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ABSTRACT 

 

Biophysical Probes of Iron Metabolism in Yeast Cells, Mitochondria, and Mouse 

Brains. (August  2012) 

Gregory Paul Holmes-Hampton, B.S., Illinois State University 

Chair of Advisory Committee: Dr. Paul A. Lindahl 

 

Iron is essential in nearly all organisms. It is a cofactor in many proteins and 

enzymes. This transition metal can also be toxic because it participates in reactions 

which produce reactive oxygen species. To avoid these toxic effects while still being 

used for essential processes, the cell must regulate tightly iron import, metabolism, 

trafficking, and homeostasis. These processes were studied using biophysical methods 

centered on Mössbauer spectroscopy supplemented by electron paramagnetic resonance, 

electronic absorption spectroscopy, and inductively coupled plasma mass spectrometry. 

This integrated biophysical approach was applied to yeast cells, isolated yeast 

mitochondria, and mouse brains. We determined the concentration of Fe, and the 

proportion of that Fe present as iron-sulfur clusters, heme centers, mononuclear 

nonheme centers, and as Fe3+ oxyhydroxide (phosphate) nanoparticles for each system.  

In yeast, the dependence of metabolic mode of growth and iron in the growth 

medium on this distribution was studied. Approximately three-quarters of the iron in 

fermenting cells was located in vacuoles, where it was present as high-spin mononuclear 

Fe3+ species with rhombic symmetry. The remaining quarter was present in the 



 iv

mitochondria. In fermenting mitochondria 4 distinct species of iron were observed, 

including [Fe4S4]
2+ clusters and low-spin Fe2+ hemes arising from respiratory 

complexes, non-heme high spin (NHHS) Fe2+ species, high spin nonheme Fe3+ species, 

and nanoparticles. These distributions (in both the cells and mitochondria) change when 

the cells are grown on iron deficient medium but remained relatively unaltered as iron in 

the growth medium was increased. Respiring cells had less Fe associated with vacuoles, 

and more Fe present as HS Fe2+. Respiring mitochondria contain more [Fe4S4]
2+ clusters 

and low-spin Fe2+ hemes, more S = ½ [Fe2S2]
1+ clusters, and less NHHS Fe2+, HS Fe3+ 

species and Fe3+ nanoparticles. These changes were rationalized by assuming that the 

NHHS Fe2+ and Fe3+ species, and the nanoparticles were in equilibrium within the 

matrix of the mitochondria, and that the Fe2+ species served as feedstock for the 

synthesis of iron-sulfur clusters and heme centers.  

The iron in the mouse brain consisted mostly of [Fe4S4]
2+ clusters and Fe2+ 

hemes from mitochondria respiratory complexes, and of ferritin, an Fe storage protein 

complex. NHHS Fe2+ and Fe3+ species were also observed. The ratio of stored Fe to 

mitochondrial Fe was sensitive to age. The brains of prenatal animals were dominated 

by ferritin. Following birth up to the first 4 weeks of life, there was an increase in 

mitochondrial Fe and a decline of ferritin Fe. Beyond 4 weeks up to 58 weeks, levels of 

ferritin increased and mitochondrial Fe remained constant. The brains of mice fed an 

Fe-deficient diet were also studied; most of the Fe in these brains was present as 

mitochondrial Fe, with little stored as ferritin. A model was developed to explain these 

changes.  
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NOMENCLATURE  

Aft1-1up 
a yeast strain in which the transcription factor Aft1p 
 constitutively upregulates iron regulon genes, regardless  
of Femedium concentration 

BPS Bathophenanthrolinesulfonate 

Ccc1p Fe importer on the vacuolar membrane 

Compound 5 a fluorescent compound described in (228) 

CPY carboxypeptidase Y 

DDDI double-distilled and deionized 

DTT Dithiothreitol 

EPR 
electron paramagnetic resonance 
 

Femedium iron contained in the growth medium 

Gal-YAH1 
a yeast strain in which expression of the ferredoxin  
Yah1 is controlled by the carbon source in the growth  
medium (galactose promotes expression; glucose represses it) 

HS high spin 

ICP-MS inductively coupled plasma mass spectrometry 



 ix

IM 
 

inner membrane of the mitochondria 

ISC iron−sulfur cluster 

LS low spin 

Mrs3p and Mrs4p Fe importers on the IM 

ND not determined 

PGK phosphoglycerate kinase 

ROS reactive oxygen species 

TMG trace metal grade 

WT wild type 

YPD standard rich medium containing glucose 

δ isomer shift 

ΔEQ quadrupole splitting 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

Iron is an essential element for numerous aspects of cell biology. This transition 

metal acts as a cofactor for many different proteins from the relative simplicity of a 

mononuclear site to the complexity of an iron-sulfur cluster (Figure 1.1) or a heme 

(Figure 1.2). In such centers iron catalyzes an assortment of reactions such as those 

involved in respiration (1-3), electron transfer (4-6), DNA replication and repair (7-10), 

and diatomic gas storage, transfer, and sensing (11-13).  The ability to gain or lose 

electrons allows for the diverse range of reactions catalyzed by iron containing proteins. 

In spite of its utility in cells iron can also be detrimental through the Fenton 

reaction [Fe2+ + H2O2  Fe3+(OH) + OH] whereby reactive oxygen species (ROS) can 

be made (14).  Such species, as the name implies, are highly reactive and can damage 

numerous cellular components including lipids (15), proteins (16), and DNA (17).  In 

light of this two-sided nature of iron, wherein it is vital to life but still quite dangerous, 

iron uptake, trafficking, and homeostasis are especially important. These aspects of the 

budding yeast cell Saccharomyces cerevisiae and the mouse brain are the focus of this 

dissertation.  

Iron Acquisition in the Yeast Cell 

Yeast serves as a model system for eukaryotic cells because they are the simplest  

______________ 
This dissertation follows the format of Biochemistry.  
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Figure 1.1. Common iron-sulfur clusters . Structures of the most common iron-sulfur 
clusters in their most common oxidation states. A,B,  [Fe2S2] clusters in the reduced (1+) 
and oxidized (2+) state, C,D, [Fe3S4] clusters in the reduced (0) and oxidized (1+) state, 
E,F, [Fe4S4] clusters in the the reduced (1+) and oxidized (2+) state. *The [Fe2S2] 
clusters can have two N-His ligands in place of the S-Cys and this is referred to a Rieske 
center (18). 
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Figure 1.2.  Heme centers. Structures of the most common heme centers  found in cells 
A, heme a; B, heme b; C, heme c.  These centers are typically found in the Fe2+ or Fe3+ 
oxidation state. 
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cell, and are easy and inexpensive to grow and manipulate genetically. Yeast possesses 

three major pathways of iron uptake. The pathways are comprised of a 

feroxidase/permease complex, ferrous transporters, and siderophore receptors and 

importers. Each pathway internalizes ferric ions from the growth medium across the 

plasma membrane into the cytosol of the cell.  

The ferroxidase/ permease pathway is the “high affinity” system of iron uptake 

(19).   The pathway is termed high affinity because of its ability to acquire iron when the 

concentration of iron in the growth medium is low. The first step of this process is to 

reduce Fe3+ to Fe2+ using ferric reductases Fre1p or Fre2p (20). Following reduction, iron 

is accepted by the Fet3p/Ftr1p complex.  Fet3p is a multicopper oxidase (21), and Ftr1p 

is a permease (22, 23).  These two proteins work together in that Ftr1p will not localize 

to the plasma membrane in the absence of Fet3p, and Fet3p will not accept the necessary 

copper cofactor in the absence of Ftr1p (22). This pathway is essentially non-functional 

under anaerobic growth conditions, perhaps because of an inability of the copper to 

undergo redox changes in the absence of O2 (23).  

The ferrous transport pathway, comprised of Fet4p, is the “low affinity” system 

of iron uptake. This pathway requires higher concentrations of iron in the growth 

medium than does the Fet3p/Ftr1p system (24). Fet4p is a divalent metal transporter 

which internalizes Fe2+ in addition to other divalent metals (25, 26). This pathway is 

upregulated under anaerobic conditions compensating for the reduced ability of the high 

affinity pathway to acquire iron. Under such conditions iron in the growth medium can 

be in the ferrous state allowing the protein to internalize it (23). In aerobic conditions the 
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Fet4 system of iron uptake is ~100 times less effective at binding and importing iron 

than the Fet3/Ftr1 complex (24). In aerobic conditions the cell must use a reductase such 

as Fre1p or Fre2p to internalize iron via Fet4p. Aerobically grown cells lacking the high 

affinity system show no signs of iron deficiency as long as the concentration of iron in 

the media is 50 µM or higher (24). Under these conditions the Fet4p system will 

internalize the iron. 

Siderophores are low-molecular weight organic molecules which bind ferric ions 

tightly; they are especially useful when the concentration of iron in the growth medium 

is low. Yeast have receptors, Arn1-4p (27-29), which recognize such species. In spite of 

the ability of yeast to acquire iron from siderophores, they do not synthesize them, 

making this a system to scavenge iron from other organisms. Yeast internalize 

siderophore iron with a permease (following reduction by Fre3p or Fre4p (30)) or via 

endocytosis (31, 32). 

Control of Iron Acquisition by Aft1p and Aft2p 

These iron import pathways are tightly regulated on the transcriptional level by 

two transcription factors called Aft1p and Aft2p (33) (34). These proteins localize to 

different compartments of the cell depending on the concentration of iron in the cytosol. 

Under low iron conditions they are found in the nucleus where they activate the genes of 

the iron regulon. The iron regulon includes the genes which synthesize the proteins of 

the iron import pathways. Through this mechanism Aft1p and Aft2p control the import 

of iron into the cell. Conversely, when iron levels are replete, Aft1/2p localize in the 

cytosol and the iron regulon deactivates.  
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The mechanism of Aft1p localization is unclear, but recent studies on Aft2p 

indicate protein:protein interactions may play a role. Outten and coworkers have 

identified a pair of monothiol glutaredoxins (Grx3p and Grx4p) that form a bridging 

[Fe2S2] cluster with a BolA-like protein called Fra2p (35). Aft2p may bind this complex 

(34). When iron levels become depleted, this cluster may not form, decreasing the 

affinity for Aft2p to the complex. This would allow localization in the nucleus and an 

upregulation of the iron regulon. Localization of Aft1p may also be controlled by 

protein:protein interactions. A strain (Aft1-1up) has a single point-mutation, C291F, 

which may be involved in such interactions. This strain has a constitutively activated 

iron regulon (33) (see chapter 5).  The mutated cysteine may have other roles that lead to 

its localization in the nucleus such as acting as a ligand in an ISC or in forming a 

disulfide bond. 

Fates of Iron in the Yeast Cell 

Many yeast organelles contain iron, including the nucleus (7, 9, 36-41), the 

endoplasmic reticulum (ER) (39, 42, 43), the vacuole, and the mitochondrion (the latter 

two will be discussed below). The iron acquisition pathways first transport iron to the 

cytosol prior to being trafficked to other organelles (44, 45). Little is known about the 

iron content of the cytosol, the aqueous environment inside the plasma membrane which 

houses these organelles. This is compounded by the difficulty of studying cytosolic 

material (24).  There are established protocols for isolating organelles (specific protocols 

for mitochondria will be discussed in chapter 2.) The cytosol is encapsulated only by the 

plasma membrane which will be disrupted during isolation of organelles or cytosolic 
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material. This means that studying cytosolic material would involve removing all 

contaminating organelles. This task in itself is difficult but studying iron in the cytosol 

involves removing iron associated with these organelles. This is complicated by the 

tendency of iron to leach out during organelle removal, or be released during inadvertent 

organelle disruption. In spite of this, several ISC (34, 38, 46-50) and mononuclear iron 

(51, 52) proteins have been identified in the cytosol. The clusters in cytosolic ISC 

containing proteins are made (at least in part) by the cytosolic iron sulfur cluster 

assembly machinery (CIA) (38, 53-55).  

The Vacuole as a Storage Site for Iron in the Yeast Cell 

The vacuole is an organelle that is specific to plant and fungal cells.  Vacuoles 

are similar in function to the lysosomes found in higher eukaryotes.  The vacuole plays a 

major role in yeast iron trafficking and homeostasis (56).  It stores and detoxifies iron 

thereby avoiding ROS formation.  Vacuoles store iron that is used when the cell is in an 

iron deficient environment (57). They may also provide iron for a shift in metabolism (a 

diauxic shift) from fermenting to respiring conditions (58).  

The vacuolar lumen is more acidic than the surrounding cytosol, giving rise to a 

more oxidizing environment (58, 59).  The majority of iron in the vacuole has been 

hypothesized to be in the ferric state ligated by hydroxide, phosphate and or 

polyphosphate ligands (58-60). Previous reports have indicated the vacuolar iron content 

is ~ 0.2 μg Fe/mg protein (59, 61). Reporting numbers in this fashion is confusing in that 

it does not indicate the concentration of iron, only the ratio of iron concentration to the 

protein concentration in the organelle.  By reporting the amount of iron as a ratio of the 
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amount of protein, there is the possibility that changing protein content can make the 

organelle appear to have more or less of the metal. This is a common problem in studies 

of metals in cell biology; it is not limited to vacuoles but rather is applicable to any 

organelle. 

 There are a number of vacuolar proteins which have been identified in iron 

homeostasis.  The first is the protein ccc1p which is the primary importer of iron into the 

vacuole (62, 63).  Ccc1p imports ferrous ions from the cytosol (57, 61, 64). Vacuoles 

also undergo endocytosis indicating a second pathway for iron acquisition. However, 

vacuoles lacking the ability to endocytose do not show a considerable change in iron 

content. This indicates that the majority of the iron is imported by ccc1p (62). Ccc1p is 

the only identified importer of iron into the vacuole and genetic deletion of this protein 

greatly decreases the iron content of the vacuoles (61).  

Other identified proteins involved in iron homeostasis in the vacuole are involved 

in the export of iron. Two Fe export systems have been identified. The first system uses 

a permease/oxidoreductase pair, Fet5/Fth1p (65),  homologous to Fet3/Ftr1 system of 

iron acquisition across the plasma membrane. The other system of iron export includes 

Smf3p which is a divalent metal transporter (66). Both of these proteins rely on a 

metalloreductase Fre6p homologous to the plasma membrane proteins Fre1-4p  (59). 

This reductase is necessary for export of iron from the vacuole, further substantiating the 

hypothesis that iron is stored in the ferric form in the vacuole. These systems of iron 

export allow the release of iron from the vacuole. Without such systems the vacuoles 

would simply sequester iron rather than store it. 
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Yap5p is a transcription factor which modulates the activity of vacuolar 

importers and exporters. Yap5p is responsible for differential expression of Ccc1p; this 

process is mediated by the concentration of iron in the cell. Ccc1 protein levels are 

upregulated when the concentration of iron in the cell is high and the Ccc1p levels will 

decline under iron depletion (67).  The proteins Cth1p and Cth2p also appear to be 

involved in this process; however the direct connection and roles have not been 

established (68).  This response to iron content of the cell allows the vacuoles to import 

more (or less) iron under iron replete (or depleted) conditions.  There may also be a 

connection to the exporters of the vacuole to mobilize iron when the cell needs this metal 

but again this phenomenon is not well investigated.   

 Mitochondria as “Hubs” of Iron Metabolism 

The mitochondria are major hubs of iron metabolism in the cell. Within this 

organelle all hemes and ISCs (excluding those made by the CIA) are synthesized.  

Mitochondria are the site of the citric acid cycle used during cellular respiration and 

harbor the proteins of the electron transport chain (ETC) and oxidative phosphorylation.  

Mitochondria contain 4 distinct structural components including an outer membrane 

(OM), an inner membrane (IM), an inner membrane space (IMS) and the matrix (Figure 

1.3). The OM is highly porous allowing the free flow of small molecules and nutrients 

across the membrane (69). The inner membrane is much harder to transverse. Both the 

OM (70-72) and IM (73-76) make use of specific translocases to move materials into the 

mitochondria. The IM is heavily invaginated with the cristae or folds of the IM being  
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Figure 1.3. Electron microscopy image of mitochondria isolated from rat brains. The 
Blue arrow indicates the OM, the red arrow indicates the IM at the location of cristae, 
the IMS is the space between these two areas and the matrix constitutes the rest of the 
structure.  
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composed primarily of protein including those used for oxidative phosphorylation and 

the ETC (77).  

Iron import into the Mitochondria 

Iron is imported into the mitochondria through a pair of homologous proteins, 

Mrs3p and Mrs4p.  These proteins were first identified as solute carriers (78) and were 

later identified as the high affinity importers of iron for the mitochondria (79, 80).  

Mrs3/4p are thought to import ferrous ions from the cytosol (80). Deletion of these 

proteins leads to a decrease in mitochondrial iron (81) and inhibited heme and ISC 

synthesis (79).   

There is no evidence for oxidation of this iron concurrent with import and for at 

least the last 35 years efforts have been made to quantify the amount of “chelatable” 

ferrous iron in the mitochondria. Starting with studies by Flatmark and Tangeras, 

mitochondria were incubated with bathophenanthroline sulfonate (BPS). The 

investigators found that ~25% of the mitochondrial iron was chelatable (82). More 

recent studies by Petrat and co-workers indicated a much lower concentration of 

chelatable iron using mitochondrial specific fluorescent chelators.  These experiments 

involved a pre-incubation with chelators whose fluorescence will quench upon binding 

iron followed by incubation with phenanthroline which binds iron tighter than the 

fluorescent molecule.  By monitoring the change in fluorescence the investigators found 

that only 12-17 µM of iron in the mitochondria of mouse liver cells was in this 

chelatable form (83-86).  How these studies relate to the mitochondria in yeast cells is 

uncertain. 
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Both of these methods are complicated by the use of chelators; the Flatmark 

studies reported on the formation of the Fe(BPS)3 complex which has a well-defined 

extinction coefficient of 23,141 M-1 (87), while the Petrat methods reported on the 

fluorescence of the phenanthroline derivative Phen-Green SK when iron is not bound.  

The problem is that neither method directly probes the endogenous iron complexes. By 

probing an iron species with a chelator, one is methodically defining what is being 

probed. When using a chelator which is sufficiently strong to remove iron from ISCs or 

mononuclear sites, there is a possibility that more than just iron ligated by small 

molecules may be probed by these methods yielding a higher concentration of chelatable 

iron than would otherwise be found. Conversely, if one were to use a chelator weaker 

than the endogenous ligands of the small molecules of interest, the concentration of 

chelatable iron would appear lower than would be apparent using a stronger chelator. 

Using a chelator based method also relies on using appropriate concentrations of the 

chelator. Finally, chelator-based methods will destroy the endogenous cellular 

complexes and thus destroy any chance of identifying the endogenous ligands attached 

to the iron. 

Mitochondrial Iron-Sulfur Cluster Biosynthesis 

Mitochondria utilize a number of proteins to make ISCs.  The scaffold proteins 

Isu1/2p are central to this process.  The yeast homolog of frataxin Yfh1p is also 

necessary, but its role is elusive. It has been assigned as an iron chaperone for this 

process (88-90). However, recent work suggests Yfh1p is an activator of the process as 

evidenced by the decreased in vitro ability of the constituents of the mitochondrial ISC 
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machinery to make a cluster in the absence of Yfh1 (91). A recent study on the E. coli 

counterpart CyaYp has shown that frataxin is an inhibitor of ISC biosynthesis (92). 

There is no evidence to support this in eukaryotic systems. The sulfur associated with the 

cluster originates from the protein complex Nfs1/Isd11. Nfs1p has been identified as a 

cysteine desulfurase which catalyzes the conversion of cysteine to alanine via a 

persulfide intermediate (93). Isd11p does not have an established role but is necessary 

for Nfs1p activity and/or stability (91, 94). Reducing equivalents are also necessary to 

making the bridging sulfides. These reducing equivalents come from NADPH via the 

oxidoreductase Arh1p (95, 96) and are shuttled through Yah1p (97).   

Downstream of this process are a number of chaperone proteins presumably 

involved in transfer of the newly formed cluster to the apo-protein targets. These include  

Ssq1p, a 70 kDa heat shock protein which appears to have a role in Yfh1p maturation 

(98-100), Jac1p, a J-protein which interacts with Ssq1p (101), Mge1p which acts as a 

release factor for Ssq1 following ATP hydrolysis (102), and Grx5p, a glutaredoxin 

necessary for ISC maturation (103). Even further downstream is Atm1p, an ATP-binding 

cassette (ABC) transporter protein on the IM that exports an unknown compound 

necessary for CIA function (104, 105). 

Nanoparticles in ISC Mutants 

Disruption of the ISC biosynthetic pathway affords similar phenotypes in Δyfh1, 

Δyah1, and Δatm1 strains. This includes the massive accumulation of iron in the 

mitochondria in the form of ferric nanoparticles and the disruption of both mitochondrial 

and cytosolic ISC biosynthesis (105-107). These nanoparticles have been studied by 
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numerous biophysical techniques (many of which will be described in detail in Chapter 

two). The data suggests that this species is comprised of O, P, and Fe but not C or N. 

These ferric ions interact magnetically to afford a repeated structure that is similar to that 

shown in figure 1.4. 

Studies on Δyah1 and Atm1-depeleted cells indicate that formation of the 

nanoparticles requires molecular oxygen as anaerobic growth of these strains does not 

yield ferric nanoparticles (105, 107). The Δatm1 strain appears to have normal 

mitochondrial ISC levels under anaerobic growth unlike Δyah1 (105, 107). This is 

indicative of a damaging secondary effect of oxidative stress to the mitochondrial ISC 

machinery under aerobic conditions. ROS generation may occur concurrently with the 

production of the ferric nanoparticles. The ability of Δatm1 cells to make mitochondrial 

but not cytosolic ISCs under these conditions is consistent with functional mitochondrial 

ISC machinery and the downstream role of Atm1p in ISC biosynthesis.  

Heme Biosynthesis 

Mitochondria are the exclusive site of heme biosynthesis in the cell although not 

all steps in the pathway occur therein.  The first step utilizes succinyl CoA, an 

intermediate of the citric acid cycle. Rather than converting this molecule to succinate, 

the substrate for the citric acid cycle reaction of succinate dehydrogenase, succinyl CoA 

is converted to δ-aminolevulinic acid and transferred to the cytosol where the porphyrin 

ring is built.  Protoporphyrinogen III is transported back into the mitochondria where it 

is converted to protoporphyrinogen IX. Iron is inserted into this intermediate in a 

reaction catalyzed by Hem15p, ferrocheletase (108). This yields heme b a portion of 
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Figure 1.4. Candidate structure for the ferric nanoparticles. This candidate structure in 
adapted from (105) used data collected from Atm1p-depleted mitochondria. Other 
geometries are possible. Other protonation states for water and hydroxide ligands are 
also possible, as long as overall charge neutrality is maintained. 
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which is converted to heme a by the enzyme heme a synthase (109). Another portion of 

the heme b population is converted to heme c through covalent linkages to the 

hemeprotein by heme c lyase (110). The changes for heme a and heme c relative to heme 

b are shown in Figure 1.2. 

Mitochondrial Use of ISCs and Hemes 

The citric acid cycle uses 10 enzymes (two of which have iron active sites) to 

convert acetyl-CoA to CO2. The first of these iron containing enzymes, aconitase, is a 

[Fe4S4] cluster containing protein which contains a labile iron the loss of which yields an 

[Fe3S4] cluster. This enzyme is responsible for the conversion of citrate to isocitrate. The 

second Fe-containing enzyme of the cycle, succinate dehydrogenase, is a multi-subunit 

complex containing 3 ISCs (2 [Fe4S4] clusters, one with a labile iron making a [Fe3S4] 

cluster, and a [Fe2S2] cluster) and a heme b group that converts succinate to fumarate.  

Succinate dehydrogenase is also found in the electron transport chain and is 

termed complex II (yeast lack a complex I) (111, 112).  Complex II shuttles electrons to 

complex III, also referred to as cytochrome bc1. Complex III contains two heme b’s, a 

heme c, and a [Fe2S2] Rieske center (113). The final protein complex in the ETC is 

cytochrome c oxidase (complex IV) which contains two heme centers, heme a and heme 

a3, and two copper sites referred to as CuA and CuB.  Heme a3 functions with CuB to bind 

and reduce O2 to water. The electrons used in this process are passed from heme c of 

cytochrome c via the CuA site and the heme a site of cytochrome c oxidase (114). 

Electron transfer is coupled to oxidative phosphorylation, which uses ATP synthase to 
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generative massive amounts of ATP. Dangerous ROS is generated during respiration 

(115). 

A Systems-Level Study of Iron in Cells and Organelles  

Biophysical methods have been utilized to study individual iron containing 

proteins (93, 116-120). Such methods can give insight into the mechanism of an enzyme. 

These methods, however, have been rarely applied to studying the iron in an organelle or 

cell. The motivation of this dissertation was to determine whether biophysical 

spectroscopy, with Mossbauer spectroscopy playing the dominant role, could be used to 

understand iron metabolism from a systems-level perspective. This is a different use of 

the techniques. As will be demonstrated in this dissertation, this systems-level 

biophysical approach is indeed useful in probing issues of iron trafficking, regulation 

and homeostasis in cells.  

In chapter 2, we describe the biophysical approach. In chapter 3, we 

biophysically characterize mitochondria isolated from fermenting cells. In chapter 4, we 

describe the biophysical differences in mitochondria isolated from different metabolic 

modes of growth. In chapter 5, we biophysically describe the whole yeast cell, vacuoles 

isolated from fermenting cells, and the differences to cellular iron distribution when Aft1 

constitutively expresses the genes of the iron regulon. In chapter 6, we describe the 

changes to the iron content of yeast cells and mitochondria when cells are grown under 

fermenting and respiring mitochondria with high and low concentrations of iron in the 

growth medium. 
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Iron in the Mouse Brain 

The second major focus of this dissertation is to use the same systems-level 

biophysical approach to study an even more complex system – namely the iron content 

of the mouse brain. The main issue is whether the integrative biophysical approach 

developed to study the iron in yeast cells and organelles will be useful in understanding 

aspects of brain Fe metabolism.  

Iron is critical for brain metabolism. Iron is found in hemoglobin, necessary for the 

transport of O2 into the brain. Inside the brain iron is found in a number of different 

centers. Iron rich mitochondria house a number of hemes and ISCs in respiratory 

complexes homologous to those discussed above in yeast. These complexes help provide 

the majority of the chemical energy needed for the brain to function (121). Iron is also 

found at the active site of a number of metalloenzymes in the brain. Among these are 

tyrosine and tryptophan hydroxylases which harbor roles in the biosynthesis of 

neurotransmitters (122, 123). Iron is also critical for myelin biosynthesis (124, 125). 

Trafficking of Iron into the Brain 

 Iron is trafficked into the brain by the protein transferrin. Transferrin binds two 

ferric ions with high affinity (126). Iron loaded transferrin is bound by a receptor on the 

cellular membrane which promotes endocytosis of the protein bound iron (127). In turn, 

the iron is released and the transferrin returns to the extracellular space (128). Iron as 

well as most other molecules must traverse the blood brain barrier (BBB) for import into 

the brain (129). This barrier is the result of tight junctions between endothelial cells. The 

cells of the BBB have a number of highly selective active transport systems for 
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importing molecules like iron or metabolites such as glucose.  This basically establishes 

a mechanism whereby the BBB can control which molecules enter the brain. 

Cellular Export of Iron 

Neuronal cells have the ability to release iron (130, 131). Cells of the spleen, kidney, 

and placental syncytiotrophoblast also have a similar capacity to release iron (130, 132). 

Most cells (excluding neuronal cells) export iron using ceruloplasmin, a multicopper 

oxidase, and ferroportin. Neuronal cells lack ceruloplasmin (133); instead the β-amyloid 

protein precursor harbors a ferroxidase activity in such cells.   

Proteins of Iron Storage 

Neuronal cells have a number of proteins capable of storing large amounts of 

iron including neuromelanin, ferritin, and hemosiderin. Neuromelanin is a pigment 

found in regions of the brain including, most notably, the substantia nigra.  This pigment 

has a high affinity for chelating metals (134) and accumulates with age (135) because it 

is not effectively degraded (136). Elevated levels of cellular iron have been found in 

Parkinson’s disease and appear to be in a form related to neuromelanin (137-139).  

Ferritin is widely distributed throughout the body with the established role of 

binding massive amounts of iron.  Ferritin is a globular protein with 24 subunits of L 

(light chain) and H (heavy chain) ferritin monomers. H-ferritin has a ferroxidase activity 

that is lacking in the L-chain ferritin subunit.  As many as 4500 iron ions may be bound 

to a single ferritin complex (140, 141). The iron is found in the ferric form in 

magnetically interacting ferric (oxidized by the H-chain ferritin subunits) nanoparticles 

in the protein core (142). Ferritin protects the cell from potential iron overload and ROS 
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formation. Mitoferritin is a functionally and physically similar protein which localizes to 

the mitochondria (143). Hemosiderin is also functionally similar to ferritin but is often 

associated with hemorrhaging (144). 

Methods for Studying Iron in the Brain 

 Traditionally iron has been visualized by staining methods. The two most 

common methods are Perl staining and Turnbull staining. Both methods involve staining 

brain slices and monitoring complex formation between the stain and iron in the sample. 

Both methods are based on ferricyanide, with the Perl stain detecting ferric iron, and the 

Turnbull stain detecting ferrous iron. Typically such methods are used to study 

neurodegenerative states (145). Staining gives good spatial resolution as the stain will 

diffuse throughout the slice and a change in color will occur upon iron binding. These 

stains, used in conjunction, give the ability to distinguish ferrous from ferric ions. Not all 

of the iron in the brain will be stained with these methods. These methods can only 

detect iron that is chelated by the reagent. Staining also destroys endogenous complexes, 

just as with the chelator based studies. 

 X-ray fluorescence (XRF) (146) has also been used to probe iron in the brain. 

Using XRF, changes in iron levels associated with disruption of the prion protein were 

studied (147). XRF will give information about the amount of iron in a sample but not 

the form of it. Essentially XRF involves bombarding a sample with energy in the form of 

x-rays which disperses electrons from the atom. The atom will move an electron from an 

outer orbital to a vacant orbital, causing a photon to be emitted. This emitted energy is 

different for different elements allowing elements in the sample to be distinguished. 
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Because of the high energy used in the technique, the endogenous ligands to an iron 

complex may be lost. The technique involves sectioning of the brain so spatial resolution 

is gained by the number of sections used. X-ray fluorescence is sensitive, with detection 

limits of 10-100 parts per billion (ppb).  With a large number of sections, this technique 

has the ability to give excellent spatial resolution but not spectral resolution. 

 High field magnetic resonance imaging (MRI) has also been used to study iron in 

the brain (148-150). MRI has excellent spatial resolution of intact samples. The 

sensitivity of the technique is dictated by the field strength of the instrument and the 

length of the scan. MRI is a nondestructive technique. Unlike other techniques 

mentioned, MRI can be used on living samples. For such samples the length of the scan 

becomes an important experimental parameter. If the scan time is too long the sample 

may move, diminishing S/N (151).  Like X-ray fluorescence MRI does not detect 

individual iron centers like an ISC or a heme. In fact, MRI probes relaxation properties 

of water in the body which are iron sensitive. The technique is most useful for studying 

samples that accumulate iron.  

 Mössbauer spectroscopy has also been used to study iron in the brain (142, 152-

158). This technique will be discussed in detail in chapter two. Mössbauer lacks spatial 

resolution unless the brain was sectioned. The strength of Mössbauer spectroscopy is its 

ability to distinguish types of iron. For example, an ISC will be easily distinguished from 

ferritin associated iron. The major drawbacks of Mössbauer are that it only probes 57Fe 

and the technique is insensitive. The majority of the studies presented previously suffer 

from poor S/N. Because of this, use of the technique has been limited to samples with 
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high levels of iron, or specific regions of the brain with high levels of iron. As a result 

most of the collected Mössbauer spectra of brains tend to be dominated by storage forms 

of iron. 

Diseases arising from Iron in Higher Eukaryotes  

The methods mentioned above are typically utilized to study iron associated with 

diseases. Iron will accumulate in the brain in several neurodegenerative diseases. By 

studying diseased samples and comparing them to healthy samples, the change in iron 

distribution can be detected. Often times techniques such as MRI can aid in diagnosing 

neurodegenerative diseases (159).   

There are many diseases associated with iron. In general diseases associated with 

iron originate from an overload or a deficiency in the cell. One in 200 people suffer from 

hemochromatosis, the most common form of iron overload. The disease results from 

either a genetic or metabolic disorder (160). The symptoms include accumulation of iron 

in several tissues which can lead to cirrhosis (161), adrenal insufficiency (162), diabetes 

(163), and heart failure (164).   

More prevalent than iron overload are diseases of iron deficiency or anemia. 

Usually this occurs when patients cannot acquire enough iron from the diet, a condition 

found in one in 6 people worldwide. Anemia can be related to a simple dietary 

deficiency and in some cases can be alleviated by supplementing the diet with iron (165, 

166).  Anemia can also arise from genetic dysfunction with red blood cells and this form 

is much harder to alleviate.  While anemia is often manageable in otherwise healthy 

individuals, the greatest dangers associated with anemia arise during pregnancy. 
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Expecting mothers have an increased dietary need for iron and failure to meet this need 

can lead to problems with the fetus including mortality, premature birth, neurological 

disorders and other complications (167).  

Iron is involved in several neurodegenerative diseases as well including Parkinson ’s 

disease (PD) and Alzheimer’s disease (AD.) PD involves neuronal cell death in the 

substantia nigra (SN), and iron accumulation in the same cell types (139). Decreased 

melanin levels in PD patients leads to a diminished chelating ability. The increase in iron 

accelerates fibril formation which leads to cellular dysfunction (168). Ferritin and 

neuromelanin appear to contribute to protection from this additional iron (169). 

Overexpression of ferritin in mouse PD models diminishes the effects (170). In AD, the 

β-amyloid protein precursor is often mutated which results in the accumulation of β-

amyloid plaques. The mentioned role of the β-amyloid protein precursor protein in the 

export of iron may lead to the reported accumulation of iron in AD (171). The 

accumulated iron would make the cell susceptible to ROS formation perpetuating the 

effects of the disease.  

There are also mitochondrial diseases that involve Fe overload, including 

Friedreich’s ataxia (172) and X-linked sideroblastic anemia (173). Friedreich’s ataxia is 

a disease where the protein frataxin (yfh1 in yeast) is mutated. The disease affects about 

one in 50,000 people (174, 175). This mutation leads to cells deficient in ISC proteins. 

Patients with Friedreich’s ataxia display a loss of sensory neurons in the spinal cord and 

dorsal root ganglia (176). Patients succumb to the disease at a median age of 35, 

typically as a result of cardiomyopathy.  
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In X-linked sideroblastic anemia the protein ABCB7 (atm1 in yeast) is mutated 

(177). In this disease, heme production is decreased and the connection to ISC 

biosynthesis promotes the accumulation of iron in the mitochondria. Often X-linked 

sideroblastic anemia will be accompanied by late onset (age 40-50) ataxia which can 

confine patients to wheel chairs. Most commonly the disease can be associated with 

heart disease, liver damage, and kidney failure.  

 Iron has also been implicated in processes related to ageing in healthy 

individuals. Often increased levels of iron are found in the brain with age. This may lead 

to destructive processes such as ROS formation. In addition, the regulation of iron may 

also decline with age (142, 178-182). 

 A Systems-Level Analysis of the Iron Content of the Mouse Brain 

 Chapters 3-6 of this dissertation demonstrate the ability of biophysical probes to 

gain insight into issues of iron trafficking, regulation, and homeostasis in yeast 

organelles and cells. In chapter 7 we present data which suggests that the same 

techniques can be applied to an even more complex system, the brains of mice. As in the 

yeast based studies, we use an integrated biophysical approach centered on Mössbauer. 

Although these are not the first Mössbauer based studies on brains, they demonstrate that 

a substantial portion of iron can be found in forms other than those associated with iron 

storage. This is a novel characterization of the mouse brain. Furthermore the studies 

presented in chapter 7 discuss changes to the distribution of iron in the mouse brain as it 

is developing.  
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CHAPTER II 

MATERIALS AND METHODS 

  

Biophysical Methods Used in These Studies 

 Several biophysical methods were used in an integrative fashion to probe cells 

and organelles from a systems level perspective. Mössbauer spectroscopy was the core 

of our approach, with electron paramagnetic resonance (EPR) and electronic absorption 

spectroscopy (UV-vis) serving auxiliary roles. Inductively coupled plasma-mass 

spectrometry (ICP-MS) was used to determine metal concentrations.  

Inductively Coupled Plasma-Mass Spectrometry 

 ICP-MS does not have the ability to resolve Fe into different types but is 

extremely sensitive in determining Fe (and other metal) concentrations. The technique 

has exceedingly low detection limits and a large linear dynamic range.  The low 

detection limit is in the ppt and the upper limit is in the high ppm. This dynamic range 

allows the measurement of samples without the need for serial dilutions prior to analysis. 

 Since the detection of ICP-MS is based on mass, different isotopes of the same 

element can be measured. For Mössbauer spectroscopy samples must be enriched with 

the isotope 57Fe as discussed below. This isotope, which is only 2% natural abundant, 

can be quantified relative to other iron isotopes using ICP-MS.  

Traditionally the most widespread technique for discriminating iron ions in a 

sample has been to use radioactive iron coupled with scintillation counting. Many 

experiments involving trafficking of iron into a cell monitor 59Fe  or 55Fe by scintillation 
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counting (183).  Similar experiments can be performed using ICP-MS but without the 

need for radioactive isotopes. 

Spin States of Iron 

 The remaining techniques to be discussed will focus on the characterization of 

iron centers in a sample. For mononuclear iron sites including those found in the active 

sites of proteins as well as in heme centers the most common oxidation states of Fe will 

be Fe2+ (ferrous) and Fe3+ (ferric). Either oxidation state can then adopt a Low Spin (LS) 

or High Spin (HS) electronic arrangement. The arrangement of the electrons for an 

octahedral complex is shown in figure 2.1. 

Ultraviolet- Visible Spectroscopy 

Hemes and ISCs can be probed with UV-vis spectroscopy.  Hemes in the reduced 

state feature 3 distinct bands, called the α, β, and γ (Soret) bands. The origins of the 

names for the various heme groups arise from the UV-vis spectrum associated with each 

center (184). Specifically the location of α bands of each center afforded this 

nomenclature. The α bands are found at ~605, ~565, and ~550 nm for heme a, b, and c 

respectively. These peaks are absent in spectra of the oxidized cytochromes.  [Fe4S4] 

clusters also show a characteristic UV-vis spectrum with a feature at ~410nm that is 

present in an oxidized cluster and diminished in intensity when the cluster becomes 

reduced (185). Similar effects are seen with [Fe2S2] clusters which exhibits features 

around 430nm in the oxidized state which diminish in intensity in the reduced state 

(186). 
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dz2,dx2-y2

dz2,dx2-y2

 
 
Figure 2.1. Splitting of electrons in octahedral complexes. HS vs. LS is dictated by the 
value of Δ. In order to obtain the LS complexes, Δ2>Δ1. Orbitals are indicated by labels 
on the left. 
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Using extinction coefficients of the different heme centers, UV-vis can give a 

concentration of the heme components of a sample. Using this information in 

conjunction with ICP-MS, the percentage of iron in a sample in these types of centers 

can be determined. The distinct advantage of UV-vis spectroscopy compared to other 

biophysical techniques lies in its ability to distinguish different heme centers.  Like ICP-

MS, UV-vis alone cannot give a complete depiction of the iron in a cell facilitating the 

necessity for more methods of probing iron. 

Electron Paramagnetic Resonance Spectroscopy 

EPR is useful for detecting species that have unpaired electrons. Mononuclear 

iron centers that are found in biology are most typically found in the ferrous or ferric 

oxidation state. The d electrons can be arranged in a LS or HS configuration. In ISCs the 

spin states of the individual irons are spin-coupled to afford the system spin. Table 2.1 

shows the spin state of common iron species. In cases where S = 0 the system is 

diamagnetic no EPR signal will result.   

 Typical g values for the most common biological systems are listed on table 2.1. 

While these serve as examples of the most common centers there are other centers which 

can be probed by EPR.  The specific example would be a dinuclear center, such a center 

would feature two ions spin coupled to one another. This affords systems with the 

following oxidation states of the individual irons: [Fe2+ Fe2+], [Fe2+ Fe3+], [Fe3+ Fe3+]. Of 

these only the mixed valence or the fully reduced form will result in transitions which 
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Table 2.1. g values of common EPR species. Spin states and oxidation states of these 
centers are also presented. 
 

 
1 Although LS Fe2+ is S=0 the use of spin probes has allowed insight into systems that 
are typically EPR silent. 
2 Rieske centers have the smaller g values (1.91) while a typical all cysteine center 
would have the higher (1.96) g values. 
 
  

Iron center 
Oxidation 

State 
Spin State 

Typical EPR 
Signals 

References 

Mononuclear L.S. Fe2+ S = 0 N/A  
Mononuclear H.S. Fe2+ S = 2 g ≥ 13 (187, 188) 
Mononuclear L.S. Fe3+ S = ½ g = 2 (189) 
Mononuclear H.S. Fe3+ S = 5/2 g = 4.3 (190) 

Heme L.S. Fe2+ S = 0 N/A1 (191) 
Heme H.S. Fe2+ S = 2 g ≥ 13  
Heme L.S. Fe3+ S = ½ g ≈ 3-3.5 (192, 193) 
Heme H.S. Fe3+ S = 5/2 g ≈ 6.0 (194) 
[Fe2S2] 1+ S = ½ g = 1.96-1.912 (34, 195) 
[Fe2S2] 2+ S = 0 N/A  
[Fe3S4] 0 S = 2 g ≥ 13 (196) 
[Fe3S4] 1+ S = ½ g = 1.94 (196) 
[Fe4S4] 1+ S = ½ g = 1.94 (117) 
[Fe4S4] 2+ S = 0 N/A  



30 
 

can be probed by EPR. A well-documented dinuclear system is the diiron center in 

methane monooxygenase. This system has g values of 1.86 for the mixed valence system 

(197, 198) or high g values (15-16) for the fully reduced system (199). Less common are 

dinuclear centers where the metals are not spin coupled (200, 201).  

EPR is a useful tool in studying iron due to its ability to detect systems with 

unpaired electrons, a common motif for redox active iron complexes. Another advantage 

of the technique lies in the sensitivity of the technique. EPR can detect very low 

concentrations of paramagnetic species. Using EPR spectroscopy signal integration 

using a standard of known concentration is possible (202).  For systems with a single 

species ICP-MS can be used and find the extent to which a sample is active. For more 

complex samples EPR and signal integration can be used to find contributions of 

individual paramagnetic species to the entire iron content of a sample.   Although much 

of the discussion of EPR presented here is based on its application to iron, EPR can be 

applied to any paramagnetic species giving additional information about other metal 

centers and radical species. 

EPR also has disadvantages.  First, not all samples have paramagnetic species 

and integer spin systems are hard to probe. This leads to several instances where signals 

will not be observed by EPR. In the application of EPR to a sample as complex as a cell 

or organelle several signals might not be observed in the native oxidation state. The 

addition of a reductant or oxidant can alter these oxidation states but might not be 

indicative of the centers in the physiologically relevant sample. The information that can 
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be gained by EPR might be helpful in studying iron metabolism, trafficking, and 

homeostasis but this technique still cannot probe all of the iron in a cell.  

Mössbauer Spectroscopy 

Mössbauer spectroscopy is named after Rudolf Mössbauer. He discovered the 

principles behind the technique in 1958 (203) and received the Nobel prize for this work 

in 1961. The experiment utilizes a source of radiation to supply energy for nuclear 

transitions for an element; the source is highly specific to the element being studied.  In 

choosing a candidate element for Mössbauer experiments considerations must be made. 

First an appropriate source for the candidate nucleus must be available. An appropriate 

source is one that emits energy equal to the energy of the transition from the ground state 

to excited state for the candidate element. Once such a source is obtained the next 

consideration is the lifetime of the source. If this is inordinately short the experiment 

cannot be conducted. Conversely, a more stable radioactive isotope might not emit 

radiation at a rate fast enough to conduct the experiment.  With these criteria in mind 

iron is a suitable nucleus for the Mössbauer experiment. The 14.4keV energy released by 

a 57Co gamma source is equal in intensity to the energy needed for the transition to the 

I=3/2 excited state transition of a 57Fe nucleus. Finally, the half-life of 57Co is 270 days 

giving adequate time for scores of experiments with a single source. We shall limit the 

discussion of Mössbauer spectroscopy to iron although several other elements can be 

probed by the technique. 

The source in a Mössbauer experiment emits a constant energy (14.4keV for 

57Co) but very few iron species will actually absorb that particular energy. For the 
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experiment to provide useful information the energy must be varied. This is 

accomplished by the use of the Doppler Effect by moving the source closer and further 

from the sample.  By exposing the iron to a range of energies a number of different 

transitions can be detected in the sample.   

Many Mössbauer parameters are reported in units of mm/sec in correspondence 

to the moving source.  For iron, virtually all transitions can be observed on a velocity 

scale of 10-12 mm/sec. Many spectral features are observed on a narrower velocity 

range. In Mössbauer spectroscopy the instrument is calibrated relative to α-Fe foil. For 

reference the simulated spectrum of α-Fe foil is shown in figure 2.2. 

Isomer Shift 

The first and perhaps simplest parameter to consider in Mössbauer spectroscopy 

is isomer shift (δ).  This parameter refers to the deviation of the transition from the 0 

mm/sec velocity point. The spectral deviation is depicted in the second panel of figure 

2.2.  Values for δ can be either positive or negative. The value depends on the energy 

needed to excite the iron in the sample from the ground state to the excited state.  

Negative δ values do not indicate negative energy, but less energy than the 14.4 KeV 

emitted by the source. This parameter is related to the s-electron density at the nucleus.  

For this reason the oxidation state will dictate the values of δ.  Comparing a 3d5 ferric vs. 

a 3d6 ferrous ion, the ferric system has fewer d electrons resulting in more electronic 

density at the nucleus compared to the ferrous system.  Ferric species generally have 

smaller δ and ferrous species have larger δ.  
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Quadrupole Splitting 

For iron nuclei with I=1/2, there are also effects of the electronic field gradient 

(EFG). Since a nuclear spin is present there will be a non-spherical distribution of the 

electrons around the nucleus. From the perspective of Mössbauer this will result in the 

splitting of the spectrum into two lines as shown in the third pane of figure 2.2.  This 

common Mössbauer pattern is called a quadrupole doublet.  In this condition the I=3/2 

manifold is split into 2 different energy levels, each corresponds to two degenerate 

states. The distance between the two lines of the doublet in the spectrum and the 

difference in energy between the two levels is called the quadrupole splitting and is 

indicated as ΔΕq.  The parameter depends on the symmetry of the nucleus. Compared to 

a HS ferrous ion, the 5 d electrons of a HS ferric ion will each occupy their own orbital 

giving rise to a more symmetrical system and therefore a smaller ΔΕq. The extra electron 

in the HS ferrous ion will give rise to a single doubly occupied orbital which drastically 

decreases the ion’s symmetry resulting in a larger ΔΕq. For a quadrupole doublet the  δ is 

measured  at the center of the doublet (i.e. halfway between each line.) The value of ΔΕq 

can be either negative or positive. Figure 2.2 depicts a situation that would have a 

positive ΔΕq. Conversely, the mi = ±1/2 could be higher in energy than the mi = ±3/2 

which would give a negative ΔΕq. The application of a magnetic field can distinguish a 

negative or positive ΔΕq.  

Magnetic Splitting 

 A Mössbauer spectrum can further split by applying a magnetic field.  The total 

number of allowed transitions is based on the relationship 2I + 1, where I is the nuclear 
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spin of the system.  Since the Mössbauer experiment involves the transition from ground 

state to the excited state, or more specifically from I = 1/2 to I = 3/2, there will be 2(3/2) 

+1 or 6 transitions. These transitions are depicted in the fourth pane of figure 2.2. Only 

certain transitions are allowed, namely when I changes by 1 and mi changes by ± 1 or 0. 

Thus transitions from mi +1/2 to -3/2 and -1/2 to +3/2 are not observed. On a spectrum 

with 6 lines, δ is still the center of the spectrum.  

Changes to Spectral Features 

 The appearance of a Mössbauer spectrum can change depending on experimental 

conditions. The most commonly altered experimental conditions are temperature and 

applied magnetic field. It is common to study a single sample at different temperature to 

determine whether the spectrum of the sample displays temperature dependence. For 

instance, a ferric species might be in a 6 line pattern at low temperature but collapse into 

a doublet at higher temperatures (204). Beyond a change in spectral appearance it is also 

possible to see temperature dependent shifts in δ and ΔΕq. For example, the splitting 

between the center lines of the α-Fe foil sextet shifts from 1.68 mm/sec at room 

temperature to 1.72 mm/sec at 4 K (205).   

Since Mössbauer spectra are also altered as a field is applied, instruments often 

include a superconducting magnet capable of fields > 6 T.  A magnetic field will have 

various effects depending on the system.  For a spectrum with a six line pattern, the 

intensities of the lines change depending on the orientation of the field.  For diamagnetic 

systems like LS Fe2+ or an oxidized [Fe2-S2] or [Fe4-S4] cluster the spectrum will be 

altered in predictable ways (206). Armed with this knowledge a Mössbauer 
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spectroscopist can tease apart spectral features to depending on the behavior of a sample 

under different conditions. 

 Table 2.2 shows Mössbauer parameters for many iron centers in biological 

systems. Relative to other techniques like EPR or UV-vis, all oxidation states and forms 

of iron can be probed.  Herein is a strength of Mössbauer, as percentages of different 

forms of Fe can be determined. Furthermore, Mössbauer spectra can be obtained without 

damaging samples, making the identification and isolation of Fe-containing species in 

the sample possible.  

The major drawback of Mössbauer is that it will only probe 57Fe which is of low natural 

abundance. This means that very often biological samples will need to be enriched with 

57Fe to allow the experiment to be performed. Strategies for the enrichment of biological 

samples with 57Fe will be discussed below.  Among the major drawbacks of enriching 

samples with 57Fe is the cost of the isotope which is in excess of 3000 USD per gram in 

2012. Another drawback which is actually common to all the techniques discussed is the 

necessity for comparatively large sample sizes; this is especially unfavorable for 

Mössbauer in that even more 57Fe will need to be used to require days or even weeks of 

data collection.  

Making 57Fe Citrate for Use in Cell Growth 

57Fe metal was purchased (Isoflex USA) and dissolved in a 1:1 mixture of 

concentrated trace metal grade (TMG) hydrochloric and nitric acid (Fisher Scientific) to 

~ 0.5% v/v final concentration. The dissolved metal was then diluted to a concentration 

of 80 mM and stored at -20°C. To make the 57Fe citrate stock, a 3-5 molar excess of  
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Table 2.2. Mössbauer parameters for most common biological iron centers. For rows 
with multiple entries the parameters reflect the individual sites of the clusters. 

 

 
  

Iron center 
Oxidation 

State 
Spin 
State 

δ 
(mm/sec) 

ΔΕq 

(mm/sec) 
References

Mononuclear L.S. Fe2+ S = 0 0.2-0.4 0.2-0.4 (207) 
Mononuclear H.S. Fe2+ S = 2 1.0-1.4 2.8-3.7 (207) 
Mononuclear L.S. Fe3+ S = ½ 0.1-0.3 -2.0-(-3.1) (189) 
Mononuclear H.S. Fe3+ S = 5/2 0.4-0.6 0.6-0.8 (208) 

Heme L.S. Fe2+ S = 0 0.4-0.6 1.0-1.1 (209) 
Heme H.S. Fe2+ S = 2 0.7-1.0 2.1-2.5 (210, 211) 
Heme L.S. Fe3+ S = ½ 0.2-0.3 ~2.0 (212) 
Heme H.S. Fe3+ S = 5/2 ~0.4 ~0.8 (212) 

[Fe2S2] 1+ S = ½ 
0.4-0.6 
0.2-0.4 

2.5-3.2 

0.4-1.0 (213, 214) 

[Fe2S2] 2+ S = 0 0.2-0.4 0.4-0.6 (215) 

[Fe3S4] 0 S = 2 
0.46 
0.49 
0.31 

1.15 
1.46 
0.56 

(216) 

[Fe3S4] 1+ S = ½ 0.3 0.66 (216) 

[Fe4S4] 1+ S = ½ 
0.53 
0.53 

0.80 
1.18 

(217) 

[Fe4S4] 2+ S = 0 0.4-0.5 0.8-1.2 (215, 216) 
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sodium citrate (Fisher Scientific) was added to the stock solution, concurrently the pH 

was adjusted to 5.0-5.5 with sodium hydroxide (Fisher Scientific) and the solution was 

diluted to a final metal concentration of 40 mM.  Subsequently this stock was sterilized 

using a 0.22μm vacuum filtration system (Millipore) and stored at 4°C for use in cell 

growth. 

Yeast Strains Used 

The wild-type Saccharomyces cerevisiae strain W303 (MATα, ura3-1, ade2-1, 

trp1-1, his3-11,15,leu2-3,112) was purchased from American Type Culture Collection 

(ATCC). The majority of the work presented utilized this strain. The experiments of 

chapter 5 used strain Aft1-1up (MATα, trp1-63, leu2-3,112, gcn4-101, his3-609, FRE1-

HIS3::URA3, AFT1-1up), described in (218), a generous gift from Dr. Jerry Kaplan 

(University of Utah). Experiments in chapter 6 included the use of DY150 (FET3-GFP) 

DY150, FET3-GFP::KanMX, described in (219), a generous gift from Dr. Jerry Kaplan. 

DY150 is an isogenic strain to W303 (220). Aft1-1up and DY150 (FET3-GFP) and 

W303 were maintained on YPAD (standard rich medium containing glucose (2% w/v) 

and 40 mg/L adenine sulfate) agar plates. 

Cell Growth and Isolation of Mitochondria 

Cultures (25 L) of W303-1B cells were grown on minimal medium (107) with 

3% (v/v) glycerol, 2% (w/v) galactose, or 2% (w/v) glucose for respiring, 

respirofermenting, and fermenting conditions respectively. Cultures were supplemented 

with 40 μM 57Fe unless otherwise noted.  Cells were harvested at an OD600 of 1.0−1.4 

and then transferred to a glovebox ( 6 °C, 1 ppm of O2). Mitochondria were isolated 
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anaerobically as described previously (107, 221, 222), except that cells were treated 

with 1000 units of lyticase/g of wet cells for 50 min. Also, cells were disrupted with 

20−25 strokes of the Dounce homogenizer, and a 14.5 to 18.5% Nycodenz gradient was 

used. In some experiments, the resuspension buffer contained chelators and/or dithionite 

(final concentration of 10 mM). Samples isolated with buffers that included 1 mM 

EGTA are termed EGTA-washed mitochondria. 

[Protein] and [Metal] Determinations 

Protein and metal concentrations were determined as described (221) except that 

1−2% deoxycholate was used to disrupt membranes, and the bicinchoninic acid method 

(Thermo Scientific) was used to determine protein concentrations. Current samples were 

treated with deoxycholate rather than being sonicated prior to protein concentration 

determinations, and this may have released additional proteins from membranes and/or 

reduced the extent of protein degradation. The current metal:protein ratios ( 4 nmol of 

Fe/mg of protein) for respiring and respiro-fermenting mitochondria are similar to those 

reported from other laboratories (82, 104, 223-225), and thus, we consider our current 

protein concentrations to be more accurate. 

Western Blots 

Western blots were obtained using specific antibodies for cellular organelles, 

including mitochondrial porin (Invitrogen), the vacuolar protein carboxypeptidase Y 

(CPY) (Invitrogen), the cytosolic protein 3-phosphoglycerate kinase (PGK) (Invitrogen), 

and the endoplasmic reticular protein Kar2 (Santa Cruz Biotechnology). Goat anti-

mouse HRP-conjugated secondary antibodies (Invitrogen) were used with all primary 
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antibodies except Kar2, which used goat anti-rabbit HRP-conjugated secondary antibody 

(Santa Cruz Biotechnology). Thermo Scientific Enhanced Chemiluminescent (ECL) 

Western Blotting Substrate was then added. Images were obtained (FujiFilm LAS-4000 

mini) with a 10 s standard exposure and the chemiluminescence setting. Images were 

analyzed using MultiGuage version 3.1. 

Analysis of Mitochondrial Integrity 

To assess whether isolated mitochondria were intact another western blot 

experiment was performed. In this experiment an antibody of cytochrome c, a kind gift 

from Dr. Carla Koehler (University of California, Los Angeles, CA), was used to 

determine the susceptibility of the protein to degradation by a protease, proteinase K 

(Fisher Bioreagents). This protein should be found in the IMS so mitochondria treated 

with a protease would respond by having lower levels of the protein vs. an untreated 

sample in cases where the mitochondrial membrane was compromised. Conversely if the 

membrane was intact the levels of cytochrome c would be similar to the untreated 

sample. Addition of a detergent (simulation of membrane degradation) to the latter 

sample should result in decreased protein levels as the protein is exposed to the protease. 

Spectroscopy 

EPR and Mössbauer measurements were performed as described (107, 221). Low 

temperature spectra collected at Texas A&M University varied from 4.5 K to 6 K, but 

these differences, relative to the 4.2 K spectra collected at Carnegie Mellon University, 

do not alter simulations significantly. For electronic absorption spectroscopy, samples 

were resuspended in 0.6 M sorbitol and 20 mM HEPES (pH 7.4); spectra were obtained 
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as described (226). Spectra of human cytochrome b5 [Sigma, 18 μM in a buffer 

composed of 1.2 M sorbitol, 50 mM Tris (pH 8.5) and 1 mM dithionite] and yeast 

cytochrome c (Sigma, 20 μM in the same buffer) were also collected. The digital 

spectrum of bovine heart cytochrome c oxidase (227) was provided by G. Palmer (Rice 

University, Houston, TX). Absorbances were normalized to a 1 cm path length and 

divided by molar protein concentrations.  

Fluorescent Determination of Interstitial Buffer Volume 

The fraction of mitochondrial pellet volumes (Vpellet) due to buffer was 

determined using the cell-impermeable fluorescent Compound 5 from (228) a generous 

gift from Dr. Kevin Burgess (Texas A&M University). Initially, cells were grown to an 

OD (600 nm)  1.2 and rinsed three times with 100 μM EDTA and then three times with 

deionized water. Resulting cells were packed (4000g for 5 min) into EPR tubes. The 

height of the pellet was marked on the tube, allowing Vpellet to be calculated from the 

mass of an equivalent volume of water. Pelleted cells were then resuspended in 200 μL 

of phosphate-buffered saline (PBS = 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 

mM KH2PO4, pH 7.4) containing known concentrations of Compound 5. Cells were 

pelleted, and the supernatant was collected. The cells were resuspended in 200 μL of 

PBS without Compound 5 and pelleted; the supernatant was again collected. This 

process was repeated three times for each sample. The concentrations of Compound 5 in 

supernatant fractions were determined using a fluorescence spectrometer (Koala 90080; 

ISS Inc.). The volume of buffer (Vbuffer) contributing to Vpellet was determined as 
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described, (221) allowing the mitochondrial packing efficiency (Vpellet − Vbuffer/Vpellet × 

100) to be calculated. 

BPS Experiments 

Chapter 3 describes four experiments where the chelator in the isolation buffer 

was replaced with bathophenanthroline sulfonate (BPS.) In the first and third 

experiments (figures on pages 56 and 58), cells were treated with buffers containing 1 

mM EGTA for the initial steps, including those used to rinse the cells and for incubation 

with lyticase. The buffer used just prior to homogenization and in all steps thereafter 

contained 3 mM BPS. Past the step in which mitochondria were collected from the 

density gradients, all buffers included 10 mM dithionite. The mitochondrial sample was 

rinsed and packed into a Mössbauer sample holder which was then frozen anaerobically. 

Spectra were recorded, and the sample was thawed anaerobically and sonicated for 5 × 

15 s with a Branson 450 sonifier at a 60% duty load using a two-step microtip. The 

sample was then refrozen anaerobically, and the Mössbauer spectrum was recorded 

again. In the second and fourth experiments (figures on pages 56 and 58), mitochondria 

were collected with EGTA in all buffers. Just prior to being frozen, the sample was 

treated with buffer containing 3 mM BPS. Dithionite was also included in the fourth 

experiment, which involved deoxycholate treatment rather than sonication. 

Phenanthroline Experiment 
 

EGTA-washed mitochondria were split into two aliquots; one was left untreated, 

and the other was treated with 3 mM phen (ACROS Organics). After 30 min, both were 

packed into Mössbauer cups and frozen anaerobically. 
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Dithionite and Deoxycholate Experiment 

A sample of EGTA-washed mitochondria was split equally and treated with 

dithionite (final concentration of 10 mM). Half was treated with deoxycholate (ACROS 

Organics) (final concentration of 0.5%) and the other half was left untreated. Samples 

were frozen after incubation in the glovebox for 30 min. 

Whole Cells 

Cells were grown on minimal medium under constant shaking and harvested at 

an OD600 of 1.0. Cells were collected by centrifugation at 4000g and rinsed with 

unbuffered 100 μM ethylenediaminetetraacetic acid (EDTA). Cells were rinsed twice 

with water, packed into a Mössbauer sample holder, and frozen. After spectra had been 

recorded, cells were thawed anaerobically, sonicated as described above, and refrozen. 

Low Fe Cultures 

 Low Fe cultures were prepared by treating the medium with 21μM BPS. The Fe 

concentration of minimal media was measured to be ~7 µM by ICP-MS so 21µM BPS 

should have been sufficient to chelate all of this Fe as Fe(BPS)3.  Subsequently the 

media was supplemented with 1μM 57Fe citrate.   

Fet3 Expression Western Blot 

Cells were grown to an OD(600) of 1.0-1.2 and harvested by centrifugation at 

4000×g.  Cells were then rinsed 3× with unbuffered EDTA (100 µM) and 3× with water.  

A portion of the resulting material was saved for western blot analysis and the rest was 

packed into EPR cuvettes and frozen in LN2 for further analysis.  Protein concentrations 

were measured and 60 µg of protein of each sample was added to each lane. The gel was 
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transferred to a PVDF membrane, incubated with antibodies for GFP and porin (as a 

loading control), incubated with ECL reagents, and then imaged.   
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CHAPTER III 

IDENTIFICATION OF A NON-HEME HIGH-SPIN FERROUS POOL IN 

MITOCHONDRIA ISOLATED FROM SACCHAROMYCES CEREVISIAE* 

 

Introduction 

Iron serves critical roles in cell biology, generally involving catalytic and redox 

processes. This transition metal is found in many prosthetic groups, including hemes and 

iron−sulfur clusters. These groups typically serve as enzyme active sites and redox 

centers. Dysfunction in cellular iron metabolism has been implicated in aging and in the 

pathogenesis of diseases involving reactive oxygen species (229). Clearly, cells need 

iron, but they must handle it carefully to avoid being damaged by it. Deciphering how 

cells do this will require a better understanding of iron trafficking in cells. 

Mitochondria are traffic “hubs”, used to assemble Fe−S clusters and synthesize hemes. 

In yeast, the Fe2+ ions that are used as feedstock for these processes are imported into the 

matrix through the high-affinity inner membrane transporters Mrs3p and Mrs4p (79). 

The ligands coordinating these species have been hypothesized to be nonproteinaceous 

and to have low molecular weights (230). The matrix-localized yeast frataxin homologue 

protein Yfh1p apparently shuttles these ions to the scaffold protein Isu1p for Fe−S 

cluster assembly, and perhaps to ferrochelatase for heme biosynthesis (106). 

____________ 
*This chapter is reproduced in part with permission from “A Nonheme High-Spin 
Ferrous Pool in Mitochondria Isolated from Fermenting Saccharomyces cerevisiae” by 
Gregory P. Holmes-Hampton, Ren Miao, Jessica Garber-Morales, Yisong Guo, Eckard 
Munck, Paul A. Lindahl, 2010, Biochemistry, 49, 4227-4234, copyright 2010 American 
Chemical Society.  
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Starting with studies by Flatmark and Tangerås (82), efforts have been made to 

characterize the low-molecular weight mononuclear nonheme Fe species in 

mitochondria. By exposing the organelles to BPS, a strong chelator of mononuclear 

Fe2+ ions, they estimated that 25% of mitochondrial Fe is present as a chelatable or 

labile Fe pool. 

Recent fluorescence-based studies in mitochondria from rat hepatocytes indicate 

a far lower concentration of chelatable Fe. Petrat et al. (84, 231) incubated cells with 

fluorescent indicators that accumulate in mitochondria. Fe binding causes fluorescence 

quenching, so the presence of residual fluorescence in their samples indicated that the 

binding reaction was limited by the Fe in mitochondria rather than by the indicator. After 

the subsequent addition of the tight-binding nonfluorescent chelator 1,10-phenanthroline 

(phen), it penetrated the mitochondria and replaced the Fe-bound indicator, thereby 

causing fluorescence recovery. The extent of recovery indicated that the concentration of 

chelatable Fe in rat liver mitochondria was 12−17 μM. The authors estimated that the 

chelatable Fe pool corresponded to just 0.4% of the total Fe in the organelle. They 

attributed Tangerås’ dramatically higher estimate to adventitious Fe generated during the 

isolation of the organelle. 

As explained by Petrat et al. (84), the fluorescence/chelator-based approach for 

quantifying Fe complexes in mitochondria within a cell is superior to directly measuring 

Fe in isolated mitochondria. This is so because cells need not be disrupted for these 

experiments, such that adventitious Fe is not generated. However, this approach is 

disruptive in another sense; it destroys the Fe complexes of interest as an inherent part of 
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the detection process. Methods that would allow such complexes to be detected without 

destroying them would have a distinct advantage, as they could facilitate the eventual 

isolation and characterization of such complexes. Of course, any such method would be 

useful only if adventitious Fe could be distinguished from Fe that is functionally 

associated with mitochondria. In this study, we describe the use of Mössbauer 

spectroscopy to detect three pools of Fe in mitochondria from fermenting yeast cells, 

including nonheme high-spin (NHHS) Fe2+ species, magnetically isolated (i.e., 

noninteracting) mononuclear HS Fe3+ species, and Fe3+ nanoparticles. The major 

objective of this study was to establish whether these Fe-containing species are located 

within the mitochondria (where they might serve a metabolic role) or on the exterior of 

the organelle (where they would be simply artifacts of our isolation procedure and 

counted as adventitiously bound iron). Our results indicate that they are indeed located 

inside mitochondria. 

Results 

All samples of mitochondria were anaerobically isolated from fermenting yeast 

cells. This involved numerous steps in which samples were suspended in buffer, pelleted 

by centrifugation, and then resuspended in fresh buffer after the supernatant had been 

discarded. We refer to these steps as washing. Mitochondria were initially washed with 

buffers that did not include metal chelators. Such preparations exhibited at a low 

temperature (5 K) and in weak applied magnetic fields (0.05 T) Mössbauer spectra 

possessing quadrupole doublets typical of nonheme high-spin (NHHS) Fe2+ species. 

Such doublets had been observed in spectra of mitochondria isolated from wild-type 
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(WT) respiring (lactate-grown) cells (221). The major objective of this study was to 

establish whether these Fe2+ ions were located within fermenting mitochondria, where 

they might serve a metabolic role, or located on the exterior of the organelle, in which 

case they would probably be artifacts of our isolation procedure. 

Throughout these studies, mitochondrial purity was an important consideration. 

Western blot analysis of our isolated mitochondria indicated an 30-fold enrichment of 

the mitochondrial porin relative to the amount present in cell extracts (Figure 3.1). In 

fermenting cells, mitochondria occupy 3% of the cellular volume (232), suggesting that 

our preparations were relatively pure. Western blot analysis indicated some 

contaminating vacuolar, endoplasmic reticular and cytosolic proteins, which is generally 

observed (222). 

Samples were packed by centrifugation into Mössbauer holders (an open delrin 

cup) to maximize the amount of Fe examined. However, the resulting spectra 

(Figure 3.2) had signal-to-noise ratios lower than those readily obtained with Fe-

containing proteins or small molecules, due to the low inherent concentration of Fe in 

mitochondria (700−800 μM Fe overall and typically 200−300 μM 57Fe in samples grown 

on 57Fe-enriched media). In spectra of mitochondria, the quality was sufficient to 

recognize some minor species (no less than 10%), but insufficient to quantify such 

species to greater than ±5% precision. 
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Figure 3.2. Mössbauer spectra of EGTA-washed fermenting mitochondria [sample 
F12 (233)]. Samples were recorded at 5 K and 0.05 T (A), 100 K and 0.05 T (B), and 4.2 
K and 8 T (C). Solid lines simulate the contributions of NHHS Fe2+ species (blue line in 
part A, 20% of total Fe), the central doublet (red line in part A and blue line in part C, 
20% of total Fe), Fe3+ nanoparticles (red line in part B, 40% of total Fe), and 
mononuclear HS Fe3+ species (red line in part C, 20% of total Fe). Shown offset above 
part B is the experimental spectrum of Fe2+(EGTA) (black hashmarks). The black arrows 
in Figures 3.2, 3.4, 3.5 point to the high-energy absorption line of the NHHS 
Fe2+ species. 
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Nonheme High-Spin (NHHS) Ferrous Ions in EGTA-Washed Fermenting Mitochondria 

Our initial strategy was to remove adventitiously bound NHHS Fe2+ by including 

1 mM EGTA, a strong Fe2+ chelator, in all washing buffers used during mitochondrial 

isolation. Such samples were exposed to the chelator for 6 h overall. In the packing 

step, all EGTA of the final wash was removed except for that residing between the 

packed mitochondrial particles (the residual buffer was previously estimated to occupy 

20% of the total volume (221, 226)). This quantity of residual EGTA was sufficient to 

coordinate 200 μM Fe2+ ions. We chose EGTA because it reportedly does not penetrate 

mitochondrial membranes (234). Also, the Fe2+EGTA quadruple doublet can be 

distinguished reasonably well from the NHHS Fe2+ doublet associated with our 

mitochondrial samples. Despite these efforts, the nonheme, non- Fe2+(EGTA) HS 

Fe2+ doublet was observed in all of the 30 independently prepared batches of EGTA-

washed mitochondria examined. Spectra of four other batches (Figure 3.3) illustrate the 

extent of batch-to-batch variation. 

The blue line in Figure 3.2A is a simulation assuming the following isomer shift, 

quadrupole splitting, and effective line width parameters: δ ≈ 1.25 mm/s, ΔEQ ≈ 3.35 

mm/s, and Γ = −0.65 mm/s, respectively (in WMOSS, a negative line width indicates a 

Voigt profile with a Lorentzian of 0.15 mm/s full width convoluted into a σ = 0.65 mm/s 

Gaussian). These values are typical of mononuclear [Fe2+(O)m(N)n] complexes for which 

5 ≤ m + n ≤ 6 and m ≥ 4 (235). HS Fe2+ hemes have δ values ranging from 0.92 to 0.95 

mm/s and ΔEQ values ranging from 2.02 to 2.20 mm/s (118, 236). The low-energy 
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 absorption line of the NHHS Fe2+ doublet is hidden within the central doublet (see 

below), while the high-energy line, which contains half of the doublet’s intensity, is 

generally resolved. This line is marked by the arrow in Figure 3.2A and in all other 

spectra. In Figure 3.2A, the spectral area of the doublet represents 20% of the Fe in the 

sample, corresponding to 150 μM Fe2+. The large width of the absorption lines suggests 

multiple species. This experiment shows that the NHHS Fe2+ ions in our sample are 

protected from EGTA chelation despite extensive washing of mitochondria with EGTA-

containing buffers. 

Mössbauer spectra of fermenting mitochondria also contain a quadrupole doublet 

representing 20% of the total Fe (δ = 0.45 mm/s, and ΔEQ  1.15 mm/s). This species, 

called the central doublet, arises from unresolved S = 0 [Fe4S4]
2+ clusters and low-spin 

ferrous hemes (Figure 3.2A, red line) (107, 221). In strong applied fields, the 

contribution of these species can readily be simulated (Figure 3.2C, blue line) because 

the effective field at the nucleus arises solely from the applied field. In contrast, HS 

Fe2+ ions exhibit paramagnetic hyperfine structure spread over a wide velocity range, 

making it difficult to characterize in 8.0 T spectra. 

EGTA-washed fermenting mitochondria also exhibited spectral features from 

magnetically isolated high-spin (S = 5/2) mononuclear Fe3+ species with an E/D value 

of 1/3. In weak applied fields (0.05 T), magnetically isolated Fe3+ yields intricate 

Mössbauer patterns exhibiting paramagnetic hyperfine structure. With the low 57Fe 

concentrations in these samples, such features cannot be analyzed well or easily 

distinguished from baseline (distorting the quantification of other species). Fortunately, 
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in 8 T applied fields, the outmost features of HS Fe3+ components are resolved 

(Figure 3.2C, red line), allowing an accurate estimate of their concentrations (here 20% 

of the spectral intensity, corresponding to 150 μM Fe). 

In 0.05 T applied fields, and at 5 K (Figure 3.2A) and 100 K (Figure 3.2B), 

EGTA-washed fermenting mitochondria also yielded a quadrupole doublet with a 

ΔΕQ of ≈0.63 mm/s and a δ of ≈0.52 mm/s (red line in Figure 3.2B). Similar doublets 

were present in spectra of mitochondria isolated from Yfh1p-, Yah1p-, and Atm1p-

depleted cells (105-107); they arise from Fe3+ phosphate nanoparticles exhibiting 

superparamagnetism. In strong applied fields, these nanoparticles yield broad unresolved 

features (see Figure 2D of ref (107)). Quantification is most accurate at temperatures 

well above the blocking temperature, TB; when T  TB, spectra consist of a quadrupole 

doublet (in our samples, TB ≤ 4.2 K). The 100 K spectrum (Figure 3.2B) shows that 

40% of the Fe of the sample belongs to Fe3+ nanoparticles. 

In summary, the Fe in EGTA-washed fermenting WT mitochondria is distributed 

into four major groups. Approximately 20% is NHHS Fe2+, 20% a combination of 

[Fe4S4]
2+ and LS Fe2+ hemes, 40% Fe3+ in nanoparticles, and 20% noninteracting 

mononuclear high-spin Fe3+. These organelles also contain small amounts of other Fe-

containing species (233). All of these Fe-containing species were present despite 

extensive exposure of the mitochondria to a strong Fe2+ chelator, suggesting that they are 

located within the organelle and protected from chelation.  
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BPS-Treated Mitochondria 

As the difference in the positions of the high-energy lines of the NHHS 

Fe2+ doublet and the Fe2+EGTA doublet is modest, we wanted more compelling 

evidence that the NHHS Fe2+ species in our samples were located within the organelle. 

BPS is orders of magnitude stronger than EGTA in terms of Fe2+ chelation, and its 

negative charge should also make it impenetrable to mitochondrial membranes. 

However, the major advantage of using BPS is that it forms a LS Fe2+complex that can 

be easily distinguished from HS Fe2+ ions. 

The blue line in Figure 3.4A is a 5 K Mössbauer spectrum of a mitochondrial 

sample washed with 3 mM BPS. It contains a NHHS Fe2+ doublet representing 20% of 

the total iron. After this spectrum had been recorded, the sample was thawed, sonicated, 

and refrozen, all in a glovebox containing 1 ppm O2. The resulting spectrum 

(Figure 3.4A, hash marks) lacked the NHHS Fe2+ doublet; rather, it exhibited a doublet 

with a ΔEQ of 0.32 mm/s and a δ of 0.38 mm/s, indicating LS Fe2+(BPS)3. These changes 

are best visualized by the after-minus-before sonication difference spectrum shown in 

Figure 3.4B. Features pointing upward (downward) are present before (after) sonication; 

unchanged features offset. The spectral simulation (red line) assumes that 23% of the Fe 

in the sample was converted to Fe2+(BPS)3 by sonication, including NHHS Fe2+ (13%) 

and the central doublet (10%) (the percentage in parentheses refers to total Fe, not the 

percent change of the spectral species). The change corresponds to the majority of the 

initial NHHS Fe2+ species and to approximately half of the central doublet. Other 

experiments suggest that sonication alone can destroy [Fe4S4]
2+ clusters (Figure 3.5), 
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Figure 3.4. Mössbauer spectra (5 K, 0.05 T) of BPS-washed mitochondria [sample F6 
(233) ]. (A) Before (blue line) and after (hash marks) sonication. (B) After-minus-before 
difference spectrum. The red line is a simulation assuming that NHHS Fe2+ (13% of total 
Fe) and the central doublet Fe (10% of total Fe) were converted into the 
Fe2+(BPS)3 complex (23% of total Fe). Parts C and D are Mössbauer spectra (100 K, 
0.05 T) of a second experiment using EGTA-washed mitochondria treated in the final 
step with BPS [sample F13 (233)]. (C) Before (blue line) and after (hash marks) 
sonication. (D) After-minus-before difference spectrum. The red line is a simulation 
assuming that NHHS Fe2+ (12% of total Fe), Fe of the central doublet (14% of total Fe), 
and Fe3+ nanoparticles (34% of total Fe) were converted into Fe2+(BPS)3 (60% of total 
Fe). 
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 whereas BPS does not chelate Fe2+ coordinated in heme centers (237). We suspect that 

sonication degraded a large portion of mitochondrial [Fe4S4] clusters and that the 

released Fe ions were reduced by endogenous agents present in mitochondria (or 

generated upon sonication) to Fe2+ and coordinated by BPS. 

Similar results were observed in a second independent experiment 

(Figure 3.4C,D) in which BPS was added to EGTA-washed mitochondria only in the 

final isolation step. Again, the majority of NHHS Fe2+ ions and half of the central 

doublet were replaced by Fe2+(BPS)3 after sonication. In this experiment, the majority of 

the iron contained in the Fe3+ nanoparticles was also converted to Fe2+(BPS)3 upon 

sonication (the first experiment showed a lower percentage of nanoparticles). We 

suspect that sonication released species (sulfide ions?) that reduced the Fe3+ ions of the 

nanoparticles to HS Fe2+ ions that were then coordinated by BPS. A third independent 

experiment (Figure 3.6) using BPS-washed mitochondria also showed the 

semiquantitative conversion of NHHS Fe2+ ions into LS Fe2+(BPS)3upon sonication. 

Other Fe-containing species in the mitochondria also converted to Fe2+(BPS)3, but our 

spectra are insufficiently resolved for their identification. A fourth experiment was 

conducted in which membranes were disrupted by being exposed to deoxycholate rather 

than by sonication. This detergent has been used to disrupt mitochondrial 

membranes (238). The spectra, also shown in Figure 3.6, again show the presence of 

NHHS Fe2+ in the BPS-washed sample, and the replacement of this doublet by the 

Fe2+(BPS)3doublet in the spectra of the sample treated with deoxycholate. The results of 

these four experiments establish that the NHHS Fe2+ ions in our samples were protected 
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from BPS chelation prior to sonication, and that they became susceptible to chelation 

after sonication. We conclude that this protection arose because these ions are 

encapsulated by the mitochondrial membrane across which BPS cannot penetrate. 

Sonication (or deoxycholate) disrupts these membranes, rendering the NHHS Fe2+ ions 

accessible to chelation. Depending on the extent of BPS exposure, a portion of the Fe in 

[Fe4S4]
2+ clusters and/or Fe3+ nanoparticles can also be chelated by BPS. 

Mitochondria Treated with Phenanthroline 

From the perspective of Fe coordination, phen and BPS have the same structure 

and properties; both are extremely strong bidentate chelators that bind HS Fe2+ to form 

LS Fe2+complexes. However, in contrast to negatively charged BPS, phen is neutral and 

able to penetrate the mitochondrial inner membrane (IM) (84). Thus, if the NHHS 

Fe2+ species are inside mitochondrial membranes, phen should chelate these ions in 

unsonicated mitochondria. To test this, an EGTA-washed mitochondrial sample was 

divided in two; half was frozen without treatment, and the other half was treated with 

phen and then frozen. The untreated control (Figure 3.7A, blue line) is that of Figure 3.2; 

it exhibited a HS Fe2+ doublet representing 20% of the Fe in the sample. The matched 

phen-treated sample (Figure 3.7A, black hash marks) lacked the NHHS Fe2+ doublet but 

contained an intense quadrupole doublet with a ΔEQ of 0.31 mm/s and a δ of 0.37 mm/s. 

These parameters are characteristic of LS Fe2+(phen)3. This doublet represented 25% of 

the total Fe in the sample. These changes are illustrated in the “after-minus-before” 

difference spectrum (Figure 3.7B). The red line is a simulation showing 15% NHHS 

Fe2+ ions (the features pointing upward) converting to Fe2+(phen)3 after being exposed to  
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Figure 3.7. Mössbauer spectra (5 K, 0.05 T) of fermenting mitochondria [sample 
F14 (233)] incubated (A, black hash marks) or not (A, blue line) with phen. (B) 
Incubated-minus-not-incubated difference spectrum. The red line is a simulation 
assuming that NHHS Fe2+ ions (15% of total Fe) converted to Fe2+(phen)3 after being 
exposed to phen. The remaining Fe2+(phen)3 doublet ( 10% of total Fe) originated from 
either Fe3+nanoparticles, mononuclear Fe3+ ions, or irons of the central doublet. 
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phen. Some additional Fe species, representing 10% of the total Fe, also converted to 

Fe2+(phen)3. These species exhibit the upward feature at 1.2 mm/s in Figure 3.7B. They 

might be Fe3+nanoparticles or Fe of the central doublet, but the spectra lack sufficient 

resolution to distinguish them. Phen did not cause the decline of the mononuclear HS 

Fe3+ species, perhaps due to the weaker coordination of phen to ferric ions. Regardless, 

our main conclusion is that phen penetrates unsonicated mitochondria and coordinates 

the NHHS Fe2+ ions located therein. 

No Correlation of NHHS Fe2+ to Contamination Levels 

One difficulty in determining the cellular location of the observed NHHS 

Fe2+ species has been to exclude the possibility that they are encapsulated by membranes 

other than those of mitochondria. As discussed previously (222, 239), the best method 

available for isolating large quantities of mitochondria (i.e., discontinuous density 

gradient centrifugation) does not remove all non-mitochondrial membranous material; 

the most common contaminants include endoplasmic reticulum (ER) and vacuoles (222). 

Besides having a density similar to that of mitochondria, the ER physically interacts with 

mitochondria for phospholipid biosynthesis and calcium signaling (240). These 

interactions might prevent the clean separation of the two organelles. 

We have discovered that the percentage of NHHS Fe2+ differs in mitochondria 

isolated from cells grown on different carbon sources (233). In mitochondrial 

preparations isolated from cells grown on glucose, galactose, and glycerol, the NHHS 

Fe2+ doublet quantified to 16, 7, and 3% of the total Fe, respectively. Western blot 

analysis confirmed that these preparations contained some contaminating ER and 



63 
 

vacuolar proteins (Figure 3.8). The density of blots obtained using antibodies that bind to 

proteins in the ER, vacuoles, and cytosol was normalized using antibodies for the porin 

protein that localizes to mitochondria. We found that the normalized blot densities for 

contaminating organelles were not correlated to the percentage of the NHHS 

Fe2+ doublet (Figure 3.8, table). Similar analyses performed on eight different batches of 

mitochondria isolated from glucose-grown cells also showed no correlation (Figure 3.9). 

These results indicate that the NHHS Fe2+ ions present in chelator-washed mitochondria 

are contained within these organelles rather than in contaminating membranous species 

such as ER or vacuoles. 

Dithionite- and Deoxycholate-Treated Mitochondria 

We also used deoxycholate in the presence of the reductant dithionite to evaluate 

whether the HS Fe3+ species in our mitochondrial samples were contained within the 

organelle. We treated half of a WT EGTA-washed fermenting mitochondrial sample 

with dithionite; the other half was treated with dithionite and deoxycholate. 

The low-field spectrum of the dithionite- and deoxycholate-treated sample 

(Figure 3.10A, black hashmarks) contained a doublet due to Fe2+EGTA with a δ of 1.3 

mm/s and a ΔEQ of 3.6 mm/s (Figure 3.10A, blue line) that represented 40% of the total 

Fe. The corresponding spectrum of the dithionite-treated sample exhibited a NHHS 

Fe2+ doublet with approximately half that intensity (Figure 3.10A, blue line). The 

deoxycholate-treated-minus-untreated difference spectrum (Figure 3.10B) revealed that 

besides EGTA coordination to the 20% of the NHHS Fe2+ species originally in the  
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Figure 3.8. Western blots of mitochondria from various carbon sources. Includes 
samples grown on glucose (left), galactose (middle), and glycerol (right) [samples F5, 
RF1, and R1, respectively (233)]. For each sample, 60 μg of protein, determined by the 
bicinchoninic acid method (Thermo Scientific), was added to each lane of a 10% 
SDS−PAGE gel. Primary antibodies used in staining included Kar2p, CPY, PGK, and 
porin. Integrated intensities of contaminating bands were normalized to the intensity of 
the corresponding porin band. These ratios are given in the table along with the 
percentage of the NHHS Fe2+ doublet observed in the Mössbauer spectrum of the same 
material. 
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Figure 3.10. Fermenting mitochondria treated with deoxycholate and dithionite. 
Examines the effect of deoxycholate on the ability of dithionite to reduce Fe3+species in 
EGTA-treated mitochondria [sample F15 (233)]. (A) Mössbauer spectra (100 K) of 
EGTA-washed, dithionite-treated, mitochondria in the absence (blue) and presence 
(black hashmarks) of deoxycholate. (B) Presence-minus-absence difference spectrum of 
deoxycholate. The red line is a simulation representing 20% of the total Fe with a δ of 
1.3 mm/s and a ΔEQof 3.6 mm/s. 
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dithionite-treated sample, 20% of the Fe from other species was also converted to 

Fe2+(EGTA). High-field spectra (Figure 3.11) reveal that some ( 12% of total Fe) of 

these other species originated from HS mononuclear Fe3+ species. Spectral features from 

such species are evident in the 8.0 T spectrum of the dithionite-treated sample but absent 

in that of the dithionite- and deoxycholate-treated sample. The other iron species 

contributing to the Fe2+(EGTA) complex ( 8% of total Fe) could not be identified, but 

they could be Fe3+ nanoparticles. The central doublet contribution was unchanged in the 

experiment, consistent with deoxycholate treatment being gentler than sonication in the 

disruption of membranes but not damaging Fe4S4 clusters. These results suggest that the 

mononuclear HS Fe3+ species (and perhaps Fe3+ nanoparticles) that contribute to the 

spectra of isolated fermenting mitochondria are contained within these organelles, 

protected from reduction by dithionite. Disruption of these membranes by deoxycholate 

removed this protection, allowing dithionite to reduce Fe3+ to Fe2+. EGTA then chelated 

the Fe2+ ions forming the observed Fe2+(EGTA) doublet. 

Discussion 

NHHS Fe2+ Pool within Isolated Mitochondria 

The major conclusion of this study is that the NHHS Fe2+ species that are present 

in our isolated mitochondrial samples are located within the organelle. Three lines of 

evidence support this. First, such species were observed after intact mitochondria were 

exposed to high concentrations of strong Fe2+ chelators (EGTA and BPS) for extensive 

periods of time. EGTA is reported not to penetrate mitochondrial membranes, and BPS 

is unlikely to do so because of its negative charge. We have observed such species in  
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all 30 batches prepared in this way over the course of the past 5 years. These 

Fe2+ species were present in samples that had not been sonicated or exposed to phen, 

indicating that they were not generated by the degradation of [Fe4S4] clusters. 

Second, BPS and EGTA were able to coordinate NHHS Fe2+ only after samples 

had been sonicated. As sonication disrupts mitochondrial membranes, we conclude that 

the NHHS Fe2+ species are located within the mitochondria and are protected from these 

chelators until the mitochondrial membranes are disrupted by sonication or by detergents 

such as deoxycholate. This conclusion is supported by the observation that phen (with a 

coordinating chemical structure similar to that of BPS but neutral and membrane 

permeable) can chelate the NHHS Fe2+ species without sonication. 

Third, there was no correlation between the spectral intensity of the NHHS 

Fe2+ doublet and the level of ER or vacuolar contamination in our samples. This 

excludes the possibility that these Fe2+ species are located in a membrane-bound but 

non-mitochondrial organelle that contaminated our preparations. 

Other scenarios have also been considered. For example, it is conceivable that 

during isolation, mitochondrial membranes become more permeable, allowing Fe from 

the isolation buffers to enter into the organelle. However, in this case, one would also 

expect that the strong chelators present in these buffers would have also entered the 

organelle and coordinated the observed HS Fe2+ species, and/or that Fe within the 

organelle would also have diffused into the buffer, draining the organelle of the observed 

HS Fe2+. The presence of the HS Fe2+ species argues against these scenarios. 
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These Fe2+ components represent 20% of the total Fe in the organelle (700−800 

μM), corresponding to 150 μM in NHHS Fe2+. Given the low intensity of our signals 

and batch-to-batch variations, we estimate an overall relative uncertainty of ±30% 

(100−200 μM) for the concentration of these components in fermenting mitochondria. 

This concentration is 1 order of magnitude higher than previous estimates based on 

fluorescence studies. Comparing results is difficult because the sources of the 

mitochondria (yeast vs. rat liver) differed as did the metabolic conditions under which 

the cells were prepared. Nevertheless, our studies show that the concentration of these 

ions in mitochondria isolated from fermenting yeast is higher than what has been 

generally assumed. 

Other Pools of Iron in Mitochondria 

Although the focus of this paper was to establish whether the NHHS Fe2+ species 

were located within yeast mitochondria, our experiments also provide evidence of other 

pools of Fe in the organelle, including Fe3+ nanoparticles ( 40% of the Fe, 

corresponding to 300 μM, but somewhat variable) and mononuclear HS Fe3+ ions (

20% of the Fe, corresponding to 150 μM). The combined concentration of these three 

pools (600 μM) represents 80% of the total Fe in fermenting mitochondria. This is 

again a larger-than-expected proportion of mitochondrial Fe in the form of Fe pools. 

Whether these pools are independent of each other (e.g., imported through different IM 

transporters) or are in dynamic equilibrium with each other is unknown, but we assume 

the latter in the model of Figure 3.12. We have also observed a fourth pool of Fe in 

fermenting yeast cells, namely mononuclear HS Fe3+ ions located in a non-mitochondrial 
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region of the cell. The concentration of this pool is high, representing 75% of all the Fe 

in the cell. 

We have not established the metabolic role of any of these pools. Fe2+ ions are 

imported into the mitochondrial matrix via two high-affinity transporters (Mrs3p and 

Mrs4p), and this pool is used as feedstock for Fe−S cluster and heme biosynthesis. 

Studies also suggest the presence of an Fe3+ pool in vacuoles (59). It is appealing to 

consider that we have observed these and perhaps other Fe pools in yeast, but further 

studies are required to establish this. Mössbauer spectroscopy in combination with the 

analysis of various genetic strains of yeast will undoubtedly be useful in elucidating this 

and other details of iron trafficking in cells. 
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Figure 3.12. Distribution of iron pools isolated in fermenting mitochondria. Three pools 
composed of nonheme HS Fe2+ species, mononuclear HS Fe3+ species, and 
Fe3+ nanoparticles have been identified. 
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CHAPTER IV 

BIOPHYSICAL CHARACTERIZATION OF IRON IN MITOCHONDRIA FROM 

YEAST UNDER DIFFERENT METABOLIC CONDITIONS* 

 

Introduction 

Mitochondria are cellular organelles that play critical roles in cellular physiology. 

Respiration and oxidative phosphorylation occur in these organelles, as do heme 

biosynthesis and iron−sulfur cluster assembly. As such, mitochondria are “hubs” of 

cellular iron trafficking (47). The Fe2+ ions used for these processes are imported by 

Mrs3p and Mrs4p, high-affinity transporters on the IM (47). Once in the matrix, these 

ions are delivered to Fe−S scaffold proteins and ferrochelatase (47). Many of these Fe−S 

and heme centers are inserted into respiratory complexes. Succinate dehydrogenase 

contains one [Fe2S2], [Fe3S4], and [Fe4S4] cluster each as well as a LS heme b(4). 

Cytochrome bc1 contains two LS b type hemes, one LS c heme, and a Rieske [Fe2S2]  

cluster (113). Cytochrome c contains one LS heme c. Cytochrome c oxidase contains 

two heme a molecules and three Cu ions (241). Other mitochondrial proteins 

____________ 

*This chapter is reproduced in part with permission from “Characterization of Iron in 
Mitochondria Isolated from Respiring and Fermenting Yeast” by Jessica Garber 
Morales, Gregory P. Holmes-Hampton, Ren Miao, Yisong Guo, Eckard Münck, and 
Paul A. Lindahl, 2010, Biochemistry, 49, 5436-5444,copyright 2010 American Chemical 
Society.  
My contributions to these studies were isolation of the fermenting samples, collection of 
low field Mössbauer data, and analysis of the mossbauer data in collaboration with Dr. 
Eckard Münck and Dr. Yisong Guo at Carnegie Mellon University. 
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contain [Fe4S4] and [Fe2S2] clusters, hemes, and non-heme Fe2+ ions (see ref (221) for a 

list of mitochondrial Fe-containing proteins). 

Mitochondrial dysfunction is associated with aging and various diseases, 

including cancer, heart disease, anemia, and neurodegeneration (16, 242, 243). As cells 

age, there is a decline in the level of Fe−S cluster biogenesis and mitochondrial 

membrane potential, leading with higher probability to a cellular crisis associated with 

loss of mitochondrial DNA, the instability and hypermutability of nuclear DNA, and 

cancer (244). Aged cells exhibit signs of iron starvation (244). Reactive oxygen species 

(ROS) generated by Fe centers within the mitochondria may damage the DNA and other 

cellular components (245), causing apoptosis (5, 246, 247). Ferrous ions are particularly 

adept at producing ROS via Fenton chemistry (248). In Friedreich’s ataxia, the level of 

mitochondrial frataxin is depleted, causing a buildup of iron in the organelle (106, 249-

251). In Parkinson’s disease, there is a buildup of Fe in the substantia nigra portion of 

the brain (252, 253). Patients with sideroblastic anemia accumulate Fe that cannot be 

incorporated into hemoglobin (47, 254). 

Much progress in understanding cellular function has been made by “omics”-

level studies in which entire subsets of cellular components are measured simultaneously 

and analyzed as a system (255). We have developed an integrative biophysical approach 

centered on Mössbauer spectroscopy to study the systems-level distribution of iron 

within cells and organelles (226). 57Fe Mössbauer spectroscopy detects all Fe species in 

a sample, with spectral intensities proportional to relative Fe concentrations (119). In 

complex systems, Mössbauer generally cannot resolve individual Fe species, but it can 
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identify groups of such species. This is not ideal, but the resolution of Fe species can be 

enhanced by EPR, which can detect paramagnetic species, electronic absorption 

spectroscopy, which can quantify heme chromophores, and ICP-MS, which can quantify 

the overall Fe concentration. 

In this study, we have assessed the Fe content of mitochondria isolated from 

yeast grown under fermenting, respiro-fermenting, and respiring conditions. 

Mitochondria play a dominant role in respiration but not fermentation; however, they are 

essential for cell viability regardless of metabolic growth mode. Fermenting cells 

produce fewer mitochondria than respiring cells. Early in the exponential growth phase, 

fermenting cells are largely devoid of mitochondria; in later stages, the organelle 

occupies 3% of the cell volume (232). Under respiration, mitochondria represent 10% 

of the cell volume. Mitochondria in yeast are present as a large tubular network (256); 

the network from fermenting cells is thinner and less branched. 

We report here that respiration-related Fe-containing proteins and other 

[Fe4S4]
2+ cluster-containing proteins dominate the iron content of mitochondria from 

respiring and respiro-fermenting cells. Under fermention, the concentrations of these 

species decline while those of non-heme high-spin (NHHS) Fe2+ ions, mononuclear HS 

Fe3+ ions, and Fe3+ nanoparticles increase. These changes can be rationalized by 

assuming that the NHHS Fe2+ ions constitute a pool used for Fe−S cluster and heme 

biosynthesis. 
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Results 

Respiring Mitochondria 

Western blots of mitochondria isolated from respiring cells showed a 10-fold 

enrichment of the mitochondrial porin relative to that in cell extracts (Figure 4.1). 

Since 10% of the volume of respiring yeast cells is occupied by mitochondria (232), 

this observation indicates that our samples were relatively pure. The membranes of 

isolated mitochondria were largely intact, in that the IMS protein cytochrome c was 

protected from proteinase K-catalyzed hydrolysis unless deoxycholate was added to 

disrupt membranes (Figure 4.2). The metal content of samples was determined by ICP-

MS (averages in Table 4.1 and individual determinations in Table 4.2). 

Low-field Mössbauer spectra of respiring mitochondria were dominated by the 

“central doublet” (Figure 4.3C, blue line). This doublet [60% of Fe (Table 4.1)] has an 

isomer shift δ of ≈ 0.45 mm/s and a quadrupole splitting ΔEQ of ≈1.15 mm/s, parameters 

characteristic of both S = 0 [Fe4S4]
2+ clusters and LS Fe2+ hemes. A minor contribution 

of S = 0 [Fe2S2]
2+ clusters to the central spectral region could not be excluded; fits for the 

0.05 T spectra, but not the 8.0 T spectra, were improved by assuming that 5% of the 

total Fe was in this form (with δ of 0.27 mm/s and ΔEQ of 0.55 mm/s). 

Respiring mitochondria exhibited a quadrupole doublet with δ of ≈0.83 mm/s and 

ΔEQ of ≈2.4 mm/s, typical of HS Fe2+ hemes (257). The dashed line above the spectrum 

of Figure 4.3A is a simulation of this species; its low-energy line is buried under the 

central doublet. The spectrum also contains a paramagnetic feature, best recognized after  
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Figure 4.1. Western blot of respirinf mitochondria (left) and the corresponding cell 
extract (right) (batch R5). In both cases, 60 μg of protein was loaded into the wells of a 
10% SDS−PAGE gel. Kar2 is an endoplasmic reticular protein (level increased 5-fold in 
isolated mitochondria vs cell extract). CPY is a vacuolar protein (level decreased 6-fold). 
PGK is a cytosolic protein (level decreased 5-fold). Porin is a mitochondrial protein 
(level increased 10-fold). 
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Table 4.1. Analytical properties of isolated mitochondria. In the top part, concentrations 
are for “neat” mitochondria (devoid of residual interstitial solvent). Experimentally 
determined protein and metal concentrations of mitochondrial suspensions were 
multiplied by the dilution factor used to prepare these samples from the packed state. 
Concentrations were also divided by 0.82, the packing efficiency (221, 226). Values in 
the table are the average of the individual determinations given in Table 4.2; the number 
of samples evaluated is in parentheses. Indicated relative uncertainties reflect variations 
between samples; additional uncertainties related to fitting are estimated to be ±20%. 
Heme a, b, and c concentrations were determined from electronic absorption spectra. 
Entries obtained by Mössbauer spectroscopy are given as a percentage of total Fe. 
Percentages of HS Fe3+ species were determined only from 8.0 T Mössbauer spectra. 
The bottom part lists estimated concentrations of dominating Fe- and Cu-containing 
species in yeast mitochondria (in µM). 
  

 Respiring respiro-
fermenting 

fermenting 

[protein] (mg/mL) 170 ± 61 (5) 200 ± 60 (2) 110 ± 30 (11) 
[Fe] (μM) 720 ± 210 (5) 840 ± 120 (2) 770 ± 320 (11) 
[Cu] (μM) 210 ± 170 (5) 160 ± 80 (2) 50 ± 37 (11) 
[Mn] (μM) 35 ± 20 (5) 12 ± 4 (2) 15 ± 12 (11) 
[Zn] (μM) 290 ± 160 (5) 230 ± 150 (2) 290 ± 210 (11) 

central doublet 60 ± 2% (2) 50% (1) 25 ± 4% (5) 
HS Fe2+ heme 7 ± 1% (2) 4% (1) 4 ± 1% (5) 

NHHS Fe2+ 2 ± 1% (2) 3% (1) 20 ± 5% (5) 
HS Fe3+ 0 (2) 5% (1) 15 ± 3% (3) 

S = 1/2 [Fe2S2]
+ 13 ± 2% (2) 10% (1) ~0% (5) 

[Fe2S2]
2+ <5% (2) <5% (1) ~0% (5) 

Fe3+ nanoparticles <5% (2) <5% (1) 33 ± 7% (5) 
unassigned Fe ~20% ~25% ~5% (5) 

[Fe2+ heme a] (μM) 51 ± 8 (4) 61 (1) 14 ± 1 (4) 
[Fe2+ heme b] (μM) 52 ± 8 (4) 55 (1) 27 ± 5 (4) 
[Fe2+ heme c] (μM) 120 ± 10 (4) 160 (1) 73 ± 15 (4) 

gave = 1.95 (μM) 1−10 (3) 13 ± 4 (2) 1−3 (2) 
gave = 1.90 (μM) 13 ± 3 (3) 29 ± 18 (2) 6 ± 2 (2) 
g = 2.01 (μM) 0−1 (3) 1−2 (2) 0 (2) 
g = 2.00 (μM) 0−2 (3) 0−6 (2) 0−1 (2) 
g = 2.04 (μM) 1−3 (3) 3 ± 1 (2) 1−2 (2) 
g = 4.3 (μM) 5−45 (3) 2−14 (2) 3 (1) 
g = 5.8 (μM) 1−2 (3) 0−2 (2) ~0 (1) 

g = 6.4, 5.3 (μM) 1−4 (3) 0−5 (2) 1 (1) 
        

cytochrome c oxidase 30 35 8 
succinate dehydrogenase 5 10 2 

cytochrome bc1 10 20 6 
cytochrome c 100 140 60 

other HS heme b 20 minor Minor 
other LS hemes combined 180 230 100 

other [Fe4S4]
2+ only 55 36 13 

other [Fe4S4]
2+ + [Fe2S2]

+ Minor minor Minor 
other [Fe2S2]

2+ only Minor minor Minor 
Cu1+ pool 120 60 30 
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Table 4.2: Protein and metal concentrations in isolated mitochondria. Mitochondria 
isolated from cells grown on glycerol, galactose, and glucose are designated R# 
(respiring), RF# (respirofermenting) and F# (fermenting), respectively. Batches F1 – F4 
were from cells grown on YPD media while F5 – F16 were from cells grown on minimal 
media. Sample characterizations are denoted (MB) Mössbauer, (U) UV-vis 
Spectroscopy, (E) EPR, (P) protein analysis and (M) metal analysis. 

 

Batch  Protein (mg/mL)  Fe (μM) Mn (μM) Cu (μM) Zn (μM) Characterization

R1  200  750 23 360 420 MB, U, E, P, M

R2  180  600 46 63 320 MB, U, E, P, M

R3  110  600 30 59 180 U, P, M 

R4  120  670 42 110 82 U, P, M 

R5  80  320 6.1 270 200 E, P, M 

RF1  200  770 13 80 270 MB, E, P, M

RF2  120  690 8 170 100 U, E, P, M 

F1  74  640 30 36 540 U, P, M 

F2  64  520 12 95 580 U, P, M 

F3  86  650 11 92 220 U, P, M 

F4  80  530 27 58 190 U, P, M 

F5  120  850 7.2 46 180 MB, P, M 

F6  96  280 2.5 14 75 MB, P, M 

F7  74  620 6.3 28 220 MB, P, M 

F8  120  500 4.8 25 140 MB, P, M 

F9  99  560 3.9 22 140 MB, P, M 

F10  120  1300 1.6 41 280 E, P, M 

F11  89  470 22 4.5 89 E, P, M 

F12  N/A  N/A N/A N/A N/A MB 

F13  N/A  N/A N/A N/A N/A MB 

F14  N/A  N/A N/A N/A N/A MB 

F15  N/A  N/A N/A N/A N/A MB 

F16  N/A  N/A N/A N/A N/A MB 
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Figure 4.3. Mössbauer spectra of respiring mitochondria (batch R1). (A) At 5 K with a 0.05 T 
field applied parallel to the γ radiation. The black line is a simulation for the sum of the central 
doublet, HS Fe2+ hemes (dashed), and S = ½  [Fe2S2]

+ clusters. Table 4.1 and the bar graph on 
page 100 show percentages for all components. (B) Same as panel A after subtraction of the 
central doublet. The purple solid line is a simulation for S = ½ [Fe2S2]

+
 clusters, while the black 

solid line is a composite simulation including these species and HS Fe2+ hemes. The absorption 
between 0 and 1 mm/s that is not covered by the black curve is unassigned. (C) Same as panel A 
but recorded at 100 K. The blue line outlines the contribution of the central doublet in the 
sample. (D) Same as panel A except at 4.2 K and with an 8.0 T parallel applied field. The black 
line is a simulation that includes the central doublet and contributions from S = ½ 
[Fe2S2]

+ clusters. 
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removing heme and central doublet contributions. The resulting absorption features 

(Figure 4.3B) at approximately 3.1 and −2.7 mm/s strongly suggest 

S = 1/2 [Fe2S2]
+  clusters (due to the Rieske center in the bc1 complex and the center in 

succinate dehydrogenase). Assuming the parameters of the Rieske protein (120) to 

simulate the contribution of a generic S = 1/2 [Fe2S2]
+ cluster suggests that 13% of the 

Fe in respiring mitochondria is present as such clusters. Analysis of Mössbauer and EPR 

spectra of another batch [R2 (Figure 4.4A and Figures 4.5 and 4.6)] both yielded 30 μM 

for this cluster type. At 100 K (Figure 4.3C), a portion of the magnetic pattern observed 

at 5 K has collapsed, revealing that ≤2% of spectral intensity arises from NHHS 

Fe2+ species (ΔEQ≈ 3.0 mm/s, and δ ≈ 1.3 mm/s). The black line on the 8.0 T data of 

Figure 4.3D simulates the central doublet and S = 1/2 [Fe2S2]
+ clusters. After subtraction 

of the above-mentioned spectral features, some unresolved absorption remains at the 

center of the spectrum (Figure 4.3B) which could not be assigned unequivocally: a 

portion may be associated with Fe3+ phosphate nanoparticles. 

We previously reported that 22% of the total Fe was present as non-heme 

Fe2+ in respiring mitochondria grown on lactate (221). We now suspect that the majority 

of this was adventitious, as we no longer observe such features with this intensity in 

spectra of respiring mitochondria. Also, previously reported spectra (221) did not 

include a HS heme doublet, as we observe currently. In the initial stages of this project, 

samples were not isolated as rapidly as they are currently, and there may have been some 

heme and/or Fe−S cluster degradation that led to more intense non-heme HS 

Fe2+ doublets.   
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Figure 4.4. EPR spectra (10 K) of mitochondria from various carbon sources. Included 
are samples from respiring (A, batch R2, decomposition in S5), respiro-fermenting (B, 
RF1), and fermenting (C, F11) cells. Spectra A and C were recorded at 0.05 mW, and 
spectrum B was recorded at 0.2 mW. Dashed lines are simulations, with batch-averaged 
parameters given in Table 4.1. Spectra D−F show the low-field regions of spectra A−C, 
respectively. 
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Mitochondrial suspensions are turbid, leading to electronic absorption spectra 

with strong sloping baselines due to light scattering (Figure 4.7). Superimposed on this 

are Soret bands in the 400 nm region and α and β bands in the 500−620 nm region  

arising from both HS and LS Fe2+ hemes (227). Spectra of respiring mitochondria were 

simulated (dashed lines in Figure 4.7A and Figure 4.8) by adding spectra of individual 

heme a-, b-, and c-containing proteins (Figure 4.9). Resulting concentrations (Table 4.1 

and Table 4.3 for individual samples) reveal the dominance of heme c, with hemes b and 

a present in roughly equal amounts. The HS fraction of these Fe2+ hemes affords the 

heme Mössbauer doublet mentioned above, while the LS portion contributes to the 

central doublet. 

EPR spectra of respiring mitochondria revealed additional details of the 

paramagnetic species observed by Mössbauer spectroscopy. The low-field region 

(Figure 4.4D) was dominated by g ≈ 6.0 (E/D = 0) and g = 6.4 and 5.4 (E/D ≈ 0.021) 

EPR signals; average spin concentrations are listed in Table 4.1. We assign these signals 

to the [a3:Cub] center of cytochrome c oxidase in which heme a3 is Fe3+ and Cub is 

Cu1+ (241). The g = 2 region (Figure 4.4A) was dominated by signals with gave = 1.95 

(2.03, 1.93, 1.91), gave = 1.90 (2.02, 1.90, 1.78), and gave = 2.02 (2.08, 1.99, 1.97) and a 

nearly isotropic signal with gave = 2.01 (perhaps combined with another signal at g = 

2.00) (221). The dashed line in Figure 4.4A is the composite simulation. The gave = 1.95 

and 1.90 signals have been assigned to the [Fe2S2]
+ clusters in succinate 

dehydrogenase (258) and the Rieske protein of cytochrome bc1, respectively (221, 259). 

The gave = 2.01 signal may originate from an S = 1/2[Fe3S4]
+ cluster, perhaps from the  
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Figure 4.7. Electronic absorption spectra of mitochondrial suspensions. (A) respiring 
(R1), (B) respiro-fermenting (RF2), and (C) fermenting (F3) samples. Effective 
absorbances of neat mitochondria normalized to a 10 mm path length cuvette are plotted. 
These values were obtained by multiplying raw absorbances by 2.0 (the dilution factor 
relative to packed mitochondria) and 5.0 (path length factor due to the use of a 2 mm 
path length cuvette) and by dividing by 0.82 (the packing factor). Dashed lines are 
composites from individual heme a-, b-, and c-containing proteins, using parameters 
listed in Table 4.2 (averages in Table 4.1). 
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Table 4.3. Concentrations of each heme component for individual samples (in μM). 
Values indicated are for neat mitochondria. Estimated uncertainties are ± 20% for each 
entry. 
 

Batch [Heme a] [Heme b] [Heme c] 
R1 45 43 110 
R2 55 44 130 
R3 60 60 130 
R4 44 44 120 
F1 15 30 85 
F2 15 33 85 
F3 13 22 61 
F4 12 23 61 
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cluster in succinate dehydrogenase. The g = 2.00 signal probably arises from an organic-

based radical. The gave = 2.02 feature may arise from ET flavoprotein-ubiquinone 

oxidoreductase (260). Minor resonances between g = 2.2 and g = 2.1 are often observed 

but remain unassigned. The bulk of the spin concentration in the g = 2 region belongs to 

[Fe2S2]
+ clusters that are most evident in Mössbauer spectra. The remainder belongs to 

minor species some of which may account for the unresolved background in the 

Mössbauer spectra. These results were generally similar to those reported for 

mitochondria isolated from yeast grown on glucose and lactate (221). 

Respiro-Fermenting Mitochondria 

Metal concentrations of mitochondria isolated from respiro-fermenting cells were 

similar to those of respiring mitochondria, except that the Mn concentration was 2-fold 

lower (Table 4.1). Mössbauer spectra (Figure 4.10) were also similar. Compared to 

respiring mitochondria, the proportion of Fe present as the central doublet, HS Fe2+ 

hemes, and magnetic Fe in respiro-fermenting mitochondria declined slightly, while the 

percentages of NHHS Fe2+ and the unassigned absorption in the center of the spectra 

increased slightly. A minor contribution of NHHS Fe2+ ( 2%) was assessed using the 

100 K spectrum of Figure 4.10B. The presence of unassigned species is evident from the 

mismatch of the spectrum and simulation (Figure 4.10A) at 0 mm/s. The 8.0 T 

spectrum reveals the presence of mononuclear HS Fe3+ ions (Figure 4.10C, cyan line). 

The black line in Figure 4.10C is a simulation of the diamagnetic Fe associated with the 

central doublet at low field, together with a generic S = 1/2 [Fe2S2]
+ cluster. EPR of a 

well-packed sample of the same batch yielded a spin concentration of 42 μM for the sum  
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Figure 4.10. Mössbauer spectra of respirofermenting mitochondria (RF1). (A) Spectrum 
measured at 5 K with a 0.05 T field applied parallel to the γ radiation. The black line is 
a simulation for the central doublet, HS Fe2+ hemes, NHHS Fe2+, 
and S = 1/2 [Fe2S2]

+ clusters. The lines above the spectrum are simulations 
for S = 1/2 [Fe2S2]

+ (purple), non-heme HS Fe2+ (red), and HS Fe2+ heme (black dashed 
line). (B) Same as panel A but at 100 K. (C) Same as panel A but at 8.0 T and 4.2 K. The 
black line is a simulation for the central doublet and S = 1/2 [Fe2S2]

+ clusters. The cyan 
line above is a simulation for HS mononuclear Fe3+ species. See Table 4.1 for the 
concentrations of various species. 
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of the gave= 1.95 and 1.90 signals, suggesting that 10% of the Fe belongs to 

[Fe2S2]
+ clusters. This value is similar to that suggested by the Mössbauer data. The 

electronic absorption spectrum of respiro-fermenting mitochondria (Figure 4.7B) 

revealed heme a, b, and c concentrations (Table 4.1) similar to those of respiring 

mitochondria. 

Fermenting Mitochondria 

Protein and Fe concentrations for fermenting mitochondria (Table 4.1) were 

again similar to those of respiring and respiro-fermenting mitochondria; the protein 

concentration might be reduced somewhat, but the variability was too high to establish 

this. The Mn concentration was similar to that in respiro-fermenting mitochondria and 

substantially lower than in respiring mitochondria. The Cu concentration was 4-fold 

lower than those in respiring or respiro-fermenting mitochondria. Mössbauer spectra of 

fermenting mitochondria (Figure 4.11) are described in detail elsewhere (261); here we 

summarize that description. The spectra differed substantially from those of respiring or 

respiro-fermenting mitochondria in that there was a substantial decline in the fraction of 

Fe associated with the central doublet and an increase in the proportion of NHHS 

Fe2+ and Fe3+ nanoparticles (δ = 0.52 mm/s, and ΔΕQ = 0.63 mm/s). Electronic 

absorption spectra (Figure 4.7C and Figure 4.12) exhibited lower concentrations of heme 

centers (Table 4.1 and Table 4.3), consistent with the decline of the HS Fe2+ heme 

doublet in Mössbauer spectra. EPR spectra of fermenting mitochondria (Figure 4.4C,F) 

were qualitatively similar to those of respiring and respiro-fermenting mitochondria, but 

with lower spin concentrations (Table 4.1). The g = 6 features, assigned to the partially  
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Figure 4.11. Mössbauer spectra of fermenting mitochondria (batch F9). (A) Spectrum 
measured at 5 K with a 0.05 T field applied parallel to the γ radiation. The black line is 
a simulation for the sum of the central doublet, HS Fe2+ hemes, NHHS Fe2+ (high-energy 
line indicated by the arrow), and the Fe3+nanoparticles. (B) Same as panel A except at 
100 K. The red line indicates HS Fe2+; the green line indicates the nanoparticle 
contribution (the doublet representing nanoparticles contains 20% of total Fe at 5 K and 
35% at 100 K; at 5 K the larger nanoparticles contribute a magnetically broadened 
spectrum). (C) Same as panel A except at 8.0 T and 4.2 K. The cyan line is a simulation 
for the HS Fe3+. See Table 1 for the concentrations of various species. 
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oxidized a3:Cub site of cytochrome c oxidase, declined as expected. Summing spin 

concentrations of the signals in the g = 2 region suggests that ≤3% of the Mössbauer 

spectral intensity should be associated with S = 1/2 species, a fraction too small to be 

detected in the presence of increased amounts of NHHS Fe2+ and ferric nanoparticles. 

Discussion 
 

The main objective of this study was to characterize the distribution of the major 

Fe species in mitochondria isolated from respiring, respiro-fermenting, and fermenting 

yeast cells. In the following we integrate the results from the various techniques with the 

known composition of proteins in mitochondria, beginning with the respiring state. Our 

data allow an estimate of the absolute concentration of cytochrome c oxidase in the 

organelle. As few other heme a-containing proteins are found in mitochondria, the 

heme a concentration essentially reflects twice the cytochrome c oxidase concentration. 

Mitochondrial heme monoxygenase may have substoichiometric amounts of 

heme a bound, but we will assume that this is insignificant. The total 

Fe2+ heme a concentration in respiring mitochondria (Table 4.1, top part) suggests an 

average concentration of 25 μM for cytochrome c oxidase with reduced heme a species 

(Table 4.1, bottom part). The absence of g  3 EPR signals indicates the lack of LS 

Fe3+ hemes in respiring mitochondria. Since cytochrome c oxidase contains 3 molar 

equiv of Cu, 40% of the total Cu in respiring mitochondria should be in this enzyme. 

Most of the remainder might belong to a Cu1+ pool (224). The percentage of 

mitochondrial Cu that we estimate for this pool ( 60%) is smaller than the previous 
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estimate ( 90%). The absence of Cu2+ EPR signals in our preparations is consistent with 

a Cu1+ oxidation state for this pool. 

The HS Fe2+ heme quadrupole doublet of respiring mitochondria should include 

contributions from heme a3- and HS heme b-containing proteins (we are unaware of any 

HS heme c-containing proteins). After subtraction of the heme a3 contribution, the HS 

heme b species in respiring mitochondria (Table 4.1, bottom part) are likely to be found 

in cytochrome c peroxidase, catalase, and NO oxidoreductase, among others. Subtracting 

the HS heme b concentration from the total heme b concentration suggests that the 

concentration of LS heme b species in mitochondria is 30 μM. These chromophores are 

found in succinate dehydrogenase (one hemeb), cytochrome bc1 (two 

heme b molecules), and others such as cytochrome b2 and Cox15p. This can be 

described by the relationship: 

 30μM = [succinate dehydrogenase] + 2[cytochrome bc1] + others.  

As the spin concentrations for the gave = 1.95 and 1.90 EPR signals indicate the 

concentrations of succinate dehydrogenase ( 5 μM) and cytochrome bc1 ( 10 μM), 

respectively, this relationship implies that most LS heme b centers in mitochondria 

reside in these two respiratory complexes. 

The known heme c-containing proteins in mitochondria include 

cytochrome c1 and two isoforms of cytochrome c. Removing the 

cytochrome bc1 concentration suggests that the collective concentration of the isoforms 

is 110 μM. This indicates that the heme a and c contents of respiring mitochondria are 

dominated by cytochrome c oxidase and cytochrome c, respectively. The heme b content 
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is more evenly distributed between HS and LS, with LS forms dominated by succinate 

dehydrogenase and cytochrome bc1. Concentrations in Table 4.1 (bottom part) were 

calculated with respect to the entire mitochondrial volume. Since species are located in 

particular regions of the mitochondria, their regional concentrations will be higher. 

Succinate dehydrogenase contains 10 molar equiv of Fe (one LS heme b, one 

Fe2S2 cluster, one Fe3S4 cluster, and one Fe4S4 cluster), so a concentration of 5 μM for 

this respiratory complex implies an 50 μM Fe contribution overall. Similarly, 

cytochrome bc1 contains 5 molar equiv of Fe (one heme c1, two heme b molecules, and 

one Fe2S2 cluster), also implying an 50 μM overall Fe contribution. Including a 60 μM 

Fe contribution for cytochrome c oxidase and 110 μM for cytochrome c reveals that 

respiration-related complexes constitute 40% of the iron in respiring yeast 

mitochondria. 

The central doublet of the Mössbauer spectra of respiring mitochondria includes 

contributions from [Fe4S4]
2+ clusters and LS Fe2+ hemes. Table 4.1 and the relationships 

mentioned above suggest 30 μM (LS heme a) + 30 μM (LS heme b) + 120 μM (LS 

heme c) = 180 μM LS Fe2+ hemes. Subtracting this from the central doublet leaves 

35% of the mitochondrial Fe in the form of S = 0 [Fe4S4]
2+ clusters. This corresponds 

to 250 μM Fe or to 60 μM of such clusters. Subtracting an additional 5 μM 

contribution due to the succinate dehydrogenase [Fe4S4]
2+cluster leaves 55 μM for 

Fe4S4 clusters in other mitochondrial proteins. 

Some mitochondrial proteins contain only Fe4S4 clusters; some contain only 

Fe2S2 clusters, and some contain both cluster types. We have attempted to fit simulations 
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of oxidized [Fe2S2]
2+clusters into the Mössbauer spectra of respiring mitochondria, but 

we have no clear evidence of their presence. This suggests for respiring mitochondria 

that the majority of [Fe4S4]
2+clusters that are not contained in succinate dehydrogenase 

reside in proteins that contain only [Fe4S4]
2+ clusters. 

Respiro-fermenting and fermenting mitochondria were analyzed similarly 

(Table 4.1, bottom part); results are summarized by the bar chart in Figure 4.13. In 

general, the total Fe concentration was similar regardless of metabolic mode. Also, the 

overall distribution of Fe in respiro-fermenting mitochondria was similar to that in 

respiring mitochondria. In contrast, the Fe distribution in fermenting mitochondria was 

dramatically different. This suggests that the repression of respiration by glucose, rather 

than the occurrence of fermentation per se, is responsible for the major shifts observed in 

Fe distribution. Thus, we will simplify our further analysis by averaging the Fe 

distributions observed for respiring and respiro-fermenting mitochondria and then 

compare this to the distribution obtained under fermentation. 

Viewed in the respiration → fermentation direction, cytochrome c oxidase ↓ 

(declined) 4-fold, succinate dehydrogenase ↓ 3.8-fold, cytochrome bc1 ↓ 2.5-fold, 

cytochrome c ↓ 2-fold, LS hemes generally ↓ 2-fold, and [Fe4S4]
2+ cluster-containing 

proteins ↓ 3.5-fold. The Cu1+ pool decreased 3-fold. The decline in the size of the 

Cu1+ pool upon shifting from respiration to fermentation contrasts with a previous 

report (224) that the concentration of this pool is independent of metabolic growth mode. 

In terms of Fe pools, the NHHS Fe2+ pool, the mononuclear HS Fe3+pool, and the  
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Figure 4.13. Bar graph of major forms of Fe present in mitochondria. Included are 
respiring, respiro-fermenting, and fermenting mitochondria. Color-coding is matched to 
simulated features in previous Mössbauer figures. 
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Fe3+ nanoparticles went from nearly undetectable in respiring mitochondria to 

representing 75% of the Fe in the fermenting organelle. These dramatic changes reflect 

major differences in the way that Fe is handled by the cell, depending on metabolic 

mode. 

We do not know the location of these pools within mitochondria but suspect that 

they are located in the matrix. Nor are the ligands coordinating the Fe in these pools 

known. The ferric ions in the Fe3+ nanoparticles found in Atm1-depleted mitochondria 

appear to be coordinated by ligands with oxygen donors but essentially lacking in N, S, 

or C atoms (105). Phosphate, water, and hydroxide ligands were suggested as likely 

ligands in these nanoparticles, and similar ligands might be associated with the 

nanoparticles observed in mitochondria from wild-type fermenting cells. The non-heme 

high-spin Fe2+ pool may consist of multiple species. Some mitochondrial proteins (e.g., 

frataxin, ferrochelatase, Fe−S cluster scaffold proteins, and CoQ7) may coordinate HS 

Fe2+ ions, but the collective concentration of these proteins may be insufficient to 

account for the overall concentration of the NHHS Fe2+ pool ( 150 μM in fermenting 

mitochondria). Seguin et al. (262) determined that yeast cells grown under similar 

conditions contained 1300 copies of Yfh1p. If we assume 60 × 10−15 L for the volume 

of a yeast cell (263-266), that 3% of that volume was due to mitochondria (267, 268), 

and that each Yfh1p bound two Fe2+ ions (269), this would correspond to a concentration 

of 70 nM. Even if there were a dozen such proteins in mitochondria, their collective 

concentration would be 2 orders of magnitude lower than that present in the NHHS 

Fe2+ pool of fermenting mitochondria. These considerations strongly suggest that the 
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nonheme HS Fe2+ pool is dominated by nonproteinaceous low-molecular weight 

complexes. 

The results of this study can be compared to those of proteomic studies that also 

indicate substantial changes in the yeast mitochondria proteome due to the diauxic 

shift (255). The concentrations of 17 proteins are significantly lower in fermenting 

versus respiring cells, including cytochrome c oxidase, cytochrome bc1, and succinate 

dehydrogenase (270). The mitochondrial transcriptome changes more dramatically, with 

levels of transcripts of cytochrome c isoform 1 and Mn-superoxide dismutase (MnSod2) 

declining under fermentation (271, 272). Other groups have also reported lower SOD2 

protein and transcript levels under fermentation (273, 274). Our results are consistent, 

including the 3-fold increase in the Mn concentration of respiring mitochondria relative 

to respiro-fermenting and fermenting conditions which might reflect changes in the 

levels of MnSod2 or associated Mn species. 

The observed changes in the distribution of Fe in mitochondria isolated from 

cells grown under different metabolic modes can be interpreted given the known roles of 

mitochondria in respiring versus fermenting cells. In respiring cells, these organelles are 

critical for energy production, which requires the biosynthesis of Fe−S clusters and heme 

centers, as well as their installation into apo-respiratory complexes. Under fermentation 

conditions, energy production is associated with glycolysis, where no such centers are 

involved. Thus, the level of production of Fe−S clusters and heme centers is probably 

reduced in fermenting mitochondria because the metabolic need for these centers is 

reduced. Our results suggest a 3-fold reduction in these centers. Residual amounts of 
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such centers might allow fermenting cells to convert rapidly into respiration mode as 

environmental conditions change. 

The Fe used to synthesize mitochondrial Fe−S clusters and hemes is imported 

into the organelle as Fe2+ (80). Neither the structure nor the composition of the imported 

complex(es) is(are) known, but each is probably of low molecular weight as each must 

pass through transporters in the IM (47). We propose that the non-heme HS Fe2+ ions 

present in fermenting mitochondria are these imported ions and that they serve in this 

capacity. The simple model of Figure 4.14 assumes this role and can rationalize the 

observed changes in the level of this pool. During respiration, the size of the Fe2+ pool is 

small since the biosynthesis rates of Fe−S clusters and hemes are elevated. During 

fermentation, the pool increases because the rate of Fe−S cluster and heme biosynthesis 

is diminished. Consistent with the nearly invariant Fe concentrations in respiring and 

fermenting mitochondria, the overall rate of Fe2+ import appears to be unaffected by 

changes in metabolic growth mode; i.e., the cell does not seem to regulate the rate of 

import of Fe2+ into mitochondria according to metabolic growth mode. Understanding 

Fe fluxes at the cellular level will require that the different percentage volumes occupied 

by mitochondria in fermenting versus respiring cells be taken into account. Another 

uncertainty, at the mitochondrial level, is the relationship between the NHHS Fe2+ pool 

and the other pools of Fe in fermenting mitochondria, including Fe3+ nanoparticles, 

mononuclear HS Fe3+ ions, and the central unresolved material. The three pools may 

exist in a dynamic equilibrium with each other, or they might be independent (e.g., 

imported by different IM transporters). Also uncertain is the cellular function of these  
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Figure 4.14. Model describing the shift in the iron content of mitochondria with 
metabolic growth mode. The size of the NHHS Fe2+ pool is dictated by the balance of 
input and output fluxes. During respiration, the pool is small ( 15 μM). When cells 
ferment, the rate of Fe−S cluster and heme biosynthesis declines, causing the pool to 
enlarge ( 150 μM). The rate of import of Fe2+ from the cytosol is not significantly 
affected by the change in metabolism. Under fermenting conditions, a portion of the 
NHHS Fe2+ pool may become oxidized to mononuclear non-heme HS Fe3+, a subset of 
which may precipitate as Fe3+ nanoparticles. 
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other pools. They certainly store Fe in fermenting mitochondria, and the absence of these 

pools during respiration suggests either that these pools can be utilized under respiratory 

growth conditions or that they never form under these conditions. However, whether this 

is a cellular strategy for storing Fe, analogous to mitoferrin in human 

mitochondria (275), is uncertain. These pools may possibly result from an insufficient 

concentration of a coordinating ligand or a shift of either pH or oxidation status in 

fermenting mitochondria. We favor this latter characterization especially for the 

Fe3+ nanoparticle pool, in that the ligands coordinating these ions are probably not 

protein-bound and thus would not be under the direct genetic control of the cell. 

Nevertheless, this pool may indirectly impact cellular function, e.g., by generating 

reactive oxygen species during its formation, and it may be bioavailable under particular 

metabolic conditions. 
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CHAPTER V 

BIOPHYSICAL CHARACTERIZATION OF FERMENTING YEAST CELLS, 

ISOLATED VACUOLES FROM FERMENTING CELLS, AND THE AFT1-1UP 

STRAIN* 

 

Introduction 

 When this project started the original motivation was to establish whether 

biophysical probes could be used to gain insight into processes such as iron trafficking, 

homeostasis, and regulation. At the onset, mitochondria were studied because of their 

role in such processes. We realized however that mitochondria are only one organelle in 

the cell, and were intrigued to apply the same methods to study iron in an entire cell. 

From this stemmed an additional motivation to probe iron in other organelles, namely 

vacuoles. 

Vacuoles are the major site of cellular iron storage and detoxification. They 

prevent the formation of ROS by sequestering iron (61, 276). They have a lower pH than  

___________ 
*This chapter is reproduced in part with permission from “A Nonheme High-Spin 
Ferrous Pool in Mitochondria Isolated from Fermenting Saccharomyces cerevisiae” by 
Gregory P. Holmes-Hampton, Ren Miao, Jessica Garber-Morales, Yisong Guo, Eckard 
Munck, Paul A. Lindahl, 2010, Biochemistry, 49, 4227-4234, copyright 2010 American 
Chemical Society, “Mössbauer and EPR Study of Iron in Vacuoles from Fermenting 
Saccharomyces cerevisiae” by Allison L. Cockrell, Gregory P. Holmes-Hampton, Sean 
P.McCormick, Mrinmoy Chakrabarti, and Paul A. Lindahl, 2011, Biochemistry, 50, 
10275-10283, copyright 2011 American Chemical Society, and “Biophysical 
Investigation of the Iron in Aft1-1up and Gal-YAH1Saccharomyces cerevisiae” by Ren 
Miao, Gregory P. Holmes-Hampton, and Paul A. Lindahl, 2011, Biochemistry, 50, 2660-
2671,copyright 2011 American Chemical Society.  
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the cytosol. This raises the electrochemical potential of the glutathione 

disulfide/glutathione couple. 

The higher potential results in a more oxidizing environment. This has led 

previous researchers to hypothesize that the iron inside the vacuole is Fe3+ (58, 59).  

 There are two major pathways of iron import into the vacuole. The first involves 

ccc1p, the only known vacuolar iron importer (62). Although the exact substrate of 

ccc1p is still unknown, the Fe2+ state is assumed (61, 64, 277). Gene expression of 

CCC1 is responsive to the iron content of the cytosol. CCC1 mRNA is destabilized 

under iron deficient growth conditions (278).  

The second pathway of iron import involves endocytosis. The majority of the 

iron in the vacuole appears to enter through ccc1p. Cells that are unable to endocytose 

have substantially higher iron content than Δccc1 cells (62), suggesting that the majority 

of the iron in the vacuole enters through ccc1p. 

The vacuole has two systems of iron export, called Fth1p/Fet5p and Smf3p. 

Fth1p/Fet5p is homologous to the plasma membrane iron acquisition pathway involving 

Ftr1p/Fet3p. A similar mechanism has been implicated in the Ftr1p/Fet3p system. The 

Ftr1p/Fet3p system utilizes the reductase Fre6p to facilitate iron export (59, 279). The 

Smf3p system also uses this reductase. Smf3p is a divalent metal exporter of Fe2+, 

among other substrates (66, 280, 281).   

Iron homeostasis is controlled by both the vacuoles and mitochondria. mrs3/4 

cells exhibit a growth defect in iron-deficient medium but they grow normally on iron-

replete medium. Conversely, ccc1 cells grow normally in iron deficient medium but 



108 
 

show a growth defect on high-iron medium (62). Ccc1p-deficient vacuoles may be 

unable to import cytosolic iron, and the excess cytosolic iron inhibits cell growth, 

perhaps via ROS damage (282). Toxicity can be suppressed by overproducing Mrs3/4p 

(282), perhaps because excess Fecyt can be imported into the mitochondria which 

somehow detoxifies it.  

A common phenotype in cells which possess mutations in the ISC biosynthetic 

pathway is the accumulation of nanoparticles in the mitochondria (105-107). However, 

no accumulation occurs (and there is no respiratory defect) in ISC-mutant cells in which 

mrs3/4 have also been deleted (81), implying that this nanoparticle-forming iron enters 

via Mrs3/4p. Overexpressing Ccc1p also prevents Fe accumulation (283).  

Mitochondria and vacuoles interact functionally. In Δmrs3/4 cells, mitochondria 

are deficient in iron and have reduced ISC and heme levels, and reduced aconitase 

activity, perhaps due to an inability to import sufficient iron into the organelle (79). 

Meanwhile, the vacuolar iron level is increased, via the activation of Ccc1p, so as to 

store iron that would otherwise be in the cytosol. The activation of Ccc1p may reduce 

cytosolic iron levels and thus activate Aft1p (283). Aconitase activities are recovered 

when Ccc1p is deleted, again implying that vacuoles and mitochondria draw from a 

common pool of cytosolic iron.  

The Aft1-1up strain has a mutation in Aft1p (C291F) that causes it to remain in 

the nucleus and constitutively activate Aft1p-controlled iron regulon genes, regardless of 

the iron status of the medium. This stimulates the uptake of iron regardless of the 
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medium Fe concentration. Aft1-1up cells cultivated in rich medium (with high iron) 

contain higher than WT iron levels (223).  

This chapter summarizes biophysical studies on fermenting yeast cells, vacuoles 

isolated from fermenting yeast cells, and the yeast strain Aft1-1up. Ms. Allison Cockrell, 

a graduate student in the Lindahl lab, was primarily responsible for the studies involving 

isolated vacuoles, and Dr. Ren Miao, who at the time was a graduate student in the lab, 

was primarily responsible for the studies involving Aft1-1up. My role on both studies 

was to setup, operate and maintain the Mössbauer spectrometers, help collect their 

spectra, and to analyze the Mössbauer spectra we obtained. I also prepared the whole 

cell samples for the studies on vacuoles and the wild type cell and mitochondrial 

samples for the Aft1-1up studies. I also participated in broader discussions regarding 

these projects. 

Results and Discussion 

Whole Yeast Cells 

57Fe-enriched whole fermenting yeast cells grown on minimal medium supplemented 

with 40 μM 57Fe exhibited 5 K Mössbauer spectra dominated by features indicating 

magnetically noninteracting mononuclear HS Fe3+ components (Figure 5.1). These 

components have vanishingly small spin-dipolar interactions with other paramagnetic 

iron sites. At 0.05 T (Figure 5.1A), they display paramagnetic hyperfine structure; a 

quadrupole doublet would be expected if spin-dipolar interactions were effective or if 

the Fe3+ component belonged to nanoparticles with a TB of <<4 K. At 8T (Figure 5.1C), 
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Figure 5.1. Mössbauer spectra (5 K) of whole fermenting yeast cells. Samples were 
grown on 57Fe-enriched minimal medium. (A) Applied field of 0.05 T. The red line is a 
simulation with A values ranging from −21 to −23.5 T. (B) Spectrum obtained after 
subtraction of the simulation in part A from the data. The blue line is the spectrum of 
isolated mitochondria given in Figure 3.2A. (C) Same as part A, but at an applied field 
of 8.0 T. The red line is a simulation with A values ranging from −21.5 to −22.5 T. 
 
  



111 
 

such species exhibited patterns characteristic of magnetically noninteracting Fe3+. This 

behavior implies that these components should be EPR active. 

The red lines in Figure 5.1 are the sums of simulations for three mononuclear HS 

Fe3+ species, collectively representing 75% of the spectral intensity; the actual number 

of species contributing to these features remains undetermined. Individual differences 

among the HS Fe3+ species are lost at 8.0 T. The difference spectrum (Figure 5.1B) 

obtained by subtracting the low-field simulation of Figure 5.1A from the spectrum of 

Figure 5.1A is similar to that obtained for isolated mitochondria (the blue line in 

Figure 5.1B is the spectrum of EGTA-washed mitochondria shown in Figure 3.2A). 

A detailed analysis of the iron content of entire yeast cells will require a separate 

analysis, but our current analysis is sufficient to draw two major conclusions. First, the 

magnetically noninteracting mononuclear HS Fe3+ species (whose contribution was 

removed from the spectrum of Figure 5.1A) are not located in mitochondria. Second, the 

majority of the iron in fermenting yeast cells can be divided into two major groups: these 

non-mitochondrial mononuclear Fe3+ species and mitochondrial iron species. 

The non-mitochondrial Fe3+ species were reduced to the Fe2+ state upon sonication of 

cells and treatment with dithionite (Figure 5.2). The resulting quadrupole doublet had a 

ΔEq of 3.10 mm/s and a δ of 1.35 mm/s, parameters similar to those of the NHHS 

Fe2+ doublet in isolated mitochondria. This does not necessarily mean that the two 

doublets represent the same pool of iron, but neither can this possibility be excluded. 
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Spectroscopic Characterization of Isolated Vacuoles 

Vacuoles were isolated from cells grown under the same conditions used above. 

The fitted isomer shift, quadruple splitting, and isotropic hyperfine coupling constant 

(−230 kG) of the Mössbauer spectra of such samples suggest a hexacoordinated HS 

Fe3+ species (284).  The isotropic hyperfine coupling constant is near the limit of that 

observed for HS Fe3+ systems with rhombic symmetry, and it indicates very hard/ionic 

donor atoms (284).  Ao/gNN values for [Fe3+(H2O)6]
3+ (285), ammonium iron alum 

(NH4Fe(SO4)2•12 H2O) (286)  and HS Fe3+ polyphosphate are within this limiting region 

(ca. −238 kG), suggesting that the vacuolar HS Fe3+ species is coordinated by similar 

oxygen donors. 

The spectra of all batches examined by Mössbauer included a second component 

in varying relative proportions. Batch 15 (287) exhibited the lowest proportion of this 

component, while batch 23 (287) exhibited the highest proportion. The spectra of three 

other batches, with intermediate levels of the second component, are shown in Figure S2 

of (287). In batches showing greater resolution of this second feature, a quadrupole 

doublet was evident. These parameters were similar to those of Fe3+ (phosphorus) 

oxyhydroxo nanoparticles observed in various genetic strains of yeast (106, 107, 226, 

288). The spectral features due to the nanoparticles could be removed, affording 

difference spectra that could be simulated using the same HS Fe3+ parameters mentioned 

above. A somewhat different spectral shape was reported previously (106, 107, 226, 

288) but in those spectra the field was applied parallel to the γ-radiation, affording 

different selection rules. The magnetic features due to these nanoparticles in Figure 3 of 
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(287) were broad because the hyperfine coupling tensor A values were widely distributed 

as is typical of aggregated superparamagnetic materials.  

X-band EPR spectra of isolated vacuoles supported this analysis, as all 10 

batches examined displayed a dominant feature at gave  4.3 (Figure 5.3A). Such features 

are typical of HS Fe3+ species with rhombic symmetry (E/D  1/3). However, the 

quantified intensity of the signal varied considerably, with spin concentrations ranging 

from 110 to 175 μM in samples of packed isolated vacuoles from four separate batches 

(batches 14, 16, 17, and 23 of (287)). When normalized to the [Fe], and to the fraction of 

Fe associated with the six-line pattern in the Mössbauer spectra (measured to be 56% 

and 85% in batches 23 and 14 of (287), respectively, and assumed to be midway 

between these percentages in batches 17 and 16 of (287)), the ratio of [spin]/[HS Fe3+] 

was 0.9, 0.7, 0.8, and 0.6, respectively.   

Comparison of Whole Cells to Vacuolar Iron 

We calculated the concentration of Fe (and other metal ions) within fermenting yeast 

cells grown in the same medium used to grow the cells from which vacuoles were 

isolated. Measured values using packed cells were normalized using the previously 

determined packing efficiency (288). Low-temperature Mössbauer spectra of whole cells 

(Figure 5.4) were dominated by the same pattern that was observed in spectra of isolated 

vacuoles, i.e., typical of a mononuclear HS Fe3+ species. EPR spectra of whole cells 

grown under the same conditions as the isolated vacuoles of Figure 5.3A were 

dominated by a gave = 4.3 signal (Figure 5.3B), essentially indistinguishable from that of 

isolated vacuoles.includes low-intensity features at g = 6.4 and 5.4 (226, 289). The low- 
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Figure 5.3. EPR of isolated vacuoles (A) and whole cells (B). A, batch 23 of (290); 
temperature, 4 K; microwave frequency, 9.46 GHz; microwave power 0.08 mW; B, 
temperature, 10 K; microwave frequency, 9.46 GHz; microwave power 0.2 mW. The 
whole-cell spectrum includes low-intensity features at g = 6.4 and 5.4 and signals in 
the g = 2 region which are absent or of diminished intensity in the spectrum of isolated 
vacuoles. These features originate from mitochondria (226, 289). The whole-cell 
spectrum  
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Figure 5.4. Mössbauer spectra of isolated vacuoles (Blue) and whole cells (Black). 
Samples were collected at A, 4.2 K and 0.05 T; B, 4.2 K and 6 T. Applied fields were 
perpendicular to the γ-radiation. The isolated vacuole spectra are presented in Figure 2 
of (287).  
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field features probably arise from cytochrome c oxidase while the high-field features 

arise from other respiration-related proteins. 

Determination of the Void Volume in Cell Pellet 

  To obtain concentrations of metals or protein in whole cells it was 

necessary to determine the void volume of the samples due to interstitial buffer. This 

value has been previously obtained for mitochondria (221, 226). In these studies, the 

contribution of interstitial buffer was determined by incubating isolated mitochondria 

with radiolabeled sucrose. In lieu of using radioactive materials we have altered the 

methods to include the use of a fluorescent molecule kindly provided by Dr. Kevin 

Burgess (Department of Chemistry, Texas A&M University) and monitored 

fluorescence with a fluorimeter kindly provided by Dr. Ryland Young (Department of 

Biochemistry and Biophysics, Texas A&M University). The methods have been 

described above in Chapter 2.  

 Table 5.1 shows data collected for the determination of the void volume of 

pellets of whole cells. We found that a pellet of yeast cells contained on average 70% 

cells and 30% buffer. For samples of whole cells analyzed by biophysical methods, 

extensive rinsing was performed to get rid of adventitious ions on the outside of the 

cells. Based on this and ICP-MS data, the buffer contained within the cell pellet is a 

minor contribution of the total metal or protein concentration in the sample. For this 

reason the numbers obtained were essentially used as a dilution factor to find the actual 

metal or protein concentrations inside the cell. 
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Table 5.1. Fluorescent data for determination of void volume in cell pellet. Experimental 
details are available in chapter 2. Briefly, a suspension of cells was packed into an EPR 
tube and the supernatant removed. The cells were resuspended in a known volume of a 
solution of know concentration of the fluorescent compound. The supernatant was 
retained and the concentration of the compound ([stock]) determined the pellet was 
resuspended in buffer without the compound 3 times with the supernatant of each rinse 
retained and the concentration of the compound determined ([super1-3]). The Value 
Vbuffer was based on the dilution of the compound between rinses.   *denotes [ ] after 
original stock (63.8 μM for 0 μM experiments, 93 μM for 1 mM experiments)was 
diluted with cell pellet. 

 

 

 

  

Sample 0μM-1 0μM-2 0μM-3 0μM-4 1mM-1 1mM-2 1mM-3 1mM-4 
[stock] 
(μM) 

58.7 55.7 51.5 46.1 81.4 83.3 79.9 77.4 

[super1] 
(μM) 

16.7 20.4 21.2 18.9 25.4 25.5 26.3 27.0 

Vbuffer1 
(μL) 

57 73 82 82 62 61 66 70 

[super2] 
(μM) 

4.7 7.6 8.2 7.7 7.1 6.8 8.0 8.7 

Vbuffer2 
(μL) 

56 74 78 82 56 54 61 64 

[super3] 
(μM) 

1.5 2.5 3.9 4.0 2.3 2.2 2.6 4.2 

Vbuffer3 
(μL) 

64 65 89 102 64 66 65 96 

Vbuffer ave 

(μL) 
69 71 83 89 61 60 64 77 

Vpellet 

(μL) 
195 239 307 286 201 190 228 240 

% of buffer 
in pellet 

30.3 29.6 27.2 31.0 30.2 31.7 28.0 32.0 
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Mössbauer Spectroscopy of Aft1-1up Cells and Mitochondria 

A detailed analysis of the Aft1-1up strain is presented elsewhere (288). In 

summary the strain exhibited features similar to WT cells; however considerably more 

iron is imported into these cells. Mössbauer spectra of cells grown on medium 

containing low (~1 μM) iron were very similar to WT cells grown on iron sufficient 

media. Mössbauer spectra of cells grown on medium containing 5 μM iron exhibited a 

more intense mononuclear HS Fe3+ feature and the Fe3+ nanoparticles accumulated. 

These cells also exhibited an increased absorbance indicating a higher concentration of 

57Fe in the sample relative to the sample obtained from medium supplemented with 1μM 

57Fe. Mössbauer spectra of cells grown on medium supplemented 40μM and 500μM 57Fe 

produced spectra similar to one another both in terms of absorbance and spectral 

features. Both spectra exhibited a dominant mononuclear ferric feature and a 

substantially higher amount of Fe3+ nanoparticles. ICP-MS confirmed the increase in 

iron in the samples as the [Fe]media was increased. The measured concentrations of Fe in 

the cell were 680μM, 2.3mM, 2.8mM, and 3.4mM for 1, 5, 40, and 500μM respectively. 

Mitochondria were isolated from the Aft1-1up strain grown with 1μM and 40μM 

iron in the medium. The iron in the mitochondria isolated from cells grown with 40μM 

iron in the medium was dominated by Fe3+
 nanoparticles. The spectral absorbance was 

high indicating a high concentration of 57Fe in the sample. Comparing mitochondria 

isolated from Aft1-1up cells with 1µM and 40µM iron in the media, the mitochondria 

from cells grown on lower concentration displayed a reduced absorbance indicating less 

iron accumulation. Features of the Mössbauer spectrum of Aft1-1up mitochondria with 
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1μM iron in the medium were also different than the spectrum obtained from 

mitochondria isolated from higher iron concentration. The spectrum had a dominant 

feature similar to that exhibited by Fe3+ nanoparticles but another feature was present 

detracting from the resolution of the two peaks of the doublet of the nanoparticles 

spectrum. The second feature was unassigned but may be related to the nanoparticle 

feature with different spectral parameters. ICP-MS confirmed the difference in [Fe] in 

the samples, values of 1.4mM and 8.1mM were obtained for mitochondria isolated from 

cells grown on media supplemented with 1μM and 40μM iron respectively.  

Comparison of Aft1-1up to Gal-Yah1 Strain 

In this study the iron distribution in the Aft1-1up strain was also compared to the 

iron distribution of in cells which had YAH1 on a inducible promoter, the strain Gal-

Yah1. This strain will express the protein Yah1p when galactose is used as a carbon 

source but not when glucose is used (97). Dr. Miao demonstrated that mitochondria 

isolated from this strain grown on glucose contained high levels of Fe3+ nanoparticles 

(107).  Examination of the whole cells at these conditions showed that nearly all of the 

iron in the cell is in this same form. These cells are essentially devoid of HS Fe3+ 

(vacuolar iron).  

Although ICP-MS analysis of the whole cell sample of this strain was not 

reported but analysis of the Mössbauer data of cells which grew for extended periods of 

time (~30h) would suggest an [Fe] in the whole cell of ~5-8 mM. In these studies we 

concluded that the Yah1-depleted strain is depositing essentially all of its iron in the 

mitochondria as nanoparticles and that very little iron is in the vacuole. In cells which 
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grow for extended periods of time, further studies will be required to confirm this. If 

cells under these conditions contain 5-8 mM of iron and all of it is in mitochondria 

which represent ~3% of the cellular volume in WT cells under fermenting conditions 

(232), we would conclude that the concentration of iron in the mitochondria would be in 

excess of 100mM. In light of the recent experiments on the biophysical analysis of 

isolated vacuoles (290), it also seems plausible that some portion of the iron in the whole 

yah1-depleted cell is in the vacuoles as nanoparticles. It is also plausible that the yah1-

depleted cell contains more mitochondria by volume than a WT cell. 

Conclusions 

Iron Distribution of Whole Cells 

 In a whole fermenting yeast cell grown with 40 μM iron in the medium, ~75% of 

the iron is in a mononuclear HS Fe3+ form. The remaining ~25% of the iron is similar to 

those species identified in fermenting mitochondria in chapter 3. Spectroscopically, 

isolated vacuoles are very similar to the non-mitochondrial features observed in the 

whole cell sample. Further investigation is necessary to establish the effects of metabolic 

mode (fermenting vs. respiring) and [Fe]media on the distribution of iron in the cell. This 

will be the focus of chapter 6. A model of iron in the fermenting yeast vacuole is 

presented (Figure 5.5)  

The Import of Iron Through Aft1 Pathways Is Not Limited by [Fe]media 

 Aft1-1up cells grown with high media iron contained marginally more 

iron than when grown on intermediate iron levels. The fractional increase was modest 

relative to the increase in cellular iron when [Fe]medium was increased from low to 
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intermediate levels. This suggests that the Aft1-dependent rate of iron import into the 

cell saturates at high [Fe]medium. Aft1-1up cells grown on medium supplemented with 40 

µM iron contain 2.8 mM of iron, the same strain grown on medium supplemented with 

500 µM iron contain 3.4 mM of iron. 

Gal-Yah1 Cells Accumulate More Iron than Aft1-1up Cells 

 Gal-Yah1 cells grown for extended periods of time (~30h) on medium containing 

40 µM of iron and glucose contain ~3 times more iron (2.8mM vs. ~7mM) than cells in 

which the iron regulon is constitutively activated. This observation could result from the 

several situations. Iron imported into the Gal-Yah1 strain may accumulate as 

nanoparticles. The cell might not be able to “recognize” iron in this form and this may 

lead to an increased import rate in this strain. Yah1-depleted cells activate the genes of 

the iron regulon (291). This alone would not account for an increase in iron vs. the Aft1-

1up strain. Both the Gal-Yah1 and Aft1-1up strains probably are not regulated to stop the 

import of iron through Aft1 mediated pathways. This would imply that both strains 

import the same amount of iron.  

 This difference in iron concentration may be related to the growth rate of these 

strains. The Aft1-1up strain grows at a faster rate than the Gal-Yah1 strain. This cell 

growth might simply be diluting the iron in the Aft1-1up strain. This could be established 

by further investigation. Alternatively, the Gal-Yah1 strain may be importing iron 

through a different transporter than the Fet3p/Ftr1p system being expressed by the 

upregulation of the iron regulon. This system would also have to be independent of those  
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Figure 5.5 Model of iron distribution in the vacuoles of fermenting yeast cells. An 
unknown ferrous species enters the vacuole via Ccc1p. Associated with this import is the 
exchange of ligands and oxidation to HS Fe3+. Polyphosphate is suggested as a possible 
coordinated ligand, but further studies are required to establish this. Upon export, the HS 
Fe3+ species is reduced to Fe2+ and ligands are again exchanged. At pH > ca. 5, some or 
all of the species precipitates in the form or Fe3+ (phosphate-based) oxyhydroxo 
nanoparticles perhaps associated with polyphosphate. 
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processes regulated by Aft1p. A model of the Aft1-1up and Gal-Yah1 strains is presented 

(Figure 5.6). 

Iron Imported by the Fet3p/Ftr1p System Can Accumulate as Nanoparticles 

 The Fet3p/Ftr1p pathway of iron acquisition has the highest affinity for iron of 

the known iron acquisition pathways implying that this should be the primary means of 

iron import for conditions where it is expressed (19).  Results of a RT-PCR experiment 

of the Aft1-1up strain indicate that the mRNA for the complex is being synthesized (288). 

Mössbauer spectra of this strain exhibit Fe3+ nanoparticles both in whole cells isolated 

mitochondria. This implies that iron imported by the Fet3p/Ftr1p pathway is being 

transformed into Fe3+ nanoparticles. 

Are There Non-Aft1p Regulated Systems of Iron Import? 

These studies have established that cells constitutively activating the iron regulon 

accumulate massive amounts of iron. In WT fermenting cells with a functional Aft1 we 

see that considerably less iron is imported. This raises the question of whether all the 

iron that is imported in WT cells is imported in an Aft1p dependent fashion. In chapter 6 

we address whether this is the case. We also investigate the changes to iron distribution 

in WT fermenting cells and mitochondria as the [Fe]medium is altered from iron-starved to 

excessive iron conditions. Of particular interest going into to these studies was whether 

or not vacuoles from iron-starved fermenting cells would contain iron. If they did not, 

we aimed to address what [Fe]media  was needed to fill the vacuoles with iron and whether 

or not this process was Aft1p dependent. Based on the observation that vacuoles and 

mitochondria from fermenting cells both accumulate Fe3+ nanoparticles we also were 
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curious if these species accumulated at a particular [Fe]medium and in an Aft1p dependent 

or independent fashion. Finally, we describe for the first time the iron-ome of respiring 

cells, demonstrate the dependence of [Fe]medium on this distribution, and address the role 

of Aft1p under these conditions. 
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Figure 5.6 Model of iron in fermenting Aft1-1up and Gal-Yah1cells.  In Aft1-1up cells, 
Aft1 is constitutively activating the iron regulon regardless of the concentration of 
Femedium. When grown in low [Fe]medium, more iron is imported relative to WT cells. The 
majority is sent to vacuoles while much of the remainder is sent to mitochondria for 
heme and ISC biosynthesis. When Aft1-1up cells are grown in high [Fe]medium, the rate of 
import is increased, but the imported iron is distributed similarly. The flow into 
mitochondria is favored because nanoparticle formation depresses the concentration of 
the precursor iron species in the matrix that is both sensed for regulation and converted 
into nanoparticles. Mitochondria “feel” iron-deficient, accelerating iron import. In 
Yah1p-depleted cells grown at either low or high media iron, nearly all imported iron is 
delivered to mitochondria. This massive influx of iron into the mitochondria depresses 
the concentration of cytosolic iron that is sensed by the Aft1 regulatory system and by 
the vacuolar iron regulatory system (Fecyt). Due to this regulatory structure, these cells 
“feel” iron deficient, leading to an increased import of Femedium and the efflux of iron 
from the vacuole, as the regulatory system attempts to increase Fecyt. 
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CHAPTER VI 

THE IRON-OME OF SACCHAROMYCES CEREVISIAE GROWN UNDER IRON-

STARVED AND EXCESSIVE IRON CONDITIONS  

 

Introduction 

Yeast cells have an impressive capacity to grow in environments containing a 

wide range of iron concentrations. In the laboratory, low-iron conditions are typically 

obtained by adding bathophenanthroline sulfonate (BPS) (Figure 6.1) to the growth 

medium. BPS is a strong chelator of Fe2+ ions, and the resulting [Fe2+(BPS)3]4- complex 

is inaccessible for cell growth (292). In these “iron-starved” conditions, cells initially 

grow slowly and eventually stop growing (292). Cells inoculated into BPS-treated 

medium up-regulate the ca. 20 genes of the iron regulon (293-295). These genes, which 

include fet3, are under control of the transcription factors Aft1p/Aft2 (33). Addition of 

small amounts of iron to an iron starved culture recovers cell growth (292). Through 

such experiments the apparent saturation of the high affinity pathway of iron import, 

Fet3p/Ftr1p, was determined to be ~ 0.15 µM iron (292, 296). Similarly, the apparent 

saturation of the low affinity pathway was determined in a ΔFet3p background to be ~ 

28 µM (25). In the same genetic background, Fet4p was identified as the low affinity 

pathway of iron import (25). 

Yeast have evolved strategies to acquire iron under conditions where it is sparse 

but they also have mechanisms to deal with excessive concentrations of iron without 

showing signs of toxicity (292, 297). WT cells show signs of toxicity when grown in > 5  
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Figure 6.1 Structure of Bathophenanthroline Sulfonate. 
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mM for Fe2+ salts and 20 mM for Fe3+ salts (297). Little is known regarding the iron 

content of the cell under these Fe-extreme conditions. 

Cobine et.al. (224) reports an almost 10-fold increase in cellular iron when yeast 

is grown under low-iron medium and medium supplemented with 100µM iron. They 

also observed a ~5 fold increase in mitochondrial iron. These changes are normalized to 

the number of cells in the whole cell samples and to mg protein in the mitochondrial 

samples. The latter presents a complication in that it assumes a constant [protein] in the 

mitochondrial samples for the different amounts of iron added.  

Encouraged by the results of Cobine et al., we applied the Mössbauer-based 

biophysical approach method developed throughout this dissertation to probe the Fe 

content of such cells. These studies employed two culture conditions, one with 7-10 µM 

of total iron in the medium which corresponds to the endogenous concentration of Fe in 

minimal medium. In the other condition, there was ~ 110 µM of iron in the medium. We 

also examined the extremes of iron concentration, including BPS-treated, iron-starved 

conditions and concentrations as high as 10 mM iron in the growth medium.  

Results and Discussion 

Iron-Starved Fermenting Cells 

Cells were grown under iron-starved conditions with glucose as the carbon 

source. Iron-starved means that 21 M of the chelator BPS was added to the growth 

medium, followed by addition of 1 M 57Fe. Harvested cells were washed to remove 

[Fe2+(BPS)3]
4- from solution, and then packed into Mössbauer cups for analysis. The 5 K 

0.05 T Mossbauer spectrum of this material (Figure 6.2A) exhibited poor S/N due to the 
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low concentration of 57Fe in the sample, undoubtedly the result of using such a low 

concentration of 57Fe in the growth medium. An unresolved resonance in the center of 

the spectrum dominated. Authentic [Fe2+(BPS)3]
4- exhibited a similar feature (Figure 

6.2B), suggesting that the sample of packed Fe-starved cells contained [Fe2+(BPS)3]
4- 

despite having washed the cells prior to packing into the Mössbauer sample holder. We 

subtracted the [Fe2+(BPS)3]
4- spectrum from that of the Fe-starved fermenting cells at the 

level of 35% intensity; the resulting difference spectrum is given in Figure 6.3A.  

We also considered that the feature could be due to Fe3+ oxyhydroxide 

nanoparticles (an authentic spectrum of which is shown in Figure 6.2C). However, only 

ca. 5% of spectral intensity of Fe-starved fermenting yeast could be removed by spectral 

subtraction, arguing against this interpretation.  

This analysis indicated that about 35% of the Fe in the Fe-starved fermenting 

cells was due to [Fe2+(BPS)3]
4- (~ 100 M) and so only 65% of the concentration listed 

in Table 6.1 for Fe-starved fermenting cells is probably Fe within those cells. The 

concentration of [Fe(BPS]3]
4- in the harvested sample was substantially higher than the 

concentration of BPS added to the medium, indicating that [Fe2+(BPS)3]
4- either adhered 

to the exterior of the cell, or it incorporated into it. Given the charge on the complex 

which should discourage membrane permeability, we favor the former possibility.   
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Figure 6.2. Mössbauer spectra (5 K, 0.05 T) showing the contribution of BPS in iron-
starved fermenting cells. A, Iron-starved fermenting cells; B, [Fe2+(BPS)3]

4-; C, Fe3+ 

nanoparticles from Aft1-1UP mitochondria published in (290); D, Fe-starved fermenting 
cells with [Fe2+(BPS)3]

4- overlaid at 35% intensity; E, Fe-starved fermenting cells with 
Fe3+ nanoparticles overlaid at 10% intensity. Simulations were performed using WMOSS 
software (SEE Co, Edina MN).  
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Figure 6.3. Mössbauer spectra (5K, 0.05T parallel field) of fermenting yeast cells at 
various [Fe]medium. Minimal medium was treated with: A, 21 uM BPS plus 1μM 57Fe; B, 
1 μM 57Fe; C, 10 μM 57Fe; D, 100 μM 57Fe; E, 1 mM 57Fe; and F, 10 mM 57Fe. Spectrum 
A is the result of removing the contribution of [Fe2+(BPS)3]

4- from the raw spectrum, as 
shown in Figure 6.2A. Spectrum B has been previously published in (288).  
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Table 6.1. Analytical properties of isolated mitochondria and whole cells. Metal 
numbers, percentages used for Mössbauer spectral simulation, spin intensities of EPR 
signals, and concentrations of heme centers from UV-vis spectra. Percentages are based 
on corrected Mössbauer spectra where applicable. For fermenting mitochondria obtained 
from cells grown with 100 µM Fe in the medium, the two numbers represent percentage 
for each of the two batches, including the as-isolated batch and the batch treated with 
dithionite. EPR and ICP-MS data have been corrected for packing efficiency (226, 288). 

[Fe] added to medium 1 μM + BPS 1 μM 10 μM 100 μM 1mM 10mM 
Fermenting Whole Cells 

[Fe] (μM) 240 250 395 470 440 ND 
[Cu] (μM) 280 ND 26 20 35 ND 
[Mn] (μM) 17 ND 14 17 39 ND 
[Zn] (μM) 560 ND 600 570 1300 ND 

HS Fe3+ (%) ND 40 76 80 75 84 
CD (%) 58 22 18 10 5 3 

HS Fe2+ (%) 42 26 7 5 6 5 
Nanoparticles (%) ND 12 ND 4 18 10 
[Fe2+(BPS)3]

4- (%) 38 N/A N/A N/A N/A N/A 
g = 4.3 (μM) 14 --- 130 360 320 290 

g = 2.0 region (μM) 14 --- 16 15 28 27 
Fermenting Mitochondria 

[Fe] (μM) 400 --- 440 660 --- --- 
[Cu] (μM) 80 --- 41 52 --- --- 
[Mn] (μM) 13 --- 9 11 --- --- 
[Zn] (μM) 570 --- 330 350 --- --- 

HS Fe3+ (%) ND --- ND 51,0 --- --- 
CD (%) 59 --- 11 12, 34 --- --- 

HS Fe2+ (%) 7 --- 28 18, 36 --- --- 
HS Fe2+ Heme (%) 9 --- ND ND --- --- 
nanoparticles (%) ND --- 57 27 --- --- 
S = 0 [Fe2S2]

2+ (%) 12 --- ND ND --- --- 
S = ½ [Fe2S2]

1+ (%) 12 --- ND ND --- --- 
[g = 4.3] (μM)  --- 20 20 28 --- 

[g = 2.0 region] (μM)  --- low low low --- 
[Heme a] (μM) 30 --- 24 27 5 --- 
[Heme b] (μM) 72 --- 64 78 21 --- 
[Heme c] (μM) 120 --- 110 130 40 --- 

Respirofermenting Whole Cells 
[Fe] (μM) 200 --- 350 600 350 --- 
[Cu] (μM) 98 --- 150 280 1200 --- 
[Mn] (μM) 19 --- 22 24 40 --- 
[Zn] (μM) 200 --- 250 330 930 --- 

HS Fe3+ (%) ND --- 50 52 37 --- 
CD (%) 43 --- 12 12 25 --- 

HS Fe2+ (%) 39 --- 34 29 34 --- 
HS Heme (%) 18 --- 4 7 4 --- 

[Fe2+(BPS)3]
4- (%) 12 --- 11 10 5 --- 

g = 4.3 (μM) low --- low low Low --- 
g = 2.0 region (μM) 26 --- 21 22 48 --- 
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The Fe concentration in Fe-starved fermenting cells was ~ 160 µM. This value 

was obtained by subtracting the contribution of [Fe2+(BPS)3]
4- (100 µM) from the total 

Fe concentration as measured in packed cells (Table 6.1). Our cell pellets contained 70% 

cells and 30% buffer (288). Reported concentrations have been corrected for this 

packing efficiency. 

The Fe-starved whole-cell difference spectrum (Figure 6.3A) was dominated by a 

quadruple doublet ( = 0.45 mm/s, EQ = 1.15 mm/s) previously identified as the 

Central Doublet (CD), arising from S = 0 [Fe4S4]
2+ clusters and LS Fe2+ heme centers 

(221). Another prominent feature was a quadrupole doublet with parameters typical of 

nonheme high-spin (NHHS) Fe2+ ( = 1.2 mm/s and EQ = 3.1 mm/s. Percentages of 

these components are given in Table 6.1. We estimate that the concentrations of CD and 

NHHS Fe2+ species in Fe-starved fermenting yeast cells are ca. 70 µM and 40 µM, 

respectively. No other features, including those from Fe3+ oxyhydroxide (phosphate) 

nanoparticles and mononuclear HS Fe3+ species, were observed, though minor 

contributions could have escaped detection due to the poor S/N ratio.  

EPR spectra of Fe-starved cells (Figure 6.4A) exhibited low-intensity signals in 

the g = 2 region from Mn2+ ions, as evidenced by the hyperfine splitting due to the I = 

5/2 Mn nucleus. Also evident in the whole-cell EPR spectra were features at g ≈ 2.01 

and at g ≈ 4.3. The latter is due to mononuclear HS Fe3+ ions with rhombic symmetry, 

while the former as not been assigned.  
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Figure 6.4. EPR spectra (10K) of fermenting whole cells at various [Fe]medium. Minimal 
medium was supplemented with: A, 1μM 57Fe and 21μM BPS; B, 10 μM 57Fe; C, 100 
μM 57Fe; D, 1mM 57Fe; and E, 10mM 57Fe.  
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No signals from Cu ions were observed, despite the presence of ~ 280 µM Cu in an 

equivalent sample. This suggests that most Cu ions in these cells are in the diamagnetic 

Cu(I) state. 

Mitochondria from Iron-Starved Fermenting Cells 

The 5 K 0.05 T Mössbauer spectrum of mitochondria isolated from iron-starved 

fermenting cells (Figure 6.5B) was dominated by the CD. Also present was a feature 

exhibiting magnetic hyperfine interactions that probably arises from S = ½ [Fe2S2]
1+ 

clusters such as the Rieske cluster associated with cytochrome bc1 (259). High energy 

lines of doublets arising from HS heme and nonheme Fe2+ species were present in the 

spectrum, albeit at low intensities. These mitochondria appear generally devoid of Fe3+ 

phosphate nanoparticles, as the doublet due to this species overlaps the CD, which is 

rather “clean” in this spectrum. Substantial concentrations of nanoparticles are evident in 

Fe-replete mitochondria (261). Interestingly, the resolution between the lines of the CD 

was sufficient to discern a resonance near ~ 0.6 mm/s, which we assign to the high-

energy line of a quadrupole doublet arising from S = 0 [Fe2S2]
2+ clusters (Blue line on 

Figure 6.5B). Such clusters in the oxidized diamagnetic oxidation state have not been 

observed previously in Mössbauer spectra of isolated fermenting mitochondria, but 

previous spectra have always included a contribution from nanoparticles (233, 261) 

which probably obscured absorption from S = 0 [Fe2S2]
2+ clusters. The absence of 

intense NHHS Fe2+ and nanoparticle doublets renders this spectrum more reminiscent of 

mitochondria isolated from respirofermenting cells than those isolated from (Fe-replete)  
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Figure 6.5. Mössbauer spectra (5K, 0.05T) of isolated mitochondria under various 
conditions. A, from respirofermenting cells grown on medium containing 1 μM 57Fe and 
21 μM BPS; B, from fermenting cells grown with 1 μM 57Fe and 21 μM BPS; C, from 
fermenting cells, 10 μM 57Fe; D, from fermenting cells, 100 μM 57Fe; E, from 
fermenting cells, 100 μM 57Fe with 1 mM dithionite added in a 0.6M sorbitol, 0.1M 
Trisbuffer at pH 8.5. Red lines are simulations using parameters listed on Table 6.1, the 
blue line is a simulation of the S = 0 [Fe2S2]

2+ cluster.   
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fermenting cells. However, even in respiring mitochondria, no feature arising from S = 0 

[Fe2S2]
2+ clusters has been reported previously (233).  Percentages of the features used to 

fit this spectrum are given in Table 6.1. 

The 10 K X-band EPR spectrum (Figure 6.6B) of iron-starved mitochondria 

exhibited low-field signals at g = 6.5, 5.4, and 4.3. The first two signals probably arise 

from the a3:Cub site of cytochrome c oxidase (298), while the g = 4.3 signal arises from 

HS Fe3+ species with rhombic symmetry. The g = 2 region signals need to be 

decomposed, simulated and integrated. The RT UV-vis spectrum (Figure 6.7B) of iron-

starved mitochondria exhibited features due to Fe2+ heme centers. The concentration of 

heme a, b, c (Table 6.1) are similar to those reported for Fe-replete respiring 

mitochondria (233).  

Iron-Sufficient Fermenting Cells and Mitochondria 

 Previously we have described the Mössbauer spectrum of whole fermenting yeast 

cells grown on medium containing 40 µM 57Fe (261). In that study we assigned the iron 

in such cells as 25% mitochondrial iron (comprised of CD, HS hemes, NHHS Fe2+ and 

Fe3+ nanoparticles) and 75% “non-mitochondrial” mononuclear HS Fe3+. For this study 

we will term cells grown on medium containing <40 µM iron but more iron than the 

iron-starved condition described above as “low iron”.  

Using Mössbauer spectroscopy, we have examined fermenting cells grown on 

medium containing 1µM 57Fe but not treated with BPS (1µM-BPS) (Figure 6.3B). We 

have also examined cells grown with 10 µM 57Fe (Figure 6.3C). These spectra exhibited  
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Figure 6.6. EPR (10K) of isolated mitochondria. A, from respirofermenting cells grown 
on medium containing 1uM 57Fe and 21 μM BPS; B, same as A but fermenting cells; C, 
D and E,  from fermenting cells grown on medium containing 10, 100, and 1000 μM 
57Fe respectively.  
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Figure 6.7. UV-vis spectra of isolated mitochondria. A, from respirofermenting cells 
grown on medium containing 1 μM 57Fe and 21 μM BPS; B, same as A but from 
fermenting cells; C, D, and E. from fermenting cells grown on medium containing 10 
μM,100 μM, and 1mM 57Fe respectively.  
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features due to mononuclear HS Fe3+, CD, NHHS Fe2+, and Fe3+ nanoparticles. The 

percentages used to simulate these spectra are given in Table 6.1. The key differences in 

these spectra arise from the spectral contribution of the HS Fe3+ feature. In the 1µM-BPS 

cells, the percentage of this feature was nearly half that evident in the spectra of the 10 

µM cells. The HS Fe3+ feature arises from Fe within isolated vacuoles (290). We 

concludethat vacuolar iron is accumulating in cells grown with between 1 and 10 µM of 

iron added to the growth medium. ICP-MS analysis indicates that a maximum of ~100 

µM of the iron in the 1 µM-BPS cells and ~300 µM Fe in the 10 µM cells are associated 

with vacuoles.  

EPR spectra of the 10 µM cells (Figure 6.4B) was similar to the iron-starved 

cells (Figure 6.4A) but with a more pronounced g ≈ 4.3 signal, consistent with an 

increased concentration of mononuclear HS Fe3+. Based on ICP-MS concentrations and 

Mössbauer percentages, the concentrations of NHHS Fe2+ ions in 1µM-BPS and 10µM 

cells are ~65 µM and ~ 30 µM respectively.  

 The Mössbauer spectrum of mitochondria isolated from fermenting cells grown 

on medium supplemented with 10µM 57Fe (Figure 6.5C) were nearly indistinguishable 

from the previously described mitochondria isolated from fermenting cells grown on 

medium supplemented with 40µM 57Fe (261). The values used to simulate the spectrum 

are listed in Table 6.1. Relative to the iron-starved mitochondria described above, these 

mitochondria exhibited considerably more HS Fe2+ and Fe3+ nanoparticles. The 

Mössbauer spectrum of this sample was similar to that of mitochondria isolated from 
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cells grown on 40 µM Fe, yet ICP-MS analysis indicates the concentration of iron is less 

by a factor of ~2. Further investigation will be necessary to explain this discrepancy.  

The EPR spectrum (Figure 6.6C) of mitochondria isolated from cells grown on 

medium supplemented with 10 µM iron were also similar to the previously reported 

spectra of mitochondria isolated from cells grown with 40µM iron (233). The UV-vis 

spectrum (Figure 6.7C) of these mitochondria exhibited Fe2+ heme concentrations 

similar to those seen in the iron-starved sample as indicated on Table 6.1.  

Iron-Overloaded Cells and Mitochondria 

 We will call cells grown on medium supplemented with > 40µM iron iron-

overloaded cells. Using Mössbauer spectroscopy, we examined fermenting cells 

supplemented with 100 µM, 1 mM, and 10 mM Fe (Figure 6.3D-F). The spectra 

exhibited similar contributions from HS Fe3+, CD, HS Fe2+, and Fe3+ nanoparticles and 

had similar overall Fe concentrations (see Table 6.1). These results demonstrate that 

yeast cells are tightly regulated such that the 3 orders of magnitude difference in iron in 

the growth media have only modest effects on the concentration and distribution of iron 

in the cell. The 100 µM sample contained a slightly lower concentration of Fe3+ 

nanoparticles relative to the other two samples; the 1mM sample exhibited the highest 

concentration of Fe3+ nanoparticles. The 10 mM sample exhibited the largest 

contribution of HS Fe3+ while the 1 mM sample exhibiting the lowest.  Given the 

similarity of these samples we believe that the cellular import of iron (when it is not 

limiting) is tightly regulated.  
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 The samples grown on 100 µM and 1mM medium Fe respectively contained 

~375 and 330 µM vacuolar HS Fe3+ species. The total concentration of Fe in these 

samples was also similar to that in the 10 uM sample but ~ 1.7 times (~250 vs ~450µM) 

higher than the 1µM-BPS sample. These two conditions, the 1µM-BPS and the 100µM 

samples, best match the growth conditions of Cobine et al. (224). In contrast to the 10-

fold change in iron concentration that they reported, we detected a 1.7-fold change.  

EPR spectra of cells grown under these same conditions (Figure 6.4C-E) 

exhibited features similar to the iron-sufficient and iron-starved conditions. The biggest 

difference arises from the substantially more intense g ≈ 4.3 signals. The spin 

integrations of these signals are listed in Table 6.1. The calculated spin intensities for 

these samples are ~70% of the iron concentration which is inconsistent with the 

percentage of the iron in this form as identified by Mössbauer spectroscopy. The source 

of this apparent discrepancy is under investigation. 

All three spectra also include a signal which likely arises from S = 5/2 Mn2+ 

species (spin integrations given in Table 6.1). Based on ICP-MS values and Mössbauer 

percentages, the concentration of NHHS Fe2+ in the 100 µM and 1mM cells are ~25 µM 

and 26 µM respectively. 

We have isolated mitochondria from cells grown under the same high-iron 

growth conditions, and have examined two batches of mitochondria isolated from cells 

grown on medium supplemented with 100µM 57Fe by Mössbauer spectroscopy. (We 

have not prepared mitochondria from cells grown with higher 57Fe concentrations in the 

medium due to financial constraints.) The spectra (Figure 6.5C,D) were similar to those 
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obtained using 40 µM 57Fe in the growth medium, but the amount of HS Fe3+ present in 

the two samples was quite different.  We suspected that some or all of the HS Fe3+ in the 

first batch (Figure 6.5C) was an artifact of purification, but it was not chelated 

effectively by EGTA which is routinely added to all isolation buffers. To assess this, 

dithionite was included during purification of the second batch of mitochondria, such 

that any resulting reduced HS Fe2+ would become chelated by EGTA. The lack of HS 

Fe3+ features in the corresponding spectrum (Figure 6.5D) suggests that some (most) of 

the HS Fe3+ observed in the first batch was an artifact. We conclude that the iron content 

within mitochondria from 100 µM Fe-grown cells is nearly the same as those within 

mitochondria from 10 µM and 40 µM Fe-grown cells.  

 EPR (Figure 6.6D,E) and UV-vis spectra (Figure 6.7D,E) of mitochondria 

isolated from cells grown on medium supplemented with 100µM and 1mM iron have 

also been collected. The EPR spectra of each of these are similar to each other, the low 

iron EPR spectrum (Figure 6.6C) described above and the 40µM sample previously 

described (233).  The UV-vis spectrum of the 100µM sample was also similar to the 

10µM sample. The 1mM UV-vis sample (Figure 6.7E) however showed diminished 

spectral intensities relative to the other samples examined. The concentrations of these 

heme centers are given in Table 6.1. This may imply that under high iron the heme 

concentrations decline; this study should be repeated to see if the same result is obtained. 

In addition we should also investigate the heme centers in a 10 mM Fe-grown sample to 

see if these hemes centers are also lower in concentration.  
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Iron-Starved Respirofermenting Cells and Mitochondria 

Cells were grown under iron-starved conditions with galactose as the carbon 

source. In previous work we have demonstrated that the respirofermenting metabolism 

in such cells is nearly indistinguishable from a truly respiring condition obtained by 

growing cells on glycerol. As with the fermenting cells, Mössbauer spectra exhibited 

poor S/N. The raw spectrum (Figure 6.8A) can be fit with a 12% contribution of 

Fe(BPS)3. This contribution was subtracted and the difference spectrum (Figure 6.9A) 

will be used for subsequent analysis. The difference spectrum was similar to that 

obtained for the iron-starved fermenting cells including contributions from NHHS Fe2+ 

and CD except that an additional feature arising from HS Fe2+ hemes was present. 

Percentages used to simulate these features are given in Table 6.1.  

The total Fe concentration of Fe-starved respirofermenting cells was ~ 180 µM, 

obtained by removing the BPS contribution. From the percentage of intensity of the 

NHHS Fe2+ doublet, we estimate that the concentration of NHHS Fe2+ species in these 

cells was ~ 31µM. EPR spectra of cells prepared in this manner (Figure 6.10A) exhibited 

signals from Mn2+ ions and a feature with g ≈ 2.01.  Based on spectral similarity, it 

appears the Mn2+ feauture for both the fermenting and respirofermenting samples is 

closely related. Minor features are also present in the baseline at low field corresponding 

to g = 6.5, 5.4, and 4.3.  

Mitochondria were also isolated from iron-starved respirofermenting cells. The 5 

K low-field Mossbauer spectrum (Figure 6.6A) was similar to the fermenting 

mitochondria isolated at the same conditions. The spectrum exhibited poor S/N  
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Figure 6.8. Uncorrected Mössbauer spectra of respirofermenting whole cells. Samples 
were grown on medium supplemented with BPS. A-D respirofermenting cells grown on 
medium supplemented with 21µM BPS and 1µM, 10µM, 100µM, or 1mM 57Fe 
respectively. The corrected spectra of A-D are plotted as Figure 6.9A-D.  
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Figure 6.9. Corrected Mössbauer spectra (5K, 0.05T parallel field) of respirofermenting 
cells. A-D cells grown on media contain 21μM BPS and 1 μM , 10 μM , 100 μM , and 
1mM 57Fe respectively. Each spectrum has a contribution of Fe(BPS)3 subtracted as 
indicated by table 6.1, the uncorrected spectra are available (Figure 6.8.) 
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Figure 6.10. EPR spectra (10K) of respirofermenting whole cells. Samples were 
prepared  with A. 1μM 57Fe and 21μM BPS, B. 10 μM 57Fe, C. 100 μM 57Fe, and 
D.1mM 57Fe, added to the growth medium. After simulating and removing the G=2.00 
radical signal the spin intensities of the g =2 region for the Mn were 26 μM, 21 μM, 22 
μM, and 48 μM for A-D respectively. 
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compared to the equivalent sample of fermenting mitochondria. Elemental analysis of 

these two samples for the enrichment of 57Fe should be obtained to determine if more 

57Fe was present in the fermenting sample. Either as a result of the poor S/N or because 

of its absence the S = ½ [Fe2S2]
1+ feature was not observable in this sample. The sample 

was dominated by the CD (63%) also present were features arising from NHHS Fe2+ 

(14%), and heme HS Fe2+ (7%). As with the equivalent fermenting sample the spectrum 

contained very low levels of Fe3+ phosphate nanoparticles and mononuclear HS Fe3+.  

 The metal content of iron-starved respirofermenting mitochondria was 

determined by ICP-MS, the concentrations of Fe, Cu, Mn, and Zn were 300, 270, 12, 

and 250µM respectively. The 10K X-band EPR spectrum (Figure 6.6A) of iron-starved 

respirofermenting mitochondria exhibited minor low-field signals at g = 6.5, 5.4, and 

4.3. The high-field region exhibited a dominant radical at g= 2.01 as well as signals 

arising from respiratory complexes. Further deconvolution of these signals is necessary. 

The UV-vis spectrum (Figure 6.7A) of iron-starved respirofermenting mitochondria 

exhibited features due to Fe2+ heme centers. The concentration of heme a, b, c  were 30, 

70, and 120µM respectively.  

Respirofermenting Cells at 10µM, 100µM, and 1mM 

 Respirofermenting cells were grown on medium treated with BPS and 

supplemented with 10µM, 100µM, and 1mM iron. Subsequently a contribution of this 

species as indicated in Table 6.1 was subtracted from the raw Mössbauer spectra (Figure 

6.8C-E) to afford the difference spectra (Figure 6.9B-D). The Mössbauer spectra of each 

sample were similar; percentages of species used to simulate them are given on Table 
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6.1. Each of these spectra exhibited 40-50% of the intensity in the baseline similar to the 

HS Fe3+ vacuolar feature observed in Mössbauer spectra of fermenting cells grown with 

the same iron content. Under fermenting conditions this feature accounted for a larger 

percentage of the total iron in the cell. Heme HS Fe2+ and CD components were also 

present in each of these samples. A fourth feature, present in higher abundance than the 

equivalent fermenting samples was due to NHHS Fe2+.  

 Using the iron numbers obtained from ICP-MS (Table 6.1) for these conditions 

and the percentages obtained from the Mössbauer spectra, the maximum amount of 

vacuolar iron was 155µM, 280µM, and 125µM for the samples supplemented with 

10µM, 100µM, and 1mM iron respectively. The concentration of iron in the 100µM 

sample seems high relative to our expectations, and another replicate should be 

examined.  

Following Mössbauer analysis, the cells were anaerobically thawed and 

transferred to EPR tubes. The spectra (Figure 6.10B-D) were similar to one another and 

to the iron-starved cells. All spectra exhibited features corresponding to Mn2+ and only 

minor features in the low field area. Unlike the HS Fe3+ feature observed in fermenting 

cells, the feature observed in the baseline of Mössbauer spectra of respirofermenting 

cells did not produce a g= 4.3 signal. This implies that the HS Fe3+ feature may not be 

vacuolar in origin. If the feature is however vacuolar it implies that the conditions inside 

the vacuole have changed such that different magnetic properties of the iron contained 

therein are observed. Alternatively it may be a different complex. To demonstrate if this 
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species is originating from the vacuole, the organelle should be isolated from respiring 

or respirofermenting cells. 

Using data obtained from the Mössbauer spectra and ICP-MS analysis, the 

concentrations of the NHHS Fe2+ feature were found to be 105µM, 155µM, and 110µM 

for the samples supplemented with 10µM, 100µM, and 1mM iron respectively. This 

represents ~5 fold higher concentrations of this species in respirofermenting cells as 

compared to the equivalently grown fermenting cells. 

Fet3-GFP Expression Levels in Fermenting and Respirofermenting Cells at Different 

[Fe]media 

 The DY150, FET3-GFP::KanMX strain has a green fluorescent protein (GFP) 

fusion with Fet3p (219). Using an antibody against GFP we have examined the 

expression of GFP (and therefore Fet3p) by western blot analysis under both fermenting 

and respirofermenting conditions with various concentrations of iron supplemented in 

the growth medium. Expression of GFP was only detected for iron-starved fermenting 

cells. In this sample (last lane on right of Figure 6.11) 3 bands were observed with the 

middle band displaying the highest density and the upper band displaying the lowest 

density. Analysis of each of these bands individually indicates the upper band which is 

still visible in the blot is ~7 times less dense than the most intense middle band. This 

implies that the amount of Fet3-GFP in this sample is at least 7 times higher than any of 

the other samples.  
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Conclusions 
 

 Iron import and distribution is tightly regulated in yeast. Under fermenting 

conditions we observe a downregulation of Fet3p, a product of the iron regulon at 

relatively low [Fe]medium. Cells cultured on medium containing >7-8µM iron show no 

Fet3p expression. Conversely, cells grown on <7-8µM iron in the growth medium show 

a reduced HS Fe3+ feature arising from vacuoles. This indicates that under physiological 

conditions a substantial portion of cellular iron is imported by Aft1p independent 

processes. Cells cultured on medium containing ~17 µM Fe have vacuolar iron 

concentrations similar to those seen in cells cultured on medium containing > 40 µM 

iron. Only slight changes are observed in samples cultured on high(excessive) 

concentrations of iron.  

 Respirofermenting cells do not appear to utilize the iron regulon in the range of 

our experiments, as no Fet3p expression was observed in any such samples. 

Interestingly, these cells appear to have less iron associated with the vacuoles, iron if 

present in the vacuoles of these cells appears to possess different magnetic properties 

than the fermenting equivalent.  Respirofermenting cells also contain a substantially 

larger NHHS Fe2+ component than fermenting cells. The feature is ~5 stronger in 

respirofermenting cells. One explanation for this is that the vacuoles have emptied their 

contents to the cytosol where iron will likely be in the reduced state. 

 The iron in mitochondria from iron-starved fermenting samples seems to be in a 

state more similar to respiring samples than fermenting samples. Mössbauer spectra of 

fermenting mitochondria exhibited spectral features primarily arising from hemes and 
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ISCs with very little Fe3+ nanoparticles, HS Fe3+, and NHHS Fe2+. This indicates that 

under iron-starved conditions the fermenting cellular response is to: a), not store iron in 

the vacuoles, b) insert a majority of the iron into ISCs and hemes; and c) limit forms of 

iron in the mitochondria which are not these centers. This reflects a situation where the 

cell is using iron sparingly for the most important processes, displaying an ability of the 

cell to redistribute available iron under conditions of iron deprivation. Iron-starved 

respirofermenting mitochondria were virtually indistinguishable from  iron replete 

repirofermenting mitochondria (233) except they contained less iron.  
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CHAPTER VII 

CHANGING CONTENT OF THE MOUSE BRAIN DURING DEVELOPMENT 

 

Introduction 

 Iron plays a major role in generating the chemical energy required for 

neurological activity, in that Fe/S clusters and heme groups are abundant in 

mitochondrial respiratory complexes (121). This transition metal is found at the active 

sites of numerous metalloenzymes in the brain (299) and is required for myelin 

biosynthesis (124). Over a billion people worldwide suffer from anemia (166), and Fe 

deficiency affects neonatal brain development and cell-mediated immunity (300). An 

overabundance of Fe is also problematic, as certain forms of iron, particularly NHHS 

Fe2+ complexes, promote Fenton chemistry that generates reactive oxygen species 

(ROS). The brain may be particularly sensitive to ROS damage because of its high rate 

of O2 consumption (301) and limited ability of neuronal cells to be repaired or replaced 

(302). Moreover, Fe accumulates with age and neurodegeneration (303).  

Iron traveling into the brain must pass across the blood-brain barrier (BBB) 

(304). Fe3+-bound transferrin in the blood binds to receptors on the luminal side of the 

endothelial cells associated with this barrier (305). Once inside neurons and other cells 

of the brain, a portion of the Fe is trafficked to mitochondria, where hemes and iron-

sulfur clusters are assembled. Another portion is stored as ferritin, a spherically shaped 

protein complex with a hollow core into which large amounts of Fe can be deposited in 

the form of magnetically-interacting Fe3+ oxyhydroxide material (142). Ferritin helps 
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regulate cytosolic Fe concentrations and sequester Fe that might otherwise generate 

ROS. Fe can also be found in structurally related proteins such as mitoferritin (306), 

hemosiderin (144) and nueromelanin (137). 

 X-ray fluorescence (147), high-field magnetic resonance imaging (149) and high-

resolution histological staining (307) have revealed an inhomogeneous spatial 

distribution of Fe in the brain. The globus pallidus, putamen, substantia nigra pars 

reticulata, red nucleus, cerebral dentate nucleus, the nucleus accumbens and portions of 

the hippocampus contain high concentrations of Fe; Fe concentrations in white matter 

and the cerebrospinal fluid are low. The distribution of brain Fe follows the distribution 

of ferritin whereas the distribution of transferrin is more homogeneous (308), reflecting 

the dominance of ferritin Fe in the brain.  

These imaging methods provide excellent spatial resolution of brain Fe but their 

ability to resolve different types of Fe-containing species is limited. Mössbauer 

spectroscopy can distinguish different types of Fe (116), but it has barely been applied to 

the brain, due perhaps to the insensitivity of the technique, the low concentration of Fe in 

the brain, and the ability of Mössbauer to detect only 57Fe (2% natural abundance).   

We have used Mössbauer spectroscopy, in conjunction with EPR and UV-vis 

spectroscopies, and ICP-MS, to assess the Fe content of yeast mitochondria, vacuoles 

and whole cells (233, 261, 290). In those studies, our objective was to evaluate the types 

and relative amounts of Fe present in these organelles and cells. In yeast, the two 

dominant Fe “traffic hubs” include vacuoles, which store Fe, and mitochondria, which 

use it to obtain cellular energy.  
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Here we apply the same methods to study the iron content of intact 57Fe-enriched 

mouse brains. Previous Mössbauer studies of the brain have focused on particular Fe-

rich subcomponents of human brains. These studies found that virtually all Fe in these 

regions consists of magnetically interacting, superparamagnetic ferric species, including 

ferritin and nueromelanin (137, 142, 144, 303, 306); curiously, mitochondrial Fe, e.g. 

Fe/S clusters and heme groups were not observed. This is difficult to rationalize, given 

the enormous role of mitochondria in brain function, and the substantial proportion of 

yeast Fe due to this organelle. We show here that, besides ferritin-like species, the brains 

of mice contain substantial amounts of Fe/S clusters, much of it arising from 

mitochondria. Also detected were nonheme mononuclear high-spin (HS) Fe2+ and Fe3+ 

species, a portion of which may constitute the labile iron pool (LIP) and which may 

participate in ROS-generating reactions.    

Results 

57Fe-enrichment 

Low Fe concentrations in mouse brains (Table 7.1 and Figure 7.1) highlighted 

the need for 57Fe enrichment. To evaluate enrichment rates, mice born to an 56Fe-

enriched mother were fed 57Fe-supplemented chow immediately after weaning. Their 

brains enriched slowly such that only partial 57Fe-enrichment was achieved after nearly 

60 wks on the 57Fe-supplemented diet. Other organs, including liver, spleen, heart and 

kidney, enriched faster and to a greater extent than the brain, with the duodenum 

enriching fastest (data not shown). The slow incorporation of 57Fe into the brain was  
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 Table 7.1. Summary of results of mouse studies. The concentration of heme b in the 
prenatal brain (*) was not quantified.  Values obtained by EPR, UV-vis, ICP-MS and 
protein analyses have an estimated relative uncertainty of  20%. Values derived from 
Mössbauer analyses have an absolute estimated uncertainty of  4%.  

Age (wks) -1 1 2 3 3 4 24 58 
Comments Not Perfused    Iron 

Deficient 
   

Number and Sex 6 
(sex not 

determined) 

7F 
2M 

1F 
2M 

0F 
3M 

1F 
8M 

1F 
3M 

0F 
2M 

0F 
1M 

Average brain mass (mg) 52 
 6 

200 
 
30 

350 
 4 

310 
 
40 

350 
 10 

390 
 
30 

377 
 2 

456 

Num. used for element, 
protein analysis 

6 4 2 3 3 2 2 1 

[Protein] (mg/mL) 21 30 29 40 32 40 28 33 
[Cu] (M) 21 6 2 1 20 5 17 26 
[Mn] (M) 21 3 6 6 26 11 5 6 
[Zn] (M) 123 210 179 205 167 197 172 206 
[Fe] (M) 270 121 195 199 149 182 212 322 
% 57Fe 60 72 66 73 57 85 83 58 

Hemoglobin Doublet 
subtracted (%) 

37 3 5 10 11 14 11 18 

Effective [Fe] in brain (M) 170 117 185 179 132 157 188 264 
Ferritin-like sextet (% of 

effective Fe) 
67 54 51 57 19 42 57 56 

Central Doublet (% of 
effective Fe) 

19 27 37 31 57 42 30 33 

sextet/CD ratio 3.5 2.0 1.4 1.8 0.33 1.0 1.9 1.7 
HS Fe2+ hemes (% of 

effective Fe) 
~ 0 13 8 6 13 9 7 9 

HS Fe2+ nonheme (% of 
effective Fe) 

10 6 ~ 4 6 10 8 6 ~ 2 

[Fe2+ heme a] (M) ~ 0 ~ 0 4 15 15 18 18 18 
[Fe2+ heme b] (M) * ~ 0 6 15 12 18 18 18 
[Fe2+ heme c] (M) ~ 0 ~ 4 12 23 25 32 32 35 

gave = 4.3 (M); HS Fe3+ 
nonheme 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

g = 1.90 (M); Rieske 
[Fe2S2]1+ 

0 0.9 1.2 1.5 1.5 2.7 2.4 1.7 

g = 1.93 (M); SDH 
[Fe2S2]1+ 

0 1 1.2 1.5 1.5 2.4 2.1 1.5 

g = 2.00 (M); organic 
radical 

0.1 0.1 0.1 0.3 0.3 0.2 0.3 0.7 
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Figure 7.1. Enrichment of 57Fe into 56Fe-enriched mice. Upper plots refer to the % 57Fe 
scale, including solid triangles (duodenum), solid circles (average of liver, kidney, heart 
and spleen) and solid squares (brain). Solid diamonds in the middle group of plots refer 
to total [Fe] in the brain; open triangles refer to brain mass. In the lower group, open 
circles and squares refer to nmoles of 56Fe and 57Fe in the brain, respectively.  
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probably due to the blood-brain barrier (304). Cu, Mn, Zn, Mo and P concentrations in 

these organs were also determined (data not shown). 

The rate of Fe enrichment was biphasic, with the transition from fast to slow 

phase occurring 4-6 wks postpartum. During the fast-enrichment period, the total 

nanomoles of 56Fe in the brain declined rapidly while that of 57Fe increased gradually 

(Figure 7.1). The overall concentration of Fe in the brain declined during the fast-

enrichment phase, followed by recovery in the slow-enrichment phase. Brain mass 

increased rapidly during the fast-enrichment phase and slowed thereafter. The 

concentration of 57Fe in the brain increased with each generation raised under 57Fe-

enrichment conditions, maximizing at ~ 80% after about 3 generations. Mössbauer 

spectra were typically collected from animals raised under 57Fe-enrichment conditions 

for ≥ 2 generations.  

Brains from Three wk Old Mice 

 The low-temperature low-field Mössbauer spectrum of a 3-wk old brain 

exhibited 4 discernible features. A sextet typical of ferritin-bound Fe3+ ions dominated 

(Figure 7.2A); the blue line is a simulation with  = 0.5 mm/s, EQ = -0.3 mm/s and  = 

0.6 mm/s. Ferritin is an Fe-storage protein complex (142). At 70 K, this feature collapsed 

into a doublet ( = 0.5 mm/s and EQ = 0.7 mm/s) (Figure 7.2B), similar to the behavior 

of authentic ferritin (309). The baseline of the 70 K spectrum did not reveal underlying 

features. When a 6 T field was applied at 4.3 K, the resulting pattern (Figure 7.2C) 

associated with this feature was again indistinguishable from that of ferritin. Other  
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magnetically interacting Fe3+  ions such as Fe-bound haemosiderin (309), neuromelanin 

(137) or mitoferritin (306) could have also contributed.  

Another major feature in the spectrum was a quadrupole doublet with  = 0.45 

mm/s and EQ = 1.15 mm/s; these values are typical of S = 0 [Fe4S4]
2+ clusters and low-

spin Fe2+ heme centers. At 6 T, the splitting pattern observed for this so-called Central 

Doublet (CD) was simulated (Figure 7.2C, purple line) confirming the expected 

diamagnetism. A doublet with identical parameters in spectra of isolated mitochondria 

from yeast (233) arises primarily from respiratory complexes, and so we assign the 

majority of the CD intensity in brain to mitochondrial respiratory complexes.  

The spectrum also exhibited a quadrupole doublet with  ~ 1.4 mm/s, EQ ~ 3.3 

mm/s arising from one or more NHHS Fe2+ species (Figure 7.2B, simulated by the green 

line). These parameters are typical of such complexes with 5 – 6 O/N donor ligands. 

Most evident in the 70 K spectrum was the doublet from HS Fe2+ heme centers (Figure 

7.2B, yellow line). UV-vis spectra of corresponding brain homogenate (Figure 7.3D) 

revealed the Soret,  and  bands indicating reduced hemes. These features were similar 

to those of yeast mitochondria (233); their concentrations were quantified and are listed 

in Table 7.1.  

Low-temperature EPR spectra of 4-wk mouse brain homogenates (Fig. 7.3) were 

virtually identical to those of a 3-wk old animal but were slightly more intense. Both 

exhibited overlapping signals in the g = 2 region. Signals with g = 1.93 and 1.90 

probably arose from the S = ½ [Fe2S2]
1+ cluster of succinate dehydrogenase and the 

reduced Rieske S = ½ [Fe2S2]
1+ cluster associated with cytochrome bc1, respectively 
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Figure 7.3. UV-vis spectra of brains isolated at different ages (top) and EPR spectrum of 
4 wk brains (bottom). (A), -1 wk; (B), 1 wk; (C), 2 wks; (D), 3 wks; €, 3 wks, Fe-
deficient; (F), 4 wks; (G), 24 wks; and (H), 58 wks. Intensities at wavelengths > 500 nm 
were multiplied by 5. Spectra shown are prior to subtracting the contributions due to 
hemoglobin. Bottom: Highlighted signals are indicated by arrows. Conditions: 
temperature, 4 K; microwave frequency, 9.43 GHz; microwave power, 0.2 mW; 
modulation amplitude, 10 G; sweep time, 335 sec; time constant, 164 msec. The average 
of 10 scans is shown. Spectra of brains isolated from animals at other ages are given in 
Figure 7.4. The inset shows the relative intensity of highlighted features as a function of 
age. Plots are offset by arbitrary amounts.  
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Figure 7.4. EPR spectra of packed mouse brain homogenates from mice euthanized 
at different ages. (A), -1 wk; (B), 1 wk; (C), 2 wks; (D), 3 wks; (E), 3 wks, Fe-deficient; 
(F), 4 wks; (G), 24 wks; and (H), 58 wks. EPR conditions are the same as in the Figure 
7.3 legend. 
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 (233). Also evident was an isotropic signal at g = 2.00, probably from an organic 

radical. The weak signal at g = 4.3 undoubtedly arose from mononuclear HS Fe3+ 

species with rhombic symmetry. The origin of the derivative-like feature at g = 2.16 is 

uncertain. Spin quantifications are listed in Table 7.1.  

Brains from Iron-Deficient Mice 

A pregnant 57Fe-enriched mouse was switched to Fe-deficient chow 3 days prior 

to giving birth, and her offspring were euthanized 3 wks later at which time they 

displayed alopecia (Figure 7.5) (310). The average Fe concentration in their brains 

(Table 7.1) was less than in Fe-sufficient brains. Mössbauer spectra (Figure 7.2D) 

exhibited less of the ferritin sextet relative to Fe-sufficient brains, while the CD (purple 

line) was more intense. Surprisingly, the absolute concentration of the CD Fe in these 

brains was slightly higher than that in comparable Fe-sufficient brains (75 M vs. 55 

M).  A minor NHHS Fe2+ feature was also evident (Figure 7.2D, green line). EPR and 

UV-vis spectra of Fe-deficient brains exhibited the same signals and intensities as 

observed in spectra from brains of Fe-sufficient mice.  

Prenatal Brains 

Prenatal mice could not be perfused, such that the quadrupole doublet due to 

hemoglobin in the corresponding Mössbauer spectra was more intense than in the 3-wk 

brain spectra. The exact position of the heme doublet ( = 0.96 mm/s, EQ = 2.35 mm/s) 

was also shifted slightly relative to that in other spectra, due to the presence of fetal 

hemoglobin in prenatal brains (311). 
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Figure 7.5.  Iron-Deficient Mouse used in this study. The image is of a 3 wk old 
mouse nursed by a mother whose chow had been switched from 57Fe-supplemented to 
Fe-deficient ca. 3 days prior to giving birth. The pup displayed significant alopecia 
(thinning of hair).  
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  The average Fe concentration in the prenatal brains (Table 7.1) included a 

significant contribution from blood (~ 100 µM). Since the concentration of Fe in 

undiluted blood was 7.8 mM (data not shown), ~ 1.3% of the dissected prenatal brain 

volume must have been occupied by blood. This underestimates the value in living 

animals. Apart from the blood contribution, the Mössbauer spectrum of prenatal brains 

was dominated by the ferritin sextet, with only a minor percentage due to the CD (Figure 

7.2E, Table 7.1) A NHHS Fe2+ doublet was evident (arrow), with intensity comparable 

to that of the 3 wk brain spectrum. The UV-vis spectrum of prenatal brain homogenate 

(Fig. 7.3A) was dominated by features due to fetal hemoglobin; other heme-based 

species (e.g. mitochondrial cytochromes) could not be discerned. Intensities of EPR 

signals from the prenatal brain homogenate were diminished relative to those in other 

spectra (Fig. 7.4A). These results indicate that prenatal brains were deficient in 

mitochondria, with most Fe present as ferritin or ferritin-like species.  

Brains from Mice at Different Ages 

Mössbauer spectra of brains from mice of different ages (Figure 7.2, E – G, and 

Figure 7.6) showed an age-dependent increase in the percentages of the CD and a 

relative decrease in the ferritin-like sextet. This is indicated most reliably by the 

ferritin:CD intensity ratios (Table 7.1) which was highest for prenatal brains and lowest 

at 4 wks. Mössbauer spectra of the 24 and 58 wk brains exhibited age-dependent 

increases in the percentage of the ferritin-like sextet and decreases in the CD. UV-vis 

spectra also showed an age-dependent increase in cytochromes at early ages (Fig. 7.3). 
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Figure 7.6. Corrected Mössbauer spectra of mice brains. Samples are brains at (A), 1 wk, 
(B), 2 wks, and (C), 24 wks. The dashed line indicates the position of the high energy 
line of the central doublet.  Simulations in red use parameters from the text and 
percentages from Table 7.1. Spectra were collected at 6 K with a 0.05  T field applied 
parallel to the radiation. Uncorrected spectra are presented in Figure 7.7. 
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Figure 7.7. Uncorrected Mössbauer spectra of mouse brains at different ages. (A), blood 
from a 4 wk mouse; (B),  unperfused prenatal brain (corresponds to corrected spectrum, 
Figure 7.2E); (C),  uncorrected spectrum of perfused 1 wk brain (corrected spectrum is 
Figure 7.6A); (D),  uncorrected spectrum of perfused 2 wk brain (corrected spectrum is 
Figure 7.6B); (E), uncorrected spectrum of perfused 3 wk brain (corrected spectrum is 
Figure 7.2A); (F), uncorrected spectrum of perfused 4 wk brain (corrected spectrum is 
Figure 7.2F); (G), uncorrected spectrum of perfused 24 wk brain (corrected spectrum, 
Figure 7.6C); (H), uncorrected spectrum of perfused 58 wk brain (corrected spectrum, 
Figure 7.2G);  Spectra were collected at 5-6 K and 0.05 T magnetic field applied parallel 
to the direction of the radiation. Total Mössbauer data collection times (in hrs), including 
70 K data, were (A), 40; (B), 330; (C), 435; (D), 390; (E), 240; (F), 390; (G), 570; and 
(H), 400.  
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EPR spectra exhibited increasing intensities of the signals in the g = 2 region (Fig. 7.4), 

including features that likely originate from mitochondria. The radical signal at g = 2.00 

also increased with age, while the g = 4.3 signal intensity was age-invariant.     

Discussion 

Comparison to Previous Mössbauer Studies 

The Mössbauer spectra presented here are significantly different from previous 

reports (142, 158, 312) in that the only feature observed previously was the sextet due to 

ferritin or neuromelanin. Why none of the previously published spectra of brain 

displayed a CD, a heme quadrupole doublet, or NHHS Fe2+ species can partially 

rationalized. Previous studies utilized human brains which were unenriched in 57Fe; this 

diminished the spectral quality such that minor species, e.g. NHHS Fe2+, could have 

gone undetected. The human donors were generally near the end of their natural lifespan, 

and older brains may contain more ferritin than younger ones (313). The concentration 

of Fe in the average human diet may be higher, relatively speaking, than in our mouse 

chow, which could possibly translate into relatively more ferritin and less CD in the 

human brain. Further studies are required to examine these possibilities.  

Incorporation of Fe into Brain 

In this study, we found that young mouse brains exchanged Fe rapidly during the 

rapid growth phase, including the export of Fe. This resulted in an overall decline in the 

concentration of Fe in the brain. During this period, the brain appears to grow faster than 

could be maintained by the rate of Fe import, such that ferritin stores were activated. 

With age, the dynamic exchange of Fe slows, brain growth slows, and the concentration 
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of Fe in the brain recovers. Similar effects have been reported (314-316). During the first 

month of life, the proportion of stored Fe declines while the proportion of mitochondrial 

Fe increases. As the animals become adults, the proportion of stored Fe increases again. 

In our study, the concentration of mitochondria did not decline noticeably up to 58 wks; 

we are currently investigating whether mitochondrial levels decline towards the end of 

the animal’s natural lifespan, as has been reported (302). 

Burst of Mitochondriogenesis. 

In yeast cells, the Mössbauer CD and HS heme doublet, the g = 1.94 and 1.90 

EPR signals and the heme a, b, and c UV-vis signals arise primarily from the 

mitochondrial respiratory complexes (233), and so we have assigned the analogous 

features in brain spectra similarly. The intensity of these signals, considered collectively, 

undoubtedly reflects the concentration of mitochondria in the brain. The ferritin-like 

sextet in the Mössbauer spectrum reflects brain Fe that is stored. These assignments are 

supported by a recent study of the ironome of human Jurkat cells and their isolated 

mitochondria (317).  

Our results show that most of the Fe in the brain of prenatal and newborn mice is 

stored, and that during the first month of life, the proportion of stored Fe declines while 

the proportion of mitochondrial Fe increases. As the animals move into adulthood, the 

proportion of stored Fe in the brain increases again. We did not detect an overall decline 

in the concentration of mitochondria with age up to 58 wks; further studies are underway 

to determine whether mitochondrial levels decline towards the end of the animal’s 
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natural lifespan. Mitochondrial levels have been reported to decline with age due to 

mitophagy (302). 

These results, in conjunction with those of the 57Fe incorporation study, suggest a 

connection between this burst of mitochondriogenesis and an increase in brain activity 

(Figure 7.8). Before birth and immediately thereafter, the level of brain activity is low 

and so might be the demand for energy. During this period, Fe is slowly imported into 

the brain where most of it is stored as ferritin or ferritin-like material. During the first 

few weeks of life, there is an increased level of brain activity as the animal’s eyes open 

and they explore their environment. The increased brain activity increases the demand 

for more chemical energy, prompting a burst of mitochondriogenesis. This demand for 

Fe is beyond that at which Fe can be imported into the brain. Thus, the brain draws upon 

its Fe stores to build the requisite Fe/S clusters and heme centers. The scarcity of Fe is 

exacerbated by the rapid increase of brain volume during the same period, resulting in 

the overall decline in the Fe concentration in the brain. Eventually, the burst of 

mitochondriogenesis slows, as does the rate of brain growth. The brain replenishes its Fe 

stores, via the slow import of Fe from the blood, and it reestablishes a higher overall Fe 

concentration.  

 This model is consistent with previous results. Pysh and co-workers used 

electron microscopy to determine the proportion of rat cell volume (in the inferior 

colliculus) due to mitochondria during different stages of development (318). The 

mitochondrial profile number was relatively low during the first few postnatal days but it 

increased rapidly thereafter, leveling off at ca. 25 days postnatal. 
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Figure 7.8. Model of Fe utilization in the developing mouse brain. During the first ~ 4 
wks of life, the mouse brain grows rapidly and exhibits a rapid dynamic exchange of Fe 
with the blood including both import and export of Fe to/from the brain. Early during 
this period most of the Fe in the brain is present as ferritin or ferritin-like material. 
During the first week or so of life, brain growth and mitochondriogenesis are so fast that 
Fe cannot be imported rapidly enough to maintain the overall [Fe] in the brain. The 
decline in [Fe] within neuronal cells causes some ferritin-like Fe to be released, with 
much of that Fe used for mitochondriogenesis. Gradually, the [Fe] recovers, rates of 
dynamic Fe import/export slow, and a greater proportion of Fe becomes stored as 
ferritin. 
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The mitochondrial volume fraction increased 6-fold, reaching 9% of tissue volume in 

adults. Interestingly, there was no correlation of mitochondria with synapse 

concentrations; rather, the rate of mitochondriogenesis was thought to correlate with 

increased levels of synaptic activity.   

Effect of Iron deficiency 

Our results indicate that the regulation of brain Fe is sensitive to dietary changes. 

The brain responds to an Fe deficiency by reducing levels of stored Fe such as ferritin 

and by maintaining normal mitochondria levels. Interestingly, the concentration of 

mitochondria in Fe-deficient brains was higher than observed in Fe-sufficient animals at 

any developmental stage examined. Explaining this counterintuitive result will require 

further studies, but Fe regulation in the brain is undoubtedly complex, and the brain may 

be protected from an organism-level Fe deficiency. Conceivably, the brain may become 

loaded with mitochondria under Fe-deficient conditions to sustain the increased brain 

activity required for the animal to seek more (Fe-rich) food. In other studies, levels of 

the brain Fe-containing proteins tyrosine hydroxlase, tryptophan hydroxylase, 

monoamine oxidase, succinate hydroxylase and cytochrome c in Fe deficient animals 

were also normal (319). Mackler et al. (320) reported that the levels of cytochromes a 

and c were normal under Fe deficient conditions, and that that the level of cytochrome b 

was only slightly reduced relative to in Fe-sufficient mitochondria. Perhaps neurological 

problems arise only if the Fe deficiency is so severe that all storage forms of Fe in the 

animal have been exhausted and the brain can no longer be protected from the 

deficiency.  
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Mononuclear Nonheme High-Spin Ferrous and Ferric Species 

Our results indicate the presence of substantial amounts of NHHS Fe2+ in the 

mouse brain. NHHS Fe2+ complexes are generally less tightly coordinated than low-spin 

complexes and they exhibit more rapid ligand-exchange. Such properties would be 

expected for trafficking Fe complexes and for complexes that undergo Fenton chemistry 

which may damage cells and contribute to aging and neurodegeneration. Three of our 

Mössbauer spectra clearly indicate the presence of substantial concentrations of NHHS 

Fe2+ species in the brain (-1 wk, 3 wks, and Fe-deficient). In these cases, the 

concentration of all NHHS Fe2+ species in the mouse brain was ~ 20 M. The NHHS 

Fe2+ doublets were broad, suggesting that many NHHS Fe2+ species contribute. The 

NHHS Fe2+ doublet in the other brain Mössbauer spectra were present but less well 

resolved. The g = 4.3 EPR signal was present in every brain homogenate examined. The 

quantified intensity of this signal indicates that NHHS Fe3+ species are present in the 

mouse brain at a collective concentration of ~ 100 nM.  

A portion of these species are Fe2+ and Fe3+ ions bound tightly in the active site 

of enzymes in the brain, while another portion are probably involved in trafficking 

and/or the Labile Iron Pool (LIP) (82, 85, 86). Such species have not been observed in 

previous Mössbauer and EPR studies of the brain (153, 155, 321). On the other hand, 

Meguro et al. (307) found substantial amounts of nonheme Fe2+ and Fe3+ distributed 

inhomogeneously throughout the rat brain. Using high-resolution histological staining 

methods, they determined that the levels of these species increased with the age of the 

animal. Sohal et al. (322) observed an age-dependent increase of nonheme Fe2+ species 
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in mouse brain, but that Fe was not chelatable by bleomyosin. Our results do not support 

such an age-dependent increase, though small changes could have gone undetected using 

our methods.  

Spin Radical Species 

The radical species detected here may be physiologically relevant since samples 

were prepared in the strict absence of O2 which minimizes the possibility of generating 

artifactual radical signals. Transient radicals in the brain have been detected using spin-

probes (323) but the radical detected here was stable in the absence of such probes. 

Radical species are cleared from the brain faster in young mice than in old, suggesting 

that the reducing capacity of the brain decreases with age (324). These changes may be 

related to the age-dependent increase in the intensity of the radical EPR signal that we 

observed. Most theories of ageing involve the age-dependent accumulation of ROS 

(325), which could be responsible for the radical signal. ROS are generated primarily by 

mitochondria, and can damage these organelles.  

Conclusions 

Our study provides new insights into Fe trafficking and homeostasis in the brain.  

We have enriched mice with 57Fe and have used Mössbauer spectroscopy, along with 

EPR, UV-vis and ICP-MS, as biophysical probes of the Fe content of the mouse brain. 

We quantified the rates of Fe incorporation into the brain, and have shown that Fe is 

slowly imported, relative to the incorporation rate into other organs. The slow rate of Fe 

incorporation into the brain is probably due to the tight regulation at the BBB. The rate 

of Fe incorporation is biphasic, with a rapid phase occurring in very young animals, 
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following by a slower phase in older animals. During this rapid Fe-incorporation phase, 

the brain is growing rapidly, and its activity is increasing. As such, mitochondria are 

rapidly being generated, which creates a high demand for Fe. This demand cannot be 

met exclusively with newly imported Fe, such that the concentration of Fe in the brain 

declines and some ferritin-stored Fe is used for mitochondriogenesis. As brain growth 

and mitochondriogenesis slow, the Fe import rate becomes sufficient to allow some of 

the imported Fe to be stored once again. The brain contains substantial concentrations of 

NHHS Fe2+ and Fe3+ species a portion of which may be used in trafficking and 

homeostasis. This form of Fe is known to undergo the Fenton reaction to generate 

reactive oxygen species and be associated with aging. Further studies are required to 

determine whether the detected Fe species participate in such reactions. We observed an 

organic radical EPR signal which increased with age, consistent with the ROS theory of 

aging.  Only ferritin-like Fe was observed in previous Mössbauer studies of the human 

brain, possibly because of differences in the age and/or diets of the mice vs. human 

donors. We showed that the Fe content of the brain is sensitive to diet, in that stored Fe 

is preferentially utilized when mice are raised on an Fe-deficient diet. The methods 

developed here are widely applicable, and could be applied to any and all mouse organs, 

including those found in transgenic animals with various Fe-associated disorders. This 

approach may reveal differences in Fe trafficking and/or regulatory homeostasis, and 

thus significantly impact the mechanistic study of Fe-related diseases.  
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CHAPTER VIII 

CONCLUSIONS AND FUTURE WORK 

 

Conclusions 

The major objective of this study was to establish whether an integrated 

biophysical analysis centered on Mössbauer spectroscopy could be developed to study 

the iron contained in complex biological systems, and to apply that methodology to an 

organelle, a cell, and a whole organ. Specifically we wanted to establish whether these 

methods could provide new insights into processes such as iron trafficking, metabolism, 

and homeostasis.  

The initial focus was to apply this systems-level analysis to mitochondria 

because of their extensive role in iron metabolism. These studies, presented in Chapters 

3 and 4, probed iron metabolism in fermenting, respirofermenting and respiring 

mitochondria isolated from cells grown on 40 µM iron. The studies on fermenting 

mitochondria revealed that the iron in this organelle was primarily distributed in 4 

species. These included a contribution of CD, NHHS Fe2+, HS Fe3+, and Fe3+ 

nanoparticles with contributions of ~25%, 20%, 15%, and 35% respectively. The 

concentrations of iron in the mitochondria (~800 µM) suggested that the concentrations 

of the NHHS Fe2+ and HS Fe3+ species were beyond what would be expected of 

mononuclear iron containing proteins.  

We thus rationalized that these species likely contributed to a pool of ions which 

may be utilized in the production of ISCs and hemes. For this reason we performed 
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experiments to demonstrate that these features were indeed mitochondrial. To establish 

the NHHS Fe2+ was associated with the mitochondria we incubated mitochondria with 

the chelator BPS which drives HS Fe2+ to LS Fe2+. Initially we saw no formation of the 

LS complex. Upon addition of detergent or use of physical methods to disrupt the 

membranes, there was a nearly quantitative transfer to the LS feature. This led to the 

conclusion that the NHHS Fe2+ feature observed in Mössbauer spectra of purified 

fermenting mitochondria was protected from chelation, most likely due to the feature 

being encapsulated by a membrane. To establish that this membrane was mitochondrial, 

we analyzed several batches of mitochondria by both Mössbauer spectroscopy and 

western blot analysis. The Mössbauer data revealed that the amount of NHHS Fe2+ in 

each sample was nearly constant. The western blot, as expected, revealed that 

contributions of other organelles were contained in samples of purified mitochondria. 

Interestingly, the amount of contamination was not always constant, and individual 

preperations contained increased or decreased levels of specific contaminants. This led 

to the conclusion that the NHHS Fe2+ ions were most likely in the mitochondria, as the 

concentrations of these ions did not correlate to an increase or decrease of contaminating 

organelles. 

Similar methods were used to establish that the HS Fe3+ was mitochondrial. We 

treated mitochondrial samples with dithionite. These HS Fe3+ ions were only reduced 

when the membranes were disturbed. As with the NHHS Fe2+ species, these ions showed 

no correlation to differential levels of non- mitochondrial contamination as observed by 

western blot analysis.  
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The presence of Fe3+ nanoparticles in WT mitochondria were initially a surprise. 

We assigned the feature as such based on the spectral similarity to nanoparticles present 

in mitochondria of ISC mutants (105-107). This feature, as with HS Fe3+, was 

susceptible to reduction only when the mitochondrial membranes were disrupted.  

Following these studies we wanted to establish whether these distributions of 

iron changed if the metabolic mode of growth changed. In a collaborative effort with two 

graduate students in the Lindahl lab, Dr. Jessica Garber Morales and Dr. Ren Miao, we 

studied both respiring and respirofermenting mitochondria and found that the 

distribution of iron in the mitochondria of these cells was similar to one another but quite 

different from the distributions observed in fermenting mitochondria. Under respiring 

and respirofermenting conditions, Mössbauer spectroscopy revealed 50-60% of the iron 

was observed as CD, with minor contributions of NHHS Fe2+ , HS Fe3+, and Fe3+ 

nanoparticles. We concluded that these features were serving as storage in the 

fermenting mitochondria where ISC and heme biosynthesis should be less prevalent than 

in the repirofermenting and respiring conditions. In the latter conditions we concluded 

that the majority of the ions are being utilized. In the resirofermenting and respiring 

mitochondrial samples, unlike the fermenting samples a considerable contribution 

(~10%) of the iron was present as  heme HS Fe2+.  

Following these studies we were interested in whether the same analysis could be 

applied to the cell, an undoubtedly more complex system. In chapter 5 we presented 

Mössbauer data collected on fermenting cells grown on medium containing 40µM 57Fe. 

This spectrum revealed that ~75% of the cellular iron was present in a HS Fe3+ species 
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which was non-mitochondrial. A difference spectrum (subtracting a simulation of the HS 

Fe3+) revealed that the final 25% was very similar to isolated mitochondria. We 

hypothesized the HS Fe3+ feature would likely arise from vacuoles, a storage site of iron 

in the cell. 

Another graduate student in the Lindahl lab, Ms. Allison Cockrell, isolated 

vacuoles and in a collaborative project showed that the iron found in vacuoles was 

primarily HS Fe3+, spectroscopically similar to the non-mitochondrial iron observed in 

whole cells. This strengthened our original hypothesis on the origin of this feature. In the 

study of isolated vacuoles, Fe3+ nanoparticles were also observed. These particles had, 

spectroscopic properties similar to those found in mitochondria.  

In another collaborative effort with Dr. Ren Miao we studied the distribution of 

iron in cells which constitutively activate the iron regulon, the Aft1-1up strain. Studies on 

this strain revealed that such cells import massive amounts of iron consist with the 

activated pathways of iron import. Mössbauer spectra of these cells demonstrated that 

the iron in this strain was distributed into several features including strongest 

contributions from Fe3+ nanoparticles and HS Fe3+.  The mitochondria of these cells were 

dominated by Fe3+ nanoparticles indicating that a substantial portion of this feature 

present in whole cells originated from mitochondria. These studies demonstrated that a 

constitutively activated iron regulon led to the accumulation of iron in the cell in features 

we had previously observed in WT cells. This prompted a further investigation to 

establish whether all iron in a WT cell is imported in an Aft1p dependent fashion. 
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In the final yeast studies, described in Chapter 6, we collected biophysical data 

on yeast cells grown on medium differently supplemented with iron. At the lowest levels 

of iron supplementation, medium supplemented with BPS and 1µM 57Fe and medium 

not treated with BPS but still supplemented with 1µM 57Fe we observed dimished 

[Fe]cell. In Mössbauer spectra of these samples, we observed less of the total iron in the 

feature associated with the vacuoles. We hypothesize that under such conditions the cell 

is iron-starved and provides the majority of imported iron to processes involved in ISC 

and heme biosynthesis. Further confirmation of this study came from studies on isolated 

mitochondria from cells grown on medium supplemented with BPS and 1µM 57Fe. 

These mitochondria were rich in CD material and lacked additional features (HS Fe3+, 

HNNS Fe2+, and Fe3+ nanoparticles) observed in fermenting mitochondria from cells 

supplemented with higher [Fe]medium. In cells grown on medium supplemented with 

10µM to 10mM iron, we observed only modest changes to the iron distribution of both 

whole cells and isolated mitochondria.  

We also studied whole cells grown on medium with the same supplementation of 

iron but with galactose, a respirofermenting carbon source. Mössbauer spectra of these 

cells were similar to one another for all the concentrations of iron added, but all were 

different relative to the fermenting state. Mössbauer spectra of respirofermenting cells 

contained an altered feature reminiscent of the HS Fe3+ observed in Mössbauer spectra of 

fermenting cells. This feature, which was not as abundant as in fermenting samples,  

lacked a g = 4.3 EPR signal which was present in the fermenting samples and in isolated 

vacuoles. This indicates the possibility that this HS Fe3+ species is different from that 
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observed in fermenting cells.  We also observed much stronger features originating from 

HS Fe2+ in Mössbauer spectra of respirofermenting cells.  

Using a strain of yeast that have the gene for GFP fused to FET3 we investigated 

whether or not iron imported into fermenting and respirofermenting cells was imported 

in an Aft1p dependent fashion. Studying the range of [Fe]medium from BPS treated with 

1µM up to 1mM we only observed expression of GFP-Fet3p under the iron-starved 

fermenting conditions. This indicates that a substantial portion of the iron in cells is 

imported independent of Aft1p. 

The final studies, discussed in Chapter 7, investigated the iron distribution of 

brains of mice at different developmental stages from prenatal to 58 weeks in age. 

Previous Mössbauer-based studies on human brains revealed that the only observable 

features in the sections of brain studied were those arising from ferritin and related 

forms. This was intriguing in that brains contain mitochondria and should therefore 

contain Mössbauer spectral features associated with them. Starting from prenatal brains 

up to brain 4 weeks in age we observed a CD in addition to the previously observed 

ferritin in the Mössbauer spectra of these samples. In this age range we saw the ratio of 

CD:ferritin increasing indicating increased biosynthesis of ISCs and hemes during that 

timeframe. Additionally, we observed features arising from NHHS and heme HS Fe2+  in 

these spectra. Beyond 4 weeks in age we saw the ratio of CD:ferritn decrease. We 

hypothesize that this decline in the ratio of CD:ferritin is a result of additional import of 

iron without additional biosynthesis of ISCs and hemes. We also studied mice fed an 

iron deficient diet. The Mössbauer spectra of these brains exhibited the largest ratio of 
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CD:ferritin, arising from decreased ferritin levels. As with yeast under iron deficient 

conditions we hypothesize that the iron is obligatorily used for ISC and heme 

biosynthesis rather than being stored when available iron is low. 

Future Studies 

In essentially all samples studied in this dissertation, mononuclear HS Fe2+ or HS 

Fe3+ species or both were observed. In many cases the concentrations of these species 

are beyond what would be expected if they were associated with protein. We believe that 

these species represent iron ligated by small molecules which may play an important role 

in trafficking. One intriguing field of study would include the development and 

application of experiments to identify the ligands of such species. Studying these species 

in cells and isolated organelles has the potential for great insight into iron trafficking. 

Such methods which are currently the focus of other graduate students in the lab, will 

undoubtedly utilize chromatographic separation followed by chemical characterization.  

Along these lines, interesting studies on mitochondria should be conducted. 

Currently two high affinity importers of iron in yeast mitochondria have been identified, 

Mrs3p and Mrs4p. Establishing whether these importers are trafficking the same or 

different species into the mitochondria is an important question worthy of further 

investigation. If these importers do not use the same substrate, it would also be 

interesting to identify if a particular iron complex is more conducive to the formation of 

ISC, hemes, or Fe3+ nanoparticles. 

Studying the formation of Fe3+ nanoparticles is also an exciting area of research. 

In this study we have observed such species in WT mitochondria. We attributed this to 
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the presence of additional iron, beyond the mitochondrial necessity becoming oxidized 

and percipating out of solution. It may also be that certain conditions within the 

mitochondria (or vacuole) make the organelle more susceptible to the formation of 

nanoparticles. Such conditions might include a change in pH of the organelle, a more 

oxidizing environment, or a limitation of stabilizing ligands. Establishing if any or all of 

these processes (or others) play a role in the formation of Fe3+ nanoparticle would be an 

exciting advance in the current understanding of iron metabolism.  

Based on the studies in whole yeast cells, it appears that a substantial portion of 

iron is imported into the cell through Aft1p-independent processes. Further studies and 

the identification of such processes would provide insight into iron regulation and 

trafficking. Further studies should be conducted on the regulation of these processes. 

These studies will almost certainly involve mutations of potential importers of iron. 

As many of the current yeast-based studies involve WT strains, they should be 

regarded as control experiments. As such they not only demonstrate the applicability of 

the methods used but also provide a comparison for cells with genetic mutations 

involved in iron metabolism. Using this systems level analysis of cells in conjunct with 

mutations to individual proteins can probe mechanistic questions of the protein. This has 

been demonstrated by previous work in the Lindahl lab (105, 107). 

An exciting avenue of research will certainly involve the study of higher 

eukaryotes. The studies presented here on the mouse brain, like the studies on yeast, 

establish the applicability of the methods but should be supplemented by more extensive 

investigation. In brains, older animals should be studied. This would help establish 
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whether or not iron accumulates with age. If iron does accumulate with age it would be 

interesting to observe the form which accumulates. As with yeast, studies of WT mice 

will also serve as a control for genetically altered animals, this is another area which 

warrants future study. Beyond studying the brain other organs should also be probed 

with these methods.  

In the current study on mice brains we have hypothesized that the CD observed 

in the Mössbauer spectra of brain samples belongs to mitochondria. To establish this 

mitochondria should be isolated from mouse brains (and eventually other organs). This, 

coupled with experiments to establish the purity and integrity of the mitochondrial 

material, will help to establish the current hypothesis that these features arise from 

mitochondria. This will require a large number of animals to obtain sufficient quantities 

of mitochondrial material. Taking this in consideration it might also be interesting to 

study mice of different ages to establish age dependent variations in the iron distribution 

of mitochondria isolated from mouse brains. 

During the past decades substantial progress has been made towards 

understanding processes involved in iron metabolism, trafficking, and homeostasis. In 

spite of this there are still many questions to be answered. The work presented here 

demonstrated a biophysical methodology which will certainly play an important future 

role in this process.  
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APPENDIX A 

INSTALLING, OPERATING AND MAINTAINING MÖSSBAUER INSTRUMENTS 

IN THE LINDAHL LAB 

 

Description of the Instruments 

 The Lindahl lab at Texas A&M University currently houses 4 Mössbauer 

spectrometers (SEE Co, Edina, MN, USA). Three are low-field instruments; one allows 

applied magnetic fields as high as 6 T. Two low-field instruments employ CCR4K 

closed cycle He gas refrigerator cryostats, while the third (an SVT300 LHe/LN2 

cryostat) uses liquid helium as a cryogen. The CCR4K helium compressors cool the 

sample to temperatures between 4.6 and 325 K. The SVT300 can operate as low as 1.3 K 

under pumped He conditions. The remaining spectrometer has a LHe6T LHe/LN2 

superconducting magnet cryostat. This instrument also uses liquid helium and operates 

between 1.3 to 325 K.  

 The majority of the components of each of these systems is identical.  Each uses 

a VT400 velocity transducer, a W302 resonant γ-ray spectrometer with integrated servo 

control interfaced with the VT400, and a W202 γ-ray spectrometer with high voltage 

supply for the detector. The detector on each system is a proportional counter (LND, 

INC. #45431). See figure A.1 for a sketch of the instrument setup. 

 The basic experiment starts with the W302 box. This box sends signals to servos 

in the VT400 to control the velocity scale for sample collection. The servos move the 

57Co source (Ritverc, GmbH, St. Petersburgh, Russia) towards and away from the  
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Figure A.1. Basic instrument setup.  
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stationary sample mounted inside the cryostat. The sample will absorb a small 

percentage of the γ-rays produced by the source. The remaining γ-rays will continue on 

to the detector biased at a voltage supplied by the W202. Channels embedded in the 

W302 hardware will then locally store counts of radiation which correspond to energies 

at different velocities. This information is then transferred to a PC where the data is 

plotted as 1024 discrete points corresponding to the range of energies exposed to the 

sample. The counts will be highest at energies where none of the γ-rays has been 

absorbed and lowest where the absorption is maximal.  

 On the low-field instruments, a magnet with a field strength of ~500 G is placed 

around the sample on the outside of the dewar. This is accomplished with stand-alone 

magnets which must be mounted on the instruments as shown in figure A.2.   

Using Air Pads to Minimize External Vibrations on the System 

Mössbauer spectroscopy is extremely sensitive to vibrations which can cause 

lines to broaden and resolution to decline. The CCR4K systems present additional 

challenges as they require a refrigerator which constantly generates vibrations. Strategies 

for isolating these vibrations from the sample will follow. For all instruments the best 

monitor for vibrational isolation is to measure linewidths on a reference spectrum which 

is typically obtained using α-Fe Foil. We have found The floor can be a significant 

source of vibrations. To eliminate theses, air pads have been installed on the bottoms of 

the legs of all 4 instrument frames (Figure A.3). Use of these air pads reduced vibrations 

significantly.  
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Figure A.2. Mounting of magnets on Mössbauer instruments. Top, mounting of the 
magnet on the CCR4K the detector can be seen on the left the driver (absent in the 
image) would be positioned on the right. Bottom, mounting of the magnet on the 
SVT300 the driver is shown on the bottom of the figure and the detector is at the top. 
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Figure A.3. Air pads on Mössbauer instruments.  Systems are A. CCR4K, B. LHE6T, 
and C. SVT300. 
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 Leveling the Instrument 

 The instrument should be level prior to collecting data. The instrument frame is 

first leveled by adjusting the air pressure in the pads. The dewer should be leveled next. 

The LHe6T dewar rests directly on the frame, so if the frame is level, the dewar will 

generally also be level. If not, the dewer can be leveled by shimming the instrument. On 

the SVT300 dewar also rests on frame. Unlike the previous system this one has 4 

adjusting screws under the top table of the frame which allow the instrument to be 

adjusted. These screws have a thin piece of rubber between the blunt end of the screw 

and the dewar to avoid damage to the dewar. The dewar of the CCR4K systems is 

isolated from the mounting platform. In this case the dewar should be leveled by 

adjusting the separate frame associated with the dewar. 

Mounting the Source and Detector and Adjusting the Height 

 For each system the source driver and detector are mounted on tables on the 

frame. A picture of this area on each instrument is included in Figure A.4. These 

components are mounted a little different on each system. On the LHe6T system the 

driver is mounted in a cradle which is attached directly to the bottom table of the frame. 

The detector is mounted on a sliding bracket to the same surface. The ideal setup with 

this and the other system will have the source and detector positioned in the center of the 

windows. In the initial setup of this system it was found that the windows of the 

instrument were lower than the position of the source and detector. To alleviate this, the 

instrument was shimmed with an aluminum plate cut to fit the contour of the dewar. This  



241 
 

 

Figure A.4. Source and driver mounts on Mössbauer instruments. A, mounting area for 
the LHe6T system, the driver rests in the cradle on the left and the detector mounts in the 
bracket on the right. B, mounting area on the SVT-300 system, the driver mounts to a 
cradle that has been shimmed to the correct height the detector hangs from above on the 
left. C,D mounting area for the CCR4K systems, the newer system, C the detector 
mounts on the right and the driver mounts on the left. The older system D the detector 
mounts on the left and the driver rests on the platform on the right. 
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adjusted the height of the source and detector to the correct position relative to the 

windows of the dewar.  If the position of the windows is higher than the position of the 

source and detector the shim under the dewar could be removed (and perhaps replace 

with one not as thick). Instead, the source and detector could be shimmed to the correct 

height. If the windows are lower than the source and detector, the instrument could be 

raised or the source and detector could be lower. The former approach is preferred. 

 The driver for the SVT300 system is mounted in a cradle similar to that of the 

LHe6T system. The detector is mounted on a frame built from the bottom table of the 

frame. In this configuration the detector hangs, suspended from the top. The detector is 

mounted in an adjustable configuration such that it can move up or down. In the initial 

setup of this instrument the driver was shimmed to the correct height. If the position 

needs to be adjusted such that the source is in the middle of the windows one can either 

adjust the height of the shims on the driver or adjust the vertical orientation of the 

instrument. Aside from the 4 leveling screws under the upper table, this dewar also sits 

on two adjustable screws at the point where the dewar tapers into the tail. These screws 

can be adjusted to move the entire dewar up or down. 

 The CCR4K instruments feature similar construction however the mounting of 

the source and driver are somewhat different on each of these instruments. The 

instruments will be distinguished as the newer instrument (originally installed in room 

1137 in March of 2009) or the older instrument (originally installed in room 1136 in 

December of 2007). The newer instrument has the brackets on the source and detector 

which slide onto a complimentary bracket mounted to the lower table of the frame. The 
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height of these should be adjusted by inflating or deflating the air pads. The older 

instrument has the detector mounted in a similar configuration. The driver on the older 

instrument is fitted with legs extending from the cylindrical body. These allow the 

source to rest on a plate which slides onto a mounting bracket. Since the source is not 

mounted on this instrument it is necessary to ensure the driver is sitting in line with the 

detector. This issue could be alleviated by mounting the driver to the mounting bracket. 

Installing and Changing of the Source, and RSO Source Regulations 

 Further optimization of the instruments will require that the source has been 

installed. For day-to-day operation of these instruments, lead shielding has been installed 

to reduce radiation exposure. Operations involving changing or installing a source will 

feature the highest exposure to radiation. It is best to evaluate the procedure to be 

accomplished prior to starting them. To minimize exposure one should use a lead vest 

during all procedures. Work with the source as far from your body as possible, with arms 

stretched out.  

To change a source, remove shielding from the instrument as necessary to 

remove the driver. The source is incased in lead at the top of the driver except for the top 

where radiation is emitted. Place a sheet of lead over this opening to minimize personal 

exposure to radiation. With the driver sitting with the flat bottom on a benchtop, remove 

the three screws from the lead shielding top and remove the top lifting it vertically. 

Working quickly once the top is removed. Unscrew the source using a long 7/16” socket 

(normally used with a socket wrench) in which the inside surfaces are lined with strips of 

duct tape to unscrew the source. Place the assembly in a lead storage container (a “pig”), 
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jiggle the socket free of the source, and place the lead cover on the pig. Pigs should be 

stored with their lids on when a source is inside, and with their lids off when the source 

is installed on the driver. The steps in installing the new source are essentially the 

reverse of those for removing the source. The only difference would be that the source 

will need to be removed from the pig with a tweezers and unwrapped before it can be 

inserted into the socket tool.    

 The sources themselves do not retain identifying features so it is best to store the 

pig with the lid off in an area close to the instrument containing the source from that pig. 

Official TAMU paperwork should similarly be kept near the instrument and source to 

aid in the final disposal of the source. To remove a source from the lab it should be 

placed back into the cardboard box in which it was received. If the paperwork is kept 

with the source adequate information should be available to identify which source is in 

the box. The company to which the old source is shipped (SEE Co.) should be notified 

of the shipment. Then the Radiological Safety Office at TAMU (RSO) should be 

contacted, and they will come to the lab, pick up the source, inspect it, and then ship it to 

SEE Co.  

 Once per month the RSO will request a “leak-test” of each source. Remove the 

cotton swap that they provide from the bag, rinse it with ethanol and rub on or near the 

source. Replace it in the bag and sent to RSO. RSO staff will also conduct surveys of 

rooms which contain radiation by swabbing areas of the room with cotton pads. Rooms 

containing sources should be kept shut and locked. 
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Optimization of Source-Detector Distance 

 The intensity of the γ-rays which reach the detector is proportional to the square 

root of the distance between the source and the detector. Thus, optimal counts will be 

achieved when the detector and source are as close to one another as possible. This 

distance is limited by the diameter of the cryostat and the configuration of the mounts for 

the magnets. The optimal configuration for minimizing this distance has been 

incorporated in the design of the mounts in Figure A.2. For the CCR4K mounts, the 

brackets were incorporated into the mounting bracket that mounts the driver and 

detector. For the SVT300 no such brackets are present so the magnet was mounted on 

the vertical support beam. In each case the magnet mounts to 1/16” piece of steel to 

provide a surface on which the magnet will adhere. After mounting the magnet as close 

to the cryostat as possible without touching the cryostat, the source and detector are 

moved in as close to the cryostat as possible. Care should be taken to make sure the 

source is not inside of the magnetic field as this will affect the γ-rays. 

Identifying the Height of the Sample Relative to the Windows of the Cryostat 

To ensure that the sample is maximally exposed to γ-rays ensure that the height 

of the sample is optimally positioned in the path of the γ-rays. This can be accomplished 

by carefully finding the distance from the γ path relative to the top of the cryostat and 

adjusting the height of the sample rod relative to this measurement. A simple method to 

accomplish this involves using a rod that is longer than the height of the cryostat and 

attaching a flat sheet of lead to one end. The γ-rays will not penetrate the lead so a hole 

should be placed in this lead. While monitoring the counts on the software for the 
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spectrometer, move the rod up and down to maximize counts. This should indicate the 

height where the γ-rays are passing through the hole in the lead. This height should be 

carefully measured and the sample rod should be adjusted to the same height. 

Positioning the Sample Rod. 

Once the height of the sample is established, rotate the sample so that the γ-rays 

go through the sample. Once again, maximize counts on the software for the 

spectrometer. Counts should decrease as more hit the copper sample foot. By orienting 

the sample such that optimal counts are obtained more radiation is exposed to the sample 

resulting in a quicker collection time. While several different sample cups have been 

utilized in the lab, the majority of samples are put into cups which are tapered as 

depicted in figure A.1 and discussed in (226). When using tapered cups one should 

orient the sample such that bottom end of the cup is closest to the source and the top of 

the cup is closest to the counter.  

The second aspect of positioning involves centering the sample within the 

cryostat cross-section (Figure A.5E). If the sample is to the left or right (Figure A.5A 

and Figure A.5B) of the γ path, it will be exposed to less radiation, decreasing the 

efficiency of the measurement. If the sample is positioned closer to the source or 

detector (Figure A.5C and Figure A.5D) the geometry of the cup will be less efficient 

and less radiation will be exposed to the sample. For the LHe6T and SVT300 

instruments this positioning should be set. These dewars are both constructed such that 

the sample rod is fixed relative to the instrument.  Once the dewar is positioned, the  
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Figure A.5. Incorrect A-D, and correct E positioning of the sample in the γ path. 
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sample rod should also be properly positioned. Essentially, the only way this positioning 

will deviate is if the sample rod becomes bent. 

This type of positioning is a more critical issue on the CCR4K dewars, as the 

sample is essentially dangling within the cryostat, not touching the walls or floor of the 

cryostat besides the entrance hole (which is isolated from the rest of the cryostat via the 

bellows).  Unlike the LHe6T or SVT600, these dewers do not use cryogen to cool the 

sample; they use a closed cycle refrigerator which vibrates significantly. As a result, the 

dewar is connected to a source of vibration. To alleviate this, the instrument is designed 

with a rubber bellows located between the mounting of the sample rod and the dewar. 

This means that installation of the sample rod into the instrument no longer implies a 

solid construction as in the other dewars.  

To ensure the position of the sample rod is in the center of the γ path a simple method 

has been developed. First, remove the clamp which connects the bellows used to isolate 

the vibration of the dewar from the table which is used to mount the sample. The bellows 

should be compressed such that the sample rod becomes visible as is shown in figure 

A.6. The rubber portion of the baffles is taped to the bottom side of the top table. With 

the sample rod visible, inspect the orientation and move the dewar relative to the bottom 

table housing the source, detector and upper table for sample mounting. Orient the dewar 

such that the sample rod is in the middle of the dewar. As long as the sample rod has not 

become bent this should adjust the sample to the middle of the γ path. 
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Calibrating the Instrument 

 At this point the α-Fe foil should be placed in the instrument attached to the 

sample foot. To ensure the instrument is free of vibrations the spectrum of the foil 

should be obtained on a 2mm/sec velocity scale at RT. Once the spectrum has been 

collected to a sufficient signal-to-noise ratio (S/N), the data can be analyzed. This 

typically takes 15-60 min depending on the age and strength of the source. On this scale 

only the inner lines of the sextet of the α-Fe foil will be visible. The data should be 

folded without using a calibration file. Next the data can be fit with the “quadpr” 

parameter file on WMOSS. This doublet should have δ values around 250 channels 

(varies by instrument), ΔEq values around 200 channels (also varies by instrument), and 

Γ values around 30 channels. Using known properties of α-Fe foil (205), divide the ΔEq 

value in channels by the known value of 1.68 mm/sec to obtain a step (in 

channels/mm/sec.) This step can be multiplied by the value obtained for Γ. If this value 

is ~0.260 mm/sec or under, the linewidths are acceptable. If this value is greater than 

this, refer to the section below on line broadening. 

 The next step is to calibrate the instrument. This is done at RT, ideally with the 

α-Fe foil at the sample position. Data should be collected for all spectral velocity scales 

on which data will be collected; typically 5, 7, 9, and 12. Once spectra at each velocity 

scale have been collected to adequate S/N, the data can be analyzed using the WMOSS  
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Figure A.6. The baffles taped to the top plate. This method is used for centering of the 
sample rod in the dewar. 
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femetl4 or femetl6 parameter file (these files fit lines 4 and 6 respectively) depending on 

the velocity scale. These fits can then be saved on WMOSS to be made available for the 

“Use Previous Calibration?” option on the data folding function. 

Cooling the Instruments 

Data can be collected at this point. Most spectra will be collected at cryogenic 

temperatures. The cooling procedure for the two CCR4K systems is identical; that for 

the LHe6t and SVT300 systems differs somewhat. Prior to cooling any of the systems it 

is necessary to establish a vacuum on the cryostats; a few days are typically required for 

the pressure to drop to ~1-3 x 10-6 mbar. At that pressure, the CCR4K refrigerators may 

be turned on. Allow the temperature to drop to ~150K and then close the valve to the 

turbo vacuum pump. The pump efficiency is such that it will not drop much below 5-7x 

10-7 mbar. Assuming ideal gas behavior, Gay-Lussac’s law (P1/T1 = P2/T2) is applicable 

for a change in pressure and temperature at constant volume. For a system cooling 

currently at 7.0 x 10-7 mbar and 150K, closing the valve to the vacuum should reach a 

final pressure of 2.33 x 10-8 mbar once the system reaches 5K. This phenomenon is 

referred to as cryopumping. This is lower than the pressure which would be reached by 

leaving the system under pumping conditions.    

For the LHe6T and SVT300 systems, the final temperature of 4.2K is reached by 

cooling the system with liquid He (LHe). The LHe cannot be added until the system has 

been precooled with liquid N2 (LN2). If the system is allowed to pump until it 

equilibrates at 77 K then cryopumping will only be in effect for the final 73 degrees. 

Therefore it is best to allow these systems to pump a longer time and close the valve at 
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room temperature. A system at 1.0  x 10-6 mbar at 298 K will drop to a pressure of 1.4 x 

10-8 mbar at 4.2K. On the other hand leaving the valve open until the system equilibrates 

at 77K will result in a pressure of ~ 7 x 10-7 mbar. Once equilibrated to LHe 

temperatures this system will only reach 3.8 x 10-8 mbar.  

Sample cooling in the CCR4K and LHe6T systems relies on exchange gas. In 

these instruments the sample chamber is isolated from the atmosphere and low pressures 

of He gas are put back into the system. This gas is cooled by the cryogen in the LHe6T 

system or by contact with the cold head in the CCR4K system. In the SVT300 system, 

the sample chamber is connected to the He reservoir by a needle valve. The introduction 

of the cryogen to the sample space keeps the sample cold. The sample space in this 

system is open to the atmosphere but positive pressure from the cryogen introduced to 

the sample space keeps this chamber full of helium gas.  

Loading Samples into the Mössbauer Instruments 

The process is different for each system, and is most involved for the LHe6T 

system. Since the sample chamber is cooled by exchange gas it is still under vacuum 

relative to the atmosphere. This means the sample space needs to be filled to 

atmospheric pressure prior to putting the sample rod into the instrument. This can be 

done with 99.997% He gas. However it is best to precool this gas by passing it through a 

coil of tubing chilled in LN2. Once the sample chamber has been equilibrated to 

atmospheric pressure the system is ready for the sample rod. A sample should be 

inserted into the sample foot and tightened with the set screw. This should all be done in 

a dewar filled with LN2. Once the sample is inserted in the sample rod it may be inserted 
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into the instrument. The relatively warm sample rod will boil the LHe so gas will be 

exhausted as the rod is inserted. The sample rod should be mounted using 4 screws. At 

this time a vacuum should be pulled on the sample space. It is best to pull a vacuum on 

the system until the gauge on the front of the instrument reaches the minimum pressure. 

This should be done in a short period of time (~1 min). At this point the tubing system 

used to prechill the refill gas should be removed to increase the efficiency of the 

vacuum. Then, the system should be left under vacuum until a pressure of ~10 mtorr is 

reached as monitored by the external pressure gauge.  

To put a sample into the SVT300 dewar, simply remove the retaining collar and 

pull the sample rod out. The sample can then be inserted in the sample foot, and the 

sample rod can be replaced into the instrument. Finally the retaining collar should be re-

affixed to the instrument. 

To put a sample into the CCR4K systems, pressurize the system with 99.997% 

He gas. With these systems it is not necessary to prechill the gas. The sample should be 

inserted into the sample foot, and then the sample rod can be inserted into the 

instrument. The 4 screws should be tightened and a vacuum should be pulled on the 

sample space. Pull a vacuum until the gauge on the instrument reaches a minimum 

value. The system should be refilled with He gas until the gauge reads ~ -25 mmHg. Fill 

the system to this pressure as the system equilibrates, as adding gas when the instrument 

is warm will result in a lower pressure upon equilibration. 

For all systems, once the sample has been installed, the W202 program should be 

opened. This program is used to define the windows of radiation which will be counted. 
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An appropriate voltage should be sent to the detector (typically ~1500-2000V depending 

on the system). Once the spectrometer stabilizes, a plot of the radiation will display. Two 

windows are used including one which corresponds to 2KeV of energy and one at 14.4 

KeV. The 2KeV peak should be the first peak on the left and the 14.4KeV should be the 

third peak. Windows should be set on these peaks and then sent to the W202 using the 

“send windows” button.  

At this time the W302 program should be opened. If a sample was in the 

instrument prior to loading the current sample, the user should ensure the previous data 

has been saved and renamed according to the file name on the log. Once this has been 

accomplished the appropriate velocity scale should be selected. If a different scale is 

chosen than the previous scale the software will prompt you to “wait” and then begin 

data collection. If the same scale is desired the user will need to choose the “clear data” 

option and the spectrum will begin to collect. Wait until the temperature of the sample 

has equilibrated prior to the start of data collection. 

Changing the Temperature of the Instrument 

 All four spectrometers have temperature controllers to allowing the collection of 

spectra at different temperatures. High-temperature data should be collected using the 

CCR4K systems as heating the other systems will consume additional He thereby 

increasing costs. Each CCR4K systems has a different temperature controller and a 

slightly different procedure. The older system is equipped with the SEE Co. W106 

temperature controller. This hardware is capable of heating two channels at once. 

Identify which channel the sample rod is attached to prior to adjusting the data. Once the 
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channel has been identified, press the “menu” button; this will begin to toggle through 

available options. Press the button several times until you see the option for the desired 

channel set point.  Press the “ok” button input the desired temperature and press the “ok” 

button again. This should take the controller back to the main display. To increase the 

temperature flip the toggle switch for the appropriate channel to “on.” The temperature 

should increase to the set point. 

The newer CCR4K system is equipped with the LakeShore 325 temperature 

controller. This system only allows heating on one channel, input A. For this reason 

make sure that the sample rod is connected to input A and that the cold head is 

connected to input B. To increase the temperature, press the “set point” button, and then 

the desired temperature. Press the “enter” button followed by the “heater range” button. 

There are two heater ranges; the low setting will only be effective for small increases in 

temperature (up to ~30K) so the high range should be used for heating to e.g. 100 K. 

Following this the user should see the temperature increase to the set point. 

Applying a Magnetic Field on the LHe6T System 

 The LHe6T system has a LakeShore 625 superconducting magnet power supply 

for charging the superconducting magnet. To avoid quenching the magnet and losing 

LHe, it is important to always know the field at the magnet. This value should always be 

reported in the log file. It is also good practice to be able to identify the field at the 

magnet using an alternative method such as writing it down and leaving the information 

near the power supply. Once the user is confident of the field at the magnet, the power 

supply should be turned on. Once the power supply has reached the main screen, the user 
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can press the “output setting” button. This will allow the user to type the current field 

into the power supply. The user should the press the “enter” button if the field is not 0; 

the value of Output 1 should change to the entered value. Once the power supply is at 

the same field as the magnet, press the “PSH On” switch. The blue light above this 

switch will blink for ~10 sec then stay on solid. This will turn the persistent switch 

heater on. At this time the field at the magnet will match the output field on the power 

supply. To increase or decrease this value, choose the “output setting” and input the 

desired field. After pressing “enter” the field will change to the desired setting. Once the 

desired field has been met, press the “PSH off” switch. The blue light will blink again, 

then stay off. At this time the power supply can be turned off. 

Increasing S/N with an Altered Sample Foot 

 Sample feet allowing larger sample volumes have been designed for situation 

where the quantity of sample is not limited. The standard cup holds 1 mL while the 

larger cups developed here (along with a larger sample foot) hold ~3 mL. Figure A.7 

shows the various sample feet used in the instruments. The larger sample cup will absorb 

more of the γ-rays which will result in a better S/N. 

Common Problems Experienced with the LHe Systems 

 When lines appear broadened, the first thing to check is whether the air pads 

have deflated. If so, they should be inflated; a manual bicycle type air pump is preferable 

as this give maximal control. When inflating it will be necessary to level the instrument 

again and realign. If this does not solve the problem it may be indicative of a more 

serious problem which would need to be diagnosed individually.  
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Figure A.7. Different sample feet used on the TAMU instruments. 
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Another commonly encountered problem is a decrease in counts beyond that 

associated with the decay of the source. This problem may arise from the accumulation 

of snow-like material in the dewar which may be absorbing γ-rays. In this case the dewar 

should be warmed to room temperature and pumped dry; while warm, an increase in the 

count rate should be observed if this was the problem. Another problem may be 

increased use of the cryogen. This may be indicate that the dewar’s vacuum has gone 

soft. The system should be warmed to room temperature and a rigorous vacuum should 

be reestablished. 

Common Problems with the CCR4K Systems 

The inherent vibrations associated with these systems render them more 

susceptible to line broadening. These vibrations can cause the instrument to move out of 

alignment gradually. Another common problem will be an increase in the minimum 

temperature the system can obtain. At times the refrigerator will fail to turn on. 

Occasionally there will be a knocking sound produced at the cold head. Each of these 

problems and potential solutions will be discussed in the following sections. 

Line Broadening: Causes and Solutions  

Occasionally, the CCR4K system will show linewidth broadening. The 

linewidths should be checked periodically with the α-Fe Foil. By performing periodic 

checks not only will it help to identify the problem but it will also serve as a gauge of the 

integrity of the data collected when line broadening is observed (i.e. the user will know 

data collected prior to the last linewidth check which produced good results was 
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reliable.)  All diagnosis listed below includes collecting spectra of α-Fe Foil at a velocity 

scale of 2 mm/sec. 

Line broadening is most commonly the result of a component of the instrument 

mounted to the bottom table of the frame making contact with the vibration producing 

cold head. Most commonly one will find the magnet mounts in contact with the dewar 

where it flares out for the cold head. This typically results from the air pads becoming 

deflated. If this is found to be the case, add air to the pads. On the CCR4K instruments 

the height should be adjusted such that it is 113 mm from the bottom of the upper table 

to the center of the junction located immediately below the vacuum gauge (refer to 

figure A.8). Once this height is correctly adjusted, ensure that no components from the 

mounting table are in contact with the cryostat. Concurrent with height adjustment the 

instrument should be leveled and the alignment checked.  

If linewidth broadening persists a good strategy is to remove the clasp at the 

bellows and tape them to the upper table. Collecting a spectrum in this fashion will 

indicate if contact to the cryostat is being made in a location other than this union. If this 

produces a spectrum devoid of broadening the user should inspect the cold head position 

and ensure that it is concentric with the baffles. Reattach the baffles and inspect the 

instrument from above the upper table. By looking down into the sample space one 

should see the top of the inner walls of the sample chamber centered in reference to the 

opening of the sample mount. The dewar should be adjusted if this is not the case. If 

broaden lines are obtained in the previous step and no contact to the cryostat is visible on 

the outside of the instrument it is possible there is contact between the sample rod and 
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the walls of the cryostat on the inside of the instrument. Use great care to ensure both the 

mounting platform and the cold head are level. If the linewidths are still broadened the 

sample rod should be inspected for visible damage such as a bend which might cause 

such contact. 

If none of these strategies produces an acceptable linewidth measurement it may 

be an indication of a more serious problem. Such problems require further diagnosis for 

a solution. 

Increases in the Minimum Obtainable Temperature 

Over time the minimum temperature of the CCR4K system will slowly increase. 

Several problems may result in this condition. The first and simplest problem may be the 

vacuum in the dewar going soft. To fix this the refrigerator should be turned off and the 

instrument should be warmed to room temperature. With the instrument warm the 

vacuum should be re-established. Often the dewar going soft will result in condensation 

on the outside of the dewar. If this is observed the preceding steps will typically be 

effective.  

If re-establishing the vacuum does not result in lowering of the minimum 

temperature it may be an indication of contaminating gas in the system. The refrigerator 

features an absorber to deal with this. The manufacturer (Sumitomo Cryogenics)  
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Figure A.8. Height of the CCR4K systems. The air pads on the CCR4K systems should 
be inflated such that the junction indicated by the bottom horizontal red line is 113mm 
from the bottom of the upper table. 
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suggests the absorber should be replaced every 15,000 hours of operation. If the system 

has become contaminated it may also be necessary to purge the system. The 

manufacturer has provided instructions for such purposes. Finally total equipment failure 

might be the culprit for increase in temperature. This will typically include damage to 

the cold head or refrigerator. In such cases the appropriate part will need to be shipped to 

Sumitomo for repair. For the refrigerator one simply needs remove the He lines and ship 

the compressor to the manufacturer. If the cold head is damaged the user will need to 

remove it from the instrument using the procedure outlined below. 

The Refrigerator Will Not Turn On 

 A few issues may result in the refrigerator not turning on. If this problem is 

experienced the user should first ensure that power is being supplied to the unit and that 

the circuit breaker on the back of the instrument has not tripped. Another situation which 

will result in this problem is the absence of chilled water. The user should ensure that the 

refrigerator is supplied with chilled water. Another cause for the refrigerator to stop 

working is inadequate pressure of He gas in the system. This can be checked at the 

gauge on the front of the instrument. Only 99.999 He gas should be added to the system. 

The pressure of He gas in the system should be ~1.7 mPa when the refrigerator is off and 

~2.3 mPa when the system is on. If the compressor still does not turn on it may have 

become damaged and will likely need to be repaired or replaced. 

Knocking at the Cold Head 

After several months of continuous operation it is common to hear a knocking 

noise coming from the cold head. Initially this noise will be intermittent. Changing the 
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pressure in the sample space by adding or removing He gas will typically alleviate this 

problem. This is usually an indication that the cold head is beginning to fail. After this 

noise has begun the cold head will eventually reach a state where the knocking persists. 

If this is the case it will need to be removed from the instrument and sent to the 

manufacturer to be repaired or replaced. 

Removing the Cold Head from the Instrument 

In cases where the cold head needs to be repaired or replaced the following 

procedure should be used to remove the cold head. Prior to starting this repair the sample 

rod should be removed and the instrument should be warmed to room temperature. Pull 

the dewar out from under the mounting platform to remove the cold head. First remove 

the mounting brackets on the bottom plate of the frame which would otherwise prohibit 

this process. Next remove the He gas return and supply lines from the back of the unit. 

Prior to pulling the dewar out, the clasp connecting the dewar to the baffles should be 

removed. Remove the screws at the top of the upper table and completely remove the 

baffles to stop them from hanging in the absence of the support of the dewar. The gas 

line for refilling the sample chamber should be pulled off of the hose barb. The dewar 

should now be free and can be removed from beneath the mounting platform. At this 

point the dewar will be mounted on a smaller double-tiered frame. 

The CCR4K dewar comes apart into several pieces. The first step in 

deconstructing the dewar involves removing the outer vacuum shielding. The user 

should ensure that the vacuum has been released from this space before continuing. To 

remove the outer shield the wired connection for the temperature sensor should be 
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removed first. This is a round receptacle on the rear of the instrument near the bottom. 

The receptacle is attached to the outer shield by 3 screws. The wires should be long 

enough to pull the receptacle out of the dewar several inches. The receptacle will be 

connected to the instrument with 6 wires. To maintain the length of the wires, use a 

soldering iron to remove the wires from the receptacle. Allow the iron to warm up and 

simply touch the solder pool on the lead of the wire you wish to remove. It is best to do 

the process systematically, removing one wire at a time and labeling it with masking 

tape. The wires will be connected to leads A-D, J, and K. Once all the wires have been 

disconnected, feed the wires back through the hole on the dewar. Make sure that the 

labels are not lost during this and subsequent steps.  

Remove the six screws holding the sample chamber refill manifold that is 

attached to the thermal shielding located at the top of the dewar (the junction referred to 

in figure A.8). One screw is located under the vacuum gauge, and it may be necessary to 

rotate the gauge 90° to access it. Lift the part/piece and free it from the instrument. 

Remove the 8 screws which mount the shielding to the upper table of the small platform. 

Lift the vacuum shielding until it is free from the rest of the system.  

The thermal shielding should now be visible. This part is wrapped in foil and 

attached to the cold head on a small circular structure incorporated in the cold head 

design by 6 screws. A small clamp on top of this shielding should be loosened to allow 

the thermal shielding to be removed. Then remove the 6 screws and lift the entire shield 

free from the instrument. These screws attach to the thermal shielding in a bottom up 

configuration, with threads oriented away from the floor. 
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After the thermal shield is removed the final part attached to the cold head is the 

sample chamber. This chamber houses the temperature sensor so it is a good idea to 

wrap the wires around the chamber and place a small piece of tape on them to keep them 

out of the way. Six more screws attach the copper portion of the sample chamber to the 

copper portion of the cold head. Removing these screws allows the sample chamber to 

be removed. After this step only the cold head mounted on the small frame will remain.  

To remove the cold head, first remove the 8 screws which go through the cold 

head and into the bottom of the upper table of the small frame. Two of these screws are 

difficult to remove because of the protrusion on the cold head where the He gas lines 

connect. Removing these will require a modified hex key which has a shortened end. 

Once these screws are removed, the cold head will be loose on the small frame. To 

remove the cold head the 4 screws holding the small frame together must be removed. 

The cold head can then be removed and packed in the box supplied by the manufacturer. 

All screws and parts should be cataloged and stored until the instrument is reassembled.  

Putting the Instrument Back Together 

After the cold head has been repaired the instrument must reassembled. The first 

step is to mount the cold head on the frame. Prior to doing this, clean the surfaces (both 

the cold head and the top plate of the frame which will make contact) with an ethanol-

moistened Chemwipe. The O-ring and corresponding groove on the platform should be 

greased to ensure a good seal; this part of the system will be under high vacuum. After 

the cold head has been placed on the small frame, the top table can be carefully lowered 

over the cold head. The 8 holes on the top side of this table are spaced such that there are 
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two orientations for the holes. The outer vacuum shield should be inspected to ensure 

this piece is installed correctly. It is easiest to reattach this table to the platform and then 

replace the 8 screws which mount the cold head to this surface. It is best to install these 

and all subsequent screws in an alternating fashion to allow proper seating of the various 

components.   

Once the cold head is mounted the sample chamber can be attached. At this point 

the tape on the wires of the temperature sensor, used to affix the wires to the sample 

chamber, should be removed. The wires should be wrapped around the cold head until 

the ends are approximately located near the hole in the vacuum shield. The wires can be 

attached to the cold head using dental floss. With the sample chamber back in place, the 

thermal shield and its retaining clamp should be reinstalled. Next the vacuum shield 

should be reinstalled. Prior to installing this, the O-ring on the top side of the upper table 

of the small platform should be greased. As the vacuum shielding is being replaced, pull 

the wires for the temperature sensor through the hole for the receptacle.   

Next the wires should be re-soldered to the receptacle. Typically the solder 

retained on each lead is adequate for this process. Reattach each wire carefully, making 

sure it is returned to the proper lead and that the connection to the lead is solid. Once the 

receptacle has been rewired, apply grease to the O-ring and tighten the three screws. 

Finally, reinstall the sample chamber refill manifold which couples to the thermal 

shielding. Identify 4 O-ring grooves and three O-rings on this piece. Each O-ring should 

be greased and replaced in the proper position. This piece can be lowered down onto the 

top of the instrument and the final 6 screws tightened. 
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The dewar should next be moved back into place under the mounting platform. 

The He gas lines should be attached to the back of the cold head. The cold head should 

be leveled and aligned and then the baffles can be reinstalled and clamped to the dewar. 

Following these steps the system can be setup as outlined above.  
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