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ABSTRACT

Interference Channel with State Information. (August 2012)

Lili Zhang,

B.S., University of Science and Technology of China;

M.S., University of Science and Technology of China

Chair of Advisory Committee: Shuguang Cui

In this dissertation, we study the state-dependent two-user interference channel,

where the state information is non-causally known at both transmitters but unknown

to either of the receivers. We first propose two coding schemes for the discrete mem-

oryless case: simultaneous encoding for the sub-messages in the first one and super-

position encoding in the second one, both with rate splitting and Gel’fand-Pinsker

coding. The corresponding achievable rate regions are established. Moreover, for

the Gaussian case, we focus on the simultaneous encoding scheme and propose an

active interference cancellation mechanism, which is a generalized dirty-paper coding

technique, to partially eliminate the state effect at the receivers. The corresponding

achievable rate region is then derived. We also propose several heuristic schemes for

some special cases: the strong interference case, the mixed interference case, and the

weak interference case. For the strong and mixed interference case, numerical results

are provided to show that active interference cancellation significantly enlarges the

achievable rate region. For the weak interference case, flexible power splitting instead

of active interference cancellation improves the performance significantly.

Moreover, we focus on the simplest symmetric case, where both direct link gains

are the same with each other, and both interfering link gains are the same with each

other. We apply the above coding scheme with different dirty paper coding param-

eters. When the state is additive and symmetric at both receivers, we study both



iv

strong and weak interference scenarios and characterize the theoretical gap between

the achievable symmetric rate and the upper bound, which is shown to be less than

1/4 bit for the strong interference case and less than 3/4 bit for the weak interference

case. Then we provide numerical evaluations of the achievable rates against the upper

bound, which validates the theoretical analysis for both strong and weak interference

scenarios. Finally, we define the generalized degrees of freedom for the symmetric

Gaussian case, and compare the lower bounds against the upper bounds for both

strong and weak interference cases. We also show that our achievable schemes can

obtain the exact optimal values of the generalized degrees of freedom, i.e., the lower

bounds meet the upper bounds for both strong and weak interference cases.
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CHAPTER I

INTRODUCTION

A. Overview of Prior Works

The interference channel (IC) models the situation where several independent trans-

mitters communicate with their corresponding receivers simultaneously over a com-

mon spectrum. Due to the shared medium, each receiver suffers from interferences

caused by the transmissions of other transceiver pairs. The research of IC was initi-

ated by Shannon [1] and the channel was first thoroughly studied by Ahlswede [2].

Later, Carleial [3] established an improved achievable rate region by applying the su-

perposition coding scheme. In [4], Han and Kobayashi obtained the best achievable

rate region known to date for the general IC by utilizing simultaneous decoding at

the receivers. Recently, this rate region has been re-characterized with superposition

encoding for the sub-messages [5, 6]. However, the capacity region of the general IC

is still an open problem [4].

The capacity region for the corresponding Gaussian case is also unknown except

for several special cases, such as the strong Gaussian IC and the very strong Gaussian

IC [7, 8]. In addition, Sason [9] characterized the sum capacity for a special case of

the Gaussian IC called the degraded Gaussian IC. For more general cases, Han-

Kobayashi region [4] is still the best achievable rate region known to date. However,

for the general Gaussian interference channel, the calculation of the Han-Kobayashi

region bears high complexity. The authors in [10] proposed a simpler heuristic coding

scheme, for which they set the private message power at both transmitters in a special

way such that the interfered private signal-to-noise ratio (SNR) at each receiver is

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1.: A multi-cell downlink communication example, which can be modeled as an
interference channel with state information non-causally known at both transmitters.

equal to 1. An upper bound on the capacity was also derived in [10] and it was shown

that the gap between the heuristic lower bound and the capacity upper bound is less

than one bit for both weak and mixed interference cases.

Many variations of the interference channel have also been studied, including the

IC with feedback [11] and the IC with conferencing encoders/decoders [12]. Here,

we study another variation of the IC: the state-dependent two-user IC with state

information non-causally known at both transmitters. This situation may arise in a

multi-cell downlink communication scenario as shown in Fig. 1, where two interested

cells are interfering with each other and the mobiles suffer from some common inter-

ference (which can be from other neighboring cells and viewed as state) non-causally

known at both of the two base-stations via certain collaboration with the neighboring

base-station. Notably, communication over state-dependent channels has drawn lots

of attentions due to its wide applications such as information embedding [13] and

computer memories with defects [14]. The corresponding framework was also initi-

ated by Shannon in [15], which established the capacity of a state-dependent discrete

memoryless (DM) point-to-point channel with causal state information at the trans-
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mitter. In [16], Gel’fand and Pinsker obtained the capacity for such a point-to-point

case with the state information non-causally known at the transmitter. Subsequently,

Costa [17] extended Gel’fand-Pinsker coding to the state-dependent additive white

Gaussian noise (AWGN) channel, where the state is an additive zero-mean Gaussian

interference. This result is known as the dirty-paper coding (DPC) technique, which

achieves the capacity as if there is no such an interference. For the multi-user case,

extensions of the afore-mentioned schemes appeared in [18–21] for the multiple access

channel (MAC), the broadcast channel, and the degraded Gaussian relay channel,

respectively.

B. Overview of Contributions

In this dissertation, we study the state-dependent IC with state information non-

causally known at the transmitters and develop two coding schemes, both of which

jointly apply rate splitting and Gel’fand-Pinsker coding. In the first coding scheme, we

deploy simultaneous encoding for the sub-messages, and in the second one, we deploy

superposition encoding for the sub-messages. The associated achievable rate regions

are derived based on the respective coding schemes. Then we specialize the achiev-

able rate region corresponding to the simultaneous encoding scheme in the Gaussian

case, where the common additive state is a zero-mean Gaussian random variable.

Specifically, we introduce the notion of active interference cancellation, which gener-

alizes dirty-paper coding by utilizing some transmitting power to partially cancel the

common interference at both receivers. Furthermore, we propose heuristic schemes

for the strong Gaussian IC, the mixed Gaussian IC, and the weak Gaussian IC with

state information, respectively. For the strong Gaussian IC with state information,

the transmitters only send common messages and the DPC parameters are optimized
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for one of the two resulting MACs. For the mixed Gaussian IC with state information,

one transmitter sends common message and the other one sends private message, with

DPC parameters optimized only for one receiver. For the weak interference case, we

apply rate splitting, set the private message power at both transmitters to have the

interfered private SNR at each receiver equal to 1 [10], utilize sequential decoding,

and optimize the DPC parameters for one of the MACs. The time-sharing technique

is applied in all the three cases to obtain enlarged achievable rate regions. Numeri-

cal comparisons among the achievable rate regions and the capacity outer bound are

also provided. For the strong and mixed interference cases, we show that the active

interference cancellation mechanism improves the performance significantly; for the

weak interference case, it is flexible power allocation instead of active interference

cancellation that enlarges the achievable rate region significantly.

Furthermore, we characterize the theoretical gap between the achievable rate

and the upper bound. We focus on the simplest symmetric case, where the direct

link gains are normalized to 1 and the interfering link gains are both g. For the

strong interference case (g > 1), we use the previously mentioned coding scheme but

with different auxiliary random variables, and derive the gap between the achievable

symmetric rate and the upper bound, which is shown to be less than 1/4 bit. For the

weak interference scenario (g < 1), we choose particular auxiliary random variables,

set up the power splitting assignment such that the interfering private SNR is equal

to 1, and analyze the gap between the achievable symmetric rate of the Gaussian IC

with state information and that of the traditional interference channel, which turns

out to be less than 1/4 bit. By combining with the results in [10], we conclude that

the gap between the achievable symmetric rate and the upper bound is less than

3/4 bit when g < 1 (For our AWGN model, all the random variables are defined

over the field of real numbers R). Numerical results are provided to validate the
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theoretical analysis for this symmetric case. Moreover, we define the generalized

degrees of freedom for the symmetric Gaussian case and derive the lower bounds

corresponding to our achievable schemes, which meet the upper bounds and achieve

the exact optimal generalized degrees of freedom.

C. Organization

The rest of the dissertation is organized as following. In Chapter II, the discrete

memoryless channel model and the definition of achievable rate region are presented.

Then we provide two achievable rate regions for the discrete memoryless IC with

state information non-causally known at both transmitters, based on the two differ-

ent coding schemes, respectively. In Chapter III, we discuss the Gaussian case and

present the main idea of active interference cancellation. The strong interference,

mixed interference, and weak interference cases are studied. In addition, the numer-

ical results comparing different inner bounds against the outer bound are given. In

Chapter IV, the symmetric Gaussian channel model and the definition of symmetric

capacity are provided. Then we present the auxiliary random variables and analyze

the gap between the achievable symmetric rate and the upper bound for the strong

interference case. Afterwards, we focus on the weak interference scenario and present

the gap analysis. Numerical comparisons between the achievable symmetric rate and

the upper bound are shown. Furthermore, we derive the optimal generalized degrees

of freedom for the symmetric Gaussian case. At last, we conclude our work in Chapter

V.
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CHAPTER II

DISCRETE MEMORYLESS CHANNEL

In this chapter, we first present the discrete memoryless channel model for the state-

dependent interference channel. Then we propose two new coding schemes for this DM

interference channel with state information non-causally known at both transmitters

and quantify the associated achievable rate regions. For both coding schemes, we

jointly deploy rate splitting and Gel’fand-Pinsker coding. Specifically, in the first

coding scheme, we use simultaneous encoding on the sub-messages, while in the second

one we apply superposition encoding.

A. Channel Model

Consider the interference channel as shown in Fig. 2, where two transmitters commu-

nicate with the corresponding receivers through a common medium that is dependent

on state S. The transmitters do not cooperate with each other; however, they both

know the state information S non-causally, which is known to neither of the receivers.

Each receiver needs to decode the information from the corresponding transmitter.

We use the following notations for the DM channel. The random variable is

defined as X with value x in a finite set X . Let pX(x) be the probability mass

function of X on X . The corresponding sequences are denoted by xn with length n.

The state-dependent two-user interference channel is defined by (X1,X2,Y1,Y2,S,

p(y1, y2|x1, x2, s)), where X1,X2 are two input alphabet sets, Y1,Y2 are the corre-

sponding output alphabet sets, S is the state alphabet set, and p(y1, y2|x1, x2, s) is

the conditional probability of (y1, y2) ∈ Y1×Y2 given (x1, x2, s) ∈ X1×X2×S. The
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Fig. 2.: The interference channel with state information non-causally known at both
transmitters.

channel is assumed to be memoryless, i.e.,

p(yn1 , y
n
2 |xn

1 , x
n
2 , s

n) =
n∏

i=1

p(y1i, y2i|x1i, x2i, si),

where i is the element index for each sequence.

A (2nR1 , 2nR2 , n) code for the above channel consists of two independent message

sets {1, 2, · · · , 2nR1} and {1, 2, · · · , 2nR2}, two encoders that respectively assign two

codewords to messages m1 ∈ {1, 2, · · · , 2nR1} and m2 ∈ {1, 2, · · · , 2nR2} based on

the non-causally known state information sn, and two decoders that respectively

determine the estimated messages m̂1 and m̂2 or declare an error from the received

sequences.

The average probability of error is defined as:

P (n)
e =

1

2n(R1+R2)

∑
m1,m2

Pr{m̂1 ̸= m1 or m̂2 ̸= m2|(m1,m2) is sent}, (2.1)

where (m1,m2) is assumed to be uniformly distributed over {1, 2, · · · , 2nR1}×{1, 2, · · · ,

2nR2}.

Definition 1. A rate pair (R1, R2) of non-negative real values is achievable if there

exists a sequence of (2nR1 , 2nR2 , n) codes with P
(n)
e → 0 as n → ∞. The set of all

achievable rate pairs is defined as the capacity region.
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B. Simultaneous Encoding Scheme

Now we introduce the following rate region achieved by the first coding scheme,

which combines rate splitting and Gel’fand-Pinsker coding. Let us consider the aux-

iliary random variables Q, U1, V1, U2, and V2, defined on arbitrary finite sets Q,

U1, V1, U2, and V2, respectively. The joint probability distribution of the above

auxiliary random variables and the state variable S is chosen to satisfy the form

p(s)p(q)p(u1|q, s)p(v1|q, s)p(u2|q, s)p(v2|q, s). Moreover, for a given Q, we let the

channel input Xj be an arbitrary deterministic function of Uj, Vj, and S. The

achievable rate region of the simultaneous encoding scheme is given in the follow-

ing theorem.

Theorem 1. For a fixed probability distribution p(q)p(u1|q, s)p(v1|q, s)p(u2|q, s)

p(v2|q, s), let R1 be the set of all non-negative rate tuple (R10, R11, R20, R22) satisfying

R11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1;Y1|U1, U2, Q)

−I(V1;S|Q), (2.2)

R10 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1;Y1|V1, U2, Q)

−I(U1;S|Q), (2.3)

R10 +R11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1;Y1|U2, Q)

−I(U1;S|Q)− I(V1;S|Q), (2.4)

R11 +R20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1, U2;Y1|U1, Q)

−I(V1;S|Q)− I(U2;S|Q), (2.5)

R10 +R20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, U2;Y1|V1, Q)

−I(U1;S|Q)− I(U2;S|Q), (2.6)

R10 +R11 +R20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1, U2;Y1|Q)
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−I(U1;S|Q)− I(V1;S|Q)− I(U2;S|Q), (2.7)

R22 ≤ I(U2;U1|Q) + I(U2, U1;V2|Q) + I(V2;Y2|U2, U1, Q)

−I(V2;S|Q), (2.8)

R20 ≤ I(U2;U1|Q) + I(U2, U1;V2|Q) + I(U2;Y2|V2, U1, Q)

−I(U2;S|Q), (2.9)

R20 +R22 ≤ I(U2;U1|Q) + I(U2, U1;V2|Q) + I(U2, V2;Y2|U1, Q)

−I(U2;S|Q)− I(V2;S|Q), (2.10)

R22 +R10 ≤ I(U2;U1|Q) + I(U2, U1;V2|Q) + I(V2, U1;Y2|U2, Q)

−I(V2;S|Q)− I(U1;S|Q), (2.11)

R20 +R10 ≤ I(U2;U1|Q) + I(U2, U1;V2|Q) + I(U2, U1;Y2|V2, Q)

−I(U2;S|Q)− I(U1;S|Q), (2.12)

R20 +R22 +R10 ≤ I(U2;U1|Q) + I(U2, U1;V2|Q) + I(U2, V2, U1;Y2|Q)

−I(U2;S|Q)− I(V2;S|Q)− I(U1;S|Q). (2.13)

Then for any (R10, R11, R20, R22) ∈ R1, the rate pair (R10+R11, R20+R22) is achiev-

able for the DM interference channel with state information defined in Section A.

Remark 1. The detailed proof is given in Appendix A with the outline sketched as

follows. For the coding scheme in Theorem 1, the message at transmitter j (j = 1

or 2) is splitted into two parts: the public message mj0 and the private message

mjj. Furthermore, Gel’fand-Pinsker coding is utilized to help both transmitters send

the messages with the non-causal knowledge of the state information. Specifically,

transmitter j finds the corresponding public codeword uj and the private codeword vj

such that they are jointly typical with the state sn. Then the transmitting codeword is

constructed as a deterministic function of the public codeword uj, the private codeword
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vj, and the state sn. At the receiver side, decoder j tries to decode the corresponding

messages from transmitter j and the public message of the interfering transmitter.

The rest follows by the usual error event grouping and error probability analysis.

Remark 2. The auxiliary random variables in Theorem 1 can be interpreted as fol-

lows: Q is the time-sharing random variable; Uj and Vj (j = 1 or 2) are the auxiliary

random variables to carry the public and private messages at transmitter j, respec-

tively. It can be easily seen from the joint probability distribution that Uj and Vj are

conditionally independent given Q and S, which means that the public and private

messages are encoded “simultaneously”.

An explicit description of the achievable rate region can be obtained by applying

the Fourier-Motzkin algorithm [5] on our implicit description (2.2)-(2.13), as shown

in the next corollary.

Corollary 1. For a fixed probability distribution p(q)p(u1|q, s)p(v1|q, s)p(u2|q, s)

p(v2|q, s), let R̂1 be the set of all non-negative rate pairs (R1, R2) satisfying

R1 ≤ min{d1, g1, a1 + b1, a1 + f1, a1 + e2, a1 + f2, b1 + e1,

e1 + f1, e1 + f2}, (2.14)

R2 ≤ min{d2, g2, a2 + b2, a2 + f2, a2 + e1, a2 + f1, b2 + e2,

e2 + f2, e2 + f1}, (2.15)

R1 +R2 ≤ min{a1 + g2, a2 + g1, e1 + g2, e2 + g1, e1 + e2, a1 + a2 + f1,

a1 + a2 + f2, a1 + b2 + e2, a2 + b1 + e1}, (2.16)

R1 + 2R2 ≤ min{e1 + f1 + 2a2, e1 + 2a2 + f2, e1 + a2 + g2}, (2.17)

2R1 +R2 ≤ min{e2 + f2 + 2a1, e2 + 2a1 + f1, e2 + a1 + g1}, (2.18)
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where

a1 = I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1;Y1|U1, U2, Q)− I(V1;S|Q),

b1 = I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1;Y1|V1, U2, Q)− I(U1;S|Q),

d1 = I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1;Y1|U2, Q)− I(U1;S|Q)− I(V1;S|Q),

e1 = I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1, U2;Y1|U1, Q)− I(V1;S|Q)− I(U2;S|Q),

f1 = I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, U2;Y1|V1, Q)− I(U1;S|Q)− I(U2;S|Q),

g1 = I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1, U2;Y1|Q)− I(U1;S|Q)− I(V1;S|Q)

−I(U2;S|Q),

a2 = I(U2;U1|Q) + I(U2, U1;V2|Q) + I(V2;Y2|U2, U1, Q)− I(V2;S|Q),

b2 = I(U2;U1|Q) + I(U2, U1;V2|Q) + I(U2;Y2|V2, U1, Q)− I(U2;S|Q),

d2 = I(U2;U1|Q) + I(U2, U1;V2|Q) + I(U2, V2;Y2|U1, Q)− I(U2;S|Q)− I(V2;S|Q),

e2 = I(U2;U1|Q) + I(U2, U1;V2|Q) + I(V2, U1;Y2|U2, Q)− I(V2;S|Q)− I(U1;S|Q),

f2 = I(U2;U1|Q) + I(U2, U1;V2|Q) + I(U2, U1;Y2|V2, Q)− I(U2;S|Q)− I(U1;S|Q),

g2 = I(U2;U1|Q) + I(U2, U1;V2|Q) + I(U2, V2, U1;Y2|Q)− I(U2;S|Q)− I(V2;S|Q)

−I(U1;S|Q).

Then any rate pair (R1, R2) ∈ R̂1 is achievable for the DM interference channel with

state information defined in Section A.

C. Superposition Encoding Scheme

We now present the second coding scheme, which applies superposition encoding for

the sub-messages. Similar to the auxiliary random variables in Theorem 1, in the

following theorem, Q is also the time-sharing random variable; Uj and Vj (j = 1 or

2) are the auxiliary random variables to carry the public and private messages at
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transmitter j, respectively. The difference here is the joint probability distribution

p(s)p(q)p(u1|s, q)p(v1|u1, s, q)p(u2|s, q)p(v2|u2, s, q), where Uj and Vj are not condi-

tionally independent given Q and S. This also implies the notion of “superposition

encoding”. The achievable rate region of the superposition encoding scheme is given

in the following theorem.

Theorem 2. For a fixed probability distribution p(q)p(u1|s, q)p(v1|u1, s, q)p(u2|s, q)

p(v2|u2, s, q), let R2 be the set of all non-negative rate tuple (R10, R11, R20, R22) sat-

isfying

R11 ≤ I(U1, V1;U2|Q) + I(V1;Y1|U1, U2, Q)

−I(V1;S|U1, Q), (2.19)

R10 +R11 ≤ I(U1, V1;U2|Q) + I(U1, V1;Y1|U2, Q)

−I(U1, V1;S|Q), (2.20)

R11 +R20 ≤ I(U1, V1;U2|Q) + I(V1, U2;Y1|U1, Q)

−I(V1;S|U1, Q)− I(U2;S|Q), (2.21)

R10 +R11 +R20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q)

−I(U1, V1;S|Q)− I(U2;S|Q), (2.22)

R22 ≤ I(U2, V2;U1|Q) + I(V2;Y2|U2, U1, Q)

−I(V2;S|U2, Q), (2.23)

R20 +R22 ≤ I(U2, V2;U1|Q) + I(U2, V2;Y2|U1, Q)

−I(U2, V2;S|Q), (2.24)

R22 +R10 ≤ I(U2, V2;U1|Q) + I(V2, U1;Y2|U2, Q)

−I(V2;S|U2, Q)− I(U1;S|Q), (2.25)

R20 +R22 +R10 ≤ I(U2, V2;U1|Q) + I(U2, V2, U1;Y2|Q)
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−I(U2, V2;S|Q)− I(U1;S|Q). (2.26)

Then for any (R10, R11, R20, R22) ∈ R2, the rate pair (R10+R11, R20+R22) is achiev-

able for the DM interference channel with state information defined in Section A.

The detailed proof for Theorem 2 is given in Appendix B.

Remark 3. Compared with the first coding scheme in Theorem 1, the rate splitting

structure is also applied in the achievable scheme of Theorem 2. The main differ-

ence here is that instead of simultaneous encoding, now the private message mjj is

superimposed on the public message mj0 for the jth transmitter, j = 1, 2. In addi-

tion, Gel’fand-Pinsker coding is utilized to help the transmitters send both public and

private messages.

Remark 4. It can be easily seen that the achievable rate region R1 in Theorem 1

is a subset of R2, i.e., R1 ⊆ R2. However, whether these two regions can be equiv-

alent is still under investigation, which is motivated by the equivalence between the

simultaneous encoding region and the superposition encoding region for the traditional

IC [5].

D. Summary

In this chapter, we considered the interference channel with state information non-

causally known at both transmitters. Two achievable rate regions are established

based on two coding schemes with simultaneous encoding and superposition encoding,

respectively.
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CHAPTER III

AWGN CHANNEL

In this chapter, we first present the channel model for the AWGN interference channel

with state information. Then we provide the corresponding achievable rate region

based on the simultaneous encoding scheme described in Chapter II. In addition to

applying dirty paper coding and rate splitting, here we also introduce the idea of active

interference cancellation, which allocates some source power to cancel the state effect

at the receivers. Finally, we propose heuristic schemes for the strong Gaussian IC, the

mixed Gaussian IC, and the weak Gaussian IC with state information, respectively.

Numerical comparisons among the achievable rate regions and the capacity outer

bound are also provided.

A. Channel Model

The Gaussian counterpart of the previously defined DM channel is shown in Fig.

3, where two transmitters communicate with the corresponding receivers through a

common channel that is dependent on state S, which can be treated as a common

interference. The corresponding signal structure can be described by the following

channel input and output relationship:

Y ′
1 = h11X

′
1 + h12X

′
2 + S + Z ′

1,

Y ′
2 = h22X

′
2 + h21X

′
1 + S + Z ′

2,

where hij is the real link amplitude gain from the jth transmitter to the ith receiver,

X ′
i and Y ′

i are the channel input and output, respectively, and Z ′
i is the zero-mean

AWGN noise with variance Ni, for i = 1, 2 and j = 1, 2. Both receivers also suffer
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Fig. 3.: The Gaussian interference channel with state information non-causally known at
both transmitters.

from a zero-mean additive white Gaussian interference S with variance K, which is

non-causally known at both transmitters1. Note that for this AWGN model, all the

random variables are defined over the field of real numbers R.

Without loss of generality, we transform the signal model into the following

standard form [4]:

Y1 = X1 +
√
g12X2 +

1√
N1

S + Z1, (3.1)

Y2 = X2 +
√
g21X1 +

1√
N2

S + Z2, (3.2)

where

Y1 =
Y ′
1√
N1

, X1 =
h11X

′
1√

N1

, g12 =
h2
12N2

h2
22N1

, Z1 =
Z ′

1√
N1

,

Y2 =
Y ′
2√
N2

, X2 =
h22X

′
2√

N2

, g21 =
h2
21N1

h2
11N2

, Z2 =
Z ′

2√
N2

.

1In general, the additive states over the two links may not be the same, i.e., we
may have Y ′

1 = h11X
′
1+h12X

′
2+S1+Z ′

1 and Y ′
2 = h22X

′
2+h21X

′
1+S2+Z ′

2. However,
in this dissertation we only focus on the simplest scenario: S1 = S2 = S. The more
general cases with state (S1, S2) and different knowledge levels at the two transmitters
will be studied in our future work.
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Note that Z1 and Z2 have unit variance in (3.1) and (3.2). We also impose the

following power constraints on the channel inputs X1 and X2:

1

n

n∑
i=1

(X1i)
2 ≤ P1, and

1

n

n∑
i=1

(X2i)
2 ≤ P2.

B. Achievable Rate Regions for AWGN Case with Active Interference Cancellation

In the general Gaussian interference channel, the simultaneous encoding over the sub-

messages can be viewed as sending Xj = Aj + Bj at the jth transmitter, j = 1, 2,

where Aj and Bj are independent and correspond to the public and private messages,

respectively. Correspondingly, for the Gaussian IC with state information defined in

Section A, we focus on the coding scheme based on simultaneous encoding that was

discussed in Section B. Specifically, we apply dirty paper coding to both public and

private parts, i.e., we define the auxiliary variables as follows:

U1 = A1 + α10S, V1 = B1 + α11S, (3.3)

U2 = A2 + α20S, V2 = B2 + α22S. (3.4)

In addition, we allow both transmitters to apply active interference cancellation

by allocating a certain amount of power to send counter-phase signals against the

known interference S, i.e.,

X1 = A1 +B1 − γ1S, (3.5)

X2 = A2 +B2 − γ2S, (3.6)

where γ1 and γ2 are active cancellation parameters. The idea is to generalize dirty-

paper coding by allocating some transmitting power to cancel part of the state effect

at both receivers. Assume A1 ∼ N (0, β1(P1 − γ2
1K)), B1 ∼ N (0, β̄1(P1 − γ2

1K)),

A2 ∼ N (0, β2(P2 − γ2
2K)), and B2 ∼ N (0, β̄2(P2 − γ2

2K)), where β1 + β̄1 = 1 and
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β2 + β̄2 = 1. According to the Gaussian channel model defined in Section A, the

received signals can be determined as:

Y1 = A1 +B1 +
√
g12(A2 +B2) + µ1S + Z1,

Y2 = A2 +B2 +
√
g21(A1 +B1) + µ2S + Z2,

where µ1 =
1√
N1

− γ1 − γ2
√
g12 and µ2 =

1√
N2

− γ2 − γ1
√
g21.

For convenience, we denote PA1 = β1(P1 − γ2
1K), PB1 = β̄1(P1 − γ2

1K), PA2 =

β2(P2 − γ2
2K), and PB2 = β̄2(P2 − γ2

2K). Also define GU1 = α2
10K/PA1 , GV1 =

α2
11K/PB1 , GU2 = α2

20K/PA2 , and GV2 = α2
22K/PB2 .

The achievable rate region can be obtained by evaluating the rate region given

in Theorem 1 with respect to the corresponding Gaussian auxiliary variables and

channel outputs.

Theorem 3. Let R′
1 be the set of all non-negative rate tuple (R10, R11, R20, R22)

satisfying

R11 ≤ 1

2
log

[
1

L1

(
(1 + PB1 + g12PB2) (1 +GU1 +GU2 +GU1GU2)

+K(α10 + α20
√
g12 − µ1)

2

(
1 +

GU1GU2

1 +GU1 +GU2

))]
,

R10 ≤ 1

2
log

[
1

L1

(
(1 + PA1 + g12PB2) (1 +GV1 +GU2 +GV1GU2)

+K(α11 + α20
√
g12 − µ1)

2

(
1 +

GV1GU2

1 +GV1 +GU2

))]
,

R10 +R11 ≤ 1

2
log

[
1

L1

(
(1 + PA1 + PB1 + g12PB2) (1 +GU2)

+K(α20
√
g12 − µ1)

2

)]
,
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R11 +R20 ≤ 1

2
log

[
1

L1

(
(1 + PB1 + g12PA2 + g12PB2) (1 +GU1)

+K(α10 − µ1)
2

)]
,

R10 +R20 ≤ 1

2
log

[
1

L1

(
(1 + PA1 + g12PA2 + g12PB2) (1 +GV1)

+K(α11 − µ1)
2

)]
,

R10 +R11 +R20 ≤ 1

2
log

[
1

L1

(
1 + PA1 + PB1 + g12PA2 + g12PB2 + µ2

1K
)]

,

R22 ≤ 1

2
log

[
1

L2

(
(1 + PB2 + g21PB1) (1 +GU2 +GU1 +GU2GU1)

+K(α20 + α10
√
g21 − µ2)

2

(
1 +

GU2GU1

1 +GU2 +GU1

))]
,

R20 ≤ 1

2
log

[
1

L2

(
(1 + PA2 + g21PB1) (1 +GV2 +GU1 +GV2GU1)

+K(α22 + α10
√
g21 − µ2)

2

(
1 +

GV2GU1

1 +GV2 +GU1

))]
,

R20 +R22 ≤ 1

2
log

[
1

L2

(
(1 + PA2 + PB2 + g21PB1) (1 +GU1)

+K(α10
√
g21 − µ2)

2

)]
,

R22 +R10 ≤ 1

2
log

[
1

L2

(
(1 + PB2 + g21PA1 + g21PB1) (1 +GU2)

+K(α20 − µ2)
2

)]
,

R20 +R10 ≤ 1

2
log

[
1

L2

(
(1 + PA2 + g21PA1 + g21PB1) (1 +GV2)

+K(α22 − µ2)
2

)]
,
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R20 +R22 +R10 ≤ 1

2
log

[
1

L2

(
1 + PA2 + PB2 + g21PA1 + g21PB1 + µ2

2K
)]

.

where

L1 = (1 + g12PB2) (1 +GU1 +GU2 +GV1) +K(α10 + α20
√
g12 + α11 − µ1)

2,

L2 = (1 + g21PB1) (1 +GU2 +GU1 +GV2) +K(α20 + α10
√
g21 + α22 − µ2)

2.

Then for any (R10, R11, R20, R22) ∈ R′
1, the rate pair (R10+R11, R20+R22) is achiev-

able for the Gaussian IC with state information defined in Section A.

Note that the achievable rate region R′
1 depends on the power splitting param-

eters, the active cancellation parameters, and the DPC parameters. To be clear, we

may write R′
1 as R′

1 (β1, β2, γ1, γ2, α10, α11, α20, α22).

Remark 5. It can be easily seen that the above achievable rate region includes the ca-

pacity region of the Gaussian MAC with state information, by only using the common

messages for both transmitters and optimizing the respective DPC parameters.

The following corollary gives the achievable rate region for the Gaussian IC with

state information when the state power K → ∞.

Corollary 2. Let R̃′
1 be the set of all non-negative rate tuple (R10, R11, R20, R22)

satisfying

R10 +R11 ≤ 1

2
log

(1 + PA1 + PB1 + g12PB2)
α2
20

PA2
+ (α20

√
g12 − µ1)

2

L3

 ,

R11 +R20 ≤ 1

2
log

(1 + PB1 + g12PA2 + g12PB2)
α2
10

PA1
+ (α10 − µ1)

2

L3

 ,

R10 +R20 ≤ 1

2
log

(1 + PA1 + g12PA2 + g12PB2)
α2
11

PB1
+ (α11 − µ1)

2

L3

 ,
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R10 +R11 +R20 ≤ 1

2
log

(
µ2
1

L3

)
,

R20 +R22 ≤ 1

2
log

(1 + PA2 + PB2 + g21PB1)
α2
10

PA1
+ (α10

√
g21 − µ2)

2

L4

 ,

R22 +R10 ≤ 1

2
log

(1 + PB2 + g21PA1 + g21PB1)
α2
20

PA2
+ (α20 − µ2)

2

L4

 ,

R20 +R10 ≤ 1

2
log

(1 + PA2 + g21PA1 + g21PB1)
α2
22

PB2
+ (α22 − µ2)

2

L4

 ,

R20 +R22 +R10 ≤ 1

2
log

(
µ2
2

L4

)
,

where

L3 = (1 + g12PB2)

(
α2
10

PA1

+
α2
20

PA2

+
α2
11

PB1

)
+ (α10 + α20

√
g12 + α11 − µ1)

2,

L4 = (1 + g21PB1)

(
α2
20

PA2

+
α2
10

PA1

+
α2
22

PB2

)
+ (α20 + α10

√
g21 + α22 − µ2)

2.

As the state power K → ∞, for any (R10, R11, R20, R22) ∈ R̃′
1, the rate pair (R10 +

R11, R20 + R22) is achievable for the Gaussian IC with state information defined in

Section A.

Remark 6. It can be easily seen that due to the special structure of DPC [20], a

nontrivial rate region can be achieved even when the state power goes to infinity, as

long as the state is non-causally known at the transmitters.

In the following sections, we will consider several special cases of the Gaussian

IC with state information: the strong interference case, the mixed interference case,

and the weak interference case, respectively.
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C. The Strong Gaussian IC with State Information

For the Gaussian IC with state information defined in Section A, the channel is

called strong Gaussian IC with state information if the interference link gains satisfy

g21 ≥ 1 and g12 ≥ 1. In this section, we propose two achievable schemes for the

strong Gaussian IC with state information, and derive the corresponding achievable

rate regions. An enlarged achievable rate region is obtained by combining them with

the time-sharing technique.

1. Scheme without Active Interference Cancellation

We first introduce a simple achievable scheme without active interference cancellation,

which is a building block towards the more general schemes coming next. It is known

that for the traditional strong Gaussian IC, the capacity region can be obtained by the

intersection of two MAC rate regions due to the presence of the strong interference.

However, for the strong Gaussian IC with state information, the two MACs are not

capacity-achieving simultaneously since the optimal DPC parameters are different

for these two MACs. Here we propose a simple achievable scheme, which achieves

the capacity for one of the MACs and leaves the other MAC to suffer from the non-

optimal DPC parameters. Note that now all the source power is used to transmit the

intended message at both transmitters instead of being partly allocated to cancel the

state effect as in Section B.

Theorem 4. Let Cs1 be the set of all non-negative rate pairs (R1, R2) satisfying

R1 ≤ min

{
1

2
log (1 + P1) ,

1

2
log

 (1 + g21P1)
(
1 +

α2
20K

P2

)
+K

(
α20 − 1√

N2

)2
1 +

α2
20K

P2
+

α2
10K

P1
+K

(
α20 + α10

√
g21 − 1√

N2

)2
},
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R2 ≤ 1

2
log

 (1 + P2)
(
1 +

α2
10K

P1

)
+K

(
α10

√
g21 − 1√

N2

)2
1 +

α2
20K

P2
+

α2
10K

P1
+K

(
α20 + α10

√
g21 − 1√

N2

)2
 ,

R1 +R2 ≤ min

{
1

2
log (1 + P1 + g12P2) ,

1

2
log

 1 + P2 + g21P1 +
K
N2

1 +
α2
20K

P2
+

α2
10K

P1
+K

(
α20 + α10

√
g21 − 1√

N2

)2
},

where α10 = P1√
N1(1+P1+g12P2)

and α20 =
√
g12P2√

N1(1+P1+g12P2)
, which are optimal for the

MAC at receiver 1. Then any rate pair (R1, R2) ∈ Cs1 is achievable for the strong

Gaussian IC with state information.

Similarly, let Cs2 be the set of all non-negative rate pairs (R1, R2) satisfying

R1 ≤ 1

2
log

 (1 + P1)
(
1 +

α2
20K

P2

)
+K

(
α20

√
g12 − 1√

N1

)2
1 +

α2
10K

P1
+

α2
20K

P2
+K

(
α10 + α20

√
g12 − 1√

N1

)2
 ,

R2 ≤ min

{
1

2
log (1 + P2) ,

1

2
log

 (1 + g12P2)
(
1 +

α2
10K

P1

)
+K

(
α10 − 1√

N1

)2
1 +

α2
10K

P1
+

α2
20K

P2
+K

(
α10 + α20

√
g12 − 1√

N1

)2
},

R1 +R2 ≤ min

{
1

2
log (1 + P2 + g21P1) ,

1

2
log

 1 + P1 + g12P2 +
K
N1

1 +
α2
10K

P1
+

α2
20K

P2
+K

(
α10 + α20

√
g12 − 1√

N1

)2
},

where α10 =
√
g21P1√

N2(1+P2+g21P1)
and α20 = P2√

N2(1+P2+g21P1)
, which are optimal for the

MAC at receiver 2). Then any rate pair (R1, R2) ∈ Cs2 is achievable for the strong

Gaussian IC with state information.

Proof. We only give the detailed proof for Cs1 here. Similarly, Cs2 can be obtained by
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achieving the MAC capacity at receiver 2 and letting the MAC at receiver 1 suffer

from the non-optimal DPC parameters.

Due to the presence of the strong interference, we only send common messages

at both transmitters instead of splitting the message into common and private ones.

Accordingly, both receivers need to decode the messages from both transmitters. For

the MAC at receiver 1, the capacity region is given as:

R1 ≤ 1

2
log (1 + P1) ,

R2 ≤ 1

2
log (1 + g12P2) ,

R1 +R2 ≤ 1

2
log (1 + P1 + g12P2) ,

where DPC is utilized at both transmitters and the optimal DPC parameters are

α10 = P1√
N1(1+P1+g12P2)

and α20 =
√
g12P2√

N1(1+P1+g12P2)
. However, the MAC for receiver 2

suffers from the non-optimal DPC parameters and has the following achievable rate

region:

R1 ≤ 1

2
log

 (1 + g21P1)
(
1 +

α2
20K

P2

)
+K

(
α20 − 1√

N2

)2
1 +

α2
20K

P2
+

α2
10K

P1
+K

(
α20 + α10

√
g21 − 1√

N2

)2
 ,

R2 ≤ 1

2
log

 (1 + P2)
(
1 +

α2
10K

P1

)
+K

(
α10

√
g21 − 1√

N2

)2
1 +

α2
20K

P2
+

α2
10K

P1
+K

(
α20 + α10

√
g21 − 1√

N2

)2
 ,

R1 +R2 ≤ 1

2
log

 1 + P2 + g21P1 +
K
N2

1 +
α2
20K

P2
+

α2
10K

P1
+K

(
α20 + α10

√
g21 − 1√

N2

)2
 .

Consequently, we have the achievable region Cs1 for the strong Gaussian IC with

state information, which is the intersection of the above two rate regions for the two

MACs.
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2. Scheme with Active Interference Cancellation

For the strong Gaussian IC with state information, now we propose a more general

achievable scheme with active interference cancellation, which allocates part of the

source power to cancel the state effect at the receivers. Specifically, DPC is used to

achieve the capacity for one of the MACs as shown in Section 1, and active interference

cancellation is employed at both transmitters to cancel the state effect at the receivers.

The corresponding achievable rate regions are provided in the following theorem.

Theorem 5. For any γ2
1 < P1/K and γ2

2 < P2/K, let Cs3(γ1, γ2) be the set of all

non-negative rate pairs (R1, R2) satisfying

R1 ≤ min

{
1

2
log
(
1 + P1 − γ2

1K
)
,

1

2
log

(1 + g21(P1 − γ2
1K))

(
1 +

α2
20K

P2−γ2
2K

)
+K (α20 − µ2)

2

1 +
α2
20K

P2−γ2
2K

+
α2
10K

P1−γ2
1K

+K
(
α20 + α10

√
g21 − µ2

)2
},

R2 ≤ 1

2
log

(1 + P2 − γ2
2K)

(
1 +

α2
10K

P1−γ2
1K

)
+K

(
α10

√
g21 − µ2

)2
1 +

α2
20K

P2−γ2
2K

+
α2
10K

P1−γ2
1K

+K
(
α20 + α10

√
g21 − µ2

)2
 ,

R1 +R2 ≤ min

{
1

2
log
(
1 + P1 − γ2

1K + g12
(
P2 − γ2

2K
))

,

1

2
log

 1 + P2 − γ2
2K + g21(P1 − γ2

1K) + µ2
2K

1 +
α2
20K

P2−γ2
2K

+
α2
10K

P1−γ2
1K

+K
(
α20 + α10

√
g21 − µ2

)2
},

where α10 =
µ1(P1−γ2

1K)

1+P1−γ2
1K+g12(P2−γ2

2K)
and α20 =

µ1
√
g12(P2−γ2

2K)

1+P1−γ2
1K+g12(P2−γ2

2K)
, which are optimal

for the MAC at receiver 1. Then any rate pair (R1, R2) ∈ Cs3(γ1, γ2) is achievable for

the strong Gaussian IC with state information. Moreover, any rate pair in the convex

hull (denoted as Ĉs3) of Cs3(γ1, γ2) is also achievable.

Similarly, for any γ2
1 < P1/K and γ2

2 < P2/K, let Cs4(γ1, γ2) be the set of all
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non-negative rate pairs (R1, R2) satisfying

R1 ≤ 1

2
log

(1 + P1 − γ2
1K)

(
1 +

α2
20K

P2−γ2
2K

)
+K

(
α20

√
g12 − µ1

)2
1 +

α2
10K

P1−γ2
1K

+
α2
20K

P2−γ2
2K

+K
(
α10 + α20

√
g12 − µ1

)2
 ,

R2 ≤ min

{
1

2
log
(
1 + P2 − γ2

2K
)
,

1

2
log

(1 + g12(P2 − γ2
2K))

(
1 +

α2
10K

P1−γ2
1K

)
+K (α10 − µ1)

2

1 +
α2
10K

P1−γ2
1K

+
α2
20K

P2−γ2
2K

+K
(
α10 + α20

√
g12 − µ1

)2
},

R1 +R2 ≤ min

{
1

2
log
(
1 + P2 − γ2

2K + g21(P1 − γ2
1K)

)
,

1

2
log

 1 + P1 − γ2
1K + g12(P2 − γ2

2K) +Kµ2
1

1 +
α2
10K

P1−γ2
1K

+
α2
20K

P2−γ2
2K

+K
(
α10 + α20

√
g12 − µ1

)2
},

where α10 =
µ2

√
g21(P1−γ2

1K)

1+P2−γ2
2K+g21(P1−γ2

1K)
and α20 =

µ2(P2−γ2
2K)

1+P2−γ2
2K+g21(P1−γ2

1K)
, which are optimal

for the MAC at receiver 2. Then any rate pair (R1, R2) ∈ Cs4(γ1, γ2) is achievable for

the strong Gaussian IC with state information. Moreover, any rate pair in the convex

hull (denoted as Ĉs4) of Cs4(γ1, γ2) is also achievable.

The proof is omitted here since it is similar to that of Theorem 4 except for

applying active interference cancellation to both users. Moreover, we see that the

regions Cs1 and Cs2 are equivalent to Cs3(0, 0) and Cs4(0, 0), respectively, which means

that the achievable scheme without active interference cancellation is only a special

case of the one with active interference cancellation.

Note that an enlarged achievable rate region can be obtained by deploying the

time-sharing technique for any points in Cs3(γ1, γ2) and Cs4(γ1, γ2), which is described

in the following corollary.

Corollary 3. The enlarged achievable rate region Cs for the strong Gaussian IC

with state information is given by the closure of the convex hull of
(
0, 1

2
log (1 + P2)

)
,
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(
1
2
log (1 + P1) , 0

)
, and all (R1, R2) in Cs3(γ1, γ2) and Cs4(γ1, γ2) for any γ2

1 < P1/K

and γ2
2 < P2/K.

In Section F, we will numerically compare the above achievable rate regions with

an inner bound, which is denoted as Cs in and defined by the achievable rate region

when the transmitters ignore the non-causal state information. The improvement

due to DPC and active interference cancellation is clearly shown there. We also

compare the above achievable rate regions with an outer bound (denoted by Cs o),

which corresponds to the capacity region of the traditional strong Gaussian IC [8].

Such a correspondence is due to the fact that the traditional Gaussian IC can be

viewed as the idealization of our channel model where the state is also known at the

receivers.

D. The Mixed Gaussian IC with State Information

For the Gaussian IC with state information defined in Section A, the channel is called

mixed Gaussian IC with state information if the interference link gains satisfy g21 > 1,

g12 < 1 or g21 < 1, g12 > 1. In this section, we propose two achievable schemes for the

mixed Gaussian IC with state information, and derive the corresponding achievable

rate regions. Similarly, we can enlarge the achievable rate region by combining them

with the time-sharing technique. Without loss of generality, from now on we assume

that g21 > 1 and g12 < 1.

1. Scheme without Active Interference Cancellation

Similar to the strong Gaussian IC with state information, here we first introduce

a simple scheme without active interference cancellation, which optimizes the DPC

parameters for one receiver and leaves the other receiver suffer from the non-optimal
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DPC parameters. Furthermore, receiver 1 treats the received signal from transmitter

2 as noise, and receiver 2 decodes both messages from transmitter 1 and transmitter

2. Note that now all the source power is used to send the intended messages at both

transmitters instead of employing active interference cancellation.

Theorem 6. For any α22, let Cm1(α22) be the set of all non-negative rate pairs

(R1, R2) satisfying

R1 ≤ min

{
1

2
log

(
1 +

P1

1 + g12P2

)
,

1

2
log

 (1 + g21P1)
(
1 +

α2
22K

P2

)
+K

(
α22 − 1√

N2

)2
1 +

α2
10K

P1
+

α2
22K

P2
+K

(
α10

√
g21 + α22 − 1√

N2

)2
},

R2 ≤ 1

2
log

 (1 + P2)
(
1 +

α2
10K

P1

)
+K

(
α10

√
g21 − 1√

N2

)2
1 +

α2
10K

P1
+

α2
22K

P2
+K

(
α10

√
g21 + α22 − 1√

N2

)2
 ,

R1 +R2 ≤ 1

2
log

 1 + P2 + g21P1 +
K
N2

1 +
α2
10K

P1
+

α2
22K

P2
+K

(
α10

√
g21 + α22 − 1√

N2

)2
 ,

where α10 =
P1√

N1(1+P1+g12P2)
that is optimal for the point-to-point link between trans-

mitter 1 and receiver 1. Then any rate pair (R1, R2) ∈ Cm1(α22) is achievable for the

mixed Gaussian IC with state information. Moreover, any rate pair in the convex hull

(denoted as Ĉm1) of all Cm1(α22) is also achievable.

Similarly, let Cm2 be the set of all non-negative rate pairs (R1, R2) satisfying

R1 ≤ 1

2
log

 1 + P1 + g12P2 +
K
N1

(1 + g12P2)
(
1 +

α2
10K

P1

)
+K

(
α10 − 1√

N1

)2
 ,

R2 ≤ 1

2
log (1 + P2) ,

R1 +R2 ≤ 1

2
log (1 + P2 + g21P1) ,
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where α10 =
√
g21P1√

N2(1+P2+g21P1)
that is optimal for the MAC at receiver 2. Then any rate

pair (R1, R2) ∈ Cm2 is achievable for the mixed Gaussian IC with state information.

Proof. We only give the detailed derivation for Cm1 here. The region Cm2 can be

obtained in a similar manner by achieving the MAC capacity at receiver 2 and letting

receiver 1 suffer from the non-optimal α10.

Since the interference link gains satisfy g21 > 1 and g12 < 1, the interference

for receiver 1 is weaker than its intended signal and the interference for receiver

2 is stronger than its intended signal. Accordingly, we send common message at

transmitter 1 and private message at transmitter 2 instead of splitting the message

into common and private messages for both transmitters. For the direct link from

transmitter 1 to receiver 1, the capacity is

R1 ≤
1

2
log

(
1 +

P1

1 + g12P2

)
,

where the DPC parameter is α10 =
P1√

N1(1+P1+g12P2)
. However, the MAC at receiver 2

suffers from the non-optimal α10 and the achievable rate region is:

R1 ≤ 1

2
log

 (1 + g21P1)
(
1 +

α2
22K

P2

)
+K

(
α22 − 1√

N2

)2
1 +

α2
10K

P1
+

α2
22K

P2
+K

(
α10

√
g21 + α22 − 1√

N2

)2
 ,

R2 ≤ 1

2
log

 (1 + P2)
(
1 +

α2
10K

P1

)
+K

(
α10

√
g21 − 1√

N2

)2
1 +

α2
10K

P1
+

α2
22K

P2
+K

(
α10

√
g21 + α22 − 1√

N2

)2
 ,

R1 +R2 ≤ 1

2
log

 1 + P2 + g21P1 +
K
N2

1 +
α2
10K

P1
+

α2
22K

P2
+K

(
α10

√
g21 + α22 − 1√

N2

)2
 ,

for any α22. Therefore, we have the achievable rate region Cm1(α22) as the intersections

of the above two regions.
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2. Scheme with Active Interference Cancellation

Now we propose a more general scheme with active interference cancellation, which

allocates some source power to cancel the state effect at both receivers. Similarly, the

DPC parameters are only optimized for one receiver, and the other receiver suffers

from the non-optimal DPC parameters. The corresponding achievable rate regions

are stated in the following theorem.

Theorem 7. For any α22, γ
2
1 < P1/K, and γ2

2 < P2/K, let Cm3(α22, γ1, γ2) be the set

of all non-negative rate pairs (R1, R2) satisfying

R1 ≤ min

{
1

2
log

(
1 +

P1 − γ2
1K

1 + g12 (P2 − γ2
2K)

)
,

1

2
log

(1 + g21 (P1 − γ2
1K))

(
1 +

α2
22K

P2−γ2
2K

)
+K (α22 − µ2)

2

1 +
α2
10K

P1−γ2
1K

+
α2
22K

P2−γ2
2K

+K
(
α10

√
g21 + α22 − µ2

)2
},

R2 ≤ 1

2
log

(1 + P2 − γ2
2K)

(
1 +

α2
10K

P1−γ2
1K

)
+K

(
α10

√
g21 − µ2

)2
1 +

α2
10K

P1−γ2
1K

+
α2
22K

P2−γ2
2K

+K
(
α10

√
g21 + α22 − µ2

)2
 ,

R1 +R2 ≤ 1

2
log

 1 + P2 − γ2
2K + g21 (P1 − γ2

1K) +Kµ2
2

1 +
α2
10K

P1−γ2
1K

+
α2
22K

P2−γ2
2K

+K
(
α10

√
g21 + α22 − µ2

)2
 ,

where α10 =
µ1(P1−γ2

1K)

1+P1−γ2
1K+g12(P2−γ2

2K)
that is optimal for the point-to-point link between

transmitter 1 and receiver 1. Then any rate pair (R1, R2) ∈ Cm3(α22, γ1, γ2) is achiev-

able for the mixed Gaussian IC with state information. Moreover, any rate pair in

the convex hull (denoted as Ĉm3) of Cm3(α22, γ1, γ2) is also achievable.

Similarly, for any γ2
1 < P1/K and γ2

2 < P2/K, let Cm4(γ1, γ2) be the set of all

non-negative rate pairs (R1, R2) satisfying

R1 ≤ 1

2
log

 1 + P1 − γ2
1K + g12 (P2 − γ2

2K) +Kµ2
1

(1 + g12 (P2 − γ2
2K))

(
1 +

α2
10K

P1−γ2
1K

)
+K (α10 − µ1)

2

 ,
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R2 ≤ 1

2
log
(
1 + P2 − γ2

2K
)
,

R1 +R2 ≤ 1

2
log
(
1 + P2 − γ2

2K + g21
(
P1 − γ2

1K
))

,

where α10 =
µ2

√
g21(P1−γ2

1K)

1+P2−γ2
2K+g21(P1−γ2

1K)
that is optimal for the MAC at receiver 2). Then

any rate pair (R1, R2) ∈ Cm4(γ1, γ2) is achievable for the mixed Gaussian IC with

state information. Moreover, any rate pair in the convex hull (denoted as Ĉm4) of

Cm4(γ1, γ2) is also achievable.

The proof is omitted here since it is similar to that of Theorem 6 except for ap-

plying active interference cancellation to both users. Moreover, it is straightforward

to see that the regions Cm1(α22) and Cm2 are equivalent to Cm3(α22, 0, 0) and Cm4(0, 0),

respectively, which means that the achievable scheme without active interference can-

cellation is only a special case of the one with active interference cancellation.

Note that an enlarged achievable rate region can be obtained by deploying the

time-sharing technique for any points in Cm3(α22, γ1, γ2) and Cm4(γ1, γ2), which is

described in the following corollary.

Corollary 4. The enlarged achievable rate region Cm for the mixed Gaussian IC

with state information is given by the closure of the convex hull of
(
0, 1

2
log (1 + P2)

)
,(

1
2
log (1 + P1) , 0

)
, and all (R1, R2) in Cm3(α22, γ1, γ2) and Cm4(γ1, γ2) for any α22,

γ2
1 < P1/K, and γ2

2 < P2/K.

In Section F, we will numerically compare the above achievable rate regions with

an inner bound, which is denoted as Cm in and defined by the achievable rate region

when the transmitters ignore the non-causal state information. The improvement due

to DPC and active interference cancellation is clearly shown there. We also compare

the above achievable rate regions with an outer bound (denoted by Cm o), which is

the outer bound derived for the traditional mixed Gaussian IC [10].
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3. A Special Case – Degraded Gaussian IC

For the Gaussian IC with state information defined in Section A, the channel is called

a degraded Gaussian IC with state information if the interference link gains satisfy

g21g12 = 1, which can be viewed as a special case of the mixed Gaussian IC. For

this degraded interference case, we will show the numerical comparison between the

achievable rate regions and the outer bound in Section F. Note that the difference

from the general mixed interference case is the evaluation of the outer bound Cm o,

which is now equal to the outer bound including the sum capacity for the traditional

degraded Gaussian IC [9].

E. The Weak Gaussian IC with State Information

For the Gaussian IC with state information defined in Section A, the channel is called

weak Gaussian IC with state information if the interference link gains satisfy g21 < 1

and g12 < 1. In this section, we propose several achievable schemes for the weak

Gaussian IC with state information, and derive the corresponding achievable rate

regions. An enlarged achievable rate region is obtained by combining them with the

time-sharing technique.

1. Scheme without Active Interference Cancellation

We first introduce a simple scheme with fixed power allocation and without active

interference cancellation. It is shown in [10] that for the traditional weak Gaussian

IC, the achievable rate region is within one bit of the capacity region if power splitting

is chosen such that the interfered private SNR at each receiver is equal to 1. In our

scheme, we set the interfered private SNR equal to 1, utilize sequential decoding,

and optimize the DPC parameters for one of the MACs. Note that now the power
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allocation between the common message and private message is fixed, and all the

source power is used to transmit the intended message at both transmitters instead

of being partly allocated to cancel the state effect.

Theorem 8. Let Cw1 be the set of all non-negative rate pairs (R1, R2) satisfying

R1 ≤ 1

2
log

(
1 +

PB1

1 + g12PB2

)
+min

{
1

2
log

(
1 +

PA1

1 + PB1 + g12PB2

)
,

1

2
log

(1 + PB2 + g21P1)
(
1 +

α2
20K

PA2

)
+K

(
α20 − 1√

N2

)2
Lw1

}, (3.7)

R2 ≤ 1

2
log

(
1 +

PB2

1 + g21PB1

)
+min

{
1

2
log

(
1 +

g12PA2

1 + PB1 + g12PB2

)
,

1

2
log

(1 + g21PB1 + P2)
(
1 +

α2
10K

PA1

)
+K

(
α10

√
g21 − 1√

N2

)2
Lw1

},(3.8)
R1 +R2 ≤ min

{
1

2
log

(
1 +

PA1 + g12PA2

1 + PB1 + g12PB2

)
,
1

2
log

(
1 + P2 + g21P1 +

K
N2

Lw1

)}

+
1

2
log

(
1 +

PB1

1 + g12PB2

)
+

1

2
log

(
1 +

PB2

1 + g21PB1

)
. (3.9)

where

PB1 = min

{
P1,

1

g21

}
,

PB2 = min

{
P2,

1

g12

}
,

α10 =
PA1√

N1(1 + P1 + g12P2)
,

α20 =

√
g12PA2√

N1(1 + P1 + g12P2)
,

Lw1 = (1 + PB2 + g21PB1)

(
1 +

α2
20K

PA2

+
α2
10K

PA1

)
+K

(
α20 + α10

√
g21 −

1√
N2

)2

.

Then any rate pair (R1, R2) ∈ Cw1 is achievable for the weak Gaussian IC with state



33

information.

Similarly, let Cw2 be the set of all non-negative rate pairs (R1, R2) satisfying

R1 ≤ 1

2
log

(
1 +

PB1

1 + g12PB2

)
+min

{
1

2
log

(
1 +

g21PA1

1 + PB2 + g21PB1

)
,

1

2
log

(1 + g12PB2 + P1)
(
1 +

α2
20K

PA2

)
+K

(
α20

√
g12 − 1√

N1

)2
Lw2

},(3.10)
R2 ≤ 1

2
log

(
1 +

PB2

1 + g21PB1

)
+min

{
1

2
log

(
1 +

PA2

1 + PB2 + g21PB1

)
,

1

2
log

(1 + PB1 + g12P2)
(
1 +

α2
10K

PA1

)
+K

(
α10 − 1√

N1

)2
Lw2

}, (3.11)

R1 +R2 ≤ min

{
1

2
log

(
1 +

PA2 + g21PA1

1 + PB2 + g21PB1

)
,
1

2
log

(
1 + P1 + g12P2 +

K
N1

Lw2

)}

+
1

2
log

(
1 +

PB2

1 + g21PB1

)
+

1

2
log

(
1 +

PB1

1 + g12PB2

)
, (3.12)

where

PB1 = min

{
P1,

1

g21

}
,

PB2 = min

{
P2,

1

g12

}
,

α10 =

√
g21PA1√

N2(1 + P2 + g21P1)
,

α20 =
PA2√

N2(1 + P2 + g21P1)
,

Lw2 = (1 + PB1 + g12PB2)

(
1 +

α2
10K

PA1

+
α2
20K

PA2

)
+K

(
α10 + α20

√
g12 −

1√
N1

)2

.

Then any rate pair (R1, R2) ∈ Cw2 is achievable for the weak Gaussian IC with state

information.

Proof. We only give the detailed proof for Cw1 here. Similarly, Cw2 can be obtained by



34

optimizing the DPC parameters for the common messages at receiver 2 and letting the

common-message MAC at receiver 1 suffer from the non-optimal DPC parameters.

Due to the presence of the weak interference, we split the message into common

and private ones at both transmitters. The sequential decoder is utilized at the

receivers, i.e., both receivers first decode both common messages by treating both

private messages as noise, and then decode the intended private message by treating

the interfered private message as noise. For the common-message MAC at receiver 1,

the capacity region is given as follows:

R10 ≤ 1

2
log

(
1 +

PA1

1 + PB1 + g12PB2

)
,

R20 ≤ 1

2
log

(
1 +

g12PA2

1 + PB1 + g12PB2

)
,

R10 +R20 ≤ 1

2
log

(
1 +

PA1 + g12PA2

1 + PB1 + g12PB2

)
,

where PB1 = min{P1, 1/g21}, PB2 = min{P2, 1/g12}, and DPC is utilized for both

common messages with the optimal DPC parameters α10 =
PA1√

N1(1+P1+g12P2)
and α20 =

√
g12PA2√

N1(1+P1+g12P2)
. However, the common-message MAC at receiver 2 suffers from the

non-optimal DPC parameters and has the following achievable rate region:

R10 ≤ 1

2
log

(1 + PB2 + g21P1)
(
1 +

α2
20K

PA2

)
+K

(
α20 − 1√

N2

)2
Lw1

 ,

R20 ≤ 1

2
log

(1 + g21PB1 + P2)
(
1 +

α2
10K

PA1

)
+K

(
α10

√
g21 − 1√

N2

)2
Lw1

 ,

R10 +R20 ≤ 1

2
log

(
1 + P2 + g21P1 +

K
N2

Lw1

)
.

where

Lw1 = (1 + PB2 + g21PB1)

(
1 +

α2
20K

PA2

+
α2
10K

PA1

)
+K

(
α20 + α10

√
g21 −

1√
N2

)2

.
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Consequently, the IC achievable region for the common messages can be obtained

by intersecting the above regions for the two MACs. After decoding the common

messages, each receiver is capable of decoding the intended private message with the

following rate:

R11 ≤ 1

2
log

(
1 +

PB1

1 + g12PB2

)
,

R22 ≤ 1

2
log

(
1 +

PB2

1 + g21PB1

)
.

Therefore, after applying the Fourier-Motzkin algorithm, we have the achievable

region Cw1 for the weak Gaussian IC with state information.

2. Scheme with Active Interference Cancellation

For the weak Gaussian IC with state information, now we generalize the previous

scheme with active interference cancellation, which allocates part of the source power

to cancel the state effect at the receivers. Specifically, DPC is used to achieve the

capacity for one of the common-message MACs as shown in Section 1, and active

interference cancellation is deployed to cancel the state effect at the receivers. The

corresponding achievable rate regions are provided in the following theorem.

Theorem 9. For any γ2
1 < PA1/K and γ2

2 < PA2/K, let Cw3(γ1, γ2) be the set of all

non-negative rate pairs (R1, R2) satisfying

R1 ≤ 1

2
log

(
1 +

PB1

1 + g12PB2

)
+min

{
1

2
log

(
1 +

PA1 − γ2
1K

1 + PB1 + g12PB2

)
,

1

2
log

(1 + PB2 + g21(P1 − γ2
1K))

(
1 +

α2
20K

PA2
−γ2

2K

)
+K (α20 − µ2)

2

Lw3

},
R2 ≤ 1

2
log

(
1 +

PB2

1 + g21PB1

)
+min

{
1

2
log

(
1 +

g12(PA2 − γ2
2K)

1 + PB1 + g12PB2

)
,
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1

2
log

(1 + g21PB1 + P2 − γ2
2K)

(
1 +

α2
10K

PA1
−γ2

1K

)
+K

(
α10

√
g21 − µ2

)2
Lw3

},
R1 +R2 ≤ 1

2
log

(
1 +

PB1

1 + g12PB2

)
+

1

2
log

(
1 +

PB2

1 + g21PB1

)
min

{
1

2
log

(
1 +

PA1 − γ2
1K + g12(PA2 − γ2

2K)

1 + PB1 + g12PB2

)
,

1

2
log

(
1 + P2 − γ2

2K + g21(P1 − γ2
1K) + µ2

2KN2

Lw3

)}
,

where

PB1 = min

{
P1,

1

g21

}
,

PB2 = min

{
P2,

1

g12

}
,

α10 =
µ1(PA1 − γ2

1K)

(1 + P1 − γ2
1K + g12 (P2 − γ2

2K))
,

α20 =
µ1
√
g12(PA2 − γ2

2K)

1 + P1 − γ2
1K + g12(P2 − γ2

2K)
,

Lw3 = (1 + PB2 + g21PB1)

(
1 +

α2
20K

PA2 − γ2
2K

+
α2
10K

PA1 − γ2
1K

)
+K (α20 + α10

√
g21 − µ2)

2 .

Note that here α10 and α20 are optimal for the common-message MAC at receiver

1. Then any rate pair (R1, R2) ∈ Cw3(γ1, γ2) is achievable for the weak Gaussian IC

with state information. Moreover, any rate pair in the convex hull (denoted as Ĉw3)

of Cw3(γ1, γ2) is also achievable.

Similarly, for any γ2
1 < PA1/K and γ2

2 < PA2/K, let Cw4(γ1, γ2) be the set of all

non-negative rate pairs (R1, R2) satisfying

R1 ≤ 1

2
log

(
1 +

PB1

1 + g12PB2

)
+min

{
1

2
log

(
1 +

g21(PA1 − γ2
1K)

1 + PB2 + g21PB1

)
,
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1

2
log

(1 + g12PB2 + P1 − γ2
1K)

(
1 +

α2
20K

PA2
−γ2

2K

)
+K

(
α20

√
g12 − µ1

)2
Lw4

},
R2 ≤ 1

2
log

(
1 +

PB2

1 + g21PB1

)
+min

{
1

2
log

(
1 +

PA2 − γ2
2K

1 + PB2 + g21PB1

)
,

1

2
log

(1 + PB1 + g12(P2 − γ2
2K))

(
1 +

α2
10K

PA1
−γ2

1K

)
+K (α10 − µ1)

2

Lw4

},
R1 +R2 ≤ 1

2
log

(
1 +

PB2

1 + g21PB1

)
+

1

2
log

(
1 +

PB1

1 + g12PB2

)
min

{
1

2
log

(
1 +

PA2 − γ2
2K + g21(PA1 − γ2

1K)

1 + PB2 + g21PB1

)
,

1

2
log

(
1 + P1 − γ2

1K + g12(P2 − γ2
2K) + µ2

1K

Lw4

)}
,

where

PB1 = min

{
P1,

1

g21

}
,

PB2 = min

{
P2,

1

g12

}
,

α10 =
µ2
√
g21(PA1 − γ2

1K)

1 + P2 − γ2
2K + g21(P1 − γ2

1K)
,

α20 =
µ2(PA2 − γ2

2K)

1 + P2 − γ2
2K + g21(P1 − γ2

1K)
,

Lw4 = (1 + PB1 + g12PB2)

(
1 +

α2
10K

PA1 − γ2
1K

+
α2
20K

PA2 − γ2
2K

)
+K (α10 + α20

√
g12 − µ1)

2 .

Note that here α10 and α20 are optimal for the common-message MAC at receiver

2. Then any rate pair (R1, R2) ∈ Cw4(γ1, γ2) is achievable for the weak Gaussian IC

with state information. Moreover, any rate pair in the convex hull (denoted as Ĉw4)

of Cw4(γ1, γ2) is also achievable.

The proof is omitted here since it is similar to that of Theorem 8 except for
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applying active interference cancellation to both users. Moreover, we see that the

regions Cw1 and Cw2 are equivalent to Cw3(0, 0) and Cw4(0, 0), respectively, which

again implies that the achievable scheme without active interference cancellation is

only a special case of the one with active interference cancellation.

As in previous sections, an enlarged achievable rate region can be obtained by

employing the time-sharing technique for any points in Cw3(γ1, γ2) and Cw4(γ1, γ2),

which is described in the following corollary.

Corollary 5. The enlarged achievable rate region Cw for the weak Gaussian IC with

state information is given by the closure of the convex hull of
(
0, 1

2
log (1 + P2)

)
,(

1
2
log (1 + P1) , 0

)
, and all (R1, R2) in Cw3(γ1, γ2) and Cw4(γ1, γ2) for any γ2

1 < PA1/K

and γ2
2 < PA2/K.

In Section F, we will numerically compare the above achievable rate regions with

an inner bound, which is denoted as Cw in and defined by the achievable rate region

when the transmitters ignore the non-causal state information. We also compare the

above achievable rate regions with an outer bound (denoted by Cw o), which is the

outer bound derived for the traditional weak Gaussian IC [10]. Note that unlike the

strong interference case and the mixed interference case, active interference cancella-

tion cannot enlarge the achievable rate region significantly for the weak interference

case. Intuitively, the reason is that the source power is too “precious” to cancel the

state effect when the interference is weak. Therefore, we next modify the scheme to

optimize the power allocation between the common message and the private message

at each transmitter.
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3. Scheme with Flexible Power Allocation

For the weak Gaussian IC with state information, now we propose a scheme with

flexible power allocation. The corresponding achievable rate regions are provided in

the following theorem.

Theorem 10. For any β1, β2 ∈ (0, 1), let Cw5(β1, β2) be the set of all non-negative

rate pairs (R1, R2) satisfying (3.7)-(3.9) where PB1 = β1P1, PB2 = β2P2, α10 =

(1−β1)P1√
N1(1+P1+g12P2)

, and α20 =
√
g12(1−β2)P2√

N1(1+P1+g12P2)
, which are optimal for the common-message

MAC at receiver 1. Then any rate pair (R1, R2) ∈ Cw5(β1, β2) is achievable for the

weak Gaussian IC with state information. Moreover, any rate pair in the convex hull

(denoted as Ĉw5) of Cw5(β1, β2) is also achievable.

Similarly, for any β1, β2 ∈ (0, 1), let Cw6(β1, β2) be the set of all non-negative

rate pairs (R1, R2) satisfying (3.10)-(3.12), where PB1 = β1P1, PB2 = β2P2, α10 =
√
g21(1−β1)P1√

N2(1+P2+g21P1)
, and α20 =

(1−β2)P2√
N2(1+P2+g21)

, which are optimal for the common-message

MAC at receiver 2. Then any rate pair (R1, R2) ∈ Cw6(β1, β2) is achievable for the

weak Gaussian IC with state information. Moreover, any rate pair in the convex hull

(denoted as Ĉw6) of Cw6(β1, β2) is also achievable.

The proof is omitted here since it is similar to that of Theorem 8 except for

applying the optimal power allocation between the common and private messages

at both transmitters, which is obtained by two-dimensional searching and bears the

same complexity as the active interference cancellation scheme in Section 2. Similarly,

an enlarged achievable rate region can be obtained by employing the time-sharing

technique for any points in Cw5(β1, β2) and Cw6(β1, β2), which is described in the

following corollary.

Corollary 6. The enlarged achievable rate region Ĉw for the weak Gaussian IC with

state information is given by the closure of the convex hull of
(
0, 1

2
log (1 + P2)

)
,
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(
1
2
log (1 + P1) , 0

)
, and all (R1, R2) in Cw5(β1, β2) and Cw6(β1, β2) for any β1, β2 ∈

(0, 1).

The numerical comparison between the above achievable rate regions with the

outer bound Cw o [10] is shown in Section F.

4. Scheme with Flexible Sequential Decoder

For the sequential decoder of Cw1 in Section 1, each receiver first decodes the common

messages by treating the private messages as noise, then decodes the intended private

message by treating the interfered private message as noise. Note that we can easily

extend the above scheme by changing the decoding order. For example, receiver 1

could also decode the intended common message and private message first, or decode

the “interfered” common message and intended private message first. Therefore, each

receiver has 3 choices of different sequential decoders, which means that there are 9

different choices with two receivers. Similarly, we could have another 9 choices based

on the sequential decoder of Cw2, which optimizes the DPC parameter at the MAC

for receiver 2. Finally, we can apply Fourier-Motzkin algorithm for each implicit

achievable rate region corresponding to each decoder (18 different decoders in total),

then obtain the explicit achievable rate regions, and finally deploy the time-sharing

technique to enlarge the achievable rate region. The details are omitted here due to

its similarity to the previous results.

F. Numerical Results

In this section, we compare the derived various achievable rate regions with the outer

bound, which is the same as the outer bound derived for the traditional Gaussian

IC [8–10], since the traditional IC can be treated as the idealization of our model
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where the state is also known at the receivers. We show the numerical results for

three cases: the strong interference case, the mixed interference case, and the weak

interference case. From the numerical comparison, we can easily see that active

interference cancellation significantly enlarges the achievable rate region for the strong

and mixed interference case. However, for the weak interference case, flexible power

allocation brings more benefit due to the “preciousness” of the transmission power.

In Fig. 4, we compare the achievable rate regions in Section 2 with the outer

bound Cs o, which is the capacity region of the traditional strong Gaussian IC with

the state information also known at the receivers [8]. Note that the inner bound Cs in

is defined as the rate region when the transmitters ignore the non-causal state infor-

mation. Compared with Cs1 and Cs2 (only utilizing DPC), we see that the knowledge

of the state information at the transmitters improves the performance significantly

by deploying DPC. Moreover, it can be easily seen that Ĉs3 and Ĉs4 (utilizing DPC

and active interference cancellation) are much bigger than Cs1 and Cs2, respectively,

which implies that active interference cancellation enlarges the achievable rate region

significantly. Finally, we observe that the achievable rate region Cs is fairly close to

the outer bound, even when the state power is the same as the source power.

In Fig. 5, we compare the achievable rate regions in Section 2 with the outer

bound Cm o, which is the same as the outer bound derived for the traditional mixed

Gaussian IC [10]. Also we define the inner bound Cm in as the achievable rate re-

gion when the transmitters ignore the non-causal state information. Compared with

Ĉm1 and Cm2 (only utilizing DPC), we see that the knowledge of the state informa-

tion at the transmitters enlarges the achievable rate region significantly due to DPC.

Furthermore, it can be easily seen that Ĉm3 and Ĉm4 (utilizing DPC and active inter-

ference cancellation) are much larger than Ĉm1 and Cm2, respectively, which implies

that active interference cancellation improves the performance significantly.
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Fig. 4.: Comparison of different achievable rate regions and the outer bound for the
strong Gaussian IC with state information. The channel parameters are set as:

g12 = g21 = 10, N1 = N2 = 1, P1 = P2 = K = 10 dB.

For the degraded Gaussian IC with state information, we compare the achievable

rate regions with the outer bound Cm o and the inner bound Cm in in Fig. 6. Note

that the difference from the general mixed interference case is that the outer bound

Cm o now includes the sum capacity [9]. Similar to the general mixed interference

case, active interference cancellation improves the performance significantly when the

interference is degraded.

In Fig. 7, we compare the achievable rate regions in Section 2 with the outer

bound Cw o, which is the same as the outer bound derived for the traditional weak

Gaussian IC [10]. Also define the inner bound Cw in as the achievable rate region

when the transmitters ignore the non-causal state information. Compared with Cw1

and Cw2 (only utilizing DPC), we see that the knowledge of the state information at the

transmitters improves the performance significantly due to DPC. However, Ĉw3 and

Ĉw4 (utilizing DPC and active interference cancellation) are only slightly larger than

Cw1 and Cw2, i.e., unlike the strong interference case and the mixed interference case,

active interference cancellation cannot enlarge the achievable rate region significantly
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Fig. 5.: Comparison of different achievable rate regions and the outer bound for the
mixed Gaussian IC with state information. The channel parameters are set as: g12 = 0.2,

g21 = 2, N1 = N2 = 1, P1 = P2 = K = 10 dB.

for the weak interference case. Intuitively, the reason is that the source power is too

“precious” to be used for canceling the state effect if the interference is weak.

In Fig. 8, we compare the achievable rate regions of the flexible power allocation

schemes in Section 3 with the outer bound Cw o and the inner bound Cw in. It can be

easily seen that Ĉw5 and Ĉw6 (both utilizing DPC and flexible power allocation) are

much larger than Cw1 and Cw2, respectively, i.e., flexible power allocation between the

common and private messages enlarges the achievable rate region significantly for the

weak interference case.

G. Summary

In this chapter, we considered the Gaussian interference channel with state infor-

mation non-causally known at both transmitters. The achievable rate region was

established over the simultaneous encoding scheme introduced in Chapter II and the

newly proposed active interference cancelation technique. In addition, we proposed

heuristic schemes for the strong interference case, the mixed interference case, and the
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Fig. 6.: Comparison of different achievable rate regions and the outer bound for the
degraded Gaussian IC with state information. The channel parameters are set as:

g12 = 0.2, g21 = 5, N1 = N2 = 1, P1 = P2 = K = 10 dB.

weak interference case. The numerical results showed that active interference cancel-

lation significantly improves the performance for the strong and mixed interference

case, and flexible power splitting significantly enlarges the achievable rate region for

the weak interference case.
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Ĉw6

Ĉw

Fig. 7.: Comparison of different achievable rate regions and the outer bound for the weak
interference Gaussian IC with state information. The channel parameters are set as:

g12 = g21 = 0.2, N1 = N2 = 1, P1 = P2 = K = 10 dB.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R1 (bits)

R
2

(b
it

s)

 

 

Cw o

Cw in

Cw1

Cw2
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Fig. 8.: Comparison of different achievable rate regions and the outer bound for the weak
interference Gaussian IC with state information. The channel parameters are set as:

g12 = g21 = 0.2, N1 = N2 = 1, P1 = P2 = K = 10 dB.
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CHAPTER IV

SYMMETRIC AWGN CHANNEL

In this chapter, we study the state-dependent Gaussian interference channel, where

the interfering Gaussian state is non-causally known at both transmitters but un-

known to either of the receivers. We focus on the simplest symmetric case, where

both direct link gains are the same with each other, and both interfering link gains are

the same with each other. We apply the coding scheme in Chapter III with different

dirty paper coding parameters. When the state is additive and symmetric at both

receivers, we study both strong and weak interference scenarios and characterize the

theoretical gap between the achievable symmetric rate and the upper bound, which

is shown to be less than 1/4 bit for the strong interference case and less than 3/4 bit

for the weak interference case. Then we provide numerical evaluations of the achiev-

able rates against the upper bound, which validates the theoretical analysis for both

strong and weak interference scenarios. Finally, we define the generalized degrees of

freedom for the symmetric Gaussian case, and compare the lower bounds against the

upper bounds for both strong and weak interference cases. We also show that our

achievable schemes can obtain the exact optimal values of the generalized degrees

of freedom, i.e., the lower bounds meet the upper bounds for both strong and weak

interference cases.

A. Channel Model

Consider the symmetric AWGN interference channel as shown in Fig. 9, where two

transmitters communicate with the corresponding receivers through a common chan-

nel dependent on the additive Gaussian state S. The transmitters do not cooperate

with each other; however, they both know the additive state information S non-
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causally, which is known to neither of the receivers. Each receiver needs to decode

the information from the respective transmitter. The channel input and output rela-

tionship can be described as follows:

Y1 = h1X
′
1 + h2X

′
2 + S + Z1,

Y2 = h1X
′
2 + h2X

′
1 + S + Z2,

where h1 is the real link amplitude gain from each transmitter to the intended re-

ceiver, h2 is the link gain from each transmitter to the interfered receiver, X ′
i and

Yi are the channel input and output, respectively, and Zi is the zero-mean unit-

variance AWGN noise, for i = 1, 2. Both receivers also suffer from the zero-mean

additive white Gaussian interference S ∼ N (0, K), which is non-causally known at

both transmitters.

Without loss of generality, we transform the above channel model into the fol-

lowing standard form for simplicity:

Y1 = X1 + gX2 + S + Z1, (4.1)

Y2 = X2 + gX1 + S + Z2, (4.2)

where

X1 = h1X
′
1, X2 = h1X

′
2, and g =

h2

h1

.

We also assume that the channel inputs X1 and X2 satisfy the following symmetric

power constraints:

1

n

n∑
i=1

(X1i)
2 ≤ P, and

1

n

n∑
i=1

(X2i)
2 ≤ P.

Here we omit the definitions for the error probability, the achievable rate pair

(R1, R2), and the capacity region for the above channel. We refer readers to Chapter II
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Fig. 9.: The symmetric Gaussian interference channel with state information non-causally
known at both transmitters.

and Chapter III for details. Due to the channel symmetry, we define the symmetric

capacity [10] as the optimal solution of the following optimization problem:

Csym := max min {R1, R2}

subject to (R1, R2) is in the capacity region.

As shown in [10], the symmetric capacity maximizes the sum rate R1 + R2 since the

capacity region is convex and symmetric. Hence, instead of characterizing the inner

and outer bounds over the achievable rate region, we will focus on deriving the lower

and upper bounds on the symmetric capacity.

B. Strong Interference Case

In this section, we will first present an achievable coding scheme for the channel

model in (4.1) and (4.2) with g > 1, then calculate the smallest symmetric rate over

different state power K, and finally provide an upper bound on the maximum gap

between the achievable symmetric rate for the strong Gaussian IC with state infor-

mation and the symmetric capacity for the traditional strong Gaussian IC without

the common interference state, with the latter one providing a capacity outer bound

for our channel.
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We deploy the simultaneous encoding scheme for the strong interference case in

Chapter II, where the transmitters only send common messages and utilize DPC to

help. We first give the rate region for the MAC at receiver 1 as follows:

R1 < I(U1;Y1|U2)− I(U1;S|U2), (4.3)

R2 < I(U2;Y1|U1)− I(U2;S|U1), (4.4)

R1 +R2 < I(U1, U2;Y1)− I(U1, U2;S), (4.5)

where R1 and R2 are the achievable rates for transmitters 1 and 2, respectively.

Similarly, the rate region for the MAC at receiver 2 can be obtained by substituting

Y1 with Y2 in (4.3) to (4.5). Therefore, the corresponding achievable rate region for

the strong Gaussian IC with state information can be calculated as the intersection

of the two MAC regions.

Since the channel is symmetric, we choose the following auxiliary random vari-

ables:

U1 = X1 + αS, (4.6)

U2 = X2 + αS. (4.7)

Note that the above auxiliary random variables are different from the ones in Chap-

ter III. It can be easily shown that the two MACs at the two receivers cannot be

capacity-achieving simultaneously, since the optimal DPC parameters for the MAC at

receiver 1 are different from that for the MAC at receiver 2. The achievable schemes

in Chapter III optimize the DPC parameters for one MAC, and make the other MAC

suffer from the non-optimal choices, such that the rate region is degraded. To address

the above issue, here we choose the same parameter α for both U1 and U2 due to the

channel symmetry, and present the theoretical comparison between the achievable
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symmetric rate and the upper bound. The idea is to achieve a larger intersection by

balancing the two MACs better than the scheme in Chapter III.

We now characterize an achievable symmetric rate with the above auxiliary ran-

dom variables in the following Lemma.

Lemma 1. With different state power K, the smallest achievable rate region for the

strong Gaussian IC with state information occurs when K → ∞, and the correspond-

ing achievable symmetric rate is

Rsym = min

{
1

2
log

(
(1 + P )α2 + (αg − 1)2P

2α2 + (α + αg − 1)2P

)
,
1

4
log

(
P

2α2 + (α + αg − 1)2P

)}
,

(4.8)

where 0 < α < 2P
1+2gP

.

Proof. With the auxiliary random variables U1 = X1 + αS and U2 = X2 + αS, we

can calculate the right-hand sides in (4.3) to (4.5) as follows:

I(U1;Y1|U2)− I(U1;S|U2) = h(U1|S, U2)− h(U1|Y1, U2)

= h(U1, U2, S)− h(U2, S)− h(U1, U2, Y1) + h(U2, Y1)

=
1

2
log

(1 + P )
(
1 + α2K

P

)
+K (αg − 1)2

1 + 2α2K
P

+K (α + αg − 1)2

 ,

I(U2;Y1|U1)− I(U2;S|U1) = h(U1, U2, S)− h(U1, S)− h(U1, U2, Y1) + h(U1, Y1)

=
1

2
log

(1 + g2P )
(
1 + α2K

P

)
+K (α− 1)2

1 + 2α2K
P

+K (α + αg − 1)2

 ,

I(U1, U2;Y1)− I(U1, U2;S) = h(U1, U2, S)− h(S)− h(U1, U2, Y1) + h(Y1)

=
1

2
log

(
1 + P + g2P +K

1 + 2α2K
P

+K (α+ αg − 1)2

)
.

Since the channel is symmetric, the intersection of the two MACs can be calcu-
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lated as:

R1, R2 < min

{
1

2
log

(1 + g2P )
(
1 + α2K

P

)
+K (α− 1)2

1 + 2α2K
P

+K (α + αg − 1)2

 ,

1

2
log

(1 + P )
(
1 + α2K

P

)
+K (αg − 1)2

1 + 2α2K
P

+K (α + αg − 1)2

}, (4.9)

R1 +R2 <
1

2
log

(
1 + P + g2P +K

1 + 2α2K
P

+K (α + αg − 1)2

)
. (4.10)

It can be easily shown that the first item in (4.9) is larger than the second item,

thus we can recast the achievable rate region for the strong Gaussian IC with state

information as:

R1, R2 <
1

2
log

(1 + P )
(
1 + α2K

P

)
+K (αg − 1)2

1 + 2α2K
P

+K (α+ αg − 1)2

 ,

R1 +R2 <
1

2
log

(
1 + P + g2P +K

1 + 2α2K
P

+K (α + αg − 1)2

)
.

Both right-hand sides in the above inequalities are decreasing functions over K, i.e.,

we can conclude that for different state power K, the smallest achievable symmetric

rate occurs when K → ∞:

Rsym = min

{
1

2
log

(
α2

P
+ α2 + (αg − 1)2

2α2

P
+ (α+ αg − 1)2

)
,
1

4
log

(
1

2α2

P
+ (α + αg − 1)2

)}
.

(4.11)

To guarantee that the above achievable symmetric rate is positive, the following

inequalities must hold:

2α2

P
+ (α + αg − 1)2 <

α2

P
+ α2 + (αg − 1)2 ,

2α2

P
+ (α + αg − 1)2 < 1.

Or equivalently, α must be in
(
0, 2P

1+2gP

)
.
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Now we will find a heuristic α ∈
(
0, 2P

1+2gP

)
motivated by the simulations results

in Section D, which shows that the optimal α maximizing the first item in the right-

hand side of (4.8) is actually very close to the value maximizing the whole right-

hand side of (4.8). Then we calculate the corresponding gap between the achievable

symmetric rate in (4.8) and the upper bound, which is the symmetric capacity for

the traditional strong Gaussian IC.

Theorem 11. There exists a DPC parameter α ∈
(
0, 2P

1+2gP

)
such that the maximum

gap between the achievable symmetric rate for the strong Gaussian IC with state

information and the upper bound is less than 1/4 bit.

Proof. Note that maximizing the achievable symmetric rate in (4.8) over α is indeed

a max-min problem and is equivalent to finding the roots of a fourth-order equation,

for which we could not find an analytical solution. Hence, we heuristically maximize

the single rate item in (4.8):

max
(1 + P )α2 + (αg − 1)2P

2α2 + (α + αg − 1)2P

subject to α ∈
(
0,

2P

1 + 2gP

)
.

It can be easily shown that the optimal α for the above optimization problem is:

α∗ =
P

1 + P + gP
. (4.12)

In Section D, we will show that the above α∗ is actually very close to the optimal

value which maximizes (4.8).

Now with this α∗, we calculate the achievable symmetric rate in (4.8) as follows:

Rsym = min

{
1

2
log (1 + P ) ,

1

4
log

(
(1 + P + gP )2

1 + 2P

)}
.

Moreover, the upper bound on the symmetric capacity of the strong Gaussian
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IC with state information is [8]:

C+
sym = min

{
1

2
log (1 + P ) ,

1

4
log
(
1 + P + g2P

)}
.

With both the achievable symmetric rate and the upper bound, we split the gap

analysis into three cases:

1. If (1+P+gP )2

1+2P
≥ (1 + P )2, i.e., g ≥ 1+P

P

(√
1 + 2P − 1

)
, the symmetric capacity

is the same as the traditional very strong Gaussian IC
(
g ≥

√
1 + P

)
:

Csym =
1

2
log (1 + P ) .

2. If
√
1 + P ≤ g < 1+P

P

(√
1 + 2P − 1

)
, the upper bound on the symmetric ca-

pacity is still

C+
sym =

1

4
log
(
(1 + P )2

)
,

and we can achieve the following symmetric rate no matter how large K is:

Rsym =
1

4
log

(
(1 + P + gP )2

1 + 2P

)
.

Due to the monotonic increasing property of the log function, we only need to

compare the item inside the log function. Then we see that the gap between

the achievable symmetric rate and the upper bound is less than 1/4 bit since:

(1 + P + gP )2

1 + 2P
− (1 + P )2

2
=

1 + 2g2P 2 + 4gP + 4gP 2 − 2P 3 − 3P 2

2(1 + 2P )

≥ 1 + 4gP + 4gP 2 − P 2

2(1 + 2P )

> 0,

and then

1

4
log

(
(1 + P + gP )2

1 + 2P

)
>

1

4
log
(
(1 + P )2

)
− 1

4
.
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3. If 1 < g <
√
1 + P , the upper bound on the symmetric capacity is:

C+
sym =

1

4
log
(
1 + P + g2P

)
,

and we can achieve the following symmetric rate no matter how large K is:

Rsym =
1

4
log

(
(1 + P + gP )2

1 + 2P

)
.

Similar to the previous case, we only need to compare the item inside the log

function. It can be easily shown that the gap between the achievable symmetric

rate and the upper bound is still less than 1/4 bit since:

(1 + P + gP )2

1 + 2P
− 1 + P + g2P

2
=

1 + P + 4gP + 4gP 2 − g2P

2(1 + 2P )

> 0, for 1 < g <
√
1 + P .

C. Weak Interference Case

For the traditional symmetric weak Gaussian IC, the authors in [10] proposed a

power splitting solution for the Han-Kobayashi scheme, where the private message

power levels at both transmitters are chosen such that the interfering private SNR

at each receiver is equal to 1. They also showed that the gap between the achievable

symmetric rate and the upper bound is less than 1/2 bit (if all the random variables

are defined over the field of real numbers R). Here, with similar power assignment

for the message splitting, we introduce an achievable coding scheme for the weak

symmetric Gaussian IC with state information (g < 1), and derive the gap between

the achievable symmetric rate and that of the traditional weak Gaussian IC, which

turns out to be less than 1/4 bit. Therefore, we conclude that the maximum gap
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between the achievable symmetric rate of the weak Gaussian IC with state information

and the upper bound is less than 1
4
+ 1

2
= 3

4
bit. Similar to [10], here we focus on

the case that the interference power is larger than the noise power, i.e., g2P > 1.

Otherwise, the receivers just treat the interference as noise since the channel is noise-

limited instead of interference-limited.

The coding scheme can be described as follows. The message is split into common

and private parts at each transmitter, and the channel input is shown as follows:

X1 = A1 +B1,

X2 = A2 +B2,

where Ai corresponds to the common message part and Bi corresponds to the private

message part at transmitter i, for i = 1, 2. Here we also set the private message

power to ensure that the interfering private SNR at each receiver is equal to 1, i.e.,

PB1 = PB2 =
1
g2

=: PB, PA1 = PA2 = P − 1
g2

=: PA. We utilize the sequential decoder,

i.e., each receiver first deals with the common message MAC by treating both private

messages as noises. Note that here for both MACs, DPC is applied to transmit both

common messages. At receiver 1, the achievable rate region of the common message

MAC is:

R10 < I(U1;Y1|U2)− I(U1;S|U2), (4.13)

R20 < I(U2;Y1|U1)− I(U2;S|U1), (4.14)

R10 +R20 < I(U1, U2;Y1)− I(U1, U2;S), (4.15)

where R10 and R20 are the achievable rates for the common messages of transmitters

1 and 2, respectively. The corresponding achievable rate region at receiver 2 can

be shown similarly by substituting Y1 with Y2 in (4.13) to (4.15). Accordingly, the
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achievable rate regions for the common messages can be obtained as the intersections

of the corresponding MAC regions.

After decoding both common messages, each receiver decodes the intended pri-

vate message by treating the interfering private message as noise. We also use DPC

to transmit each intended private message. By setting the DPC parameters for the

private messages at the optimal value derived in [17], the following symmetric rate

for the intended private messages can be achieved:

Rp
sym =

1

2
log

(
1 +

PB

2

)
, (4.16)

which is the same as the private message rate in [10]. Thus, in this section we focus on

characterizing the gap between the achievable symmetric rate of the common message

MAC for the Gaussian IC with state information and that of the traditional Gaussian

IC.

Due to the channel symmetry, we choose the following auxiliary random variables,

which are different from the choices in Chapter III:

U1 = A1 + α1S, (4.17)

U2 = A2 + α1S, (4.18)

where both common messages have the same DPC parameter α1. In the following

lemma, we describe the achievable symmetric rate for the common message MAC

with the above auxiliary random variables.

Lemma 2. With different state power K, the smallest achievable rate region for

the common message MAC occurs when K → ∞, and the corresponding achievable
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symmetric rate is shown as follows:

Rc
sym = min

{
1

2
log

(
(1 + g2Q)α2

1 + (α1 − 1)2Q

2α2
1 + (α1 + α1g − 1)2Q

)
,
1

4
log

(
Q

2α2
1 + (α1 + α1g − 1)2 Q

)}
,

(4.19)

where Q := PA

2+PB
and 0 < α1 <

2gQ
1+2gQ

.

Proof. With the previously-mentioned coding scheme and auxiliary random variables,

the intersection of the two MAC regions is calculated as:

R10, R20 < min

{
1

2
log

(
(1 + g2Q) (PA + α2

1K) +KQ (α1 − 1)2

PA + 2α2
1K +KQ (α1 + α1g − 1)2

)
,

1

2
log

(
(1 +Q) (PA + α2

1K) +KQ (α1g − 1)2

PA + 2α2
1K +KQ (α1 + α1g − 1)2

)}
, (4.20)

R10 +R20 <
1

2
log

(
(1 + P + g2P +K)Q

PA + 2α2
1K +KQ (α1 + α1g − 1)2

)
, (4.21)

where Q is denoted as Q = PA

2+PB
. It can be shown that the first item in (4.20) is

always smaller than the second item. Therefore, we rewrite the above region as:

R10, R20 <
1

2
log

(
(1 + g2Q) (PA + α2

1K) +KQ (α1 − 1)2

PA + 2α2
1K +KQ (α1 + α1g − 1)2

)
,

R10 +R20 <
1

2
log

(
(1 + P + g2P +K)Q

PA + 2α2
1K +KQ (α1 + α1g − 1)2

)
.

Similar to the strong interference case, both right-hand sides in the above inequalities

are decreasing functions overK, which means that we can always achieve the following

achievable symmetric rate no matter how large K is:

Rc
sym = min

1

2
log


(

1
Q
+ g2

)
α2
1 + (α1 − 1)2

2α2
1

Q
+ (α1 + α1g − 1)2

 ,
1

4
log

 1
2α2

1

Q
+ (α1 + α1g − 1)2

 .

(4.22)

To make sure that the above achievable symmetric rate is positive, we must choose
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α1 such that the following inequalities hold:

2α2
1

Q
+ (α1 + α1g − 1)2 < 1,

2α2
1

Q
+ (α1 + α1g − 1)2 <

(
1

Q
+ g2

)
α2
1 + (α1 − 1)2 ,

which means that α1 ∈
(
0, 2gQ

1+2gQ

)
.

In the following theorem, we will find a heuristic α1 ∈
(
0, 2gQ

1+2gQ

)
, and then char-

acterize the corresponding gap between the achievable symmetric rate of the common

messages for the Gaussian IC with state information and that of the traditional Gaus-

sian IC.

Theorem 12. There exists a DPC parameter α1 ∈
(
0, 2gQ

1+2gQ

)
for the common mes-

sages such that the maximum gap between the symmetric rate of the common messages

for the Gaussian IC with state information and that of the traditional Gaussian IC

is less than 1/4 bit.

Proof. Similar to the strong interference case, maximizing the rate in (4.19) is equiv-

alent to solving a fourth-order equation. Therefore, here we only maximize the first

item of the right-hand side in (4.19):

max
(1 + g2Q)α2

1 + (α1 − 1)2Q

2α2
1 + (α1 + α1g − 1)2 Q

subject to α1 ∈
(
0,

2gQ

1 + 2gQ

)
,

where Q = PA

2+PB
. We can easily show that the optimal α1 for the above optimization

problem is:

α∗
1 =

gQ

1 + gQ+ g2Q
. (4.23)
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Now with this α∗
1, the achievable symmetric rate in (4.19) can be written as:

Rc
sym = min

{
1

2
log
(
1 + g2Q

)
,
1

4
log

(
(1 + gQ+ g2Q)

2

1 + 2g2Q

)}
.

Furthermore, it was shown in [10] that the achievable symmetric rate of the common

messages for the traditional Gaussian IC is:

Rc+
sym = min

{
1

2
log
(
1 + g2Q

)
,
1

4
log
(
1 +

(
1 + g2

)
Q
)}

.

We calculate the gap between the above two symmetric rates by splitting the analysis

into three cases:

1. If (1 + g2Q)
2 ≤ (1+gQ+g2Q)

2

1+2g2Q
, the achievable symmetric rate in (4.19) is the same

as the one for the traditional Gaussian IC:

Rc
sym =

1

2
log
(
1 + g2Q

)
.

2. If
(1+gQ+g2Q)

2

1+2g2Q
< (1 + g2Q)

2 ≤ 1 + (1 + g2)Q (Note that the second inequality

is equivalent to g4Q ≤ 1 − g2), the achievable symmetric rate of the common

messages for the traditional Gaussian IC is:

Rc+
sym =

1

4
log
((

1 + g2Q
)2)

,

and the corresponding achievable symmetric rate for the Gaussian IC with state

information is:

Rc
sym =

1

4
log

(
(1 + gQ+ g2Q)

2

1 + 2g2Q

)
.

Similar to the strong interference case, the gap between the two achievable

symmetric rates is less than 1/4 bit since:

(1 + gQ+ g2Q)
2

1 + 2g2Q
− (1 + g2Q)

2

2
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=
1 + 4gQ+ g3Q2 + 3g3Q2(1− g) + 2g2Q2(1− g4Q)

2 (1 + 2g2Q)

> 0,

where the last inequality is due to g < 1 and g4Q ≤ 1 − g2 < 1 (equivalent to

the second inequality of the current constraint on g).

3. If 1 + (1 + g2)Q < (1 + g2Q)
2
, or equivalently, g4Q > 1 − g2, the achievable

symmetric rate of the common messages for the traditional Gaussian IC is:

Rc+
sym =

1

4
log
(
1 +

(
1 + g2

)
Q
)
,

and the corresponding achievable symmetric rate for the Gaussian IC with state

information is:

Rc
sym =

1

4
log

(
(1 + gQ+ g2Q)

2

1 + 2g2Q

)
.

Whether the gap between the two achievable symmetric rates is less than 1/4

bit depends on whether the following item is positive or not:

(1 + gQ+ g2Q)
2

1 + 2g2Q
− 1 + (1 + g2)Q

2
=

1 + (g2 + 4g − 1)Q+ 4g3Q2

2 (1 + 2g2Q)
.

When g2 + 4g − 1 ≥ 0, the ratio above is clearly positive and the gap is less

than 1/4 bit. Otherwise, if g2 + 4g − 1 < 0, or equivalently g <
√
5 − 2, the

ratio in (4.24) is still positive since:

4g3Q2 −Q > g3Q2 −Q =
Q

g

(
g4Q− g

)
> 0,

where the last inequality is due to g4Q > 1− g2 > 4g > g for 0 < g <
√
5− 2.

Remark 7. Note that with DPC for point-to-point channel [17], we can achieve the

same private message rates as in [10]. Considering the previous theorem together with
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Fig. 10.: Comparison between the achievable symmetric rate with optimal α, the rate
with heuristic α, and the upper bound for the strong interference case.

the gap analysis in [10], we conclude that the gap between the achievable symmetric

rate for the weak Gaussian IC with state information and the upper bound is less than

3/4 bit.

D. Numerical Results

In this section, we present the comparisons among the achievable symmetric rate with

optimal α, the rate with heuristic α, and the upper bound for both strong and weak

interference cases. The source power is set as P = 5 for the strong interference case,

and as P = 100 for the weak interference case to satisfy g2P > 1 when g > 0.1.

Fig. 10 shows the symmetric rate comparison for the strong interference case

with 1 < g < 5. We can easily see that the gap between the rate with heuristic

α and the upper bound is less than 1/4 bit, which coincides with the theoretical

analysis in Section B. Fig. 11 compares the heuristic α and the optimal α obtained

by exhausted searching, and demonstrates that the heuristic choice is very close to

the optimal value.

In Fig. 12, we compare the achievable symmetric rate with optimal α1, the rate
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Fig. 11.: Comparison between the heuristic α and the optimal α obtained by exhausted
search for the strong interference case.

with heuristic α1, the symmetric rate for the traditional IC, and the upper bound for

the weak interference case with 0.1 < g < 1. It can be seen that the gap between the

rate with heuristic α1 and the upper bound is less than 3/4 bit, which verifies the

theoretical analysis in Section C. In Fig. 13, we show the comparison between the

heuristic α1 and the optimal α1 calculated by exhausted searching, and we can easily

see that the heuristic choice is also very close to the optimal value.

E. Generalized Degrees of Freedom

In this section, we define the generalized degrees of freedom for the symmetric Gaus-

sian IC with state information. We compare the lower bound with the upper bound

in both strong and weak interference scenarios, and show that our schemes achieve

the optimal degrees of freedom by utilizing symmetric DPC parameters α∗ in (4.12)

and α∗
1 in (4.23), respectively. Now we first characterize the degrees of freedom per-

formance in the high SNR regime for the symmetric strong interference case, i.e., with

g > 1 and P ≫ 1. Similar to the generalized degrees of freedom defined in [10], we
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Fig. 12.: Comparison between the achievable symmetric rate with optimal α1, the rate
with heuristic α1, the achievable symmetric rate for the traditional IC, and the upper

bound for the weak interference case.

assume that the interference link SNR satisfies

η =
log g2P

logP
, (4.24)

where η > 1 for the strong interference case. We also assume that the state power K

satisfies

K = P θ. (4.25)

Then we define the generalized degrees of freedom for the symmetric Gaussian IC

with state information as:

d (η, θ) := lim
P→∞: log g2P

logP
=η,K=P θ

Csym

1
2
log(1 + P )

, (4.26)

where the symmetric capacity Csym is defined in Section A. Based on the above

definitions and assumptions, we derive the achievable generalized degrees of freedom

for the strong interference case in the following theorem:

Theorem 13. If η > 1, the achievable generalized degrees of freedom corresponding
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to the achievable scheme in Section B with DPC parameter α∗ in (4.12) are given as:

ds =
1

2
min{η, 2}. (4.27)

Proof. We first recalculate the achievable rate region (4.9) and (4.10) with finite P

after substituting the heuristic α∗ in (4.12) as follows:

R1, R2 < min {R1s, R2s} , (4.28)

R1 +R2 < Rs, (4.29)

where

R1s =
1

2
log

(
(1 + g2P )

(
(1 + P + gP )2 + PK

)
+K (1 + gP )2

(1 + P + gP )2 + 2PK +K

)
,

R2s =
1

2
log

(
(1 + P )

(
(1 + P + gP )2 + PK

)
+K (1 + P )2

(1 + P + gP )2 + 2PK +K

)
,

Rs =
1

2
log

(
(1 + P + g2P +K) (1 + P + gP )2

(1 + P + gP )2 + 2PK +K

)
.

Then we can derive the achievable generalized degrees of freedom by analyzing how
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R1s, R2s, and Rs scale with 1
2
log(1 + P ) as P goes to infinity:

lim
P→∞: log g2P

logP
=η,K=P θ

R1s

1
2
log(1 + P )

= lim
P→∞

1
2
log
(

P η(P 1+η+P 1+θ)+P θ+η+1

P η+1+2P 1+θ+P θ

)
1
2
log(1 + P )

= lim
P→∞

1
2
log(P η)

1
2
log(1 + P )

= η,

lim
P→∞: log g2P

logP
=η,K=P θ

R2s

1
2
log(1 + P )

= lim
P→∞

1
2
log
(

P (P 1+η+P 1+θ)+P θ+2

P η+1+2P 1+θ+P θ

)
1
2
log(1 + P )

= lim
P→∞

1
2
log(P )

1
2
log(1 + P )

= 1,

lim
P→∞: log g2P

logP
=η,K=P θ

Rs

1
2
log(1 + P )

= lim
P→∞

1
2
log
(

(P+P η+P θ)P 1+η

P η+1+2P 1+θ+P θ

)
1
2
log(1 + P )

= lim
P→∞

1
2
log(P η)

1
2
log(1 + P )

= η.

Therefore, we can obtain the following achievable generalized degrees of freedom based

on the definition in (4.26):

ds =
1

2
min{η, 2}.

After comparing the achievable generalized degrees of freedom in Theorem 13

with the upper bound in [10], we have the following corollary:

Corollary 7. The achievable scheme with the heuristic DPC parameter α∗ in (4.12)

achieves the optimal generalized degrees of freedom, i.e., the lower bound in Theo-

rem 13 coincides with the upper bound in [10].

Next we characterize the degrees of freedom performance in the high SNR regime
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for the symmetric weak interference case, i.e., with g < 1 and P ≫ 1. We assume

that the interfering link SNR satisfies

η =
log g2P

logP
, (4.30)

where η < 1 for the weak interference case. We also assume that the state power K

satisfies

K = P θ. (4.31)

Based on the above assumptions and the definition in (4.26), we can show the

achievable generalized degrees of freedom for the weak interference case in the follow-

ing theorem:

Theorem 14. If η < 1, the achievable generalized degrees of freedom corresponding

to the achievable scheme in Section C with DPC parameter α∗
1 in (4.23) are given as:

dw =
1

2
min {2− η,max {2η, 2− 2η}} . (4.32)

Proof. Here we employ the coding scheme and power splitting strategy as described in

Section C. Note that the private message can always achieve the following generalized

degrees of freedom:

dpw = 1− η, (4.33)

due to the utilization of DPC and the private message power in (4.16) is PB = 1
g2

=

P 1−η. Next we will only focus on the generalized degrees of freedom for the common

messages.

We first recalculate the achievable rate region (4.20) and (4.21) with finite P

after substituting the heuristic α∗
1 in (4.23) as follows:

R10, R20 < min {R10w, R20w} , (4.34)
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R10 +R20 < Rw, (4.35)

where

R10w =
1

2
log

(1 + g2Q)
(
(2 + PB) (1 + gQ+ g2Q)

2
+ g2QK

)
+K (1 + g2Q)

2

(2 + PB) (1 + gQ+ g2Q)2 + 2g2QK +K

 ,

R20w =
1

2
log

(1 +Q)
(
(2 + PB) (1 + gQ+ g2Q)

2
+ g2QK

)
+K (1 + gQ)2

(2 + PB) (1 + gQ+ g2Q)2 + 2g2QK +K

 ,

Rw =
1

2
log

(
(1 + P + g2P +K) (1 + gQ+ g2Q)

2

(2 + PB) (1 + gQ+ g2Q)2 + 2g2QK +K

)
.

Note that here Q = PA

2+PB
, PB = 1

g2
= P 1−η, and PA = P − PB.

Then we can derive the achievable generalized degrees of freedom by analyzing

how R10w, R20w, and Rw scale with 1
2
log(1 + P ) as P goes to infinity:

lim
P→∞: log g2P

logP
=η,K=P θ

R10w

1
2
log(1 + P )

= lim
P→∞

1
2
log

(
(1+P 2η−1)

[
P 1−η(1+P (3η−1)/2)

2
+P 2η−1+θ

]
+P θ(1+P 2η−1)

2

P 1−η(1+P (3η−1)/2)
2
+2P 2η−1+θ+P θ

)
1
2
log(1 + P )

=

 0 if 0 < η ≤ 1
2

2η − 1 if 1
2
< η < 1

lim
P→∞: log g2P

logP
=η,K=P θ

R20w

1
2
log(1 + P )

= lim
P→∞

1
2
log

(
P η

[
P 1−η(1+P (3η−1)/2)

2
+P 2η−1+θ

]
+P θ(1+P (3η−1)/2)

2

P 1−η(1+P (3η−1)/2)
2
+2P 2η−1+θ+P θ

)
1
2
log(1 + P )

= η, if
1

2
< η < 1,

lim
P→∞: log g2P

logP
=η,K=P θ

Rw

1
2
log(1 + P )
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= lim
P→∞

1
2
log

(
(P+P η+P θ)(1+P (3η−1)/2)

2

P 1−η(1+P (3η−1)/2)
2
+2P 2η−1+θ+P θ

)
1
2
log(1 + P )

= η, if
1

2
< η < 1.

Note that here it is enough to give the scaling result of R20w and Rw when 1
2
< η < 1,

since the achievable generalized degrees of freedom for the common message would

be bounded by 0 when 0 < η ≤ 1
2
due to the scaling result of R10w. Therefore, we

can obtain the following achievable generalized degrees of freedom for the common

message based on the definition in (4.26):

dcw =

 0 if 0 < η ≤ 1
2

min
{
2η − 1, η

2

}
if 1

2
< η < 1

In total, the achievable generalized degrees of freedom can be shown as the sum

of the common message and private message parts:

dw = dcw + dpw

=

 1− η if 0 < η ≤ 1
2

min
{
η, 1− η

2

}
if 1

2
< η < 1

=
1

2
min {2− η,max {2η, 2− 2η}} .

After comparing the achievable generalized degrees of freedom in Theorem 14

with the upper bound in [10], we have the following corollary:

Corollary 8. The achievable scheme with the heuristic DPC parameter α∗
1 in (4.23)

achieves the optimal generalized degrees of freedom, i.e., the lower bound in Theo-

rem 14 coincides with the upper bound in [10].
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F. Summary

In this chapter, we considered the symmetric Gaussian interference channel with

state information non-causally known at both transmitters. The coding scheme in

Chapter III was deployed with newly defined auxiliary random variables. We showed

that the smallest symmetric rate occurs when the state power goes to infinity for both

strong and weak interference cases. Theoretical analysis was provided to calculate the

gap between the achievable symmetric rate with infinite state power and the upper

bound, which was shown to be less than 1/4 bit for the strong interference case and

less than 3/4 bit for the weak interference case. Finally, we defined the generalized

degrees of freedom for the symmetric Gaussian case, and derived the optimal values

in both strong and weak interference scenarios, which are shown achievable with our

proposed schemes.
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CHAPTER V

CONCLUSION

In this dissertation, we studied the interference channel with state information non-

causally known at both transmitters. Two achievable rate regions were established

for the general cases based on two coding schemes with simultaneous encoding and

superposition encoding, respectively. We also studied the corresponding Gaussian

case and proposed the active interference cancellation mechanism, which generalizes

the dirty paper coding technique, to partially eliminate the state effect at the re-

ceivers. Several achievable schemes were proposed and the corresponding achievable

rate regions were derived for the strong interference case, the mixed interference case,

and the weak interference case. The numerical results showed that active interference

cancellation significantly improves the performance for the strong and mixed interfer-

ence case, and flexible power splitting significantly enlarges the achievable rate region

for the weak interference case.

Moreover, we considered the symmetric Gaussian interference channel with state

information non-causally known at both transmitters. The coding scheme in Chap-

ter III was deployed with newly defined auxiliary random variables. We showed that

the smallest symmetric rate occurs when the state power goes to infinity for both

strong and weak interference cases. Theoretical analysis was provided to calculate

the gap between the achievable symmetric rate with infinite state power and the upper

bound, which was shown to be less than 1/4 bit for the strong interference case and

less than 3/4 bit for the weak interference case. Finally, we defined the generalized

degrees of freedom for the symmetric Gaussian case, and derived the optimal values

in both strong and weak interference scenarios, which are shown achievable with our

proposed schemes.
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APPENDIX A

PROOF FOR THEOREM 1

The achievable coding scheme for Theorem 1 can be described as follows:

Codebook generation: Fix the probability distribution p(q)p(u1|q, s)p(v1|q, s)

p(u2|q, s)p(v2|q, s). Also define the following function for the jth user that maps

Uj×Vj×S to Xj:

xji = Fj(uji, vji, si),

where i is the element index of each sequence.

First generate the time-sharing sequence qn ∼
∏n

i=1 pQ(qi). For the jth user,

un
j (mj0, lj0) is randomly and conditionally independently generated according to

∏n
i=1 pUj |Q(uji|qi),

for mj0 ∈ {1, 2, · · · , 2nRj0} and lj0 ∈ {1, 2, · · · , 2nR′
j0}. Similarly, vnj (mjj, ljj) is ran-

domly and conditionally independently generated according to
∏n

i=1 pVj |Q(vji|qi), for

mjj ∈ {1, 2, · · · , 2nRjj} and ljj ∈ {1, 2, · · · , 2nR′
jj}.

Encoding: To send the messagemj = (mj0,mjj), the jth encoder first tries to find

the pair (lj0, ljj) such that the following joint typicality holds: (qn, un
j (mj0, lj0), s

n) ∈

T
(n)
ϵ and (qn, vnj (mjj, ljj), s

n) ∈ T
(n)
ϵ . If successful, (qn, un

j (mj0, lj0), v
n
j (mjj, ljj), s

n) is

also jointly typical with high probability, and the jth encoder sends xj where the ith

element is xji = Fj(uji(mj0, lj0), vji(mjj, ljj), si). If not, the jth encoder transmits xj

where the ith element is xji = Fj(uji(mj0, 1), vji(mjj, 1), si).

Decoding: Decoder 1 finds the unique message pair (m̂10, m̂11) such that (qn,

un
1 (m̂10, l̂10), u

n
2 (m̂20, l̂20), v

n
1 (m̂11, l̂11), y

n
1 ) ∈ T

(n)
ϵ for some l̂10 ∈ {1, 2, · · · , 2nR′

10}, m̂20 ∈

{1, 2, · · · , 2nR20}, l̂20 ∈ {1, 2, · · · , 2nR′
20}, and l̂11 ∈ {1, 2, · · · , 2nR′

11}. If no such unique

pair exists, the decoder declares an error. Decoder 2 determines the unique message

pair (m̂20, m̂22) in a similar way.
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Analysis of probability of error: Here the probability of error is the same for each

message pair since the transmitted message pair is chosen with a uniform distribution

over the message set. Without loss of generality, we assume (1, 1) for user 1 and (1, 1)

for user 2 are sent over the channel. First, we consider the encoding error probability

at transmitter 1. Define the following error events:

ξ1 =
{
(qn, un

1 (1, l10) , s
n) /∈ T (n)

ϵ for all l10 ∈ {1, 2, · · · , 2nR′
10}
}
,

ξ2 =
{
(qn, vn1 (1, l11) , s

n) /∈ T (n)
ϵ for all l11 ∈ {1, 2, · · · , 2nR′

11}
}
.

The probability of the error event ξ1 can be bounded as follows:

P (ξ1) =
2nR′

10∏
l10=1

(
1− P

({
(qn, un

1 (1, l10) , s
n) ∈ T (n)

ϵ

}))
≤

(
1− 2−n(I(U1;S|Q)+δ1(ϵ))

)2nR′
10

≤ e−2n(R
′
10−I(U1;S|Q)+δ1(ϵ))

,

where δ1(ϵ) → 0 as ϵ → 0. Therefore, the probability of ξ1 goes to 0 as n → ∞ if

R′
10 ≥ I(U1;S|Q). (A.1)

Similarly, the probability of ξ2 can also be upper-bounded by an arbitrarily small

number as n → ∞ if

R′
11 ≥ I(V1;S|Q). (A.2)

The encoding error probability at transmitter 1 can be calculated as:

Penc1 = P (ξ1 ∪ ξ2) ≤ P (ξ1) + P (ξ2),

which goes to 0 as n → ∞ if (A.1) and (A.2) are satisfied.

Now we consider the error analysis at decoder 1. Denote the right Gel’fand-
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Pinsker coding indices chosen by the encoders as (L10, L11) and (L20, L22). Define the

following error events:

ξ31 =
{
(qn, un

1 (1, L10) , u
n
2 (1, L20) , v

n
1 (m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m11 ̸= 1,

and some l11
}
,

ξ32 =
{
(qn, un

1 (1, L10) , u
n
2 (1, l20) , v

n
1 (m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m11 ̸= 1,

and some l11, l20 ̸= L20

}
,

ξ33 =
{
(qn, un

1 (1, l10) , u
n
2 (1, L20) , v

n
1 (m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m11 ̸= 1,

and some l11, l10 ̸= L10

}
,

ξ34 =
{
(qn, un

1 (1, l10) , u
n
2 (1, l20) , v

n
1 (m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m11 ̸= 1,

and some l11, l10 ̸= L10, l20 ̸= L20

}
,

ξ41 =
{
(qn, un

1 (m10, l10) , u
n
2 (1, L20) , v

n
1 (1, L11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

and some l10
}
,

ξ42 =
{
(qn, un

1 (m10, l10) , u
n
2 (1, l20) , v

n
1 (1, L11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

and some l10, l20 ̸= L20

}
,

ξ43 =
{
(qn, un

1 (m10, l10) , u
n
2 (1, L20) , v

n
1 (1, l11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

and some l10, l11 ̸= L11

}
,

ξ44 =
{
(qn, un

1 (m10, l10) , u
n
2 (1, l20) , v

n
1 (1, l11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

and some l10, l20 ̸= L20, l11 ̸= L11

}
,

ξ51 =
{
(qn, un

1 (m10, l10) , u
n
2 (1, L20) , v

n
1 (m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

m11 ̸= 1, and some l10, l11
}
,

ξ52 =
{
(qn, un

1 (m10, l10) , u
n
2 (1, l20) , v

n
1 (m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

m11 ̸= 1, and some l10, l11, l20 ̸= L20

}
,

ξ61 =
{
(qn, un

1 (1, L10) , u
n
2 (m20, l20) , v

n
1 (m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m20 ̸= 1,
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m11 ̸= 1, and some l20, l11
}
,

ξ62 =
{
(qn, un

1 (1, l10) , u
n
2 (m20, l20) , v

n
1 (m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m20 ̸= 1,

m11 ̸= 1, and some l20, l11, l10 ̸= L10

}
,

ξ71 =
{
(qn, un

1 (m10, l10) , u
n
2 (m20, l20) , v

n
1 (1, L11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

m20 ̸= 1, and some l10, l20
}
,

ξ72 =
{
(qn, un

1 (m10, l10) , u
n
2 (m20, l20) , v

n
1 (1, l11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

m20 ̸= 1, and some l10, l20, l11 ̸= L11

}
,

ξ8 =
{
(qn, un

1 (m10, l10) , u
n
2 (m20, l20) , v

n
1 (m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

m20 ̸= 1, m11 ̸= 1, and some l10, l20, l11
}
.

The probability of ξ31 can be bounded as:

P (ξ31) =
2nR11∑
m11=2

2R
′
11∑

l11=1

P
(
{(qn, un

1 (1, L10) , u
n
2 (1, L20) , v

n
1 (m11, l11) , y

n
1 ) ∈ T (n)

ϵ }
)

≤ 2n(R11+R′
11)

∑
(qn,un

1 ,u
n
2 ,v

n
1 ,y

n
1 )∈T

(n)
ϵ

p(qn)p(un
1 |qn)p(un

2 |qn)p(vn1 |qn)p(yn1 |un
1 , u

n
2 , q

n)

≤ 2n(R11+R′
11)2−n(H(Q)+H(U1|Q)+H(U2|Q)+H(V1|Q)+H(Y1|U1,U2,Q)−H(Q,U1,U2,V1,Y1)−δ2(ϵ))

≤ 2n(R11+R′
11)2−n(I(U1;U2|Q)+I(U1,U2;V1|Q)+I(V1;Y1|U1,U2,Q)−δ2(ϵ)),

where δ2(ϵ) → 0 as ϵ → 0. Obviously, the probability that ξ31 happens goes to 0 if

R11 +R′
11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1;Y1|U1, U2, Q). (A.3)

Similarly, the error probability corresponding to the other error events goes to 0, if

R11 +R′
11 +R′

20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(V1, U2;Y1|U1, Q), (A.4)

R11 +R′
10 +R′

11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)
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+I(U1, V1;Y1|U2, Q), (A.5)

R11 +R′
10 +R′

11 +R′
20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(U1, V1, U2;Y1|Q), (A.6)

R10 +R′
10 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(U1;Y1|V1, U2, Q), (A.7)

R10 +R′
10 +R′

20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(U1, U2;Y1|V1, Q), (A.8)

R10 +R′
10 +R′

11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(U1, V1;Y1|U2, Q), (A.9)

R10 +R′
10 +R′

11 +R′
20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(U1, V1, U2;Y1|Q), (A.10)

R10 +R11 +R′
10 +R′

11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(U1, V1;Y1|U2, Q), (A.11)

R10 +R11 +R′
10 +R′

11 +R′
20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(U1, V1, U2;Y1|Q), (A.12)

R11 +R20 +R′
11 +R′

20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(V1, U2;Y1|U1, Q), (A.13)

R11 +R20 +R′
10 +R′

11 +R′
20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(U1, V1, U2;Y1|Q), (A.14)

R10 +R20 +R′
10 +R′

20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(U1, U2;Y1|V1, Q), (A.15)

R10 +R20 +R′
10 +R′

11 +R′
20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(U1, V1, U2;Y1|Q), (A.16)
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R10 +R11 +R20 +R′
10 +R′

11 +R′
20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q)

+I(U1, V1, U2;Y1|Q). (A.17)

Note that there are some redundant inequalities in (A.3)-(A.17): (A.4) is implied by

(A.13); (A.5) is implied by (A.11); (A.8) is implied by (A.15); (A.9) is implied by

(A.11); (A.6), (A.10), (A.12), (A.14), and (A.16) are implied by (A.17). By combining

with the error analysis at the encoder, we can recast the rate constraints (A.3)-(A.17)

as:

R11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1;Y1|U1, U2, Q)− I(V1;S|Q),

R10 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1;Y1|V1, U2, Q)− I(U1;S|Q),

R10 +R11 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1;Y1|U2, Q)− I(U1;S|Q)

−I(V1;S|Q),

R11 +R20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(V1, U2;Y1|U1, Q)− I(V1;S|Q)

−I(U2;S|Q),

R10 +R20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, U2;Y1|V1, Q)− I(U1;S|Q)

−I(U2;S|Q),

R10 +R11 +R20 ≤ I(U1;U2|Q) + I(U1, U2;V1|Q) + I(U1, V1, U2;Y1|Q)− I(U1;S|Q)

−I(V1;S|Q)− I(U2;S|Q).

The error analysis for transmitter 2 and decoder 2 is similar to the above proce-

dures and is omitted here. Correspondingly, (2.8) to (2.13) show the rate constraints

for user 2. In addition, the right sides of the inequalities (2.2) to (2.13) are guaranteed

to be non-negative when choosing the probability distribution. As long as (2.2) to

(2.13) are satisfied, the probability of error can be bounded by the sum of the error

probability at the encoders and the decoders, which goes to 0 as n → ∞.
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APPENDIX B

PROOF FOR THEOREM 2

The achievable coding scheme for Theorem 2 can be described as follows:

Codebook generation: Fix the probability distribution p(q)p(u1|s, q)p(v1|u1, s, q)

p(u2|s, q)p(v2|u2, s, q). First generate the time-sharing sequence qn ∼
∏n

i=1 pQ(qi).

For the jth user, un
j (mj0, lj0) is randomly and conditionally independently generated

according to
∏n

i=1 pUj |Q(uji|qi), for mj0 ∈ {1, 2, · · · , 2nRj0} and lj0 ∈ {1, 2, · · · , 2nR′
j0}.

For each un
j (mj0, lj0), vnj (mj0, lj0,mjj, ljj) is randomly and conditionally indepen-

dently generated according to
∏n

i=1 pVj |Uj ,Q(vji|uji, qi), for mjj ∈ {1, 2, · · · , 2nRjj} and

ljj ∈ {1, 2, · · · , 2nR′
jj}.

Encoding: To send the message mj = (mj0,mjj), the jth encoder first tries to

find lj0 such that (qn, un
j (mj0, lj0), s

n) ∈ T
(n)
ϵ holds. Then for this specific lj0, find ljj

such that (qn, un
j (mj0, lj0), v

n
j (mj0, lj0,mjj, ljj), s

n) ∈ T
(n)
ϵ holds. If successful, the jth

encoder sends vnj (mj0, lj0,mjj, ljj). If not, the jth encoder transmits vnj (mj0, 1,mjj, 1).

Decoding: Decoder 1 finds the unique message pair (m̂10, m̂11) such that (qn,

un
1 (m̂10, l̂10), u

n
2 (m̂20, l̂20), v

n
1 (m̂10, l̂10, m̂11, l̂11), y

n
1 ) ∈ T

(n)
ϵ for some l̂10 ∈ {1, 2, · · · ,

2nR
′
10}, m̂20 ∈ {1, 2, · · · , 2nR20},l̂20 ∈ {1, 2, · · · , 2nR′

20}, and l̂11 ∈ {1, 2, · · · , 2nR′
11}. If

no such unique pair exists, the decoder declares an error. Decoder 2 determines the

unique message pair (m̂20, m̂22) similarly.

Analysis of probability of error: Similar to the proof in Theorem 1, we assume

message (1, 1) and (1, 1) are sent for both transmitters. First we consider the encoding

error probability at transmitter 1. Define the following error events:

ξ′1 =
{
(qn, un

1 (1, l10) , s
n) /∈ T (n)

ϵ for all l10 ∈ {1, 2, · · · , 2nR′
10}
}
,
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ξ′2 =
{
(qn, un

1 (m10, l10), v
n
1 (1, l10, 1, l11) , s

n) /∈ T (n)
ϵ for all l11 ∈ {1, 2, · · · , 2nR′

11}

and previously found typical l10
∣∣ξ̄′1}.

The probability of the error event ξ′1 can be bounded as:

P (ξ′1) =
2nR′

10∏
l10=1

(
1− P

({
(qn, un

1 (1, l10) , s
n) ∈ T (n)

ϵ

}))
≤

(
1− 2−n(I(U1;S|Q)+δ′1(ϵ))

)2nR′
10

≤ e−2n(R
′
10−I(U1;S|Q)+δ′1(ϵ)) ,

where δ′1(ϵ) → 0 as ϵ → 0. Therefore, the probability of ξ′1 goes to 0 as n → ∞ if

R′
10 ≥ I(U1;S|Q). (B.1)

Similarly, for the previously found typical l10, the probability of ξ′2 can be upper-

bounded as:

P (ξ′2) =
2nR′

11∏
l11=1

(
1− P

({
(qn, un

1 (1, l10) , v
n
1 (1, l10, 1, l11) , s

n) ∈ T (n)
ϵ

}))
≤

(
1− 2n(H(Q,U1,V1,S)−H(Q,U1,S)−H(V1|U1,Q)−δ′2(ϵ))

)2nR′
11

≤
(
1− 2−n(I(V1;S|U1,Q)+δ′2(ϵ))

)2nR′
11

≤ e−2n(R
′
11−I(V1;S|U1,Q)+δ′2(ϵ)) ,

where δ′2(ϵ) → 0 as ϵ → 0. Therefore, the probability of ξ′2 goes to 0 as n → ∞ if

R′
11 ≥ I(V1;S|U1, Q). (B.2)

The encoding error probability at transmitter 1 can be calculated as:

Penc1 = P (ξ′1) + P (ξ′2),
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which goes to 0 as n → ∞ if (B.1) and (B.2) are satisfied.

Now we consider the error analysis at the decoder 1. Denote the right Gel’fand-

Pinsker coding indices chosen by the encoders as (L10, L11) and (L20, L22). Define the

following error events:

ξ′31 =
{
(qn, un

1 (1, L10) , u
n
2 (1, L20) , v

n
1 (1, L10,m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m11 ̸= 1,

and some l11
}
,

ξ′32 =
{
(qn, un

1 (1, L10) , u
n
2 (1, l20) , v

n
1 (1, L10,m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m11 ̸= 1,

and some l11, l20 ̸= L20

}
,

ξ′33 =
{
(qn, un

1 (1, l10) , u
n
2 (1, L20) , v

n
1 (1, l10,m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m11 ̸= 1,

and some l11, l10 ̸= L10

}
,

ξ′34 =
{
(qn, un

1 (1, l10) , u
n
2 (1, l20) , v

n
1 (1, l10,m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m11 ̸= 1,

and some l11, l10 ̸= L10, l20 ̸= L20

}
,

ξ′41 =
{
(qn, un

1 (m10, l10) , u
n
2 (1, L20) , v

n
1 (m10, l10, 1, L11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

and some l10
}
,

ξ′42 =
{
(qn, un

1 (m10, l10) , u
n
2 (1, l20) , v

n
1 (m10, l10, 1, L11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

and some l10, l20 ̸= L20

}
,

ξ′43 =
{
(qn, un

1 (m10, l10) , u
n
2 (1, L20) , v

n
1 (m10, l10, 1, l11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

and some l10, l11 ̸= L11

}
,

ξ′44 =
{
(qn, un

1 (m10, l10) , u
n
2 (1, l20) , v

n
1 (m10, l10, 1, l11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

and some l10, l20 ̸= L20, l11 ̸= L11

}
,

ξ′51 =
{
(qn, un

1 (m10, l10) , u
n
2 (1, L20) , v

n
1 (m10, l10,m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

m11 ̸= 1, and some l10, l11
}
,

ξ′52 =
{
(qn, un

1 (m10, l10) , u
n
2 (1, l20) , v

n
1 (m10, l10,m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,
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m11 ̸= 1, and some l10, l11, l20 ̸= L20

}
,

ξ′61 =
{
(qn, un

1 (1, L10) , u
n
2 (m20, l20) , v

n
1 (1, L10,m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m20 ̸= 1,

m11 ̸= 1, and some l20, l11
}
,

ξ′62 =
{
(qn, un

1 (1, l10) , u
n
2 (m20, l20) , v

n
1 (1, l10,m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m20 ̸= 1,

m11 ̸= 1, and some l20, l11, l10 ̸= L10

}
,

ξ′71 =
{
(qn, un

1 (m10, l10) , u
n
2 (m20, l20) , v

n
1 (m10, l10, 1, L11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

m20 ̸= 1, and some l10, l20
}
,

ξ′72 =
{
(qn, un

1 (m10, l10) , u
n
2 (m20, l20) , v

n
1 (m10, l10, 1, l11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

m20 ̸= 1, and some l10, l20, l11 ̸= L11

}
,

ξ′8 =
{
(qn, un

1 (m10, l10) , u
n
2 (m20, l20) , v

n
1 (m10, l10,m11, l11) , y

n
1 ) ∈ T (n)

ϵ for m10 ̸= 1,

m20 ̸= 1, m11 ̸= 1, and some l10, l20, l11
}
.

The probability of ξ′31 can be bounded as follows:

P (ξ′31) =
2nR11∑
m11=2

2R
′
11∑

l11=1

P
(
{(qn, un

1 (1, L10) , u
n
2 (1, L20) , v

n
1 (1, L10,m11, l11) , y

n
1 ) ∈ T (n)

ϵ }
)

≤ 2n(R11+R′
11)

∑
(qn,un

1 ,u
n
2 ,v

n
1 ,y

n
1 )∈T

(n)
ϵ

p(qn)p(un
1 |qn)p(un

2 |qn)p(vn1 |un
1 , q

n)p(yn1 |un
1 , u

n
2 , q

n)

≤ 2n(R11+R′
11)2−n(H(Q,U1,V1)+H(U2|Q)+H(Y1|U1,U2,Q)−H(Q,U1,U2,V1,Y1)−δ′3(ϵ))

≤ 2n(R11+R′
11)2−n(I(U1,V1;U2|Q)+I(V1;Y1|U1,U2,Q)−δ′3(ϵ)),

where δ′3(ϵ) → 0 as ϵ → 0. Obviously, the probability that ξ′31 happens goes to 0 if

R11 +R′
11 ≤ I(U1, V1;U2|Q) + I(V1;Y1|U1, U2, Q). (B.3)

Similarly, the error probability corresponding to the other error events goes to 0,
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respectively, if

R11 +R′
11 +R′

20 ≤ I(U1, V1;U2|Q) + I(V1, U2;Y1|U1, Q), (B.4)

R11 +R′
10 +R′

11 ≤ I(U1, V1;U2|Q) + I(U1, V1;Y1|U2, Q), (B.5)

R11 +R′
10 +R′

11 +R′
20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q), (B.6)

R10 +R′
10 ≤ I(U1, V1;U2|Q) + I(U1, V1;Y1|U2, Q), (B.7)

R10 +R′
10 +R′

20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q), (B.8)

R10 +R′
10 +R′

11 ≤ I(U1, V1;U2|Q) + I(U1, V1;Y1|U2, Q), (B.9)

R10 +R′
10 +R′

11 +R′
20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q),(B.10)

R10 +R11 +R′
10 +R′

11 ≤ I(U1, V1;U2|Q) + I(U1, V1;Y1|U2, Q),(B.11)

R10 +R11 +R′
10 +R′

11 +R′
20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q),(B.12)

R11 +R20 +R′
11 +R′

20 ≤ I(U1, V1;U2|Q) + I(V1, U2;Y1|U1, Q),(B.13)

R11 +R20 +R′
10 +R′

11 +R′
20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q),(B.14)

R10 +R20 +R′
10 +R′

20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q),(B.15)

R10 +R20 +R′
10 +R′

11 +R′
20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q),(B.16)

R10 +R11 +R20 +R′
10 +R′

11 +R′
20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q).(B.17)

Note that there are some redundant inequalities in (B.3)-(B.17): (B.4) is implied

by (B.13); (B.5) is implied by (B.11); (B.7) is implied by (B.9); (B.8) is implied by

(B.15); (B.9) is implied by (B.11); (B.6), (B.10), (B.12), (B.14), (B.15), and (B.16)

are implied by (B.17). By combining with the error analysis at the encoder, we can

recast the rate constraints (B.3)-(B.17) as:

R11 ≤ I(U1, V1;U2|Q) + I(V1;Y1|U1, U2, Q)− I(V1;S|U1, Q),

R10 +R11 ≤ I(U1, V1;U2|Q) + I(U1, V1;Y1|U2, Q)− I(U1, V1;S|Q),
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R11 +R20 ≤ I(U1, V1;U2|Q) + I(V1, U2;Y1|U1, Q)− I(V1;S|U1, Q)− I(U2;S|Q),

R10 +R11 +R20 ≤ I(U1, V1;U2|Q) + I(U1, V1, U2;Y1|Q)− I(U1, V1;S|Q)− I(U2;S|Q).

The error analysis for transmitter 2 and decoder 2 is similar to the above proce-

dures and is omitted here. Correspondingly, (2.23) to (2.26) show the rate constraints

for user 2. Furthermore, the right-hand sides of the inequalities (2.19) to (2.26) are

guaranteed to be non-negative when choosing the probability distribution. As long

as (2.19) to (2.26) are satisfied, the probability of error can be bounded by the sum

of the error probability at the encoders and the decoders, which goes to 0 as n → ∞.
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