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ABSTRACT

SAT-based Verification for Analog and Mixed-signal Circuits. (May 2012)

Yue Deng, B.S., Xi’an Jiaotong University

Chair of Advisory Committee: Dr. Peng Li

The wide application of analog and mixed-signal (AMS) designs makes the verifica-

tion of AMS circuits an important task. However, verification of AMS circuits remains as

a significant challenge even though verification techniques for digital circuits design have

been successfully applied in the semiconductor industry.

In this thesis, we propose two techniques for AMS verification targeting DC and tran-

sient verifications, respectively. The proposed techniques leverage a combination of circuit

modeling, satisfiability (SAT) and circuit simulation techniques.

For DC verification, we first build bounded device models for transistors. The bounded

models are conservative approximations to the accurate BSIM3/4 models. Then we formu-

late a circuit verification problem by gathering the circuit’s KCL/KVL equations and the

I-V characteristics which are constrained by the bounded models. A nonlinear SAT solver

is then recursively applied to the problem formula to locate a candidate region which is

guaranteed to enclose the actual DC equilibrium of the original circuit. In the end, a re-

finement technique is applied to reduce the size of candidate region to a desired resolution.

To demonstrate the application of the proposed DC verification technique, we apply it to

locate the DC equilibrium points for a set of ring oscillators. The experimental results show

that the proposed DC verification technique is efficient in terms of runtime.

For transient verification, we perform reachability analysis to verify the dynamic prop-

erty of a circuit. Our method combines circuit simulation SAT to take advantage of the

efficiency of simulation and the soundness of SAT. The novelty of the proposed transient

verification lies in the fact that a significant part of the reachable state space is discovered
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via fast simulation while the full coverage of the reachable state space is guaranteed by

the invoking of a few SAT runs. Furthermore, a box merging algorithm is presented to

efficiently represent the reachable state space using grid boxes. The proposed technique is

used to verify the startup condition of a tunnel diode oscillator and the phase-locking of a

phase-locked loop (PLL). The experimental results demonstrate that the proposed transient

verification technique can perform reachability analysis for reasonable complex circuits

over a great number of time steps.
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CHAPTER I

INTRODUCTION

A. Background

An analog and mixed-signal circuit (AMS) is an integrated circuit which contains both

digital and analog circuits on a single chip. AMS design is crucial for embedded system

designs and microprocessors. It enables the embedded system to receive analog signals

from the real world and to process the converted digital signals using digital circuits. Be-

sides, AMS circuits’ functionalities also include timing signal generation and biasing [1],

etc. Due to the wide application of embedded systems and microprocessors, AMS circuits

can be found in devices from consumer electronic products like smart phones to specific

controllers in automobiles and airplanes. Clearly, it is of great importance to make sure

that the AMS circuits meet the design specifications.

The process of verifying whether a design satisfies its specifications is referred to as

verification. While verification techniques of digital circuit designs have been successfully

applied in industry for decades, verification techniques for AMS designs are still far from

maturity considering the size and the complexity of the problems they can handle. Part

of the reasons why verification for AMS designs is much difficult is that analog circuits

operate over a continuous state space and usually involve far more complex analog char-

acteristics. Moreover, the behaviors of AMS circuits involve the interaction between the

discrete domain and continuous domain.

In industry, verification is usually fulfilled by simulation techniques. Simulation tech-

niques generate a number of simulation traces based on a model of the target AMS design.

Each simulation trace is checked to see whether it violates the specifications or not. If vi-

The journal model is IEEE Transactions on Automatic Control.
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olation happens for any of the traces, the design fails and needs to be rectified. Otherwise,

the design is treated as correct. The major problem of the simulation method is that lim-

ited number of traces are theoretically unable to provide full coverage for the state space

of the circuits’ behaviors. Due to this inherent incompleteness nature, no guarantee but

only a certain level of confidence can be obtained on the correctness of the designs using

simulation techniques. Therefore, a more rigorous verification method for AMS design is

strongly needed.

B. Formal verification for AMS circuits

In recent years, a lot of research works has been performed on the development of for-

mal verification techniques for AMS designs. Formal verification techniques refer to the

methods which mathematically specify and verify the correctness of a system against cer-

tain specifications. Unlike the conventional verification technique such as simulation, the

entire range of input and parameter variations is implicitly considered in the formal verifi-

cation. Thus if a formal verification method proves that a design meets its specifications,

this diagnosis holds for all the input values and parameter values.

In [1] on formal verification techniques for AMS circuit, the techniques are catego-

rized to two different fashions: state space exploration methods and theorem proving meth-

ods.

The state space exploration methods can be further divided to two groups: equivalence

checking and model checking.

Equivalence checking compares the outputs of two different models for the same cir-

cuit design over a certain range of input and decides wether these two models are equivalent

in behavior by measuring the difference between the outputs. The models being compared

can be at the same level as well as at different levels, e.g., netlist v.s. netlist, netlist v.s.
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behavioral, behavioral v.s. macromodel, etc. One major motivation of equivalence check-

ing is to make difficult verification problem easier. For a reasonably large and complex

AMS circuit, the task to verify the correctness of the circuit on transistor level can be very

time-consuming. A solution to this problem is to build simplified models for the circuit

by extracting only characteristics of interest. The simplified models are then used in the

verification process to represent the behaviors of the circuit. However, before the extracted

simplified models are used, they must be validated that they’re indeed equivalent to the

transistor level model in some sense.

A semi-formal equivalence checking methodology for large AMS circuits is proposed

in [2]. This work clearly defines the mapping between the behavioral domain and electrical

domain and formulates the verification problem as an optimization problem.

Two extensions are proposed for an equivalence checking method for analog circuits

with strong nonlinear characteristics in [3]. The first extension introduced is new eigen-

value mapping methods built upon observability and structural information. The second

extension is reachability analysis which prevents the occurrence of false negative by con-

straining the search space.

Model checking refers to the group of techniques that verify wether a model meet its

specifications or not. In model checking, both the model of the AMS circuit to be verified

and the property to be checked must be described in some sort of mathematical formula.

Usually, model checking is used to check the dynamic behavior of an AMS circuit of which

the model is a kind of transition system. The state space of the model of design is explored

by the model checking techniques to decide whether a given property is satisfied or not.

In [4, 5], state space exploration is performed by converting continuous dynamics to

approximated discrete model. State space exploration can also be achieved by reachability

analysis techniques originated from the research on verification of hybrid system [6–8].

In these reachability analysis techniques, the state space is over-approximated using geo-
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metrical representation such as polytopes or zonotopes. A reachability analyisis technique

targeted for phase-locked loops (PLLs) is developed recently [9]. One of the key ideas in

the approach is to over-approximate the switching times of the charge pump and perform

reachability analysis using linear continuous models with uncertain parameters.

Theorem proving methods, also called proof-based methods, construct mathematical

proof that a model satisfies its specifications using a certain set of inference rules. Theorem

proving methods are powerful while expertise-intensive and time-consuming.

Formal verification method using an automatic theorem prover, MetiTarski, is intro-

duced in [10]. In this work, a closed form of the behavioral model of the circuit is generated

and combined with the properties of interest which are expressed by a set of inequalities.

The combined constraints are then proved using MetiTarski.

There are other sort of verification techniques which are not included in the survey [1]

mentioned earlier. Some verification technique is specifically developed to verify properties

for a certain set of circuits which share some common features. For example, by taking ad-

vantage of the monotonic property of MOSFET devices, a specific technique is developed

to verify the start-up conditions for ring oscillators via finding all its DC solutions [11].

Satisfiability (SAT) based verification has become an active topic in the CAD commu-

nity along with the dramatic improvement of SAT solver technology. SAT solver solves the

decision problem of whether a given formula can be evaluated to true. The exhaustiveness

feature of the underlying search algorithm of SAT solvers makes them natural tools for

formal verification. Recent advances in SAT-based formal verification of digital hardware

designs can be found in the survey [12].

fSPICE, a formal verification tool, is described in the work [13]. fSPICE first captures

the nonlinear behaviors of transistors in the circuit by conservative interval-based repre-

sentation. The constraints for the circuit are then formulated and gathered like in a SPICE

style simulation problem. In the end, fSPICE finds the solutions using an exhaustive search
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scheme with the help of a linear SAT solver. Abstract refinement techniques is also intro-

duced in the work to improve the runtime efficiency of the tool.

A formal approach is developed in [14] to find all the DC operating points, if any, for

analog circuits. This work develops a MATLAB circuit modeling system to orchestrate

a set of public tools including a SAT solver, HySAT [15, 16]. The developers of HySAT

names the successor of HySAT by iSAT [17], which is the SAT solver adopted by this pre-

sented thesis. Different from the SAT solver employed in [13], which handles only linear

constraints, iSAT can handle both linear and nonlinear constraints through a tight integra-

tion of DPLL-style SAT solving framework with interval-based arithmetic constraint prop-

agation technique. This feature enables us to conveniently represent the nonlinear behavior

of the circuit using nonlinear functions instead of to approximate the nonlinear behavior

using various linearization methods. In order to emphasize the benefit from the nonlinear

feature, we refer to the SAT solver, iSAT, and its underlying algorithm as nonlinear SAT

(NLN-SAT). Chapter II will provide a detail introduction to the NLN-SAT technique.

This work is largely motivated by the initial success of fSPICE [13] on SAT-based

formal analog verification as well as the recent advancements of iSAT [15,17] on nonlinear

SAT solving techniques.

C. Overview of the presented work

In this thesis, we developed a set of two verification methods for AMS circuits with the help

of circuit macro-modeling methods and SAT solving technology. The first method, DC

verification technique, determines the existence and location of all DC equilibrium points.

The second method, a transient verification method, verifies the dynamic properties of AMS

circuits via reachability analysis which leverages the efficiency of circuit simulation and the

soundness of SAT at the same time. Though the two methods are different in many aspects,
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they have the same flow as shown in Figure 1.

Circuit Design

Verification

engine
SAT solver

Verification

results

Properties of

interest
Models

Fig. 1. General flow of SAT-based verification

The first method, DC verification technique, inspects circuits’ behaviors at transis-

tor level. However, modern transistor models such as BISM3/4 have a large number (i.e.

thousands) of complex nonlinear equations, which cannot be practically handled by the

NLN-SAT technique [15, 17]. To address this challenge, we propose to introduce an inter-

mediate device modeling layer wherein conservative level-one like models are extracted to

bound the exact device characteristics. Then, NLN-SAT is efficiently applied to the circuit

whose devices are represented using simple bound models. Finally, the approximate so-

lutions computed by the previous step is refined locally using accurate BSIM model data.

The approach is applied to locate all DC equilibrium points for ring oscillators.

The second method, reachability analysis technique, checks the dynamic behaviors of

AMS circuits by iteratively calculating the next reachable space starting from a given initial

range. For AMS circuits with complex nonlinear behaviors, it is envisioned that modeling

abstraction is required to render the reachability analysis practical. Techniques such as [2,3]
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may be used to build conservative behavioral models to account for factors such as model-

ing error and parameter variations for a large AMS circuit. NLN-SAT can then be applied

to the behaviorial models to yield conservative check of dynamic design properties. With

the help of modeling abstraction, acceleration techniques are still desired. To this end, we

propose a simulation-assisted SAT approach that simultaneously exploit the efficiency of

simulation and the conservativeness of SAT technique. Simulation-assisted SAT approach

can dramatically reduce the number of calld NLN-SAT calls, leading to large verification

speedups. Moveover, in order to flexibly model arbitrary nonlinear dynamics and the re-

sulting reachable state space, the reachable state space is represented using a collection

of fixed-grid cubes. In this thesis, we demonstrate the application of this approach with

two examples: 1) verifying start-up condition for a tunnel diode oscillator and 2) verifying

locking time for a phased lock loop (PLL).

D. Organization of this thesis

The organization of the rest of this thesis goes as follows.

Chapter II offers an overview of SAT problems and the NLN-SAT technique. The cor-

nerstone for most modern SAT solvers, DPLL algorithm, is described. Then the underlying

algorithm for the NLN-SAT technique is provided.

Chapter III introduces our proposed verification technique for DC analysis. After ex-

plaining the importance of locating DC equilibrium points, the modeling method and prob-

lem formulation are described. The algorithm of our proposed DC verification technique is

then explained in detail. The technique is demonstrated in the end by an experiment on a

set of ring oscillators.

Chapter IV is devoted to our proposed transient verification method for dynamical

properties checking. The motivation of why reachability analysis technique is selected
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to fulfill transient verification is discussed at first. The fixed-grid-boxes representation of

reachable space is explained along with its benefits and limitations. A subroutine which

merges the reachable space is introduced to ease the limitations while keeping the bene-

fits. After that, detail description of simulation-assisted SAT for reachability analysis is

provided. In the end, two important experiments are used to demonstrate the application of

our transient verification method. First, we apply our method to verify the start-up condi-

tion for a tunnel diode oscillator. Second, a more challenging experiment is performed in

which the locking time of a charge-pump PLL is investigated.

Chapter V presents a brief summary of the research work in the end of this thesis.
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CHAPTER II

INTRODUCTION TO SAT

Considering this work is largely empowered by the SAT solver technology, it is decided

that the first main chapter (i.e. this chapter) provides an overview about the definition of

SAT problems, and the underlying principle of SAT solvers.

A. SAT problems

A satisfiability (SAT) problem is a decision problem: given a formula ϕ, answering the

question that wether there exists a variable assignment which can lead the formula ϕ to be

true. If such a variable assignment exists, we call it a satisfiable assignment which makes

the formula ϕ satisfiable. Otherwise, the formula ϕ is unsatifiable. A SAT problem is a

NP-complete problem.

B. NLN-SAT technique

In this work, the SAT solver we used is iSAT [15, 17]. As mentioned in Chapter I, we refer

to the solver as well as its underlying technique as NLN-SAT in this thesis.

NLN-SAT is a tight integration of the Davis-Putnam-Logemann-Loveland (DPLL)

algorithm and the interval constraint propagation (ICP) technique.

DPLL algorithm, a complete backtracking-based searching algorithm, is the funda-

mental framework for most modern SAT solvers. The DPLL algorithm finds a satisfiable

assignment ρ, if exists, to a given boolean formula ϕ in conjunctive normal form (CNF).

A CNF formula is a collection of clauses connected by boolean AND operator while each

clause is a set of literals connected by boolean OR operator. A literal is either a boolean

variable or negation of a boolean variable. The algorithm flow of DPLL is shown in Algo-
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rithm 1.

The first step is to preprocess the input boolean formula. After the formula passes

the preprocess step, the algorithm arrives at the next step, decision step. In the decision

step, the algorithm will first find if there exists any variable without assignment. If no such

variable exists, then an satisfiable assignment has been found. Otherwise, the algorithm

will select an unassigned variable and randomly assign it with a truth value, either TRUE

or FALSE. Decision step is followed by deduction step. In the deduction step, the algorithm

locates each unit clause and makes an assignment to let the unit clause to be true. If there

is no unit clause left, then the algorithm will go back to the decision step. A unit clause is

a clause having all but one of its literals assigned with values and the existing assignments

make all the literals except the unassigned one false. It is clear that in order to make a

unit clause to be true, which is a necessary condition making the entire formula ϕ to be

satisfiable, a correct and unique assignment is needed to for the unassigned literal in the

unit clause. After the implied assignment is made for the unit clause, the formula will be

evaluated. If the evaluation result is unsatisfiable, e.g., a variable is assigned to be true and

false at the same time, then the source of decision leading to the conflict will be located.

If the union of conflict sources ever occurred covers the entire state space, the formula is

found to be unsatisfiable. Otherwise, backtracking process will undo all the decision and

deduction stemming from the conflict source. Besides, a conflict clause which is a negation

of the conflict source will be added to the problem formula ϕ to prevent subsequent search

from ending at the same conflict again. After the conflict clause is added to the problem

formula, the algorithm will go back to decision step.

Based on interval arithmetic, interval constraint propagation (ICP) locates the intervals

containing all solutions to the problem formula. For a given constraint ϕ over the real

domain with the entire search space denoted by S, ICP technique can return a space {ρ|ρ ⊆

S} and ρ contains all solutions to ϕ. A simple example will be sufficient to illustrate the
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Algorithm 1 DPLL algorithm, input: boolean formula ϕ

1: if preprocess(ϕ) = UNSAT then

2: return UNSAT;

3: end if

4: S = ∅; //conflict-source set

5: while unassigned variable exists do

6: pick an unassigned variable and assign it a value; //decision()

7: //deduction()

8: while unit clause exists do

9: pick a unit clause;

10: make implied assignment for the unit clause;

11: if evaluation(ϕ) = UNSAT then

12: find the conflict-source s;

13: S = S ∪ s;

14: if S = the entire state space then

15: return UNSAT;

16: else

17: undo all decision and deduction after s; //backtrack()

18: ϕ = ϕ ∧ s̄;

19: break;

20: end if

21: end if

22: end while

23: end while

24: return SAT with satisfiable assignment
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basic idea of ICP. The problem constraint is a − b = c where a ∈ [1, 2], b ∈ [1, 3], and

c ∈ [−2, 2]. Based on the transformed constraint c = a− b and the interval of a and b, we

can calculate the interval of the left-hand side of the equation, which is [−2, 1]. With this

interval, the original interval [−2, 2] of c can be contracted. We repeat this calculation for

all of the variables until none of the intervals can be further contracted.

The NLN-SAT technique incorporates the ICP technique into the DPLL algorithm to

tackle the SAT problem for formula over the real domain. In such context, the definition

of a literal must be adjusted: each literal is an arithmetic constraint or a negation of an

arithmetic constraint with variables over the real domain. The basic structure of the NLN-

SAT algorithm is shown in Algorithm 2.

NLN-SAT takes the general structure of the standard DPLL algorithm as framework

while customizing the decision and deduction processes accordingly to handle real vari-

ables. In the decision process, the NLN-SAT is no longer looking for unassigned boolean

variables but real variables which have an interval with a length greater than a pre-defined

threshold δ. If such variables exists, the NLN-SAT will select one of them and split its

interval into two subintervals with the same length. The algorithm will then temporarily

discard one of the subintervals and contract the interval of the selected variable to the other

subinterval. After this, the ICP technique is applied to the formula ϕ. If the ICP routine ter-

minates with no conflict, then the algorithm will jump back to the decision step. If conflict

happens, e.g., the interval of a variable is contracted to be empty, the source of decision

which leads to conflict will be located as in the standard DPLL algorithm. When the union

of conflict sources covers the entire search space, the algorithm returns UNSAT. Otherwise,

a backtrack routine will be called and the algorithm will go back to the decision process

after adding a conflict clause to the formula ϕ.

It is worth to explain the termination conditions of the NLN-SAT algorithm. The

NLN-SAT algorithm is essentially a branch-and-prune process. If a wrong decision is
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Algorithm 2 NLN-SAT algorithm, input: formula ϕ over real and/or boolean domain
1: if preprocess(ϕ) = UNSAT then

2: return UNSAT;

3: end if

4: S = ∅; //conflict-source set

5: while variable with interval length greater than δ exists do

6: //decision()

7: pick such a variable and divide its interval to two pieces with same length;

8: randomly select one of the subintervals as new interval for that variable;

9: //deduction()

10: if ICP(ϕ) leads to UNSAT then

11: find the conflict-source s;

12: S = S ∪ s;

13: if S = the entire state space then

14: return UNSAT;

15: else

16: undo all decision and deduction after s; //backtrack()

17: ϕ = ϕ ∧ s̄;

18: end if

19: end if

20: end while

21: return INCONCLUSIVE with solution
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made, e.g., a subinterval containing no solution is selected, the deduction process will

recognize it and prune the corresponding subinterval by adding a conflict clause to the

problem formula. If the entire search space is pruned, there is no satisifable assignment.

On the other side, if the formula is satisfiable, the branch-and-prune process can repeat

infinitely because no matter how small the remaining space is left there is still half of this

remaining space with no solution. Therefore, in order to enforce a termination, the NLN-

SAT algorithm needs an appropriate termination mechanism: when the interval length of

a variable is smaller than a certain threshold δ this variable will no longer be considered

in the decision process. Clearly, when no variable has an interval with a length greater

than the threshold δ, the algorithm terminates and the current intervals of each variable

are returned as result. The answer given by the solver is not an exact point solution but

a space containing the point solution. In this work, we still refer to the resulted space as

solution because with a small enough termination threshold δ the resulted space can be

safely treated as a point.

Last and most importantly, the NLN-SAT technique we use in this work can provide

guarantee on unsatisfiability [15] which means that if the solver returns an UNSAT result

the problem formula indeed has no solution. As discussed later in the Chapter III and

the IV, this feature is made use of by this work to guarantee the conservativeness of the

solution found by our proposed methods.
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CHAPTER III

DC VERIFICATION

A. Context

In the DC analysis of any circuit, a fundamental job is to identify the DC operating points.

A DC operating point is a steady state of the circuit with constant input, i.e., the value of

input does not change with time. DC operating point is very important in circuit analysis.

Transient simulation takes the DC operating point as initial state of the circuit. Small signal

analysis such AC analysis linearizes the circuit on the DC operating point to approximate

the nonlinear circuit behavior. By sweeping the input to a circuit and finding its DC oper-

ating points, the transfer relations of the circuit can be obtained. Moreover, DC operating

points also relates to circuits’ properties of interest. For example, a Schmitt trigger circuit

has multiple DC operating points, each of which represents a distinct state of the circuit.

On the other side, a ring oscillator must have no operating point.

Since the DC operating points are so important, we provides its definition in a mathe-

matical context. For any given circuit, we represent its states of voltages and currents by a

vector x⃗(t), and the input signal to the circuit by function u⃗(t). Then the circuit’s behavior

can be described by a differential equation as follow

d

dt
x⃗(t) = f(x⃗(t), u⃗(t)) (3.1)

Assume x⃗s(t) is a solution to the Equation 3.1 when the input is constant, i.e., u⃗(t) ≡

u⃗(0). Then x⃗s(∞) is called a DC equilibrium point of the circuit. A circuit with DC equilib-

rium points does not necessarily have DC operating point because only stable equilibrium

point is operating point (a circuit with constant input will settle only to stable equilibrium

point).



16

A stable DC equilibrium point is defined as follow. For any x⃗a(t) which satisfies
d

dt
x⃗a(t) = f(x⃗a(t), u⃗(t)), u⃗(t) ≡ u⃗(0)

∥x⃗a(0)− x⃗s(∞)∥ < ε, ε > 0
, (3.2)

if

lim
t→+∞

x⃗a(t) = x⃗s(∞) (3.3)

then x⃗s(∞) is a stable equilibrium. A intuitive version of the definition is as follow: if all

traces starting from the neighborhood of x⃗s(∞) will eventually converge to x⃗s(∞), then

x⃗s(∞) is a stable DC equilibrium point.

The above definitions of equilibrium and stability show that in order to identify a DC

operating point two steps must be performed. The first step is to locate the equilibrium

points by solving the constraints of the circuit. The second step is to determine the stability

for each located equilibrium point. Since this presented work focuses on the application of

SAT solver in verification methodology, we implements only the first step: finding all DC

equilibria. A implementation of the second step can be found in the paper [14].

B. Bounded transistor model

In order to formulate the constraint (Equation 3.1) for the circuit, we should at first decide

the models we use to capture the behavior of the devices. Accurate transistor-level models

such as BSIM3 [18], which is among the standard models in the semiconductor industry,

are too complex to be practically handled by the NLN-SAT solver. To address this issue,

we introduce an approximate yet conservative level-one style bounded device model which

is in the following form  Ids ≥ Lowerbound(Vgs, Vds, Vsb)

Ids ≤ Upperbound(Vgs, Vds, Vsb)
. (3.4)
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The bounded device model (Equations 3.4) is much simpler than the BSIM3/4 models

but it’s guaranteed to bound the exact I-V characteristics of the devices. For any assign-

ment of value to (Vgs, Vds, Vsb), the corresponding current value Ids calculated based upon

BSIM3/4 model is bounded by LowerBound(Vgs, Vds, Vsb) and UpperBound(Vgs, Vds, Vsb).

The bounded model is built through curve fitting based on BSIM3/4 simulation data.

The level one model [19] is modified to serve as fitting template. Specifically, we re-

place the formula of level one model in the cutoff region with the following equation

Ids = k1e
k2Vgs to capture the behavior in subthreshold region more accurately. Moreover,

although in this work we built bounded model for each transistor with fixed device param-

eters, the modeling method can be applied straightforwardly to take process variations into

account. For example, if we want to model the effect of the gate width on the performance

of the transistors, we only need to add the gate width W to the model (Equations 3.4) as a

new independent variables, i.e., Ids ≥ Lowerbound(Vgs, Vds, Vsb,W )

Ids ≤ Upperbound(Vgs, Vds, Vsb,W )
. (3.5)

Specifically, take the modeling of the upper bound for example. The fitting template

of UpperBound(Vgs, Vds,W ) is as follow
Wk1e

k2V gs, Vgs ≤ Vth

Wk3(1 + λVds)(Vgs − Vth −
Vds

2
)Vds + b, Vgs > Vth ∧ Vds < Vgs − Vth

W
k3
2
(1 + λVds)(Vgs − Vth)

2 + b, Vgs > Vth ∧ Vds ≥ Vgs − Vth

. (3.6)

For simplicity, we ignore Vsb in this example. In Equation 3.6, W , Vgs and Vds are

independent variables while λ, k1, k2, k3, and b are optimization variables. To obtain the



18

upper bound model, an optimization problem is formulated as follow

min UpperBound(Vgs, Vds, Vsb,W )−BSIM3(Vgs, Vds, Vsb,W )

UpperBound(Vgs, Vds, Vsb,W ) ≥ BSIM3(Vgs, Vds, Vsb,W )
(3.7)

After an optimization tool is applied to solve Equation 3.7, the modeling of the upper

bound is complete.

As shown by Equation 3.4, we only model the I-V characteristics of the devices in

this work (I stands for the drain current and V stands for the gate voltages). However, the

above discussion about how process variations can be included in the model shows that

other effects of the devices like the nonlinear Q-V characteristics (i.e. the charge voltage

relations) can be handled in a similar way.

C. Problem formulation

After choosing the bounded device model to represent the behavior of devices, we can

formulate the constraint 3.1 as follows. Given a circuit ckt, similar to SPICE simulation

problem, we first gather its Kirchhoff’s current law (KCL) equations and Kirchhoff’s volt-

age law (KVL) equations. In this thesis, we simply refer to the KCL and KVL equations

as KCL(I⃗) and KV L(V⃗ ) where the vectors I⃗ and V⃗ represent the current and the voltage

variables of the circuit respectively. For each transistor in the circuit, we use the bounded

model to represent its I-V characteristics. All these constraints, together, conservatively

represent the behavior of the circuit. We denote this set of constraints by problem formulae

ϕ, which is as follow 

KCL(I⃗)

KV L(V⃗ )

I⃗ <= UpperBound(V⃗ )

I⃗ >= LowerBound(V⃗ )

(3.8)
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Note that the solution to ϕ is not a solution to ckt because ϕ is not equivalent to but a

conservative approximation of ckt. However, the solution to ϕ is guaranteed to bound the

solution to ckt. With this property, we first apply the NLN-SAT solver to find the solution

to ϕ and then refine it to desired resolution using the technique introduced in [13]. Assume

that the circuit we’re studying is a trivial circuit in which there’re only one current variable

and one voltage variable to be determined. In this trivial case, the vectors I⃗ and V⃗ transform

to two scalar variables I and V . For this trivial circuit, the transformation from the actual

circuit problem ckt to its conservative approximation ϕ is given by the Figure 2.

Solution to

Solution to

Fig. 2. Formulate DC problem with bounded models

As shown by the Figure 2, the trivial circuit ckt is constrained by the following equa-

tions  I = f(V )

I = g(V )
, (3.9)

where the solution to ckt is represented by the intersection point of the two curves, which



20

correspond to I = f(V ) and I = g(V ) respectively.

With the bounded model, we approximate the circuit ckt by the formula ϕ via the

following inequalities 

I <= fupper(V )

I >= flower(V )

I <= gupper(V )

I >= glower(V )

, (3.10)

where the solution is no longer a point but a region confined by the bounded model curves:

fupper(V ) , flower(V ), gupper(V ), and glower(V ). In Figure 2, the solution to ϕ is marked by

blue color.

D. DC verification algorithm

Our DC verification method is a two-layer approach. In the first layer, we use a NLN-SAT

solver to find, if any, all the solutions to the problem formulae ϕ. Still take the Figure 2

to illustrate how the first step goes. Of the two variables shown in Figure 2, it is clearly

that the voltage variable V is the only independent variable. Therefore, we only need to

determine the interval of variable V in which its value can make the formula ϕ to be true.

This interval of interest is marked as solution to ϕ in Figure 2. For simplicity, we refer to

the interval of interest as the solution interval in this section.

Here is the procedure (Algorithm 3) how the solution interval is determined.

First, we feed the formula ϕ to the NLN-SAT solver. Since any value within the

interval is a solution to ϕ, the solver will return a value x0 of V which can be anywhere

within the solution interval. Then we construct an interval [x0−∆, x0+∆] using the value

x0 as the mid-point. Next, We add a guidance constraint V /∈ [x0−∆, x0+∆] to formula ϕ.

The augmented formula ϕ is then fed to the solver again. Clearly, the guidance constraint

will force the solver to find solution only beyond the interval [x0 − ∆, x0 + ∆]. If a new
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Algorithm 3 DC verification algorithm
1: construct problem formulae ϕ;

2: S = ∅; //solution set

3: call NLN-SAT solver;

4: while solution ̸= UNSAT do

5: construct interval [solution−∆, solution+∆]

6: S = S ∪ [solution−∆, solution+∆];

7: ϕ = ϕ ∧ (i,v) /∈ [solution−∆, solution+∆];

8: call NLN-SAT solver;

9: end while

10: if S ̸= ∅ then

11: refine S;

12: end if

13: return S
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value x1 is returned by the solver, we repeat the construction of guidance interval using x1

as mid-point. Similarly the guidance interval is added to ϕ before the solver is calld again.

On the other side, if the solver finds that there is no solution to the given constraints, we

can be sure that the union of the intervals like [x0−∆, x0+∆] is a super-set of the solution

interval due to the guarantee on unsatisfiability from the solver. In this thesis, we refer to

the union of the intervals like [x0 −∆, x0 +∆] as candidate region. ∆ is an experimental

parameter which trades off the runtime with the over-approximation. With a big ∆, we

can quickly determine a candidate region with a few calls to the solver. However, the size

of the candidate region will be relatively large. With a small ∆, more calls are needed to

determine a candidate region while the size of candidate region is relatively small. In our

experiment, we choose a relatively large size to achieve faster runtime.

In the second layer, we apply the refinement technique introduced in [13] to reduce

the size of candidate region to desired resolution. Since both the search methods in the first

and second layer are conservative, we can be sure that there is definitely no solution outside

the solution set S and therefore S is guaranteed to bound all DC solutions.

E. Experimental results

We apply our two-layer DC verification method to locate all DC equilibrium points for a

set of ring oscillators1. In order to verify that the oscillator won’t be trapped in a steady

state, stability check is needed for each located equilibrium point. As mentioned before,

this work focuses on only the first job: the identification of equilibrium points.

Fig. 3 shows the schematic of a three-stage ring oscillator. For simplicity, all PMOS

transistors have the same size and so do all NMOS transistors. Besides, the carrier mobility

of the NMOS transistors are triple as great as the carrier mobility of the PMOS transistors.

1Experiment environment: 4-core Intel CPU Q9450, 8 GB memory, Ubuntu.
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W=30.0um

L=0.09um

W=10.0um

L=0.09um

Fig. 3. Schematic of a 3-stage ring oscillator

For each transistor, we build its bounded device model by fitting its BSIM3 DC sim-

ulation results. Take the upper bound Ids = UpperBound(Vgs, Vds, Vsb) for example. For

any fixed value val of Vsb, the upper bound uniquely corresponds to a surface in the 3-

dimensional space (Vgs, Vds, Ids). In our experiment, for both the NMOS and PMOS tran-

sistors, Vsb = 0. The upper bound and the lower bound of the NMOS transistors in this

experiment are shown in Figure 4.

As for the problem formulation, the KCL constraints Ip1 = In1, Ip2 = In2, Ip3 = In3

are first gathered. Then, IV characteristics described by the bounded models for each tran-

sistor are added. The target resolution of refinement is set to 0.001. For the ring oscillators

with odd number of stages, our method returns a single solution

V1 ∈ [0.599, 0.6], V2 ∈ [0.599, 0.6], V3 ∈ [0.599, 0.6], . . . (3.11)

while for the ring oscillators with even number of stages, our method find three set of
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solutions. The solutions are as follow
V1 ∈ [0.599, 0.6], V2 ∈ [0.599, 0.6], V3 ∈ [0.599, 0.6], . . .

V1 ∈ [0, 0.001], V2 ∈ [1.199, 1.2], V3 ∈ [0, 0.001], . . .

V1 ∈ [1.199, 1.2], V2 ∈ [0, 0.001], V3 ∈ [1.199, 1.2], . . .

. (3.12)

From the device parameters shown in the Figure 3, we know that gate width of the

PMOS transistors are triple as large as the gate width of the NMOS transistors. On the

other side, as mentioned earlier, the carrier mobility of the PMOS transistors are 1/3 of the

carrier mobility of the NMOS transistors. Considering these two facts, it is expected that

there is an equilibrium point around Vdd/2, i.e., 0.6. Thus the solution for ring oscillator

with odd number of stages is as expected. Besides, the HSPICE DC simulations for the

ring oscillators with odd number of stages indicate that the DC equilibrium point indeed

resides within the located region. There’re three solutions for the ring oscillators with even

number of stages. We had explained that the first one is as expected. And considering the

inverting function of the inverters, the rest two solutions for the ring oscillator with even

number of stages are also as expected.

Our experiment also compares the runtime of our two-layer method with the runtime

of [13]. In the first layer of our method, the SAT solver is called to quickly find a small

candidate region by solving the problem formulated with the bounded device model. In the

second layer, we apply the refinement technique introduced in [13] on the small candidate

region to get solution of desired resolution to the ring oscillators. In the second group of

experiments, the method of [13] is directly applied on the entire state space to search for

solutions of ring oscillators. For ring oscillators with up to 16 stages, the runtime results

are shown in Table I. Our method has considerable advantage in terms of runtime. The

reason is that the first layer can save a great amount of runtime for the second layer by

restricting its initial search space.
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Table I. Runtime of the ring oscillators verification

#stages The proposed 2-layer method [s] [13] method [s] speedup

11 36.73 51.85 1.4

12 110.76 129.09 1.2

13 64.89 368.93 5.7

14 86.85 1226 14.1

15 134.74 4072 30

16 118.58 17223 145
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CHAPTER IV

TRANSIENT VERIFICATION

A. Context

In the transient analysis of a circuit, the time dependent voltage and/or current response to

a given input is the object. In the mathematical context, the object of transient analysis is

to find the solution x⃗(t) for the differential Equation 3.1 to a given input u⃗(t). However,

differential equations solving can be quite difficult or even impractical when the corre-

sponding circuit is of reasonable large size and complex behaviors. In practise, numerical

integration methods are used by transient simulators to approximate the continuous analyt-

ical solution x⃗(t) with a set of discrete values x⃗(t0), x⃗(t1), x⃗(t2), . . . , where each x⃗(tk) is

an approximation to the x⃗(tk).

There are various numerical integration methods such as forward Euler (FE), back-

ward Euler (BE), trapezoidal method (TR), etc [20]. Take BE for example. Assuming the

state of the circuit at time tk is known to us, BE method approximates the Equation 3.1 as

follow

x⃗(tk+1)− x⃗(tk)

tk+1 − tk
= f(x⃗(tk+1), u⃗(tk+1)) (4.1)

where x⃗(tk) is the state of the circuit at time tk and u⃗(tk+1) is the input value at time tk+1.

The solution x⃗(tk+1) is an approximation to the circuit’s state at time tk+1.

In transient simulation, starting from an given initial condition (either an operating

point or a certain state set by the user) the BE method is iteratively applied to calculate

the next reachable state of the circuit. In the end, an approximation of the trajectory of the

circuit behavior starting from the given initial condition is obtained.

In the verification of a circuit, we usually concern its dynamic behaviors stemming
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from a range of initial condition. When simulation method is used to fulfill verification,

a sophisticated scheme must be first designed to get samples in the initial range of inter-

est. Then a number of simulation runs are performed for each sampling initial conditions.

Simulation is incomplete in nature while it is relatively cheaper than the SAT-based method

which is complete. With this observation, we propose a transient verification method com-

bining simulation and SAT. The flow of our proposed transient verification method will be

described in detail later in this chapter.

As mentioned in Chapter I, modeling checking which explores the state space of cir-

cuit behavior is an important class of methods in AMS verification. In terms of state space

exploration, there are a variety of choices [6, 13]. One choice is the unroll strategy in

which the circuit Equations 4.1 at each discrete time point are combined and solved all to-

gether [13]. Another choice is the reachability analysis in which the circuit Equations 4.1

are solved one by one [6]. In transient analysis, long simulation time is usually necessary to

observe the dynamical behavior of a circuit to determine whether the properties of interest

hold or not. This fact sets strict limitation to the application of the unroll strategy. When

thousands or more time points are involved, the scalability issue is likely to make the unroll

strategy impractical even for a simple circuit. Therefore, in this work, we implement our

transient verification technique in the reachability analysis fashion. The rest of this chapter

is organized as follow. First, the method of representing the state space in the reachability

analysis is introduced. Then, the algorithm of our transient verification method is provided.

In the end, two experiments are presented to demonstrate the application of our method.

B. State space representation and related issues

In the reachability analysis, starting from a given initial space, the algorithm iteratively

calculates the next reachable space. In this work, we use the fixed-grid boxes to represent
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the reachable space in the reachability analysis. An illustration is given by the Figure 5.

b
4

b
5

b
1 b

2
S

b
3

Fig. 5. An example of the fixed-grid representation

For simplicity, Figure 5 only shows a 2-dimensional state space (x, y). In this figure,

the current reachable space S is circled by the red line and marked by green color. With the

fixed-grid boxes, we shall use the union of five boxes to represent the space S as follow

(x, y) ∈ b1∨

(x, y) ∈ b2∨

(x, y) ∈ b3∨

(x, y) ∈ b4∨

(x, y) ∈ b5

(4.2)

Clearly, while the fixed-grid representation provides conservativeness, it does intro-

duce over-approximation as any other geometrical state space representation methods. As

we can see in Figure 5, there are spaces not belong to S in each of the five boxes and

these space is the over-approximation introduced by the fixed-grid representation. The

over-approximation will accumulate step by step. Without careful handling, the over-
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approximation might lead to a situation that no firm conclusion can be drawn because the

reachable space is too conservative. In this work, we increase the resolution of the grid to

alleviate the accumulation of the over-approximation.

A higher resolution, though reduces the over-approximation, has side effects. As it

will be discussed later in this chapter, the number of boxes used to represent the reachable

space closely relates to the size of constraints and the number of times the SAT solver is

called. And the latter two factors strongly affect the runtime efficiency of the verification

technique. In short, the more the boxes are used to represent the reachable space, the greater

the runtime is. Therefore, reducing the box number is imperative. In our work, we develop

an box merging algorithm to achieve this goal.

In order to explain the merge algorithm, it is necessary to explain how a box is actually

represented in a constraint. For the reachable space shown in Figure 5, the constraint

(Equation 4.2) is coded as follow

(x ∈ [0, 1] ∧ y ∈ [2, 3]) ∨ //(x, y) ∈ b1

(x ∈ [1, 2] ∧ y ∈ [2, 3]) ∨ //(x, y) ∈ b2

(x ∈ [2, 3] ∧ y ∈ [2, 3]) ∨ //(x, y) ∈ b3

(x ∈ [0, 1] ∧ y ∈ [1, 2]) ∨ //(x, y) ∈ b4

(x ∈ [1, 2] ∧ y ∈ [1, 2]) //(x, y) ∈ b5

(4.3)

where the intervals specify the range for each dimension of the boxes. With this represen-

tation, we can vary the size of a box even though the resolution of the grid is fixed. Figure 6

shows two different merge results from the same set of boxes in Figure 5.

In Figure 6 (a), the boxes are merged horizontally. Boxes b1, b2, and b3 are merged

to form a larger box b123 while boxes b4 and b5 are combined to form another larger box

b45. The two larger boxes resulted from the merges are outlined by purple boundaries in
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Fig. 6. Merged boxes

Figure 6 (a). The merges can make the constraint (Equation 4.3) to be simplified as follow

(x ∈ [0, 3] ∧ y ∈ [2, 3]) ∨ //(x, y) ∈ b123

(x ∈ [0, 2] ∧ y ∈ [1, 2]) //(x, y) ∈ b45

. (4.4)

Figure 6 (b) shows a different merge result in which boxes b1, b2, b4, and b5 are merged

to form a large square box b1245 while box b3 is left alone. The resulted constraint is as

follow
(x ∈ [0, 2] ∧ y ∈ [1, 3]) ∨ //(x, y) ∈ b1245

(x ∈ [2, 3] ∧ y ∈ [2, 3]) //(x, y) ∈ b3

. (4.5)

The flow of our box merging algorithm is shown in Algorithm 4. There are two list of

boxes. One stores the unmerged boxes, and the other stores the merged boxes. We refer to

the lists as Lmerged and Lummerged respectively. Initially, Lummerged stores the set of boxes

to be merged and Lmerged is empty. The algorithm visits each box bi in Lummerged one by

one and find if bi can be merged to any of the boxes in the Lmerged. If bi can be merged, then

the corresponding box in Lmerged will be updated to the box resulted from the merge. If not,

bi is inserted into Lmerged. After all box in Lummerged is visited, the algorithm compares the

number of boxes in Lmerged and in Lummerged. If the numbers are the same, which means
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that the last run of visit does not lead to any merge and so the algorithm stops. Otherwise,

Lummerged dumps all its content and takes all the content of Lmerged, after which Lmerged is

cleared to be an empty list again. Then another run of visit to the boxes in Lummerged will

be performed. This process repeats until the size of Lmerged equals the size of Lummerged

after a run of visit.

Algorithm 4 merge(Lummerged)

1: while TRUE do

2: Lmerged = ∅;

3: for each box bi ∈ Lummerged do

4: if there exists a box b′j ∈ Lummerged that can be merged with bi then

5: b′j = b′j + bi; //merge

6: else

7: insert bi into Lmerged;

8: end if

9: end for

10: if sizeof(Lmerged) == sizeof(Lummerged) then

11: break;

12: else

13: Lummerged = Lmerged;

14: end if

15: end while

16: return Lmerged

Note, the ordering of the boxes in the list Lummerged can affect the result of the merge.

An example has been shown in Figure 6. In Figure 6 (a), a possible ordering of the five
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boxes in the list Lummerged is [b1, b2, b3, b4, b5], where b1 is the head and b5 is the tail.

Initially, the list Lmerged is empty. In list Lummerged, box b1 is the first box to be visited by

the merge algorithm. Since Lmerged is empty when b1 is visited, b1 must be inserted into

Lmerged because no merge can happen. The second box being visited is box b2. When the

algorithm traverses the Lmerged, it will finds that there is a box b1 in Lmerged which can be

merged with b2. Then in the list Lmerged, the box b1 is replaced by a larger box b12 resulted

from the merge of b1 and b2. After one visit to each box in the Lummerged, the algorithm

shall get the merge result shown in the Figure 6 (a). For Figure 6 (b), a possible ordering

of the boxes in the list Lummerged is [b1, b4, b2, b5, b3], where b1 is the head and b5 is the tail.

Similar to the previous example, box b1 is the first one in the list Lummerged to be visited.

Since the list Lmerged is empty at this moment, b1 is inserted to Lmerged. The second box

being visited is box b4. Since box b1 can be merged to b4, in the list Lmerged the box b1 is

replaced by a larger box b14, which is the result from the merge of b1 and b4. Compared

to the merge result of the previous example at the same stage (when the visit to the second

box in Lummerged is completed), we can see that the difference of the merge result is due to

the different orderings of the list Lummerged in these two examples.

Before moving to the next section, a short discussion on the possible benefits from the

fixed-grid representation is provided. Compared to other geometrical state space represen-

tations, like zonotopes or polytopes, fixed-grid boxes are more flexible for reuses. With the

fixed-grid representation, we can build up a look-up table of the causal relationship between

each two boxes in the state space during the process of the reachability analysis. Before

calculating the next reachable state space, we can first look up the table using the boxes

representing the current reachable space as index. The boxes found during the look-up pro-

cess, if exists, can be directly taken as the next reachable space without the need to solve

the circuit equations. The look-up table can even be set as share information to facilitate

the parallel computation of the reachable space. Though these features of the fixed-grid
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representation aren’t made used of in this work, the author believes that it is worthwhile to

mention them to the readers.

C. Algorithm of reachability analysis

Reachability analysis is performed by iteratively applying a propagation algorithm which

calculates the next reachable space based on the given current reachable state. In reacha-

bility analysis, we formulate the circuit equations as follow. First, for a given circuit, we

formulate its behavior with the Equation 3.1. Then we approximate this equation with cer-

tain numerical integration method. In this work, BE method is adopted and so the behavior

of the circuit is approximated using the Equation 4.1. Essentially, Equation 4.1 represents

the mapping from the current state x⃗(tk) to the next state x⃗(tk+1). For simplicity, from now

on we refer to x⃗(tk) as xk and x⃗(tk+1) as xk+1 in this thesis. Then Equation 4.1 can be

represented in the following form

mapping(xk, xk+1) = 0 (4.6)

The rest of this section will first introduce the basic propagation algorithm which

powered by NLN-SAT only. Then the simulation-assisted propagation algorithm which

combines the strength of simulation and SAT will be described.

1. Basic propagation algorithm

Algorithm 5 shows the procedure of the basic propagation algorithm. The input is a set of

boxes, Sk, representing the current reachable space. The object of the algorithm is to find

the next reachable space Sk+1 which is also represented by a set of boxes.

Initially, Sk+1 is set to be an empty set. The input box set Sk is processed and updated

using the merge algorithm. After the merge procedure, there will be much fewer boxes in
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Algorithm 5 Basic propagation algorithm (input: Sk)
1: Sk+1 = ∅;

2: Sk = merge(Sk);

3: for each box bi ∈ Sk do

4: Next = ∅;

5: construct problem formula Q;

6: // Q: mapping(xk, xk+1) = 0 ∧ xk ∈ bi ∧ xk+1 /∈ Next

7: call NLN-SAT solver;

8: while solution ̸= UNSAT do

9: find box, where solution ∈ box;

10: Next = Next ∪ box;

11: Next = merge(Next);

12: update formula Q;

13: call NLN-SAT on formula Q;

14: end while

15: Sk+1 = Sk+1 ∪Next;

16: end for

17: return Sk+1
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Sk while it still represents the same reachable space. Then the algorithm uses a for-loop to

calculate the next reachable state space Next for each box bi in Sk. The union of Next for

each bi is the resulted reachable space we’re looking for. Within the for-loop, a problem

formula Q is set up by combining the circuit Equation 4.6 with the constraints on current

and next reachable space. The constraint xk+1 /∈ Next serves as a guide for the solver

by blocking the already located next reachable space from being searched again. At first,

Next is empty. After the problem is formulated, an inner while-loop is used to iteratively

call the NLN-SAT solver until all reachable space stemming from bi is located.

Within the while-loop, the algorithm selects the box which contains the solution re-

turned by the solver. Although this selection does introduce over-approximation, it pre-

serves the conservativeness of the solution and leads to less iteration of the while-loop.

Each time after a reachable box is located and inserted into Next, the merge procedure

will be called on Next to reduce its number of boxes. The problem formula Q with the

updated version of Next is then fed to the NLN-SAT solver again.

Figure 7 illustrates how many times the NLN-SAT solver is called in the basic propa-

gation algorithm. For simplicity, the figure only shows a 2-dimensional state space (x, y).

The current reachable space is represented by a single box b1. After one time step, b1 prop-

agates to b′1, b
′
2, and b′3. Although it isn’t necessary that the actual next reachable space

entirely covers all the space in those boxes b′i (i = 1 to 3), we nevertheless use the union of

those boxes to represent the next reachable space since in the fixed-grid method the boxes

like b′1 represent the highest resolution we can get.

For the example illustrated in Figure 7, the Algorithm 5 calculates the next reachable

space for b1 as follow. First, the merge routine finds that no merge can be performed. Thus,

Sk contains a single box b1. Since the reachable space is propagated to b′i (i = 1 to 3), the

solution returned by the solver can come from any of these three boxes. Assume that the

first solution the solver finds is within the box b′1. After the first solution is returned, boxes
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SAT

Fig. 7. Propagation of the reachable space

b′1 will be inserted into the box set Next which stands for the reachable space stemming

from b1. The constraint xk+1 /∈ Next will prevent the solver from searching the space in

b′1 again. Therefore, further calls to the solver will only return solution within the rest two

boxes b′i (i = 2 to 3). Clearly, the next two calls to the solver will mark the remaining two

boxes as reachable space one by one. In the end, the fourth and last call will return a UNSAT

result which means no solution can be found in the space outside of the identified boxes b′i

(i = 1 to 3). Considering the guarantee on unsatisfiability from the solver, b′1 ∪ b′2 ∪ b′3 does

conservatively represent the next reachable space stemming from b1.

2. Simulation-assisted propagation algorithm

Although the NLN-SAT technique is rather powerful considering that it can handle SAT

problems with boolean combination of a large number of constraints over the real domain,

it is still less efficient than transient simulation on the job of finding the solution. However,

the NLN-SAT technique can be used to guarantee the conservativeness of the reachable

space which is the benefit simulation can’t provide. Therefore, we combine transient simu-
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lation with the NLN-SAT technique to build an reachability analysis method with both ef-

ficiency and completeness. We implement the transient simulation method through a C++

implementation of the Equation 4.6 which takes the value of xk as the input and returns the

value of xk+1 as the output.

The proposed reachability method works as follow. At first, we uniformly sample

the current state space to get a set of sampling points. Then, for each sampling point, we

calculate its projection point in the next time point using simulation. After a projection

point is located, the box containing the point is regarded as the next reachable space. It

is true that different sampling points can lead to projection points in the same box which

means that not all the sampling points provide no information. However, considering that

the simulation method covers most part of the next reachable space very efficiently, inte-

grating circuit simulation based sampling into the verification flow is beneficial. After all

the sampling points are processed via simulation, the NLN-SAT methods is called to find

the unidentified reachable space in the same way as is in the Algorithm 5.

In general, the simulation method is in charge of quickly covering the major part of

the next reachable space. The rest part is then located by a few calls to the NLN-SAT

solver. The pseudo code of this simulation-assisted propagation algorithm is shown in

Algorithm 6. Besides, a few techniques such as analytical bound calculation and constraint

simplification are also implemented to increase the runtime efficiency of the reachability

analysis.

D. Experiment on a tunnel diode oscillator

We first apply our transient verification method on a tunnel diode oscillator to verify its

start-up condition. The rest of this section is organized as follow. First, the behaviors of

the circuit are provided along with the problem formulation in the first subsection. Then,
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Algorithm 6 Simulation-assisted propagation algorithm (input: Sk)
1: Sk+1 = ∅;

2: Sk = merge(Sk);

3: for each box bi ∈ Sk do

4: Next = ∅;

5: //sampling and simulation

6: SP = sampling(bi); //SP is the set of sampling points

7: for each point p ∈ SP do

8: xk+1 = simulation(p);

9: find box, where xk+1 ∈ box;

10: Next = Next ∪ box;

11: end for

12: //call for NLN-SAT

13: Next = merge(Next);

14: construct problem formula Q;

15: // Q: mapping(xk, xk+1) = 0 ∧ xk ∈ bi ∧ xk+1 /∈ Next

16: call NLN-SAT solver;

17: while solution ̸= UNSAT do

18: find box, where solution ∈ box;

19: Next = Next ∪ box;

20: Next = merge(Next);

21: update formula Q;

22: call NLN-SAT on formula Q;

23: end while

24: Sk+1 = Sk+1 ∪Next;

25: end for

26: return Sk+1
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the experimental setup, result and analysis are presented in the second subsection.

1. Model of the tunnel diode oscillator

The schematic of the tunnel diode oscillator is shown in Figure 8.

Fig. 8. Schematic of a tunnel diode oscillator

There’re two independent state variables in the behavior space of the tunnel diode

oscillator. The first one is the voltage Vd across the capacitor. And the other is the current

IL flowing through the inductor. The state equations which characterize the behaviors of

the circuit are as follow  IL = Id + C · V̇d

Vin = R · IL + L · İL + V̇d

(4.7)

Equations 4.7 are approximated using BE method in this work.

The voltage to current characteristic of the diode is captured by the following piece-

wise nonlinear function

Id(Vd) =


6.01V 3

d − 0.992V 2
d + 0.0545Vd, vd ≤ 0.055

0.0692V 3
d − 0.0421V 2

d + 0.004Vd + 8.96 · 10−4, 0.055 ≤ vd ≤ 0.35

0.263V 3
d − 0.277V 2

d + 0.0968Vd − 0.0112, vd ≤ 0.35

,

(4.8)

where its curve is shown by Figure 9.
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Fig. 9. Voltage-to-current characteristic of the diode

In our reachability analysis, the behavior of the tunnel diode oscillator is represented

by the conjunction of the Equation 4.8 and the BE approximation of Equation 4.7.

2. Experimental setup and results

The parameters of the circuit are as shown in the Figure 8: R = 200Ω, L = 1µH, C = 1pF,

and Vin = 0.3V. The time step of reachability analysis is ∆t = 0.2ns. The resolution

of fixed-grid representation: ∆IL = 0.001mA and ∆Vd = 0.001V. The range of initial

condition of interest is IL = 0.6mA and Vd ∈ [0.42V, 0.52V]. The object of our experiment

is to verify that starting from any value within the given initial range, the tunnel diode

oscillator can actually generate oscillation. The result of a 70-step reachability analysis is

shown in Figure 10.

Figure 10 verifies that the tunnel diode oscillator can guarantee to generate oscillation

starting from any state within the given initial range.
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Fig. 10. Reachable space of the voltage-to-current characteristic of the diode

In the experiment, we observe that the sampling rate affects the runtime and the num-

ber of calls to the simulation routine and the SAT solver. We perform 7 runs of the 70-step

reachability analysis, each with a different sampling rate. The runtime result is shown in

Table II.

Table II. Runtime of the tunnel diode oscillator verification with various sampling rates
Sampling interval #sim sim time[s] #SAT SAT time[s] sim time + SAT time [s]

1/3 0.9M 19.4 27808 6293.5 6312.9
1/4 1.6M 33.9 24128 4130.3 4164.2
1/5 2.5M 51.3 21450 3254.7 3306.0
1/6 3.4M 72.5 22905 3709.6 3782.1
1/7 4.6M 97.2 22448 3219.4 3316.6

1/20 34.5M 725.7 22292 3335.3 4061.0
1/91 703.1M 14966 21709 3254.7 18220.7

Note the definition of the sampling interval in Table II is as follow. For a given sam-

pling interval p and the resolution ∆x for the variable x being sampled, the interval between

each two adjacent samples is p ×∆x. Table II shows the general trend that by increasing

the sampling rate, the number of simulation runs increases while the number of SAT solver
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calls decreases. Correspondingly, the runtime for simulation is increased while the runtime

for SAT solver is decreased. With a number of experiments, it is possible to find out the

best sampling interval which leads to the optimal runtime efficiency. In our experiment, the

best sampling interval for the tunnel diode oscillator should be around 1/5.

E. Experiment on a charge pump PLL

In the second experiment, we apply our transient verification technique to a more challeng-

ing circuit, a charge pump PLL. The object of the experiment is to check whether the PLL

can achieve phase lock in a given period of time. Considering the complexity of the PLL

circuit, it is envisioned that modeling abstraction (i.e. behavioral models in our case) is

necessary to make the reachability analysis of PLL practical. In the rest of this section, the

behavioral models of the PLL will be described in detail at first, followed by the experiment

results and analysis.

1. Behavioral model of the PLL

Figure 11 shows the block diagram of the charge pump PLL. The reference signal ref is

compared to the output signal div coming from a 1/N frequency divider by a phase fre-

quency detector (PFD). The PFD generates its output signals based on the phase/frequency

difference between ref and div. PFD’s output controls the current icp running through the

charge pump (CP) which in turns controls the input voltage v1 of the voltage-controlled

oscillator (VCO) through a loop filter. The output frequency fv of VCO, which is directly

controlled by v1, is fed back to the PFD as signal div after going through the 1/N frequency

divider. The feedback effect will finally set the frequency fv to be around N times of the

frequency of ref.

The PFD is implemented using two D flip-flops (DFFs) as shown in Figure 11. Signals
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Fig. 11. Block diagram of a charge pump PLL

ref and div along with the current state of signals up and dn determines the next state of up

and dn. Assuming the initial state of both up and dn are low (L). If the signal ref takes the

lead and generates a rising edge at first, then the signal up will become high (H), which

in turn makes the CP pumps current icp into the loop filter. The voltage v1 will increase

because of the injection of current icp. Finally, the increase of voltage v1 will lead to the

increase of output frequency fv which makes the feedback signal div catch up with ref.

When div eventually catches up and generates a rising edge of dn, the AND gate in PFD

will output a reset signal to drag down both signals up and dn and in so doing the CP is

turned off. Due to this reset mechanism, the state when both ref and div are H can be safely

ignored. In this thesis, the next state of a variable x is denoted by x′. The transition rules

just mentioned can be described by the propositional logic constraints as follow

(Φr > 2π ∧ Φd < 2π ∧ up = L ∧ dn = L)

⇒ (Φ′
r = Φr − 2π ∧ Φ′

d = Φd ∧ up′ = H ∧ dn′ = L) (4.9)

(Φr < 2π ∧ Φd > 2π ∧ up = H ∧ dn = L)

⇒ (Φ′
r = Φr ∧ Φ′

d = Φd − 2π ∧ up′ = L ∧ dn′ = L) (4.10)
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where Equation 4.9 describes the condition when ref takes the lead at first and Equa-

tion 4.10 describes the condition when div catches up. Note the above two constraints

does not fully describe transition rules of the PFD. Since the other constraints not listed are

of the same form, we don’t write them all here for simplicity.

The timing diagram below will help further illustrate the working principle of the PFD.

Fig. 12. Timing diagram of the PFD

The constraints controlling the CP are given by Equations 4.11. When the signal up

is H , the CP pumps current icp into loop filter. When the signal dn is H , the CP pumps

current icp out of the loop filter. When both the signals up and dn are L, the CP is turned

off and no current is pumped in or out. As mentioned earlier, the duration of the state when

up and dn are both H is so short that this state is not considered in the behaviors of the CP.

icp =


iup if up = H ∧ dn = L

0 if up = L ∧ dn = L

idn if up = L ∧ dn = H

. (4.11)

The KVL and KCL constraints governing the loop filter are as follow
C2

dv1
dt

+ C1
dv2
dt

= icp

R1C1
dv2
dt

+ v2 = v1

. (4.12)
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Since the NLN-SAT technique does not take differential equation as input, we approx-

imate the Equation 4.12 using BE method.

For the VCO, we use a piecewise nonlinear function (Equation 4.13) to capture its

voltage-to-frequency behavior which is shown in Figure 13.

fv(v1) =



0, v1 ≤ 0.29

183.9v21 − 104.4v1 + 14.81, 0.29 < v1 ≤ 0.50

−121.1v21 + 201.4v1 − 61.84, 0.50 < v1 ≤ 0.745

−30.98v21 + 66.96v1 − 11.701, 0.745 < v1 ≤ 1.0

. (4.13)
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Fig. 13. Voltage-to-frequency characteristic of the VCO

It is worthwhile to mention that we don’t model the internal delay for the VCO in

this work, which means for any given voltage input v1 the output frequency fv immediately

jumps to the steady state. However, it is not difficult to include the behavior of delay to

the behavior model. One choice is to approximate the delay by adding a RC circuit at the

output of the VCO.

Finally, considering the PLL as a whole, there are three independent continuous state

variables, Φd , v1, and v2, and two independent discrete state variables, up and dn. The
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current icp is directly controlled by the state of up and dn and thus can’t be taken as an

independent state. Φr is completely determined by its initial value Φr(0) and the frequency

fr of reference signal ref. Most importantly, as an input, Φr is irrelevant to the inherent

characteristics of the PLL circuit. Therefore, Φr is also not regarded as an independent

continuous state variable. The discrete state variables of PLL lead to three discrete state

space (L, L), (L, H), and (H , L). Within each discrete state space, there resides the

continuous behaviors of the PLL. The hybrid automaton of the charge pump PLL is shown

by Figure 14. Large number of switches among the discrete spaces, as is the case in PLL

dynamical behavior, is one of the reasons that makes verification a difficult task for AMS

circuit involving hybrid automaton because switch leads to more computational expense

and over-approximation than non-switch propagation.

both_off

up=L, dn=L

dn_active

up=L, dn=H

up_active

up=H, dn=L

G: r>=2 , d<2

R: r’:= r 2

G guard

R reset

G: d>=2 , r<2

R: d’:= d 2

G: r>=2 , d>=2

R: r’:= r 2 , d’:= d 2

G: r>=2 , d>=2

R: r’:= r 2 , d’:= d 2

G: r>=2 , d>=2

R: r’:= r 2 , d’:= d 2

G: r>=2 , d<2

R: r’:= r 2

G: r>=2 ,

d<2

R: r’:= r 2

G: d>=2 , r<2

R: d’:= d 2

G: d>=2 ,

r<2

R: d’:= d 2

Fig. 14. Hybrid automaton of the charge pump PLL
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2. Experimental setup and results

As mentioned in the beginning of this section, the object of this experiment1 is to check

whether the PLL can achieve phase lock in a certain period of time. In our experiment, the

certain period of time is 2000 ns. The criteria of locking of phase is ∥Φr − Φd∥ < 5% ×

2π. For convenience, the valid region of phase is normalized from [0,2π) to [0,1) in our

experiment. Therefore, the criteria of phase locking must be modified to ∥Φr−Φd∥ < 0.05.

The parameters of the circuit are set as follow: reference frequency fr = 10MHz,

C1 = 2.5pF, C2 = 0.6pF, R1 = 160kΩ, N = 100. The time step used in this reachabil-

ity analysis is ∆t = 1ns, 1/100 of the reference period. The range of each independent

continuous variable Φd, v1, and v2 is shown below in the Table III along with the valid

combinations of the discrete state variable up and dn.

Table III. Range of the state variables

Variable Valid location

v1 [0,1]

v2 [0,1]

ϕd [0,1)

(up, dn) (H ,L), (L,L), (L,H)

The initial condition for the reachability analysis is set up as follow: Φr = 0.955, Φd ∈

[0.8,0.9], v1 ∈ [0.47V, 0.48V], v2 ∈ [0.72V,0.73V], up = L, and dn = L. The resolution of

the fixed-grid representation is ∆Φd = 0.01, ∆v1 = 0.01V, and ∆v2 = 0.01V. Note, since

we don’t include the internal delay effect of the VCO into the behavioral model, there is

no power-on process of the VCO in our experiment. The result of 2000-step reachability

1Experiment environment: 4-core Intel CPU Q9450, 8 GB memory, Ubuntu.
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analysis for the PLL is shown in Figure 15.
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Fig. 15. Φr versus Φd

The result shows that apart from the discrete behavior region (i.e. where phase jumps

from 1 to 0), the PLL successfully achieves lock of phase under the aforementioned criteria.

Similarly to the experiment on tunnel diode oscillator, we also vary the sampling rates

during the simulation process to find the best combination of simulation and SAT. We

perform 10 runs of the 2000-step reachability analysis, each with a different sampling rate.

The runtime result is shown in the Table IV.

Note, the last row of Table IV does not finish the 2000-step reachability analysis. The

data shown in the last row is the statistics at 588 steps. The definition of the the sampling

interval is the same as in the experiment on the tunnel diode oscillator. The Table IV shows

that the optimal sampling interval for the charge pump PLL is around 1/20.

At last, we use an experiment to show the effect of the box merging technique. The

experiment performs two runs of a 10-step reachability analysis with ∆t = 1ns. The

parameters and initial condition of the circuit are the same as before. In the first run, the
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Table IV. Runtime of the PLL verification with various sampling rates
Sampling interval #sim sim time[s] #SAT SAT time[s] sim time + SAT time [s]

1/2 14M 1.8 13237 2132.1 2133.9
1/3 19M 2.4 11827 1935.5 1937.9
1/4 27M 3.3 10733 1820.9 1824.2
1/5 35M 4.4 9387 1636.9 1641.3
1/6 48M 6.0 9113 1578.4 1584.4
1/7 62M 7.5 9514 1806.6 1814.1
1/8 76M 9.1 8679 1509.2 1518.3
1/9 113M 13.6 7325 1134.5 1148.1
1/20 481M 61.3 6516 952.4 1013.7

1/100 20938M 2543.0 2958 240.4 2783.4

program uses the merge technique while in the second run the program does not. It can be

seen from the Figure 16 that without the help of merge technique, the increase of runtime

will make it impractical to perform a reachability analysis over large number of time steps.
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Fig. 16. Merge’s effect on runtime
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CHAPTER V

CONCLUSION

In this work, we propose two approaches for AMS verification based on circuit modeling,

nonlinear SAT solver, and simulation techniques.. One is for DC verification, and the other

is for transient verification.

For DC verification, we introduces a two-layer method. In the first layer, we formulate

the circuit problem with the conservative bounded device models. Then we apply the SAT

solver to find the solution of the formulated problem. In the second layer, a refinement

technique developed in [13] is applied to reduce the size of the solutions previously found

to desired resolution. We apply our method to find the DC equilibrium points for a set of

ring oscillators. The experiment result shows that our method has considerable speedup

over the previous work [13].

For transient verification, we perform reachability analysis by combining the simu-

lation and SAT. The transient verification method first quickly finds most part of the next

reachable space with simulation. Then SAT solver is applied to locate the rest unidentified

part of the next reachable space. We also introduce a box merging algorithm to efficiently

represent the state space using fix-grid boxes. We apply our method on a tunnel diode os-

cillator and a charge pump PLL. Both the experiments successfully verify the properties of

interest. Besides, we also vary the sampling rate during the simulation process to find the

optimal combination of simulation and SAT in terms of runtime.
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