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ABSTRACT

Ionic Polymer-Metal Composites

Thermodynamical Modelling and Finite Element Solution.

(August 2012)

Jayavel Arumugam, B.Tech., Indian Institute of Technology Madras

Co–Chairs of Advisory Committee: Dr. Arun Srinivasa
Dr. J. N. Reddy

This thesis deals with developing a thermodynamically consistent model to sim-

ulate the electromechanical response of ionic polymer-metal composites based on

Euler-Bernoulli beam theory. Constitutive assumptions are made for the Helmholtz

free energy and the rate of dissipation. The governing equations involving small

deformations are formulated using the conservation laws, the power theorem, and

the maximum rate of dissipation hypothesis. The model is extended to solve large

deformation cantilever beams involving pure bending which could be used in the

characterization of the material parameters. A linear finite element solution along

with a staggered time stepping algorithm is provided to numerically solve the govern-

ing equations of the small deformations problem under generalized electromechanical

loading and boundary conditions. The results are in qualitative and quantitative

agreement with the experiments performed on both Nafion and Flemion based Ionic

Polymer-Metal Composite strips.



iv

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Ionic Polymer Metal Composites . . . . . . . . . . . . . . . 1

B. Literature Review . . . . . . . . . . . . . . . . . . . . . . . 3

C. Designer’s Concern . . . . . . . . . . . . . . . . . . . . . . 4

D. Different Modeling Approaches . . . . . . . . . . . . . . . 5

E. Scope of the Present Study . . . . . . . . . . . . . . . . . . 5

F. Contributions of the Thesis . . . . . . . . . . . . . . . . . 6

G. Organization of the Thesis . . . . . . . . . . . . . . . . . . 7

II MODEL FORMULATION . . . . . . . . . . . . . . . . . . . . . 8

A. Mechanisms for Electro-mechanical Coupling . . . . . . . . 8

B. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 10

C. Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

D. Helmholtz Free Energy . . . . . . . . . . . . . . . . . . . . 12

E. Enforcing Conservation of Mass for the Diffusing Species . 13

F. Rate of Dissipation . . . . . . . . . . . . . . . . . . . . . . 15

G. Governing Equations . . . . . . . . . . . . . . . . . . . . . 16

III LARGE DEFORMATION . . . . . . . . . . . . . . . . . . . . . 17

A. Helmholtz Energy and Rate of Dissipation . . . . . . . . . 17

B. Governing Equations . . . . . . . . . . . . . . . . . . . . . 18

C. Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . 19

D. Transient Problem . . . . . . . . . . . . . . . . . . . . . . 20

IV LINEAR FINITE ELEMENT SOLUTION . . . . . . . . . . . . 22

A. Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 22

B. Conservation of Mass in Each Element . . . . . . . . . . . 23

C. Helmholtz Free Energy and The Rate of Dissipation . . . . 23

D. Governing Equations . . . . . . . . . . . . . . . . . . . . . 24

V RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A. Parameters Used for Simulation . . . . . . . . . . . . . . . 26

1. TBA+/Flemion IPMC Strip Parameters . . . . . . . . 26



v

CHAPTER Page

2. Li+/Nafion IPMC Strip Parameters . . . . . . . . . . 26

B. Comparison with Experimental Data . . . . . . . . . . . . 27

C. Simulation of The Large Deformation Problem . . . . . . . 28

D. Simulation of the Transient Response Under Sinusoidal

Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

VI CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A. Summary of Work Done . . . . . . . . . . . . . . . . . . . 34

B. Further Work . . . . . . . . . . . . . . . . . . . . . . . . . 34

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

APPENDIX C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



vi

LIST OF FIGURES

FIGURE Page

1 A schematic of a typical IPMC strip and its actuation principle [1] . 2

2 Tip displacement measurement as a function of time for two Flemion

based samples with different cations, Li+ (left) and TBA+ (right) [2]. 3

3 Schematic of an ionic gel cantilever beam [1] . . . . . . . . . . . . . . 9

4 Schematic of a beam showing the kinematics. . . . . . . . . . . . . . 11

5 Schematic showing the notation of flow variables and the two con-

trol volumes in a part of the beam. . . . . . . . . . . . . . . . . . . . 14

6 Schematic of a beam showing the kinematic variables in the large

deformation pure bending formulation. . . . . . . . . . . . . . . . . . 17

7 Cantilever beam showing the spatial discretization. . . . . . . . . . . 19

8 The modified Euler-Bernoulli beam element showing the general-

ized displacements and forces. . . . . . . . . . . . . . . . . . . . . . . 22

9 Variation of Tip deflection with Time on application of a step

voltage TBA+/Flemion IPMC strip compared with experimental

data from [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

10 Variation of Tip deflection with Time on application of a step

voltage for a Li+/Nafion IPMC strip compared with experimental

data from [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

11 Variation of Tip deflection with Time on application of a step

voltage and different end forces for a TBA+/Flemion IPMC strip . . 29

12 Variation of Tip deflection with Time on application of a step

voltage for different non-dimensionalized versions of the convec-

tive heating constant in the rate of dissipation . . . . . . . . . . . . . 30



vii

FIGURE Page

13 Simulation of Large Deformation Model for TBA+/Flemion IPMC

strip on application of a step voltage of 5V . . . . . . . . . . . . . . 31

14 Simulation of Large Deformation Model for TBA+/Flemion IPMC

strip on application of a step voltage of 10V to the first half of

the beam and -10V to the seconde half of the beam . . . . . . . . . . 32

15 Simulation of Large Deformation Model for TBA+/Flemion and

Li+/Nafion IPMC strips on application of a sinusoidal input volt-

age of 1V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



1

CHAPTER I

INTRODUCTION

A. Ionic Polymer Metal Composites

Materials exhibiting coupled phenomena such as temperature affecting mechanical

deformation and vice versa (Shape Memory Alloys, thermo-elastic materials), could be

put to intelligent use in many engineering applications. Such materials are classified

as ‘Smart’. Ionic Polymer Metal Composite (IPMC) strips [1] are an example of one

such material. IPMC strips respond to electric potential applied across two electrodes

(see Figure 1) and undergo mechanical deformation. Conversely, when the strip is

bent, an electric potential is developed across the surface of the strip. Given its large

bending deflection with low actuation voltage input property and the converse effect,

IPMC strips show promise in engineering applications such as in actuators, sensors,

and energy and force transducers [4]. Further IPMC strips have been used in space

and planetary applications like soft robotic actuators (dust wipers [5]), biomedical

applications (gastrointestinal endoscopic devices [6]), and artificial muscles [7]. A

wider list of applications ranging from mechanisms, robotic toys and actuators, human

machine interfaces, and planetary and medical devices can be found in the literature

[8]. The practical difficulties involved and directions to address those difficulties are

discussed in [5].

IPMC strips are made up of an ionic polymer, like Nafion (perfluorosulfonate

made by DuPont) or Flemion (perfluorocarboxylate, made by Asahi Glass, Japan)

[5], which has fixed anions in the polymer network. This inonomeric polymer net-

work is neutralized with a ionic solution with solvents like water and cations like

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. A schematic of a typical IPMC strip and its actuation principle [1]. The IPMC

is composed of an ionic polymer surface composited with a conductive medium

like platinum for a few microns deep. The IPMC strip bends toward the anode

when an electric potential is applied across the surface of the strip.

(Li+) or tetrabutylaluminium ions (TBA+). The surface is composited with a con-

ductive medium like platinum or gold electrodes. A schematic of an IPMC strip is

shown in Figure 1. When an electric potential is applied between the two surface elec-

trodes, the IPMC strip bends. Redistribution of the mobile ions and water molecules

due to various physical processes like diffusion, electrophoretic solvent transport and

diffusion-deformation coupling gives rise to the electromechanical behavior.

The type of polymer base (Nafion or Flemion), the mobile cations [9], and the

type of solvent [10] along with their composition affects the reponse of the IPMC strip.

Under the application of a step voltage, Nafion based IPMC strips bend towards the

anode. Flemion based IPMC strips show an initial fast bending movement towards the

anode side and then a slow relaxation towards the cathode side. The tip displacement

response, when a step voltage is applied differs, depending on the type of free mobile
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Fig. 2. Tip displacement measurement as a function of time for two Flemion based

samples with different cations, Li+ (left) and TBA+ (right) [2].

cations even for a Flemion based sample, as shown in Figure 2.

B. Literature Review

A recent review of the current state of understanding of IPMC strips can be found

in [11]. Experimental works include the study of the electromechanical responses

of IPMC strips [9], their characterization, effect of different polymer base, solvent

[10], and counterions on the chemical, physical, and electromechanical properties

of IPMC strips and elucidation of underlying mechanisms. A review of different

IPMC manufacturing techniques involving the compositing process and the surface

electroding process can be found in [12].

Another area of research is development of theoretical models and concepts for

the mechanisms that give rise to the coupled electro-mechanical response [13]. These

models and theories are used to study how individual consituents of an IPMC strip

affects the overall electromechanical response and various physiochemical and me-

chanical properties of IPMC strips. This facilitates the design of IPMC strips which

show efficient, robust, and reliable response. Based on the micromechanical models

like [14] it has been shown that it is possible to tailor the properties of IPMC strips

[15]. Micromechanical models like [14] and multiscale models built on well established



4

principles [16] are one of the first reported studies to come up with hypotheses for

actuation mechanisms.

Another approach in modelling is to macroscopically and phenomenologically

capture the force-voltage-beam configuration response so that they can be used in

the design and analysis of systems involving IPMC strips as components. Given that

the state of many of these applications are still conceptual and under development,

these models would be of significance.

C. Designer’s Concern

The typical beam or plate like configuration of the IMPC is governed by the need for

an electric field across the polymer. When the IPMC strips are used in actuators, in-

formation about the beam configuration as a function of time under the application of

external mechanical loads and electric potential would be useful. This calls for an ac-

tuator model which relates electrical input to the mechanical output. When it is used

in sensors, knowledge relating the electrical potential and charge developed across the

surface of the strip as a function of time when the strip is deformed would be useful.

This calls for a sensor model which relates mechanical input to the electrical output.

State-space models offering ordinary differential equations to simulate these complex

electromechanical responses are of immense value for material characterization and

design of applications (as emphasized in [17] and [3]).

It would be beneficial in the design process to use a model based on physi-

cal principles which are thermodynamically consistent and addresses all the above

requirements. Such a model, if versatile, would also be able to simulate different

electromechanical responses (for eg. Figure 2).
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D. Different Modeling Approaches

Amongst others, thermodynamically consistent ([18] and [19]), physics based ([20]),

mixture theoretic [21] and micromechanical ([22]) models have been reported. Be-

ing interested more in the micromechanical behaviour rather than an input-output

response, these models would be better suited for accurate analysis at final stages of

design.

The need for a macroscopic beam model from a designer’s perspective has been

discussed in [17]. It provides one such model based on the micromechanical ap-

proaches ([14] and [23]). Such models, based on beam theories, are of particular

interest due to usability and lesser computational costs. The drawback of the formu-

lation given in [17] is that it is neither reduced to a state-space form nor shown to

simulate the transient electromechanical response.

A phenomenological state-space actuator model relating the curvature of the

beam to the charge accumulated at the surface is mentioned by [24]. A modifica-

tion to that model which captures different electromechanical responses [3] has been

proposed. Neither of the models reported in [17] and [24] ensures thermodynamic

consistency as seen in [18] and [19].

E. Scope of the Present Study

Our hypothesis is that it is possible to develop a thermodynamically consistent model

based on Euler-Bernoulli beam theory so that it simulates the electromechanical re-

sponse of IPMC strips. We restrict ourselves to actuation in air.

Many models reported either capture the actuation behavior of IPMC strips or

the sensing behavior ([25] and [26]). The model proposed here can be used for both

actuation and sensing applications as in [27] and [17].
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The approach proposed here finds trade-offs between simplicity and usability ([3]

and [17]), usefulness of the state-space approach ([3]), ability to predict different re-

sponses ([28] and [3]), applicability in both sensing and actuation devices ([17]) while

ensuring thermodynamical consistency ([18] and [19]) and making use of the study

of underlying mechanisms ([16] and [14]). We also extend the model to handle large

deformations involving pure bending since IPMC strips have very low modulus (of the

order of GPa) and the deformations involved in actuator and sensor applications are

high compared to beams designed using other smart materials like piezo-electric. This

extension would better address this concern and would be useful for characterization

of material paramaters from experimental data. We also provide an appropriate nu-

merical technique to solve the small deformation beam problem under general loading

conditions.

F. Contributions of the Thesis

Upon the completion of this work we will obtain,

• a thermodynamically consistent model to simulate the electromechanical re-

ponse of IPMC strips based on classical beam theories using minimal constitu-

tive variables.

• a model to handle large deformations involving pure bending.

• a linear Euler-Bernoulli finite element solution of the model proposed to handle

general electromechanical loading and boundary conditions.

We analyze the performance of the model by comparing the simulation results with

available experimental data reported ([3]). We show that a simple model could sim-

ulate the complex electromechanical behavior of IPMC strips.
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G. Organization of the Thesis

• In Chapter II - Mechanisms, assumptions and small deformation bending prob-

lem formulation

• In Chapter III - Extension of the model to solve large deformation of cantilever

beams

• In Chapter IV - Linear finite element solution

• In Chapter V - Results
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CHAPTER II

MODEL FORMULATION

We define the kinematics for the deformation of the beam. We make constitutive

assumptions for the Helmholtz free energy, the rate of dissipation. We derive the

governing equations using the power theorem and the maximum rate of dissipation

hypothesis subject to the constraint of mass conservation. We will start with a

detailed list of mechanisms and simplifications that lead to the model formulation.

A. Mechanisms for Electro-mechanical Coupling

For the pruposes of this work, we will consider an IPMC strip to be a beam of length

L and thickness 2h initially oriented along the x axis, and acted upon by external

mechanical loads. An electric potential V (x, t) is applied across the two plates. We

are interested in obtaining the shape change in the beam due to the applied voltage

and also the voltage obeserved due to the deformation of the beam by an external

forces.

There are four parts to modelling the behaviour of IPMC strips namely,

• Mechanical behavior

• Electrical behavior

• Diffusion and electrophoresis

• Coupling between the above three

Under the actions of the external mechanical loads and the application of the

electric potential across the electrode surface, redistribution of water molecules and
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cations occur, which cause the strip to bend. This redistribution of particles have

been reported (in [14] and [16]) to be due to the following processes,

Fig. 3. Schematic of an ionic gel cantilever beam [1]. When an electric potential is

applied between the two electrodes, an electric field is created within the strip.

This electric field results in the movement of ions and the solvent molecules.

• diffusion of mobile cations and water molecules due to a gradient in chemical

potential.

• electrophoresis - the motion of charged particles dispersed in a solvent under the

influence of an electric field. The ions are hydrated and hence the movement of

ions also result in the movement of water molecules [14].

• moment of water molecules and cations due to diffusion-deformation coupling.

These aspects are schematically shown in Figure 3.
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B. Assumptions

We make the following assumptions in the formulation of the model.

• IPMC strips are thin and hence we neglect the effects of shear strain and for-

mulate a Euler-Bernoulli beam theory.

• Water molecules move due to diffusion-deformation coupling and we neglect

this effect for the mobile cations following [16].

• The electrical behaviour of IPMC strips in a circuit has been modelled us-

ing equivalent electrical circuits ([29], [30], [3]). We simplify this approach by

considering just a resistor and a capacitor in series for the equivalent electri-

cal circuit. We will show that this simplication, with respect to other effects

considered in the model, is sufficient to simulate the electrical behaviour.

• The concentration field is assumed to vary linearly along a given cross section.

This assumption has been already reported in [17].

• Diffusion of water molecules along the length of the beam is neglected and only

that which occurs along any lateral section of the beam is considered. Similar

assumptions have been made by [17] where they consider movement of cations

only along the lateral section of the beam.

• Restricting the IPMC actuation and sensing in air, we consider no mass flux in

and out of the strip.

• Kinetic energy/mass effect of the beam neglected as the inertial effects are

too fast (of the order of micro seconds) compared to the time scale of the

electromechanical response (order of seconds) that we are interested in.
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C. Kinematics

x

v0(x)

y

Fig. 4. Schematic of a beam showing the kinematics.

The x and y displacements of the centerline of the beam due to the combination

of external load and the electric field is given by (shown in Figure 4)

u1(x, y) = −yv′0(x) (2.1a)

u2(x, y) = v0(x) (2.1b)

where (.)′ denotes derivative with respect to x. The linearized strains are given by

εxx = −yv′′0(x), εyy = 0, εxy = 0 (2.2)

Let C(x, y, t) be the concentration of the water and it is assumed to be of the form

C(x, y, t) = C0(x, t) + yC1(x, t) (2.3)

Next, we make constitutive assumptions for the Helmholtz free energy and the

rate of dissipation. We make use of these kinematics to enforce conservation of mass

and to derive the governing equations from the constitutive assumptions.
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D. Helmholtz Free Energy

We consider a Helmholtz free energy formulation for the IPMC beam problem. The

beam is assumed to be a combination of an electrical circuit and a poro-elastic beam.

We model the response of IPMC strips in an electrical circuit as a combination of a

capacitor and a resistor in series. Poro-eleastic beam refers to an elastic beam with a

diffusing species where diffusion and deformation are coupled. We consider two types

of coupling terms in the free energy.

• Coupling between the concentration of water molecules and the mechanical

deformation as shown in [16].

• Coupling between the variation in water concentration and the charge at the

surface. It is noted that the cations move under the influence of electric field

which appears due to the charge developed at the surface electrodes. As stated

earlier, water molecules also move as the cations move due to hydration.

Similar to [31], we assume a quadratic form for the Helmholtz free energy for the

diffusion-deformation coupled problem. It invoves poro-elastic energy, an energy term

for mixing of the diffusing species (water), electrostatic energy similar to the energy

of a capacitor q2/2p, and a coupling term yDCq. The Helmholtz free energy per unit

volume of the IPMC beam is

ψ =
E

2
(εxx − kC)2 +

E

2
(εyy − kC)2 +

(
B − Ek2

2

)
C2 +

q2

2p
+ yDCq (2.4)

where E is the Young’s modulus of the beam, p is the capacitance of the beam, k is

the coeficient of diffusion expansion, D is a coupling constant, and B is a constant

relating concentration to the chemical potential.
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The sresses, the chemical potential (which are similar to [31]) and the electric potential

for the form of Helmholz free energy assumed above are given by

σxx =
∂ψ

∂εxx
= E(εxx − kC) (2.5a)

σyy =
∂ψ

∂εyy
= E(εyy − kC) (2.5b)

µ =
∂ψ

∂C
= (B + Ek2)C − Ek(εxx + εyy) + yDq (2.5c)

V =
∂ψ

∂q
=
q

p
+ yDC (2.5d)

Integrating across a given cross-section of the beam while making use of the

kinematic assumptions [(2.2) and (2.3)], we get the Helmholtz free energy per unit

length of the beam as

ψ =
EI

2
(v′′0)

2
+ EIkv′′0C1 +

(
B + Ek2

2

)
IC2

1 +DIC1q +
q2

2p
+ 2bh

(
B + Ek2

2

)
C2

0

(2.6)

where I is the moment of inertia of the beam.

E. Enforcing Conservation of Mass for the Diffusing Species

Mass flux is solved using a finite volume approach. Two control volumes, one at the

top half of the beam and the other at the bottom half, as shown in the Figure 5 was

considered. This allows for the flux of the diffusing species between the top half and

the bottom half of the beam.

Let the concentration values at the centre of top half and bottom half be Ct and Cb

respectively. They are given by

Ct = C0 +
h

2
C1, Cb = C0 −

h

2
C1 (2.7)

Since the concentration is assumed to be linear, the rate of change of concentration
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y

v0(x)

x

ft

fm

fb

∆x

h

h

Fig. 5. Schematic showing the notation of flow variables and the two control volumes

in a part of the beam.

in each volume is given by the rate of change of Ct and Cb times the volume. Then

conservation of mass over each control element for the flux assumed is

hb∆xĊt = −ft∆x+ fm∆x, hb∆xĊb = fb∆x− fm∆x (2.8)

Solving for Ċ1 and Ċ2 using (2.7),

Ċ0 =
1

2h
(−ft + fb), Ċ1 =

1

h2
(−ft − fb + 2fm) (2.9)

Assuming that ft = fb = 0 we obtain

Ċ0 = 0 (2.10)

Ċ1 =
2

h2
fm (2.11)

Since there is mass flux in and out of the IPMC strip when it is immersed in water,

this assumption restricts the use of the model to actuation and sensing in air. It
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is noted that by assuming ft = fb = 0, the beam becomes a closed system with

respect to mass flux justifying the Helmholtz potential formulation rather than a

Gibbs potential formulation.

F. Rate of Dissipation

Three forms of dissipation are considered namely,

• dissipation due to flow of charge (resistive heating).

• dissipation due to flow of water molecules (diffusion). Dissipation similar to

this form has been reported [32].

• dissipation due to convective heating. Due to this term, the flow of charge and

the flow of water molecules are coupled. This coupled term models the effect

of movement of water molecules due to flow of current (movement of hydrated

cations as discussed earlier).

The rate of dissipation ‘ξ’ is given by

ξ = Q1f
2
m +Rq̇2 + 2S1fmq̇ (2.12)

where R is the resistance, Q1 and S1 are constants.

Explicitly using the mass conservation constraint on C1 in equation (2.11)

ξ = QĊ2
1 +Rq̇2 + 2SĊ1q̇ (2.13)

where Q is constant. This form for the rate of dissipation is positive when Q ≥

0 & R ≥ 0 & QR ≥ S2, the condition which ensures thermodynamic consistency.
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G. Governing Equations

Using the maximum rate of dissipation hypothesis [33], the mechanical equilibrium

equations and the transient response of q and C1 are obtained (as shown in appendix

A).

Mechanical equilibrium equation for the beam is given by

EI(v′′′′0 + kC ′′1 ) = w (2.14)

along with the natural and essential boundary conditions

(EI(v′′0 + kC1)−M) v̇′0|x=0 = 0, (EI(v′′0 + kC1)−M) v̇′0|x=L = 0

(EI(v′′′0 + kC ′1)− F ) v̇0|x=0 = 0, (EI(v′′′0 + kC ′1)− F ) v̇0|x=L = 0

(2.15)

At a given cross section of the beam

Rq̇ + SĊ1 = V − q

p
−DIC1 (2.16)

QĊ1 + Sq̇ = −EIkv′′0 − (BI + EIk2)C1 −DIq (2.17)

Ċ0 = 0 (2.18)

Solving (2.14) using the boundary conditions in (2.15) and assuming the concen-

tration profile doesn’t vary across the length of the beam, we get the pure bending

solution for the small deformation problem to be

v0(x, t) =
1

2

(
M

EI
− kC1(t)

)
x2 (2.19)

In the next chapter, we build on this small deformation model to formulate large

deformation problems in cantilever beams. In chapter IV, we propose a linear finite

element solution and a time stepping scheme to numerically solve equations (2.14),

(2.16) and (2.17)
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CHAPTER III

LARGE DEFORMATION

Cantilever beams are mostly used in the characterization of the electromechanical

response of IPMC strips. We define the kinematics using an alternate coordinate

system for the beam which allows us to solve large deformation problems in can-

tilever beams easily. We appropriately modify the constitutive assumptions made

in the previous chapter using the new kinematic variables and derive the governing

equations. We propose a numerical method based on finite difference to solve the

governing equations. We also introduce a staggered time stepping scheme to solve

the coupled transient problem.

A. Helmholtz Energy and Rate of Dissipation

s θ

x

y

Fig. 6. Schematic of a beam showing the kinematic variables in the large deformation

pure bending formulation.

We use an arc-length formulation for the beam problem with s being the arc-

length, θ(s) being the angle made by the beam with the underformed configuration

and κ(s) the curvature of the beam. A schematic of such a beam is shown in Figure 6.

Let us consoder a beam initially lyring across the x axis acted upon by an applied

electric potential V (s) and an end moment M .
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The x and y coordinates are related to the θ and s by

dx

ds
= cos(θ),

dy

ds
= sin(θ) (3.1)

Similar to (2.6) the Helmholtz free energy is assumed to be

ψ =
EI

2

(
dθ(s)

ds

)2

+ EIk
dθ(s)

ds
C1(s) +

(
B + Ek2

2

)
IC1(s)

2 +DIC1(s)q(s)

+
q(s)2

2p
+ 2bh

(
B + Ek2

2

)
C0(s)

2

(3.2)

where I is the moment of inertia of the beam.

The dissipation is assumed similar to (2.13) with C1 and q begin functions of s

ξ = QĊ1(s)
2 +Rq̇(s)2 + 2SĊ1(s)q̇(s) (3.3)

B. Governing Equations

Using the maximum rate of dissipation hypothesis [33], the mechanical equilibrium

equations and the transient response of q(s) and C1(s) are obtained (as shown in the

appendix B).

Mechanical equilibrium equation for the beam is given by,

d2θ(s)

ds2
+ k

dC1(s)

ds
= 0 (3.4)

along with the natural and essential boundary condistions(
EI

dθ(s)

ds
+ EIkC1(s)−M

)
θ̇

∣∣∣∣
s=0

= 0,

(
EI

dθ(s)

ds
+ EIkC1(s)−M

)
θ̇

∣∣∣∣
s=L

= 0

(3.5)
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At a given cross section of the beam

Rq̇(s) + SĊ1(s) = V (s)− q(s)

p
−DIC1(s) (3.6)

QĊ1(s) + Sq̇(s) = −EIkdθ(s)
ds
− (BI + EIk2)C1(s)−DIq(s) (3.7)

Ċ0(s) = 0 (3.8)

When V (s) is the same throughout the beam, solving (3.4), C1 is assumed to be

constant throughout the length of the beam, we get

θ(s, t) =

(
M

EI
− kC1(t)

)
s (3.9)

C. Numerical Scheme

θ10
1

θm−1

θm

m− 1

m

Nele

x

y

Fig. 7. Cantilever beam showing the spatial discretization.

To handle different but constant curvatures at different parts of the beam, such

as when V(s) a constant but different at different parts of the beam as in V (s) =

1 for s = 0 to L/2, V (s) = −1 for s = L/2 to L, we use a finite difference

scheme. The beam is discretized into Nele nodes and each node is a discrete angle

θi as shown in Figure 7. We use superscripts and subscripts to denote time and

spatial discretization respectively. The spacial derivaties are approximated using the



20

following finite difference scheme, where m denote the spatial discretization.

dθ

ds
= (θm − θm−1)/∆s (3.10)

The x and y coordinates are apporimated using

xm = xm−1 + cos(θm)∆s, ym = ym−1 + sin(θm)∆s (3.11)

The time derivaties are approximated using the following finite difference scheme,

where n denote the time discretization.

Ċn
1,m = (Cn

1,m − Cn−1
1,m )/∆t, q̇nm = (qnm − qn−1m )/∆t (3.12)

It is noted that the concentration and charge change at each element are independent

of that in other elements. Hence this set of ODEs can be solved in parallel.

D. Transient Problem

Two types of time stepping schemes have been used in the literature to numerically

solve coupled problems, such as diffusion-deformation. They are

• Monolithic schemes - the diffusion and deformation problem is solved together

• Staggared scheme based on operator-split technique - the diffusion and defor-

mation problem are solved in two seperate steps. In one step which is purely

elastic, the deformation is updated holding the concentration and charge fixed.

In the other step which is purely dissipative, the concentration and charge are

updated keeping the deformation fixed.

We use a staggered time stepping algorithm. The details of the algorithm are

shown in Algorithm 1
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Algorithm 1 Implementation of the Iterative Time-Stepping Scheme

1: Input: displacements at each node θ0i where i = 0, 1, 2, ..., Nele, concentration

slopes at each element C0
1,j, charge at each element q0j where j = 1, 2, ..., Nele,

time step of integration ∆t, Model parameters, Tolerance TOL.

2: Initialization

Set θni = θ0i , C
n
1,j = C0

1,j, q
n
j = q0j

3: while norm(∆θ) <= TOL do

4: Find Cn+1
1,j and qn+1

j using θni , Cn
1,j and qnj

5: Find θn+1
i using θn+1

i−1 , Cn+1
1,j and qn+1

j

6: Set θni = θn+1
i , Cn

1,j = C0
1,j, q

n
j = q0j , ∆θ = Σ(θn+1

i − θni )

7: end while

The formulation proposed here could handle only cantilever beams with certain

loading conditions. In the next chapter, we formulate a numerical scheme to solve

the small deformation model proposed in chapter II under general electromechanical

loading and boundary conditions.
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CHAPTER IV

LINEAR FINITE ELEMENT SOLUTION

We develop a linear Euler-Bernoulli finite element beam model for the electromechan-

ical response of IPMC strips which could handle general mechanical and electrical

loading conditions. First we develop a linear finite element solution, then discuss the

staggered time stepping algorithm used to solve the coupled transient response.

A. Discretization

d1

d2

d3

d4

P e
1

P e
2

P e
3

P e
4

qe

C1,e

∆L ∆L

Ve

Fig. 8. The modified Euler-Bernoulli beam element showing the generalized displace-

ments and forces.

The IPMC beam is discretised using conventional generalized displacements di

and forces Pi. The displacements are interpolated using Hermite cubic interpolation

functionsNi. In addition to the conventional discretization for the beam, each element

is assigned a discretized average concentration Ce, charge qe and electric potential Ve

as shown in Figure 8

u = Ni(x)di (4.1)
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The Hermite cubic interpolation functions Ni are given by

N1 =
1

∆L3
(2x3 − 3x2∆L+ ∆L3) (4.2a)

N2 =
1

∆L3
(x3∆L− 2x2∆L2 + x∆L3) (4.2b)

N3 =
1

∆L3
(−2x3 + 3x2∆L) (4.2c)

N4 =
1

∆L3
(x3∆L− x2∆L2) (4.2d)

B. Conservation of Mass in Each Element

Mass flux is solved using a finite volume approach similar to the one followed for

small deformations. Here for each element, we obtain

Ċ0,e = 0 (4.3)

Ċ1,e =
2

h2
fe (4.4)

C. Helmholtz Free Energy and The Rate of Dissipation

Using the discretization mentioned above in equation 2.6, the Helmholtz free energy

for a beam element is given by

ψe =

∫
ele

EI

2

d2Nj

dx2
d2Ni

dx2
djdi + EIkC1,e

d2Ni

dx2
di

+

(
B + Ek2

2

)
IC2

1,e +DIC1,eqe +
q2e
2p

+ 2bh

(
B + Ek2

2

)
C2

0,e

(4.5)

where ‘
∫
ele

’ denotes integration over the length the element and repeated indices

denote summation of that term over all possible index values.

We explicitly use the constraint (4.4) while defining the dissipation function for

each element. The rate of dissipation in each element is given by

ξe = (QĊ2
1,e +Rq̇2e + 2SĊ1,eq̇e)∆L (4.6)
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D. Governing Equations

Using the principle of maximum rate of dissipation hypothesis, we get the mechanical

equilibrium equations for each beam element in the form Ke
ijdj = f e

i where the matrix

Ke
ij and the vector f e

i are given by

Ke
ij =

EI

∆L3



12 6∆L −12 6∆L

6∆L 4∆L2 −6∆L 2∆L2

−12 −6∆L 12 −6∆L

6∆L 2∆L2 −6∆L 4∆L2


(4.7)

f e
i = P e

i − EIkC1,e(t)



0

−1

0

1


+

∫
ele

w(x)Ni(x) (4.8)

In each element, C1,e varies according to

zĊ1,e =

(
S

p
−DIR

)
qe −

(
REIk2 +RBI −DIS

)
C1,e − VeS − SEIk

d4 − d2
∆L

(4.9)

where z = (QR− S2).

qe varies according to

zq̇e =
(
SBI + SEIk2 −QDI

)
C1,e −

(
Q

p
−DIS

)
qe +QVe + SEIk

d4 − d2
∆L

(4.10)

To solve the coupled problem, we use a staggared time stepping algorithm similar

to the one used for the large deformation problem. The details of the algorithm used

for the numerical scheme presented here are shown in Algorithm 2. d, C1 and q denote

vectors of all discretized displacements, concentration slope, and charge respectively.

Superscripts denotes discretization with respect to the time step.
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Algorithm 2 Implementation of the Iterative Time-Stepping Scheme

1: Input: Initial conditions: displacement d(0), C1
(0) and q(0),

time step of integration ∆t, Model parameters, Tolerance TOL.

2: Set d(n) = d(0), C1
(n) = C1

(0), q(n) = q(0)

3: while Until Convergence, ∆d ≤ TOL do

4: Find C1
(n+1) and q(n+1) using d(n)

5: Find d(n) using C1
(n+1) and q(n+1)

6: ∆d = d(n+1) − d(n)

7: Set d(n) = d(n+1), C1
(n) = C1

(0), q(n) = q(0)

8: end while

In the next chapter we study the performance of the model using some test cases.
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CHAPTER V

RESULTS

We analyze the performance of the model by comparing the simulation results with

reported experimental data ([3]). Moreover we analyze the qualitative behaviour of

the model and compare the responses of Flemion and Nafion based IPMC strips under

some of the designers questions.

A. Parameters Used for Simulation

The parameters used in this simulation are given below.

1. TBA+/Flemion IPMC Strip Parameters

Nele = 10, TOL = 10−8, dt = 1s, L = 32mm, b = 3.4mm, 2h = 0.17mm,

E = 72Mpa, k = 900(no units), I = 1.11x10−14m−4, B = 5x1012Nm−2,

D = 1012Nm−2C−1, R = 340ohm, p = 76x10−3F, Q = 7Nm2s,

S = 0.42Nm2sC−1

2. Li+/Nafion IPMC Strip Parameters

Nele = 10, TOL = 1e− 8, dt = 0.01s, L = 30mm, b = 3mm, 2h = 1mm,

E = 72Mpa, k = 900(no units), I = 2x10−12m−4, B = 2x1013Nm−2,

D = 6.2x1011Nm−2C−1, R = 160ohm, p = 80x10−3F, Q = 20Nm2s,

S = 45Nm2sC−1
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Fig. 9. Variation of Tip deflection with Time on application of a step voltage

TBA+/Flemion IPMC strip compared with experimental data from [3].

B. Comparison with Experimental Data

Tip deflection response of the TBA+/Flemion IPMC strip under the application of a

unit step voltage is shown in Figure 9. We see that the FEM solution under predicts

the tip displacement in this case.

Tip displacement response of the Li+/Nafion IPMC strip under the application

of a unit step voltage is shown in Figure 10. We see that the FEM solution under

predicts the tip displacement in this case.

Tip displacement response of the TBA+/Flemion IPMC strip under the appli-

cation of a unit step voltage and different end forces are shown in Figure 11. There

is an initial elastic jump in the direction of the applied force followed by bending

towards steady state values.
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Fig. 10. Variation of Tip deflection with Time on application of a step voltage for a

Li+/Nafion IPMC strip compared with experimental data from [3].

Figure 12 shows the response of IPMC strips with different values for the nondi-

mensional parameter S which determines the amount of convective heating. It is

noticed that the convective heating term in the rate of dissipation function differs

for IPMC strips with different polymer bases and is crucial for simulating different

electromechanical responses exhibited by them.

C. Simulation of The Large Deformation Problem

We analyze some of the problems the large deformation formulation could handle.

We also test the transient response of the Nafion and Flemion IPMC strips under

the application of a sinusoidal voltage. Figure 13 shows a simulation of the Large

Deformation Model for TBA+/Flemion IPMC strip on application of a step voltage
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Fig. 11. Variation of Tip deflection with Time on application of a step voltage and

different end forces for a TBA+/Flemion IPMC strip.

of 5V .

The finite difference scheme of the large deformation model is able to handle the

loading case where the sign of the applied voltage is varied at the second half of the

beam as shown in Figure 14.

D. Simulation of the Transient Response Under Sinusoidal Voltage

Figure 15 Response of Flemion strips lags behind that of the applied voltage. This

has been reported experimentally. The Nafion strips seems to have a negative lag but

it is due to the initial overshoot. This lag decreases as the frequency of the applied

sinusoidal voltage decreases. Given the lag between the input voltage and the output

displacement is lesser for Nafion based IPMC strips compared to that of Flemion
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the rate of dissipation. The red curve is for TBA+/Flemion IPMC strips and

the blue curve is for Li+/Nafion IPMC strips.

based IPMC strips, the former would be better suited for control applications.
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CHAPTER VI

CONCLUSION

A. Summary of Work Done

We developed a thermodynamically consistent model for IPMC strips based on Euler-

Bernoulli beam theory. We formulated a linear finite element solution for the model

and proposed a time stepping scheme to solve the coupled transient problem. Fur-

ther, we extended the model to solve large deformations involving pure beding and

proposed a finite difference solution. We showed that the model is able to simulate

the electromechanical reponse of IPMC strips. The large deformation model was able

to handle certain complicated electromechanical loading. We observed that Nafion

based strips would be better suited for control applications. We also showed that

the convective heating term in the rate of dissipation function is crucial for simulat-

ing different electromechanical responses exhibited by IPMC strips made of different

polymer bases.

B. Further Work

• A method to determine the parameters of the model from experimental data.

• Finite element solution using Von Karman strain measure for problems involving

large deformations.

• Characterize mateirial parameters for different compositions and combinations

of counterions and polymer matrix.

• Actuation in water by considering flux in and out of the IPMC strips surface.
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APPENDIX A

MRDH FOR SMALL DEFORMATIONS

The external loads considered here are a distributed load w(x) and an applied

electric potential V (x). From the Power theorem,∫ L

0

(wv̇o + V q̇) dx =

∫ L

0

(ψ̇ + ξ) dx (A.1)

ψ̇ =
∂ψ

∂v′′o
v̇′′o +

∂ψ

∂C1

Ċ1 +
∂ψ

∂q
q̇ (A.2a)

∂ψ

∂v′′o
= EIv′′o + EIkC1 (A.2b)

∂ψ

∂C1

= (B + Ek2)IC1 + EIkv′′o +DIq (A.2c)

∂ψ

∂q
= DIC1 +

q

p
(A.2d)

Using the method of Lagrange multipliers, the rate of dissipation is maximized

considering the mass conservation equation (2.10) and the Power theorem (equation

(A.1)) as constraints. Considering a new function Φ with Lagrange multipliers λ and

µ,

Φ =

∫ L

0

ξ + λ

(
−
∫ L

0

(wv̇o + V q̇) dx+

∫ L

0

(ψ̇ + ξ) dx

)
+ µĊ0 (A.3)

∂Φ

∂v̇0
= 0 =

∫ L

0

(EI(v′′′′0 + kC ′′1 )− w) dx

+ (EI(v′′0 + kC1)−M) v̇′0|x=0 + (EI(v′′0 + kC1)−M) v̇′0|x=L

+ (EI(v′′′0 + kC ′1)− F ) v̇0|x=0 + (EI(v′′′0 + kC ′1)− F ) v̇0|x=L

(A.4)



41

which gives the mechanical equilibrium equation (2.14) along with the boundary

conditions (2.15).

∂Φ

∂Ċ0

= 0 = µ (A.5)

∂Φ

∂Ċ1

= 0 = 2(1 + λ)

∫ L

0

(QĊ1 + Sq̇) dx− λ
∫ L

0

∂ψ

∂C1

dx (A.6)

∂Φ

∂q̇
= 0 = 2(1 + λ)

∫ L

0

(SĊ1 +Rq̇) dx− λ
∫ L

0

(
∂ψ

∂q
− V

)
dx (A.7)

Minimizing with respect to λ and µ we get the constraint equations (A.1) and (2.10)

respectively.

Using equations (A.6), (A.7), (A.4) and (A.1),

∂Φ

∂q̇
q̇ +

∂Φ

∂Ċ1

Ċ1 = 0

= 2(1 + λ)

∫ L

0

ξ dx− λ
∫ L

0

(
∂ψ

∂C1

Ċ1 +
∂ψ

∂q
q̇ − V q̇

)
dx

= 2(1 + λ)

∫ L

0

ξ dx− λ
∫ L

0

ξ dx

(A.8)

which gives 2(1 + λ) = λ or λ = −2. Using this in equations (A.7) and (A.6), we get

equations (2.16) and (2.17) that govern the transient response.
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APPENDIX B

MRDH FOR LARGE DEFORMATIONS INVOLVING PURE BENDING

From the Power theorem

Mθ̇(L) +

∫ L

0

V q̇ ds =

∫ L

0

(ψ̇ + ξ) ds (B.1)

ψ̇ =
∂ψ

∂θ
θ̇ +

∂ψ

∂C1

Ċ1 +
∂ψ

∂q
q̇ (B.2a)

∂ψ

∂θ
= EI

dθ

ds
+ EIkC1 (B.2b)

∂ψ

∂C1

= (B + Ek2)IC1 + EIk
dθ

ds
+DIq (B.2c)

∂ψ

∂q
= DIC1 +

q

p
(B.2d)

Using the method of Lagrange multipliers, the rate of dissipation is maximized

with the mass conservation equation Ċ0 = 0 and the Power theorem (equation (B.1))

as constraints. Considering a new function Φ with Lagrange multipliers λ and µ,

Φ =

∫ L

0

ξ + λ

(
−Mθ̇(L) +

∫ L

0

(−V q̇ + ψ̇ + ξ) ds

)
+ µĊ0 (B.3)

∂Φ

∂θ̇
= 0 =

∫ L

0

(
d2θ

ds2
+ k

dC1

ds

)
ds

+

(
EI

dθ(s)

ds
+ EIkC1(s)−M

)
θ̇

∣∣∣∣
s=0

+

(
EI

dθ(s)

ds
+ EIkC1(s)−M

)
θ̇

∣∣∣∣
s=L

(B.4)

which gives the mechanical equilibrium equation (3.4) along with the boundary con-

ditions (3.5).
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∂Φ

∂Ċ0

= 0 = µ (B.5)

∂Φ

∂Ċ1

= 0 = 2(1 + λ)

∫ L

0

(QĊ1 + Sq̇) ds− λ
∫ L

0

∂ψ

∂C1

ds (B.6)

∂Φ

∂q̇
= 0 = 2(1 + λ)

∫ L

0

(SĊ1 +Rq̇) ds− λ
∫ L

0

(
∂ψ

∂q
− V

)
ds (B.7)

Minimizing with respect to λ and µ we get the constraint equations (B.1) and (??)

respectively.

Using equations (B.6), (B.7), (B.4) and (B.1),

∂Φ

∂q̇
q̇ +

∂Φ

∂Ċ1

Ċ1 = 0

= 2(1 + λ)

∫ L

0

ξ ds− λ
∫ L

0

(
∂ψ

∂C1

Ċ1 +
∂ψ

∂q
q̇ − V q̇

)
ds

= 2(1 + λ)

∫ L

0

ξ ds− λ
∫ L

0

ξ ds

(B.8)

which gives 2(1 + λ) = λ or λ = −2. Using this in equations (B.7) and (B.6), we get

equations (3.6) and (3.7) that govern the transient response.
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APPENDIX C

MRDH FOR FEM

The external loads considered here are a distributed load w(x), generalized loads

Pi and an applied electric potential at the element Ve. The work done by the external

forces is

W = P e
i ḋi + Veq̇e∆L+

∫
ele

w(x)v̇0dx (C.1a)

= P e
i ḋi + Veq̇e∆L+

∫
ele

w(x)Niḋidx (C.1b)

From the Power theorem

P e
i ḋi + Veq̇e∆L+

∫
ele

w(x)Niḋi dx = ξe +

∫
ele

ψ̇e dx (C.2)

ψ̇ =
∂ψ

∂di
ḋi +

∂ψ

∂C1

Ċ1 +
∂ψ

∂q
q̇ (C.3a)

∂ψ

∂di
= EI

d2Nj

dx2
d2Ni

dx2
dj + EIkC1,e

d2Ni

dx2
(C.3b)

∂ψ

∂C1,e

= (B + Ek2)IC1,e + EIk
d2Ni

dx2
di +DIqe (C.3c)

∂ψ

∂qe
= DIC1,e +

qe
p

(C.3d)

Using the method of Lagrange multipliers, the rate of dissipation is maximized

considering the mass conservation equation (4.4) and the Power theorem (equation

(C.2)) as constraints. Considering a new function Φ with Lagrange multipliers λ and

µ

Φ =

∫
ele

ξ + λ

(
−P e

i ḋi − Veq̇e∆L−
∫
ele

(wNiḋi) dx+ ξe +

∫
ele

ψ̇e dx

)
+ µĊ0,e (C.4)
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∂Φ

∂ḋi
= 0 =

∫
ele

(
EI

d2Nj

dx2
d2Ni

dx2
dj + EIkC1,e

d2Ni

dx2
− wNi

)
dx− P e

i (C.5)

which gives the mechanical equilibrium equationin the form Ke
ijdj = f e

i for each

element.

∂Φ

∂Ċ0,e

= 0 = µ (C.6)

∂Φ

∂Ċ1,e

= 0 = 2(1 + λ)(QĊ1,e + Sq̇)∆L− λ
∫
ele

∂ψ

∂C1,e

(C.7)

∂Φ

∂q̇e
= 0 = 2(1 + λ)(SĊ1,e +Rq̇e)∆L− λVe∆L− λ

∂ψ

∂qe
∆L (C.8)

Minimizing with respect to λ and µ we get the constraint equations (C.2) and (4.4)

respectively.

Using equations (C.7), (C.8), (C.5) and (C.2),

∂Φ

∂q̇e
q̇e +

∂Φ

∂Ċ1,e

Ċ1,e = 0

= 2(1 + λ)ξe − λVeq̇e∆L− λ
∂ψ

∂qe
q̇e∆L− λ

∫
ele

∂ψ

∂C1,e

Ċ1,e

= 2(1 + λ)ξe − λξe

(C.9)

which gives 2(1 + λ) = λ or λ = −2. Using this in equations (C.8) and (C.7), we get

equations (4.10) and (4.10) that govern the transient response for each element.
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