641
Growth model
β1 = 10 9.9981 0.0146 9.9872 0.0125 9.9849 0.0107 0.0119
β2 = 1.5 1.5236 0.0489 1.5173 0.0259 1.5166 0.0254 0.0259
β3 = −0.8 -0.8104 0.0097 -0.8059 0.0047 -0.8060 0.0047 0.0045
σ2 = 2 1.9469 0.1112 1.9179 0.1081 1.8920 0.0921 0.1092

outcome in Table II further suggests the relevancy of our asymptotic results.

In section B, we have seen how the variance of the error can be allowed to depend

on X. To experiment with the heteroscedastic error situation, we modified the error

structure in the first two simulations to have a variance function σ2(X; γ) = γ1+γ2X
2,

while keeping the same mean functions and β values. For the exponential model (2.7),

a true value γ = (1, 0.1) was used and xi’s are generated from a uniform distribution

(0, 5). For the growth model (2.8), we use γ = (2, 0.05) and generated xi’s from a

uniform distribution (0, 7). In both models, we set εi = ei−ki, where ki = σ2(xi; γ)/2

and ei’s are generated from a χ2(ki) distribution. Thus, the errors εi’s in both (2.7)

and (2.8) have mean zero, variance σ2(X; γ) and have an asymmetric distribution.

In implementing the WLS estimators, we used the ideal weights 1/σ2(Xi; γ0),

hence the WLS performance is optimal among all WLS estimators. Implementing the

SE estimator requires plugging in the third and fourth conditional moment functions

of the error. To test the optimality and robustness of our proposed estimator, we

experimented with two different scenarios. In the first case, we calculated the true
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Table II. Simulation results for exponential and growth mean model with homoscedas-

tic error. The average and sample variance (VAR) of 1000 OLS, SLS and SE

estimators, as well as the average of the 1000 estimated variances (VAR1)

for the SE estimator are presented. Results are based on a sample size of

500.

OLS VAR SLS VAR SE VAR VAR1

Exponential model
β1 = 10 10.0185 0.2224 10.0221 0.1187 10.0228 0.1193 0.1193
β2 = −0.6 -0.6025 0.0015 -0.6021 8.73e−4 -0.6023 8.76e−4 8.74e−4

σ2 = 2 1.9900 0.0483 1.9789 0.0303 1.9730 0.0303 0.0295
Growth model
β1 = 10 10.0005 0.0061 9.9933 0.0051 9.9953 0.0050 0.0051
β2 = 1.5 1.5148 0.0181 1.5084 0.0107 1.5077 0.0105 0.0104
β3 = −0.8 -0.8039 0.0032 -0.8029 0.0018 -0.8028 0.0018 0.0019
σ2 = 2 1.9843 0.0466 1.9728 0.0463 1.9785 0.0468 0.0482

moment functions and plugged them into the SE estimator (SE1). In the second case,

we adopted drastically different functions, and plugged them into the SE estimator

as if they were the truth (SE2). To be specific, the true third and fourth conditional

moment functions can be calculated to be a2X
2+a1 and a5X

4+a4X
2+a3 respectively,

where a1 = 4γ1, a2 = 4γ2, a3 = 3γ2
1 +24γ1, a4 = 24γ2 +6γ1γ2 and a5 = 3γ2

2 . However,

we used the wrong models a2X+a1 and a5X
2 +a4X+a3 instead. Both results along

with the optimal WLS results were reported in Table III. These results are based on

1000 simulations with a sample size n = 400. The results of Table III reflects the

fact that all three estimators are consistent. Compared with the two SE estimators,

the WLS estimator, although already optimal in its family, is much less efficient in

that the sample variances in estimating β’s are much larger than both SEs. We had

expected to see SE1 to outperform SE2 substantially. However, to our surprise, the

performance of two estimators are rather similar. This is a pleasant surprise, since

modeling and estimating the third and fourth conditional moments usually needs very
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Table III. Simulation results for exponential and growth mean model with het-

eroscedastic error. The average and sample variance (VAR) of 1000 WLS,

SE1 and SE2 estimators are presented. SE1 is the SE estimator with the

true moment models, and SE2 the wrong moment models. Median of the

1000 estimated variances (VAR1) for SE1 and SE2 are calculated. Results

are based on a sample size of 400.

WLS VAR SE1 VAR VAR1 SE2 VAR VAR1

Exponential model
β1 = 10 9.9931 0.0358 9.9980 0.0217 0.0255 10.0032 0.0229 0.0215
β2 = −0.6 -0.5998 3.51e−4 -0.5996 2.27e−4 2.32e−4 -0.5994 2.98e−4 2.14e−4

γ1 = 1 1.0305 0.1328 0.1635 1.0232 0.1436 0.1474
γ2 = 0.1 0.0967 0.0016 0.0019 0.0998 0.0019 0.0013
Growth model
β1 = 10 10.0086 0.0668 10.0018 0.0517 0.0497 9.9989 0.0512 0.0490
β2 = 1.5 1.5081 0.0093 1.5023 0.0061 0.0061 1.5010 0.0068 0.0059
β3 = −0.8 -0.8042 0.0039 -0.8020 0.0020 0.0018 -0.8028 0.0024 0.0018
γ1 = 2 1.9768 0.3192 0.2523 1.9993 0.3386 0.2827
γ2 = 0.05 0.0498 9.43e−4 7.87e−4 0.0498 0.0012 6.68e−4

large sample size and can be numerically unstable. Finally, the sample variance and

estimated variance for both SEs match reasonably well, indicating the validity of our

inference. We also increased the sample size to 500 and 1000, and find the two get

closer when the sample size increases, numerical results for n = 500 and n = 1000 are

given in Table II and Table IV.

D. Discussion

We have derived a semiparametric efficient estimator in a regression model, where

the regression error has conditional mean zero and conditional variance a constant.

We have shown that this estimator achieves the optimal semiparametric efficiency

bound and is equivalent to the second order least square estimator proposed in Wang

and Leblanc (2008), hence revealing an unknown optimality of their estimator. We



20

Table IV. Simulation results for exponential and growth mean model with het-

eroscedastic error. The average and sample variance (VAR) of 1000 WLS,

SE1 and SE2 estimators are presented. SE1 is the SE estimator with the

true moment models, and SE2 the wrong moment models. Median of the

1000 estimated variances (VAR1) for SE1 and SE2 are calculated. Results

are based on a sample size of 1000.

WLS VAR SE1 VAR VAR1 SE2 VAR VAR1

Exponential model
β1 = 10 10.0073 0.0151 10.0068 0.0076 0.0080 10.0107 0.0075 0.0076
β2 = −0.6 -0.5999 1.42e−4 -0.5999 7.96e−5 8.09e−5 -0.6001 8.73e−5 7.85e−5

γ1 = 1 1.0379 0.0578 0.0555 1.0395 0.0632 0.0618
γ2 = 0.1 0.0959 6.36e−4 5.77e−4 0.0963 7.39e−4 5.15e−4

Growth model
β1 = 10 10.0040 0.0258 10.0062 0.0192 0.0194 10.0057 0.0191 0.0192
β2 = 1.5 1.5064 0.0034 1.5019 0.0023 0.0024 1.5006 0.0024 0.0023
β3 = −0.8 -0.8036 0.0014 -0.8007 6.92e−4 6.94e−4 -0.8003 6.93e−4 6.81e−4

γ1 = 2 1.9976 0.1207 0.1127 2.0088 0.1260 0.1242
γ2 = 0.05 0.0496 3.77e−4 3.51e−4 0.0489 3.78e−4 3.26e−4

further extended the model to the case where the second moment can be an arbitrary

function of the covariates, and derived the semiparametric efficient estimator in this

general case. The same kind of extension can also be made on the second order

least square estimator to handle heteroscedasticity. Simulation results demonstrated

the significant improvement of the estimation variance in comparison to the classical

WLS estimators and supported the inference procedure.

We have adopted fixed models for the third and fourth conditional moment func-

tions of the error distribution, and demonstrated the consistency of the proposed

estimator whether or not these higher moment models are misspecified. However,

in reality, these moment functions need to be estimated. We caution that the es-

timation of the higher moments can be rather unstable, usually requiring a large

sample size. Although the need to estimate higher order moments will not affect
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the estimation variance of the parameter of interest in the asymptotic sense, in finite

samples, it is very likely to inflate the variance. Thus, we propose to adopt simple

models for these higher moments. Finally, the same line of analysis can be extended

to higher moments, although both the theoretical analysis and the implementation of

the estimators will become increasingly complex.
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CHAPTER III

SEMIPARAMETRIC ESTIMATION OF THE CENTER OF AN UNKNOWN

SYMMETRIC POPULATION UNDER SELECTION BIAS

Suppose that in a general population, a certain trait X is symmetrically distributed

with center µ, and we are interested in estimating the population center. We denote

the probability density function of X in the population of interest as f(x−µ), x ∈ R,

where f is an even function. The most common practice is to assume f to be a normal

density, however, here we do not impose any other assumption on f except that it is a

symmetric density. Nevertheless, because of certain mechanisms involved in the data

collection process, only a biased sample from the symmetric population is obtained.

Taking the selection bias into account, observations X1, . . . , Xn are independent and

identically distributed with density

2f(x− µ)π(x− µ; β), x ∈ R, (3.1)

where π is decided by the selection mechanism. Here π(x; β) ≥ 0 is usually named

a skewing function and it satisfies π(x; β) + π(−x; β) = 1 for any x. To allow addi-

tional flexibility, we allow π to contain an unknown parameter vector β. The skewing

function captures the selection bias and we assume its functional form known. How-

ever, because no parametric form is assumed on the symmetric function f , (3.1) is a

semiparametric model.

The special case of (3.1) where the density f and the skewing function π have

parametric forms has been coined a skew-symmetric distribution by Wang et al.

(2004). Furthermore, if f = φ, the normal density, and π(x; β) = Φ(βx), β ∈ R,
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with Φ the normal cumulative distribution function, then (3.1) reduces to the skew-

normal distribution introduced by Azzalini (1985); see the book edited by Genton

(2004) for further discussions of this distribution and related families.

A practical example where a distribution of type (3.1) arises is illustrated by an

ambulatory expenditure data from the 2001 Medical Expenditure Panel Survey anal-

ysed by Cameron and Trivedi (2010). The decision to spend is assumed to be related

to the spending amount, hence the observations form a biased sample. Cameron and

Trivedi (2010) considered a sample-selection model based on the assumption of nor-

mality, hence leading to a parametric skew-normal distribution, which corresponds to

assume f to be normal in (3.1). We, instead, suggest to eliminate the normal or any

other distributional assumption on the symmetric density f . Hence we only require f

to be symmetric but otherwise completely unspecified. In this relaxed model setting,

we estimate its center µ, which represents the mean of ambulatory expenditures for

the general population had there been no expenditure decision to be made.

The rest of the chapter is organized as follows. In Section A, we adopt a semi-

parametric approach to construct a class of consistent estimators of µ that are robust

to model mis-specification. We further illustrate how to construct the most efficient

estimator via a modified kernel density estimation. We also establish the asymptotic

properties of these estimators in this section. Simulation experiments are conducted

in Section B to illustrate the finite sample performance of these estimators. We im-

plement the proposed estimators to analyse a real data example in Section C, and

give a discussion in Section E. Technical details are provided in an Appendix B.
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A. Estimation

1. Semiparametric Derivation

Although the central interest in (3.1) is to estimate µ, because β is also unknown,

we estimate β together with µ. To this end, we treat θ = (µ, βT )T as the param-

eter of interest, and treat the unknown symmetric density function f as an infinite

dimensional nuisance parameter.

A rich class of root-n consistent estimators for θ in the semiparametric model

(3.1) is the locally efficient semiparametric estimators. Following Bickel et al. (1993)

we view the space of all the mean zero, finite variance functions as a Hilbert space H.

We begin by finding two subspaces of H, namely the nuisance tangent space Λ and its

orthogonal complement Λ⊥; see the Appendix B for the description of Λ and Λ⊥ and

the locally efficient estimators. Tsiatis (2006) provides more elaborative explanations

of these concepts. From here on, we use a subindex 0 to denote the true values of

the parameters or the true functions, and write the projection of h onto a space A as

Π(h|A).

For model (3.1), we establish in the Appendix B that the nuisance tangent space

Λ, corresponding to the unspecified symmetric probability density function f , and its

orthogonal complement Λ⊥, are respectively

Λ =

{
u(x− µ) : u(t) = u(−t),

∫ ∞
0

u(t)f0(t)dt = 0

}
,

Λ⊥ = {v(x− µ) : v(t)π(t; β) + v(−t)π(−t; β) = 0}.

Any function in Λ⊥ can be normalized to an influence function hence provides

an estimation function. However, within this large class of estimation functions, the

efficient score function is the most attractive because the corresponding estimator

has the smallest estimation variance. The efficient score is defined as the orthogonal



25

projection of the score function to Λ⊥. Denote g(x; θ) = 2f(x − µ)π(x − µ; β).

Calculating ∂logg(x; θ)/∂θ, we obtain the score function

Sθ = (Sµ, S
T
β )T =

{
−f

′
0(x− µ)

f0(x− µ)
− π′x(x− µ; β)

π(x− µ; β)
,
π′β(x− µ; β)T

π(x− µ; β)

}T

,

where we use the notation π′x(x − µ; β) = ∂π(x − µ; β)/∂x and π′β(x − µ; β) =

∂π(x− µ; β)/∂β. We decompose Sµ into

Sµ =

[
−f

′
0(x− µ)

f0(x− µ)
{π(x− µ; β)− π(−x+ µ; β)} − 2π′x(x− µ; β)

]
+

{
−f

′
0(x− µ)2π(−x+ µ; β)

f0(x− µ)
− π′x(x− µ; β)

π(x− µ; β)
+ 2π′x(x− µ; β)

}
.

We verify in the Appendix B that

−f
′
0(x− µ)

f0(x− µ)
{π(x− µ; β)− π(−x+ µ; β)} − 2π′x(x− µ; β) ∈ Λ

and

−f
′
0(x− µ)2π(−x+ µ; β)

f0(x− µ)
− π′x(x− µ; β)

π(x− µ; β)
+ 2π′x(x− µ; β) ∈ Λ⊥.

In addition, since π(t; β) + π(−t; β) = 1, π′β(t; β) + π′β(−t; β) = 0, it indicates that

Sβ ∈ Λ⊥. We thus obtain the efficient score vector for θ as

Sθ,eff(x; θ, f0)

=

{
−f

′
0(x− µ)2π(−x+ µ; β)

f0(x− µ)
− π′x(x− µ; β)

π(x− µ; β)
+ 2π′x(x− µ; β),

π′β(x− µ; β)T

π(x− µ; β)

}T

.

2. Robust Estimation Family

The form of the efficient score depends on the true yet unknown population density

f0. Thus, it cannot be directly used to construct an estimating equation. However,

a useful compromise is to take advantage of the efficient score function form to con-
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struct consistent estimators. Note that only the first component of the efficient score

function relies on the unknown f0 function. We find that for any symmetric density

f ∗, even if f ∗ 6= f0, we would still have{
−f

∗′(t)2π(−t; β)

f ∗(t)
− π′t(t; β)

π(t; β)
+ 2π′t(t; β)

}
π(t; β)

+

{
−f

∗′(−t)2π(t; β)

f ∗(−t)
− π′t(−t; β)

π(−t; β)
+ 2π′t(−t; β)

}
π(−t; β)

= −f
∗′(t)2π(−t; β)π(t; β)

f ∗(t)
− π′t(t; β) + 2π′t(t; β)π(t; β)

+
f ∗
′
(t)2π(t; β)π(−t; β)

f ∗(t)
− π′t(t; β) + 2π′t(t; β)π(−t; β)

= 0.

In the above we used π(t; β) +π(−t; β) = 1 and π′t(t; β) = π′t(−t; β). Thus, according

to the description of Λ⊥, Sθ,eff(x; θ, f ∗) is still an element of Λ⊥.

Based on the above observation, we propose to construct a simple consistent and

robust estimator for θ as follows. We first postulate a symmetric density f ∗. We then

calculate the corresponding efficient score function

Sθ,eff(x; θ, f ∗)

=


−f

∗′(x− µ)2π(−x+ µ; β)

f ∗(x− µ)
− π′x(x− µ; β)

π(x− µ; β)
+ 2π′x(x− µ; β)

π′β(x− µ; β)

π(x− µ; β)

 . (3.2)

We form the estimating equation

n∑
i=1

Sθ,eff(Xi; θ, f
∗) = 0

to solve for µ̂ and β̂. In practice, a normal density or a Laplace density model for f ∗

are the obvious choices. If the postulated model f ∗ happens to be the same as f0, we

indeed obtain the efficient estimator for θ from this procedure. However, even if f ∗
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is not the same as f0, the construction still guarantees consistency. This means the

estimator has a robustness property against the mis-specification of f0.

In postulating a model f ∗ for f , the only constraint we have is f ∗(x) = f ∗(−x).

In other words, we can choose the variance of the density model arbitrarily. Intu-

itively, a variance choice that is close to the true variance of f may yield a more

stable estimation while a drastically different variance choice could cause some loss

on computational stability as well as affect the estimation variability of the final es-

timates for θ. Thus, a very natural alternative is to postulate a parametric model

for f0, instead of one particular density function. We denote the postulated density

family f ∗(x; γ), where γ is a vector of additional parameters, such as the variance

parameter of f ∗. In terms of determining γ, we can simply augment the estimating

function (3.2) with the score function concerning γ or plug in an estimated γ value

to (3.2).

To be specific about estimating θ through augmenting or plugging-in when a

more general model f ∗(x; γ) is postulated, we describe how to estimate γ. We

write the model as f ∗(x; γ) whether or not it contains the truth f0. Calculating

∂logg(x; θ0, γ, f
∗)/∂γ yields the nuisance score vector

Sγ(x; θ, γ, f ∗) =
∂f ∗(x− µ; γ)/∂γ

f ∗(x− µ; γ)
.

We can augment (3.2) with the above estimating function to solve for γ̂ and θ̂ jointly.

Alternatively, we can also iteratively use (3.2) with γ fixed at the current value and

use Sγ(x; θ, γ, f ∗) with θ fixed at the current value to obtain γ̂ and θ̂.

In terms of the robustness and efficiency of this more general strategy, we find

that if the posited model f ∗(·; γ) contains the true f0, then we obtain the efficient

estimator. However, if the posited model f ∗(·; γ) does not contain the true f0, we still

obtain a consistent estimator. Thus, this more general postulation strategy retains the
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robust and local efficient property of the simple postulation strategy. In addition, we

find that the estimation of the additional parameter γ does not affect the estimation

variance of θ. To make a distinction for the two postulation strategies, we write

Sθ,eff(x; θ, γ, f ∗)

=


−f

∗′(x− µ; γ)2π(−x+ µ; β)

f ∗(x− µ; γ)
− π′x(x− µ; β)

π(x− µ; β)
+ 2π′x(x− µ; β)

π′β(x− µ; β)

π(x− µ; β)

 , (3.3)

where f ∗
′
(t; γ) = ∂f ∗(t; γ)/∂t. We summarize our discovery stated above in Theorem

3, after stating a useful Lemma. The proofs of both Lemma 1 and Theorem 3 are

provided in the Appendix B.

Lemma 1. Assume n1/2(γ̂ − γ∗) is bounded in probability. Then the two estimators

obtained from solving the two estimating equation
∑n

i=1 Sθ,eff(Xi; θ, γ
∗, f ∗) = 0 and∑n

i=1 Sθ,eff(Xi; θ, γ̂, f
∗) = 0 are asymptotically equivalent; that is, if the estimator θ̂1

is the solution of the first equation and θ̂2 is the solution of the second equation, then

n1/2(θ̂1 − θ̂2)→ 0 in probability.

Theorem 3. i) If the candidate family f ∗(x− µ; γ) contains the truth f0, i.e. there

exists γ0 such that f ∗(x − µ; γ0) = f0(x − µ), then
√
n(θ̂ − θ0) → N(0, Veff) in dis-

tribution when n → ∞, where Veff = E{Seff(X; θ0, f0)Seff(X; θ0, f0)T}−1 and θ̂ solves

the estimating equation
∑n

i=1 Sθ,eff(Xi; θ, γ̂, f
∗) = 0. Here, γ̂ is a root-n consistent

estimator for γ0.

ii) If the candidate family f ∗(x − µ; γ) does not contain the truth, i.e. f ∗(x −

µ; γ) 6= f0(x−µ) for any γ. Then
√
n(θ̂−θ0)→ N(0, V ) in distribution when n→∞,

where V = A−1E{Sθ,eff(X; θ0, γ
∗, f ∗)STθ,eff(X; θ0, γ

∗, f ∗)}(A−1)T , and

A = E

{
∂Sθ,eff(X; θ0, γ

∗, f ∗)

∂θT

}
.
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Here θ̂ solves the estimating equation
∑n

i=1 Sθ,eff(Xi; θ, γ̂, f
∗) = 0, where γ̂ = γ∗ or is

a root-n consistent estimator of γ∗.

3. Efficient Estimation

The efficiency of an estimator depends on how close the posited model f ∗ is to the

true f0. Although the various robust estimators proposed in Section 2 guarantee con-

sistency, they only provide a possibility of achieving efficiency. That is, the estimation

variability relies on the specific postulated model or the family of models. Only if the

model happens to be true or the family happens to contain the true density f0, the

optimal estimation variance is achieved, otherwise, all one can obtain is consistency.

To overcome this potential loss of efficiency, we propose to perform a nonpara-

metric estimation of f using a modified procedure of the kernel density estimation.

The explicit form of the modified kernel estimator for f is

f̂(t) =
1

2n

n∑
i=1

1

h

[
K

{
(Xi − µ)− t

h

}
+K

{
(Xi − µ) + t

h

}]
,

where K is a symmetric kernel function and h is a bandwidth. To see the rationale be-

hind this estimation, we first ignore the semiparametric model (3.1). Then we can use

the usual kernel density estimator at a given point x to obtain (nh)−1
∑n

i=1K (Xi − x).

Taking into account (3.1), we write the estimate as

2f̂(x− µ)π(x− µ; β) =
1

n

n∑
i=1

1

h
K

(
Xi − x
h

)
=

1

n

n∑
i=1

1

h
K

{
(Xi − µ)− (x− µ)

h

}
.
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Since f is an even function, we require its estimator f̂ to be also even. Thus we have

2f̂(x− µ)π(−x+ µ; β) = 2f̂(−x+ µ)π(−x+ µ; β)

=
1

n

n∑
i=1

1

h
K

{
(Xi − µ)− (−x+ µ)

h

}
=

1

n

n∑
i=1

1

h
K

(
Xi + x− 2µ

h

)
.

Combining the above two equalities, we obtain

f̂(x− µ) =
1

2n

n∑
i=1

1

h

{
K

(
Xi − x
h

)
+K

(
Xi + x− 2µ

h

)}
, (3.4)

which yields the modified kernel density estimation for f .

The robust estimation described in Section 2 can be combined with the modified

nonparametric kernel density estimation to yield a procedure that achieves the opti-

mal semiparametric efficient bound for θ. The estimation procedure is the following:

• Step 1. Choose any even density function f ∗. From f ∗ and the known function

π, obtain θ̃ = (µ̃, β̃T )T through solving
∑n

i=1 Seff(Xi; θ, f
∗) = 0.

• Step 2. Choose a kernel function K and a bandwidth h, plug K, h and µ̃ into

(3.4) to obtain f̂ .

• Step 3. Using the estimated f̂ , obtain θ̂ = (µ̂, β̂T )T through solving∑n
i=1 Seff(Xi; θ, f̂) = 0.

It is worth pointing out that in the above procedure, it is not necessary to perform

any iteration. The first order optimal asymptotic property is achieved via the simple

one-step procedure. However, in practice, iterating between Steps 2 and 3, while using

the previous obtained µ̂, β̂ to replace µ̃, β̃ in Step 2 is often recommended, especially

when the sample size is moderate or small. A bandwidth h is needed in Step 2.

Interestingly, there is no need to perform any under-smoothing in this step and the
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procedure is very insensitive to the bandwidth. Thus, a standard cross-validation

procedure can be used on an initial kernel density estimation to obtain a bandwidth

h, and one can then use this bandwidth throughout the estimation procedure. This

practice is both theoretically justified and practically well behaved.

We assume the following regularity conditions are satisfied in the rest of the

Theorems in this Chapter.

Regularity Conditions 1. C1 The true distribution of X1, . . . , Xn has a compact

support. That is, −∞ < C1 < X(1) and X(n) < C2 < ∞, where X(j) is the jth

smallest observation and C1, C2 are two constants.

C2 The symmetric function f0 is twice differentiable. Its second derivative satisfies

the Lipschitz condition. f0 and f ′0 are bounded away from zero and ∞. f0 has

bounded second derivative with respect to its center µ.

C3 The kernel function K integrates to 1, is symmetric about 0, has support (−1, 1)

and is twice differentiable on [−1, 1].

C4 The bandwidth h is such that C−1
3 n

−1/8
2 < h < C3n

−1/2
2 for all n2, where C3 > 1

is a constant and can be arbitrarily large.

Proposition 1. Let X1, · · · , Xn be independent and identically distributed with com-

mon density 2f(x − µ)π(x − µ, β). Split the n observations into three groups, with

sample sizes n1 = n − 2n1−ε, n2 = n3 = n1−ε respectively, where ε is a sufficiently

small positive number. Suppose that µ̃ and β̃ are estimators constructed from the ob-

servations Xn1+n2+1, · · · , Xn and satisfies µ̃− µ = Op(n
−1/2
3 ) and β̃ − β = Op(n

−1/2
3 ).

Let

f̂(t; µ̃) =
1

2n2

n1+n2∑
i=n1+1

1

h

{
K

(
Xi − µ̃− t

h

)
+K

(
Xi − µ̃+ t

h

)}
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or equivalently

f̂(x− µ̃; µ̃) =
1

2n2

n1+n2∑
i=n1+1

1

h

{
K

(
Xi − x
h

)
+K

(
Xi + x− 2µ̃

h

)}
.

It then follows that ||f̂(x − µ̃; µ̃) − f0(x − µ0)|| = op(n
−1/4
2 ), under the Regularity

Conditions 1.

Note that unknown function f0 is estimated from m observations, while the initial

estimates µ̃, β̃ of unknown parameters µ0, β0 are computed from n−m observations.

We can calculate efficient estimator µ̂ and β̂ using f̂(x; µ̃) by solving efficient score

S∗eff(X,µ, β).

Corollary 1. Under the Regularity Conditions 1,

f̂ ′(x− µ̃; µ̃) =
1

2n2

n1+n2∑
i=n1+1

1

h2

{
K ′
(
x−Xi

h

)
+K ′

(
Xi + x− 2µ̃

h

)}
,

or equivalently,

f̂ ′(t; µ̃) =
1

2n2

n1+n2∑
i=n1+1

1

h2

{
K ′
(
t−Xi + µ̃

h

)
+K ′

(
Xi + t− µ̃

h

)}
.

then ||f̂ ′(x− µ̃; µ̃)− f ′0(x− µ0)|| = op(n
−1/4).

Corollary 2. Under the Regularity Conditions 1, if we approximate f ′0 using nu-

merical differentiation f̂ ′(t; µ̃) ≡ {f̂(t + n−1/4; µ̃) − f̂(t − n−1/4; µ̃)}/(2n−1/4), then

||f̂ ′(x− µ̃; µ̃)− f ′0(x− µ0)|| = op(1).

In Theorem 4, we state the optimal property of the modified nonparametric

kernel estimation. We use the notation a⊗2 to denote aaT .

Theorem 4. Let X1, . . . , Xn be independent and identically distributed with common
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density 2f0(x− µ0)π(x− µ0; β0). For any t, let

f̂(t; µ̃) =
1

2n

n∑
i=1

1

h

{
K

(
Xi − µ̃− t

h

)
+K

(
Xi + t− µ̃

h

)}
,

f̂ ′(t; µ̃) =
1

2n

n∑
i=1

1

h2

{
K ′
(
t−Xi + µ̃

h

)
+K ′

(
Xi + t− µ̃

h

)}
,

where µ̃ is estimated from Step 1. Assume θ̂ = (µ̂, β̂T )T satisfies

n∑
i=1

Sθ,eff{Xi; θ̂, f̂(·; µ̃)} = 0.

It then follows that when n → ∞, under the Regularity Conditions 1, θ̂ is the semi-

parametric efficient estimator and it satisfies
√
n(θ̂− θ0)→ N(0, Veff) in distribution

when n→∞. Here Veff = [E{S⊗2
θ,eff(X; θ0, f0)}]−1.

4. Population Density Estimation

A by-product of the efficient estimation described in Section B is the nonparametric

estimation of the population density f itself. Because the only apriori information

we have about f is its symmetry, hence it is not a surprise that f has the typical

nonparametric bias and variance properties. We point out here that the fact we do not

know the center µ and had to estimate it does not affect the first order asymptotic

property of estimating f . In other words, the first order asymptotic convergence

properties of f̂ remain the same whether we know µ or not. We summarize the

theoretical results in Theorem 5 and provide the necessary proofs in the Appendix B

under the Regularity Condition 1.

Theorem 5. Let c2 =
∫ 1

−1
s2K(s)ds, v2 =

∫ 1

−1
K2(s)ds. Under the Regularity Con-

ditions 1, the nonparametric estimation f̂ obtained from Step 2 satisfies the usual
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nonparametric bias and variance property

bias{f̂(t; µ̃)} =
h2

2
f ′′0 (t)c2 + o(h2),

var{f̂(t; µ̃)} =
1

nh

{
f0(t)v2

2
+ I(|t| < h)

∫ 1− |t|
h

−1+
|t|
h

K(s− t/h)K(s+ t/h)w(hs)ds

}
+o{(nh)−1}.

Because the bias and variance properties have a similar form as in the usual

nonparametric estimation, the subsequent MSE and MISE results also remain in the

standard form. Once a nonparametric estimation of f is obtained, it is straightforward

to assemble f̂ and θ̂ together to reconstruct an estimation of the density of the biased

samples. This can provide a visual verification of the estimation in practice, see

Section C for an illustration.

Estimating the population density function curve f̂ and the density ĝ of the

biased samples is a nonparametric density estimation problem. Hence the bandwidth

selection is important for the final performance. Here, the usual bandwidth selection

procedure such as cross-validation and plugin methods are applicable. However, we

recommend a more refined indirect cross-validation procedure, which allows us to use

two different kernels: one is suitable for cross-validation purpose while the other is

suitable for estimation purpose. The rationale of the indirect cross-validation method

and suitable kernels are studied in Savchuk et al. (2010).

B. Simulations

We performed a set of simulation studies to investigate the finite sample performance

of the various estimators we proposed. In our first simulation study, the data sets

were generated from model (3.1) with true f0(x) being a normal density with mean 4

and standard deviation 3. The corresponding skewing function π was a logit function
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with skewing parameter β = 2, i.e. π(x− µ; β) = 1− {1 + eβ(x−µ)}−1. In the second

simulation study, the true f0(x) was a Laplace density with the same location and

scale parameters. We also experimented with the more common situation where the

skewing function π was a probit function, i.e. π(x− µ; β) = Φ{β(x− µ)}, where Φ is

the standard normal cumulative distribution function. This skewing function model

in combination with normal or Laplace f0(x) is respectively studied in simulations 3

and 4. In each simulation, a sample size n = 500 was used and 1000 data sets were

generated.

We implemented five different estimators to illustrate the relative performance.

The first estimator can be considered as an oracle estimator, where we solve
∑n

i=1 Sθ,eff

(Xi; θ, f0) = 0 to obtain θ̂. Here we plug in the true density f0 to the estimating equa-

tion, as if we would know the true f0, hence the name oracle. The second estimator

is very similar to the first, except that we plug in a wrong density. The estimating

equation is explicitly
∑n

i=1 Sθ,eff(Xi; θ, f
∗) = 0, where f ∗ 6= f0. In particular, in the

first simulation study, where the true f0 is normal, we plugged in a Laplace f ∗, while

in the second simulation study, where the true f0 is Laplace, we plugged in a normal

f ∗. Our third and fourth estimators involve an additional parameter γ, which is the

scale parameter of f ∗ in both simulations. To be precise, in the third estimator, we

augment Sθ,eff(Xi; θ, f
∗) with Sγ, where f ∗ is a correct model (i.e. normal in sim-

ulations 1, 3 and Laplace in simulations 2, 4) with location parameter µ and scale

parameter γ. While in the fourth estimator, we also augment Sθ,eff(Xi; θ, f
∗) with

Sγ. However, f ∗ is now a mis-specified model, where we used a Laplace model in

simulations 1, 3 and a normal model in simulations 2, 4, with location parameter

µ and scale parameter γ. Finally, the efficient estimator described in Section B is

implemented for all simulation studies as the fifth estimator.

The simulation results of the five estimators are summarized in Table V. It can
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Table V. Median of 1000 estimates of µ and β and their sample standard deviation

(sd) and average of the estimated standard deviation (ŝd) for simulations

1-4. True values are µ0 = 4, β0 = 2. Results based on sample size n = 500.
µ̂ sd ŝd 95% cvg β̂ sd ŝd 95% cvg

simulation 1 (f=normal, π=Logit)

est1 3.8326 0.6632 0.6376 94.9% 2.2957 1.5414 1.3880 93.3%
est2 3.9588 0.6593 0.7015 96.3% 2.0575 0.9004 0.9625 97.2%
est3 3.8352 0.5708 0.5655 93.2% 2.2872 1.4147 1.3769 94.9%
est4 3.9731 0.9169 0.8313 95.2% 2.0289 1.1832 1.1863 96.9%
est5 4.0000 0.3062 0.2662 98.8% 2.0180 0.4264 0.4390 98.4%

simulation 2 (f=Laplace, π=Logit)

est1 3.9955 0.4334 0.5204 97.9% 2.0143 0.7296 0.8058 98.6%
est2 3.8913 0.5238 0.4986 94.4% 2.2428 1.3228 1.2594 95.4%
est3 3.8298 1.1201 1.3139 94.7% 2.3498 1.3943 1.6159 96.3%
est4 3.8585 0.5745 0.5258 91.5% 2.3085 1.4766 1.4221 93.7%
est5 3.9989 0.2314 0.2693 98.4% 2.0156 0.4951 0.4733 98.1%

simulation 3 (f=Normal, π=Probit)

est1 3.9686 0.3762 0.4022 97.7% 2.0898 0.9771 1.1044 97.7%
est2 3.9834 0.5253 0.5232 98.1% 1.9985 1.2394 1.0299 93.3%
est3 3.9666 0.3119 0.3463 97.9% 2.0824 0.9636 1.0971 98.0%
est4 3.9902 0.4909 0.5342 98.2% 1.9682 0.9763 0.9365 95.7%
est5 4.0005 0.2641 0.2812 99.0% 2.0001 0.5920 0.7828 99.0%

simulation 4 (f=Laplace, π=Probit)

est1 3.9930 0.3671 0.3816 98.6% 2.0035 0.9482 0.9228 96.1%
est2 3.9495 0.2750 0.2814 96.5% 2.1894 1.1037 1.1254 97.7%
est3 4.0122 0.9234 1.0231 95.3% 1.8684 1.4034 1.4804 95.8%
est4 3.9347 0.2517 0.3129 97.5% 2.2416 1.1966 1.2427 96.8%
est5 4.0006 0.3245 0.2774 98.1% 2.0197 0.7223 0.7920 98.2%

be seen that all the five estimators in all simulations exhibit very small bias, indicating

the evidence that regardless whether the f ∗ function or f ∗ model is correctly specified

or incorrectly specified, regardless whether f ∗ is fully specified or partially specified

or completely decided through data, the estimators remain consistent. In addition,

the average of the estimated variability is very close to the sample version, hence

the inference is reasonably reliable. Here, we point out that the reported estimated

standard deviation is obtained via a bootstrap procedure, because in our experiment,
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we find that the asymptotic properties require much larger sample size than n =

500. This difficulty is also reflected in the estimation in the extreme tail region, as

we can see that the 95% coverage is not very close to the nominal level. Finally,

concerning the estimation efficiency, although we expect estimators 1, 3 and 5 to

be asymptotically equivalent to their first order approximation, and estimators 2

and 4 to be less efficient than 1, 3, 5, this clearly is not always the case. Based

on the fact that the asymptotic variability estimation is not sufficiently accurate for

n = 500, it is not difficult to see that this is also caused by the moderate sample

size, which masks out the first order performance. The encouraging news is that

the efficient estimator (estimator 5) does not perform less favorably in comparison to

alternative estimators for this moderate sample size. In fact, it some times performs

competitively with respect to the oracle estimator. Because it is a painless procedure,

we highly recommend implementing it. On the other hand, if a quick assessment of

the parameters are needed, then one should feel comfortable to postulate a model

and perform a Step 1 simple estimation. The simulation evidence strongly supports

the consistency of such procedure.

To further examine the performance of the additional nonparametric estimation

procedure, we also plotted the estimated density curves of both the underlying true

population and the population reflected by the biased selected sample in Figures 1-

4. All the results are based on the Quartic kernel function and the bandwidth is

selected via the indirect cross-validation procedure. As we can see, the estimation is

satisfying when the true population is normal. However, when the true population is

extremely heavy-tailed as in the Laplace case, the performance deteriorated. This is

not a surprise since in this case, even with a non-biased sample from the population,

the nonparametric estimation is a difficult problem.
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C. Data Example

We now analyse the ambulatory expenditures data mentioned in the introduction.

The data consists of n = 2802 observations and because the distribution of expendi-

tures is highly skewed, the logarithmic scale was used. Following Cameron and Trivedi

(2010), we fit model (3.1) with a normal skewing function π(x−µ; β) = Φ{β(x−µ)}.

We computed the five estimators of the center µ described in the previous section.

Specifically, the estimator 1 posited a normal model for f with a fixed standard de-

viation of 1.4107, which is the sample standard deviation. The estimator 2 posited a

Laplace model for f with again a fixed standard deviation of 1.4107. The estimator 3

posited normal model for f with an unknown standard deviation, whereas the esti-

mator 4 posited Laplace model for f with an unknown standard deviation. Finally,

the estimator 5 estimated f nonparametrically.

The results for our five estimators are listed in Table VI, as well as their esti-

mated variance and standard deviations. Our estimate of the center is µ̂ = 5.93,

whereas other more stringent assumptions on model (3.1) lead to different estimates.

In contrast, the sample mean, an estimator of µ that does not correct for the sample

selection bias, is 6.56, significantly different from 5.93 at the 95% level according to

Table VI.

The estimated densities of the population distribution f̂ and the selected sample

distribution ĝ are plotted in Figure 5. The estimated sample density curve is overlayed

on the histogram of the observations and shows a good fit. The estimated density

f̂ has a non-normal shape, hence confirming that it is wise to leave f completely

unspecified.
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Table VI. Five estimates of µ and β and their estimated variance and standard devi-

ation for the ambulatory expenditures data.
µ̂ β̂ v̂ar(µ̂) v̂ar(β̂) ŝd(µ̂) ŝd(β̂)

est1 6.5507 0.0028 0.0008 0.0000 0.0275 0.0010
est2 6.0124 0.3450 0.0049 0.0020 0.0699 0.0445
est3 6.5507 0.0027 0.0008 0.0000 0.0279 0.0040
est4 5.8606 0.4296 0.0025 0.0012 0.0504 0.0342
est5 5.9299 0.3919 0.0116 0.0040 0.1076 0.0635

D. Discussion

We have focused on a rather special selection process, which naturally yields a se-

lection function π that satisfies π(x) + π(−x) = 1. This property has enabled us to

derive consistent estimators that are robust to mis-specification of the symmetric part

of the model f . Without this property, a consistent estimation of the population cen-

ter generally requires estimating the population density f itself, and we will no longer

be able to construct a robust estimator. In other words, if we still postulate a wrong

density or wrong family of models for the density, then the subsequent estimation for

the population center may no longer be consistent.

However, as long as we are willing to perform nonparametric estimation proce-

dures, possibly taking into account the additional symmetry property of the popu-

lation distribution f and any characteristics of the selection procedure reflected in

π, consistent and even efficient estimates for the population center may be still pos-

sible. How to best treat various selection mechanisms is something worth further

investigation.

We have treated the case of model (3.1) where the density f is completely un-

specified and the skewing function π is assumed to have a known parametric form

due to a specific selection procedure. An alternative setting is when the density f
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Fig. 1. Pointwise quantile curves from simulation 1. In each plot the solid line is the

true density and the other three curves are the median (dotted), 5% (dashed)

and 95% (dot-dashed) quantile curves of all 1000 density estimates in sim-

ulation 1. The left and right panels correspond to the underlying population

density (f(x)) and the observed selected subsample density (g(x)), respectively.

has a known parametric form, whereas the selection mechanism is somewhat hidden,

hence the skewing function π is unknown. These models have been investigated by

Ma et al. (2005) and Ma and Hart (2007).
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Fig. 2. Pointwise quantile curves from simulation 2. In each plot the solid line is the

true density and the other three curves are the median (dotted), 5% (dashed)

and 95% (dot-dashed) quantile curves of all 1000 density estimates in sim-

ulation 2. The left and right panels correspond to the underlying population

density (f(x)) and the observed selected subsample density (g(x)), respectively.
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Fig. 3. Pointwise quantile curves from simulation 3. In each plot the solid line is the

true density and the other three curves are the median (dotted), 5% (dashed)

and 95% (dot-dashed) quantile curves of all 1000 density estimates in sim-

ulation 1. The left and right panels correspond to the underlying population

density (f(x)) and the observed selected subsample density (g(x)), respectively.
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Fig. 4. Pointwise quantile curves from simulation 4. In each plot the solid line is the

true density and the other three curves are the median (dotted), 5% (dashed)

and 95% (dot-dashed) quantile curves of all 1000 density estimates in sim-

ulation 4. The left and right panels correspond to the underlying population

density (f(x)) and the observed selected subsample density (g(x)), respectively.
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Fig. 5. The estimated densities of the population distribution f̂ (left) and the selected

sample distribution ĝ for the ambulatory expenditures data. The estimated

sample density curve is overlayed on the histogram of the observations.



45

CHAPTER IV

EFFICIENT AND ROBUST ESTIMATION USING BIASED SAMPLES

In Chapter III, we have studied estimation of a population center when the population

is symmetric but the sample does not reflect the population due to the selection bias.

We adopted a skewing function which captured the selection mechanism and imposed

a rather strict assumption. That is, the skewing function π satisfies an anti-symmetric

property, i.e., π(t; β) + π(−t, β) = 1. In this Chapter, we relax the restriction on a

skewing function and consider a more general selection model.

Let X be a random variable that is symmetrically distributed in a population

with center µ, which we want to estimate. Assume that a representative sample from

this population is not obtained due to various reasons. Instead, only a biased sample

from a specific data collection procedure is available. Let the observed biased sample

be X1, . . . , Xn, where the Xi’s are independent and identically distributed (iid). Then,

we can in general write the probability density function (pdf) of one observation as

g(x, µ,β, f) = c(β)f(x− µ)w(x− µ,β) =
f(x− µ)w(x− µ,β)∫

f(t)w(t,β)dt
, (4.1)

where we use w to capture the selection mechanism, and we use f to denote the origi-

nal symmetric yet unspecified population pdf of X. Here c(β) = 1/
∫
f(t)w(t,β)dt is

a normalizing constant. Note that in (4.1), other than being even, the specific form of

f is not known. The sampling bias is described by the multiplicative factor w, which

essentially reweights the observation by taking into account the effect of the data

collection procedure. The functional form of w is completely decided by the selection

process and is not subject to any artifactual restrictions. We consider the situation
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where w is a function of the centered data x−µ instead of the uncentered data x, be-

cause otherwise, the biased sample from the selection procedure can be used directly

as if no sampling bias existed in estimating µ. Considering that the selection mecha-

nism may also contain some aspects that are not known in advance, we allow for an

additional unknown parameter vector β ∈ Rp−1 in the selection function w. Finally, to

avoid imposing additional constrains on w, we incorporate a normalizing constant c(β)

in (4.1). If desired, one can also view c(β)w(x− µ,β) = w(x− µ,β)/
∫
f(t)w(t,β)dt

as the weight function.

A familiar example of samples subject to selection bias is given by Cameron

and Trivedi (2010), where they consider a data set of ambulatory expenditures from

the 2001 Medical Expenditure Panel Survey. Cameron and Trivedi (2010) assumed

a normal distribution of the ambulatory expenditures had there been no selection

process, and they further modeled the selection process from a normal distribution as

well. Their formulation corresponds to assuming f to be normal in (4.1) and w to be a

normal cumulative distribution function (cdf). By relaxing the normality assumption

on both f and w, the ambulatory expenditure data can be more flexibly described by

a less restrictive model (4.1). Intuitively, one can consider the potential ambulatory

expense X, distributed as f(X − µ), and the alternative medical cost Y , distributed

as h(Y ) with cdf H. In practice, a patient or his/her relative would decide to use

the ambulatory service if the benefit associated with Y is smaller than the benefit

associated with X, that is, bY (Y ) ≤ bX(X−µ), where bX , bY denote the corresponding

benefit functions associated with the two expenditures. This can be described by

w(X − µ) = pr{Y ≤ a+ b(X − µ)} = H{a+ b(X − µ)} if pure benefit is considered,

where a, b capture the joint effect of typical deductible and copay associated with an

insurance policy, or a more general form w(X −µ) = pr{bY (Y ) ≤ bX(X −µ)}. Thus,

the observed ambulatory expenditures included in the survey are not a representative
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random sample from f , but a biased one that has a weighted form given in (4.1).

Estimating and studying the corresponding inference on µ using the biased sample is

the main purpose of this chapter.

We organize the rest of the chapter as follows. In Section A, we construct a class

of consistent estimators of µ that are general and robust to model misspecification

on f using a semiparametric approach. We further consider the estimation efficiency

issue and construct the semiparametric efficient member of this class by incorporating

nonparametric estimation procedures in Section B. The asymptotic properties of both

the consistent and efficient estimators are derived in Section C. We conduct numerical

experiments via simulations and the ambulatory expenditure data analysis in Section

D. We finish the chapter with a discussion in Section E. Technical details are collected

in an Appendix C.

A. Consistent Estimation Under Misspecified f

1. The Estimator Family

Model (4.1) contains several unknown quantities, including the parameter of our cen-

tral interest µ, the additional parameters β ∈ Rp−1 related to the selection process,

and the unspecified symmetric density function f . Writing θ = (µ,βT)T ∈ Rp as the

finite dimensional parameter, and treating the unknown symmetric density function

f as an infinite dimensional nuisance parameter, we can consider (4.1) as a semipara-

metric model. Here, although our essential interest is only in µ, we decide to include

β as part of the parameter vector to estimate instead of treating it as part of the

nuisance parameters. This is because estimating β along with µ does not impose too

much complexity, and we have the additional benefit of obtaining the estimator of β

as a by-product.
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Although X1, . . . , Xn do not form an iid sample from f(X − µ), once the se-

lection mechanism is taken into account, they are iid observations with pdf (4.1).

Thus, semiparametric methods described in Bickel et al. (1993) and Tsiatis (2006)

become applicable. The central result of the semiparameric approach is to describe

the consistent estimators via a nuisance tangent space orthogonal complement Λ⊥,

and to understand the asymptotic properties of the estimators through its matching

member in Λ⊥. For model (4.1), we explicitly derived in the Appendix C that

Λ⊥ = {v(X − µ) : v(z)w(z,β) + v(−z)w(−z,β) = 0 a.s.,v ∈ Rp}.

In the Appendix C and throughout the rest of the chapter, we use a subindex 0 to

denote the true values of the parameters or the true functions, and write the projection

of a function h onto a space A as Π(h|A) and let c⊗2 = ccT for any vector or matrix

c.

Members of the space Λ⊥ can be used to construct estimating equations, and

the resulting estimator which solves the corresponding estimating equation has its

influence function being the normalized version of this member. Here, it is of interest

to consider the special situation when w = 1. This corresponds to the classical

representative random sample case when there is no selection bias issue. In this case,

Λ⊥ = {v(X − µ) : v(z) + v(−z) = 0 a.s.}. We can easily see that by choosing

v(X − µ) = X − µ, we obtain the sample mean estimator as the center estimator,

and by choosing v(X − µ) = sign(X − µ), we obtain the sample median estimator.

Both estimators are consistent under the symmetry assumption, and the fact that the

median is more robust to outliers than the mean is reflected in that sign(X − µ) is a

bounded function, while X − µ is not. Comparing the general case with an arbitrary

w and the special case of w = 1, we can view the criterion in Λ⊥ as a tiltered version

of the anti-symmetric requirement of v(z) + v(−z) = 0.



49

2. Locally Efficient Estimators and Their Robustness

The form of Λ⊥ allows a large selection of the function v. For example, taking any

p-component odd function of z, dividing it by w(z,β) yields a valid v. With this vast

amount of choices, we further scale down the problem to investigate a class of estima-

tors that have the potential of reaching asymptotic efficiency, yet are robust against

possible model misspecifications regarding f . Our approach is through deriving the

efficient score, which is the orthogonal projection of the score function onto the space

Λ⊥. The score function, denoted Sθ, is defined as ∂logg(x,θ, f)/∂θ, which has the

explicit form

Sθ =

 Sµ

Sβ

 =

{
−f

′
0(x− µ)

f0(x− µ)
− w′(x− µ,β)

w(x− µ,β)
,
wβ(x− µ,β)T

w(x− µ,β)
−
∫
f0(t)wβ(t,β)Tdt∫
f0(t)w(t,β)dt

}T

,

where we write w′(·,β) = ∂w(x,β)/∂x|x=· and wβ(·,β) = ∂w(x,β)/∂β|x=·. Further

projecting Sθ onto Λ⊥, we show in the Appendix C that the efficient score Seff =

Π(Sθ|Λ⊥) is

Seff(x,θ, f0) =


−2f ′0(x−µ)w(−x+µ,β)

f0(x−µ){w(x−µ,β)+w(−x+µ,β)} + w′(x−µ,β)+w′(−x+µ,β)
w(x−µ,β)+w(−x+µ,β)

− w′(x−µ,β)
w(x−µ,β)

−wβ(x−µ,β)+wβ(−x+µ,β)

w(x−µ,β)+w(−x+µ,β)
+

wβ(x−µ,β)

w(x−µ,β)

 .

Because our goal is to search for locally efficient estimators that are robust to

model misspecification, we borrow the form of the efficient score and propose the

following estimation procedure. We first postulate a density model for X that is

symmetric around a center µ. We write this model f ∗(X − µ). Of course f ∗ may not

reflect the true distribution of X, hence we do not need to have f ∗(t) = f0(t). We

then estimate θ = (µ,βT)T through solving the estimating equation

n∑
i=1

Seff(Xi,θ, f
∗) = 0. (4.2)
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Obviously, if we postulate a correct model, i.e. if f ∗(t) = f0(t), then the above esti-

mating equation yields the efficient estimator, hence we achieve the optimal efficiency.

This is why the estimator is named “locally efficient”. On the other hand, if the pos-

tulated model is incorrect, i.e. if f ∗(t) 6= f0(t), we find that the last p−1 components

of the difference Seff(X,θ, f ∗)−Seff(X,θ, f0) is zero, and the first component satisfies

E{eT
1 Seff(X,θ, f ∗)− eT

1 Seff(X,θ, f0)}

= c(β)

∫ −2
{
f ∗
′
(t)f0(t)− f ′0(t)f ∗(t)

}
w(t,β)w(−t,β)

f ∗(t){w(t,β) + w(−t,β)}
dt,

where e1 is a length p vector with 1 in the first component and zero everywhere

else. Because f0, f
∗ are even functions, f ′0, f

∗′ are odd functions. Hence the above

integrand is an odd function, and the expectation is therefore zero. Thus, we have

found that E{Seff(X,θ, f ∗)} = 0 regardless of the choice of f ∗. In other words, the

estimator obtained from (4.2) has an additional robustness property, in that even if

the model for f is misspecified, the resulting estimator is still consistent.

B. Efficiency Considerations

1. Improving the Estimation Efficiency

Different choices in postulating the model f ∗ provide many different consistent esti-

mators for θ. In practice, a natural question to ask is which f ∗ is the best choice?

From the estimation variability point of view, postulating f ∗ = f0 is certainly the

optimal choice because then we can obtain the efficient estimator. However, it re-

quires extremely good luck to happen to have f ∗ = f0. Thus, one might need to

compromise between optimality and feasibility, and look to improve the estimation

efficiency in a class of possible models of f ∗. One convenient way is to index the

class by a parameter γ, which can be a vector, and postulate f ∗(x−µ,γ) as a model
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family instead of one fixed model. For example, one may postulate a normal model

with mean µ, while leaving the variance undecided. In this case, γ is the variance.

Or, one may postulate a Student’s t distribution family with mean µ, while leaving

both the variance and degrees of freedom unspecified. In this case, γ contains both

the variance and the degrees of freedom.

Of course, the un-specified parameter γ also needs to be estimated. To this end,

we can calculate the score with respect to γ to obtain the nuisance score vector

Sγ(x,θ,γ, f
∗) =

∂logg(x,θ,γ, f ∗)

∂γ
=
∂f ∗(x− µ,γ)/∂γ

f ∗(x− µ,γ)
−
∫
∂f ∗(t,γ)/∂γw(t,β)dt∫
f ∗(t,γ)w(t,β)dt

.

We can then augment (4.2) with
∑n

i=1 Sγ(Xi,θ,γ, f
∗) = 0 to form the extended

estimating equation to solve for γ̂ and θ̂ jointly. The final estimator based on the

partially postulated model f ∗(x− µ,γ) certainly retains the robustness property, in

that even if the postulated family does not contain the true pdf f0(x − µ) as its

member, the consistency is still retained. The comparative benefit with respect to a

fully postulated model f ∗(x−µ) is that we only need the family to contain f0(x−µ)

in order to achieve the optimal efficiency.

An additional remark we would like to make regarding the postulated family of

models is about the estimation of γ. Specifically, the uncertainty of the postulated

model represented by the additional parameter γ and the subsequent estimation of γ

do not incur a price to pay regarding estimating µ or θ. In other words, if we had used

a completely determined model f ∗(x− µ,γ0), and proceeded to obtain the estimator

θ̂γ0 , versus if we had used a partially specified model f ∗(x − µ,γ) and proceeded to

estimate γ to obtain γ̂ and θ̂γ̂, the estimation variabilities of θ̂γ0 and θ̂γ̂ are the same

asymptotically. This property will be studied more carefully in Section C.
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2. Efficient Estimation of µ

When we postulate a family f ∗(x − µ,γ) instead of one single f ∗(x − µ), we have

a better chance of capturing the true f0(x − µ) hence a better chance of achieving

efficiency. Likewise, when we increase the flexibility of the family of f ∗(x−µ,γ), our

chance of achieving the efficiency further increases. Thus, naturally, if we can find a

most flexible family so that it has the best chance of including f0(x − µ), then the

chance of achieving optimal efficiency will also be maximized. This most flexible way

of postulating a family turns out to be the nonparametric modeling. Using a properly

constructed nonparametric estimator of f0(x − µ), we can indeed reach the optimal

efficiency. Specifically, we recommend to estimate the function f(t) through a refined

kernel density estimatior which takes advantage of the symmetry of f(t).

To derive the nonparametric kernel density estimator for f(t), we begin by using

the usual kernel density estimation at a given point x from the density g. That is,

ĝ(x,θ, f) =
1

n

n∑
i=1

Kh(Xi − x), where Kh(t) = K(t/h)/h, K is a kernel function and

h is a bandwidth. We propose f̃(t,θ) for the kernel density estimator of c(β)f(t).

The explicit form of the refined kernel estimator we propose is

f̃(t,θ) =
1

n

n∑
i=1

Kh (Xi − µ− t) +Kh (Xi − µ+ t)

w(t,β) + w(−t,β)
, (4.3)

where Kh(t) = K(t/h)/h, K is a kernel function and h is a bandwidth. The form of

the estimator in (4.3) guarantees that f̃(t,θ) is indeed symmetric. However, f̃(t,θ)

does not necessarily integrate to 1, hence it may not be a valid pdf estimator. How-

ever, a closer look at the efficient score reveals that f0 (or replaced with f ∗) and its

derivative appear respectively on the numerator and denominator in Seff simultane-

ously, hence the normalizing constant in front of f̃(t,θ) does not have any impact

on the final estimator for θ. On the other hand, we would like to point out that
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although f0(t) does not rely on θ, our refined nonparametric kernel estimator does

involve θ. This implies that a profile type of estimator is needed in our final con-

struction. Specifically, our algorithm for the efficient estimator is the following:

• Step 1: Choose a symmetric density function f ∗. Obtain θ̃ through solving

(4.2);

• Step 2: Obtain f̃(t, θ̃) from (4.3);

• Step 3: Obtain θ̂ through solving (4.2) with f ∗ replaced by f̃(t, θ̃) obtained in

Step 2.

We point out that in the above Step 3, θ̃ is known and it is θ̃ that appears inside

the f̃ function, not θ. Hence in terms of solving (4.2) in Step 3, it is completely

equivalent to the estimating equation solving procedure in Step 1. Thus, the above

3-step procedure is much simpler than the conventional profile procedure. Of course,

if we wish, we can choose to iterate Steps 2 and 3 using the most recently obtained θ

estimate to replace θ̃. Such an iterative procedure falls into the conventional profile

category. Although with or without iteration, the first order asymptotic property

of θ̂ is identical, their finite sample performance is often slightly different. As is

often observed in semiparametric problems, the estimation and inference of θ is very

insensitive to the bandwidth h. A large range of h can be applied including the

classical nonparametric optimal bandwidth. Thus, in practice, one can often use a

default bandwidth h calculated under the normal density or perform an initial cross-

validation to obtain h.

As far as our original goal of estimating the population center µ is concerned, we

have obtained the most efficient estimator. Our final remark is about the nonpara-

metric estimation of f0. Obviously, once we have the efficient estimator θ̂, plugging
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it into (4.3) with a cross-validation selected bandwidth h will in turn provide a valid

nonparametric estimation of f0, up to a normalizing constant. In fact, for the purpose

of the nonparametric estimation of f0, merely using a consistent estimator θ̃ in (4.3)

works equally well. This is because as a nonparametric estimator, f̃ has slower rate

than root-n, hence as long as root-n consistency is retained, the variance involved in

estimating θ has no first order effect. In other words, plugging θ̃, θ̂ or even θ0 all

yield the same nonparametric estimator f̃ to its first asymptotic order. Finally, to

correct for the normalizing constant, we can simply perform a numerical integration

procedure to obtain ĉ−1
f =

∫
f̃(t, θ̂)dt, and form f̂(t) = ĉf f̃(t, θ̂).

C. Asymptotic Properties

We have proposed a class of estimators that are consistent under misspecification of

f . To improve the estimation efficiency, we have allowed for an additional parameter

γ in the specified model, as well as nonparametric estimation. We also provided

a refined nonparametric kernel estimator of f . We now summarize the asymptotic

properties of these various estimators in several theorems. The proofs are relegated

to the Appendix C.

Theorem 6. Assume f ∗(t) is a symmetric density function and E{Seff(X,θ, f ∗)} = 0

has a unique root. Let

A = E

{
∂Seff(X,θ0, f

∗)

∂θT

}
, B = E

{
Seff(X,θ0, f

∗)⊗2
}

be bounded non-singular matrices. Then the estimator θ̃, obtained by solving (4.2)

satisfies

n1/2(θ̃ − θ0)→ N{0,A−1B(A−1)T}
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in distribution when n→∞.

Theorem 6 is readily seen via a simple Taylor expansion, hence we omit its proof.

A more interesting result concerns the additional parameter γ in f ∗ and its effect on

θ, stated in Theorem 7.

Theorem 7. Assume f ∗(t,γ) is a family of symmetric density functions and

E{Seff(X,θ, f ∗(X − µ,γ)} = 0, E{Sγ(X,θ,γ, f ∗)} = 0

has a unique root. Denote by γ∗ the γ component of the unique root. Let

A = E

[
∂Seff{X,θ0, f

∗(X − µ0,γ
∗)}

∂θT

]
, B = E

[
Seff{X,θ0, f

∗(X − µ0,γ
∗)}⊗2

]
be bounded non-singular matrices. Then the estimator θ̃, obtained through solving

n∑
i=1

Seff(Xi,θ, f
∗(X − µ,γ) = 0,

n∑
i=1

Sγ(Xi,θ,γ, f
∗) = 0

satisfies

n1/2(θ̃ − θ0)→ N{0,A−1B(A−1)T}

in distribution when n→∞.

Comparing the results in Theorem 6 and in Theorem 7, we can see that the

two estimators have essentially identical properties. More specifically, postulating a

family of models f ∗(t,γ) with an unknown parameter γ yields an estimator which is

asymptotically equal to the estimator if we had postulated the fixed model f ∗(t,γ∗).

In other words, the variability associated with the estimation of γ does not have any

impact on the variability in estimating the parameter of interest θ.

Instead of postulating a parametric model family for f and estimating γ, the

nonparametric alternative aims to estimate f in a model-free fashion. This is the phi-
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losophy behind the refined nonparametric estimator proposed in Section 2. We sum-

marize the asymptotic properties of the estimator in Theorem 8 under the following

regularity conditions. For notational brevity, we write w1(t,β) = w(t,β) +w(−t,β),

w′1(t,β) = ∂w1(t,β)/∂t, w′′1(t,β) = ∂2w1(t,β)/∂t2.

Regularity Conditions 2. C1 The symmetric function f0 is twice differentiable

with a compact support. f0 and f ′0 are bounded away from zero and ∞.∫
f 2

0 (t)dt,
∫

(f ′0)2(t)dt,
∫

(f ′′0 )2(t)dt are bounded.

C2 The selection function w satisfies 0 < w(t,β0) ≤ 1 and is twice differen-

tiable with respect to t on the support of f0 and its first and second derivatives

w′(t,β0), w′′(t,β0) are bounded. Note that as long as w is bounded, we can

always rescale it to achieve w(t,β0) ≤ 1.

C3 The kernel function K integrates to 1, is symmetric about 0, has support (−1, 1)

and is twice differentiable on [−1, 1].

C4 The bandwidth satisfies h = O(n−1/5). In fact, a bandwidth h satisfying nh2 →

∞, h → 0 when n → ∞ is already sufficient. This is a very large range and it

certainly includes the optimal bandwidth of order n−1/5.

Theorem 8. Let c2 =
∫ 1

−1
s2K(s)ds, v2 =

∫ 1

−1
K2(s)ds, and θ̃ be obtained from

solving (4.2). Under the Regularity Conditions 2, the nonparametric estimator f̃(t, θ̃)

given in (4.3) satisfies
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bias{f̃(t, θ̃)} ≡ E{f̃(t, θ̃)} − c(β0)f0(t)

=
h2c(β0)c2

2

{
f0
′′(t) +

2f ′0(t)w
′
1(t,β0)

w1(t,β0)
+
f0(t)w

′′
1(t,β0)

w1(t,β0)

}
+ o(h2)

var{f̃(t, θ̃)}

=
c(β0)

n1hw1(t,β0)

{
v2f0(t) +

2I(|t| < h)

w1(t,β0)

∫ 1− |t|
h

0
K(s− t/h)K(s+ t/h)f0(hs)w1(hs,β0)ds

}
+o{(nh)−1}

≤ 2c(β0)v2f0(t)

n1hw1(t,β0)
+ o{(n1h)

−1}.

The estimator f̃(t, θ̃) is intended to be an estimator for f0(t) without adjusting

the normalizing constant, hence our quantification of bias takes this into account. The

integration in the variance expression in Theorem 8 is a bounded quantity under the

Regularity Conditions 2, hence the nonparametric estimator f̃(t, θ̃) has the classical

bias and variance properties. Because the only apriori information we have about f

is its symmetry, this does not come as a surprise. The bias and variance properties

subsequently guarantee that the mean squared error (MSE) and mean integrated

squared error (MISE) also have the classical nonparametric rates. Similarly, one can

easily take derivative of the estimator f̃ to obtain a nonparametric estimator f̃ ′. It is

easy to see that the derivative estimator will also have the classical bias and variance

rates. Theorem 8 prepares the results in Theorem 9.

Theorem 9. Let X1, . . . , Xn be iid with density (4.1) and let θ̃ be an initial estimator

obtained from solving (4.2). Let f̃(t,θ) be given by (4.3) for any t and any θ. Assume

E {Seff(X,θ, f0)} = 0 has a unique root and θ̂ satisfies

n∑
i=1

Seff{Xi, θ̂, f̃(Xi − µ̂, β̃)} = 0.

It then follows that when n → ∞, under the Regularity Conditions 2, θ̂ is the semi-



58

parametric efficient estimator and it satisfies

n1/2(θ̂ − θ0)→ N
(
0,
[
E{Seff(X,θ0, f0)⊗2}

]−1
)

in distribution when n→∞.

In terms of estimating θ, Theorem 9 contains the strongest result regarding

estimation efficiency. It clearly states that as long as we incorporate a suitable non-

parametric estimation of f , even if this nonparametric estimation is conducted using

an initial root-n consistent estimator of θ, the efficient estimator will still be achieved

in model (4.1).

D. Numerical Performance

1. Simulations

We illustrate the finite sample performance of the estimators proposed in Sections A

and B through a series of extensive simulation studies.

In the first simulation, we generated 1000 data sets, each with sample size n = 500

from model (4.1), where the true f0(x) function is a normal density with mean µ = 4

and standard deviation σ = 1.5, and the selection weight function is w(x, β) =

e−βx/(1 + e−βx)2, with the true β value equal to 1. We implemented five different

estimators on each of the data sets to illustrate their respective performances. In the

first estimator, we proposed the true normal density f0 as the posited model for f to

form the corresponding estimating equation. This means in the estimating equation

(4.2), we adopt f ∗ = f0, and solve it to obtain θ̂. Because proposing a true model is

not likely achievable in practice, we further implemented a second estimator, where

we plug in a wrong form for f . Specifically, we adopted a Laplace density function

with standard deviation 1.5 as f ∗ and plugged it into the estimating equation (4.2) to
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obtain the second estimator. To further increase the flexibility of these two estimators,

we also implemented the third and fourth estimators. In these two estimators, the

function f ∗ contains an unknown scale parameter and hence is not fully specified.

Specifically, in estimator three, we used a normal model for f ∗, and in estimator

four, we used a Laplace model for f ∗. In both cases, the standard deviation of the

model is left unspecified, and is treated as a nuisance parameter estimated using the

methods described in Section A. Finally, we also implemented the fully nonparametric

estimator described in Section B, which reaches the optimal semiparametric efficiency

as our fifth estimator. The results of the first set of simulations are given in the first

block of Table VII. It is quite noticeable that although the proposed model f ∗ is

completely wrong in estimators 2 and 4, the corresponding estimation biases are not

much larger than their comparable ones where the proposed models are correct. This

is especially clear in comparing estimators 1 and 2, where estimator 2 even shows

smaller finite sample biases than estimator 1. It is also obvious that when additional

nuisance parameters are included in estimators 3 and 4, the resulting estimation

variability did not increase in comparison with their corresponding estimators 1 and

2. Finally, the nonparametrically estimated f̂ in estimator 5 also yields a comparable

finite sample bias for both µ and β in comparison with the other estimators. Despite

the asymptotic optimality of estimator 5, with sample size n = 500, the efficiency is

not manifested. We also point out that the reported estimated standard deviation is

obtained via a bootstrap procedure because the asymptotic properties require much

larger sample size than n = 500.

To further study the properties, we conducted a second simulation study, where

we changed the true f0 function in simulation 1 from normal to a Laplace model,

where we kept the same mean µ0 = 4 and the same scale σ = 1.5. The weighting

function w is also kept unchanged. We implemented the same five estimators, with
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the corresponding results in the second block of Table VII. The order of the five

estimators is kept the same, in the sense that the first estimator uses the correct f0

function, the second uses an incorrect model, which is normal in this case. The third

and fourth estimators are again the correct and incorrect f ∗ function which contains

additional nuisance parameters respectively. The fifth estimator is the nonparametric

based estimator. Similar claims can be made regarding the finite sample bias, while

in this simulation study, we observe the estimators 1 and 3 having smaller finite

sample variability than 2 and 4, which indicate the advantage of proposing a correct

f ∗ function or correct f ∗ model.

To further inspect the performance of the nonparametric based estimator, we also

experimented a third set of simulations, where the true f0 function is kept the same

as in simulation 1, while we used e−e
−βx

, the cdf of Gumbel distribution as a weight

function. The results are in the third block of Table VII. While the performance

of the first four estimators are similar to simulation 1, we now observe a significant

gain of the estimation efficiency for estimator 5. The same phenomenon is observed

when we change the true f0 function to a Laplace model as in simulation 2 (results

in the fourth block of Table VII). Simulations 3 and 4 indicate the efficiency of the

fifth estimator which contains nonparametric estimation of the unknown f0 function.

Together with simulations 1 and 2, the simulations suggest that the asymptotic results

stated in Section C could require various sample sizes in order to be evident. The

sample size requirement depends largely on the weighting function, but it also varies

with different f0 functions and different parameter values. Fortunately, even though

the semiparametric efficiency may require large sample size, the robustness of these

estimators against a misspecified f ∗ function seems relevant in moderate sample sizes

in all the situations we experimented.

To provide a visual inspection of the various simulation settings and the results of
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the function estimation, we provided the plots of both f (left panel) and g (right panel)

in Figures 6-9. We would like to point out that in all these cases, the f and g curves

are visually rather different, hence the selection bias should not be ignored. Obviously,

when the true f0 function is normal, the nonparametric estimation performs much

better than when f0 is Laplace. This is caused by the nonsmoothness of the Laplace

which makes the nonparametric density estimation a very difficult problem even when

no selection bias is involved.

2. Ambulatory Expenditures Data

The ambulatory expenditures data mentioned in the introduction consists of n = 2802

observations. To take into the possible selection bias, we fit model (4.1) with the two

weighting functions in Section 1. The two weighting functions here are chosen with

the intention of capturing the possible behavior patterns when the decision of using

an ambulance is made. Considering that people are less willing to spend when the

medical cost is high, we implemented the weighting function w(x, β) = e−e
−βx

, which

is a monotone function of x. Further taking into account that if the associated medical

cost is very low, it could indicate a minor medical situation and people could also

be inclined to not using ambulance service when they do not think the situation

is sufficiently grave, we also used the weighting function w(x, β) = e−βx

(1+e−βx)2
, which

consists of two monotone pieces.

The analysis is performed on the logarithm of the data and using five estimators

of the center µ, respectively with a posited normal model for f with a fixed standard

deviation 1.4107, a posited Laplace model for f with standard deviation 1.4107, a

posited normal model for f with an unknown standard deviation, a posited Laplace

model for f with an unknown standard deviation, and a nonparametrically estimated

f .
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The results for the five estimators as well as the estimated standard deviations, in

conjunction with the two different weighting functions, are listed in Table VIII. Out

of the 10 estimates, 8 of them resulted in the population center to be larger than the

sample average, and all of them yielded a negative estimates of β. The negative value

of β in the first weighting function indicates a monotonically decreasing weighting

function as the expenditure increases, indicating the increasing unwillingness of using

the ambulance with the increase of the associated cost. The negative value of β in

the second weighting function indicates that medical events that will incur very high

or very low expenses are under represented in the data set. This is an indication that

patients or their family are less likely to call an ambulance when the situations are

either minor or tend to incur very large costs.

The estimated densities of the population distribution f̂ and the selected sam-

ple distribution ĝ are plotted in Figure 10. The estimated sample density curve is

overlayed on the histogram of the observations and shows a good fit. The estimated

density f̂ has a non-normal shape, hence confirming that it is wise to leave f com-

pletely unspecified.

E. Discussion

We have proposed methods of estimation for the center of a symmetric population

when a representative sample of the population is unavailable due to selection bias.

Unlike previous studies, we have allowed an arbitrary sample selection mechanism

determined by the data collection procedure, and we have not imposed any para-

metric form on the population distribution. Under this general framework, we have

constructed a family of consistent estimators that is robust to population model mis-

specification, and identified the efficient member that reaches the minimum possible
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Fig. 6. Pointwise quantile curves from simulation 1. In each plot the solid line is the

true density and the other three curves are the median (dotted), 5% (dashed)

and 95% (dot-dashed) quantile curves of all 1000 density estimates in simu-

lation 1. The left and right panels correspond to the underlying population

density (f(x)) and the observed selected sample density (g(x)), respectively.

estimation variance. The asymptotic properties and finite sample performance of the

estimation and inference procedures were illustrated through theoretical analysis and

simulations. A data example about ambulatory expenditures was also provided to

illustrate the usefulness of the methods in practice.

We have treated the case of model (4.1) where the pdf f is completely unspecified

and the selection weight function w is assumed to have a known parametric form. An

alternative setting is when f has a known parametric form, whereas the selection

mechanism is somewhat hidden, hence the weight function w is unknown. Such

models, with the additional anti-symmetric assumption on w, have been investigated

by Ma et al. (2005), Ma and Hart (2007), and Azzalini et al. (2010).



64

Fig. 7. Pointwise quantile curves from simulation 2. In each plot the solid line is the

true density and the other three curves are the median (dotted), 5% (dashed)

and 95% (dot-dashed) quantile curves of all 1000 density estimates in simu-

lation 2. The left and right panels correspond to the underlying population

density (f(x)) and the observed selected sample density (g(x)), respectively.
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Fig. 8. Pointwise quantile curves from simulation 3. In each plot the solid line is the

true density and the other three curves are the median (dotted), 5% (dashed)

and 95% (dot-dashed) quantile curves of all 1000 density estimates in simu-

lation 3. The left and right panels correspond to the underlying population

density (f(x)) and the observed selected sample density (g(x)), respectively.
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Fig. 9. Pointwise quantile curves from simulation 4. In each plot the solid line is the

true density and the other three curves are the median (dotted), 5% (dashed)

and 95% (dot-dashed) quantile curves of all 1000 density estimates in simu-

lation 4. The left and right panels correspond to the underlying population

density (f(x)) and the observed selected sample density (g(x)), respectively.
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Fig. 10. The estimated densities of the population distribution f̂ (left) and the selected

sample distribution ĝ for the ambulatory expenditures data (right), under the

first (upper) and second (lower) weighting functions. The estimated sample

density curve is overlayed on the histogram of the observations.
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Table VII. Results of the four simulation studies. Mean, sample standard deviation

(sd), average of the estimated standard deviation (ŝd), and the 95% cover-

age probabilities of µ and β are reported. Results are obtained with sample

size n = 500 and 1000 simulations.

µ̂ sd ŝd 95% cvg β̂ sd ŝd 95% cvg

simulation 1 f0(x− µ0) =
1√
4.5π

e−
(x−µ0)

2

4.5 , w(x, β0) =
e−β0x

(1+e−β0x)2
, µ0 = 4, β0 = 1

est1 4.1537 0.6496 0.6537 97.7% 0.8879 0.5577 0.5880 98.0%
est2 3.9556 0.2796 0.3532 98.8% 1.0442 0.2508 0.2635 98.5%
est3 4.0494 0.5582 0.6122 98.3% 0.9866 0.5541 0.5978 98.1%
est4 3.8482 0.2628 0.3342 95.7% 1.1413 0.2647 0.3196 97.2%
est5 3.9640 0.4751 0.3022 96.9% 1.0403 0.3764 0.2568 96.7%

simulation 2 f0(x− µ0) =
1
3e
− |x−µ0|

1.5 , w(x, β0) =
e−β0x

(1+e−β0x)2
, µ0 = 4, β0 = 1

est1 3.9431 0.3294 0.3088 98.6% 1.0660 0.2900 0.2838 98.6%
est2 3.8982 0.3754 0.4314 97.7% 1.1612 0.4451 0.4654 97.6%
est3 3.9116 0.2487 0.2758 96.6% 1.1050 0.2823 0.2901 96.5%
est4 3.7093 0.5895 0.5509 93.8% 1.3404 0.6264 0.6186 95.6%
est5 3.9604 0.4717 0.3430 98.4% 0.9993 0.3687 0.2839 98.1%

simulation 3 f0(x− µ0) =
1√
4.5π

e−
(x−µ0)

2

4.5 , w(x, β0) = e−e
−β0x , µ0 = 4, β0 = 0.5

est1 4.0024 0.4364 0.4374 97.6% 0.5008 0.2397 0.2422 97.5%
est2 3.9758 0.2215 0.2284 97.3% 0.5130 0.1237 0.1259 96.6%
est3 3.9453 0.4073 0.4078 97.3% 0.5335 0.2251 0.2281 97.3%
est4 3.9339 0.3504 0.3488 94.2% 0.5321 0.1920 0.1881 93.8%
est5 4.0010 0.0824 0.0896 97.4% 0.5008 0.0551 0.0611 97.4%

simulation 4 f0(x− µ0) =
1
3e
− |x−µ0|

1.5 , w(x, β0) = e−e
−β0x , µ0 = 4, β0 = 0.5

est1 3.9871 0.1031 0.1238 98.3% 0.5153 0.0714 0.0786 96.0%
est2 3.9385 0.2215 0.2433 96.4% 0.5436 0.1144 0.1259 96.5%
est3 3.9481 0.1924 0.2151 97.8% 0.5356 0.1080 0.1195 96.3%
est4 3.9525 0.1689 0.1713 94.1% 0.5392 0.1100 0.1090 94.5%
est5 4.0030 0.0729 0.0852 97.4% 0.5048 0.0549 0.0611 97.6%
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Table VIII. Five estimates of µ and β and their estimated standard deviation for the

ambulatory expenditures data, under two weighting function models. The

first weighting function is w(x, β) = e−e
−βx

, the second weighting function

is w(x, β) = e−βx

(1+e−βx)2
.

First weighting function Second weighting function

µ̂ β̂ ŝd(µ̂) ŝd(β̂) µ̂ β̂ ŝd(µ̂) ŝd(β̂)

est1 6.5551 -0.0004 0.0270 0.0003 6.6075 -0.0264 0.6647 1.0334
est2 6.6248 -0.0544 0.0327 0.0271 8.0762 -0.9001 0.0753 0.0708
est3 6.2360 -0.0573 0.1552 0.0079 6.6678 -0.0567 0.0545 0.0187
est4 6.6523 -0.0332 0.0366 0.0113 6.7166 -0.0741 0.4023 0.2307
est5 6.5962 -0.0898 0.0584 0.0299 6.7377 -0.0921 0.0521 0.0313
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CHAPTER V

CONCLUSION

In this dissertation, we have presented consistent, robust and efficient estimators

in a regression model and a model under sample selection bias using semiparametric

approach. We have demonstrated the theoretical properties of our estimators through

asymptotic analysis and supported our theory by the numerical performance.

In a regression model, we have derived a semiparametric efficient estimator, where

the regression error has conditional mean zero and conditional variance a constant.

We have verified that our semiparmetric efficient (SE) estimator reaches the optimal

efficiency bound in the semiparametric point of view. Our estimator has the classi-

cal root-n convergence rate and is asymptotically normal. The SE estimator is also

equivalent to the second order least square estimator (SLSE) proposed in Wang and

Leblanc (2008). Thus, we have concluded that SLSE is indeed efficient concerning

estimation variance. In addition, we extended the model to the heterscedastic er-

ror case and derived the semiparametric efficient estimator. For the heteroscedastic

model, we have adopted fixed models for the third and fourth conditional moment

functions of the error distribution, and verified the consistency of our estimator even

if these higher moments are misspecified. Simulation results advocated SLSE and

SE estimators have the significant improvement of the estimation variance over the

classical WLS estimators. Inference procedures are also supported by the simulation

results.

Next, we have proposed methods of estimation for the center of a symmetric pop-

ulation when a representative sample of the population is unavailable due to selection
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bias. To begin with, we have focused on a rather special selection process, which

naturally yields a selection function π that satisfies π(x) + π(−x) = 1. Under this

property, we have derived consistent estimators that are robust to mis-specification

of the symmetric part of the model f through semiparametric method. In order

to improve the efficiency, we have performed nonparametric estimation procedures,

taking into account the symmetry property of the population distribution f and the

characteristics of the selection procedure reflected in π. To relax the assumption on

a selection function, we have allowed an arbitrary sample selection mechanism de-

termined by the data collection procedure. Under this general framework, we have

constructed a family of consistent estimators that is robust to population model mis-

specification, and identified the efficient member that reaches the minimum possible

estimation variance. We have demonstrated the theoretical properties of our estima-

tors through asymptotic analysis and assess their finite sample performance through

simulations. We also have implemented a real data example of ambulatory expendi-

tures to illustrate the applicability of the methods in practice.
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APPENDIX A

A1. Derivation of Λ and Λ⊥

We consider Λ first. From Tsiatis (2006, Section 4.5), Λη1 = (all length d mean zero

functions of X).

We now derive Λη2 . As a model for pε|X(ε|x), the pdf η2(ε, x) satisfies the following

conditions:∫
η2(ε, x)dε = 1,

∫
εη2(ε, x)dε = 0,

∫
ε2η2(ε, x)dε = σ2,

which can be equivalently written as∫
η2(ε, x)dε = 1,

∫
εη2(ε, x)dε = 0,

∫
(ε2 − σ2)η2(ε, x)dε = 0.

Following Tsiatis (2006, Section 4.5), the first constraint implies that any function

g(ε,X) in Λη2 has to satisfy E(g|X) = 0, and the second constraint implies that

g has to satisfy E(εg|X) = 0. Applying similar arguments to the third constraint,

we can obtain that g has to also satisfy E{(ε2 − σ2)g|X} = 0 and, consequently,

E(ε2g|X) = 0. These three requirements on g yield the desired form of the space Λη2 .

We point out that the space Λη1 is orthogonal to Λη2 , which justifies the notation

Λ = Λη1⊕Λη2 . This is because for an arbitrary element f1(X) ∈ Λη1 and an arbitrary

element f2(ε,X) ∈ Λη2 ,

E {f1(X)f2(ε,X)} = E [E {f1(X)f2(ε,X)|X}] = E [f1(X)E {f2(ε,X)|X}] = 0.
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To show the form of Λ⊥, we first define a space K = {a(X)ε + b(X)(ε2 − σ2)},

then show K ⊂ Λ⊥ and Λ⊥ ⊂ K.

For any function h(ε,X) = a(X)ε + b(X)(ε2 − σ2) ∈ K, we will show that

E(hf) = 0 for all f ∈ Λη1 and E(hg) = 0 for all g ∈ Λη2 . This would demonstrate

that h ∈ Λ⊥. We have

E{h(ε,X)fT (X)} = E(E[{a(X)ε+ b(X)(ε2 − σ2)}fT (X)|X])

= E{a(X)fT (X)E(ε|X)}+ E{b(X)fT (X)E(ε2 − σ2|X)}
= 0,

E{h(ε,X)gT (ε,X)} = E(E[{a(X)ε+ b(X)(ε2 − σ2)}gT (ε,X)|X])

= E{a(X)E(εgT |X)}+ E{b(X)E(ε2gT |X)} − σ2E{b(X)E(gT |X)}
= 0.

Thus, K ⊂ Λ⊥.

To show Λ⊥ ⊂ K, we consider an arbitrary h ∈ Λ⊥. Let Λη2 = Λa ∩ Λb ∩ Λc,

where

Λa = {g : E(g|X) = 0} , Λb = {g : E(εg|X) = 0} , Λc =
{
g : E(ε2g|X) = 0

}
.

Lemma 4.3 of Tsiatis (2006) implies that Λ⊥η1 = Λa. It is then trivial to see that

h ∈ Λ⊥ implies h ⊥ Λη1 , which further implies h ∈ Λa. Thus E(h|X) = 0. Form

r(ε,X) = E(εh|X)ε/σ2 + E(Ch|X)C/E(C2|X), where C is defined after (2.4) and

decompose h as

h = {h− E(εh|X)ε/σ2 − E(Ch|X)C/E(C2|X)}+ r.

Note r ∈ K ⊂ Λ⊥, hence h1 = h−E(εh|X)ε/σ2−E(Ch|X)C/E(C2|X) = h−r ∈ Λ⊥

as well. However, we can easily verify that h1 ∈ Λη2 at the same time, by verifying

that E(h1|X) = 0, E(εh1|X) = 0 and E(ε2h1|X) = 0. Hence, h1 = 0. This indicates

h = r ∈ K, thus Λ⊥ ⊂ K.
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A2. Proof of (2.4)

Let r(ε,X) =
E(εh|X)

σ2
ε+

E(Ch|X)

E(C2|X)
C. Obviously r(ε,X) ∈ Λ⊥. Decompose h− r as

h(ε,X)− r(ε,X) = E(h|X) + {h(ε,X)− r(ε,X)− E(h|X)}.

Note that E(h|X) ∈ Λη1 . We can also verify that h(ε,X)− r(ε,X)− E(h|X) ∈ Λη2 ,

by verifying that E[{h − r − E(h|X)}|X] = 0, E[ε{h − r − E(h|X)}|X] = 0 and

E[ε2{h− r − E(h|X)}|X] = 0.

Hence h(ε,X) − r(ε,X) ∈ Λ. Thus, we obtain that Π(h|Λ) = h(ε,X) − r(ε,X)

and Π(h|Λ⊥) = r(ε,X).

A3. Calculation of Seff given in (2.5)

Seff(X, Y ) can be written as

Seff = Π(Sθ|Λ⊥) =
E(εSθ|X)

σ2
ε+

E(CSθ|X)

E(C2|X)
C.

Using the form of Sβ and Sσ2 in (2.3), we can verify that E(εSβ|X) =
∂m(X; β)

∂β
and

E(CSβ|X) = −∂m(X; β)

∂β

µ3

σ2
, thus

Sβ,eff =
∂m(X; β)

∂β

{
ε

σ2
− µ3

σ2E(C2|X)
C

}
.

Similarly, we can verify that E(εSσ2|X) = 0 and E(CSσ2|X) = 1, hence Sσ2,eff =

C/E(C2|X).
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A4. Derivation of the variances in (2.6)

Using the explicit form of Sθ, we have

SeffS
T
eff =

 ∂m(X;β)
∂β

∂m(X;β)
∂βT

{
ε
σ2 − µ3C

σ2E(C2|X)

}2
∂m(X;β)

∂β

{
ε
σ2 − µ3C

σ2E(C2|X)

}
C

E(C2|X)

∂m(X;β)
∂βT

{
ε
σ2 − µ3C

σ2E(C2|X)

}
C

E(C2|X)
C2

E(C2|X)2

 .
Taking expectation of SeffS

T
eff evaluated at the true parameter values, we have

E(SeffS
T
eff|θ=θ0 )

=

 1
σ2
0
E
{
∂m(X;β0)

∂β
∂m(X;β0)

∂βT

}
+ 1
σ4
0
E

{
∂m(X;β0)

∂β
∂m(X;β0)

∂βT

µ2
3

E(C2|X)

}
− 1
σ2
0
E
{
∂m(X;β0)

∂β
µ3

E(C2|X)

}
− 1
σ2
0
E
{
∂m(X;β0)

∂βT
µ3

E(C2|X)

}
E
{

1
E(C2|X)

}


=

 1
σ2
0

{
1 +

µ2
3

σ2
0(µ4−σ4

0)−µ
2
3

}
B − µ3

σ2
0(µ4−σ4

0)−µ
2
3
A

− µ3

σ2
0(µ4−σ4

0)−µ
2
3
AT

σ2
0

σ2
0(µ4−σ4

0)−µ
2
3

 .
Its inverse can then be calculated using the matrix inversion and is easy to verify to

have the form in (2.6).
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APPENDIX B

B1. Establishment of Λ

Consider the set of functions A =
{
u(x− µ) : u(t) = u(−t),

∫∞
0
u(t)f0(t)dt = 0

}
. We

show A = Λ through showing both A ⊂ Λ and Λ ⊂ A.

We first show A ⊂ Λ. Let u(x − µ) ∈ A. Then
∫∞

0
u(t)f0(t)dt = 0 and u is an

even function. We need to show u(x− µ) ∈ H. From

0 =

∫ ∞
0

u(t)2f0(t)dt

=

∫ ∞
0

u(t)2f0(t)π(t; β)dt+

∫ ∞
0

u(t)2f0(t)π(−t; β)dt

=

∫ ∞
0

u(t)2f0(t)π(t; β)dt+

∫ 0

−∞
u(t)2f0(t)π(t; β)dt

=

∫ ∞
−∞

u(t)2f0(t)π(t; β)dt

= E{u(X − µ)},

we obtain u(x− µ) ∈ H. Now consider

g(x; θ, γ) = 2f(x− µ; γ)π(x− µ; β),

where

f(t; γ) =
f0(t){1 + e−2γTu(t)}−1∫
f0(t){1 + e−2γTu(t)}−1dt

and γ is a nuisance parameter. Note that γ = 0 yields the true model. We have

∂logg(x; θ, γ)

∂γ

∣∣∣∣
γ=0

=
∂f(x− µ0; γ)/∂γ

f(x− µ0; γ)

∣∣∣∣
γ=0

=
∂f(x− µ0; γ)/∂γ

∣∣
γ=0

f0(x− µ0)
= u(x− µ).
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Therefore, u(x− µ) is a nuisance score vector of a particular submodel, hence u(x−

µ) ∈ Λ.

We next show Λ ⊂ A. Consider an element of Λ which is the nuisance score of

an arbitrary parametric submodel 2f(x− µ; γ)π(x− µ; β). Then, we can write it as

u(x− µ) =
∂f(x− µ; γ)/∂γ

f(x− µ; γ)

∣∣∣∣
γ=0

.

Since f(t; γ) = f(−t; γ), we have ∂f(t; γ)/∂γ = ∂f(−t; γ)/∂γ for any γ. It implies

∂f(t; γ)/∂γ

f(t; γ)
=
∂f(−t; γ)/∂γ

f(−t; γ)

for any γ. Thus, we obtain u(t) = u(−t). Furthermore, we have∫ ∞
0

u(t)2f0(t)dt =

∫ ∞
0

u(t)2f0(t){π(t; β) + π(−t; β)}dt

=

∫ ∞
0

u(t)2f0(t)π(t; β)dt+

∫ ∞
0

u(t)2f0(t)π(−t; β)dt

=

∫ ∞
0

u(t)2f0(t)π(t; β)dt+

∫ ∞
0

u(−t)2f0(−t)π(−t; β)dt

=

∫ ∞
0

u(t)2f0(t)π(t; β)dt+

∫ 0

−∞
u(t)2f0(t)π(t; β)dt

=

∫ ∞
−∞

u(t)2f0(t)π(t; β)dt

=

∫ ∞
−∞

u(x− µ)2f0(x− µ)π(x− µ; β)dx

= E{u(X − µ)} = 0.

Because u(t) is symmetric and
∫∞

0
u(t)f0(t)dt = 0, u(x− µ) ∈ A.

B2. Establishment of Λ⊥

To establish the form of Λ⊥, we first define a space K = {v(x − µ) : v(t)π(t; β) +

v(−t)π(−t; β) = 0}, then show K ⊂ Λ⊥ and Λ⊥ ⊂ K. For any even function u, we

have
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E{u(X − µ)v(X − µ)} =

∫
u(x− µ)v(x− µ)2f0(x− µ)π(x− µ;β)dx

=

∫
u(x)v(x)2f0(x)π(x;β)dx

=

∫ ∞
0

u(t)v(t)2f0(t)π(t;β)dt+

∫ ∞
0

u(t)v(−t)2f0(t)π(−t;β)dt

=

∫ ∞
0

u(t)2f0(t){v(t)π(t;β) + v(−t)π(−t;β)}dt.

We first show K ⊂ Λ⊥. For any function v(x− µ) ∈ K and any function u ∈ Λ, we
have

E{u(X − µ)v(X − µ)} =
∫ ∞

0
u(t)2f0(t){v(t)π(t;β) + v(−t)π(−t;β)}dt =

∫ ∞
0

u(t)0dt = 0.

Hence v(x− µ) ⊥ Λ. In addition,

E{v(X − µ)} = E{1v(X − µ)} =
∫ ∞

0
2f0(t){v(t)π(t;β) + v(−t)π(−t;β)}dt =

∫ ∞
0

0dt = 0.

Hence v(x− µ) ∈ H. Using the above two equalities, we have v(x− µ) ∈ Λ⊥, hence

K ⊂ Λ⊥.

Next, we show Λ⊥ ⊂ K. Suppose v(x−µ) ∈ Λ⊥, then E{u(X−µ)v(X−µ)} = 0

for any u(x− µ) ∈ Λ. Denote w(t) = v(t)π(t; β) + v(−t)π(−t; β), we have

w(t) = v(t)π(t; β) + v(−t)π(−t; β) = w(−t),

which implies that w(t) is symmetric. Since v(x− µ) ∈ H, we have

0 = E{v(X − µ)} =

∫ ∞
0

2f0(t){v(t)π(t; β) + v(−t)π(−t; β)}dt =

∫ ∞
0

f0(t)w(t)dt = 0.

Hence w(x−µ) ∈ Λ. Thus, we can let u(t) = v(t)π(t; β) + v(−t)π(−t; β), and obtain

0 = E{u(X − µ)v(X − µ)}

=

∫ ∞
0

u(t)2f0(t){v(t)π(t; β) + v(−t)π(−t; β)}dt

=

∫ ∞
0

2f0(t){v(t)π(t; β) + v(−t)π(−t; β)}2dt.
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Hence v(t)π(t; β) + v(−t)π(−t; β) = 0. This indicates v(x−µ) ∈ K. Hence Λ⊥ ⊂ K.

B3. Verification of the orthogonal projection of the score function

Obviously,

f ′0(x− µ)

f0(x− µ)
{π(x− µ; β)− π(−x+ µ; β)}+ 2π′x(x− µ; β)

is symmetric. We also have∫ ∞
0

[f ′0(t){2π(t; β)− 1}+ 2π′t(t; β)f0(t)] dt =

∫ ∞
0

∂{2f0(t)π(t; β)− f0(t)}
∂t

dt

= −{2f0(0)π(0; β)− f0(0)} = 0.

Thus,

f ′0(x− µ)

f0(x− µ)
{π(x− µ; β)− π(−x+ µ; β)}+ 2π′x(x− µ; β) ∈ Λ.

On the other hand, we have{
f ′0(t)2π(−t; β)

f0(t)
+
π′t(t; β)

π(t; β)
− 2π′t(t; β)

}
π(t; β)

+

{
f ′0(−t)2π(t; β)

f0(−t)
+
π′t(−t; β)

π(−t; β)
− 2π′t(−t; β)

}
π(−t; β)

= 2π(t; β)π(−t; β)

{
f ′0(t)

f0(t)
+
f ′0(−t)
f0(−t)

}
+ π′t(t; β) + π′t(−t; β)

−2π′t(t; β)π(t; β)− 2π′t(−t; β)π(−t; β)

= 2π(t; β)π(−t; β) · 0 + 2π′t(t; β)− 2π′t(t; β)π(t; β)− 2π′t(t; β){1− π(t; β)}

= 0.

In the second equality above, we used the fact that f ′0 is an odd function, and π′t is
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an even function with respect to the first argument. Hence, we have shown

−f
′
0(x− µ)2π(−x+ µ; β)

f0(x− µ)
− π′x(x− µ; β)

π(x− µ; β)
+ 2π′x(x− µ; β) ∈ Λ⊥.

Combining the above results, we obtain that

Π(Sµ|Λ⊥) = −f
′
0(x− µ)2π(−x+ µ; β)

f0(x− µ)
− π′x(x− µ; β)

π(x− µ; β)
+ 2π′x(x− µ; β).

B4. Proof of Lemma 1

A Taylor expansion of
∑n

i=1 Sθ,eff(Xi; θ̂1, γ̂, f
∗) at γ∗ gives the result

n∑
i=1

Sθ,eff(Xi; θ̂1, γ̂, f
∗) =

n∑
i=1

Sθ,eff(Xi; θ̂1, γ
∗, f∗) +

{
n∑
i=1

∂Sθ,eff(Xi; θ̂1, γ̃, f
∗)/∂γT

}
(γ̂ − γ∗)

where γ̃ is between γ∗ and γ̂.

Letting Sn = {
∑n

i=1 ∂Sθ,eff(Xi; θ̂1, γ̃, f
∗)/∂γT}/n, we obtain

n∑
i=1

Sθ,eff(Xi; θ̂1, γ̂, f
∗) = nSn(γ̂ − γ∗).

Since γ̂ converges to γ∗ as n→∞, we obtain Sn → E{∂Sθ,eff(Xi; θ0, γ
∗, f ∗)/∂γT} = 0

in probability.

A Taylor expansion of
∑n

i=1 Sθ,eff(Xi; θ̂1, γ̂, f
∗) at θ̂2 yields

θ̂1 − θ̂2 =

{
n∑
i=1

∂Sθ,eff(Xi; θ̃, γ̂, f
∗)

∂θT

}−1{ n∑
i=1

Sθ,eff(Xi; θ̂1, γ̂, f
∗)− 0

}

=

{
1

n

n∑
i=1

∂Sθ,eff(Xi; θ̃, γ̂, f
∗)

∂θT

}−1

Sn(γ̂ − γ∗)

where θ̃ is between θ̂2 and θ̂1.

As n→∞,

Jn =
1

n

n∑
i=1

∂Sθ,eff(Xi; θ̃, γ̂, f
∗)

∂θT
→ E

{
∂Sθ,eff(X; θ0, γ

∗, f ∗)

∂θT

}
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in probability. We denote E{∂Sθ,eff(X; θ0, γ
∗, f ∗)/∂θT} by J , which is the Fisher

information matrix and is nonsingular in general. Combining the above results, we

have n1/2(θ̂1− θ̂2) = n1/2J−1
n Sn(γ̂− γ∗). Since n1/2(γ̂− γ∗) is bounded in probability,

J−1
n → J−1 in probability and Sn → 0 in probability, and we thus have

√
n(θ̂1− θ̂2)→

0 in probability.

B5. Proof of Theorem 3

Whether or not f ∗ is a correct model, the nuisance score vector is

Sγ(x; θ, γ, f ∗) =
∂logf ∗(x; θ, γ)

∂γ
=
∂f ∗(x− µ; γ)/∂γ

f ∗(x− µ; γ)

and the estimators θ̂, γ̂ satisfy

n∑
i=1

Sθ,eff(Xi; θ̂, γ̂, f
∗) = 0 and

n∑
i=1

Sγ(Xi; θ̂, γ̂, f
∗) = 0.

We have

0 =
1√
n

n∑
i=1

Sθ,eff(Xi; θ̂, γ̂, f
∗)

=
1√
n

n∑
i=1

Sθ,eff(Xi; θ0, γ̂, f
∗) +

1

n

n∑
i=1

∂Sθ,eff(Xi; θ
∗, γ̂, f ∗)

∂θT
√
n(θ̂ − θ0)

where θ∗ is between θ0 and θ̂. Notice that when n→∞,

1

n

n∑
i=1

∂Sθ,eff(Xi; θ
∗, γ̂, f ∗)

∂θT
→ E

{
∂Sθ,eff(X; θ0, γ̂, f

∗)

∂θT

}
in probability. It follows that

√
n(θ̂ − θ0) = −E

{
∂Sθ,eff(X; θ0, γ̂, f

∗)

∂θT

}−1
1√
n

n∑
i=1

Sθ,eff(Xi; θ0, γ̂, f
∗) + op(1).
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Using Lemma 1, we further have

√
n(θ̂ − θ0) = −E

{
∂Sθ,eff(X; θ0, γ

∗, f ∗)

∂θT

}−1
1√
n

n∑
i=1

Sθ,eff(Xi; θ0, γ
∗, f ∗) + op(1),

where γ∗ = γ0 is f ∗ contains f0. We thus have

√
n(θ̂ − θ0)→ N

[
0, A−1E{Sθ,eff(X; θ0, γ

∗, f ∗)STθ,eff(X; θ0, γ
∗, f ∗)}A−T

]
,

where A is defined in Theorem 3. It can be easily verified that when f ∗ contains f0,

γ∗ = γ0 and A = E{Sθ,eff(X; θ0, γ
∗, f ∗)STθ,eff(X; θ0, γ

∗, f ∗)}, thus this completes the

proof of Theorem 3.

B6. Proof of Proposition 1

The square norm of f̂(x− µ̃; µ̃)− f0(x− µ0) is

‖ f̂(x− µ̃; µ̃)− f0(x− µ0) ‖=
[∫ ∞
−∞

{
f̂(x− µ̃; µ̃)− f0(x− µ0)

}2

π(x− µ0, β0)dx

]1/2

.

Let an2 = max{−X(1) + µ̃, X(n2) − µ̃}. Since the kernel K has support (−1, 1),

f̂(x− µ̃; µ̃) = 0 for x ≤ −an2 + µ̃− h or x ≥ an2 + µ̃+ h.

The above is derived from the following details:

f̂(x− µ̃; µ̃) =
1

2n2

n1+n2∑
i=n1+1

1

h

{
K

(
Xi − x
h

)
+K

(
Xi + x− 2µ̃

h

)}
.

From the above kernel estimation, f̂(x− µ̃; µ̃) = 0 for x such that

X(n2) − x
h

< −1 −→ x > X(n2) + h and

X(1) − x
h

> 1 −→ x < X(1) − h and

X(n2) + x− 2µ̃

h
< −1 −→ x < −X(n2) + 2µ̃− h and

X(1) + x− 2µ̃

h
> 1 −→ x > −X(1) + 2µ̃+ h
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We thus have

‖ f̂(x− µ̃; µ̃)− f0(x− µ0) ‖2

=

∫ an2+µ̃+h

−an2+µ̃−h

{
f̂(x− µ̃; µ̃)− f0(x− µ0)

}2

π(x− µ0, β0)dx

≤
∫ an2+µ̃+h

−an2+µ̃−h

{
f̂(x− µ̃; µ̃)− f0(x− µ0)

}2

dx (B.1)

The above inequality holds because π(x− µ0, β0) is a skewing function which is

nonnegative and not greater than 1. We need to show that (B.1) is op(n
−1/2
2 ).

We replace x with t+ µ̃ in the following.

For any sequence of positive constants Cn2 , we have

pr

[∫ an2+µ̃+h

−an2+µ̃−h

{
f̂(x− µ̃; µ̃)− f0(x− µ0)

}2

dx >
ε
√
n2

]

= pr

[∫ an2+h

−an2−h

{
f̂(t; µ̃)− f0(t+ µ̃− µ0)

}2

dt >
ε
√
n2

]

≤ pr

[∫ Cn2

−Cn2

{
f̂(t; µ̃)− f0(t+ µ̃− µ0)

}2

dt >
ε
√
n2

]
+ pr (−an2 − h ≤ −Cn2)

+pr (an2 + h ≥ Cn2) .

From condition (i), we have pr(−an2−h ≤ −Cn2) = o(1) and pr(an2 +h ≥ Cn2) = o(1)

if Cn2 = (Clogn)1/2 for C > 4 and n→∞ because h−Cn2 tends to −∞ and −h+Cn2

tends to ∞ as n goes to ∞, while both X(1) and X(n2) are bounded.

Note that

∫ Cn2

−Cn2

{
f̂(t; µ̃)− f0(t+ µ̃− µ0)

}2

dt is a function of random variable

µ̃ and Xi’s for i = n1 + 1, · · · , n1 + n2. Let E0 denote the expectation with respect

to the distribution of µ̃, while pr∗ and E∗ denote probability and expectation with

respect to the conditional distribution of Xn1+1, · · · , Xn1+n2 given µ̃. Defining

Fn = Fn(ε) = pr∗

[∫ Cn2

−Cn2

{
f̂(t; µ̃)− f0(t+ µ̃− µ0)

}2

dt >
ε
√
n2

]
,
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we have

pr

[∫ Cn2

−Cn2

{
f̂(t; µ̃)− f0(t+ µ̃− µ0)

}2

dt >
ε
√
n2

]
= E0Fn.

Since dominated convergence in probability implies convergence in mean by the the-

orm (Serfling, 2002, 1.3.6), it suffices to show that Fn coverges in probability to 0 for

each ε > 0. By Markov’s inequality, we have

Fn ≤
√
n2

ε
E∗

[∫ Cn2

−Cn2

{
f̂(t; µ̃)− f0(t+ µ̃− µ0)

}2

dt

]
.

Since µ̃− µ0 = Op(n
− 1

2 ), Taylor expansion at t yields

E∗
∫ Cn2

−Cn2

{
f̂(t; µ̃)− f0(t+ µ̃− µ0)

}2

dt

= E∗
∫ Cn2

−Cn2

{
f̂(t; µ̃)− f0(t)− (µ̃− µ0)f ′0(t)− (µ̃− µ0)2f ′′0 (t∗)/2

}2

dt

= E∗
∫ Cn2

−Cn2

{
f̂(t; µ̃)− f0(t)

}2

dt+Op(n
−1
2 ),

where t∗ is between t and t + µ̃ − µ0. In the last equality, we used the fact that

{f̂(t; µ̃)− f0(t)}f ′0(t) is an odd fucntion of t.

Assuming we can exchange expectation and integration, it is sufficient to show

√
n2

ε

∫ Cn2

−Cn2
E∗
{
f̂(t; µ̃)− f0(t)

}2

dt

converges 0 in probability.

E∗{f̂(t; µ̃)− f0(t)}2 = MSE{f̂(t; µ̃)|µ̃} = Var{f(t; µ̃)|µ̃}+ Bias2{f̂(t; µ̃)|µ̃}

=
1

n2h
f0(t)

∫ 1

−1

K2(s1)ds1 +
h4

4
{f ′′0 (t)}2

{∫ 1

−1

K(s2)s2
1ds1

}2

+Op(n
−1
2 h)

+Op(n
−3/2
2 h−1).
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It follows that MISE{f̂(t; µ̃)|µ̃} have the following asymptotic expression,∫ Cn2

−Cn2
E∗{f̂(t; µ̃)− f0(t)}2dt =

∫ Cn2

−Cn2
MSE{f̂(t; µ̃)|µ̃}dt

=
1

n2h

∫ 1

−1

K2(s1)ds1 +
h4

4

{∫ 1

−1

K(s2)s2
1ds1

}2 ∫ Cn2

−Cn2
{f ′′0 (t)}2dt+Op(n

−1
2 h)

+Op(n
−3/2
2 h−1).

From condition (iv), h = Op(n
−1/5) and we thus have

√
n2

ε

∫ Cn2

−Cn2
E∗
{
f̂(t; µ̃)− f0(t)

}2

dt =

√
n2

ε
MISE{f̂(t; µ̃)|µ̃} = op(1).

B7. Proof of Corollary 1

The square norm of f̂ ′(x− µ̃; µ̃)− f ′0(x− µ0) is

‖ f̂ ′(x− µ̃; µ̃)− f ′0(x− µ0) ‖=
[∫ ∞
−∞

{
f̂ ′(x− µ̃; µ̃)− f ′0(x− µ0)

}2

π(x− µ0, β0)dx

]1/2

.

Let an2 = max{−X(1) + µ̃, X(n2) − µ̃}. Since the kernel K has support (−1, 1),

f̂ ′(x− µ̃; µ̃) = 0 for x ≤ −an2 + µ̃− h or x ≥ an2 + µ̃+ h.

The above is derived from the following details:

f̂ ′(x− µ̃; µ̃) =
1

2n2

n1+n2∑
i=n1+1

1

h2

{
K ′
(
x−Xi

h

)
+K ′

(
Xi + x− 2µ̃

h

)}
,
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From the above kernel estimation, f̂(x− µ̃; µ̃) = 0 for x such that

x−X(1)

h
< −1 −→ x < X(1) − h and

x−X(n2)

h
> 1 −→ x > X(n2) + h and

X(n2) + x− 2µ̃

h
< −1 −→ x < −X(n2) + 2µ̃− h and

X(1) + x− 2µ̃

h
> 1 −→ x > −X(1) + 2µ̃+ h

It follows that

‖ f̂ ′(x− µ̃; µ̃)− f ′0(x− µ0) ‖2

=

∫ an2+µ̃+h

−an2+µ̃−h

{
f̂ ′(x− µ̃; µ̃)− f ′0(x− µ0)

}2

π(x− µ0, β0)dx

≤
∫ an2+µ̃+h

−an2+µ̃−h

{
f̂ ′(x− µ̃; µ̃)− f ′0(x− µ0)

}2

dx.

Now we need to show the above display is op(n
−1/2). For any sequence of positive

constants Cn2 , we have

pr

[∫ an2+µ̃+h

−an2+µ̃−h

{
f̂ ′(x− µ̃; µ̃)− f ′0(x− µ0)

}2

dx > ε

]

= pr

[∫ an2+h

−an2−h

{
f̂ ′(t; µ̃)− f ′0(t+ µ̃− µ0)

}2

dt > ε

]

≤ pr

[∫ Cn2

−Cn2

{
f̂ ′(t; µ̃)− f ′0(t+ µ̃− µ0)

}2

dt > ε

]
+ pr (−an2 − h ≤ −Cn2)

+pr (an2 + h ≥ Cn2) .

From condition (i), we have pr(−an2−h ≤ −Cn2) = o(1) and pr(an2 +h ≥ Cn2) = o(1)

if Cn2 = (C∗logn)1/2 for C∗ > 4 and n→∞ because h−Cn2 tends to−∞ and−h+Cn2

tends to ∞ as n goes to ∞, while both X(1) and X(n2) are bounded.
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Similarly to the proof of Proposition 1, we only need to show

√
n2

ε
E∗
∫ Cn2

−Cn2

{
f̂ ′(t; µ̃)− f ′0(t+ µ̃− µ0)

}2

dt→ 0.

Since µ̃− µ0 = Op(n
− 1

2 ), Taylor expansion at t yields

E∗
∫ Cn2

−Cn2

{
f̂ ′(t; µ̃)− f ′0(t+ µ̃− µ0)

}2

dt

= E∗
∫ Cn2

−Cn2

{
f̂ ′(t; µ̃)− f ′0(t)− (µ̃− µ0)f ′′0 (t) + op(n

−1)
}2

dt

= E∗
∫ Cn2

−Cn2

{
f̂ ′(t; µ̃)− f ′0(t)

}2

dt+Op(n
−1).

In the last equality, we use the fact that {f̂ ′(t; µ̃)− f ′0(t)}f ′′0 (t) is an odd fucntion of

t. Assuming we can exchange expectation and integration, it suffices to show

√
n2

ε
E∗
∫ Cn2

−Cn2

{
f̂ ′(t; µ̃)− f ′0(t)

}2

dt→ 0.

We calculate MSE in the following way,

MSE{f̂ ′(t; µ̃)|µ̃} = E∗{f̂ ′(t; µ̃)− f ′0(t)}2 = Var{f̂ ′(t; µ̃)|µ̃}+ Bias2{f̂ ′(t; µ̃)|µ̃}

=
1

n2h
{−f0(t)π(t, β0) + f0(−t)π(−t, β0)}

∫ 1

−1

K ′
2
(s)ds+Op(h

4).

It follows that MISE{f̂(t; µ̃)|µ̃} have the following asymptotic expression∫ Cn2

−Cn2
E∗{f̂ ′(t; µ̃)− f0(t)}2 = Op(h

4),

since ∫ Cn2

−Cn2
{−f0(t)π(t, β0) + f0(−t)π(−t, β0)}dt = 0.
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From condition (iv), h = Op(n
−1/5) and we thus have

√
n

ε

∫ Cn2

−Cn2
E∗
{
f̂(t; µ̃)− f0(t)

}2

dt =

√
n

ε
MISE{f̂(t; µ̃)|µ̃} = op(1).

B8. Proof of Corollary 2

Approximating the derivative f ′0 using numerical differentiation, we have

lim
n→∞

||f̂ ′(x− µ̃; µ̃)− f ′0(x− µ0)||

= lim
n→∞

||
f̂(x− µ̃+ n−1/4; µ̃)− f̂(x− µ̃− n−1/4; µ̃)

2n−1/4
−
f0(x− µ0 + n−1/4)− f0(x− µ0 − n−1/4)

2n−1/4
||

= lim
n→∞

||f̂(x− µ̃+ n−1/4; µ̃)− f̂(x− µ̃− n−1/4; µ̃)− f0(x− µ0 + n−1/4) + f0(x− µ0 − n−1/4)||
2n−1/4

≤ lim
n→∞

||f̂(x− µ̃+ n−1/4; µ̃)− f0(x− µ0 + n−1/4)||/(2n−1/4)

+ lim
n→∞

||f̂(x− µ̃− n−1/4; µ̃)− f0(x− µ0 − n−1/4)||/(2n−1/4) = 0

with probability 1. The last eqaulity holds because ||f̂(x − µ̃; µ̃) − f0(x − µ0)|| =

op(n
−1/4) from Proposition 1.

B9. Proof of Theorem 4

To avoid the complexity caused by various correlations, we split the n observations

into three groups, with sample sizes n1 = n − 2n1−ε, n2 = n3 = n1−ε respectively,

where ε is a sufficiently small positive number. Suppose that µ̃ and β̃ are estimators

constructed from the observations Xn1+n2+1, . . . , Xn and satisfies µ̃ − µ = Op(n
−1/2
3 )

and β̃ − β = Op(n
−1/2
3 ). Obviously, the estimate obtained from Step 1 satisfies these

requirements.
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We write the estimating equation as

0 =
1
√
n1

n1∑
i=1

Sθ,eff{Xi; θ̂, f̂(·; µ̃)}

=
1
√
n1

n1∑
i=1

Sθ,eff(Xi; θ0, f0) +
1
√
n1

n1∑
i=1

∂Sθ,eff{Xi; θ
∗, f̂(·; µ̃)}

∂θT
(θ̂ − θ0)

+
1
√
n1

n1∑
i=1

[
Sθ,eff{Xi; θ0, f̂(·; µ̃)} − Sθ,eff(Xi; θ0, f0)

]
,

where θ∗ = λθ̂ + (1− λ)θ0 for 0 ≤ λ ≤ 1. It is easy to see that

1
√
n1

n1∑
i=1

∂Sθ,eff{Xi; θ
∗, f̂(·; µ̃)}

∂θT
(θ̂ − θ0)

= E

{
∂Sθ,eff(X; θ0, f0)

∂θT

}
√
n1(θ̂ − θ0) + op(1)

= −E{Sθ,eff(X; θ0, f0)⊗2}
√
n1(θ̂ − θ0) + op(1),

where the last equality is because Sθ,eff is the orthogonal projection of the score

function to Λ⊥.

Thus, to show the desired result, we only need to demonstrate that

1
√
n1

n1∑
i=1

[
Sθ,eff{Xi; θ0, f̂(·; µ̃)} − Sθ,eff(Xi; θ0, f0)

]
= op(1),

or equivalently,

1
√
n1

n1∑
i=1

{
f̂ ′(Xi − µ0; µ̃)

f̂(Xi − µ0; µ̃)
− f ′0(Xi − µ0)

f0(Xi − µ0)

}
2π0(−Xi + µ0; β0) = op(1). (B.2)

We first point out that since f̂(t; µ̃) is an even function of t and f̂ ′(t; µ̃) is an odd

function of t, hence{
f̂ ′(t; µ̃)

f̂(t; µ̃)
− f ′0(t)

f0(t)

}
2π0(−t; β0)2f0(t)π0(t; β0)
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is an odd function, hence

E

[{
f̂ ′(Xi − µ0; µ̃)

f̂(Xi − µ0; µ̃)
− f ′0(Xi − µ0)

f0(Xi − µ0)

}
2π0(−Xi + µ0; β0)

]

= E

∫ {
f̂ ′(t; µ̃)

f̂(t; µ̃)
− f ′0(t)

f0(t)

}
2π0(−t; β0)2f0(t)π0(t; β0)dt

= E(0) = 0

for all i = 1, . . . , n1.

The second moment of the left side of (C.2) is

E

[ 1
√
n1

n1∑
i=1

{
f̂ ′(Xi − µ0; µ̃)

f̂(Xi − µ0; µ̃)
− f ′0(Xi − µ0)

f0(Xi − µ0)

}
2π0(−Xi + µ0; β0)

]2


= E

{ f̂ ′(Xi − µ0; µ̃)

f̂(Xi − µ0; µ̃)
− f ′0(Xi − µ0)

f0(Xi − µ0)

}2

4π2
0(−Xi + µ0; β0)


= E

∫ {
f̂ ′(t; µ̃)

f̂(t; µ̃)
− f ′0(t)

f0(t)

}2

4π2
0(−t; β0)2f0(t)π0(t; β0)dt

≤ 8E

∫ {
f̂ ′(t; µ̃)

f̂(t; µ̃)
− f ′0(t)

f0(t)

}2

f0(t)dt

≤ 16E

∫ {
f̂ ′(t; µ̃)

f̂(t; µ̃)
− f̂ ′(t;µ0)

f̂(t;µ0)

}2

f0(t)dt+ 16E

∫ {
f̂ ′(t;µ0)

f̂(t;µ0)
− f ′0(t)

f0(t)

}2

f0(t)dt.

Using the delta method, the first term satisfies

E

∫ {
f̂ ′(t; µ̃)

f̂(t; µ̃)
− f̂ ′(t;µ0)

f̂(t;µ0)

}2

f0(t)dt

= E

∫
E

{ f̂ ′(t; µ̃)

f̂(t; µ̃)
− f̂ ′(t;µ0)

f̂(t;µ0)

}2 ∣∣Xn1+1, . . . , Xn1+n2

 f0(t)dt

= E{Op(n
−1
3 )} = o(1).

The second term can be recognized as the mean integrated squared error of

nonparametric estimation, hence standard analysis yields that it is of order O{h4 +



96

(n2h)−1} = o(1) for h satisfied condition (iv). Thus the second moment of the left

side of (C.2) converges to zero as n→∞. From Serfling (2002, 1.2.3), (C.2) is indeed

true.

The above result yields

√
n1(θ̂ − θ0)→ N

(
0,
[
E{Sθ,eff(X; θ0, f0)⊗2}

]−1
)
.

Since n1 = n− 2n1−ε,

√
n(θ̂ − θ0)−

√
n1(θ̂ − θ0) = op(1).

We hence have
√
n(θ̂ − θ0)→ N(0, V ).

B10. Proof of Theorem 5

To shorten the notation, we denote w(t) = f0(t)π(t; β0). It follows that

w′(t) = f ′0(t)π(t; β0) + f0(t)π′(t; β0)

w′′(t) = f ′′0 (t)π(t; β0) + 2f ′0(t)π′(t; β0) + f0(t)π′′(t; β0),

It is easy to verify that

w(t) + w(−t) = f0(t)

w(t)− w(−t) = 2f0(t)π(t; β0)− f0(t),

w′(t) + w′(−t) = 2f ′0(t)π(t; β0) + 2f0(t)π′(t; β0)− f ′0(t),

w′(t)− w′(−t) = f ′0(t),

w′′(t) + w′′(−t) = f ′′0 (t),

where w′(−t) = w′(s)|s=−t and w′′(−t) = w′′(s)|s=−t. These results will be used

repeatedly in the following calculation. To simplify the proof, we split the n obser-
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vations into two groups, with sample sizes n1 = n − n1−ε, n2 = n1−ε respectively,

where ε is a sufficiently small positive number. Suppose that µ̃ and β̃ are estimators

constructed from the observations Xn1+1, . . . , Xn and satisfy µ̃− µ = Op(n
−1/2
2 ) and

β̃ − β = Op(n
−1/2
2 ).

We first analyse the bias of f̂ . We have

bias{f̂(t; µ̃)} = E{f̂(t; µ̃)} − f0(t)

= E{f̂(t;µ0)} − f0(t) +O(n
−1/2
2 )

= E

[
1

2n1

n1∑
i=1

1

h

{
K

(
Xi − µ0 − t

h

)
+K

(
Xi − µ0 + t

h

)}]
− f0(t)

+O(n
−1/2
2 )

=
1

2h
E

{
K

(
X − µ0 − t

h

)
+K

(
X − µ0 + t

h

)}
− f0(t) +O(n

−1/2
2 )

=

∫ t+µ0+h

t+µ0−h

1

h
K

(
x− µ0 − t

h

)
f0(x− µ0)π(x− µ0; β0)dx

+

∫ µ0−t+h

µ0−t−h

1

h
K

(
x− µ0 + t

h

)
f0(x− µ0)π(x− µ0; β0)dx− f0(t)

+O(n
−1/2
2 )

=

∫ 1

−1

K(s)w(t+ hs)ds+

∫ 1

−1

K(s)w(hs− t)ds− f0(t) +O(n
−1/2
2 )

= w(t) +
w′′(t)h2

2

∫ 1

−1

K(s)s2ds+ w(−t) +
w′′(−t)h2

2

∫ 1

−1

K(s)sds

−f0(t) + o(h2) +O(n
−1/2
2 )

=
h2

2
f ′′0 (t)c2 + o(h2).

To analyse the variance, we have

var{f̂(t; µ̃)} = var{f̂(t;µ0) + f̂ ′µ(t;µ0)(µ̃− µ0)}+O(n−1
2 )

= var{f̂(t;µ0)}+ 2cov{f̂(t;µ0), f̂ ′µ(t;µ0)(µ̃− µ0)}+O(n−1
2 ).
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The first term

var{f̂(t;µ0)} = var

[
1

2n1

n1∑
i=1

1

h

{
K

(
Xi − µ0 − t

h

)
+K

(
Xi − µ0 + t

h

)}]

=
1

4n1h2
var

{
K

(
X − µ0 − t

h

)
+K

(
X − µ0 + t

h

)}
= (4n1h

2)−1var

{
K

(
X − µ0 − t

h

)}
+ (4n1h

2)−1var

{
K

(
X − µ0 + t

h

)}
+(2n1h

2)−1cov

{
K

(
X − µ0 − t

h

)
,K

(
X − µ0 + t

h

)}
.

We can easily obtain

(4n1h
2)−1var

{
K

(
X − µ0 − t

h

)}
= (4n1h)−1

∫
K2(s)2w(t+ hs)ds

= (2n1h)−1w(t)v2 +O(n−1
1 ).

Similarly, (4n1h
2)−1var = (2n1h)−1w(−t)v2 + O(n−1

1 ). The covariance term vanishes

unless t satisfies −h+ |X − µ0| < t < h− |X − µ0|. Thus, for |t| ≥ h, the covariance

term is zero. Otherwise, we have

(2n1h
2)−1cov

{
K

(
X − µ0 − t

h

)
, K

(
X − µ0 + t

h

)}
= (n1h)−1

∫ 1− |t|
h

|t|
h
−1

K(s− t/h)K(s+ t/h)w(hs)ds+O(n−1
1 ).

The above integral is a bounded quantity. Combining the above, we have

var{f̂(t;µ0)}

= (n1h)−1

{
f0(t)v2/2 + I(|t| < h)

∫ 1− |t|
h

|t|
h
−1

K(s− t/h)K(s+ t/h)w(hs)ds

}
+O(n−1

1 ).
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On the other hand,

2cov{f̂(t;µ0), f̂ ′µ(t;µ0)}

=
−1

2n1h3
cov

{
K

(
X − µ0 − t

h

)
+K

(
X − µ0 + t

h

)
,K′

(
X − µ0 − t

h

)
−K′

(
X − µ0 + t

h

)}
=

−1

2n1h3
E

{
K

(
X − µ0 − t

h

)
K′
(
X − µ0 + t

h

)
−K

(
X − µ0 + t

h

)
K′
(
X − µ0 − t

h

)}

=
I(|t| < h)

−n1h2

∫ 1− |t|
h

|t|
h
−1

{
K(s− t/h)K′(s+ t/h)−K(s+ t/h)K′(s− t/h)

}
w(hs)ds+O{(n1h)−1}

= O(n−1
1 h2).

Because µ̃−µ0 has order Op(n
−1/2
2 ), thus var{f̂(t; µ̃)} is dominated by var{f̂(t;µ0)}.

Taking into account the relation between n1, n2 and n, we obtain the result in Theorem

5.
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APPENDIX C

C1. Derivation of Λ⊥

To prepare for the derivation of Λ⊥, we first show that the nuisance tangent space of

(4.1) is

Λ =

{
u(X − µ) : u(z) = u(−z),

∫ ∞
−∞

u(t)f0(t)w(t,β)dt = 0 a.s., u ∈ Rp

}
.

To show the above result, we first write the right-hand side of the above expression

as A, and then show A ⊂ Λ and Λ ⊂ A.

To show A ⊂ Λ, assume that we have an arbitrary u(X − µ) ∈ A. Therefore∫∞
−∞ u(t)f0(t)w(t,β)dt = 0 and u is an even function. This obviously yields E{u(X−

µ)} = 0. Consider a parametric submodel

g(X,θ,γ) =
f(X − µ,γ)w(X − µ,β)∫

f(t,γ)w(t,β)dt
,

where f(z,γ) = f0(z){1 + e−2γTu(z)}−1/
∫
f0(t){1 + e−2γTu(t)}−1dt, γ is a finite di-

mensional nuisance parameter and γ = 0 yields the true model. Some algebra yields

that

∂logg(x,θ,γ)

∂γ

∣∣∣∣
γ=0

=
∂logf(x− µ0,γ)

∂γ

∣∣∣∣
γ=0

−
∂log

∫
f(t,γ)w(t,β)dt

∂γ

∣∣∣∣
γ=0

= u(x− µ).

Hence, u(X−µ) is a nuisance score vector of a particular submodel, i.e. u(X−µ) ∈ Λ.

We now show Λ ⊂ A. Consider an arbitrary element of Λ which is the nuisance

score of a corresponding parametric submodel

g(X,θ,γ) =
f(X − µ,γ)w(X − µ,β)∫

f(t,γ)w(t,β)dt
.
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Then, we can write it as

u(x− µ) =
∂f(x− µ,γ)/∂γ

∣∣
γ=γ0

f0(x− µ)
−

∫
∂f(t,γ)/∂γ

∣∣
γ=γ0

w(t,β)dt∫
f0(t)w(t,β)dt

.

Since f(z,γ) = f(−z,γ), we have ∂f(z,γ)/∂γ = ∂f(−z,γ)/∂γ for any γ. This

implies

∂f(z,γ)/∂γ

f(z,γ)
=
∂f(−z,γ)/∂γ

f(−z,γ)

for any γ. The second term in the expression of u(x − µ) is a constant. Thus, we

obtain u(z) = u(−z). Simple algebra can verify that∫ ∞
−∞

u(t)f0(t)w(t,β)dt = 0.

Thus we have shown Λ ⊂ A.

We are now ready to demonstrate the form of Λ⊥. Again, we prove the form of Λ⊥

by defining a space L = {v(X −µ) : v(z)w(z,β) +v(−z)w(−z,β) = 0 a.s.,v ∈ Rp},

and showing that L ⊂ Λ⊥ and Λ⊥ ⊂ L. We point out that for any function u ∈ Λ,

we have the relation

E{u(X − µ)vT(X − µ)} =

∫ ∞
0

u(z){vT(z)w(z,β) + vT(−z)w(−z,β)}c(β)f0(z)dz.

In addition, the normalizing constant can be expressed as

c(β) =

[∫ ∞
0

f0(t) {w(t,β) + w(−t,β)} dt
]−1

.

We first show that L ⊂ Λ⊥. For any function v(X − µ) ∈ L and any function

u ∈ Λ, we have

E{u(X − µ)vT(X − µ)} =

∫ ∞
0

u(t){vT(t)w(t,β) + vT(−t)w(−t,β)}c(β)f0(t)dt = 0
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by the definition of L. Hence v(X − µ) ⊥ Λ. In addition,

E{v(X − µ)} =

∫ ∞
−∞

v(t)c(β)f0(t)w(t,β)dt

=

∫ ∞
0

c(β)f0(t){v(t)w(t,β) + v(−t)w(−t,β)}dt = 0

due to the definition of L as well. The above two equalities ensure that v(X−µ) ∈ Λ⊥,

hence L ⊂ Λ⊥.

We now show that Λ⊥ ⊂ L. Suppose v(X − µ) ∈ Λ⊥, then E{u(X − µ)vT(X −

µ)} = 0 for any u(X − µ) ∈ Λ. Let

u1(z) =
v(z)w(z,β) + v(−z)w(−z,β)

w(z,β) + w(−z,β)
, u(z) = u1(z)− E{u1(X − µ)},

where

E{u1(X − µ)} = c(β)

∫ ∞
0

u1(z)f0(z){w(z,β) + w(−z,β)}dz

= c(β)

∫ ∞
0

{v(z)w(z,β) + v(−z)w(−z,β)}f0(z)dz

= E{v(X − µ)}.

We have u(z) = u(−z) and
∫∞

0
u(z)f0(z){w(z,β) + w(−z,β)}dz = 0, so u(z) ∈ Λ.

Some algebra yields

E{u(X − µ)vT(X − µ)}

= c(β)

∫ ∞
0

{v(t)w(t,β) + v(−t)w(−t,β)}⊗2f0(t)

w(t,β) + w(−t,β)
dt− [E{v(X − µ)}]⊗2 ,

where for any vector c, c⊗2 = ccT. Since v(z) ∈ Λ⊥, we have E{v(X − µ)} = 0.

Hence the relation E{u(X − µ)vT(X − µ)} = 0 yields∫ ∞
0

{v(t)w(t,β) + v(−t)w(−t,β)}⊗2f0(t)

w(t,β) + w(−t,β)
dt = 0.

Hence we have v(t)w(t,β)+v(−t)w(−t,β) = 0 a.s. This indicates that v(X−µ) ∈ L,
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hence Λ⊥ ⊂ L.

C2. Derivation of the efficient score Seff for model (4.1)

Define

u1(t) = −f
′
0(t){w(t,β)− w(−t,β)}
f0(t){w(t,β) + w(−t,β)}

− w′(t,β) + w′(−t,β)

w(t,β) + w(−t,β)
,

and v1(t) =
−2f ′0(t)w(−t,β)

f0(t) {w(t,β) + w(−t,β)}
+
w′(t,β) + w′(−t,β)

w(t,β) + w(−t,β)
− w′(t,β)

w(t,β)
.

Then we have Sµ = u1(x−µ)+v1(x−µ). In the following, we show that u1(x−µ) ∈ Λ

and v1(x−µ) ∈ Λ⊥. To show u1(x−µ) ∈ Λ, we can easily verify that u1(t) = u1(−t)

and ∫ ∞
−∞

u1(t)f0(t)w(t,β)dt

=

∫ ∞
0

u1(t)f0(t){w(t,β) + w(−t,β)}dt

= −
∫ ∞

0

f ′0(t){w(t,β)− w(−t,β)}dt−
∫ ∞

0

{w′(t,β) + w′(−t,β)}f0(t)dt

= −
∫ ∞

0

[
∂f0(t){w(t,β)− w(−t,β)}

∂t

]
dt = 0.

Hence u1(x−µ) ∈ Λ. To show v1(x−µ) ∈ Λ⊥, we can easily verify that v1(t)w(t,β)+

v1(−t)w(−t,β) = 0. Combining the above results, we obtain that Π(Sµ|Λ⊥) = v1(x−

µ).

Now we decompose Sβ. Define

u2(t) =
wβ(t,β) + wβ(−t,β)

w(t,β) + w(−t,β)
−
∫
f0(t)wβ(t,β)dt∫
f0(t)w(t,β)dt

,

v2(t) = −wβ(t,β) + wβ(−t,β)

w(t,β) + w(−t,β)
+

wβ(t,β)

w(t,β)
.

Then we have Sβ = u2(x−µ)+v2(x−µ). In the following, we show that u2(x−µ) ∈ Λ
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and v2(x− µ) ∈ Λ⊥. Obviously, u2(t) = u2(−t) and∫ ∞
−∞

u2(t)f0(t)w(t,β)dt

=

∫ ∞
0

u2(t)f0(t){w(t,β) + w(−t,β)}dt

=

∫ ∞
0

f0(t){wβ(t,β) + wβ(−t,β)}dt−
∫ ∞
−∞

f0(t)wβ(t,β)dt = 0.

Thus, u2(x− µ) ∈ Λ. To show v2(x− µ) ∈ Λ⊥, we can easily verify that

v2(t)w(t,β) + v2(−t)w(−t,β) = 0.

Hence v2(t) ∈ Λ⊥. Combining the above results, we obtain that Π(Sβ|Λ⊥) = v2(x−

µ).

Combining Π(Sµ|Λ⊥) and Π(Sβ|Λ⊥), we obtain the desired form of the efficient

score.

C3. Proof of Theorem 7

Obviously at θ = θ0, we have E{Seff(X,θ0, f
∗(X − µ0,γ)} = 0 for any γ. Hence the

unique solution is (θT
0 ,γ

∗T)T. For simplicity, we denote α = (θT,γT)T, denote the

roots of the estimating equation as α̃ = (θ̃
T
, γ̃T)T, the unique root α0 = (θT

0 ,γ
∗T)T,

and S(X,α, f ∗) =
[
Seff{X,θ, f ∗(X − µ,γ)}T,Sγ(X,θ,γ, f

∗)T
]T

, Then the standard

Taylor expansion yields

0 = n−1/2

n∑
i=1

S(Xi, α̃, f
∗)

= n−1/2

n∑
i=1

S(Xi,α0, f
∗) + n−1

n∑
i=1

∂S(Xi,α
∗, f ∗)

∂αT
n1/2(α̃−α0),
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where α∗ is on the interval connecting α0 and α̃. This yields

n1/2(α̃−α0) = −n−1/2

[
E

{
∂S(Xi,α0, f

∗)

∂αT

}]−1 n∑
i=1

S(Xi,α0, f
∗) + op(1). (C.1)

Note that the upper-left p × p block of E
{
∂S(Xi,α0, f

∗)/∂αT
}

is the A matrix

defined in Theorem 7. The remaining upper-right block satisfies

E

{
∂Seff(X,α0, f

∗)

∂γT

}
= −E

{
Seff(X,α0, f

∗)Sγ(X,α0, f
∗)T
}

= 0,

where the last equality is because Sγ is an element of the nuisance tangent space

while Seff is orthogonal to this space. Thus, extracting the first p components from

(C.1), we have

n1/2(θ̃ − θ0) = −n−1/2A−1

n∑
i=1

Seff{Xi,θ0, f
∗(Xi − µ0,γ

∗)}+ op(1),

which subsequently proves Theorem 7. �

C4. Proof of Theorem 8

To simplify the proof, we split the n observations into two groups, with sample sizes

n1 = n − n1−ε, n2 = n1−ε respectively, where ε is a sufficiently small positive num-

ber. Suppose that θ̃ is obtained using the observations Xn1+1, . . . , Xn, and f̃(·, θ̃)

is obtained using the observations X1, . . . , Xn1 and θ̃. From Theorem 6, θ̃ satisfies
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θ̃ − θ0 = Op(n
−1/2
2 ). To calculate bias, we have

E{f̃(t, θ̃)}

= E{f̃(t,θ0)}+O(n
−1/2
2 )

=
1

hw1(t,β0)
E

{
K

(
X − µ0 − t

h

)
+K

(
X − µ0 + t

h

)}
+O(n

−1/2
2 )

=
c(β0)

hw1(t,β0)

∫ t+µ0+h

t+µ0−h
K

(
x− µ0 − t

h

)
f0(x− µ0)w(x− µ0,β0)dx

+
c(β0)

hw1(t,β0)

∫ µ0−t+h

µ0−t−h
K

(
x− µ0 + t

h

)
f0(x− µ0)w(x− µ0,β0)dx+O(n

−1/2
2 )

=
c(β0)

w1(t,β0)

∫ 1

−1

K(s) {f0(t+ hs)w(t+ hs,β0) + f0(hs− t)w(hs− t,β0)} ds

+O(n
−1/2
2 )

= c(β0)f0(t) +
h2c(β0)c2

2

{
f0
′′(t) +

2f ′0(t)w′1(t,β0)

w1(t,β0)
+
f0(t)w′′1(t,β0)

w1(t,β0)

}
+ o(h2).

Thus the bias is

bias{f̃(t, θ̃)} = E{f̃(t, θ̃)} − c(β0)f0(t)

=
h2c(β0)c2

2

{
f0
′′(t) +

2f ′0(t)w′1(t,β0)

w1(t,β0)
+
f0(t)w′′1(t,β0)

w1(t,β0)

}
+ o(h2).

To analyze the variance, we have

var{f̃(t, θ̃)}

= var{f̃(t,θ0)}+O(n−1
2 )

= var

[
1

w1(t,β0)

n1∑
i=1

1

n1h

{
K

(
Xi − µ0 − t

h

)
+K

(
Xi − µ0 + t

h

)}]
+O(n−1

2 )

=
1

n1h2w2
1(t,β0)

var

{
K

(
X − µ0 − t

h

)
+K

(
X − µ0 + t

h

)}
+O(n−1

2 )

=
1

n1h2w2
1(t,β0)

var

{
K

(
X − µ0 − t

h

)}
+

1

n1h2w2
1(t,β0)

var

{
K

(
X − µ0 + t

h

)}
+

2

n1h2w2
1(t,β0)

cov

{
K

(
X − µ0 − t

h

)
, K

(
X − µ0 + t

h

)}
+O(n−1

2 ).
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We can easily obtain

1

n1h2w2
1(t,β0)

var

{
K

(
X − µ0 − t

h

)}
=

c(β0)

n1hw2
1(t,β0)

∫
K2(s)f0(t+ hs)w(t+ hs,β0)ds+O(n−1

1 )

=
c(β0)v2

n1hw2
1(t,β0)

f0(t)w(t,β0) +O(n−1
1 ).

Similarly,

1

n1h2w2
1(t,β0)

var

{
K

(
X − µ0 + t

h

)}
=

c(β0)v2

n1hw2
1(t,β0)

f0(t)w(−t,β0) +O(n−1
1 ).

The covariance term vanishes unless t satisfies −h + |X − µ0| < t < h − |X − µ0|.

Thus, for |t| ≥ h, the covariance term is zero. Otherwise, we have

2

n1h2w2
1(t,β0)

cov

{
K

(
X − µ0 − t

h

)
, K

(
X − µ0 + t

h

)}
=

2c(β0)

n1hw2
1(t,β0)

∫ 1− |t|
h

|t|
h
−1

K(s− t/h)K(s+ t/h)f0(hs)w(hs,β0)ds+O(n−1
1 )

=
2c(β0)

n1hw2
1(t,β0)

∫ 1− |t|
h

0

K(s− t/h)K(s+ t/h)f0(hs)w1(hs,β0)ds+O(n−1
1 ).

Obviously,

2cov

{
K

(
X − µ0 − t

h

)
, K

(
X − µ0 + t

h

)}
≤ var

{
K

(
X − µ0 − t

h

)}
+ var

{
K

(
X − µ0 + t

h

)}
,

hence the above integral is a bounded quantity. Combining the above results, we have
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var{f̃(t, θ̃)}

=
c(β0)

n1hw1(t,β0)

{
v2f0(t) +

2I(|t| < h)

w1(t,β0)

∫ 1− |t|
h

0
K(s− t/h)K(s+ t/h)f0(hs)w1(hs,β0)ds

}
+o{(n1h)

−1}

≤ 2c(β0)v2f0(t)

n1hw1(t,β0)
+ o{(n1h)

−1}.

�

C5. Proof of Theorem 9

To simplify the proof, we split the n observations into three groups, with sample sizes

n1 = n − 2n1−ε, n2 = n3 = n1−ε respectively, where ε is a sufficiently small positive

number. The data splitting technique helps to circumvent the complexity of corre-

lations among different components in the estimation procedure. It is not necessary

in practice. Let θ̃ be an estimator obtained using the observations Xn1+n2+1, . . . , Xn;

let f̃(·, θ̃) be obtained using observations Xn1+1, . . . , Xn1+n2 and θ̃; and let the final

estimating equation be based on the observations X1, . . . , Xn1 . From Theorem 6, we

have θ̃ − θ0 = Op(n
−1/2
3 ).

We write the estimating equation as

0 = n
−1/2
1

n1∑
i=1

Seff{Xi, θ̂, f̃(·, θ̃)}

= n
−1/2
1

n1∑
i=1

Seff(Xi,θ0, f0) + n−1
1

n1∑
i=1

∂Seff{Xi,θ
∗, f̃(·, θ̃)}

∂θT
n

1/2
1 (θ̂ − θ0)

+n
−1/2
1

n1∑
i=1

[
Seff{Xi,θ0, f̃(·, θ̃)} − Seff(Xi,θ0, f0)

]
,
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where θ∗ = Λθ̂ + (1− Λ)θ0 for 0 ≤ Λ ≤ 1. It is easy to see that

n−1
1

n1∑
i=1

∂Seff{Xi,θ
∗, f̃(·, θ̃)}

∂θT
= E

{
∂Seff(X,θ0, f0)

∂θT

}
+ op(1)

= −E{Seff(X,θ0, f0)⊗2}+ op(1),

where we used the results from Theorems 6 and 8 in the first equality and the last

equality is because Seff is the orthogonal projection of the score function to Λ⊥. It

remains to demonstrate that

n
−1/2
1

n1∑
i=1

[
Seff{Xi,θ0, f̃(·, θ̃)} − Seff(Xi,θ0, f0)

]
= op(1),

or equivalently, using the explicit form of Seff, we need to show

n
−1/2
1

n1∑
i=1

{
f̃ ′(Xi − µ0, θ̃)

f̃(Xi − µ0, θ̃)
− f ′0(Xi − µ0)

f0(Xi − µ0)

}
w(−Xi + µ0,β0)

w1(Xi − µ0,β0)
= op(1). (C.2)

Consider the first moment of the left side of (C.2). We have

n
−1/2
1

n1∑
i=1

E

[{
f̃ ′(Xi − µ0, θ̃)

f̃(Xi − µ0, θ̃)
− f ′0(Xi − µ0)

f0(Xi − µ0)

}
w(−Xi + µ0,β0)

w1(Xi − µ0,β0)

]

= n
1/2
1 E

∫ {
f̃ ′(t, θ̃)

f̃(t, θ̃)
− f ′0(t)

f0(t)

}
w(−t,β0)

w1(t,β0)
c(β0)f0(t)w(t,β0)dt = 0,

because the integrand is an odd function. Consider the second moment of the left
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side of (C.2). We have

E

[n−1/2
1

n1∑
i=1

{
f̃ ′(Xi − µ0, θ̃)

f̃(Xi − µ0, θ̃)
− f ′0(Xi − µ0)

f0(Xi − µ0)

}
2w(−Xi + µ0,β0)

w1(Xi − µ0,β0)

]2


= E

{ f̃ ′(Xi − µ0, θ̃)

f̃(Xi − µ0, θ̃)
− f ′0(Xi − µ0)

f0(Xi − µ0)

}2
4w2(−Xi + µ0,β0)

w2
1(Xi − µ0,β0)


= E

∫ {
f̃ ′(t, θ̃)

f̃(t, θ̃)
− f ′0(t)

f0(t)

}2
4w2(−t,β0)

w2
1(t,β0)

c(β0)f0(t)w(t,β0)dt

≤ 4c(β0)E

∫ { f̃ ′(t, θ̃)

f̃(t, θ̃)
− f̃ ′(t,θ0)

f̃(t,θ0)

}2

+

{
f̃ ′(t,θ0)

f̃(t,θ0)
− f ′0(t)

f0(t)

}2
 f0(t)dt,

where we used

w(t,β0)w(−t,β0)

w1(t,β0)
≤ 1

2
and

w(−t,β0)

w1(t,β0)
≤ 1.

Using the delta method, we have

E

∫ {
f̃ ′(t, θ̃)

f̃(t, θ̃)
− f̃ ′(t,θ0)

f̃(t,θ0)

}2

f0(t)dt

= E

∫
E

{ f̃ ′(t, θ̃)

f̃(t, θ̃)
− f̃ ′(t,θ0)

f̃(t,θ0)

}2 ∣∣∣Xn1+1, . . . , Xn1+n2

 f0(t)dt

= E{Op(n
−1
3 )} = o(1).

On the other hand,

E

∫ {
f̃ ′(t,θ0)

f̃(t,θ0)
− f ′0(t)

f0(t)

}2

f0(t)dt

is the MISE of the nonparametric estimations and has order O{h4 +(n2h
3)−1} = o(1)

for h = O(n−1/5) following the results in Theorem 8. Thus the second moment of the

left side of (C.2) converges to zero as n → ∞. From Serfling (2002, 1.2.3), (C.2) is

indeed true.
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Summarizing the above results, taking into account that n1 = n− 2n1−ε implies

n1/2(θ̂ − θ0)− n1/2
1 (θ̂ − θ0) = op(1),

we have

n1/2(θ̂ − θ0)→ N
(
0,
[
E{Seff(X,θ0, f0)⊗2}

]−1
)
.

�
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