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ABSTRACT 

 

Quantile Forecasting of Commodity Futures’ Returns:  

Are Implied Volatility Factors Informative? (May 2012) 

Miguel Eduardo Dorta, B.S., Universidad Central de Venezuela;  

M.S., University of Illinois at Urbana-Champaign  

 Co-Chairs of Advisory Committee: Dr. Ximing Wu 

                                                                                        Dr. Joshua Woodard 

 

 

This study develops a multi-period log-return quantile forecasting procedure to 

evaluate the performance of eleven nearby commodity futures contracts (NCFC) using a 

sample of 897 daily price observations and at-the-money (ATM) put and call implied 

volatilities of the corresponding prices for the period from 1/16/2008 to 7/29/2011.  The 

statistical approach employs dynamic log-returns quantile regression models to forecast 

price densities using implied volatilities (IVs) and factors estimated through principal 

component analysis (PCA) from the IVs, pooled IVs and lagged returns. Extensive in-

sample and out-of-sample analyses are conducted, including assessment of excess 

trading returns, and evaluations of several combinations of quantiles, model 

specifications, and NCFC’s. The results suggest that the IV-PCA-factors, particularly 

pooled return-IV-PCA-factors, improve quantile forecasting power relative to models 

using only individual IV information. The ratio of the put-IV to the call-IV is also found 

to improve quantile forecasting performance of log returns. Improvements in quantile 
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forecasting performance are found to be better in the tails of the distribution than in the 

center. Trading performance based on quantile forecasts from the models above 

generated significant excess returns. Finally, the fact that the single IV forecasts were 

outperformed by their quantile regression (QR) counterparts suggests that the 

conditional distribution of the log-returns is not normal. 
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1. INTRODUCTION 

 

1.1 Motivation 

This study develops a multi-period log-return quantile forecasting procedure to evaluate 

the performance of eleven nearby commodity futures contracts (NCFC) using a sample 

of 897 daily price observations and at-the-money (ATM) put and call implied volatilities 

of the corresponding prices for the period from 1/16/2008 to 7/29/2011.  The motivation 

for focus on quantiles and quantile regressions is based on the observation that the 

typical Gaussian distribution assumption for log-returns is likely to be inadequate to 

describe the distributions of real prices changes. If the true distribution of asset log-

returns has excess kurtosis or skewness, Gaussian based forecast could overexpose 

investors to financial risk. GARCH-class models, extensively used for log-returns 

density forecasting, have a somewhat limited ability to allow higher moments to be time-

varying; and, they are not well suited for incorporating forward-looking expectations as 

they are all derived from information on historical prices. In contrast, forward-looking 

expectations of volatility are likely to be better captured from the futures and options 

markets, particularly through implied volatilities (IVs). In the context of non-parametric 

density forecasting, one approach for directly forecasting quantiles without assuming a 

particular theoretical model for the density is quantile regression (QR). However, nearly 

all existing studies have applied this idea in single commodity frameworks. Also, to our  

____________ 
This thesis follows the style of American Journal of Agricultural Economics. 
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knowledge, this method has not been sufficiently investigated for adoption in 

commodity futures markets.  

Principal component analysis (PCA) and similar factor extraction methods are 

used as independent variables in the QR model, as changes in volatilities among multiple 

markets may contain information that can improve density forecasting in related 

markets. To our knowledge no studies have attempted to combine information from 

multiple markets extracted from PCA factors for use in QR density forecasts. The Black-

Scholes (BS) (1973) option pricing model, which is based on the assumption of a log-

normal density and risk-neutrality, would coincide with the true only if the underlying 

price process is a Brownian motion.  Hence, differences between BS-derived put-IVs 

versus BS-derived call-IVs, may contain information about skewness and kurtosis of the 

log-returns. 

Undertaking these issues, this study develops a QR model to forecast log-return 

quantiles of NCFC’s.  The proposed statistical strategy for the return density forecasting 

is based on specifying and fitting QR models of log-returns using IVs and factors 

estimated through PCA from IVs. Augmenting the QR model by conditioning on 

information contained in IVs  can be viewed as a way of accommodating forward-

looking expectations of volatility, and is likely to outperform the use of historical prices 

alone. This approach to density forecasting of NCFC’s log-returns may serve as a 

complementary tool for risk management purposes in the trading industry, to agricultural 

businesses, as well as in finance. 
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1.2 Literature Review 

Numerous studies in finance have investigated density characteristics of asset returns, in 

light of the consistent empirical evidence that the normal distribution seems to be 

inadequate to describe their mechanics. Many empirical investigations have used non-

normal distributions in order to model the density of stocks, foreign exchange, and 

commodity futures (CF) log-returns (Bollerslev 1987; Jorion 1988; Baillie and 

Bollerslev 1989; Nelson 1991; Giot and Laurent 2003; Kuester et al. 2006; Fuss et al. 

2010), giving special consideration to the excess kurtosis and skewness. 

The demand for accurate distributional forecasts in risk management has grown 

rapidly in recent years. Corporations such as J. P. Morgan, Reuters, and Bloomberg 

regularly engage in the estimation of density forecasts in order to value tailored 

portfolios and derivatives. In this context, the focus of attention is typically on the tail of 

the density. In this sense, if distributional assumptions are incorrect, VaR forecasts will 

be misleading. For instance, if the true distribution of an asset's log-returns has excess 

kurtosis, then VaR’s computed under the assumption of normality will be overestimated. 

Hedgers and regulators are also concerned about forecasting the density of asset returns. 

For example, the Bank for International Settlements requires a bank to hold capital to 

cover losses on its trading portfolios in times of financial distress. Furthermore, the 

interest in density forecasting is also great in other financial applications such as 

portfolio optimization and option pricing. For example, Simkowitz and Beedles (1978) 

analyze the impacts of skewness preference on the degree of diversification. Cotner 

(1991) finds evidence that the skewness in the return distribution affects investors’ risk 



 4 

perceptions of option contracts, and that this impacts the prices that the investor are 

willing to pay for them. 

Extensive literature exists on the density forecasting of asset returns using 

univariate parametric ARCH (Engle 1982) and GARCH-class models (Bollerslev 1986). 

This approach to density forecasting has received increased attention in recent years due 

to the fact that it can accommodate the estimation of higher distributional moments to 

some extent. However, in almost all studies to-date, the proposed models do not allow 

the higher moments to be time-varying.  One exception can be found in Hansen (1994). 

Hansen specifies an autoregressive conditional density model based on a skewed 

student’s t-distribution which allows higher order moments to change over time, and 

finds evidence for the existence of time-varying higher order moments for yields on U.S. 

Treasury and the US/Swiss Franc exchange rate. Nevertheless, all GARCH-type studies 

present one important caveat: they are not well suited for incorporating forward-looking 

expectations as they are all derived from information on historical prices. In contrast, 

forward-looking expectations of volatility are likely to be better captured from the 

futures and options markets, particularly through implied volatilities (IVs). 

Another widely used approach for density forecasting is based on information 

recovered from options prices. This approach was enabled by the Black-Scholes (BS) 

(1973) option pricing model, which is based on the assumption of a log-normal density 

and risk-neutrality. Fackler and King (1990) used the BS model to derive implied 

density forecasts of U.S. agricultural commodity prices. A similar investigation was 

performed by Jackwerth and Rubinstein (1990) using options on the S&P 500 index. 
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Other studies have been subsequently performed in this direction of research, some of 

which have investigated differences between prices implied by the BS model and market 

prices by applying non-lognormal distributions for the underlying asset (see e.g., 

Sherrick and Garcia 1996). In this sense, it is important to point out that the risk-neutral 

densities coincide with the true only in the absence of risk premia. Thus, differences 

between BS-derived put-IVs versus BS-derived call-IVs may contain information about 

skewness and kurtosis of the risk-neutral distribution, and could also be indicative of 

agent risk aversion or agent uncertainty aversion in constructing risk-neutral hedges. 

The concept of quantile forecasting is closely connected to the idea of density 

forecasting. In fact, inference regarding the density is implicitly necessary before 

particular quantiles can be forecasted. For example, forecasts of confidence intervals are 

typically estimated assuming a Gaussian density with previously forecasted 

parameters—mean and variance. In the context of non-parametric density forecasting, 

one approach for directly forecasting quantiles without assuming a particular theoretical 

model for the density is quantile regression (QR) (Koenker and Basset, 1978). QR 

methods can be used to estimate conditional empirical densities by fitting a sufficient 

number of individual QRs to approximate the density. 

  Several studies exist which apply QR methods to density forecasting by 

successive estimation of forecasted quantiles. However, nearly all are developed in 

univariate frameworks. Also, to our knowledge, this method has not been sufficiently 

investigated for adoption in commodity futures markets.  For example, using daily 

exchange rates, Taylor (1999) employs a QR approach to estimate the distribution of 
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multiperiod returns. According to Taylor, estimating the location of the tail of a 

distribution—as in a Value-at-Risk calculation—can be very difficult. Taylor employed 

QR to estimate tail-quantiles for three exchange rates, and found it to offer substantial 

improvements over exponential smoothing and GARCH approaches. Ma and Pohlman 

(2005) present a general interpretation of QR in the context of financial markets and 

propose two general methods for return forecasting. They show that under mild 

theoretical assumptions, these methods provide more accurate forecasts than classical 

conditional mean methods. Adrian and Brunnermeir (2008) investigate Conditional 

Value-at-Risk (CoVaR) models using QR, where the conditioning information is based 

on whether other institutions are under distress or not. Chen and Chen (2002) show that 

forecasts of 1% and 5% Nikkei 225 VaR’s under a QR approach outperform those 

estimated under conventional variance-covariance approaches.  Engle and Manganelli 

(2004) introduce the Conditional Autoregressive Value at Risk or (CAViaR) class of 

models which specify the evolution of the quantile over time via a special type of 

autoregressive process using quantile regression. They also introduce the Dynamic 

Quantile test to evaluate the performance of quantile models.   

On the other hand, while the QR approaches have the ability to adapt to new risk 

environments and cases of non-normality, Kuester et al. (2006) find that CAViaR 

models are outperformed by hybrid methods which combines a heavy-tailed GARCH 

filter with an extreme value theory-based approach in the forecasting of the NASDAQ 

Composite Index. Gaglianone et al. (2011) propose a new backtest to assess the 

performance of quantile models which allows for identification of periods of increased 
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risk exposure. This was corroborated through a Monte Carlo simulations based on daily 

S&P 500 prices. Jeon and Taylor (forthcoming) propose a CAViaR time-series model 

which incorporates information from IVs, and finds it to have superior forecasting power 

for S&P 500 daily returns relative to the standard CAViaR model.  

Within the literature of commodity markets, Fuss et al. (2010) found that 

CAViaR and GARCH-type VaR models outperformed traditional VaRs when applied to 

S&P GSCI long-only excess return indices for agricultural, energy, industrial metals, 

livestock, and precious metals. Huang et al. (2009) apply the Engle and Manganelli’s 

(2004) approach to forecast oil price risk using an exponentially weighted moving 

average CAViaR model. Isengildina-Massa et al. (2010) use QR to estimate historical 

forecast error distributions for WASDE forecasts of corn, soybean, and wheat prices and 

obtain confidence intervals based on the empirical distribution derived from QRs. 

A related strand of literature also exists which employs principal component 

analysis (PCA) and similar factor extraction methods for option valuation. Most studies 

employ PCA methods to either estimate models for single commodities over the term 

structure or to estimate conditional mean models (see e.g., Stock 2002; Stock and 

Watson 2002; Alexander 2002; Forni et al. 2005; Bernanke et al. 2004; Panigirtzoglou 

and Skiadopoulos 2004; Artis et al. 2005; Matheson 2005; Connor 2006; Marcelino and 

Schumacher 2010), however, to our knowledge no studies have attempted to combine 

information from multiple markets extracted from PCA factors for use in QR density 

forecasts. 
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1.3 Objectives 

This study develops a QR model to forecast multi-period log-return quantiles of nearby 

commodity futures contracts (NCFC).  The proposed statistical strategy for the return 

density forecasting is based on specifying and fitting QR models of log-returns using IVs 

and factors estimated through principal component analysis (PCA) from IVs, and lagged 

returns. Specifically, it is investigated if common factors of volatility expectations— 

recovered through PCA —from the set of corresponding put and call option IVs provides 

any extra predictive power for forecasting quantiles.
1
 The study employs daily time 

series data from commodity futures and options markets.  Under the Black-Scholes 

assumption, ATM put and call IV’s should be identical, however, empirically, this is not 

always the case, presumably due to violation of the non-normality assumption of log-

returns or other market imperfections.  Thus, it is also investigated whether the 

differences between put and call IV’s contain any predictive power in forecasting 

densities.  

The state-of-the-art in computing and statistical software allows for the relatively 

fast forecasting of many quantiles –for example, all 99 percentiles—using quantile 

regression. A kernel density graph from these could empirically capture some of the 

density shape. However, for tractability, more attention is focused on quantiles located in 

the tails. For that purpose, both in-sample analyses as well as out-of-sample evaluations 

of forecast performance are carried out under several QR-PCA model specifications. 

                                                 

1
 Implied volatilities are derived according to the model of Black and Scholes (1973). 
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This approach is flexible, robust, and suitable for forecasting both non-normal 

and time-varying densities of NCFC’s log-returns. The flexibility and robustness are 

intrinsic features of the QR method given that it can adapt to virtually any distribution 

shape (Koenker and Xiao, 2006). Also, in general, option market IV’s have been found 

to outperform models based on historical futures volatility alone.
2
  Thus, augmenting the 

QR model by conditioning on information contained in IV’s  can be viewed as a more 

defensible way of accommodating forward-looking expectations of volatility from CF 

markets’ agents than the use of historical prices alone.  Additionally, the fact that PCA 

factors of IV’s estimated from several NCFCs are employed allows the model to capture 

cross-market dependencies in a manner that is both flexible but still parsimonious. This 

approach to density forecasting of NCFC’s log-returns may serve as a complementary 

tool for risk management purposes in the CF trading industry, agricultural businesses, 

finance, as well as other fields. 

                                                 

2
 Evidence about the predictive power of implied volatilities are documented in many articles for different 

commodities. For example, Egelkraut et al. (2007) construct the term structure of volatility implied by 

corn futures options with differing maturities and find that the implied volatilities predict realized 

volatility more accurately than historical volatility. Using oil market data, Malz (2000) finds statistical 

evidence that implied volatilities can improve prediction of market turmoil in the near future. 
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2. METHODOLOGY 

 

2.1 General Strategy 

The central goal of this study is forecasting through QR the one-step-ahead time varying 

density of NCFCs’ multiperiod log-returns (daily, weekly, and monthly), using daily 

time series about CF prices and their corresponding ATM put-IVs and call-IVs assuming 

the BS model. 

QR is a relatively simple yet potentially effective technique due to its flexibility, 

robustness, and that it is free of theoretical distributional assumptions. However, 

obtaining good results with this procedure will also rely on the quality of the predictors. 

In this sense, the proposed key predictors to be used are: the own-IVs, which are known 

to be good predictors of realized volatility, and also, estimations of the rest of the IVs’ 

common factors. In this sense, the relevant information from the IVs of all the NCFCs 

considered in this study are summarized in a reduced number of predictors through the 

application of the PCA method which optimally exploits the information contained in a 

large set of variables.
3
 In general, these predictors could be considered estimates of the 

unobservable common factors about volatility expectations. In addition, the location of 

the distributions may be explained by lagged own-returns and possibly by the rest of the 

NCFCs’ returns which is considered by extracting their PCA-factors.   

                                                 

3
 In this study, daily time series data on prices for the nearby future contract of 11 commodities and their 

corresponding IVs are employed from both put and call at-the money options. 
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For tractability, relatively simple specifications of the forecasting QR models of 

the individual NCFCs’ log-returns are maintained. Given a NCFC k-th period return as a 

dependent variable, simple dynamic QRs of the NCFCs are the less restrictive models to 

be specified and estimated. The possible predictors are the k-th lag of the following 

variables: the own-return, the own-IV
4
, the ratio between the put-IV and the call-IV, and 

the IV-factors estimated by PCA
 5

. We also investigate more restricted versions of the 

models.  

Next, the dynamic QR models are specified and fitted for a large number of 

quantiles. For making possible a meaningful analysis and giving more importance to the 

risk management motive, particular attention is focused on the tails. 

Three out-of-sample (OS) quantile forecasting performance analyses are also 

carried out, including some excess returns trading performance analysis based on the 

quantile forecasts. Where applicable, as a benchmark for comparisons, quantiles 

forecasts from the normal BS model are derived by imputing, as the mean, the one-step-

ahead forecast of the k-period log-return using an AR(k) model, and the k-th lag of the 

IV (expressed in k-periods return scale), as the standard deviation. Similarly, quantiles 

from two GARCH(1,1) models (normal and t-student) are forecasted for further 

benchmarking reference.   

                                                 

4
 For own-IV we understand the implied volatility corresponding to the same commodity used as 

dependent variable. The case for the own-return is analogous. Notice that this could be either a put-IV or a 

call-IV. Given one commodity, these two are highly correlated so that we include only one of them as 

predictor. However, to account for possible predictive information from the difference between the two, 

we include the ratio of the put-IV to the call-IV. 
5
 In addition to using PCA-factors from IVs, employment of PCA-factors from returns alone and from the 

combination of IVs and returns was also considered. Further improvements might be achieved by adding 

more lags but we did not include that in this project to facilitate the analysis. 
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2.2 Methods 

2.2.1 Quantile Regression 

Suppose that Q(rt|Xt,q) is the q-th quantile of a dependent variable rt (the k-th period log-

return) conditional on a vector Xt. If Q(rt|Xt,q) is a linear function of the component of Xt 

then  

(2.1)   (  |    )   ( )    ∑   ( )     .  

The estimation of β(q) is commonly performed following Koenker and Bassett (1978) 

whose method is the generalization of the median regression case (q=0.5) also known as 

least absolute deviations LAD which was developed by Laplace. Koenker and Bassett 

(1978) define the estimator of the q-th QR by 

(2.2)  ̂( )         ( )[∑  |    ( )   |    ( )   
 ∑ (   )|    ( )   |    ( )   

] . 

Equation 2.2 is solved using linear programming techniques. Koenker and Basset (1978) 

proved the consistency and asymptotic normality assuming i.i.d. error terms, nonrandom 

regressors, and  

(2.3)       ( )           (    |    )    . 

No additional assumptions are necessary, which makes this method very convenient for 

cases where assuming normality or other parametric distributions is not appropriate.  

The estimator’s variance-covariance matrix is obtained using a procedure suggested by 

Koenker and Bassett (1982). Another possibility is using bootstrap resampling (see 

Efron and Tibshirani, 1993).  
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2.2.2 Principal Component Analysis 

The economy is a complex system of markets, institutions, and agents that generates 

both observable and unobservable variables. Some examples of unobservable variables 

are equilibrium prices and quantities, expectations, structural shocks, macroeconomic 

equilibriums, and perhaps other unknown factors. Some of these unobservable factors 

can be the common driving forces of many other observable variables at the same time. 

In economics, exogenous structural factors are often considered to be uncorrelated. In 

this sense, one way to extract unobservable information from a set of correlated 

variables in a system is by recovering its orthogonal factors. In the context of many 

variables, one appealing approach is PCA since it precisely extracts, with optimal 

statistical criteria, orthogonal linear combination of variables—the PCA-scores or PCA-

factors.  

PCA is a statistical method that finds uncorrelated linear combinations (PCA-

factors) of a set of variables such that the first PCA-factor has the maximal variance. The 

second PCA-factor has maximal variance among all linear combinations that are 

uncorrelated with the first PCA-factor, etc. The last PCA-factor has the smallest variance 

among all linear combinations of the variables that are uncorrelated with all of the 

previous PCA-factors.
6
 

                                                 

6
 The precursor of this method was Pearson (1901) and later Hotelling (1933) developed the PCA method 

following Pearson’s foundations. For some recent work see Mardia, Kent, and Bibby (1979, chap. 8) and 

Rencher (2002, chap. 12)  
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Suppose that X is a T   p matrix containing T observations of p variables from 

which the p   p C matrix of correlations is computed. The C matrix, can be factorized in 

its eigenvectors (di) and eigenvalues (wi) such as  

(2.4)         ∑      
 
 

 
    , 

where              and       ( )  ∑   . 

The F matrix of scores (PCA-factors) is obtained by       where Z is the matrix of 

the standardized columns of the X matrix. 

 PCA is typically used for condensing the information content of many variables 

in a much smaller number of new variables (PCA-factors) that may facilitate posterior 

analyses. These methods are often used for the purpose of improving macroeconomic 

and financial forecasting, suggesting that indeed some unobservable information is 

empirically recovered. For example, by using PCA it is possible to fit regression models 

with just a few of the top PCA-factors. This enables one to perform predictions or 

forecasts using a large number of variables. Moreover, in many applications, it has been 

found that forecasts can be improved over using predetermined subsets of variables 

(Stock, 2002; and Stock and Watson, 2002; Forni et al., 2005; Bernanke et al. 2004; 

Artis et al. 2005; Matheson, 2005; Marcelino and Schumacher, 2010; and Connor, 

2006). This is related to the fact that PCA can be represented as a fixed effect factor 

analysis similar to a regression model with a limited number of unknown independent 

variables (common factors). For more details on these and other properties of PCA see 

Jackson (2003) and Jollife (2002).  
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2.2.3 Out-of-Sample Quantile Forecast Evaluation 

Three methods of out-of-sample quantile forecasting performance are conducted. Two of 

them are based on pure statistical criteria and the third method is a financial criterion that 

tests whether a number of trading rules, based on the quantile forecasts, can generate 

excess returns.  The first and second statistical criteria (Engle and Manganelli, 2004) are: 

the “hit percentage index,”—an unconditional measure of coverage correctness of the 

forecasted quantiles relative to the realized returns— and the “dynamic quantile” (DQ) 

test of the independence of hits. 

 

2.2.3.1 Benchmark Quantile Forecasts 

The main benchmark reference for the out-of-sample performance evaluations for the 

quantile forecasts are derived using the Black-Scholes (BS) log-normal option pricing 

model. Since this model assumes a lognormal distribution of asset prices, the distribution 

of the k-period log-returns is normal.  Only the forecast of the mean is needed because 

the last available IV (the k-th lag) can be employed as to estimate the variance. Thus, let 

 ̂  be the sequence of recursive forecasts using a particular AR(k) model fitted by OLS 

to the k-period log-returns:  ̂   ̂   ̂      where               . Then, the next 

period log-return can be assumed to be distributed as  ( ̂        
 )  where vt-k is the last 

real-time available IV in daily scale. Therefore, the BS-quantile forecast QBS,t(q) 

satisfies:  

(2.5)    [(     ( )   ̂ ) √     ⁄ ]    , 

where   is the standard normal cumulative distribution. Consequently, 
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(2.6)       ( )   ̂  √       
  ( ) . 

Another class of models that are important in the literature of density forecasting 

is the GARCH class (Bollerslev 1986) as a generalization of the ARCH model proposed 

by Engle (1982). As additional benchmark models, two simple GARCH(1,1) models are 

adopted for the out-of-sample analyses. Both models are specified as: 

         , 

   
           

        
  . 

The only difference is that in the first model (n-GARCH) the error term is assumed to 

follow the normal distribution whereas the error term of the second model  (t-GARCH) 

follows the t-student distribution with δ degrees of freedom. These two models are 

estimated recursively with daily returns only
7
. The corresponding quantile forecasts are 

then generated with a very similar procedure as that employed above for the Black-

Scholes quantiles. In the n-GARCH case, quantiles are generated using the  ̂  sequence 

of recursive forecasts described above. Then the next period log-return is assumed to be 

distributed as  ( ̂        
 ) where ht-k is the forecasted variance from the n-GARCH 

model. Consequently, the n-GARCH quantile forecast QnG,t(q) satisfies:  

(2.7)   [(     ( )   ̂ ) √     ⁄ ]    ,  

where   is the standard normal cumulative distribution. Consequently, 

(2.8)       ( )   ̂  √       
  ( ) . 

                                                 

7
 Attempts were made to compute GARCH models from multiperiod returns but the algorithms presented 

massive problems for achieving convergence. Hence, the recursively forecasted standard deviations are 

multiplied by the square root of k to generate quantiles of k-period returns. In the case of the t-GARCH 

model, the degrees of freedom are also recursively estimated.  
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The case of the t-GARCH quantiles is similar but the cumulative distribution is 

the t-student. Following Hamilton (1994, p. 662) and performing some derivations the         

t-GARCH quantiles are obtained by 

(2.9)        ( )   ̂  √ 
   

 
      

  ( ) ,  

where st-1 is the forecasted standard deviation from the t-GARCH model and   is the 

cumulative t-student distribution function with δ degrees of freedom. 

 

2.2.3.2 Recursive Quantile Forecasting 

Before any OS method can be applied, recursive quantile forecasts should be generated. 

Given a q-th quantile, a NCFC k-th period log-return, and a particular model 

specification; recursive forecasts for the last M observations are generated (M<T). 

Typically, M is chosen to be between 20% and 40% of T (the original sample size). In 

step 1, the model is fitted using the sample from 1 to T−M−k and the quantile for 

observation T−M+1, say QT−M+1 is forecasted. Similarly, in step 2, the model estimated 

parameters are updated by adding one observation (sample from 1 to T−M−k +1) and 

the quantile QT−M+2 is forecasted. This process continues recursively until the M 

forecasts are completed. This stage is done only once and the results are stored head to 

head with the realized observations to be used as the inputs by each one of the OS 

methods. 
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2.2.3.3 Out-of-Sample Hit Percentage Index  

From the sequence Qt (t = T−M+1, T−M+2, … , T) of recursive quantile forecast (given 

quantile q-th, a NCFC, and a model) the sequence Hitt is generated such that Hitt = 1 if 

rt<Q t, otherwise Hitt = 0. Then, the hit percentage index is defined as  

(2.10)          

 
∑     

 
        . 

Hence, the closer the Hit% to 100q, the better the QR(q) model forecasting performance. 

This measure is important as an unconditional criteria but it does not evaluate 

independence properties of the QR(q) model which is treated next.  

 

2.2.3.4 Out-of-Sample Dynamic Quantile Test 

If a quantile forecasting model is well specified, forecasting the next value of Hit 

(quantile asserted or not) based on the previous forecasted assertions or violations should 

not be possible. In this sense, Engle and Manganelli (2004) suggested a test that can 

detect the presence of serial correlation (in the sequence Ht = Hitt - q) with more power 

against misspecifications than the test by Christoffersen (1998). The dynamic quantile 

(DQ) test, as named by Engle and Manganelli (2004), is implemented by the following 

test statistic:  

(2.11)        [   ]      (   )⁄   
 
→    

            ( ) , 

where the null hypothesis is the absence of serial correlation. In most empirical 

applications the used instruments for X are a constant, the forecasted quantile, and the 

first four lags of Ht. We use the same instruments in this study.  
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Notice that this, as well as the Hit% index, can be tested for as many quantiles as 

desired given a QR model for a NCFC. Thus, we may have situations in which a 

particular specification performs better for some quantiles but not so well for others. For 

example, a model could be good for forecasting just one of the tails.   

 

2.2.3.5 Out-of-Sample Trading Performance 

Commodity futures markets are used by investors with a variety of trading strategies, 

“buy and hold” being the simplest benchmark. Short term investors buy and sell 

commodity futures with different frequencies and strategies. Since the out-of-sample 

performance is carried out with daily data, relatively simple daily trading rules, based on 

the forecasted quantiles, are designed and tested. Profits are calculated and excess 

returns computed subtracting profits that would be obtained with a buy and hold 

strategy.  

The data consist of 11 NCFCs and a variety of quantile forecasting models. The 

analysis evaluates three quantiles forecasts (0.1, 0.5, and 0.9). The objective is to 

determine which model generates the greatest excess returns with the set of trading rules 

to be tested.  Given a particular NCFC and a model specification, every rule is applied 

over the realized returns with trading decisions indicated by their quantile forecasts. The 

following notation is employed:   

 r(i,t): log-return of the i-th NCFC in period t. 

q(i,j,t;0.1): forecasted 0.1 quantile by model j-th corresponding to r(i,t). 

q(i,j,t;0.5): forecasted 0.5 quantile by model j-th corresponding to r(i,t). 
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q(i,j,t;0.9): forecasted 0.9 quantile by model j-th corresponding to r(i,t). 

After executing a particular trading rule, average profits are computed over a 

subset of r(i,t) only for days where a particular trading rule gives a buy signal. 

Therefore, all average profits are daily averages which make easier the comparisons. The 

benchmark rule is the “buy and hold” strategy. In this case the corresponding relative 

profit is just the average of r(i,t) across t given commodity i. 

Rule 1:  

Buy if ∆q(i,j,t;0.1)>0. Notice that these quantiles are almost always negative. The 

intuition is: “buy whenever the left tail is moving towards zero.” 

Rule 2: 

Buy if q(i,j,t;0.5)>0. In this case differentiation is not applied because this is the median. 

The intuition is: “if the forecasted median return is positive, then buy.” 

Rule 3:  

Buy if ∆q(i,j,t;0.9)>0. Since this is the 0.9 quantile (right tail), its values would be 

almost always positive. Therefore, it seems more reasonable to differentiate and buy if 

positive. In other words, “buy if the right tail is getting away from zero.” 

Rule 4: 

Buy if q(i,j,t;0.5)>0 and ∆q(i,j,t;0.1)>0 and ∆q(i,j,t;0.9)>0. These three simultaneous 

conditions mean that the whole distribution is forecasted to move up. 

Rule 5:  

Buy if q(i,j,t;0.5)>0 and ∆q(i,j,t;0.9)- ∆q(i,j,t;0.1)< ∆q(i,j,t-1;0.9)- ∆q(i,j,t-1;0.1). 

If the forecasted median is positive and the range is shrinking faster, then buy. 
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3. EMPIRICAL ANALYSIS 

 

3.1 Description of the Data 

Commodity futures and options data was obtained from Thomsom-Reuters Datastream. 

The following commodities are included for analysis: corn, soybeans, soybean oil, 

wheat, live cattle, lean hogs, light crude oil, heating oil, natural gas, PJM electricity, and 

gold. Put and call IV’s are collected for ATM options for each contract and are also 

obtained from Datastream. The data period is 1/16/2008 to 7/29/2011 (T = 897 trading 

days). Table 1, contains summary statistics of daily log returns, put and call IV’s, and the 

put-call-IV ratios for selected commodities.  Figures 1 through 4 display (for selected 

commodities) a graph of the corresponding log-return, put-IV, call-IV, and the ratio 

between the latter two.  

 

3.2 Quantile Regressions Model Specifications  

The general QR model from which particular specifications are to be derived is defined 

by equation (2.1). Given prices Pt corresponding to a NCFC, let the dependent variable 

be the k-period log-return 

                . 

As previously mentioned, the general possible predictors are the k-th lag of the 

following: the own-return, the own-IV, the ratio between the put-IV and the call-IV, and 

factors estimated by PCA using several combinations of the complementary IVs and 
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Table 1. Summary Statistics (selected commodities) 

Commodities Mean
Standard 

Deviation
Skewness Kurtosis Min Max

CBT-Corn

    Log-return 0.00029 0.02366 -0.117 4.148 -0.10409 0.08662

    Put-IV 0.02424 0.00724 3.604 38.201 0.00760 0.10647

    Call-IV 0.02477 0.00575 0.838 5.287 0.00935 0.05720

    Ratio 0.98890 0.22580 5.806 69.462 0.21650 4.00411

CME-Live Cattle Comp

    Log-return 0.00024 0.01088 1.048 11.256 -0.03444 0.09124

    Put-IV 0.01142 0.00249 2.101 14.424 0.00671 0.03451

    Call-IV 0.01129 0.00227 1.003 4.511 0.00690 0.02241

    Ratio 1.01845 0.16716 8.262 111.385 0.62948 3.70955

NYM-Light Crude Oil

    Log-return 0.00002 0.03018 0.152 7.096 -0.13065 0.16410

    Put-IV 0.02817 0.01182 1.504 4.878 0.01352 0.08490

    Call-IV 0.02968 0.01397 2.329 12.014 0.01516 0.14394

    Ratio 0.97156 0.15567 0.914 14.899 0.32394 1.98935

NYM-Natural Gas

    Log-return -0.00078 0.03436 1.081 8.988 -0.09700 0.26771

    Put-IV 0.03345 0.02133 10.860 175.908 0.00841 0.43810

    Call-IV 0.03528 0.01291 1.917 11.860 0.01835 0.14227

    Ratio 0.96648 0.39675 11.403 179.249 0.20580 7.92366

NYL-Gold 100 Oz

    Log-return 0.00066 0.01398 0.165 6.513 -0.06063 0.07541

    Put-IV 0.01602 0.01118 7.743 100.518 0.00210 0.19623

    Call-IV 0.01513 0.00672 1.708 6.512 0.00517 0.05268

    Ratio 1.16666 1.21596 9.144 111.674 0.22715 20.89689   

 

  

Figure 1. Corn: put-IV (CCCP) and call-IV (CCCC)   
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Figure 2. Corn: log-return (rCCCS) and IV-ratio (RCCC) 

 

  

Figure 3. Light crude oil: put-IV (CLNCP) and call-IV (CLNCC) 

 

  

Figure 4. Light crude oil: log-return (rNCLCS) and IV-ratio (RCLNCC) 
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returns corresponding to the rest of NCFCs. This may lead to many different arrays of 

relevant QR model specifications to be fitted for in-sample properties and OS 

forecasting performance comparisons.  The specifications described below have the 

same general form given by (2.1) so that different set of predictors included in the Xt 

vector suffices to determine different specifications.  

All of the models include an intercept (c) and a dummy variable (d) for Mondays 

and holidays in the vector Xt.
8
 The simplest model used for in-sample benchmarking is 

specified by
9
 

Model Q:  

Xt-k’ = (c, d, rt-k) . 

This specification can be considered an autoregressive version of QR. Then, we add 

own-IVs to the previous model using 

Model QIV: 

Xt-k’ = (c, d, rt-k, ivt-k) , 

where iv is an own-IV derived from ATM nearby put or call options. This model could 

be considered as the closest QRs counterpart of the Black-Scholes model. Next, we 

explore if relative differences between put-IVs and call-IVs could contain additional 

predictive information by 

 

 

                                                 

8
 The d variable is used to control for possible information differentials in markets due to distinct amounts 

of inactivity times between two consecutive trading days. 
9
 Black-Scholes and GARCH models are not suitable for in-sample comparisons so that they are only 

included as benchmark models in some of the OS analyses. 
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Model QIVR: 

Xt-k’ = (c, d, rt-k, ivt-k, Rt-k) , 

where Rt-k is the ratio of the put-IV to the call-IV. Up to this point, only single 

commodity information has been considered. Now, other commodities IVs are 

incorporated using  

Model QF(IV): 

Xt-k’ = (c, d, rt-k, ivt-k, Rt-k, ft-k) , 

where f is a vector of top PCA-factors extracted from the rest of NCFCs put or call IVs. 

Similarly, the rest of NCFCs’ returns could contain forecasting information, most likely 

about the distribution location, via markets interactions. This is specified bt 

Model QF(r): 

Xt-k’ = (c, d, rt-k, ivt-k, Rt-k, frt-k) , 

where fr is a vector of top PCA-factors extracted from the rest of NCFCs log-returns. 

Furthermore, the combination of put and call IVs, and returns information from the rest 

of NCFCs could prove to be even more efficient for forecasting the return quantiles than 

previous models. Hence, we consider  

Model QF(IV*,r): 

Xt-k’ = (c, d, rt-k, ivt-k, Rt-k, fxt-k) , 

where fx is a vector of top PCA-factors obtained from pooling the rest of NCFCs IVs’ 

(put and call) and log-returns. Finally, we also study an augmented version of the 

previous model by 
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Model QF(IV*,r,L): 

Xt-k’ = (c, d, rt-k, ivt-k, Rt-k, fzt-k) , 

where fz is a vector of top PCA-factors recovered from appending to the previous 

variables their corresponding first lags.  

Many more specifications could be studied such as including more lags of the 

variables, trying other factor models, or adapting CAViaR-type specifications to our 

strategy. However, the OS analysis performed in this study, with the QR models 

sketched above, already exhausted the computer resources available for this project; 

therefore, such specifications are left for future research. 

 

3.3 Quantile Regressions Estimations and In-Sample Analysis  

QR models are estimated for each model combination, as outlined previously.
10

 This is 

performed in three separated blocks depending on the type of return periods, i.e., daily, 

weekly, and monthly. Given one type of return period, a large number of QRs have to be 

independently fitted.
11

 Hence, In order to manage the in-sample analysis, the relative 

frequencies of significant explanatory variables at the 5% level are determined for QR 

groups of particular interest via statistical software programming. In the case of PCA-

factors, the relative frequency of significance (RFS here after) is referred to a Wald test 

about joint factors significance. Consequently, the RFS is the key measure used for most 

of the in-sample analysis. 

                                                 

10
 Details about the PCA estimation used for the QRs models are in the Appendix. 

11
 Since there are 11 commodities, 13 QR model specifications, and 49 quantiles; 7007 QRs are fitted. 
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Table 2. Quantile Regressions of Log-Returns by Type of Period. Relative Frequencies 

of Statistical Significance (5% level) of Explanatory Variables. Combined Commodities 

and Quantiles. 

Return 

Period
QR Model d Returns Own-IV IV-Ratio

Joint 

Factors
c

pseudo 

R2

Number of  

Fitted QRs

Daily Q 0.115 0.174 0.926 0.00549 539

Daily QIV 0.114 0.186 0.618 0.243 0.02661 1078

Daily QIVR 0.102 0.174 0.679 0.345 0.371 0.03206 1078

Daily QF(IV) 0.115 0.168 0.485 0.289 0.161 0.110 0.03707 1078

Daily QF(r) 0.103 0.166 0.679 0.343 0.071 0.054 0.03602 1078

Daily QF(IV*,r) 0.118 0.147 0.446 0.288 0.164 0.098 0.04088 1078

Daily QF(IV*,r,L) 0.114 0.132 0.406 0.276 0.210 0.109 0.04515 1078

Weekly Q 0.002 0.319 0.922 0.00559 539

Weekly QIV 0.005 0.300 0.645 0.492 0.02825 1078

Weekly QIVR 0.008 0.294 0.671 0.435 0.607 0.03518 1078

Weekly QF(IV) 0.004 0.299 0.475 0.329 0.419 0.499 0.04769 1078

Weekly QF(r) 0.006 0.401 0.667 0.440 0.320 0.575 0.04922 1078

Weekly QF(IV*,r) 0.002 0.434 0.458 0.322 0.445 0.674 0.06037 1078

Weekly QF(IV*,r,L) 0.003 0.397 0.469 0.336 0.433 0.794 0.08204 1078

Monthly Q 0.000 0.527 0.920 0.01854 539

Monthly QIV 0.006 0.567 0.726 0.763 0.04896 1078

Monthly QIVR 0.005 0.565 0.768 0.391 0.624 0.05569 1078

Monthly QF(IV) 0.004 0.550 0.570 0.289 0.583 0.840 0.08441 1078

Monthly QF(r) 0.002 0.612 0.685 0.372 0.540 0.792 0.08844 1078

Monthly QF(IV*,r) 0.003 0.714 0.527 0.291 0.714 0.988 0.12311 1078

Monthly QF(IV*,r,L) 0.002 0.768 0.582 0.303 0.678 0.998 0.16168 1078
 

 

The analysis strategy consists of beginning with general groups of results about 

the QR model specifications and then breaking them down in distribution regions, and 

commodities. In order to obtain some return distributional information about the models 

RFSs, attention is focused on three regions of the density: the left and right tails, and the 

central area.
12

 

                                                 

12
 The quantiles considered for the left tail are 0.02, 0.04, …, and 0.24. For the right tail are 0.76, 0.78, …, 

0.98. The rest of the quantiles (0.26, 0.28, …, 0.74) are considered as the central area of the density. 
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 The most general results are presented in table 2 which contains the explanatory 

variables’ RFSs by return period and QR model specifications. As the return period 

moves up from daily to weekly, and then to monthly; it is immediately clear that the 

RFSs become considerably higher for all of the explanatory variables (except the d 

variable). Regardless of return period, the models that present the highest factors’ RFSs 

tend to be those that pool IVs with returns. This is probably an indication that 

information about distribution location and scale is better conveyed in this way. 

Focusing on the own-IVs, in general, they tend to have the highest RFS among all 

explanatory variables, an expected result since this resembles the Black-Scholes model. 

The RFSs become slightly lower; however, when factors are included in the models, 

suggesting that the information in other markets, summarized in factors, contains 

supplementary explanatory power. Another important fact is that the factor’ RFSs start 

lower than the own-IVs’ RFSs and the IV-ratios’ RFSs for daily returns; but then, they 

become stronger as the return period is higher. In fact, for monthly returns, the factors 

RFSs end up actually higher than own IVs’ and IV-ratios’ RFSs. A similar behavior can 

be observed about the own-returns. Finally, the IV ratios have higher RFSs when 

combined with factors for all return periods maintaining similar levels among them.  

Tables 3, 4, and 5 are very similar to table 2 but, in addition, they show the 

distribution regions for daily, weekly, and monthly returns respectively. As can be 

observed, table 3 shows that factors’ RFSs are stronger in the tails than in the center. 

More precisely, factors’ RFSs are highest in the left tail, followed by the right tail, and 

lowest in the center. However, this pattern changes in table 4 (weekly) and 5 (monthly). 
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Table 3. Quantile Regressions of Daily Returns by Density Region. Relative Frequencies 

of Statistical Significance (5% level) of Explanatory Variables. Combined Commodities 

and Quantiles. 

Density 

Region
QR Model d Returns Own-IV IV-Ratio

Joint 

Factors
c

pseudo 

R2

Number of  

Fitted QRs

Left Q 0.197 0.121 1.000 0.009 132

Left QIV 0.163 0.250 0.955 0.140 0.053 264

Left QIVR 0.140 0.227 0.977 0.436 0.333 0.063 264

Left QF(IV) 0.186 0.239 0.693 0.348 0.280 0.220 0.071 264

Left QF(r) 0.144 0.167 0.977 0.436 0.064 0.008 0.067 264

Left QF(IV*,r) 0.182 0.174 0.621 0.348 0.307 0.167 0.076 264

Left QF(IV*,r,L) 0.189 0.178 0.542 0.333 0.348 0.193 0.082 264

Center Q 0.044 0.171 0.855 0.002 275

Center QIV 0.064 0.155 0.398 0.253 0.007 550

Center QIVR 0.058 0.145 0.447 0.315 0.365 0.009 550

Center QF(IV) 0.067 0.131 0.278 0.271 0.111 0.067 0.012 550

Center QF(r) 0.078 0.151 0.451 0.309 0.036 0.055 0.012 550

Center QF(IV*,r) 0.085 0.116 0.255 0.273 0.116 0.060 0.014 550

Center QF(IV*,r,L) 0.065 0.111 0.253 0.276 0.151 0.076 0.017 550

Right Q 0.182 0.235 1.000 0.008 132

Right QIV 0.170 0.186 0.739 0.326 0.041 264

Right QIVR 0.155 0.182 0.864 0.318 0.420 0.049 264

Right QF(IV) 0.144 0.174 0.708 0.269 0.148 0.091 0.055 264

Right QF(r) 0.114 0.197 0.856 0.322 0.152 0.098 0.055 264

Right QF(IV*,r) 0.121 0.182 0.670 0.261 0.121 0.110 0.062 264

Right QF(IV*,r,L) 0.140 0.129 0.591 0.220 0.193 0.095 0.067 264
 

 

In table 4, the factors’ RFSs corresponding to the center become higher than the right 

tail, with the left tail still leading the RFSs levels. Table 5, suggests that skewness shape 

varies with the return period. Regarding the own-IVs’ RFSs (see table 3), they are much 

stronger in the tails than in the center. These results are expected since the own-IV’s 

represent the market’s expectations about future volatility (second moment) and can be 

considered further evidence that IVs are good predictors of realized volatility. 
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Table 4. Quantile Regressions of Weekly Returns by Density Region. Relative 

Frequencies of Statistical Significance (5% level) of Explanatory Variables. Combined 

Commodities and Quantiles. 

Density 

Region
QR Model d Returns Own-IV IV-Ratio

Joint 

Factors
c

pseudo 

R2

Number of  

Fitted QRs

Left Q 0.000 0.220 1.000 0.007 132

Left QIV 0.011 0.295 0.924 0.250 0.054 264

Left QIVR 0.027 0.295 0.936 0.458 0.538 0.064 264

Left QF(IV) 0.008 0.254 0.572 0.269 0.542 0.652 0.084 264

Left QF(r) 0.015 0.330 0.928 0.436 0.311 0.470 0.081 264

Left QF(IV*,r) 0.000 0.413 0.473 0.254 0.583 0.773 0.101 264

Left QF(IV*,r,L) 0.004 0.341 0.572 0.292 0.587 0.814 0.129 264

Center Q 0.000 0.262 0.847 0.002 275

Center QIV 0.000 0.240 0.533 0.495 0.010 550

Center QIVR 0.000 0.227 0.533 0.491 0.615 0.015 550

Center QF(IV) 0.000 0.247 0.436 0.405 0.420 0.516 0.024 550

Center QF(r) 0.000 0.382 0.545 0.487 0.353 0.655 0.028 550

Center QF(IV*,r) 0.000 0.424 0.471 0.415 0.462 0.695 0.034 550

Center QF(IV*,r,L) 0.000 0.389 0.465 0.420 0.438 0.816 0.053 550

Right Q 0.008 0.538 1.000 0.010 132

Right QIV 0.008 0.428 0.598 0.727 0.040 264

Right QIVR 0.008 0.432 0.693 0.295 0.659 0.048 264

Right QF(IV) 0.008 0.451 0.458 0.231 0.295 0.311 0.060 264

Right QF(r) 0.011 0.511 0.659 0.345 0.261 0.515 0.062 264

Right QF(IV*,r) 0.008 0.477 0.417 0.197 0.273 0.534 0.074 264

Right QF(IV*,r,L) 0.008 0.470 0.375 0.205 0.269 0.727 0.097 264
 

 

 

Furthermore, notice that for models that do not include factors, most own-IVs’ RFSs in 

the tails are very high (more than 0.90) which; on one hand, reinforces the previous 

comment; on the other hand,  it may be an indication that the inclusion of factors in the 

QR models provides important predictive information that causes own-IVs’ RFSs to 

become lower. 
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Table 5. Quantile Regressions of Monthly Returns by Density Region. Relative 

Frequencies of Statistical Significance (5% level) of Explanatory Variables. Combined 

Commodities and Quantiles. 

Density 

Region
QR Model d Returns Own-IV IV-Ratio

Joint 

Factors
c

pseudo 

R2

Number of  

Fitted QRs

Left Q 0.000 0.508 1.000 0.029 132

Left QIV 0.000 0.697 0.856 0.504 0.085 264

Left QIVR 0.000 0.701 0.879 0.436 0.485 0.094 264

Left QF(IV) 0.000 0.583 0.633 0.379 0.758 0.905 0.133 264

Left QF(r) 0.000 0.701 0.754 0.447 0.720 0.837 0.141 264

Left QF(IV*,r) 0.000 0.727 0.553 0.322 0.746 0.981 0.172 264

Left QF(IV*,r,L) 0.000 0.697 0.655 0.314 0.652 0.992 0.216 264

Center Q 0.000 0.509 0.844 0.012 275

Center QIV 0.004 0.516 0.704 0.816 0.032 550

Center QIVR 0.004 0.511 0.764 0.389 0.615 0.038 550

Center QF(IV) 0.005 0.529 0.600 0.282 0.598 0.840 0.060 550

Center QF(r) 0.002 0.609 0.696 0.358 0.516 0.829 0.067 550

Center QF(IV*,r) 0.000 0.720 0.535 0.284 0.771 1.000 0.096 550

Center QF(IV*,r,L) 0.000 0.793 0.591 0.324 0.731 1.000 0.135 550

Right Q 0.000 0.583 1.000 0.021 132

Right QIV 0.015 0.542 0.644 0.913 0.048 264

Right QIVR 0.011 0.542 0.667 0.352 0.784 0.054 264

Right QF(IV) 0.004 0.561 0.443 0.216 0.375 0.773 0.085 264

Right QF(r) 0.004 0.530 0.591 0.326 0.409 0.670 0.081 264

Right QF(IV*,r) 0.011 0.689 0.485 0.277 0.564 0.970 0.130 264

Right QF(IV*,r,L) 0.008 0.788 0.489 0.250 0.595 1.000 0.163 264
 

 

 

In table 4 (weekly), the results about own-IVs still show similar behavior to table 

3 (daily) , but in table 5 (monthly), they change in a puzzling way. First, as was stated 

earlier, for models that include factors, their RFSs completely dominate not only the 

own-IVs’ RFSs but also they become the strongest predictors of all. And second, for 

models that do not include factors, the own-IVs’ RFSs are now strongest in the left tail, 

followed by the center, and then by the right tail. This could be interpreted as factors 

taking over much of the tail distribution prediction ability for monthly returns, probably 
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as a result of IVs best reflecting shorter horizons expectations of volatility.  Regarding 

the IV-ratios, in addition to what was stated previously, their RFSs are lowest in the right 

tail and about the same on the center and left; pattern that is maintained for all horizons.  

 

 

 

Table 6. Quantile Regressions of Daily Returns. Relative Frequencies of Statistical 

Significance (5% level) of Explanatory Variables. Top Commodities and Models 

Specifications. 

Commodity QR Model d Returns Own-IV IV-Ratio
Joint 

Factors
c

pseudo 

R2

Number of  

Fitted QRs

Models with Factors

Heating Oil QF(IV*,r,L) 0.000 0.020 0.561 0.561 0.684 0.469 0.057 98

Heating Oil QF(IV*,r) 0.000 0.020 0.459 0.510 0.673 0.357 0.050 98

Heating Oil QF(IV) 0.000 0.061 0.469 0.388 0.469 0.367 0.046 98

Soybeans QF(r) 0.133 0.276 0.786 0.235 0.378 0.286 0.037 98

Gold QF(IV*,r,L) 0.000 0.051 0.480 0.143 0.357 0.061 0.056 98

Models with no Factors

Light Crude Oil QIV 0.000 0.214 0.847 0.051 0.061 98

Light Crude Oil QIVR 0.000 0.173 0.847 0.173 0.163 0.064 98

Soybeans QIVR 0.112 0.153 0.827 0.276 0.194 0.031 98

Gold QIVR 0.000 0.143 0.816 0.388 0.663 0.043 98

Heating Oil QIVR 0.010 0.031 0.816 0.408 0.418 0.038 98  

 

 

Table 7. Quantile Regressions of Weekly Returns. Relative Frequencies of Statistical 

Significance (5% level) of Explanatory Variables. Top Commodities and Models 

Specifications. 

Commodity QR Model d Returns Own-IV IV-Ratio
Joint 

Factors
c

pseudo 

R2

Number of  

Fitted QRs

Models with Factors

Heating Oil QF(r) 0.000 0.704 0.837 0.388 0.908 0.878 0.057 98

Heating Oil QF(IV*,r,L) 0.020 0.561 0.949 0.398 0.888 0.898 0.110 98

Heating Oil QF(IV*,r) 0.010 0.888 0.398 0.214 0.847 0.939 0.077 98

Live Cattle QF(IV) 0.010 0.816 0.173 0.163 0.847 0.816 0.040 98

Live Cattle QF(IV*,r) 0.000 0.908 0.071 0.071 0.806 0.857 0.048 98

Models with no Factors

Light Crude Oil QIV 0.020 0.214 0.878 0.357 0.065 98

Light Crude Oil QIVR 0.020 0.092 0.857 0.480 0.571 0.072 98

Heating Oil QIVR 0.000 0.102 0.837 0.490 0.827 0.039 98

Wheat QIVR 0.000 0.153 0.796 0.439 0.969 0.024 98

Wheat QIV 0.000 0.112 0.786 0.612 0.019 98  
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Table 8. Quantile Regressions of Montly Returns. Relative Frequencies of Statistical 

Significance (5% level) of Explanatory Variables. Top Commodities and Models 

Specifications. 

Commodity QR Model d Returns Own-IV IV-Ratio
Joint 

Factors
c

pseudo 

R2

Number of  

Fitted QRs

Models with Factors

Heating Oil QF(IV*,r,L) 0.000 1.000 0.929 0.510 1.000 1.000 0.228 98

Natural Gas QF(IV*,r,L) 0.020 0.847 0.724 0.265 1.000 1.000 0.168 98

Natural Gas QF(IV*,r) 0.000 0.776 0.459 0.235 1.000 1.000 0.148 98

Live Cattle QF(r) 0.000 0.214 0.449 0.571 1.000 1.000 0.063 98

Corn QF(IV*,r,L) 0.000 1.000 0.143 0.245 1.000 1.000 0.131 98

Models with no Factors

Wheat QIVR 0.051 0.184 1.000 0.582 0.592 0.076 98

Wheat QIV 0.061 0.204 0.990 0.949 0.065 98

Heating Oil QIVR 0.000 0.633 0.867 0.469 0.592 0.068 98

Corn QIVR 0.000 0.357 0.847 0.367 0.847 0.026 98

Heating Oil QIV 0.000 0.663 0.847 0.827 0.065 98  

 

 

Table 6, 7, and 8 (daily, weekly, and monthly returns) present the 5-top NCFC-

models combinations with factors (sorted from largest to smallest factors’ RFSs) and the 

5-top NCFC-models with no factors (sorted from largest to smallest by own-IVs’ 

RFSs).
13

 Hence, now we can examine which NCFCs correspond to the top models (by 

RFSs particular variables). Notice the very high values of most RFSs. Merging all return 

periods for models with factors; heating oil, natural gas, live cattle, soybean, gold, and 

corn comprise the highest factors’ RFSs. Analogously, for models with no factors, light 

crude oil, heating oil, wheat, gold, corn, and live cattle present the greatest own-IVs’ 

RFSs. 

In summary, the previous in sample analyses presents evidence that PCA-factors 

that pool IVs (put and call) with returns used as QR’s predictors are likely to provide an 

                                                 

13
 Since there are 11 NCFCs and 7 basic QR specifications, 77 combinations are possible. 
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important contribution for forecasting the conditional return distribution of some 

NCFCs, in addition to the own-IVs, IV-ratios, and own-returns. It was also observed that 

the own-returns RFSs increased considerably for returns with longer horizons. However, 

it is difficult to establish, with in-sample analysis which of the QR-models, here 

specified, are actually the best for quantile forecasting purposes.  This issue is often 

elucidated using out-of sample performance analysis. 

 

3.4 Out-of-Sample Quantile Forecasting Performance 

3.4.1. Out-of Sample Hit Percentage Deviations and the Dynamic Quantile Test 

The recursive forecasting method described above (section 2.2.3.2) was applied to the 

numerous QR models specifications using the last 200 out of the 897 observations. 

Accordingly, the Hit% (2.10) and the DQ test-statistics (2.11) were obtained for the 

previously considered QR model specifications; and now, for the Black-Scholes quantile 

forecasts obtained by equation (2.6); and the n-GARCH and t-GARCH quantile forecast 

generated using equations (2.8) and (2.9) respectively. Similar to al QR models that 

include own-IVs (QIV, QIVR, and QFs); notice that the Black-Scholes quantile forecasts 

and their corresponding Hit% indices as well as the DQ statistics are generated for as 

many as 1078 items (11 commodities   2 IV-types   49 quantiles). Having this large 

number of Hit% indices and DQ statistics requires a similar examination strategy to the 

in-sample analysis.  
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Table 9. Out-of-Sample Performance of Quantile Regressions, Black-Scholes, and 

GARCH models. Hit% Deviations and Dynamic Quantile Test Relative Frequency of 

Rejection. By Model Specification and Type of Own-Implied Volatility. 

Hit% 

Deviation

DQ test 

Relative 

Frecuency of 

Rejection

 Ranking
Hit% 

Deviation
Ranking

Hit% 

Deviation

QF(IV*,r,L) 1 2.09 0.28 1 3.54 1 4.08

QF(IV) 2 2.15 0.23 2 3.88 4 5.22

QF(IV*,r) 3 2.21 0.24 3 3.94 3 4.93

QIVR 4 2.28 0.15 5 4.19 5 5.97

QF(r) 5 2.35 0.20 6 4.19 2 4.83

QIV 6 2.45 0.14 4 4.08 6 6.34

t-GARCH 7 2.69 0.07 9 4.86 10 10.40

Black-Scholes 8 3.36 0.15 8 4.71 9 10.16

Q 9 4.12 0.21 10 5.35 7 8.57

n-GARCH 10 4.35 0.16 7 4.53 8 9.60

Daily Returns

Model 

Specification

Daily 

Return 

Ranking

Weekly Returns Monthly Returns

 

 

Table 9 presents the most aggregated results. Notice that there are three groups of 

two columns, each group belonging to daily, weekly, and monthly returns. For daily 

returns, the first column, titled “Hit% Deviations” (HD), shows the average of the 

absolute difference (in percent points) between the Hit% index and 100q.
14

 The lower 

the HD is, the better the unconditional quantile forecasting coverage correctness.  For 

daily returns, the second column contains the relative frequencies that the DQ tests were 

rejected (DQR). Since the null hypothesis is that the hits are independent, the lower the 

DQR is, the less autocorrelated are the hits.  

Based on the daily HDs, the top two models are three models are QF(IV*,r,L), 

QF(IV), and QF(IV*,r). Notice that the best model is the one that pooled the 

complementary IVs (put and call) with complementary returns and their first lag for 

                                                 

14
 Rows are sorted in ascending order by the daily HD. 
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obtaining the PCA-factors. Interestingly, for weekly and monthly returns this model is 

also the best. However, its DQR is also the worst (.28). Yet this number by itself does 

not look very high since it also means that in 72% of occurrences the corresponding 

individual QRs models were not rejected by the DQ test. Remarkably, notice that the top 

three models include factors as predictors, whereas the worst performers tend to be 

GARCH and Black-Scholes models. This pattern is fairly stable for weekly and monthly 

returns at this level of aggregation. Furthermore, observe that Black-Scholes and 

GARCH models, being the worst ones according to HD, have among the lowest DQRs. 

This suggests that, combining models may be an important direction for future research, 

in addition to including more lags of the explanatory variables in QRs. Finally, all of the 

top five models include the IV-ratio which is a strong indication that differences from 

put-IVs and call-IVs are quite relevant in forecasting the returns distribution. 

Apparently, the weekly and monthly HDs appear to be deceptively greater than 

daily HDs. However this comparison is not straight forward at all. One aspect that could 

interfere is that weekly and monthly returns standard deviations are considerably higher 

than daily. Although the IVs forecasted standard deviations were carefully rescaled to 

the number of return periods considered, the agents’ horizon expectations may make a 

difference.  A more clear reason is that when large unexpected jumps occur (IVs would 

not reflect it until they realize or are closed to it), forecasted k-period returns will 

maintain large and correlated forecast errors for nearly k periods until the innovation 

become real data and models correct for it. The situation is analogous for density 

forecast that will be failing to correctly cover realizations for a while. Forecasting a 
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monthly return is equivalent to forecast the price level a month from present time which 

is much more difficult than forecasting the one-day-ahead price. The higher monthly and 

weekly HDs might actually be relatively lower than the daily ones considering that the 

HD increase may be less than the climb in forecasting difficulty. 

 

Table 10. Out-of-Sample Performance of Quantile Regressions, Black-Scholes, and 

GARCH. Hit% Deviations and Dynamic Quantile Test Relative Frequency of Rejection. 

By Distribution Region, Model Specification, and Type of Own-Implied Volatility. 

Hit% 

Deviation

DQ test 

Relative 

Frecuency of 

Rejection

Ranking
Hit% 

Deviation
Ranking

Hit% 

Deviation

Right t-GARCH 1 1.64 0.00 11 3.57 21 6.67

Right Black-Scholes 2 1.65 0.11 10 3.50 24 7.11

Right QF(IV) 3 1.75 0.18 14 3.73 4 3.36

Right QF(IV*,r) 4 1.83 0.27 20 4.20 1 2.74

Left QF(IV*,r,L) 5 1.85 0.36 8 2.95 5 3.65

Left QF(IV) 6 1.86 0.29 4 2.81 15 4.72

Right QIVR 7 1.89 0.17 17 3.97 7 3.71

Left QF(r) 8 1.94 0.24 2 2.74 9 4.15

Left QIVR 9 1.95 0.23 7 2.93 10 4.44

Right QF(IV*,r,L) 10 1.99 0.37 13 3.71 3 3.31

Right QIV 11 2.01 0.11 12 3.63 6 3.69

Left QF(IV*,r) 12 2.05 0.30 6 2.86 11 4.58

Right QF(r) 13 2.07 0.22 19 4.07 2 3.11

Left QIV 14 2.07 0.23 9 3.02 14 4.68

Center QF(IV*,r,L) 15 2.25 0.20 15 3.74 13 4.64

Left t-GARCH 16 2.33 0.08 5 2.83 17 5.84

Center QF(IV*,r) 17 2.46 0.20 21 4.33 19 6.10

Center QF(IV) 18 2.47 0.22 22 4.45 20 6.31

Center QIVR 19 2.61 0.10 24 4.87 25 7.71

Center QF(r) 20 2.66 0.16 25 4.92 18 5.94

Center QIV 21 2.84 0.11 23 4.78 26 8.33

Right n-GARCH 22 2.85 0.03 1 1.96 8 3.75

Left Black-Scholes 23 3.16 0.20 3 2.76 16 5.35

Center t-GARCH 24 3.35 0.09 30 6.40 30 14.23

Right Q 25 3.35 0.17 18 4.01 12 4.62

Left n-GARCH 26 4.15 0.24 16 3.92 22 6.73

Center Black-Scholes 27 4.24 0.15 29 6.16 29 13.79

Center Q 28 4.31 0.17 28 6.02 27 11.12

Left Q 29 4.46 0.35 26 5.21 23 7.00

Center n-GARCH 30 5.13 0.19 27 6.00 28 13.63

Monthly Returns

Dist. 

Region

Model 

Specification

Daily 

Return 

Ranking

Daily Returns Weekly Returns
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 Table 10 is very similar to table 9 but the models are broken down by 

distributions regions. The most outstanding fact is that all of the region-models ranked 

above the 15th position corresponds to the tails (there are 30 possible items). Although 

the top region-model is right-t-GARCH, this model is also a poor performer for the 

center and left distributions regions, ranked 24th and 16th respectively. An even more 

extreme behavior is shown by the second best (right-Black-Scholes) which is ranked 

27th and 23th for the center and left regions respectively. Notice that these models are 

based on log-returns symmetric distributions; therefore, their poor performance in one of 

the tails is evidence of excess skewness. Finally, although the rankings changed for 

weekly and monthly returns, the previous findings still hold up to some extent. For 

example, on a weekly basis, the t-GARCH model is ranked 5th in the left, 30th in the 

center, and 11th on the right. 

Table 11 is analogous to tables 9 and 10 except that now the models are grouped 

by NCFCs. The table contains the top 30 items (out of 110) by daily HD. This table 

allows to identify, among the top items, those with the serial correlation problems. For 

example, the best model on the average was, according to table 9, the QF(IV*,r,L) 

specification;  but, it had a high DQR. Now we can see that the greatest DQR belongs to 

light crude oil (0.60) followed by wheat (0.56), and soybeans (0.30). Notice that the top 

daily HD item is corn t-GARCH (1.10 HD and 0.04 DQR). However, this is not the best 

model when other return periods are considered. The actual lowest HD is 1.02 

corresponding to lean hogs QF(IV*,r). We let the readers finding other near top items by 

weekly or monthly HD that performe better than others daily HD items in this list. 
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Table 11. Out-of-Sample Performance of Quantile Regressions, Black-Scholes, and 

GARCH models. Hit% Deviations and Dynamic Quantile Test Relative Frequency of 

Rejection. By Commodity Future Contract and Model Specification. 

Hit% 

Deviation

DQ test 

Relative 

Frecuency of 

Rejection

Ranking
Hit% 

Deviation
Ranking

Hit% 

Deviation

Corn t-GARCH 1 1.10 0.04 35 2.82 77 8.81

Corn QIV 2 1.12 0.06 10 1.80 18 3.45

Corn QF(IV) 3 1.15 0.08 3 1.40 19 3.47

Wheat t-GARCH 4 1.17 0.08 7 1.68 35 4.92

Corn Q 5 1.32 0.08 2 1.32 33 4.51

Corn QF(r) 6 1.36 0.04 22 2.36 25 3.88

Wheat Q 7 1.41 0.24 16 2.11 42 5.54

Lean Hogs QF(IV) 8 1.42 0.10 32 2.77 56 6.62

Lean Hogs QF(IV*,r,L) 9 1.47 0.04 4 1.47 65 7.45

Lean Hogs QIVR 10 1.50 0.02 85 5.70 86 9.62

Corn QIVR 11 1.51 0.06 20 2.29 16 3.44

Soybeans QF(IV) 12 1.53 0.32 37 2.92 13 2.86

Soybeans QF(IV*,r) 13 1.56 0.32 25 2.55 29 4.12

Wheat Black-Scholes 14 1.57 0.08 9 1.76 34 4.65

Natural Gas QF(IV*,r,L) 15 1.57 0.18 87 5.82 60 6.83

Natural Gas QF(IV) 16 1.61 0.08 93 6.28 90 10.06

Soybeans QF(IV*,r,L) 17 1.64 0.30 34 2.81 30 4.22

Natural Gas QF(IV*,r) 18 1.66 0.10 91 6.24 53 6.41

Lean Hogs QF(IV*,r) 19 1.66 0.08 1 1.02 44 5.71

Wheat QF(IV*,r,L) 20 1.67 0.56 14 2.04 5 1.92

Wheat QF(IV) 21 1.67 0.40 31 2.73 10 2.46

Lean Hogs QIV 22 1.67 0.00 90 5.99 83 9.48

Light Crude Oil QF(IV*,r,L) 23 1.70 0.60 18 2.21 9 2.43

Light Crude Oil QIV 24 1.73 0.10 5 1.53 20 3.59

Soybeans QIVR 25 1.74 0.32 38 2.97 28 4.07

Corn QF(IV*,r,L) 26 1.77 0.12 23 2.47 2 1.56

Corn QF(IV*,r) 27 1.78 0.10 12 1.85 12 2.76

Lean Hogs QF(r) 28 1.81 0.04 81 5.33 74 8.16

Live Cattle Q 29 1.83 0.16 41 3.22 72 7.91

Corn n-GARCH 30 1.83 0.04 39 3.15 73 8.03

Daily Returns Weekly Returns Monthly Returns

Nearby 

Commodity 

Future Contract

Model 

Specification

Daily 

Return 

Ranking

 

 

 

In general, the evidence can be considered strong and robust that factors can 

contribute with additional quantile forecasting power to the individual commodities IVs 

information. It seems also important that the ratios of the put-IV to the call-IV can 

contribute to improving the log-returns quantile forecasting performance, in addition to 
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the strong predictive power of the own-IVs. Finally, the fact that the BS models and 

GARCH models were outperformed by its QR counterparts (QIV) can be considered 

evidence that the actual conditional distribution of the log-returns is not normal, 

probably as a result of non risk-neutral agents. The previous result could be inferred 

from BS-derived IVs ever since the QR estimated coefficients of the IV and of the 

lagged return are a function of the quantiles which are also influenced by the true 

conditional density of the dependent variable. 

 

3.4.2 Out-of-Sample Trading Performance 

Using the same quantile recursive forecasts employed in the previous out-of-sample 

performance analyses, the trading scheme outlined above (section 2.2.3.6) was carried 

out. The corresponding results are summarized in table 12. Commodity specific results 

are not presented because the purpose is spotting the best performing models by each 

type of trading rule. The excess returns, expressed in daily log percentages, are simple 

averages of the single commodity results which is the same as an equally weighted 

portfolio.  The table also reports maximums and minimums. It is important to emphasize 

that the excess returns should not be compared with the “buy and hold” strategy column.  

This column is already subtracted from the rules columns.  
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Table 12. Out-of-Sample Excess Returns Generated by Long Trading Rules Based on 

Some of the Quantiles Forecasted by Quantile Models. Equally Weighted Portfolio of 

Commodities. Average Daily Percentages.  

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

Q Mean 0.108 0.007 0.022 0.091 0.101 -0.167

Q Max 0.223 0.288 0.595 0.407 2.735 0.229

Q Min 0.001 -0.147 -0.294 -0.090 -2.661 -1.654

QIV Mean 0.108 -0.080 -0.012 0.131 -0.160 -0.120

QIV Max 0.223 0.163 0.299 0.403 0.519 0.137

QIV Min 0.001 -0.353 -0.377 -0.014 -0.818 -0.545

QIVR Mean 0.108 -0.071 -0.003 0.117 0.066 -0.103

QIVR Max 0.223 0.223 0.414 0.424 0.805 0.243

QIVR Min 0.001 -0.355 -0.332 -0.009 -0.662 -0.540

QF(IV) Mean 0.108 -0.072 -0.020 0.132 0.022 -0.146

QF(IV) Max 0.223 0.261 0.120 0.493 0.567 0.047

QF(IV) Min 0.001 -0.424 -0.131 0.015 -0.427 -0.744

QF(r) Mean 0.108 -0.068 0.013 0.090 -0.042 -0.159

QF(r) Max 0.223 0.100 0.360 0.462 0.308 0.100

QF(r) Min 0.001 -0.381 -0.413 -0.082 -0.771 -0.876

QF(IV*,r) Mean 0.108 -0.076 -0.040 0.103 -0.050 -0.197

QF(IV*,r) Max 0.223 0.261 0.174 0.368 0.220 0.141

QF(IV*,r) Min 0.001 -0.385 -0.270 -0.095 -0.319 -0.569

QF(IV*,r,L) Mean 0.108 -0.054 -0.010 0.072 -0.011 -0.082

QF(IV*,r,L) Max 0.223 0.305 0.192 0.271 0.342 0.088

QF(IV*,r,L) Min 0.001 -0.581 -0.257 -0.151 -0.428 -0.322

Black-Scholes Mean 0.108 -0.002 0.036 0.021 0.049 -0.052

Black-Scholes Max 0.223 0.215 0.290 0.175 0.494 0.246

Black-Scholes Min 0.001 -0.164 -0.098 -0.101 -0.416 -0.248

Excess Returns Generated by Long Trading RulesBuy and 

Hold ReturnStatisticsModel

 
 

 

The top performance is achieved by a QF(IV) model with rule 3 with a mean of 

0.132%. Notice that even the minimum was positive (0.015%) meaning that the model-

rule generated excess returns with all commodities. This was the only case that a positive 
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minimum occurred across the entire table. The second best is achieved by the QIV 

model with the same rule (0.131%) followed by QIVR-rule3, and QF(IV*,R)-rule3. 

Again, this is some evidence in favor of pooling IVs and returns to be used by models 

with factors.  

Finally, rule 3 is strongly better than the rest. Interestingly, rule 3 is right-tail 

based which seems rather reasonable, since a forecasted increase in quantile “0.9” means 

a higher probability of higher returns. Therefore, the models mentioned above do a good 

job forecasting the right tail. 
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4. CONCLUSION 

 

In this research we have evaluated the multi-step-ahead log-return quantile forecasting 

performance of eleven nearby commodity futures contracts (NCFC). The commodity 

futures and options data employed in this project was obtained from the Thomsom-

Reuters Datastream. Out of the eleven NCFCs, six were agricultural, four from the 

energy sector, and one precious metal. For each one of these, three daily time series were 

used: ATM put and call implied volatilities (IVs) and the corresponding prices of the 

NCFCs. The resulting sampling period was from 01-16-2008 to 07-29-2011 (897 

observations).  

The statistical strategy was based on a variety of specifications and fitting of 

dynamic log-returns QR models using predictors such as implied volatilities (IVs) and 

factors estimated through principal component analysis (PCA) from the IVs and returns. 

Using these IVs’ information is a way of accommodating forward-looking expectations 

of volatility from commodity futures markets’ agents to the models. Extensive in-sample 

and out-of-sample analysis were performed, including the evaluation of trading excess 

returns.     

The main result of this investigation was that the factors extracted from pooled 

IVs and returns can contribute with additional quantile forecasting power to the 

individual commodities IVs. In this sense, the models that included the factors were 

consistently and robustly the best quantile forecasting performers. Furthermore, models 

that generated the highest excess returns in the out-of-sample trading exercises were 
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mostly those that included factor in combination with a long trading rule based on right-

tail forecasts. 

Other important and robust results were also found. Factors seem to take over 

much of the tail distribution prediction ability for monthly returns, probably as a result of 

IVs best reflecting shorter horizons expectations of volatility. The ratios of the put-IV to 

the call-IV can contribute to improve the log-returns quantile forecasting performance in 

addition to the strong predictive power of the individual IVs. This and other observed 

facts evidenced that the conditional density of the log-returns tends to be asymmetric. In 

general, the quantile forecasting performance is better on the tails of the distribution than 

in the center. This feature was robustly observed in nearly all of the QRs specifications 

were IV’s information were being considered. Although this is not a very surprising 

result, it is interesting and important to be reported. Finally, the fact that the conditional 

log-return implied quantile Black-Scholes and GARCH forecasts were outperformed by 

its QR counterparts can be considered evidence that the actual conditional distribution of 

the log-returns is not normal, probably as a result of non-risk-neutrality of agents.  

This project suggest some directions for future research such as seeking for 

improvement on the specification of the QR models with other methods of factor 

estimation, evaluating mixtures of QR models with GARCH or Black Scholes, 

incorporating futures and IVs of stock indices and foreign exchange, and possibly using 

this type of analysis to assess the likelihood of turmoil in commodity futures markets 

and financial markets. 
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APPENDIX 

 

A1. Principal Component Analysis 

The purpose of using PCA-factors is for assessing whether from other commodities 

markets there is some recoverable quantile forecasting information in addition to the 

own-IVs and own-returns. This is not only important for obtaining improved quantile 

return forecasts but also because this could indicate that options markets may be 

inefficient up to some extent. Similarly to how most conditional mean factor forecasting 

studies are performed, further economic interpretation of factors and their estimated 

coefficients in the QR models is not attempted.  

The PCA factors used in this project not only are QR-model specific but also 

commodity-specific. The reason is that since QR models already include own-IVs and/or 

own-returns, their pooling with the rest of the other commodities variables for PCA-

factors extraction would be counterintuitive. This would contribute to factors more 

correlated with the own-variables and they would not well represent the other 

commodities as a complement. 

As can be observed in Table A1, given the same QR model specification but with 

different dependent variables (e.g. crude oil and corn), the eigenvalues of the 

corresponding correlation matrices tend to be very similar. For example, given model 

QF(IV) or QF(r), two commodities would consider 10 input variables for PCA from 

which 9 are the same in both models. However, from dissimilar QR specifications the 

eigenvalues may be quite different. This is mainly due to the number of input variables 

for PCA. For example, given commodities corn and crude oil, model QF(r)’s 
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eigenvalues are much more different than the eigenvalues of models QF(IV*,r) or 

QF(IV*,r,L). In this case, the main cause is the substantial difference in the number of 

input variables (10 versus 30 or 60 respectively) considered for PCA. In general, the 

greater the number of input variables is, the greater the number of factors that are 

required for concentrating a similar amount of joint dispersion (i.e., sum of eigenvalues). 

This situation requires choosing a different number of factors depending on the QR 

model.  

 

Table A1. Eigenvalues of the Correlation Design Matrices (selected commodities) 

call-QF(IV) put-QF(IV) QF(r) QF(IV*,r) QF(IV*,r,L)

Crude 

Oil
Corn

Crude 

Oil
Corn

Crude 

Oil
Corn

Crude 

Oil
Corn

Crude 

Oil
Corn

Factor 1 4.68 4.51 3.20 3.04 3.70 3.72 7.56 7.08 14.78 13.67

Factor 2 1.58 1.63 1.43 1.47 1.30 1.33 3.67 3.71 5.20 5.15

Factor 3 1.08 1.09 1.16 1.10 1.12 1.10 2.67 2.69 3.81 3.80

Factor 4 0.90 0.92 0.90 1.93 1.91 3.66 3.75

Factor 5 1.32 1.34 3.43 3.36

Factor 6 1.25 1.28 2.17 2.24

Factor 7 1.11 1.11 1.89 1.86

Factor 8 1.05 1.02 1.69 1.60

Factor 9 0.93 0.90 1.39 1.44

Factor 10 0.90 1.35 1.37

Factor 11 1.15 1.26

Factor 12 1.12 1.11

Factor 13 1.09 1.09

Factor 14 0.99 1.03

Factor 15 0.96 0.96

Factor 16 0.92  
Note: eigenvalues less than 0.9 are omitted. Models call-QF(IV), put-QF(IV), and QF(r) have 10 input 

variables; model QF(IV*,r) has 30 input variables; and model QF(IV*,rL) has 60 input variables. 

 

Given the large number of possible combinations of commodities with QR 

specifications, the factors were cut down automatically. Thus, for models that included 

PCA applied to 10, 30, and 60 variables the chosen factors correspond to eigenvalues 
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greater than 1, 1.15, and 1.3 respectively. As a result, for models with 10, 30, and 60 

input variables for PCA, the previous rule chooses from 2 to 4, 5 to 7, and 8 to 10 factors 

respectively. The first attempt was using 1 as a threshold for all cases but this selected 

even more factors for the 30 and 60 input variables for PCAs.
 
Since the sum of all 

eigenvalues is equal to the number of input variables, if they were perfectly uncorrelated, 

all eigenvalues would be equal to 1. For this reason, eigenvalues greater than 1 is a 

simple but important criterion used for top factors selection. However, there are more 

sophisticated approaches that may be employed for future research. 

 

 

  



 52 

VITA 

 

 

Name:   Miguel Eduardo Dorta 

 

Address: Department of Agricultural Economics 

 College of Agriculture and Life Sciences 

 Texas A&M University 

 2124 TAMU 

 College Station, TX 77843-2124 

 

Email Address: medorta@gmail.com 

 

Education: B.A., Statistics, Central University of Venezuela, 1984 

M.S., Policy Economics, University of Illinois at 

Urbana-Champaign, 1996 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


