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ABSTRACT 

 

The Fractional Fourier Transform 

and Its Application to Fault Signal Analysis. (May 2012) 

Xiao Duan, B.S., Xi’an JiaoTong University, Xi’an, China 

Chair of Advisory Committee: Dr. Alexander G. Parlos 

 

      To a large extent mathematical transforms are applied on a signal to uncover 

information that is concealed, and the capability of such transforms is valuable for signal 

processing. One such transforms widely used in this area, is the conventional Fourier 

Transform (FT), which decomposes a stationary signal into different frequency 

components. However, a major drawback of the conventional transform is that it does not 

easily render itself to the analysis of non-stationary signals such as a frequency 

modulated (FM) or amplitude modulated (AM) signal. The different frequency 

components of complex signals cannot be easily distinguished and separated from one 

another using the conventional FT. So in this thesis an innovative mathematical transform, 

Fractional Fourier Transform (FRFT), has been considered, which is more suitable to 

process non-stationary signals such as FM signals and has the capability not only of 

distinguishing different frequency components of a multi-component signal but also 

separating them in a proper domain, different than the traditional time or frequency 

domain. 

      The discrete-time FRFT (DFRFT) developed along with its derivatives, such as 

Multi-angle-DFRFT (MA-DFRFT), Slanted Spectrum and Spectrogram Based on Slanted 
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Spectrum (SBSS) are tools belonging to the same FRFT family, and they could provide 

an effective approach to identify unknown signals and distinguish the different frequency 

components contained therein. Both artificial stationary and FM signals have been 

researched using the DFRFT and some derivative tools from the same family. Moreover, 

to accomplish a contrast with the traditional tools such as FFT and STFT, performance 

comparisons are shown to support the DFRFT as an effective tool in multi-component 

chirp signal analysis. The DFRFT taken at the optimum transform order on a single-

component FM signal has provided higher degree of signal energy concentration 

compared to FFT results; and the Slanted Spectrum taken along the slant line obtained 

from the MA-DFRFT demonstration has shown much better discrimination between 

different frequency components of a multi-component FM signal. 

      As a practical application of these tools, the motor current signal has been analyzed 

using the DFRFT and other tools from FRFT family to detect the presence of a motor 

bearing fault and obtain the fault signature frequency. The conclusion drawn about the 

applicability of DFRFT and other derivative tools on AM signals with very slowly 

varying FM phenomena was not encouraging. Tools from the FRFT family appear more 

effective on FM signals, whereas AM signals are more effectively analyzed using 

traditional methods like spectrogram or its derivatives. Such methods are able to identify 

the signature frequency of faults while using less computational time and memory. 
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CHAPTER I 

INTRODUCTION 

 

A. Research Motivation 

      During the recent 3 decades, Fractional Fourier Transform (FRFT), which is an 

advanced innovation of the traditional Fourier Transform (FT), has gained more and 

more attention in engineering society. Due to the newly introduced degree of freedom – 

the transform order, FRFT is an ideal tool to process FM signals, and has distinguished 

itself from FT, one of the most basic tools applicable only to stationary signals. 

      The application of FRFT is tremendous, and its contribution is not simply confined 

to signal processing. Voluminous literature probing into the massive application could 

be found, with detailed discussion on its adoption in solving differential equations, 

quantum mechanics, quantum optics, optical diffraction, beam propagation, data 

compression, human emotional state recognition, moving targets detection and others. 

      Despite the extensive use, the focus of this research is in digital signal processing 

(DSP), or to be specific, the study in the discrete version of FRFT (DFRFT) is highly 

emphasized with a main motivation of unknown signal identification and fault analysis. 

      An FM signal is a very common type of both natural signal and industrial signal, and 

it could be modeled by an exponential function with a varying frequency.  Modeling 

such signals is a good way of simulating real signals, which are ubiquitous in both nature 
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and project application field in industry. Moreover, this research direction will facilitate 

the subsequent study of some unknown signals, as well as provide researchers with the 

insight of comprehensive understanding of the signals. So the ultimate goal of 

identifying and distinguishing different components of sophisticated signals will be 

achieved with confidence and fidelity. 

      Fault analysis is the other essential motivation of this research. As for the case of all 

the other rotating machines, the safety and reliability of an induction motor will 

deteriorate after operation over some period of time. So in order to prevent the motor 

from posing grave threat to its operator and on-the-spot staff and eventually causing 

immense economic loss, effective motor maintenance is an absolutely necessary routine. 

Based on related statistics [1], a common failure of induction motors is related to bearing 

failures, so acquisition of real-time motor bearing signals is required. And then in the 

subsequent research, the signature frequency of the fault could be obtained with 

precision, reliability and promptness. 

 

B. Literature Review 

      Even though “fractional” as a terminology emerged in the recent 30 years, the first 

reference dates back to 1695 when Bernoulli sent Leibniz a letter, questioning the 

meaning of a non-integer order derivative. And then Fractional Calculus (FC) had been 

gradually established over centuries until the 1920s, when there began relative 

systematic studies on FC in Applied Sciences [2]. In 1929 the concept of Fractional 
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Fourier Transform (FRFT) was presented into the Mathematics area, and in 1980 that 

this signal analysis tool was rediscovered by physicist Namias. 

      Basically, FRFT is an evolved version of the traditional Fourier Transform (FT); the 

most essential advantage of FRFT over FT is that it has introduced one more degree of 

freedom (DOF)—the fractional transform order a, normally varying in the range [0,2]. 

      With the introduction of this transform order a, the Time-Frequency Representation 

(TFR) of a signal is not to be confined to the traditional “two degrees of freedom: time 

and frequency” mode, but instead, the representation can be realized in any range in 

between the Time-Frequency domain. This advanced property of FRFT has rendered 

itself one of the best approaches to analyze FM signals. 

      The Continuous FRFT (CFRFT) is well defined in many articles in journals and 

reports, but DFRFT, with a different kind of format, is more suitable for applications in 

digital signal processing. So the fact is that CFRFT is researched to help understand the 

essential meaning and properties of FRFT, whereas DFRFT is the real tool applied to the 

signal under research. 

      Among those researchers seeking a decent way to digitize the integral form of 

CFRFT, Ozakta et al. have done research on the DFRFT algorithm which uses 

Dickinson-Steigliz’s Harper matrix S as the commuting matrix of the Discrete Fourier 

Transform (DFT) matrix, so the task of finding a complete and orthogonal set of 

eigenvectors of the DFT matrix has been converted to finding such a set of eigenvectors 

of the Harper matrix S [3]. And Pei et al. have also proposed a similar DFRFT algorithm 

[4].  
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      Meanwhile, Vargas-Rubio and Santhanam mainly focused on the Centered Discrete 

Fractional Fourier Transform (CDFRFT) [5] and proposed an innovative method to 

calculate the spectrogram based on it, and then successfully demonstrated a great 

improvement in the resolution of TFR for a complicated signal [6].  

      As another approach to best simulate the Continuous Fractional Fourier Transform, 

which is expressed in a form of an integral, the CDFRFT algorithm shows great 

difference from DFRFT algorithm, because CDFRFT has adopted a different commuting 

matrix, Grunbaum’s Tri-diagonal Commutor, to obtain a complete orthogonal set of 

eigenvectors for the DFT matrix [7].  

      In both literatures exploring into DFRFT and CDFRFT, the authors have explicitly 

pointed out that seeking for a decent way of expressing DFRFT is about furnishing 

orthogonal eigenvectors for the DFT, and these eigenvectors are actually the discrete 

versions of the Hermite-Gaussian functions which serve as the unique finite energy 

eigensolutions of differential equation structured by the Harper matrix S, also known as 

the Hamiltonian associated with the quantum-mechanical harmonic oscillator [8]. 

      Generally speaking, both DFRFT and CDFRFT are able to perform higher resolution 

when processing signals with a chirp rate, or simply to say, Frequency Modulated (FM) 

signals, compared with the traditional tools, such as FFT and Short-Time Fourier 

Transform (STFT). 

      Two significant publications, [9] and [10] researching the CDFRFT algorithm have 

been found in the signal processing literature database in China. They have successfully 
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given a more concise and lucid CDFRFT algorithm than [5], so they should be given 

credit for their time-saving advantage. 

      It is worth mentioning that Vargas-Rubio and Santhanam’s group has another 

contribution, which is the introduction of a method suitable for processing unknown 

signals [11]. This Multi-angle Centered Discrete Fractional Fourier Transform (MA-

CDFRFT) provides an explicit demonstration of the concentrated signal components 

with both the x-axis and y-axis coordinates of acquired optimum transform orders opta  as 

well as the indices in Fractional Fourier Domain (FRFD). This is a rotation from the 

traditional Frequency Domain (FD) [12], as shown in Fig. 1 below: 

 

                                                                   f   

                                                                                     

                                                                                              

                                                       

 

 

Fig.  1. Rotation of Fractional Fourier Domain from Time-Frequency Domain. 

   In Fig. 1, the new Fractional Time-Fractional Frequency plane ( 11 vu  plane) is a 

rotation by angle 1  from the traditional Time-Frequency plane (t-f plane), with the 
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other 22 vu   plane a rotation by angle 2  from t-f plane. The rotation angle   has the 

following relationship with transform order a: 

                                                        
)2(


a                                                               (1.1) 

      And successive rotations of the Fractional Time-Fractional Frequency plane from 

Time-Frequency plane could be simply modeled by adding up the rotation angles i . 

This is the reason for the interpretation of FRFT as a rotation operator. 

      Since CDFRFT is similar to DFRFT, it also has the ability of concentrating the 

energy of different components of FM signal. The MA-CDFRFT, or MA-DFRFT, is 

actually a matrix, the plot of which illustrates the positions where the energy of different 

components of a complicated FM signal gets concentrated. The x-axis corresponds to the 

index k, which is shared by both time and frequency axes; meanwhile, the y-axis 

represents the index of transform order a, from which we determine whether the x-axis 

represents time or frequency. 

      So if the studied signal is merely a single-component sinusoid, the energy-

concentration point with the brightest color in the MA-DFRFT 3D plot will have a y-axis 

coordinate of a=1; if the case is a little bit more complicated, where the studied signal is 

a multi-component sinusoid, the points where energy gets concentrated, or simply the 

peaks with the brightest color, will lie on the horizontal a=1 line; if the studied signal is 

a single-component FM signal with a certain chirp rate, the peak will appear elsewhere 

from a=1 line, and the specific position will depend on the specific signal property; if the 

studied signal is a multi-component FM signal with linearly related properties, the peaks 
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will be aligned along a slant line which passes the point with coordinates [N/2, 1], lying 

at the center point of the MA-DFRFT demonstration plot. 

      It should be noted that the case with the studied signal being a multi-component FM 

signal is the perfect material for research on Slanted Spectrum, which was firstly 

proposed on the basis of MA-CDFRFT by Vargas-Rubio and Santhanam. Slanted 

Spectrum is another derivative tool of CDFRFT, whose advent makes possible the high 

resolution for the different components of the complicated signal under research, which 

distinguishes itself from traditional tools like FFT. 

      Furthermore, there is another derivative belonging to the family of CDFRFT, and it 

could surpass the capability of the traditional spectrogram (STFT): Spectrogram Based 

on Slanted Spectrum (SBSS). This innovative tool is also mentioned and developed in 

[6]. With the demand for a better TFR, its generation is inevitable and favorable, because 

the performances of other different time-frequency representation tools are not very 

satisfactory in study of chirp signals. 

      For the real world applications, the simultaneous estimation of both time and 

frequency variables are highly expected for a precise measurement of signals. Classical 

tools for TFR which are more familiar to researchers include the Wigner-Ville 

distribution (WVD) and the traditional spectrogram based on STFT. However, WVD 

offers highly concentrated energy representation but suffers from cross-terms when 

analyzing multi-component signals; traditional spectrogram based on STFT is a good 

choice, but it often performs unsatisfactorily because of its failure to give highly 

concentrated energy representation [13]. 
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      So the generation of SBSS has eliminated this dilemma. This innovative spectrogram 

has the essential feature of being able to decompose a complicated signal into multiple 

components within the analysis frame with great distinguishability, and is highly suitable 

for TFR of FM signal. This spectrogram is not widely used for the time being, but its 

capability of decomposing complicated signals is on the top rank list, so it will surely 

gain more attention in the area of DSP. 

      So with all these tools from DFRFT family stated above, fault signal analysis is able 

to be realized in a way different from traditional methods. So the induction motor current 

signal including information of fault components could be processed with flexibility, due 

to the advantage of DFRFT. 

 

C. Research Objectives 

      The objectives of this research are as follows:     

 Develop an overall signal processing method comprised of DFRFT and its 

derivatives, MA-DFRFT, Slanted Spectrum and SBSS; 

 Investigate whether or not DFRFT has an advantage over traditional tools, such 

as FFT, especially in FM signal processing; and 

 Apply these developments to a real problem, motor electrical signal fault analysis. 

 

D. Proposed Approach 

      As stated in Literature Review, there are a number of extant algorithms for both 

DFRFT and CDFRFT. They are both derived from the DFT matrix, but the commuting 
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matrices adopted are different. So the first big issue in this research is to select 

appropriate methods to calculate DFRFT and CDFRFT, and to decide which one has 

overwhelming advantages, such as higher resolution of the plots of their multi-angle 

versions, i.e. MA-DFRFT and MA-CDFRFT. Once a method is selected, the subsequent 

work will be mainly based upon it. 

      One important thing should be noted is that different components of a signal may 

have different opta values, so there are actually two cases: One is that both the healthy 

and faulty components of a signal require simply the same opta  to adopt DFRFT to 

separate and distinguish different components in spectrum of the FRFD, which is a 

relatively simplified case. However, there exists another more complicated case when 

the healthy and faulty components within one data set require different values of opta  to 

get concentrated to the best degree, so in this case, simply DFRFT will not successfully 

tackle the problem, but Slanted Spectrum could accomplish the components separation 

and distinguishing work. And then SBSS could be generated from Slanted Spectrum in 

succession.  

      A conclusion will be drawn from the results obtained using tools from DFRFT 

family and the counterparts obtained from traditional tools. 

      This methodology comprised of DFRFT, CDFRFT and their derivatives, MA-

DFRFT, MA-CDFRFT, Slanted Spectrum and SBSS, is shown as a flowchart with 

sequential steps in Fig. 2: 
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Fig.  2. Overall approach of proposed research. 

Select one method to calculate DFRFT 

and test its reliability 

 

Select one method to calculate 

CDFRFT and test its reliability 

 

Find a method to calculate MA-

DFRFT 

 

Find a method to calculate MA-

CDFRFT 

 

Compare the results of MA-DFRFT 

and MA-CDFRFT 

 

Select a better method for subsequent 

work 

Obtain the slant line corresponding to 

the multiple optimum transform orders 

opta  for multi-component signal 

Process the signal with DFRFT at opta  Process the signal along the slant line 

and obtain Slanted Spectrum 

Create a method to calculate SBSS 

with a basis of the acquired knowledge 

of the processed signal 

Compare the results with traditional 

methods and draw conclusions 

Obtain the optimum transform order 

opta  for single-component signal 
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E. Anticipated Contributions 

      The main contribution of this research is the development of a methodology for FM 

signal analysis with potential applications to the analysis of fault signals. The new 

method is different than traditional frequency domain analysis tools, such as FFT, or 

traditional TFR tools, such as STFT. By acquiring information of the extra DOF, the 

frequencies, chirp rates and other essential information of unknown signals could be 

obtained. Simultaneously, the multiple components of FM signals will be distinguished 

by applying this method, which could provide significantly higher resolution once the 

energy of the different components has been compared with traditional FFT.  

 

F. Thesis Organization 

      This thesis is expected to give a thorough overlook on the current advancement of 

the research of FRFT and its applications to practical problems. The remaining parts of 

this thesis are organized as follows. Chapter II presents the proposed method of DFRFT 

and CDFRFT, and there are comparisons between their algorithms based upon which the 

digital computations have been carried out and between their performances when applied 

to some basic signals. And then there begins to be an emphasis in DFRFT, due to its 

higher development than its homogeneous tool: CDFRFT. In Chapter III, other 

derivative tools of DFRFT are introduced. Finally whether to adopt DFRFT or CDFRFT 

in the subsequent research will be decided from generating the MA-DFRFT and MA-

CDFRFT demonstrations of some chirp signal. And then all the other related tools in the 

DFRFT family, such as Slanted Spectrum and SBSS are elaborated with their 
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performances when applied to complicated chirp signals. And then Chapter IV mainly 

deals with the proposed method applying to the real world problem: DFRFT and its 

derivatives applied to motor current signal, and the results are presented. Successively, 

in Chapter V, a summary and conclusions of this research, and the directions for future 

work are briefly discussed.   
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CHAPTER II 

PROPOSED METHODS OF DFRFT AND CDFRFT 

 

A. From the Traditional Fourier Transform to Fractional Fourier Transform 

      Interestingly enough, the appearance of the Fractional Calculus could be dated back 

to the time period between the two world wars [14]. And the Fractional Fourier 

Transform (FRFT) was firstly employed by a Physicist named Namias to solve both 

differential and partial differential equations in 1980 [15] with a specific academic field 

of quantum mechanics. And then McBride et al. carried out a more meticulous analysis 

of this mathematical technique [16], which forms the basis for majority of the 

subsequent works. And then a great number of research papers were published in 1990s, 

and most of them are aiming at relating the Fractional Fourier operator to other fields, i.e. 

differential equations, optical systems, time-variant filtering, multiplexing, neural 

networks, machine diagnosis, and digital signal processing.  

      In the field of signal processing, FRFT can be applied without a-priori knowledge of 

the transmitted signal. So it is a favorable tool for efficaciously extracting useful 

information from a signal in FRFD. Moreover, FRFT can recover a signal from noises 

using a filtering technique [17]. For linear frequency modulated (LFM) signals, the 

power of the signal spans the entire of the frequency and time axes, and an ordinary filter 

cannot separate the signal from the noise [18]. However, it has been shown that by 

selecting a proper transform domain other than the traditional ones, noise separation can 
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be realized: FRFT can be used to separate signals which cannot be separated in 

traditional domains as demonstrated in the Fig. 3: 

 

                                                                    f 

                                  v                                                 u 

                                                                                            

                           α                         

 

 

Fig.  3. Separation of a signal from noise in an appropriate Fractional Fourier Domain. 

      Both the signal and noise components are shown in Fig. 3, and their projections on 

both time and frequency axes have inevitably overlapped, thus it is difficult to separate 

the signal from the noise background either in time domain or in frequency domain. 

However, their projections on the axis corresponding to the a-th FRFD (the u domain in 

Fig. 3) have not overlapped with each other. So FRFT is suitable to be exploited to 

decouple the energy overlap between the signal and noise. Depending upon the concept 

that the energy of an LFM signal is concentrated on the straight line illustrated as dashed 

on the time-frequency plane, therefore the signal can be reduced to a stationary sinusoid 

by rotating the signal by the angle of α as shown. As a result, there would be the least 

spectrum overlap between the signal and noise in FRFD, and a narrowband filter needs 
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to be exploited to extract the signal from the noise background. And then the elimination 

of noise could be achieved effectively. Finally, using inverse FRFT, the filtered LFM 

signal can be rotated back to the time domain and get recovered [19]. 

      The orthogonal relationship between the time and frequency domains under the 

conventional FT is mirrored in a similar relationship between any two fractional 

domains spaced infinitesimally. Moreover, it should be noted that the conventional time 

and frequency domains are a part of the continuum of the FRFD. Also as an important 

fact, the signal representation in the u domain is a combination of the representations in 

time and frequency domains. 

      The conventional FT has only the ability of removing time-invariant type of noises. 

However, certain types of noise are fairly intractable due to their high frequencies. For 

an instance, noise with a chirp rate and it will be discussed in details in the next Chapter. 

On the contrary, the fact that FRFT has better control over the time variance/invariance 

of the system, has expanded the applications that used to be only associated with the 

conventional FT. 

      Besides, FRFT has greatly broadened the conventional Fourier theory for both the 

analysis and synthesis of LFM signal, which is also referred to as chirp signal. 

      Nevertheless, FRFT has not gained the attention and exploration that it should have 

in the signal processing community, only due to the fact that there was a deficiency of 

proper physical illumination and an algorithm for fast digital computation of this new 

physics tool.  



16 

 

      It was not until the discovery of feasible interpretation of FRFT as a rotation operator 

[6] and the publication on the efficient digital computational algorithms of FRFT [13], 

that FRFT began to interest more scholars and researchers for its flexibility and 

suitability for processing FM signals with one extra DOF. Fractional order signal 

processing has become an active research area during recent years, due to the FM and 

non-Gaussian model it has employed. 

      And a number of researches have been focused on the development of the algorithms 

for digitized FRFT. Among these, algorithms for fast computation of discrete FRFT 

have been proposed in [4] and [14], hence finally the door to wider application of FRFT 

was opened to the DSP community. 

      It should be noted that in order to distinguish the two different forms of FRFT, 

CFRFT is used to denote the continuous-time FRFT, and DFRFT is for the discrete-time 

version. Even though they have different mathematical expressions, DFRFT is still 

derived from CFRFT, as explained in the following sections. 

 

1. Standard Form of Continuous-time Fractional Fourier Transform 

      Briefly, CFRFT is a generalization of the conventional continuous FT. Signals are 

processed with CFRFT in the FRFD, and the most significant parameter which 

differentiates CFRFT from the conventional continuous FT is the transform order a, the 

new DOF. The other parameter in correspondence with it is the rotation angle α, and (1.1) 

has given a physical illustration between α and the transform order a which helps with 

understanding the essential meaning of CFRFT:
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      Normally, if a CFRFT calculation is noted as a-th order, it means that the projection 

of the original signal has been rotated by an angle of a)2(   from the conventional 

time domain to a brand new FRFD. It is by conventions that the time-frequency plane is 

defined such that time and frequency are mutually orthogonal coordinates. The 

representations of a signal in these two domains, time and frequency, are related by the 

conventional FT. And here we consider a continuum of “fractional” domains making 

arbitrary angles with the two traditional domains. The representations in these domains 

are related by the FRFT. A perspicuous geometric interpretation for the FRFD and the 

two traditional domains could be derived like demonstrated in Fig. 3 in the previous 

section.  

      It’s been well-known to the signal processing community that the continuous FT of a 

finite energy signal )(tx  is defined via the equation in (2.1): 

                                   





 dtetxtxFX tj


 )(

2

1
))(()(

                               (2.1)        

 

      And the continuous FRFT of the same finite energy signal )(tx  is defined in a 

similar integral form as below, and it can be clearly seen from (2.2) that CFRFT is a one-

dimension linear operator, totally different from other bilinear or nonlinear time-

frequency analysis tools: 

                  





 dttuKtxtxFuX aaa ),()())(()(

                        

       (2.2) 

where t is the variable in the traditional time domain, and u denotes the variable in the a-

th order FRFD. Throughout this thesis, aF  is used to denote the FRFT operator, whereas 
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F  denotes the traditional FT. And ),( tuKa  is the kernel function in the integral, shown 

as below:  

                                                                                                                                    (2.3) 

(2.4) 

(2.5) 



where the subscript of the Left Hand Side (LHS) of (2.3)-(2.5) and the integral kernel of 

(2.3) is the transform order a of CFRFT, which could take arbitrary real values. And the 

angle α and the notation n which has also appeared in (2.3)-(2.5) are respectively the 

rotation angle and an arbitrary integer. It should be noted that there are often confusions 

about the transform order a with the rotation angle α in some literatures, but they are 

totally different two parameters both frequently used in the FRFT research. They hold an 

explicit relationship as in (1.1). To remove any unwanted ambiguity, the Greek letters 

are assigned to denote the rotation angles in the time-frequency plane, and the English 

letters are referring to the transform order of FRFT, which is also the power value of the 

traditional FT kernel. And it should also be mentioned that )(t  represents the Dirac 

function.   

      By careful observation of (2.3), if set 2  , there will be 0cot   and 1csc  . 

And if replace u with  , then (2.3) will be reduced to the form of the conventional FT. 

This is actually one of the most essential properties of FRFT, as mentioned in Chapter I, 

and now it has been proved mathematically. 
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      The kernel ),( tuKa  in (2.2)-(2.5) can be interpreted as the basis in the FRFD, or 

simply u domain. And it has the following properties: 

                                          
),(),( * tuKtuK aa                                                  (2.6)

 

                                
)'()',(),( * uudtutKutK aa 






                                    (2.7) 

where 

*

aK
 is the complex conjugate of 

aK , and 'u is the variable in the (-a)-th FRFD. 

      The kernel ),( tuKa  is a chirp function, which allows the transformation in (2.2) to 

be interpreted as a coordinate transformation where the chirp function plays the role of a 

basis function. 

      In addition, there is another expression of the kernel denoted as the spectral 

expansion given by (2.8): 

                                           







0

2 )()(),(
k

k

kaj

ka tHeuHtuK



                                 (2.8) 

where )(tH k  is denoted as the k-th Hermite-Gaussian function and has the following 

mathematical definition: 
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                                              (2.9) 

where )(thk  are the Hermite polynomials, which are the solutions of the second-order 

Hermite differential equation given by (2.10): 

                                      
0)()(

)( 2

2

2

 txt
dt

txd


                                                   (2.10) 
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And simultaneously the eigenfunction of the Hermite differential operator is shown in 

(2.11): 

                                )()12()()())(( 22 txntxItDtxH                                 (2.11) 

with a corresponding eigenvalue of 
kj

k e 2






 .  

      From (2.9) it is clear that the Hermite-Gaussian function is a chirp function. 

      It needs to be pointed out that these Hermite-Gaussian functions are the 

eigenfunctions of both the FT and FRFT, and (2.2) could also be written as (2.12): 

                       
 












k

kk

kaj

a dtuHtHetxuX )()()()( 2



                                     (2.12)

 

      Equation (2.12) is seen to be a multiplication by a chirp in the time domain, followed 

by FT, subsequently followed by another multiplication by a chirp in the transformed 

domain. And importantly, 
kaj

e 2




 is the a-th fractional power of the eigenvalue 

kj

k e 2






  of the traditional continuous FT. So it could be easily understood why there 

is an interpretation of FRFT as a one-parameter generalization of FT. In this fashion, 

FRFT suggests a potential amelioration in any application where the traditional FT 

originally has been exploited since it provides this extra DOF corresponding to the 

careful selection of transform order a. 

      For the integrity of this thesis, the inverse transform of FRFT is defined accordingly: 

                                         





 dutuKuXtx aa ),()()(

                                                (2.13) 
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      This expression in (2.13) provides a different interpretation for any signal )(tx  in 

time domain: it is decomposed in the function space formed by the basis function

),( tuK a , which serves as the kernel function of the inverse FRFT. Just like the kernel 

of CFRFT, ),( tuK a  is also a chirp signal and at different values of u, they form a group 

of orthogonal base.  

      Meanwhile, it could also be deduced from (2.13) that any signal can be expressed by 

a linear combination of a group of orthogonal base on the u domain. 

      As the last part of this section, it is worth mentioning that FRFT is a member of a 

more general class of transforms that are sometimes called linear canonical 

transformations or quadratic phase transforms. All members of this class of 

transformations can be broken down into a succession of simpler operations, such as 

chirp multiplication, chirp convolution, scaling, and ordinary FT as stated in the previous 

pages. 

 

2. Properties of Fractional Fourier Transform 

      The FRFT transform order a is defined within the range of 20  a , so the 

definition range of the rotation angle α is  0 , due to its essential property of 

periodicity (with 4F  being the identity operator, which will be elaborated in the 

following section) and the need to avoid redundancy of calculation.  However, normally 

the researchers are more interested in the range of 10  a , which only covers the 
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region of first quadrant of the time-frequency plane. And this artificial setting of the 

range of transform order has greatly simplified the following research. 

      Referring back to (2.3)-(2.5), it is seen that the kernel ),( tuKa  is defined separately 

for na 4  and 24  na  (n is an arbitrary integer here) as )(),(4 tutuK n   and 

)(),(24 tutuK n   . The definition can be easily extended outside the interval [-2, 2] 

by noting that ))(())((4 txFtxF aal  with l being an arbitrary integer. 

     FRFT also has other properties which are used to simplify calculations, and they will 

be more thoroughly discussed in Section B, Properties of DFRFT, since this thesis puts 

more emphasis in DFRFT, but not CFRFT. 

 

3. Main Applications of Fractional Fourier Transform and the Need of a Digitized 

Version of FRFT 

      FRFT is mainly applied in two main fields: optics and signal processing. 

      For optics, beam forming with FRFT, Fourier optics and optical information 

processing are the main research interests of practitioners. But those are not the main 

research topics for this thesis. Rather, signal processing has the priority. 

      As to the area of signal processing, there are applications like optimal filtering in 

FRFD, cost-efficient linear system synthesis and filtering, time-frequency analysis, and 

biomedical imaging. Whereas the specific applications of FRFT in several specialized 

areas will be discussed in the following paragraphs. 

      Some medical engineering practitioners have used FRFT for medical ultrasound 

imaging, with the aim of improving the axial resolution and imaging depth of an 
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ultrasound system through the use of FM chirp waveforms. The technique associated 

with FRFT has allowed the relationship between the maximum achievable spatial 

resolution and the pulse length to be changed. So a compromise for the tradeoff between 

axial resolution and the maximum imaging depth, posed on medical ultrasound systems 

can be achieved [20]. 

      Another interesting application is that FRFT could be utilized in language 

identification (LID), a developing branch of speech signal processing. By implementing 

FRFT and properly selecting the FRFT transform order, more discriminative information 

for language identification may be extracted from the speech signal. It is known that 

young people are familiar with Nintendo, the most famous handheld game console 

company in Japan. Some of the RPG games developed for Nintendo Dual Screen (NDS) 

are specializing in the research of LID techniques. So FRFT could be exploited to 

develop the LID system for speaking to Mario and directly sending him commands for 

jumping. 

      Besides the two interesting applications related above, FRFT has also been 

increasingly applied to music processing, watermarking, communications, pattern 

recognition, cryptography, Fractal signal processing, and mechanical vibrations analysis.  

      As depicted in the previous sections, CFRFT is a subclass of integral transformations 

characterized by quadratic complex exponential kernels. These complex exponential 

kernels often introduce in very fast oscillations. Therefore, it is not possible to evaluate 

these transforms by direct numerical integration since the fast oscillations require 

excessively large sampling rates higher than Nyquist rate, depending on the order and 
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particular decomposition employed. This returns in great computational cost, large 

numerical inaccuracies, and the need for more computer memory. 

      So talking about the computer memory, almost all these applications of FRFT in 

signal processing have to be carried out on digital devices with the digitized version of 

FRFT installed. 

      Therefore finding decent ways of digitizing CFRFT has been one of the most 

essential issues discussed widely in the research community. Among those research 

papers, the most straightforward approach for obtaining the discrete counterpart of 

CFRFT is to sample it directly, since the sampling criteria for CFRFT of band-limited 

and time-limited signals has utterly complied with the Shannon sampling theorem [21]. 

But quite the opposite, the resultant form of DFRFT will have a chance of losing many 

important properties, i.e. unitarity and reversibility. In addition, DFRFT obtained by 

direct sampling of CFRFT lacks closed-form properties and is not additive, so its 

applications are very limited [22]. Worse still, since the basis functions of the CFRFT 

are not bandlimited, directly sampling of the kernel will result in aliasing. 

      Then probing into the existent literatures, the most reliable approach to digitize 

CFRFT and generate a proper DFRFT algorithm which preserves all the properties of 

FRFT is based upon the notion of generating the discrete time counterparts of the 

continuous time Hermite-Gaussian functions in (2.9). And this approach has 

conclusively shown better approximations than the other proposed approaches in [8]. 

      And there are actually two different main branches of study following the proposed 

approach above to accomplish the digitization process: Discrete Fractional Fourier 
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Transform (DFRFT) and Centered Discrete Fractional Fourier Transform (CDFRFT), 

and the differences of them will be elaborated in the following section.  

 

B. Discrete Fractional Fourier Transform  

      A satisfactory definition of DFRFT which is fully consistent with CFRFT has been 

the research objective of scholars who have been striving to find a resemblance for 

CFRFT and finally applying it to real problems. 

      There are several algorithms which digitize CFRFT into a discrete mode in 

literatures, and each of the algorithms has a particular way of processing signals, so 

different algorithms would have yielded different accuracies. 

 

1. Specific Introduction of DFRFT 

      As elucidated in Chapter I, a restriction for CFRFT is that it cannot be directly 

applied on DSP, so there is a high demand for a digitized form of it. To approximate 

CFRFT to a best degree, the DFRFT algorithm should exhibit high internal consistency 

and analytical elegance which the conventional DFT has already shown successfully. 

And the DFRFT algorithm is finally established by seeking for an exceptional set of 

eigenvectors of the DFT matrix, and this set of eigenvectors is the discrete counterpart of 

Hermite-Gaussian functions (the eigenfunctions of CFRFT), and then a resemblance of 

CFRFT will be achieved. 

      A good resemblance requires that DFRFT also have the main properties that CFRFT 

has: unitarity, index additivity, and reduction to the ordinary FT when a=1. It’s been 
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shown that these 3 requirements will be spontaneously fulfilled when DFRFT is 

specified by a spectral expansion with the form of (2.8) [8]. Assuming ][nk  to be an 

arbitrary orthonormal eigenvector set of the NN   DFT matrix and k  to be the 

associated eigenvalues, then the discrete analog of (2.8) is: 

                                       






1

0

][)]([],[
N

k

k

a

kka nmnmF 
                                            

(2.14) 

which constitutes a definition of the DFRFT matrix.  

      There are two ambiguities to be eliminated in (2.14). The first is in regard to the 

eigenstructure of DFT. Since the number of the distinct eigenvalues that the DFT matrix 

F has is only four: },,1,1{ jj    as shown in Table I: 

TABLE I 

EIGENVALUE MULTIPLICITY OF THE DFT MATRIX 

N 1 -j -1 j 

4m m+1 m m m-1 

4m+1 m+1 m m m 

4m+2 m+1 m m+1 m 

4m+3 m+1 m+1 m+1 m 

 

Where the eigenvalues are degenerate, hence there is no unique eigenvector set. 

Consequently, there is a high necessity to specifically determine a particular eigenvector 

set for (2.14). In the continuous case, this ambiguity has been removed by picking the 
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Hermite-Gaussian functions as the eigenfunctions or, comparably, by selecting that 

eigenfunction set of the continuous FT which are also eigenfunctions of the Harper 

matrix S. And that is to say, based upon the fact that the operators S and F commute with 

each other, the common eigenfunction set of them should be picked. Thus with the 

motivation of obtaining an appropriate definition of DFRFT, in the same way by 

selecting the common eigenvector set of the DFT matrix and the discrete analogue of the 

matrix S, which we define to be the discrete counterpart of the Hermite-Gaussian 

functions, this first ambiguity will be eliminated. 

      The second ambiguity will appear when there is a need to take the fractional power 

of the eigenvalues, for the reason that the fractional power operation is not single valued. 

This ambiguity should be removed by analogy with the continuous case again: taking the 

fractional power of the DFT eigenvalue: 
ka

a

k
2

j-

e  



  . There are a number of distinct 

methods of choosing the eigenvector set, but in the development process of the DFRFT 

algorithm for this research, one particular method is concentrated on to develop an 

accurate definition. 

      Then the discrete counterpart of Hermite-Gaussian functions is able to be defined 

explicitly. 

 

2. Discrete Hermite-Gaussian Functions 

      The discrete Hermite-Gaussains are defined in [3] as the solutions of a difference 

equation which is analogous to the defining differential (2.10) of the continuous 
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Hermite-Gaussian functions.  This second-order difference equation analogous to the 

defining differential equation of the continuous Hermite-Gaussians is: 

             
][][)1)

2
(cos(2]1[][2]1[ nxnxn

N
nxnxnx 




                       (2.15)
 

where )(][ nhxnx  , and Nh /1 . It could be observed from (2.15) that the 

coefficients are periodic with N, implying the existence of periodic solutions with the 

same period. If (2.15) is written explicitly by concentrating on a single period, say,

10  Nn , (2.16) will be obtained as shown below:  
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where the rows of the matrices in both LHS and RHS are derived from the substitution 

of 1,...,2,1,0  Nn  in (2.15) and the utilization of the periodicity relation 

][][ nxNnx  . This step has completed the derivation of the discrete analogue of S, 

which has been referred to as the Harper matrix in the preceding part. As previously 
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explained, S commutes with the DFT matrix, hence the common eigenvector set of S and 

the DFT matrix is unique and orthogonal. 

      This unique orthogonal eigenvector set, which is denoted as ku , will be taken as the 

discrete counterpart of the continuous Hermite-Gaussians to be used in defining (2.14), 

and in the following part, the uniqueness of this eigenvector set will be discussed in 

details. 

 

3. Uniqueness of the Common Eigenvector Set of S and DFT 

      The parity of the eigenvectors of the DFT matrix is a factor that needs to be taken 

into consideration. There are either even or odd eigenvectors, thus it follows from this 

fact that the common eigenvector set of S and the DFT matrix, which is confirmed as  

existent since the two matrices commute, should be also composed of even or odd 

vectors.  

      It has been discussed in the previous parts that the kernel of CFRFT has a periodicity 

of 4, and this has led to the following discussion on the multiplicity of N: 

      It’s been validated by researchers that when N is not a multiple of 4, all of the 

eigenvalues of S will be distinct. And the main reason why all of its eigenvectors of S is 

orthogonal and unique (within multiplicative constants) is that S is a real symmetric 

matrix. Since it’s already been shown that S has a common eigenvector set with the DFT 

matrix, it is the same logic that this unique set of eigenvectors of S must also be a set of 

eigenvectors of the DFT matrix F. Then the discrete Hermite-Gaussian functions will be 

defined as the normalized version of this eigenvector set. 
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      However, it does not necessarily mean that when N is a multiple of 4, the 

eigenvalues of S will take on absolutely the same values. There will still be distinct 

eigenvalues, but with the exception of only one eigenvalue: the one with the value of 0 

and a degeneracy of 2. The eigenvectors corresponding to all the other eigenvalues 

except for 0 are guaranteed orthogonal to each other. But the two eigenvectors 

corresponding to the eigenvalue 0 can be selected to be orthogonal, again because S is a 

real symmetric matrix. A great number of means of selecting these two eigenvectors 

such that they are orthogonal are available; however, there is only one way to pick them 

such that one is even and the other is odd. Since the common set of eigenvectors 

between S and F should be sought for, and since all the eigenvectors of F are either even 

or odd vectors, then both the even and odd eigenvectors corresponding to the eigenvalue 

0 should be selected. 

      Therefore, the search for the common set of S and F will be confined on the even and 

the odd spaces, and a matrix P that decomposes an arbitrary vector ][nx  into its even 

and odd components needs to be introduced here. The P matrix, as in (2.17), has the 

capability of mapping the even part of the N-dimensional vector ][nx  to the first 

 )12/( N  components and the odd part to the remaining components of a new matrix 

][nf . This new matrix should be understood as a sorting process of the even and odd 

elements of ][nx . For example, the P matrix of dimension 5 is defined as in (2.17) [3]: 
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


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








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00002

2

1
P

                                                  

(2.17) 

The even part of ][nx  is represented by the first three components of Pxf  as shown 

in (2.18): 

             

]]3[]2[],4[]1[],0[2[
2

1

]]2[]2[],1[]1[],0[2[
2

1
]]2[],1[],0[[

xxxxx

xxxxxfff





                              

(2.18) 

      As a matter of course, the remaining two components represent the odd part of ][nx

as in (2.19): 

                                 

]]4[]1[],3[]2[[
2

1

]]1[]1[],2[]2[[
2

1
]]4[],3[[

xxxx

xxxxff





                              (2.19)  

      The arguments of P are interpreted modulo N, the same as the ordinary DFT. What 

merits the researchers’ attention is that the P matrix is both symmetric and unitary, to be 

expressed mathematically, there is a relation as in (2.20): 

                                                    
1 PPP T
                                                          (2.20) 
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and this important property of P has been effectively exploited in the digital calculation 

of DFRFT, where the Harper matrix has to go through a similarity transformation as 

1PSP , so the resultant matrix will be in a block diagonal form as shown in (2.21): 

                                            










Od

Ev
PSPPSP

0

0
1

                                             

(2.21) 

      Only by taking this similarity transformation could all the even/odd eigenvector set 

of the S matrix be obtained. It is clearly seen that eigenvectors of
1PSP can be 

determined separately from the Ev  and Od  matrices, so the corresponding eigenvectors 

of S will be acquired simply from the even/odd extension of the eigenvectors of
1PSP . 

Therefore, looking for the common eigenvector set of S and F is no longer an intractable 

issue, because this procedure could be reduced to obtaining the eigenvectors of the Ev  

and Od matrices. 

     Referring back to (2.16), it could be observed that the configuration of the S matrix is 

tridiagonal, except for the two entries at the upper-right and lower-left corners. But after  

going through a similarity transformation 
1PSP , S will become strictly tridiagonal, and  

its submatrices Ev  and Od  will consequently be tridiagonal. Based on the research of 

[23], it is guaranteed that tridiagonal matrices have distinct eigenvalues, and this result 

has successfully implied the uniqueness of the eigenvectors of the Ev  and Od  matrices, 

so as to having completed the proof of the uniqueness of the common eigenvector set of 

S and the DFT matrix F. So in a word, the common set of eigenvectors of the Harper 

matrix S and the DFT matrix F can be determined uniquely, despite the dimension of S. 
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4. Ordering the Eigenvectors of S 

      It has been demonstrated in the last part that the common eigenvector set of S and F 

not only exists but also is unique, then the determination of which eigenvector of this set 

and which Hermite-Gaussian function correspond with each other will be the subsequent 

procedure of the DFRFT calculation. The approach selected for ordering eigenvectors of 

Hermite-Gaussians will be dependent on the number of zero-crossings of the discrete 

Hermite-Gaussians, in correspondence with the number of zeros of the continuous 

Hermite-Gaussians. 

      The definition of zero crossing of a discrete vector has already been discussed in lots 

of textbooks. The vector ][nx  has a zero crossing at n if 0]1[][ nxnx . There is a 

convention that the number of zeros in merely one period 10  Nn shall be counted, 

when counting the number of zero crossings of the periodic sequence ][nx  with a period 

of N. Besides, the zero crossing at the boundary points of a period such as when 

0]0[]1[][]1[  xNxNxNx will also be included. So regardless of the shift, any 

shifted periodic sequences will have exactly the same number of zero crossings. This 

interesting property of zero crossings belongs to the whole periodic sequence, but not 

just a specific segment of the sequence with the length of the period N. 

      And then before applying this property to the eigenvector issue, the following task 

should be made clear: since it is already known that each of the eigenvectors has a 

distinct number of zero crossings, so there is a need to find an appropriate approach to 

efficiently count the zero crossings for each eigenvector. 
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      It has been elaborated in the last part that the common eigenvectors of the S and F 

matrices need to be obtained from the tridiagonal Ev  and Od  matrices. It has been 

shown in [3] that the Ev  matrix has eigenvectors with a number of zero crossings 

ranging from 0 to  2/N , and the eigenvector of Ev  with k zero crossings yields the 

even eigenvector of S with 2k (  2/0 Nk  ) zero crossings; While the Od  matrix has 

eigenvectors whose number of zero crossings is within the range from 0 to  2/)3( N , 

and the eigenvector of Od  with k zero crossings yields the odd eigenvector of S with 

2k+1 (  2/)3(0  Nk ) zero crossings. So now precisely determining the number of 

zero crossings of an eigenvector of S avoiding any ponderous means of counting is 

possible. 

      It will be shown in the following that an even eigenvector of S can be formed 

complying with the convention mentioned above 

                                              
TT

kePe ]0,...,0[ 



                                                   

(2.22) 

where ke


 is the eigenvector of Ev  with k zero-crossings (  2/0 Nk  ), which is 

already reflected by the subscript. And the vector e, which denotes the eigenvector of S, 

is given by 

                       

]]1[],...,[][],...,1[],0[2[
2

1
kkkkk erereeee







                               

(2.23) 

And e has 2k zero crossings, according to the convention of zero counting above 

        [e e[0]]= ]]0[2],1[],...,[][],...,1[],0[2[
2

1

  



  


kkkkkk eerereee                        (2.24) 

                                          k zero crossings        k zero crossings  
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where N, the dimension of S, satisfies this relationship with r: N=2r+1. 

      Similarly, odd eigenvectors of S will also be acquired from the eigenvectors of Od 

through the same zero padding and transformation process as the derivation of even 

eigenvectors: TT

koPo ]0,,0[

 . Based on that convention of zero crossing counting, the 

odd eigenvector o derived from the eigenvector T

ko


 of the Od matrix with k zero 

crossings yields an eigenvector of S with 2k+1 zero crossings  )2/)3(0(  Nk . 

      It should be noted that by the convention introduced in this part, each of the 

eigenvectors of S comes with a unique number of zero crossings hence an index equal to 

its number of zero crossing can be allocated to each vector. And for a stringent definition 

of DFRFT, it should also be mentioned that the index k spans different ranges of discrete 

time for different parity of N, to be specific, k={0,…,N-1} for odd N and k={0,…,N-2,N} 

for even N. 

      So up to this point, an approach has been explicitly established for finding and 

ordering the common eigenvector set of the matrices S and F. Thereby the k-th element 

of this eigenvector set must have k zero crossings and its parity is dependent on the 

parity of k. 

 

5. Final Definition of the Discrete Fractional Fourier Transform 

The final version of definition for DFRFT is given by 

                                 







N

NNkk

k

kaj

ka nuemunmF
))(1(,0

2

2

][][],[



                                    (2.25) 
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where ][nuk  is the k-th discrete Hermite-Gaussian function (the eigenvector of S with k 

zero crossings) and 2mod)( 2 NN  . It might be noticed that the range of the 

summation is unusual, because there is no such an eigenvector with N-1 zero crossings 

when N is even, nor is there an eigenvector with N zero crossings when N is an odd 

number. 

      This index skipping law is related to the eigenvalue multiplicity of the DFT matrix 

which is as well unusual, as already demonstrated in Table I. 

 

6. Properties of DFRFT 

      Mostly inherited from DFT and FRFT, the properties of DFRFT are presented in 

Table II, with new properties of DFRFT covered. And it could be observed that DFRFT 

has all the essential properties that CFRFT has: 

TABLE II 

PROPERTIES OF DFRFT 

Name of Properties Mathematical Expressions 

Unitarity 
aaa FFF 

  1  

Index additivity 
2121 aaaa FFF   

Reduction to the DFT when the order 

equals unity 
])[(])[(1 nxFnxF   

Linearity )][()][(  
k kakk kka nxFcnxcF  

 



37 

 

TABLE II, Cont. 

Time inversion ][])[( mXnxF aa 
 

Periodicity 
lal FF 44   

Repetitiveness 
aa FF  2  

Symmetricity ),(),( ijFjiF aa 
 

Parity is even, if x[n] is even 

is odd, if x[n] is odd 

Commutativity 
1221 aaaa FFFF   

Associativity )()(
321321 aaaaaa FFFFFF   

Parseval theorem 
 









1

0

1

0

22
][][

N

n

N

n

a nXnx  

 

      For the property of Unitarity, the asterisk denotes Hermitian conjugation. The 

DFRFT operator aF  has inherited the unitarity of the DFT kernel. In other words, this 

property enables this transform to preserve the signal energy: 

                                                  
][])[( nxnxFa 

                                                     (2.26)
 

      For the Index additivity property, DFRFT at transform order 1a followed by another 

DFRFT at transform order 2a is equivalent to the DFRFT at a transform order of their 

addition: 21 aa  . 

      Besides, a satisfactory DFRFT algorithm should have as many operational properties 

as possible to be a well-founded counterpart of CFRFT. 





][

][

mX

mX

a

a
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7. DFRFT of Some Basic Types of Signals 

a. Sinusoidal signal 

      This part is the DFRFT applied on a sinusoidal signal )2sin()( fttx   with a 

fundamental frequency f=2000Hz. And the sampling frequency is HzFs 8000 . 

      Its plot in time-domain as in Fig.4: 

 

Fig.  4. A sinusoid in time domain. 

Analysis with the traditional FFT in frequency domain is shown in Fig. 5: 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time(s)

m
a
g
n
it
u
d
e

Plot of a Sinusoid in Time Domain



39 

 

 

Fig.  5. FFT of the sinusoid. 

      It could be seen that the inherent frequency of 2000Hz is picked out by FFT. 

      And the DFRFT at a=1 is shown in Fig. 6: 

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency(Hz)

M
a
g
n
it
u
d
e

FFT of the Sinusoid



40 

 

 

Fig.  6. DFRFT at a=1 of the sinusoid. 

      It could be observed that in both FFT and DFRFT, the peak is located at f=2000Hz. 

The magnitude of DFRFT is slightly different from FFT due to its higher energy leakage 

to other frequency band which is caused by the imperfection of the approximation with 

CFRFT. At different transform orders, the energy leakages are even more severe than at 

a=1, which is shown in Fig. 7: 
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Fig.  7. DFRFT at a=0.25 of the sinusoid. 

      The following Fig. 8 shows the DFRFT plot at a=0.5: 
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Fig.  8. DFRFT at a=0.5 of the sinusoid. 

      Fig. 9 gives the DFRFT result at a=0.75 of the sinusoid signal: 

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

Frequency(Hz)

M
a
g
n
it
u
d
e

DFRFT of the Sinusoid at a=0.5



43 

 

 

Fig.  9. DFRFT at a=0.75 of the sinusoid. 

      All these plots of DFRFT at a transform order other than 1 fail to give a pulse signal, 

but Fig. 10 shows that DFRFT at a transform order much closer to 1 can provide 

relatively satisfactory energy-concentration performance: 
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Fig.  10. DFRFT at a=0.95 of the sinusoid. 

      By careful observation, it could be discovered that as a approaches to 1, the DFRFT 

plot will be approximating FFT to a better degree. 
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Fig.  11. DFRFT at a=1.05 of the sinusoid. 

      From Fig. 11, it is obvious that when a=1.05, the DFRFT plot is the same with the 

plot when a=0.95. 
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Fig.  12. DFRFT at a=1.25 of the sinusoid. 

      From Fig. 12, it is similarly evident that with the transform order a=1.25, the DFRFT 

plot is the same with the plot at a=0.75. 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

Frequency(Hz)

M
a
g
n
it
u
d
e

DFRFT of the Sinusoid at a=1.25



47 

 

 

Fig.  13. DFRFT at a=1.5 of the sinusoid. 

      In a same way, it shows in Fig. 13 that when a=1.5, the DFRFT plot matches with 

the plot when a=0.5. 
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Fig.  14. DFRFT at a=1.75 of the sinusoid. 

      Likewise, it is obvious as shown in Fig. 14 that the DFRFT plot at a=1.75 is the 

same with the plot at a=0.25. 

      As a contrast, the DFRFT of the sinusoid at different transform orders are plotted in 

this section. It is easily concluded that the DFRFT of a sinusoid resembles FFT furthest 

when a=1 is selected to carry out the transformation, and the results of the DFRFT at 

transform orders other than 1 have proved the property of Repetitiveness: aa FF  2 . 
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b. Harmonic signal comprised of 12 components 

)122cos(12)112cos(11)102cos(10)92cos(9)82cos(8)72cos(7

)62cos(6)52cos(5)42cos(4)32cos(3)22cos(2)2cos()(

ftftftftftft

ftftftftftfttx









 

 where f is the fundamental frequency, and f=200Hz. The sampling frequency is also sF , 

and HzFs 8000 . 

      The time domain plot of this harmonic signal is shown in Fig.15: 

 

Fig.  15. Signal comprised by 12 harmonics in time domain. 

      Being such a complicated signal, it is difficult to distinguish the information 

contained separately in each of the frequency component. But FFT, as a conventional 
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frequency domain analysis tool, has the capability of effectively separating the different 

frequency information. The FFT plot of the harmonic signal is given by Fig. 16: 

 

Fig.  16. FFT of the signal comprised by 12 harmonics in frequency domain. 

      There are clearly 12 spikes in Fig. 16, and each one corresponds with the different 

multiples of the fundamental frequency f=200 Hz. So the highest peak has a frequency of 

2400Hz which lies near the location of f=2500Hz. 

      The following Fig. 17 is the DFRFT plot of the harmonic signal: 
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Fig.  17. DFRFT at a=1 of the signal comprised by 12 harmonics. 

Where we could see the curve is more smooth compared with the FFT result in Fig. 16. 

And all the 12 harmonics are shown at all the harmonic frequencies ranging from 200Hz 

to 2400Hz with an interval of 200Hz. 

 

c. Rectangular signal 

      A rectangular signal with a mathematical expression is given by 

-0.01≤t≤0.01 
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with a sampling frequency of HzFs 8000 . 

      The time domain plot of the rectangular signal is shown as in Fig. 18: 

 

Fig.  18. Rectangular signal in time domain. 

      And then Fig. 19 gives the FFT result of the rectangular signal: 
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Fig.  19. FFT of the rectangular signal in frequency domain. 

Where a peak at 0 Hz is easy to be spot. And Fig. 20 shows the DFRFT at a=1 for the 

rectangular signal:  
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Fig.  20. DFRFT at a=1 of the rectangular signal. 

      So it could be concluded that even for the side lobes, FFT and DFRFT at a=1 have 

yielded almost 100% similar results. It is possible that one particular transformation 

algorithm works especially well on a particular type of signal. 

 

C. Centered Discrete Fractional Fourier Transform, a Centered Version of DFRFT 

1. Definition of CDFRFT 

      As DFRFT is based on the DFT, the centered version of DFRFT is based on a 

centered version of DFT in the same manner. But a bit different from DFRFT, 
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CDFRFT has adopted the eigenvectors of the Grünbaum tridiagonal commuter which 

has been testified to be superior discrete approximations to the continuous Hermite-

Gaussian functions. This Grünbaum commuting matrix has basis functions that have a 

sigmoidal instantaneous frequency and produces a transform that is approximately and 

impulse for discrete chirps. And it has been shown in [5] that the basis functions of the 

CDFRFT contain both amplitude and frequency modulation for the sake of preserving 

orthogonality and those functions have a sigmoidal instantaneous frequency (IF), 

compared with DFRFT whose basis functions only contain frequency modulation. 

      As an alternative of Harper matrix S, the Grünbaum commuting matrix is exploited 

because it could also successfully furnish a complete basis for the DFT matrix of any 

dimension N, and could also serve as the solution of the second-order differential 

Hermite-Gaussian function.  

      The feasibility of this type of approach, which is based upon a commuter to obtain 

the DFT eigenvectors, rests with the Linear Algebraic theorem that two unitary-

symmetric matrices A and B share a basis of eigenvectors as long as they commute with 

each other. As a supplementary theorem, it needs to be mentioned as well that if the 

eigenvalues of the commuter B are distinct, the eigenvectors of B without degeneracy 

will provide with the sought basis of eigenvectors.  

      The Grünbaum tridiagonal commuting matrix is defined as in (2.27): 
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(2.27) 

where its diagonal, off-diagonal elements are defined as below: 

 
),/)

2

1
(2cos()/cos( NmNam    Nm 1 ; ),/(sin 2 Nmbm   11  Nm . 

And )(NT  has 1  as its only repeated eigenvalue. 

      We define CDFRFT with parameter a (should be distinguished from the diagonal 

elements of T) in a similar spectral expansion form as DFRFT in (2.28): 

                                                        
Ta

a VVA 
                                                    

(2.28) 

where V is the matrix of orthogonal eigenvectors derived from the Grünbaum 

tridiagonal 56ommuter T. The eigenvectors are in a descending order with respect to 

their corresponding eigenvalues of T, or put it in a simple way, the first column of V  

corresponds with the eigenvector with the largest eigenvalue. And all these columns 

together serve as the discrete counterparts of the continuous Hermite-Gaussian 

functions. While a  is a diagonal matrix with elements 
kaj

a

k e 2






 , 10  Nk . 

With this substitution, the definition becomes: 
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(2.29) 
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      This definition orders the eigenvalues of the Grünbaum matrix T and assigns the 

eigenvector with m sign changes to the eigenvalue 
kaj

k e 2






  and this is the same 

resemblance between the CFRFT and Hermite-Gaussian functions. 

      CDFRFT will become an identity matrix at a=0, where the basis functions are 

merely shifted delta functions as the case of DFRFT. At a=1, it will be reduced to 

CDFT, whose basis functions are complex exponentials of constant frequency and 

amplitude.  

      The elements of the CDFRFT matrix aA  have the following mathematical 

expression: 
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(2.30) 

where kpv  is the k-th element of the p-th eigenvector of T, and  npv  is the n-th element 

of the p-th eigenvector. And then Multiplied by the transformation matrix A , the 

transform from the discrete time domain to the Centered Fractional Fourier Domain for 

the untreated signal x[n] will be achieved: 
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(2.31) 

And then the two summations need to be rearranged: 
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      CDFRFT is actually another version of DFRFT, which is also a generalization of the 

Centered Discrete Fourier Transform (CDFT). The transform matrix of the N-point 

CDFT is given by: 

                                       

)
2

1
)(

2

1
(

2

,

1
}{





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

N
n

N
m

N
j

nm e
N

A



                                      

(2.33) 

where m, n=0, …, N-1. And there is an offset of (N-1)/2 for both m and n in this 

definition.  

      The reason why CDFT has been selected to define a fractional transform is that the 

multiplicities of its eigenvalues have shown great distinction from those of the 

conventional DFT, and this distinguished feature of CDFT can be employed to simplify 

the computations. Observed from Table I, when N is a multiple of 4, DFT has totally 

distinct multiplicities for the 4 eigenvalues, while the CDFT has a multiplicity of N/4 for 

each one of the eigenvalues, as it can be observed in Table III: 

TABLE III 

EIGENVALUE MULTIPLICITY OF THE CDFT  

N 1 -j -1 j 

4m m m m m 

4m+1 m+1 m m m 

4m+2 m+1 m+1 m m 

4m+3 m+1 m+1 m+1 m 
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      The fact that when (2.28) is utilized the DFT eigenvalues will have different 

multiplicities exerts an immediate influence that a  requires a different effectuation for 

the cases of N being even and odd, as already discussed in the DFRFT section. However, 

when using the CDFT to define a fractional transform, there is a single definition of 

CDFRFT for all values of N as in (2.29).  

      Eigenvectors of the Grünbaum matrix being able to be exploited in generating 

CDFRFT is based on the following facts:  

      a) As another commuter of Hermite-Gaussian functions like Harper matrix, this 

tridiagonal matrix can also be viewed as the discrete analogue of the Hermite-Gaussian 

operator showing up in Schroedinger’s equation for the harmonic oscillator, and it has 

been shown to converge to the Hermite-Gaussian differential operator asymptotically; 

      b) They furnish a full set of eigenvectors for any matrix size N. And for each N, there 

is a tridiagonal matrix )(NT  commuting with the N-point CDFT matrix, hence the 

eigenvectors of )(NT  give a “natural” basis for the eigenvectors of the CDFT matrix. 

 

2. CDFRFT of Some Basic Types of Signal 

a. Sinusoidal signal 

      For this part, CDFRFT is applied on a sinusoidal signal )2sin()( fttx   with a 

fundamental frequency Hzf 2000 . And the sampling frequency is HzFs 8000 . 

      Its plot in the Fractional Domain as in Fig.21, r=N/4 resembles the result of DFRFT 

at a=1. 
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Fig.  21. CDFRFT at r=N/4 of the sinusoid. 

      Compared with the result of DFRFT when a=1 in Fig.6, it could be seen that the 

curve generated by CDFRFT is not as smooth as DFRFT. 
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where f is the fundamental frequency, and f=200Hz. The sampling frequency is also sF , 

and HzFs 8000 . 

 

Fig.  22. CDFRFT at r=N/4 of the signal comprised by 12 harmonics. 

      The CDFRFT result of the signal comprised by 12 harmonics shown in Fig. 22 has 

introduced in great errors, especially at around f=4000Hz. And the 12 spikes are not as 

distinguished as the DFRFT result in Fig. 17. 
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c. Rectangular signal 

      The rectangular signal with a mathematical expression is given by 

-0.01≤t≤0.01 

elsewhere        still with a sampling frequency of HzFs 8000 . 

The CDFRFT plot at r=N/4 is shown in Fig. 23: 

 

 

Fig.  23. CDFRFT at r=N/4 of the rectangular signal. 
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      This time, CDFRFT has yielded better result than it has been applied on other basic 

signals. But the question that which algorithm should be exploited in the subsequent 

research, will be decided in the successive section.  

      So based on the processing results of these basic types of signals, there is a primary 

observation that CDFRFT cannot give a highly precise performance, if compared with 

that of DFRFT. 

 

D. Comparison between DFRFT and CDFRFT 

      DFRFT uses the eigenvectors of the Hermite-Gaussians as its eigenvectors and have 

a similar eigen-decomposition form with the CFRFT kernel. And this eigen-

decompostion method has been proved and justified in [8]. CDFRFT also holds this 

similar eigen-decomposition form, which makes it easier to understand the similarities of 

DFRFT and CDFRFT. 

      Both of DFRFT and CDFRFT have two main facets to be considered in the 

computation process: 

a) Computation of the eigenvectors, which is a one-time task for a given matrix size N, 

and  

b) Computation of the transform itself. 

      The origins of the generation of the DFRFT and CDFRFT algorithms are the same, 

but still, they also have some differences from each other, and the most important one is 

that CDFRFT is based on the Grünbaum’s tridiagonal matrix T as a commuting matrix, 

while DFRFT exploits the Harper matrix S which is not strictly tridiagonal but could be 
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transformed into a tridiagonal matrix with employment of the matrix P, as the 

commuting matrix. Both T and S commute with the DFT matrix F, but their 

mathematical expressions are totally different. It is amazing that 64ommuters in totally 

distinct forms can yield similar computation results. 

 

E. Comparison between FRFT and FT 

      In very simple terms, FRFT is a generalization of the ordinary FT. But further, the 

ordinary FT decomposes signals by sinusoids, whereas the FRFT is a decomposition of 

signals by chirps. Hence this essential principle makes FT the ideal tool for processing 

sinusoids and signals comprised by harmonics, while FRFT a favorable option when it 

comes to processing chirp signals, which will be defined and elaborated in the next 

chapter.  

      To be more specific, FRFT has implemented the so-called parameter a which acts on 

the FT operator as the transform order of FRFT. Or put differently, the a-th order FRFT 

stands for the a-th power of FT operator. As stated in previous sections, for a=0, the 

initial input signal will be obtained; It has also been proved that FRFT will be reduced to 

traditional FT when a=1 in the former section of CFRFT; And any intermediate value of 

a ( 10  a ) will develop a new representation which is actually the rotated TFR of the 

initial signal. 

      What is more is that FRFT is not a time-invariant transformation as a comparison 

with the conventional FT, which means that the transformed signal still contains time 

information, or rather, FRFT contains both information of time and frequency. This 
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feature offers the advantage of extracting time information directly from the transformed 

domain without having to invert the transform result back to the initial domain. And this 

is also why the inversed FRFT is not a research interest in this thesis. 

      It has been testified in lots of cases, FRFT exceeds the regular FFT method in signal 

detection and time-frequency analysis, especially on the occasions when tremendous 

variations occur in the signal’s frequency content and the chirp rate. 
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CHAPTER III 

MULTI-COMPONENT FM SIGNAL PROCESSING 

WITH MA-DFRFT, MA-CDFRFT, SLANTED SPECTRUM AND SBSS 

 

A. Introduction to the FM signals 

      It’s been discussed in previous chapters that FRFT has been greatly exploited in FM 

signal processing.  

      FM signal processing is frequently confronted with in the DSP area and has incurred 

appreciable interest in the community. The chirp signal, as a special kind of FM signals, 

should be regarded as a natural physical phenomenon which exists in many areas, for 

example, gravity waves, seismography, and bats navigation systems, but it is mostly 

renowned from its use in signal processing fields like radar and sonar.  

      As already mentioned in the previous chapter, chirp signal is also referred to as linear 

frequency modulation (LFM) signal, which denotes the signal with linearly varying 

frequency. 

 

B. Introduction to the Multi-component Chirp Signal 

      A multi-component chirp signal, or multi-component LFM signal could be modeled 

as: 

                  
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where N is the number of the components which comprise the chirp signal, and iA  is the 

signal component amplitude. Most interestingly, i  is the chirp rate (or variation rate of 

frequency) corresponding to the acceleration of a moving target which this chirp signal 

expression models, and different values of i  (i=1, 2,…, N) will introduce in distinct 

line spectra in different FRFD. if
 
is the initial frequency (or center frequency) 

corresponding to the velocity of the moving target, and ic  is only a constant of the phase 

angle. By taking derivative of the phase angle ϕ (3.1), the instantaneous frequency of the 

chirp signal will be obtained as in (3.2): 

                                                  )(2' ii ft                                                        (3.2) 

from which it could be seen that i  is indeed the variation rate of frequency.   

 

C. Multi-angle Discrete Fractional Fourier Transform (MA-DFRFT) 

      The multi-angle version of DFRFT is the best approach to directly demonstrate the 

points at which the energy of different components of a complicated signal would get 

concentrated to the highest degree. 

 

1. Introduction to MA-DFRFT 

      The reason that MA-DFRFT has been researched on is that when the different 

components of a complicated signal overlap spectrally or when one or two components 

are stronger than the others, the job of signal components separation and demodulation 

cannot be achieved with the existing algorithms.  
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      However, as a 2D mapping of the 3D plot of a multi-angle version of DFRFT, with 

the x-axis representing a combination of the information in both time and frequency 

domains, y-axis representing the multi-values of transform order a, and z-axis 

representing the magnitudes of different DFRFT results at various values of a, MA-

DFRFT is a proper tool for the component separation and demodulation of complicated 

signals.  

      Most importantly, the information of the optimum transform order opta  could be 

obtained from the MA-DFRFT matrix, and based on the formula of the relationship 

between the optimum transform order and the chirp rate of the analyzed signal shown in 

(3.2), the intrinsic property of the signal, the corresponding optimum transform order of 

one component of the chirp signal, will be acquired with precision: 

                                            )
/

(tan
2

2
2

1



NF
a s                                                      (3.3)   

where sF  is the frequency at which the chirp signal gets sampled, and N is the total 

number of the samples.                           

      So MA-DFRFT is the better tool to be adopted if the researched object is a signal 

with unknown chirp rates. By calculating the MA-DFRFT, even though the researched 

signal is a complicated one with several different components, the optimum transform 

order for each of them will be clearly shown in the MA-DFRFT plot, so there will be no 

need for trial-and-error procedures by using merely DFRFT to find the proper parameter 

a to concentrate the signal energy.  
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2. Chirp Signal Processed with MA-DFRFT  

a. Single-component chirp 

      Given a single-component chirp (FM signal) 
)( 2

)(
tctj retx






 where the initial 

angular frequency srad /1000 , and the angular chirp rate 2/15000 sradcr  , and 

the sampling frequency is Fs=8000Hz. 

      Compared with (3.1) and (3.2), the initial frequency Hzf 15.159)2/(   , and 

the chirp rate sHzcc rr /65.4774/)2/(2   . 

      The time-domain plot of this single-component chirp signal is shown in Fig. 24： 

 Fig.  24. Plot of a single-component chirp in time domain.  
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      And then the MA-DFRFT result follows as in Fig. 25: 

 

Fig.  25. MA-DFRFT plot of a single-component chirp. 

      Just by observation, it is difficult to determine the position of the energy-

concentration point from Fig. 25, so the horizontal a=1 line is added in Fig. 26: 
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Fig.  26. MA-DFRFT of a single-component chirp with the a=1 line. 

      So from Fig. 26 above, it is obvious that the energy-concentration point lies above 

the a=1 line, which is because the chirp rate has a positive value.  

      Calculated directly from the MA-DFRFT matrix already obtained from the 

algorithms of MA-DFRFT, the energy-concentration point above the a=1 line has a 

corresponding transform order a=1.020. If calculated from the formula given by (3.3), 

the optimum transform order for this single-component chirp signal can also be obtained: 

a=1.019. So it could be seen that the simulation result almost matches with the empirical 

formula in (3.3), and the absolute error is only 0.001. 
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      On the contrary, if the chirp rate has a negative value, the energy-concentration point 

will move to the position beneath the a=1 line, as shown in Fig. 27 below: 

 

Fig.  27. MA-DFRFT of a single-component chirp with negative chirp rate. 

      The relative positions of the energy-concentration point and the a=1 line is 

dependent on the chirp rate itself, because any component of a chirp signal with a given 
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from (3.3). And it should be noted that if the chirp rate has a negative value, then (3.4) 

should replace (3.3): 

                                             )
/

(tan
2

2

1



NF
a s                                                  (3.4) 

      Another issue which is worth noticing is the x-coordinate of the energy-concentration 

point. The label for the x-axis of the MA-DFRFT plot has been set to be “Index” as in 

Fig. 25-27, and whether it refers to time or frequency should be assessed according to 

the following map which shows the criterion aiding with the interpretation of the x-axis 

of MA-DFRFT: 

                               2                                                                                  a=2 

                                           A                                                 a=1.5 

              a                                                                                       a=1 

                                                                                                       

                                                                                                       a=0.5          

                                                                                                       

 

0                                                                               a=0 

0                                                 N-1                 

                                                      

                                                        k 

Fig.  28. Map of the a=[0,2] region where index k should be interpreted as time or 

frequency in the MA-DFRFT matrix ][kX a . 
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     In Fig. 28, within all the white regions, including the white diamond region in the 

middle, the upper and the lower rectangular regions of the map, k should be interpreted 

as time; meanwhile, for ][kX a  falling into the blue shade outside the regions mentioned 

above, the interpretation of k is frequency [6]. 

 

b. Multi-component chirp 

      Given the input signal, a chirp signal with 3 components:


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where the fundamental initial angular frequency is srad /10001  , the fundamental 

angular chirp rate is 2

1 /15000 sradc  , and still with the sampling frequency to be 

Fs=8000Hz. 

      Obviously, the components are harmonically related with each other, and this is also 

why a slant line that will be introduced in the following of this section could solve the 

resolution problem. 

      The time-domain plot of the input chirp is shown in Fig. 29: 
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Fig.  29. Plot of a multi-component chirp in time domain. 

      Merely observed from the plot of this multi-component chirp from Fig. 29, it could 

be seen that the frequency of the signal is increasing over time, but no further 

information can be extracted from this time-domain plot. 

      And the 2-D mapping of the 3-D surface plot of the MA-DFRFT is shown in Fig. 30: 
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Fig.  30. MA-DFRFT plot of a multi-component chirp. 

      It could be seen that the 3 components of this complicated chirp signal are 

distinguished without ambiguity. The 3 different optimum transform orders 

corresponding to the 3 different components can be obtained directly either from the 

calculated MA-DFRFT matrix or the empirical formula in (3.3), and the relative 

positions of the 3 energy-concentration points and the a=1 line is given by Fig. 31. 

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2  

Index

MA-DFRFT

 

T
ra

n
s
fo

rm
 O

rd
e
r 

a

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8



77 

 

 

Fig.  31. MA-DFRFT of a multi-component chirp with the a=1 line. 

The 3 optimum transform orders are: 

1a 1.019 

2a 1.038 

3a 1.057 
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D. Multi-angle Centered Discrete Fractional Fourier Transform (MA-CDFRFT) & 

Performance Comparison with MA-DFRFT 

1. MA-CDFRFT 

      Compared with the continuous transform order a from 0 to 2 being the y-axis of MA-

DFRFT, if a discrete set of the rotation angles is given by  

                                                 N

r
r




2


                                                      
(3.5) 

which is also to say that a discrete set of transform orders is given by 

                                                         
N
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4
                                                         (3.6) 

where the discrete 1,...,1,0  Nr  is employed, the following matrix of ][kX r will be 

obtained taking the place of the ][kX a  of MA-DFRFT: 
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      Defining ][ pzk  as  
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                                                  (3.8) 

      Based on the renowned DFT expression, it could be observed that (3.7) can be 

expressed in the form of DFT of ][ pzk : 
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where 1,0  Nkr , and 
pr

N
j

pr

N eW

2


 .  

      It may have been noticed that the subscript and index of (3.7) have been 

interchanged to be shown in (3.9) to highlight the feature of this computation process: 

each iteration of the DFT computation will induce the k-th element of the CDFRFT for 

the whole set of transform orders r as given in (3.5). The resulting transform ][rX k  

containing the CDFRFT for these discrete angles is called the multi-angle CDFRFT 

(MA-CDFRFT), just like the multi-angle DFRFT. 

      Expressing this new multi-angle transform as a DFT computation facilitates the use 

of the regular FFT algorithm to efficiently calculate MA-CDFRFT, a transform with a 

full set of evenly distributed angles. This step has greatly reduced the computational cost 

of MA-CDFRFT from )( 3NO , i.e., the case for direct computation using N matrix 

multiplications, to )log( 2

2 NNO ,when using the radix-2 FFT algorithms with 
2N . 

     As a high level resemblance of MA-DFRFT, the MA-CDFRFT is also a matrix, as 

already denoted: ][rX k . Similar with MA-DFRFT, MA-CDFRFT is also a 2D mapping 

of the 3D demonstration in which time and frequency share the same axis (index k), and 

whether the index k should be interpreted as time or frequency depends upon the value 

of α, or more directly, the parameter r.  

      It can be observed with ease that ]0[kX  will be reduced to the original signal x[n] 

under research if setting k=n, and ]4/[NX k  will match with the CDFT of x[n] with N 

being a multiple of 4, since in this case we have r=N/4 so 2/4/  N .  



80 

 

      To better illustrate the regions where the index k should be interpreted as time or 

frequency like Fig. 28 introduced for MA-DFRFT, Fig. 32 will be likewise introduced to 

show the map of the ][rX k  matrix to illustrate how index k has different interpretations 

based on the variation of the value of the parameter r.  

       

                    N-1                                                                             

                                                                                                 r=3N/4 frequency reversed  

                    r                                                                            r=N/2   time reversed 

                                                                                                 r=N/4   frequency 

0        0                                                                r=0      time 

0                                                        N-1 

                                                            k 

Fig.  32. Map of the r=[0,N] region where index k should be interpreted as time or 

frequency in the MA-CDFRFT matrix ][rX k . 

      As shown in Fig. 32 above, at r=0, k corresponds to time; and at r=N/4, k should be 

interpreted as frequency. It could also be deduced from this graphical representation 

that the upper half of ][rX k  is a reversed version of the lower half, since in this case 

the region of r=[N/2,N] is a mirror of the region r=[0,N/2], just like the a=[2,4] region 

is a reversed version of the a=[0,2] region in the case of MA-DFRFT. 

      It will be demonstrated in Fig. 33 of the next section that the MA-CDFRFT of a 

single-component chirp signal will show two energy-concentration points, located 
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respectively in the lower half and the upper half of ][rX k . If the signal has no chirp 

rate, or simply put in this way, the frequency of the input signal is invariable with time, 

the energy concentration points will be located exactly at the rows of r=N/4, 3N/4 

which correspond with the rotation angles at  270,90 . And at these two critical 

angles, CDFRFT will be reduced to the centered DFT (CDFT), and its inverse 

correspondingly. It should be mentioned that very similar to the case of MA-DFRFT, in 

a MA-CDFRFT plot, signal with a non-zero chirp rate will yield energy-concentration 

points at rotation angles of CDFRFT different than 90 and 270 , and whether their 

locations are above or below those critical values relies on the chirp rate of the signal. 

  

2. Chirp Signal Processed with Both MA-CDFRFT & MA-DFRFT 

      As a counterpart of MA-DFRFT, a comparison of the performances of both of these 

two 3-D demonstrations will be made in this section to determine which one provides 

higher resolution and will be employed in the subsequent research.  

      The complicated chirp signal with 3 components which are researched on in the 

previous part of MA-DFRFT is still the main research object:  
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where fundamental initial angular frequency is srad /5.01  , and the fundamental 

angular chirp rate 
2

1
/001.0 sradcr  , and N=128 (the length of the signal is better to be 

a power of 2 in order to use MA-CDFRFT). 
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      3 different algorithms from the available literatures have been researched on for the 

computation of MA-CDFRFT, and the main difference among those algorithms lies in 

that the Grünbaum’s tridiagonal commuting matrix takes different expressions. So the 3 

different versions of MA-CDFRFT are demonstrated as in the following sections: 

 

a. MA-CDFRFT result based on the algorithm given by [9]: 

 

Fig.  33. MA-CDFRFT of a multi-component chirp signal based on [9]. 
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      To speak about the overall performance, Fig. 33 above has explicitly demonstrated 

that the MA-CDFRFT algorithm which is based on the Grünbaum tridiagonal 

commuting matrix in a form proposed by [9] could provide relatively satisfactory 

resolution around the energy-concentration points, but when index k is near 0 and N, this 

MA-CDFRFT algorithm fails to give stabilized continuous high resolution. This kind of 

failure will bring in huge errors in the subsequent work on the other derivatives, such as 

Slanted Spectrum and SBSS.  

 

b. MA-CDFRFT result based on the algorithm given by [10]: 
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Fig.  34. MA-CDFRFT of a multi-component chirp signal based on [10]. 

      Compared with Fig. 33, Fig. 34 has indicated higher resolution even around the 

locations near k=0 and N. Actually the Grünbaum’s tridiagonal commuting matrix given 

by [10] is even simpler than that given by [9]: 
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where ))1(sin()sin()cos(2   nNnnan , ))(sin()sin(  nNnbn   and 

)/(1 2Nd . Normally the dilation parameter d is set to 1. 

      And slightly different from (3.10), the Grünbaum’s tridiagonal commuting matrix 

given by [10] offers higher resolution in the MA-CDFRFT plot: 
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where ,1),/)
2

1
(2cos()/cos( NnNnNan   11),/(sin 2  NnNnbn  . 

       Both forms of G are real symmetric matrices, and their eigenvectors are real and 

orthogonal. 

      So it could be concluded that a simpler form of the Grünbaum’s tridiagonal 

commuting matrix could even bring forth higher resolution in MA-CDFRFT plot. 

 

c. MA-CDFRFT result based on [24] 
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      The MA-CDFRFT result based on [24] is shown in Fig. 35 below: 

 

Fig.  35. MA-CDFRFT of a multi-component chirp signal based on [24]. 

      So this demonstration shows that the algorithm of MA-CDFRFT based on [24] fails 

to provide satisfactory resolution even at the locations of the energy-concentration points, 

and the plot has a reversed alignment compared with the previous two figures derived 

from the MA-CDFRFT algorithms based on [9] and [10]. 

0 20 40 60 80 100 120
0

20

40

60

80

100

120

 

Index k

MA-CDFRFT

 

In
d
e
x
 r

0.1

0.2

0.3

0.4

0.5

0.6



87 

 

d. As a comparison, the MA-DFRFT based on [3]: 

 

Fig.  36. MA-DFRFT of a multi-component chirp signal based on [3]. 

      It can be easily observed from Fig. 36 that MA-DFRFT has outperformed all the 3 

versions of MA-CDFRFT above in that the energy-concentration points are easier to 
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CDFRFT are the strong support for the final decision of picking MA-DFRFT as the 

basis for further development on the other DFRFT derivatives. 

 

E. Slanted Spectrum 

1. Introduction to Slanted Spectrum 

      A much more complicated case mentioned in the previous section is that when the 

chirp signal under research is a multi-component one, using the single-dimension 

DFRFT is not enough for the best processing quality, because different components that 

comprise the chirp signal may have respectively various chirp rates which require 

different transform orders to concentrate each of them to a single independent pulse 

signal in the DFRFT plot. 

      And Slanted Spectrum is an innovative tool generalized from both DFRFT and MA-

DFRFT, and it is best for multi-component signal processing. 

      The line going through the energy-concentration points in the MA-DFRFT plot of an 

unknown multi-component signal also has to pass the central point of the MA-DFRFT 

plot. By calculating the coordinates of one specific energy-concentration point, and 

wrapping up with the coordinate information of the central point: [k, a] = [N/2, 1], an 

equation of a line could be obtained. And this line is exactly the slant line to seek for to 

calculate the Slanted Spectrum. 

      In succession, there will actually be slant lines with exactly the same number of the 

total components comprising the chirp signal appearing in the MA-DFRFT 

demonstration. If the components of the chirp signal are harmonically related, then the 
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slight difference in the slopes of the slant lines can be neglected, and MA-DFRFT will 

be retaken align this artificially determined universal slant line, which is to say, a new 

MA-DFRFT matrix will be generated within a much more confined range than the 

original k=[0,N-1] and a=[0,2] range.  

      Furthermore, it should be noted that Slanted Spectrum is comparable to DFRFT in 

that they are both a 2-D representation with the index k being the x-axis, and magnitude 

being the y-axis. So the acquisition of a new MA-DFRFT matrix in a more confined 

range is just a prerequisite of obtaining the Slanted Spectrum, which actually comes 

from the diagonal elements of the new MA-DFRFT matrix. 

      In the following section it is going to elaborate on the generation of Slanted 

Spectrum with the utilization of the multi-component chirp signal which was employed 

in the previous section of MA-DFRFT. 

 

2. Slanted Spectrum Applied on a Multi-component Chirp Signal 

      The 3-component chirp signal model will be exploited in this section again to show 

the acquisition of Slanted Spectrum: 
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where the fundamental initial angular frequency is srad /10001  , the fundamental 

angular chirp rate is 
2

1 /15000 sradc  , and still with the sampling frequency to be 

Fs=8000Hz. 
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       It is simple to understand that Slanted Spectrum taken along the horizontal a=1 line 

going across the center of the MA-DFRFT plot (the red line shown in Fig. 31), equals 

with directly taking DFT of the input signal. And the result is shown in Fig. 37: 

 

Fig.  37. Slanted Spectrum along the horizontal a=1 line. 

Where it is observable that the x-axis of Slanted Spectrum matches with that of the MA-
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the a=1 line. But this slice is not sharp enough to provide with the information such as 

the precise positions of the 3 components of the chirp signal in any domain. 

      So there is a high demand for introducing the new slant line along which a sharp 

enough slice will be obtained to give higher resolution to distinguish all the components 

contained in a complicated chirp signal. 

      In this case of 3-component chirp signal, the 3 energy-concentration points of the 

MA-DFRFT matrix will be sought first, and based on the slant line equation inspired by 

[6], all the 3 slant lines will be obtained with the knowledge of the coordinates of the 3 

energy-concentration points with the brightest color in the MA-DFRFT plot: ],[ 11 optopt ak , 

],[ 22 optopt ak and ],[ 33 optopt ak . And it has been discussed above that the slant line shall 

pass the center point of the MA-DFRFT plot: [k, a] = [N/2, 1], so the equations of all the 

3 slant lines where the 3 energy-concentration points and the center point are aligned 

respectively will be obtained as in (3.12) where k=1,2,3 and corresponds to the number 

of components in the researched signal: 
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 and subsequently they will also be presented in the MA-DFRFT demonstration in 

different colors as in Fig. 38: 
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Fig.  38. MA-DFRFT with the 3 slant lines in different colors corresponding to the 3 

components of a chirp signal. 

      In Fig. 38 above, the yellow slant line is in correspondence with the 1
st
 component 

with the fundamental initial angular frequency of srad /10001  , and the fundamental 

angular chirp rate of 
2

1 /15000 sradc  ; the red slant line in between of the yellow and 

green slant lines is the one which passes the 2
nd

 energy-concentration point which 

represents the 2
nd

 component of the chirp signal with an initial angular frequency and 

angular chirp rate twice the value of the 1
st
 component; and the green slant line 

corresponds to the 3
rd

 component of the chirp signal, with both tripled initial angular 

frequency and angular chirp rate. It is also worth mentioning that the color of the 
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horizontal a=1 line has been changed into black to avoid confusion with the red slant 

line for the 2
nd

 component of the chirp signal. 

      It is noticeable that the three slant lines are located slightly differently in the MA-

DFRFT demonstration given by Fig. due to their different slopes, so here’s a question: 

along which slant line should the Slanted Spectrum of the chirp signal be taken?  

      As shown in Fig. 38, 3 different Slanted Spectrums have been taken along the 3 slant 

lines in yellow, red, and green colors respectively. And it is seen that the Slanted 

Spectrum in yellow has the ability to highlight the leftmost peak to the highest degree, 

owing to the fact that this Slanted Spectrum is taken along the yellow slant line, which is 

obtained from the leftmost energy-concentration point, so it is the most appropriate slant 

line along which the Slanted Spectrum for the 1
st
 component of the chirp signal needs to 

be taken. It is similar that the Slanted Spectrum for the 2
nd

 component of the chirp signal 

is best to be taken along the red slant line, and correspondingly, the Slanted Spectrum for 

the 3
rd

 component should be computed along the green one. So Fig. 39 shows this 

procedure: 
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Fig.  39. Slanted Spectrum taken along the 3 different slant lines in 3 colors. 

      However, this assignment of different slant lines to different components of a 

complicated chirp signal has not completely and successfully solved the question raised 

above. When processing a complicated chirp signal with multiple components, if the 

number of computations of Slanted Spectrum equals with the number of the components, 

it is understandable that the computational cost will be too high.  

      The bright side is that the main target objective of this research on chirp signal is 

limited to types of chirp signals with harmonically related components. So the 

observation from demonstrated in Fig. that the 3 different slant lines shown in distinct 
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colors are almost overlapped with one another should be a key factor to take into 

consideration in order to solve this computation cost issue. 

      In this 3-component chirp signal case, the slant line in the middle with red color is a 

good option for taking an overall Slanted Spectrum of the chirp signal as an entirety, as 

shown in Fig. 40:  

 

 

Fig.  40. The slant line in red color along which the Slanted Spectrum of the chirp signal 

as an entirety needs to be taken. 

      From Fig. 40 above, it is obvious that the red slant line passes the central point of the 

whole MA-DFRFT plot, and without any doubt, it has also passed all of the 3 energy-
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concentration points. But whether this slant line will apply to the processing of all the 3 

components of the chirp still requires a thorough check. 

 

Fig.  41. Slanted Spectrum of the multi-component chirp signal taken along one single 

slant line. 

      Fig. 41 above shows much higher resolution when it comes to the distinguishing of 

the 3 components of the chirp signal, which means that the 3 peaks corresponding with 
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demonstrated that the MA-DFRFT could decompose a chirp signal over the analysis 

frame into multiple energy-concentrated pulses. 

      Actually this plot shown by Fig. 41 is a successful case of Slanted Spectrum, which 

is also the basis of the concept of Spectrogram based on Slanted Spectrum (SBSS) 

introduced in the section in subsequence with the following one. 

 

3. The Analysis of the Advantage of Slanted Spectrum over Traditional FFT 

      In this section, both FFT and DFRFT have been applied to two different kinds of 

input signal: a single-component chirp signal and a multi-component chirp signal, with 

the sampling frequency to be Fs=8000Hz. 

 

a. Single-component chirp signal w/ constant magnitude (FM signal) 

)150001000( 2

)( ttjetx   

  

1) Its FFT result with the 10% plane above the noise floor shown in Fig. 42: 
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Fig.  42. FFT of a single-component chirp in frequency domain. 

 

2) Slanted Spectrum result with the 10% plane above from the noise floor 

(based on MA-DFRFT) shown in Fig. 43: 
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Fig.  43. MA-DFRFT of the single-component chirp in FRFD. 

b. Multi-component chirp signal w/ equal constant magnitude (FM signal) 
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1) FFT result with the 10% plane above from the noise floor shown in Fig. 

44: 
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Fig.  44. FFT of the multi-component chirp in frequency domain. 

2) Slanted Spectrum result (based on MA-DFRFT) the 10% plane above 

from the noise floor shown in Fig. 45: 
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Fig.  45. MA-DFRFT of the multi-component chirp in FRFD. 

c. Comparison Table for the 2 different tools applied to both single-component 

chirp signal and multi-component chirp signal 

      The performance comparison between the traditional FFT and DFRFT is shown in 

Table IV: 
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TABLE IV 

FREQUENCY RANGE COMPARISON BETWEEN FFT AND DFRFT  

Frequency range at the 

10% plane٭ 

Single-component input 

signal 

Multi-component (three-

component) input signal 

FFT [100,460] [80,1260] (cannot 

distinguish the three 

components) 

DFRFT (Slanted 

Spectrum) 

[240,420] [260,360], [520,660], 

[780,1000] 

 

* The 10% plane is measured from the top of noise floor, which is the bottom of the 

plots in Fig.24 – Fig. 27 (no simulation of noise). The whole range (peak-bottom) of the 

spectrum is measured, and 10% range is calculated from the bottom of the plot. 

      So from the comparison table above, we could see the frequency range of the 

transformed signal is greatly shrunk, which means DFRFT is a better tool to process FM 

signals. 

      Because of the participation of the new DOF, transform order a, DFRFT provides 

higher flexibility and resolution especially for research in FM signals. 

      It has been proved in this section that the energy of the FM signals will be more 

concentrated with DFRFT analysis than with simply employment of FFT. Because a 

signal with a chirp rate can only be transformed into a pulse function in an appropriate 

FRFD, hence DFRFT has an excellent advantage of concentrating the FM signal energy. 
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F. Spectrogram Based on Slanted Spectrum  

1. Comparison between Traditional Spectrogram and Spectrogram Based on 

Slanted Spectrum 

      The traditional spectrogram for discrete-time signals is based on the computation of 

the DFT over a certain number of windowed segments within the whole analysis frame, 

and is developed with the assumption that the target objective signal is stationary, so in 

this case the traditional spectrogram has been an effective and reliable time-frequency 

tool for stationary signal analysis. In other words, as a signal-component decomposition 

method applied on signals using the DFT, the traditional spectrogram inevitably assumes 

a multi-component sinusoidal signal model and that the frequency content of the signal 

is stationary over the analysis frame as the signal model that DFT is mostly employed to 

deal with. Hence the traditional spectrogram is not an appropriate option for the more 

complicated case that the frequency content of a signal is chirping over the analysis 

frame, such as bat echolocation signals, and human speech signals, where the 

fundamental frequency and its harmonics have chirp rates, i.e., the signals being FM. 

      The traditional spectrogram is calculated by dividing the whole analysis frame of the 

input signal into multiple segment frames, by applying different mathematical windows 

such as Hanning window, Hamming window and Gaussian window to the analysis frame. 

In each window, the DFT of each input signal segment will be calculated, so there is 

actually the same number of TFRs for segments of truncated data points of the input 

signal with the number of frames, and this is also why the spectrogram is also named as 

the Short Time Fourier Transform. 
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      And then for the SBSS, it is the MA-DFRFT, rather than DFT, has been exploited to 

define this advanced spectrogram that is able to provide with higher resolution. The most 

essential attribute of this advanced spectrogram is that it is based on the multi-

component chirp model rather than a multi-component sinusoidal model and it will be 

confirmed to be more efficacious at processing chirp signals in the subsequent section. 

And SBSS is implemented in a similar technique as the traditional spectrogram:  

dividing the input signal into different analysis frames, where there may be overlaps 

between one another frame as input in the presetting procedure.  

      However, as an innovative spectrogram, SBSS has some tremendous difference from 

the traditional spectrogram. According to [6], the essence of generating SBSS lies in the 

selection of transform order within each analysis frame: “With the equation of the line 

we can select the values of the MA-CDFRFT to obtain the slanted spectrum. Repeating 

this process of finding the largest peak and computing the equation of the line over each 

frame at different positions in time, we can construct a spectrogram that is sharper than 

the one based on the DFT.” Moreover, there is further hint obtained from [6] that as DFT 

needs to be computed to get a regular spectrogram, MA-CDFRFT along the slant line 

defined by the largest peak also needs to be computed to get the SBSS, where it is worth 

mentioning that the slope of the slant line changes at every sample (analysis frame).    

      So to provide more concrete details about the fact of generating SBSS, within every 

analysis frame, MA-DFRFT will be taken to process each of the segments of the chirp 

signal and there will be a procedure to seek for the energy-concentration point under the 

confinement of each single analysis frame which is also followed by generating slant 
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line in each frame. Therefore the technique of generating Slanted Spectrum which has 

been elaborately discussed on will be utilized within the range of every analysis frame, 

and then as the traditional spectrogram, PSD (Power Spectral Density) will be taken 

upon the Slanted Spectrum matrix of the input signal. Hereto this innovative TFR tool 

has reached its completion of development. 

      So to wrap up, which has made SBSS more advanced than the traditional 

spectrogram is that this algorithm has congregated all the tools that have already been 

introduced in the previous chapter and sections: DFRFT, MA-DFRFT and Slanted 

Spectrum, so it has the capability of decomposing the complicated signal into multiple 

separated components.  

 

2. Traditional Spectrogram Applied on the Multi-component Chirp Signal 

      As in the previous several sections, the 3-component chirp signal model is put to use 

in this section and the next section once again to demonstrate the difference between the 

efficaciousness of the traditional spectrogram and SBSS: 
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where the fundamental initial angular frequency is srad /10001  , the fundamental 

angular chirp rate is 
2

1 /15000 sradc  , and still with the sampling frequency to be 

Fs=8000Hz. 
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Fig.  46. The traditional spectrogram applied on a 3-component chirp signal. 

      So from Fig. 46, following information could be obtained by mere observation: 
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nd

 harmonic has a doubled 
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3
rd

 harmonic is srad /30003  , so the 3
rd

 initial frequency should be 

Hzf 46.477)2(33   . 

2) All the 3 TFRs have positive slopes, because the 3 components have increasing 

frequencies, i.e. the fundamental angular chirp rate is 2

1 /5000,1 sradcr  , which 

means that the gradient should be 2

1 /32.387,2)2/( sHzcr  . However, the 

analysis frame has only been confined to a range almost could be called 

infinitesimal, so the large frequency variation rate has not been shown to a best 

degree; 

3) The drawback of employing the traditional spectrogram is also obvious: The 3 

bars with the darkest color in the demonstration fail to provide with high 

resolution, so there is relative difficulty distinguishing them. If the bars could be 

turned into crisp lines, which are the ideal shapes to examine, then there will be 

no trouble with the distinguishing work. 

 

3. SBSS Applied on the Multi-component Chirp Signal 

      As a specific case, if I set the transform order to be a=1, the SBSS of the multi-

component chirp signal is as shown in Fig. 47. 
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Fig.  47. SBSS applied on a multi-component chirp signal with a=1 being the slant line 

to compute Slanted Spectrum within every frame. 

      There shows no difference between Fig. 47 above and Fig. 46 of the traditional 

spectrogram using traditional DFT, since Fig. 47 is obtained via taking Slanted Spectrum 

along the a=1 line in every single analysis frame, which equals with the effect of taking 

DFT of each segment of signal data points.  

      And if SBSS is taken with respect to the 1
st
 optimum transform order which 

corresponds to the leftmost energy-concentration point in Fig. 38, i.e., 019.11  aa , 

then the TFR presented by SBSS will be like demonstrated in Fig. 48: 
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Fig.  48. SBSS applied on a multi-component chirp signal with a=1.019 being the slant 

line to compute Slanted Spectrum within every frame. 

      It could be observed that the SBSS corresponding to the slant line with respect to the 

1
st
 component of the original chirp signal has obtained a better resolution, because the 

widths of the red bars have been decreased if compared with Fig. 46 and Fig. 47. 

      The result acquired by observing all the rules of generating a standard SBSS is given 

by the following Fig. 49: 
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Fig.  49. SBSS applied on a multi-component chirp signal by taking different slant lines 

to compute Slanted Spectrum within every frame. 

      Fig. 49 above shows the SBSS result of the 3-component chirp signal, with a series 

of specification settings: a Hanning window with the length of 128 is applied to obtain 

each of the analysis frames with the length of 128; the number of data points in overlap 

between each two successive frames is 127; HzFs 000,8 still being the sampling 

frequency; and the frequency axis is set to the y-axis. 

      A particular problem concerned with utilizing SBSS is the selection of the window. 

By default, a Hamming window with a length equal to that of the FFT computed within 

each analysis frame is applied. But by recommendation, a Hanning window with a 
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length of 128 or 256 should be selected to do the traditional spectrogram, and for SBSS, 

a Hanning window with the length of 256 is proposed to get a higher resolution of the 

TFR. A single-component chirp signal will be employed to illustrate the difference of 

specifying the window type and not. 

      The chirp signal has an expression of ))2/127(001.05.0( 2

][  nnjenx , where n=0,1,…,N-1, 

and N=500. 

1) SBSS with a defaulted Hamming window with the length of 256, number of overlap 

of 255: 

 

Fig.  50. SBSS applied on a single-component chirp signal with a defaulted Hamming 

window of the length of 256. 
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      The line with the darkest red color which lies in the middle of the spectrum shown in 

Fig. 50 has actually provided higher resolution compared with the traditional 

spectrogram in Fig. 51 below, because there is doubt that the SBSS result has a better 

concentration. 

 

 

Fig.  51. Traditional spectrogram of a single-component chirp signal. 

2) SBSS with a specified Hanning window with the length of 256, number of overlap of 
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Fig.  52. SBSS applied on a single-component chirp signal with a specified Hanning 

window of the length of 256. 

      So based on the Fig. 52, SBSS with a Hanning window of length 256 is suggested to 

specify when in utilization. 

 

G. Summary for the Method Comprised of Tools from the DFRFT Family 
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FM signals. It needs to be mentioned that DFRFT alone is best for single-component FM 

signal, and when it comes to multi-component FM signal, only employing this tool is not 

enough. That’s why the development of other derivative tools is highly demanded. 

      One of the most essential derivative tools, MA-DFRFT, is a multi-angle version of 

DFRFT, and it is a demonstration show at first hand at which values of the optimum 

transform order a, the signal under research could get the energy of its different 

components concentrated to distinct single points. So MA-DFRFT helps to get rid of the 

scanning process seeking for the optimum transform order opta  and could directly show 

that information in its plot. 

      Besides, Slanted Spectrum is generated based on MA-DFRFT, and it is best for 

multi-component signal analysis, because its algorithm would firstly figure out exactly 

the slant line which is comprised of the points at which the signal components could get 

their energy concentrated, and then calculate a new matrix of the MA-DFRFT of the 

researched signal strictly along this slant line. So this is also why it is named as Slanted 

Spectrum. 

      The last but not the least, SBSS, as its name, is an innovative Spectrogram which is 

based on Slanted Spectrum. It has not yet attracted much attention compared with 

DFRFT and MA-DFRFT in the community, but it has great potential to give more 

specific time-frequency information of a FM signal.  
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CHAPTER IV 

MOTOR CURRENT SIGNAL ANALYSIS USING PROPOSED METHODS 

 

A. The Motor Current Signal and Its Importance in Fault Detection 

The main practical signal from industry employed to apply DFRFT and its 

derivatives is the shaft current signal of a 7.5HP, 3 Phase, 208V induction motor 

3KX07G manufactured by DAYTON. And the experiment aiming at obtaining 

necessary current signal data comprises of the following 9 steps: 

1) The test-bed was run for 232.58Hrs in a healthy mode, and healthy current signal 

data is acquired. 

2) Inject current for the 1
st
 time to the motor bearing so that damage leading to 

generalized-roughness fault on the bearing occurs for the first time, and this 

current injection period last for 25.38Hrs. 

3) Stop the current injection and keep the motor running for 44.07Hrs, and track 

down the current signal data in this faulty status. 

4) Repeat step 2) with the 2
nd

 current injection which last for 8Hrs. 

5) Repeat step 3) with the motor running for another 89.05Hrs with the 2
nd

 state of 

faulty signal data recorded. 

6) Repeat step 2) with the 3
rd

 current injection which last for 2.47Hrs. 

7) Repeat step 3) with the motor running for another 49.53Hrs with the 3
rd

 stage of 

faulty signal data recorded. 

8) Repeat step 2) with the 4
th

 current injection which last for 24.38Hrs. 
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9) Repeat step 3) with the motor running for another 283.22Hrs with the 4
th

 stage of 

faulty signal data recorded. 

      Among these steps, 2), 4), 6) and 8) are the current injection stages and the signal 

data acquired in these are not the research objective, since these are only records of 

abnormal current artificially injected to an originally healthy motor bearing. What 

matters in this research on motor current signal is the subsequent status of the motor 

current after the current injection, because that was exactly the simulation of a faulty 

motor bearing which could give valuable information about generalized-roughness fault 

on motor bearings. Thus the signal data files obtained from steps 1), 3), 5), 7) and 9) are 

the research objectives here, that is, in order to achieve a thorough examination of the 

current signal, it is required that both healthy and faulty signal data should be analyzed. 

 

1. Pre-treatment of the Motor Current Signal Data 

      Each data file obtained from the experiment introduced above contains a 30 Sec-

length of motor current signal, with every single data point to be sampled at a sampling 

frequency of 8kHz. However, using all the sampled data to testify the generated 

algorithms of DFRFT, MA-DFRFT, Slanted Spectrum and SBSS is overwhelmingly 

time-consuming, so a new sampling rate of 1.92 kHz is used to resample the data, so the 

length of an original data file has been reduced to its 24%.  

      And then MA-DFRFT is firstly applied on the ante-pretreatment signal data files in 

healthy status to determine its signal type as shown in Fig. 53. 
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Fig.  53. MA-DFRFT applied on the healthy motor current signal 

      Both of the chirp rate rc  and optimum transform order opta  are able to be calculated 

from the peak coordinates of the MA-DFRFT demonstration: 0rc and 1opta . 

      So by using MA-DFRFT, the procedure of identification of the original signal is 

achieved. From the plot and the digital computation result, we get to know the signal 

type of the ante-pretreatment signal might be mainly amplitude modulated. 

      And then based on the MA-DFRFT result, DFRFT (a=1) was taken on a random file 

from the healthy state, and the result is shown as in Fig. 54: 
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Fig.  54. DFRFT applied on the healthy motor current signal. 

      A main frequency component with very large amplitude appears at 60Hz, and there 

are also its harmonics along the frequency axis, so there is a need to filter out all these 

components with a reliable filtering technique. Following shows the whole procedure of 

the pre-treatment of the raw data: 

      Firstly, the DC component is removed by simply subtracting the mean average of all 

the data. 

      And then a notch filter based on FFT is applied to remove all the harmonics of the 

60Hz component generated from the electrical power supply, where it should be noted 
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that in order not to have an impact for filtering the other harmonics of the 60Hz 

component, the stopband width adopted for removing the 60Hz component with the 

highest magnitude among all the harmonics should not be overlarge and needs to be 

limited to 80Hz. This subtle but important move is due to the fact that the higher 

magnitude one component has, the larger energy leakage will occur when trying to 

remove this component with a not large enough filtering stopband width. So setting the 

stopband width to be 10Hz for other harmonics would be enough, but the successful 

removal of the 60Hz component with the highest magnitude requires a relatively high 

stopband, because it has the most significant energy as shown in Fig. 54. 

 

2. DFRFT and Other Tools Applied on Motor Current Signal Data 

      Based on the information collected from the last section of data pre-processing, the 

motor current signal is mainly AM, and the FM exists but is not obvious, since it may 

take a very long time for an observer to see that FM phenomenon. So DFRFT with a 

transform order a=1 is the first tool applied here. 

       

a. DFRFT (a=1) results of the 5 states 

      In this section, DFRFT (a=1) has been taken again on the data of all the five states: 

healthy state, 1
st
 – 4

th
 faulty states. 

1) Healthy State 
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Fig.  55. DFRFT (a=1) taken on data from the healthy state. 
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 Faulty State 

 

0 100 200 300 400 500 600 700 800 900 1000
-40

-30

-20

-10

0

10

20

30

X: 762.7

Y: 22.29

Frequency

A
m

p
lit

u
d
e
(d

B
)

DFRFT (a=1) Result of Healthy State After a Better Filtering Process

X: 152

Y: 8.152

X: 642.7

Y: 22.55

X: 402.7

Y: 24.78

X: 282.7

Y: 22.11



121 

 

 

Fig.  56. DFRFT (a=1) taken on data from the 1
st
 faulty state. 

3) 2
nd

 Faulty State 
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Fig.  57. DFRFT (a=1) taken on data from the 2
nd

 faulty state. 

4) 3
rd

 Faulty State 
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Fig.  58. DFRFT (a=1) taken on data from the 3
rd

 faulty state. 

5) 4
th

 Faulty State 
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Fig.  59. DFRFT (a=1) taken on data from the 4
th

 faulty state. 

6) Conclusion of applying DFRFT on the motor current signal 

      From observing the DFRFT results shown in Fig. 55 – Fig. 59, the band in between 

of 152Hz – 157Hz is speculated to be the signature frequency of the fault, since their 

amplitude has a dramatic rise since the 2
nd

 faulty state; the other 4 frequency 

components: 282Hz, 402Hz, 642Hz and 762Hz have a relatively stable variation since 

the healthy state, so they should be the characteristic frequencies of the motor bearing. 
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b. Moving average results of AM of the speculated signature frequency of the 

fault and the other 4 characteristic frequency components 

      In this section, the amplitude change which quantitatively shows the AM 

phenomenon of the speculated signature frequency of the fault at 152Hz – 157 Hz, and 

also the other 4 characteristic frequency components at 282Hz, 402Hz, 642Hz and 

762Hz will be shown with their moving average plot. 

1) Speculated signature frequency of the fault at 152Hz – 157 Hz 

 

 

Fig.  60. Amplitude change with moving average result of the speculated signature 

frequency of the fault. 
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2) The characteristic frequency component at 282Hz 

 

Fig.  61. Amplitude change with moving average result of the characteristic frequency 

component at 282Hz. 

3) The characteristic frequency component at 402Hz 
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Fig.  62. Amplitude change with moving average result of the characteristic frequency 

component at 402Hz. 

4) The characteristic frequency component at 642Hz 
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Fig.  63. Amplitude change with moving average result of the characteristic frequency 

component at 642Hz. 

5) The characteristic frequency component at 762Hz 
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Fig.  64. Amplitude change with moving average result of the characteristic frequency 

component at 762Hz. 

6) Conclusion of the moving average results of AM of the speculated 

signature frequency of the fault and the other 4 characteristic frequency 

components 

      The moving average results of AM has confirmed the speculation drawn in section a, 

since there was also a dramatic rise in Fig. 60, and the amplitude change in Fig. 61 – Fig. 

64 are all relatively stable. So there is no doubt that the current injection has brought in a 

fault with the signature frequency at 152Hz – 157Hz, the other 4 characteristic 

frequencies at 282Hz, 402Hz, 642Hz and 762Hz almost remained intact.  
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3. Traditional Methods Applied on Motor Current Signal Data 

a. Traditional spectrogram applied on motor current signal data 

      7 random data files from each of the states have been taken to do the traditional 

spectrogram. 

1) Healthy state 

 

Fig.  65. Traditional spectrogram taken on 7 random motor current data files of the 

healthy state. 

2) 1
st
 faulty state 
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Fig.  66. Traditional spectrogram taken on 7 random motor current data files of the 1
st
 

faulty state. 

3) 2
nd

 faulty state 
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Fig.  67. Traditional spectrogram taken on 7 random motor current data files of the 2
nd

 

faulty state.       

4) 3
rd

 faulty state 
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Fig.  68. Traditional spectrogram taken on 7 random motor current data files of the 3
rd

 

faulty state. 

5) 4
th

 faulty state 
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Fig.  69. Traditional spectrogram taken on 7 random motor current data files of the 4
th

 

faulty state. 

 

6) Conclusion of the traditional spectrogram results 

      As shown from Fig. 65, the 4 intrinsic characteristic frequencies are obvious, and the 

spectrum corresponding to the fault signature frequency around 152Hz - 157Hz is not 

very distinguishable but still could be seen, because there might be some crack on the 

bearing before the current injection. However, the current injection has worsened the 

crack in the following states as shown in Fig. 66 – Fig. 69. To strengthen this conclusion, 
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another traditional spectrogram demonstration will be shown in the following Fig. 70 in 

which the 5 states are plotted in one figure to illustrate the AM phenomenon better: 

 

 

Fig.  70. Traditional spectrogram taken on 2 random motor current data files from each 

of the 5 states. 

      To generate Fig. 70, traditional spectrogram is applied on 2 random data files from 

each of the 5 states, so every 60secs represents one single state. It could be seen that 

during the first 60secs, the lower red spectrum does not exist until the advent of the 1
st
 

faulty state. So the current injection has introduced in the signature frequency of the fault 

at 152Hz – 157Hz. 
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b. RMS of the DFRFT (a=1, a=0.5) results of the motor current signal data 

      In this section, DFRFT with different transform orders at a=1 and a=0.5 are taken on 

7 random data files from each of the 5 states first, and then the Root Mean Square (RMS) 

and its own moving average will be plotted. Every 280 time indices represent one state. 

1) RMS and moving average based on DFRFT at a=1  

      The RMS change trend and its moving average result based on DFRFT (a=1) of the 

motor bearing destruction experiment is given by Fig. 71: 

 

 

Fig.  71. RMS change trend and its moving average result based on DFRFT (a=1) of the 

motor bearing destruction experiment. 
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Fig.  72. Moving average result based on DFRFT (a=1) of the motor bearing destruction 

experiment. 

      Fig. 72 shows the pure moving average result based on DFRFT (a=1) of the motor 

bearing destruction experiment, and Fig. 73 gives the relative RMS change curve of the 

same data: 
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Fig.  73. Relative RMS change curve based on DFRFT (a=1) of the motor bearing 

destruction experiment. 

2) RMS and moving average based on DFRFT at a=0.5 

      The RMS change trend and its moving average result based on DFRFT (a=0.5) of 

the motor bearing destruction experiment is given by Fig. 74: 

0 200 400 600 800 1000 1200 1400
-50

0

50

100

150

200

250

Time Index

A
m

p
lit

u
d
e
(%

)

Relative Change of the RMS of the Motor Bearing Destruction Experiment



139 

 

 

Fig.  74. RMS change trend and its moving average result based on DFRFT (a=0.5) of 

the motor bearing destruction experiment. 

      Fig. 75 shows the pure moving average result based on DFRFT (a=0.5) of the motor 

bearing destruction experiment, and Fig. 76 gives the relative RMS change curve of the 

same data: 
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Fig.  75. Moving average result based on DFRFT (a=0.5) of the motor bearing 

destruction experiment. 
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Fig.  76. Relative RMS change curve based on DFRFT (a=0.5) of the motor bearing 

destruction experiment. 

 

3) Conclusion on the RMS of the DFRFT (a=1, a=0.5) results 

      The RMS change and its moving average plots have also shown that the motor 

bearing destruction procedure has introduced in the amplitude increase to some 

frequency components of the motor current signal after the healthy state. 

      Plus, from Fig. 71 – Fig. 76, the RMS, its moving average or the relative RMS show 

no difference between applying DFRFT at different transform order a, so the traditional 

FFT, which resembles DFRFT at a=1 will be enough for the research on motor current 
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signal because all these traditional methods could offer less computational cost and 

higher efficiency compared with the innovative tools of the DFRFT family. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

      In this chapter, all the research work involved in accomplishing this thesis will get 

summarized. The main objective of this thesis was to generate a systematic methodology 

with a main motivation of unknown signal identification and fault analysis. And the 

results of application of this method are fully discussed and suggestions for future work 

are given. 

 

A. Summary of Research 

      The Fractional Fourier Transform (FRFT) is a generalization of the traditional 

Fourier Transform (FT) due to the introduction of a brand new parameter: the transform 

order a. So this parameter offers the transform an extra DOF, which has expanded the 

traditional time-frequency domain into a new continuum of FRFD. An FRFD could be at 

any location between the time and frequency axes, which furnishes an angle α with the 

time-axis. This angle is also an essential parameter in FRFT and it is denoted as the 

rotation angle which gives an explicit illustration of the Physics meaning of FRFT based 

on the existent knowledge of the conventional FT. 

      There are two lucid expressions for the continuous-time FRFT (CFRFT), which 

facilitate a comprehensive understanding of this transform. However, discrete-time 

FRFT (DFRFT) works as a substitution for CFRFT when it comes to the diversified 

applications of this transform, such as in Optics and DSP. 
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      The spectral expansion form of the definition of FRFT also dominates in the defining 

process of DFRFT, and the Harper matrix S functioning as the commuting matrix of the 

DFT matrix F also plays an important role in seeking the orthogonal common 

eigenvector set of S and F. Admittedly, there are tedious theoretical and mathematical 

basics to cover for a thorough understanding of the DFRFT algorithm, but it is the 

fundamental algorithm for all the other derivative tools in this family. 

      For instance, the tool developed directly following the successful development of 

DFRFT: Multi-angle DFRFT (MA-DFRFT) gives a 2D mapping of a 3D plot with 

multiple selections of the transform orders. It provides a more comprehensive view of 

DFRFT, because by taking MA-DFRFT, the exact point where the signal energy gets 

concentrated will stand vividly revealed from the computer screen. So it is a 

recommended tool for processing unknown signals, for the corresponding optimum 

transform order for the researched signal and its chirp rate can be calculated directly. 

And then the identification purpose can be achieved with ease and reliability. 

      As a tool perfect for processing multi-component complicated signals with different 

chirp rates, Slanted Spectrum is another tool in this family which has maximized 

DFRFT’s advantageous feature of dealing with multi-component FM signals. Slanted 

Spectrum has the ability of taking DFRFT of a complicated chirp signal with respect to 

multiple transform orders, so that every component contained in the input signal will be 

separated and distinguished from each other, under which circumstance the traditional 

FT will definitely fail to provide with highly distinguished components. 
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      The most promising tool in FRFT family is the Spectrogram Based on Slanted 

Spectrum (SBSS), which is an innovative version of the traditional spectrogram. It offers 

a more concentrated presentation for each single spectrum of the signal components, 

compared with the performance of the traditional spectrogram. Since SBSS is based 

upon DFRFT, MA-DFRFT and Slanted Spectrum, and the traditional spectrogram 

merely takes advantage over the conventional STFT, SBSS processes multi-component 

FM signals with higher resolution and more concentrated spectrum. 

      And with the development of all these tools in a new domain: FRFD, it has incurred 

great curiosity about the results when they are applied on a real-world problem. A huge 

number of motor current signal data files in different states, healthy state and 4 faulty 

states with increasingly severe bearing damages, have been thoroughly examined with 

the available tools of FRFT family. And then the applicability of DFRFT and other tools 

from FRFT family has been discussed and concluded with prudence. 

 

B. Conclusions 

      The conclusions drawn from the research work are listed below: 

1. Both of DFRFT and Slanted Spectrum have the capability of offering much 

higher concentration of signal energy than FFT in processing complicated linear 

frequency modulated (LFM) signals. 

2. MA-DFRFT and the relative formulas for calculating the optimum transform 

orders and chirp rates of the different components which compose the researched 

signal are proved effective in the identification of unknown signal. 
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3. SBSS is not maturely developed yet, but it has also been proved that it can be 

utilized for a higher-resolution TFR, compared with the traditional spectrogram 

when processing LFM signals.  

4. The motor current signal has AM phenomenon but very slowly varying FM 

phenomenon, so its chirp rate is not large enough, which makes all the tools from 

the FRFT family not highly applicable, and the processing work is better carried 

out with the traditional tools for the sake of reducing computational cost and 

computer memory saving. The traditional tools, such as FFT and the traditional 

spectrogram (STFT) are enough to detect the generalized-roughness fault and 

successfully distinguish it from the intrinsic frequencies of the motor bearing. 

 

C. Suggestions for Future Work 

      All the tools developed in this research work have been proved to be viable at 

processing FM signals: DFRFT is the fundamental algorithm which renders itself best to 

simple single-component chirp signal, MA-DFRFT processes multi-component chirp 

signal with great distinguishability and parameters of the optimum transform orders and 

the chirp rates can be obtained with ease, Slanted Spectrum has solved the problem of 

presenting a complicated chirp signal with different components which require different 

optimum transform orders, and SBSS has increased the concentration degree of  

different spectrums in a TFR. 

      However, there is still room for development for subsequent research, and the 

problems that require more research are listed as follows: 
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1. A better version of SBSS – SBSS has demonstrated its advantage during the 

presentation of processing single-component chirp signal, but its performance in 

processing multi-component chirp signal is unsatisfactory, because only the 

central area in the SBSS plot shows better energy concentration for each 

component and higher distinguishability between the adjacent spectrums. 

2. Other types of signals in nature should be researched with tools from FRFT 

family – To further support the proposal that DFRFT and its derivatives are a 

wise option processing complicated signals with large chirp rates, or phenomenal 

FM. 
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