

MODELING OF TRANSPORT IN LITHIUM ION BATTERY ELECTRODES

A Thesis

by

MICHAEL ADAM MARTIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2012

Major Subject: Mechanical Engineering

Modeling of Transport in Lithium Ion Battery Electrodes

Copyright 2012 Michael Adam Martin

MODELING OF TRANSPORT IN LITHIUM ION BATTERY ELECTRODES

A Thesis

by

MICHAEL ADAM MARTIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Devesh Ranjan
 Partha P. Mukherjee
Committee Members, Kalyan Annamalai
 Raytcho Lazarov
Head of Department, Jerald Caton

May 2012

Major Subject: Mechanical Engineering

 iii

ABSTRACT

Modeling of Transport in Lithium Ion Battery Electrodes. (May 2012)

Michael Adam Martin, B.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Devesh Ranjan
 Dr. Partha P. Mukherjee

Lithium ion battery systems are promising solutions to current energy storage

needs due to their high operating voltage and capacity. Numerous efforts have been

conducted to model these systems in order to aid the design process and avoid expensive

and time consuming prototypical experiments. Of the numerous processes occurring in

these systems, solid state transport in particular has drawn a large amount of attention

from the research community, as it tends to be one of the rate limiting steps in lithium

ion battery performance. Recent studies have additionally indicated that purposeful

design of battery electrodes using 3D microstructures offers new freedoms in design,

better use of available cell area, and increased battery performance.

The following study is meant to serve as a first principles investigation into the

behaviors of 3D electrode architectures by monitoring concentration and cycle behaviors

under realistic operating conditions. This was accomplished using computational tools to

model the solid state diffusion behavior in several generated electrode morphologies.

Developed computational codes were used to generate targeted structures under

prescribed conditions of particle shape, size, and overall morphology. The diffusion

 iv

processes in these morphologies were simulated under conditions prescribed from

literature.

Primary results indicate that parameters usually employed to describe electrode

geometry, such as volume to surface area ratio, cannot be solely relied upon to predict or

characterize performance. Additionally, the interaction between particle shapes implies

some design aspects that may be exploited to improve morphology behavior. Of major

importance is the degree of particle isolation and overlap in 3D architectures, as these

govern gradient development and lithium depletion within the electrode structures. The

results of this study indicate that there are optimum levels of these parameters, and so

purposeful design must make use of these behaviors.

 v

DEDICATION

 This work is first and foremost dedicated to my family, whose constant support

and love gave me the strength and perseverance to see this work, and all else, to

completion. I further wish to remember every teacher, professor, or mentor who has

invested their time and energies in my development as a student and individual. I am

forever in their debt. Lastly I would like to mention the other members of my research

group, Jacob, Beth, Sarat, Bhanesh, and Bryce, who have been the greatest of friends to

me throughout my time at Texas A&M University.

 vi

ACKNOWLEDGEMENTS

 I would like to thank my co-chairs, Dr. Ranjan and Dr. Mukherjee, for their

continued support throughout this work. Working as a team with both of them has been

an absolute privilege, and their suggestions and guidance have been invaluable. I would

never have had the opportunity to learn about electrochemical systems and renewable

energy, subjects that I now find great joy in, without their help. I would also like to

thank Dr. Lazarov for his input on several occasions with respect to numerical modeling

and technique. My research group has been an invaluable resource for other ideas and

possibilities, so I would like to thank Jacob, Bhanesh, Sarat, Beth, and Bryce for any and

all help they gave to me. I owe Dr. Jeff Dietiker from NETL and Dr. Sreekanth Pannala

from ORNL a large portion of my gratitude for their help with MFiX® and supplemental

coding. The initial work for this project was performed during my summer stay with Dr.

Mukherjee through the ORNL HERE program, and in my personal case was orchestrated

by Dr. John Turner, who I owe a great amount of thanks for his willingness to help and

make my stay at ORNL as pleasant as possible.

 vii

NOMENCLATURE

a Activity Coefficient

Ĉ Specific Capacity

cp Specific Heat

D Diffusion Coefficient

E Equilibrium Potential

Ê Specific Energy

E Elementary Charge

F Faraday’s Constant

ΔG Free Energy of Reaction

ΔH Enthalpy of Reaction

H Heat Transfer Coefficient

Iapp Applied Cell Current

i Current Density

j Reaction Current, Species Flux

k Reaction Constant

N Species Flux

Na Avogadro’s Number

n Number of Electrons

q Heat Generation, Heat Loss

R Particle Radius, Universal Gas Constant

 viii

R Radial Coordinate

S Electroactive Surface Area

SOC State of Charge

ΔS Entropy of Reaction

T Temperature

t Transference Number, Time

U Equilibrium Potential

V Operating Cell Voltage

v Velocity

Greek

 Transfer Coefficient

 Activity Coefficient

 Porosity, Strain

Η Overpotential

 Fractional Occupancy

 Conductivity of Electrolyte

 Thermal Conductivity

 Electrochemical Potential

 Stoichiometric Coefficient

 Conductivity

 Tortuosity

 ix

 Potential

Superscripts

a Anode Property

c Cathode Property

eff Effective Property

e Electrolyte Phase Property

p Positive Electrode

n Negative Electrode

Subscripts

r Radial Direction

ref Value at Reference State

s Solid Phase Property

surf Surface Value

max Maximum Value

 Tangential Direction

 x

TABLE OF CONTENTS

Page

ABSTRACT .. iii

DEDICATION .. v

ACKNOWLEDGEMENTS ... vi

NOMENCLATURE ..vii

LIST OF FIGURES ...xii

CHAPTER I INTRODUCTION AND LITERATURE REVIEW 1

The Lithium Ion Battery ... 2
Battery Modeling ... 10
Solid State Diffusion Related Model Simplifications and Expansions 21
Experimental Determination of Material Parameters .. 28
Insertion Electrodes as Packed Beds .. 31
3D Architectures .. 32

CHAPTER II ELECTRODE ARCHITECTURE GENERATION AND CELL
DESCRIPTION .. 39

Microstructure Generation ... 40
Cell Setup ... 51

CHAPTER III RESULTS AND DISCUSSION .. 54

3D Anode Architectures ... 55
3D Cell Model .. 99
Sensitivity Study .. 110

CHAPTER IV SUMMARY AND OUTLOOK .. 115

Methodology .. 115
Results .. 116
Future Work ... 118

REFERENCES .. 120

LIST OF TABLES..xviii

 xi

APPENDIX A RELAXATION TIME CALCULATION .. 125

APPENDIX B SIMULATION PROCEDURE ... 128

VITA .. 256

 xii

LIST OF FIGURES

 Page

Figure 1. A simple schematic of a typical battery. During discharge, electrons are
released from the anode to produce work through the applied load. 2

Figure 2. Two prominent designs for lithium ion batteries involve either a metal
anode and insertion type cathode (A), or an insertion type electrode for
both electrodes.. 3

Figure 3. Discharge curve showing discharge to a cutoff potential of 3V,
relaxation, and recharge to a cutoff potential of 4.1V. 7

Figure 4. A Ragone plot comparing the specific power and energy of different
electrochemical systems, such as batteries and fuel cells, versus other
devices like capacitors and internal combustion (IC) engines. The goals
for current hybrid and all electric vehicles are also illustrated. Adapted
from (2). ... 9

Figure 5. Different discretizations of insertion electrodes provide a particular level
of resolution of the region. As discretization is coarsened, microstructure
details are lost, and so volume averaged methods must be employed. 14

Figure 6. The insertion electrodes are approximated as being composed of small
spheres of radius Rs. ... 18

Figure 7. Doyle and Newman employ a pseudo-2D in the one-dimensional x

direction and the pseudo-two-dimensional r direction. 19

Figure 8. Inverted pyramid scheme illustrates decreasing computational difficulty
but increasing model complexity due to volume averaged quantities.
(Adapted from (5)) ... 20

Figure 9. (A) A 2D planar electrode does not take advantage of the full area
available. (B) A 3D structure using the ‘height’ dimension makes far

better use of available cell area.(Adapted from (46))....................................... 33

Figure 10. Four possible designs for 3D architectures, including (A) interdigitated
rod arrays, (B) a continuous rod array, (C) interdigitated plates, and (D)
sponge like geometry.(Adapted from (47)) .. 34

Figure 11. A cylindrical child particle is placed along the branch length only when
the arc length swept between the parent particle’s nearest neighbors is

large enough to accommodate it... 40

 xiii

Figure 12. Typical output from the fractal geometry code developed in
MATLAB®. A base structure in blue has been perturbed to yield a new
realization in red. .. 42

Figure 13. The cut-cell technique is used to shape the Cartesian Grid to the
specified geometry. Here, the thick line intersects the Cartesian Grid,
forming cut cells. The velocity component uec must be adjusted to
account for the realignment of cell centers. Adapted from (64). 43

Figure 14. The intersections between the geometry defined (blue line in (A)) and
the Cartesian Grid are determined to ultimately shape the resulting cut
cell shown in (B). If improper cell size is used, some curvature aspects
may be lost. Adapted from (64). .. 44

Figure 15. Depending on the type of flow and Boolean expression, the cut-cell
technique is capable of capturing numerous geometrical shapes on a
structured, Cartesian Grid. Adapted from (64). ... 45

Figure 16. Geometries in the Cut Cell Technique in MFiX® can be described
using quadrics. Here, several quadrics numbered in (A), as well as
groups of quadrics (B) through (E), which are combined to form a
spouted bed geometry with a stabilizer (F). Adapted from (64). 46

Figure 17. Spherical Column 1 Base(A) and Realizations 1 through 5(B-F). All
dimensions in micron. .. 56

Figure 18. Spherical Column 2 Base(A) and Realizations 1 through 5(B-F). All
dimensions in micron. .. 57

Figure 19. Tree Base(A) and Realizations 1 through 5(B-F). All dimensions in
micron... 58

Figure 20. Spherical/Cylindrical Column Base(A) and Realizations 1 through 5(B-
F). All dimensions in micron. .. 59

Figure 21. Average bulk concentration for the Spherical Column 1 structures after
1C discharge and 2 hour relaxation. ... 61

Figure 22. Average bulk concentration for the Spherical Column 2 structures after
1C discharge and 2 hour relaxation. ... 61

Figure 23. Average bulk concentration for the Spherical Tree structures after 1C
discharge and 2 hour relaxation. .. 62

 xiv

Figure 24. Average bulk concentration for the Spherical/Cylindrical Column
structures after 1C discharge and 2 hour relaxation. .. 62

Figure 25. Spherical Column 1 Base(A) and Realizations 1 through 5(B-F) after
discharge at 1C. All dimensions in micron and all concentration values
in mol/m3. ... 64

Figure 26. Spherical Column 2 Base(A) and Realizations 1 through 5(B-F) after
discharge at 1C. All dimensions in micron and all concentration values
in mol/m3. ... 65

Figure 27. Tree Base(A) and Realizations 1 through 5(B-F) after discharge at 1C.
All dimensions in micron and all concentration values in mol/m3. 66

Figure 28. Spherical/Cylindrical Column Base(A) and Realizations 1 through 5(B-
F) after discharge at 1C. All dimensions in micron and all concentration
values in mol/m3. .. 67

Figure 29. Average bulk concentration curves for the four morphologies. A 1
standard deviation bar has been applied at several times. 70

Figure 30. Average surface concentration curves for the four morphologies. A 1
standard deviation bar has been applied at several times. 71

Figure 31. Spherical Column 1 Base(A) and Realizations 1 through 5(B-F) after
relaxation for 1 hour following discharge at 1C. All dimensions in
micron and all concentration values in mol/m3. ... 75

Figure 32. Spherical Column 2 Base(A) and Realizations 1 through 5(B-F) after
relaxation for 1 hour following discharge at 1C. All dimensions in
micron and all concentration values in mol/m3. ... 76

Figure 33. Tree Base(A) and Realizations 1 through 5(B-F) after relaxation for 1
hour following discharge at 1C. All dimensions in micron and all
concentration values in mol/m3. ... 77

Figure 34. Spherical/Cylindrical Column Base(A) and Realizations 1 through 5(B-
F) after relaxation for 1 hour following discharge at 1C. All dimensions
in micron and all concentration values in mol/m3. ... 78

Figure 35. Spherical Column 1(Row A), Spherical Column 2(Row B), Tree(Row
C) and Spherical/Cylindrical Column (Row D) over a cycle with initial
discharge at 1C. All dimensions in micron and all concentration values
in mol/m3.(To Scale from Figtures 17 to 20) ... 82

 xv

Figure 36. Surface and bulk concentrations in the base cases after relaxation and
recharge to a potential of 4.1V from the initial 1C discharge rate. 83

Figure 37. Spherical Column 1(Row A), Spherical Column 2(Row B), Tree(Row
C) and Spherical/Cylindrical Column (Row D) over a cycle with initial
discharge at C/2. All dimensions in micron and all concentration values
in mol/m3. ... 85

Figure 38. Spherical Column 1(Row A), Spherical Column 2(Row B), Tree(Row
C) and Spherical/Cylindrical Column (Row D) over a cycle with initial
discharge at C/10. All dimensions in micron and all concentration values
in mol/m3. ... 86

Figure 39. Relaxation times for the base cases for the different initial discharge
rates of 1C, C/2, and C/10. ... 88

Figure 40. Surface and bulk concentrations in the base cases after relaxation and
recharge to a potential of 4.1V from the initial C/2 discharge rate. 89

Figure 41. Surface and bulk concentrations in the base cases after relaxation and
recharge to a potential of 4.1V from the initial C/10 discharge rate. 89

Figure 42. Depth of discharge for the Spherical Column 1 base structure at the 1C,
C/2, and C/10 discharge rates. .. 91

Figure 43. Depth of discharge for the Spherical Column 2 base structure at the 1C,
C/2, and C/10 discharge rates. .. 91

Figure 44. Depth of discharge for the Spherical Tree base structure at the 1C, C/2,
and C/10 discharge rates. ... 92

Figure 45. Depth of discharge for the Spherical/Cylindrical Column base structure
at the 1C, C/2, and C/10 discharge rates. ... 92

Figure 46. Discharge results for Spherical Column 1 base and realizations to a
cutoff potential of 3V versus SOC. .. 94

Figure 47. Discharge results for Spherical Column 2 base and realizations to a
cutoff potential of 3V versus SOC. .. 94

Figure 48. Discharge results for Spherical Tree base and realizations to a cutoff
potential of 3V versus SOC. ... 95

Figure 49. Discharge results for Spherical/Cylindrical Column base and
realizations to a cutoff potential of 3V versus SOC. .. 95

 xvi

Figure 50. Discharge curves for the initial discharge at 1C, relaxation for one hour,
and recharge at 1C, versus SOC. .. 97

Figure 51. Discharge curve for the initial discharge at C/2, relaxation for one hour,
and recharge at 1C versus SOC. ... 98

Figure 52. Discharge curve for the initial discharge at C/10, relaxation for one
hour, and recharge at 1C versus SOC .. 99

Figure 53. Aperiodic cell (A), and Interdigitated Plate cell (B). In both cases the
bottom structure serves as the anode, and all dimensions are in micron. 101

Figure 54. Aperiodic cell (Row A), and Interdigitated Plate cell (Row B) over
discharge at 1C and relaxation. All dimensions in micron and all
concentration values in mol/m3. (To Scale from Figure 53) 103

Figure 55. Bulk concentration curves for both 3D designs for a discharge at 1C to
a cutoff potential of 3V and relaxation for two hours. 104

Figure 56. Surface concentration curves for both 3D designs for a discharge at 1C
to a cutoff potential of 3V and relaxation for two hours. 104

Figure 57. Relaxation in bulk concentration for the Aperiodic anode. 106

Figure 58. Relaxation in bulk concentration for the Aperiodic cathode. 106

Figure 59. Relaxation in bulk concentration for the Interdigitated Plate anode. 107

Figure 60. Relaxation in bulk concentration for the Interdigitated Plate cathode. 107

Figure 61. Discharge curve for the Aperiodic and Interdigitated Plate structures at
1C versus capacity. ... 108

Figure 62. Discharge curve for the Aperiodic and Interdigitated Plate structures at
1C versus SOC. .. 109

Figure 63. Average bulk concentration over discharge at 1C for the Spherical Tree
base structure with various refinements to mesh and TOL_F. 111

Figure 64. Average surface concentration over discharge at 1C for the Spherical
Tree base structure with various refinements to mesh and TOL_F. 111

Figure 65. Average bulk concentration over discharge at 1C for the Aperiodic
anode with various refinements to mesh and TOL_F. 113

 xvii

Figure 66. Average surface concentration over discharge at 1C for the Aperiodic
anode with various refinements to mesh and TOL_F. 113

Figure 67. Average bulk concentration over discharge at 1C for the Interdigitated
Plate anode with various refinements to mesh and TOL_F. 114

Figure 68. Average surface concentration over discharge at 1C for the
Interdigitated Plate anode with various refinements to mesh and TOL_F. 114

 xviii

LIST OF TABLES
 Page

Table 1. Material properties and other quantities for modeling the lithium
ion cell(37). *Properties that apply to both the anode and cathode. 51

Table 2. Relaxation times for each microstructure and different realizations for the
discharge rate of 1C to a cutoff potential of 3V. .. 74

Table 3. Relaxation times for each base case microstructure at the discharge rate
of C/2 to a cutoff potential of 3V. .. 87

Table 4. Relaxation times for each base case microstructure at the discharge rate
of C/10 to a cutoff potential of 3V. .. 87

Table 5. Geometrical properties of the 3D cell models. ... 100

 1

CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

 The growing need for alternative energy resources has been fueled over the past

few decades by a growing concern over the environment and rising fuel costs. Both

alternative energy storage and production are becoming the center of research for much

of the scientific community as the demands of society continue to increase. For these

reasons, mathematical and computational modeling of these complex systems is an

absolute necessity for advancement, as governing parameters can be easily modified and

their resulting effects determined to aid in the design process. Costly and time

consuming prototypical experiments cannot be the sole source for the realization of new

and important design issues, and so the construction of new, advanced models that can

capture true physical effects are paramount to progress in this area.

The following discussion is an overview of some of the experimental and

theoretical approaches to modeling the solid state diffusive processes in lithium ion

batteries, which are currently promising solutions to current energy storage needs. The

first section will introduce the complex nature of the battery, and some issues regarding

the mathematical modeling of such an environment. The next section will introduce

previous modeling work that has been completed, primarily focusing around that by

Doyle and Newman(1), and later adaptations of their work, particularly concerning solid

state diffusion. Finally, the advent of 3D microstructures for electrode design will also

This thesis follows the style of The Journal of the Electrochemical Society.

 2

be introduced, along with previous works completed and design considerations for their

implementation.

The Lithium Ion Battery

 In general, a battery is composed of two electrodes, an anode and cathode,

separated by a porous, electronically insulating layer called the separator, which,

however, is conductive to ions. Additionally, these three components are pinned between

two current collectors. These aspects are illustrated in Figure 1.

Figure 1. A simple schematic of a typical battery. During discharge, electrons are

released from the anode to produce work through the applied load.

Additionally, an electrolyte fills the porous separator to serve as the medium for ion

transport. The usefulness of a battery comes from the electrical work it can produce,

achieved by movement of electrons through some load as depicted. In particular, the

lithium ion battery functions in this way, where, upon discharge, electrons are stripped

from lithium atoms in the anode, move through the applied load, and finally end in the

 3

cathode. Simultaneously, the resulting lithium ions leave the anode, or deintercalate, and

move into the electrolyte where they travel through the porous separator, and finally

recombine with electrons in the cathode. The structure of the three mentioned regions

can be varied based upon material and physical construction. Two prominent designs are

shown in Figure 2.

Figure 2. Two prominent designs for lithium ion batteries involve either a metal anode

and insertion type cathode (A), or an insertion type electrode for both electrodes.

As can be seen from the above, the two designs employ either a lithium metal anode and

what is known as an insertion cathode, as in Figure 2(A), or an insertion type for both

electrodes as in Figure 2(B). Insertion type electrodes have drawn a large amount of

attention because of their porous nature, which increases the surface area with which

lithium ions can react, or intercalate, thereby improving performance. Furthermore, they

have proven to be more reversible, or capable of being recharged. These electrodes, as

depicted, are a compilation of several different materials, including active material,

which provides intercalation sites for lithium ions, conductive filler, which is

 4

electronically conductive, a binder that provides mechanical stability to the electrode,

and pores that are filled with the acting electrolyte.

 In the case where both electrodes are of the insertion type, which is currently the

predominant design of choice, typical materials used are a metal oxide for the cathode,

such as LiyCoO2, and carbon, LixC6, for the anode. Here the subscripts x and y are the

appropriate stoichiometric values. The reactions occurring at the cathode and anode for

this example are represented by Equations (0.1) and (0.2), respectively(2).

 + -

2 2Li +e +CoO LiCoO (0.1)

 + -

6 6Li +e +C LiC (0.2)

Thermodynamically, the available work of a battery is determined by the Gibbs free

energy, which is related to the enthalpy H and entropy S of reaction, as well as the

temperature T(3).

 G H T S     (0.3)

In the above, T S is the term associated with heat generated during reaction, and the

enthalpy and entropy are state values, meaning they are dependent only upon the initial

and final states of reaction. However, electronically speaking, the work in a battery is

accomplished by electrons moving through a potential, and therefore can be related to

the Gibbs free energy through the following relation, where n is the number of electrons

associated with the reaction, F is Faraday’s Constant, and E is the potential.

 G nFE   (0.4)

 5

The relation between the Gibbs free energy and a reaction can additionally be expressed

using the van’t Hoff isotherm(4), where 0G is the free energy at the standard state with

unit activities, a is the activity of either the products or reactants, R is the universal gas

constant, and vi is the stoichiometric coefficient in the reaction.

 products0

reactants

ln
i

i

v

v

a
G G RT

a
   




 (0.5)

Using Equation (0.4), the above can be written into the following, which is the Nernst

Equation.

 products0

reactants

ln
i

i

v

v

aRT
E E

nF a
 




 (0.6)

This is the fundamental relationship that dictates the maximum potential that can be

produced by a particular reaction under equilibrium, also known as the open circuit

potential.

 However, in order to extract useful work from a battery system current must be

produced, and so equilibrium is disturbed by biasing the direction of reaction. This

departure from equilibrium results in potential loss at the anode and cathode. This is

known as the activation overvoltage, or overpotential, and is given the symbol η. The

relation between the overpotential, the equilibrium potential, and the potential while

drawing current, V, is given below.

 E V   (0.7)

The overpotential is related to the current density, i, associated with a reaction at an

electrode surface by the Butler-Volmer equation, as shown below.

 6

  1

0

FF

RT RT
i i

e e

    
 

 (0.8)

In the above i0 is the exchange current density, which is a function of the activity, a, and

the reaction rate constant k0 as shown below.

 0 0i k Fa (0.9)

The transfer coefficient, α, when multiplied by the overpotential, governs how a change

in overpotential will change the reaction. The above relations are the fundamental

equations used in electrochemical processes. However, there are several other

phenomena that occur in a battery, especially charge and species transport, as will be

discussed later.

 To judge battery performance, key parameters are voltage, capacity, power, and

energy. Voltage is calculated by subtracting the anode potential from the cathode

potential during battery operation. Further, capacity is the amount of charge that can be

passed during discharge, and is usually a material property, as certain materials can only

host so much lithium. Capacity is of significant importance as it determines the useful

range for battery operation. Additionally, plotting the voltage of the cell versus capacity

yields what is known as a discharge curve. An example of which is given below.

 7

Figure 3. Discharge curve showing discharge to a cutoff potential of 3V, relaxation, and

recharge to a cutoff potential of 4.1V.

The above figure illustrates a cycle in which the cell is first discharged at constant

current, or under galvanostatic conditions, to a cutoff potential of 3V, where the battery

is considered fully spent. It is to be noted here that this can sometimes be a source of

confusion, as capacity is technically increasing as the cell is discharged. Instead, one

might think of the capacity values along the discharge curve to be that which is spent or

consumed. At the cutoff point, the cell is opened and no current flows. Thus the cell is

allowed to ‘relax’, and this is typically associated with a rise in voltage. This occurs

because concentration gradients within the electrodes, as well as in the electrolyte, are

allowed to become uniform. When this happens, the anode surface concentration grows

as lithium is brought to the surface from the core by diffusive processes, as the surface

was previously more deprived of lithium due to the discharge process. Simultaneously,

0 0.5 1 1.5 2 2.5
3

3.2

3.4

3.6

3.8

4

Capacity (Ah)

C
e

ll
P

o
te

n
ti
a

l
(V

)

Relaxation

Discharge

Recharge

 8

the surface concentration of the cathode drops, as the deposited lithium from the

previous discharge process diffuses further into the electrode, lowering the surface

concentration. As will be explained later, the open circuit potential functions are usually

a function of the surface concentration, and as the above processes occur, the battery

approaches the open circuit potential for the resulting surface concentrations. Finally, the

battery is recharged to a cutoff potential of 4.1V at constant current. Typically, this can

be followed by a voltage hold across the cell, or potentiostatic operation, so that

additional current can flow and the cells may be returned to their original state of charge.

This is usually stopped after the current drops to some small value. Discharge curves are

extremely valuable, as they not only highlight the voltage and capacity response, but also

indicate how reversible the processes occurring in the cell are. One can consider the

hysteresis in the recharge curve, as well as the capacity regained from the galvanostatic

recharge, which would ideally be all of the capacity lost in the discharge process. To

compare energy and power, a Ragone plot is usually employed, and an example of such

is shown below.

 9

Figure 4. A Ragone plot comparing the specific power and energy of different

electrochemical systems, such as batteries and fuel cells, versus other devices like
capacitors and internal combustion (IC) engines. The goals for current hybrid and all

electric vehicles are also illustrated. Adapted from (2).

The dashed lines in the above plot indicate discharge rates, where very short discharge

times are to the lower right. These types of plots are very useful for illustrating the

different realms of applicability for many devices. Note the units on the axes of the

above plots, as both energy and power have been normalized by the weight of the

device. The specific energy of an electrochemical device is calculated from the

following equation(2).

 ˆ
1 1

ˆ ˆ

pos neg

pos neg

U U
E

C C






 (0.10)

In the above equation Upos, Uneg, ˆ
posC , and ˆ

negC are the equilibrium potentials and

specific capacities of the positive and negative electrodes, respectively. Specific power is

 10

determined using the instantaneous voltage, which is again not equivalent to the open

circuit potentials, due to the losses incurred in the cell during operation, such as the

overpotential described earlier.

Battery Modeling

Equations that govern the interplay between the solid state regions in the

electrodes, the liquid electrolyte, and the voltage across the cell are crucial to developing

an accurate, physically representative model of the battery. In general, all governing

equations are concerned with the conservation of charge and species, and their relation

to the potential throughout the cell at each phase, and at the interfaces between each

phase(5).

To begin, charge must be conserved in both phases, namely the electrolyte phase,

and the solid phase. Because no charge is generated or consumed, the following must

hold in the kth phase, where ki is the current density in that phase.

 0ki  (0.11)

In particular, for the solid phase, the current is carried via electrons, and therefore is

related to the conductivity σ and the potential in the solid phase, s , by Ohm’s Law.

 s si     (0.12)

Furthermore, in the electrolyte, the current is carried by the lithium ions as they move

from one electrode to the other. This is influenced by the potential across the electrolyte,

as well as by the concentration of lithium in the electrolyte, ec .

 11

  lne e D ei c       (0.13)

Here, e is the potential in the electrolyte,  is the conductivity of the electrolyte, and D

is the proportionality constant that relates the movement of the charged species to

diffusive processes. Substituting Equations (0.12) and (0.13) into (0.11), the following

are obtained, respectively.

   0s    (0.14)

    ln 0e D ec         (0.15)

Concerning species conservation, the following equation governs the rate of change of

concentration to the flux of species at some point, assuming no generation or

consumption of chemical species.

 k
k

c
N

t


 


 (0.16)

In general, the flux of a species has three components, as shown below.

 k
k k k k k k

t
N D c i c v

zF
     (0.17)

The first component on the right hand side of the above equation represents diffusion,

with a diffusion coefficient of kD . The second term dictates how the electric field drives

motion, otherwise known as migration, and is related to the charge on the species z,

Faraday’s Constant F, and the transference number tk. The final component is the

convective term, with velocity vector kv . In the electrolyte and solid phases, convection

is usually ignored. Additionally, in the solid phase, migration is additionally ignored,

 12

yielding the characteristic Fick’s Second Law, as shown below, when equation (0.17) is

inserted into (0.16) under these assumptions.

  s
s s

c
D c

t


  


 (0.18)

As will be shown later, thermal models for batteries are a very important consideration,

especially with regards to performance and safety in operation. The governing equation

for this additional phenomenon is an energy balance, as shown below.

 

 
,k p k k

k k k k

c T
v T T q

t





    


 (0.19)

Here, k , ,p kc , q , and k are the density, specific heat, heat generation term, and

thermal conductivity, respectively. The heat generation term, q, is given by the following

relation(6).

 n
n n

n

U
q I U T IV enthalpy of mixing phase change

T

 
     

 
 (0.20)

In the above, nI is the reaction current at the nth electrode, and I is the applied current

density, based on boundary conditions discussed below. The first term on the right hand

side is associated with the enthalpy of charge transfer reactions, and the second is the

electrical work produced by the battery, as V is the voltage across the cell. The last two

terms represent those contributions from gradient development in the electrode, as well

as those from phase transformations in the active material. Finally, now that governing

equations for charge, species, and potential have been derived for each individual phase,

 13

interface relations must now be considered. This is governed by the Butler-Volmer

equation, as reproduced below.

 , ,

0,

a n c n
n n

F F

n n RT RTi i
e e

 
  
 

 (0.21)

In the above, in, is the current density, and 0,ni is the exchange current density for the

reaction at electrode n. Further, αa,n and αc,n are the anodic and cathodic transfer

coefficients, and R is the universal gas constant. The overpotential for the reaction at the

electrode, ηn, and again represents the amount of potential lost to bias the reaction

direction, and is defined by the following equation.

 n s e nU     (0.22)

Notice that this equation is slightly different than that shown in Equation (0.7), as this is

the overpotential associated with the specific electrode n. In the above equation, Un is

the open circuit potential of the electrode, which can vary as a function of temperature,

and is usually empirically fit to data as a function of the surface state of charge, as

discussed later. Any temperature dependence can be modeled as a linear relation with

the following equation, where ,n refU is the open circuit potential at some reference

temperature.

  ,
n

n n ref ref

U
U U T T

T


  


 (0.23)

With these equations, all of the above relationships are now coupled together to form the

basic framework for a battery model.

 14

In the literature(5) several methods have been introduced to solve the above

system, including Direct Numerical Simulation (DNS), and other volume averaged

methods. In the DNS model, a discretization scheme is employed so that every

computational cell in the domain represents a single phase, whether electrolyte or solid.

Concerning a porous electrode, two discretiztions of this region are shown below, with

different mesh sizes.

Figure 5. Different discretizations of insertion electrodes provide a particular level of
resolution of the region. As discretization is coarsened, microstructure details are lost,

and so volume averaged methods must be employed.

An obvious issue arises when using this particular method, as increasing the number of

elements in the domain increases computational demand, but may offer increased

accuracy. One of the primary advantages of this method, however, is that the governing

equations discussed above can be directly applied to each appropriate cell as well as the

appropriate coupling between computational cells.

As one coarsens the discretization, a volume averaged approach to the above

equations must be taken as microstructure details are lost and governing equations can

 15

no longer be directly applied(7-10). Because of this, effective properties must be

determined, and are usually empirical in nature, such as by a Bruggeman relation. These

are shown below, for some general transport property P.

 effP P  (0.24)

 effP P



 (0.25)

Here,  and  are the porosity and tortuosity, respectively, and γ is some empirical

value. Using these volume averaged approach to modeling(11, 12), the above equations

can now be rewritten in an appropriate form. Considering charge conservation in the

solid phase, the following relation is used, where eff can be determined from Equation

(0.24) with γ=1(13-15).

   0eff Li

s j     (0.26)

For the charged species in the electrolyte phase, the following equations are used.

    ln 0eff eff Li

e D ec j          (0.27)

Here, eff

D is expressed as a function of the transference number 0t , and mean molar

activity coefficient f (16, 17).

  0 ln2
1 1

ln

eff
eff

D

e

d fRT
t

F d c


 



 
   

 
 (0.28)

Additionally, eff has been calculated using Equation (0.24) with γ=1.5. Analogously to

the above, species are conserved in the electrolyte via the following relation.

  
 

001e e eff Li e
e e

c i tt
D c j

t F F




 
   


 (0.29)

 16

In the above equation, the transference number is usually assumed constant(18), setting

the last term on the right hand side of the above equation equal to zero. Within the solid

phase, the species conservation equation is governed by the following equation.

  
 

Li
s s eff

s s

c j
D c

t F


   


 (0.30)

In both of the above equations, the effective diffusion coefficients have been determined

using Equation (0.24) with γ=1.5. It is to be noted that, in all of the above volume

averaged formulations, Lij is the reaction current at the surface of the electrode n,

multiplied by the specific interfacial specific area asn, or the reactive area per volume, of

that electrode as shown below. Also note, that Lij is zero in the separator.

 , , ,

0,

n s nLi
j a n a c

j
separator


 


 (0.31)

Considering the energy balance in Equation (0.19), the thermophysical properties must

now be altered to reflect the weight of the respective constituents. These are represented

by the following equations.

,p k k p k

k

k k

k

c c  

  








 (0.32)

Further, the heat generation term, q, is also altered, and is now represented by the

following.

  lneff eff effn
sn n s e n s s e e D e e

U
q a j U T c

T
         

 
             

 
(0.33)

 17

The electrode kinetics as governed by the Butler-Volmer Equation must also be changed,

via the exchange current density, as shown below.

   ,
, ,

0, ,max , ,

a n
a n c n

n e s s surf s surfi kc c c c
 

  (0.34)

In the above, ,s surfc is the area averaged concentration of lithium at the interface between

the solid and the electrolyte, and ,maxsc is the maximum allowable concentration in the

specific material for that electrode. The constant k is determined by concentrations and

initial exchange current density.

 During simulation of the cell, initial concentrations and temperatures in the solid

and electrolyte phases are set to be uniform everywhere.

0

0

0

0 , , 0

e e

s s

c c

c c at t and x y z

T T




  
 

 (0.35)

Further, the following conditions are enforced on all boundaries, where n is the outward

normal of the interface.

 0 0ec
and at all boundaries

n n


 

 
 (0.36)

The conditions for the potential in the solid phase are dependent upon which tab the

applied current density, I, is applied, but in general can be expressed as the following

two equations.

0

eff s

s

I at chosen tab
n

at all other boundaries
n







 








 (0.37)

 18

If the model does include thermal effects, Newton’s Law of Cooling, reproduced below

with a heat transfer coefficient h and ambient temperature Tamb, serves as the boundary

condition.

  amb

T
h T T

n



  


 (0.38)

If thermal effects are considered, the temperature dependence of particular parameters

may be modeled using the Arrhenius Equation, shown below, for some parameter P,

activation energy Eact, and the reference value at some temperature, Pref.

1 1act

ref

E

R T T

refP P e

  
   

     (0.39)

To couple the solid state diffusion behavior to the rest of the cell, the structure of the

electrode can be approximated using a pseudo-2D approach, like that shown in Figure 6.

Figure 6. The insertion electrodes are approximated as being composed of small spheres

of radius Rs.

This model was developed by Newman and coworkers in the early 1990s(1). In this

model, the insertion electrodes are comprised of small spheres of radius Rs where,

throughout the volume of each sphere, there is a superposition of electrolyte and solid

phases. The figure below demonstrates these aspects of the model effort for an insertion

electrode.

 19

Figure 7. Doyle and Newman employ a pseudo-2D in the one-dimensional x direction

and the pseudo-two-dimensional r direction.

In this figure it can be seen that there are the active particles as previously discussed,

with two coordinate systems. This particular model employed only one dimension in the

electrolyte, labeled x, and the coordinate r within the sphere. Thus the previously

mentioned volume average equations are solved in the single x dimension, and the solid

state diffusion problem is solved in spherical coordinates, as shown below.

2

2

2s s s
s

c c c
D

t r r r

   
  

   
 (0.40)

Assuming symmetry at the core of the spherical particles, the following boundary

conditions apply, where the coupling to Butler-Volmer kinetics is accomplished by the

condition at the surface of the particle.

0

0

s

Li

s s
s

r r R s

c c j
and D

r r a F 

 
  

 
 (0.41)

 One last simplification to the above model is to assume that the entirety of each

electrode can be represented as a single particle with equivalent surface area(19-21).

 20

This model assumes that transport within the electrolyte can be neglected, and solid state

diffusion is the dominant process.

 As is clear from the above discussion, a decrease in computational cost is

accompanied by an increase in difficulty with respect to governing equations and

parameters. This is best represented by the following figure.

Figure 8. Inverted pyramid scheme illustrates decreasing computational difficulty but
increasing model complexity due to volume averaged quantities. (Adapted from (5))

As one moves down the pyramid, there is a decrease of computational difficulty as the

discretization process is coarsened, which, however, results in larger model complexity

due to volume averaged quantities.

 21

Solid State Diffusion Related Model Simplifications and Expansions

 In solving the model previously discussed, Doyle and Newman employ the use of

a Duhamel superposition integral to solve the solid state diffusion equation for the

spheres. It has been found that in carrying out these computations a severe time cost is

incurred, as the solution to every time step must remain in computer memory and

accessed during every calculation. Others have developed less demanding methods to

approximate this equation and thus reduce the time taken for computation. In general,

the equation to be solved is Fick’s law of diffusion, given below, in spherical

coordinates.

 2

2

1s s
s

c c
r D

t r r r

   
  

   
 (0.42)

In the above equation, the diffusion coefficient, Ds, may be a function of concentration,

so it has been left in the differential. In some preliminary first approximations for

batteries and fuel cells, Wang et al. implemented a diffusion length method to solve the

above equation(22, 23), and did show accurate results when the model was compared

against the literature. Further, Liu(24) employs a pseudo-steady-state method (PSS), and

is able to obtain accurate results for several boundary conditions, including a sinusoidal

flux at the surface of the particle. Another possibility for simplifying the above problem

is to assume a particular solution for the concentration profile in the sphere. One such

study was performed by Subramanian and coworkers(25, 26), where they employ either

employ a two or three parameter polynomial model within the sphere as shown in

Equations (0.43) and (0.44).

 22

      
2

2
,

p

r
c r t a t b t

R

 
    

 
 (0.43)

        
2 4

2 4
,

p p

r r
c r t a t b t d t

R R

   
        

   
 (0.44)

The above parameters a, b, c, and d are solved for using average bulk and surface

concentrations, as well as volume-average concentration flux. Reasonable accuracy was

obtained using these models for long times, however it was noted that special care would

need to be taken when short times or pulsed currents were considered. Further

expansions on the above approximations can be made, and are discussed in the

References(27), and the uses of this model are very widespread, as can be viewed in the

literature(19). A comparison study between the polynomial approximation, the PSS

method, and a corrected diffusion length method was completed by Zhang et al.(28).

Compared against the Duhamel Superposition Integral for a porous electrode, it was

concluded that the higher order polynomial method or the PSS method should first be

considered in approximate methods for porous electrodes. Smith and Wang employed a

finite element method within the sphere to approximate the solution in their investigation

of a cell to be used in a hybrid electric vehicle (HEV)(13). As illustrated in their work,

the equation in spherical coordinates is first transformed to planar coordinates, where the

elements are first established. This discretized system is then transformed back into

spherical coordinates and represented in a state space form, where it is then rewritten as

a transfer function and discretized in time. The results found indicate good accuracy

under certain prescribed conditions, and studies are completed against the Duhamel

 23

superposition integral, as well as the approximation from Reference(22). The authors in

Reference (29) compare and contrast the above models, and investigate two additional

methods for solving the solid phase diffusion problem in the spherical particles. One

employs an eigenfunction based Galerkin collocation, and the other uses a finite

difference method with uneven node spacing. In particular, for the latter case, the

objective was to optimize the node spacing for the solution procedure, which was

neglected in the work by Smith and Wang. The finite difference method is also

developed below. In the literature a second order Taylor Series expansion of the

equations were made, with variable step size. It was found that unequal node spacing can

increase computational efficiency as there is a great computational cost for each

additional node. To compare the performance of the two above methods with the full

numerical solution, simulations were carried out at rates of 5C and 10C. Excellent

agreement between the models was shown, and a very large reduction in computational

time was realized. Additionally, it was also mentioned that in nonlinear cases, where the

diffusion coefficient is a function of concentration, the finite difference method can be

optimized in terms of node spacing to accommodate the higher complexity while still

keeping the computational cost low. Employing more advanced methods for the single

particle model, the authors in Reference (30) investigate the finite difference in addition

to finite element and differential quadrature methodologies, and compare their results

against the polynomial approximations. It was determined that the best results were

obtained with the polynomial differential quadrature discretization scheme, and that

 24

polynomial approximations perform very poorly when the applied currents were

pulsated.

Inclusion of other Forces

Another important expansion on solid state diffusion is the inclusion of chemical

potential within the activity coefficient, as well as the electrostatic forces that act during

intercalation of the lithium ions. Portnyagin studies these other, non-diffusive, driving

forces (31). The main portion of this work focused on cylindrical particles, instead of

spherical ones, where the lithium intercalates along the radial direction only. In this

model, the following governing equation and non-dimensional variables are used.

1y y

Rf
R R R

   
  

   
 (0.45)

2

,

 s s

s s max s

tD c r
y R

R c R
    (0.46)

Following the notation used in the literature, , , and are the maximum

allowable lithium concentration within the active material, the current lithium

concentration, and the radius of the particle, respectively. From Equation (0.45) can be

derived two forms of the solid state diffusion, one where the activity coefficient, , is

held constant at 1, or when Equation (0.47) is used.

  
  

7
1

2

ln γ Ω
1 1 1 s ss

s

d
f s s y y

dy RT

 



 
      
 

 (0.47)

 25

In the above, Ωs are the parameters that described the deviation from ideal behavior due

to ion-ion interaction. In addition to activity effects, migration due to electrostatic effects

can be included with a different formulation of Equation (0.45), as shown below.

2

,

1 1
()s

s s max

Dy y
R div E

t R R R R Fc


   
  

   
 (0.48)

In the above, is defined as follows,

2

,
a s

s max

N D e
yc

kT
  (0.49)

where , , , , and are Boltzmann’s Constant, Avogadro’s Number, the

elementary charge, and temperature, respectively. Furthermore, the divergence of the

electric field, E , is given by Equation (0.50).

  ,

avr

,1 0

2 s max

n

s ef

Fc
divE j y y

R


 

   (0.50)

Here,  is the delocalization parameter, ,1ef is the effective conductivity in the solid

phase, and 0 is the dielectric constant. For cylindrical particles, the following equation

is additionally used to determine the non-dimensional average concentration, avry .

1

avr

0

2y yRdR  (0.51)

Using the other equations contained in the literature, four simulations, using different

permutations of the above two effects, were solved at galvanostatic conditions. In every

 26

case it was found that those models that incorporated the electrostatic components

reflected higher battery capacitance and function time.

 One important factor in the operation of lithium ion batteries is the stress that is

generated as ions move in and out of insertion type electrodes. Such stresses can cause

fragmentation of active material which leads to losses in capacity and battery life. Many

studies have been performed on this particular issue, such as that performed by

Christensen and Newman(32-34). Here, pressure diffusion is included in the transport

equation due to stress formation, so that the flux equation becomes that shown below.

   ,
LiS LiS LiS

LiSLiS LiS LiS S LiS S LiS

x x M p
N x N N cD V

r RT r




    
      

   

 (0.52)

In the above, Ni is the flux of either occupied sites LiS, or unoccupied sites, S, and αLiS, is

a thermodynamic factor which influences the diffusivity of the lithium ions. Further, one

will notice the influence of the local pressure, p, through LiSV , LiSM , and ρ, which are

the partial molar volume and molar mass of occupied sites, and the total density,

respectively. Important conclusions drawn indicate that stresses will increase in the

materials at high charge rates, and are also linked to particle size where fracture can be

reduced with reduction in particle size. Cheng and Verbrugge(35, 36) approached stress

as analogous to that generated during thermal diffusion, where the spherical particle is

treated as an isotropic linear-elastic solid. Using this assumption, the relations between

stress, σ, and strain, ε, in the radial and tangential directions r and θ can be expressed

using the following equations.

  
1 1

2
3

r r C
E

      (0.53)

 27

  
1 1

1
3

r C
E

           (0.54)

In the above, E, C, ν, and Ω are Young’s Modulus, the local concentration, Poisson’s

Ratio, and the partial molar volume of lithium, respectively. Their results indicate

similar conclusions as before, specifically concerning the particle size, where the particle

radius should be reduced to the nanometer range.

 Finally, one more expansion of the solid state diffusion model is completed by

White et al.(37), where energy equations are included to solve for the thermal behavior

of the cell during operation. The approach used here is actually the single particle model

as discussed previously, where the entire electrode is viewed as one particle. In this

particular work, the focus is on the solid state diffusion processes only, and thus a

uniform current density is assumed across the electrode. This assumption is only

accurate for low to modest discharge rates. The potential drop in the electrolyte, cellR , is

modeled as a temperature dependent resistor that is based upon fits to data collected

during experiment. The energy balance used to determine thermal variation in the cell is

as shown below, and is similar to that discussed in Equations (0.19) and (0.20).

  p n
p p n cell

U UdT
vC IT I IR q

dt T T
  

 
      

  
 (0.55)

Here,  , v , and pC are the density, volume, and specific heat capacity of the cell.

Further, iU is the open circuit potential of electrode i, and is determined by

experimental fits to data as a function of the surface concentration, and q is the heat lost

by the cell to the surroundings, modeled by Newton’s Law of Cooling. The second term

 28

in Equation (0.55) is the irreversible heat generated by electrode polarization. Using this

thermal model for single particle electrodes, appropriate simulations were carried out

and parameters were adjusted to fit experimentally acquired data. Further simulation

showed good agreement with experimental data, as well as with another model

developed by Kumaresan et al.(38).

Experimental Determination of Material Parameters

Computational models, while extremely powerful tools, inherently rely upon

specific material characterization as inputs. While the literature on experimental methods

for determining the behaviors of various materials to be used in battery modeling is vast,

some significant work was performed by Tarascon and coworkers. Their studies focused

on cells employing a LixMn2O4 cathode with a carbon anode(39-42). In their work, the

cyclic behavior of the cell was studied under different temperatures, and they optimized

the cell performance by using different electrolytes. It was found that cycle life could be

maintained even at high temperatures, and that the cell could be safely discharged to 0V.

Other electrolytes were further investigated and developed to continue to improve the

performance of the system. In this investigation, experimental techniques were used to

classify many important modeling parameters, including diffusion coefficients and

capacities of materials.

A novel investigation was completed by Verbrugge and Koch (43). They

additionally completed a follow-up study using particular models to isolate desired

physiochemical properties (44), such as the open circuit potential function U. In these

 29

two studies, the properties of a single carbon fiber electrode were isolated, and later used

in a new mathematical model for intercalation into such a fiber. The main advantage of

this study was that by using a single carbon fiber the effects of other additives and

components like conductive binder and current collectors were not present. In this way

the carbon itself and its respective properties could be directly identified. In this

mathematical formulation, intercalation only occurs in the radial direction of a carbon

fiber, modeled as a cylinder, and the open circuit potential needed to be determined as a

function of the degree of intercalation, and is expressed in Equation (0.56).

 Θ S S

I I

Θ

Θ
FU FU RTln RTln




   (0.56)

In the above, the subscripts ‘S’ and ‘I’ stand for those properties relating to the vacant

site available for reaction and the intercalating species, respectively. Additionally, and

γ are the fractional occupancy and activity coefficients, respectively. The standard cell

potential, Uθ, is given below.

 0 0

Li S IFU       (0.57)

The reference states chosen for this model require the following relations between the

activity coefficients and the fractional occupancies.

 1 0

1 1

I I

S S

as

as





  

  
 (0.58)

 30

To solve for the above activity coefficients, a binary interaction equation is used to

related I-I interactions with non-vanishing free energies, GE, that cause deviation from

ideal behavior. This is expressed as a series, shown in Equation (0.59).

 k

I

2

Ω Θ
N

E

k

k

G


 (0.59)

In this series, is the self interaction coefficient that characterizes I-I interactions and

 is the frequency of such interaction. This series approaches a finite amount as the

probability of larger scale interactions decreases with a larger number of interacting

species. Using the above equation, the activity coefficients are given by the following.

    k 1 k

I I I

2I

Ω kΘ 1 k Θ
N

E

k

k

RTln nG
n

 




     

 (0.60)

   k

S I

2

Ω 1 k Θ
N

k

k

RTln


  (0.61)

Substituting these quantities into Equation (0.56) expresses the open circuit potential.

 θ k 1I
I

2I

1 Θ
Ω Θ

Θ

N

k

k

FU FU RTln 




   (0.62)

To determine Uθ and , the authors used their previous experimental work with a least

square polynomial regression fitting routine. Having obtained the open circuit potential

function, the authors moved to test the validity of the model obtained within the carbon

microfiber. Good agreement was made between experimental and theoretical data which

can be reviewed in the literature. Another interesting application of this model was to

determine the sensitivity of the diffusion coefficient as a function of concentration. Two

 31

trials were conducted with a constant diffusion coefficient, and the theoretical results

were found to be very different than those resulting from experiment.

Insertion Electrodes as Packed Beds

 In the above discussion, the psedo-2D model has been employed in numerous

studies to approximate the mesoscopic nature of insertion type electrodes. This is

particularly well suited for these electrodes, as they may be considered analogous to

packed bed rectors(2). They are traditionally assembled by mixing small active particles

with conductive filler and binder as stated previously, giving them the properties of a

packed bed. This mix is then applied to current collectors to form the planar, insertion

type electrodes. Many materials have been investigated to employ here, first beginning

with the carbon and cobalt oxide system previously described. Disadvantages of these

materials included higher cost, and possibilities for safety problems as they became fire

hazards if overcharged, overheated, or overdischarged. Additionally, new materials are

being sought that are more environmentally benign. These included LiMnO2, which

eventually proved to be ineffective due to phase transformations in the crystal lattice, as

well as mixes of Mn, Ni, and Co. One of the latest materials to be investigated is

LiFePO4, which is environmentally friendly and low cost, and has already been used in

commercial electronics. However, this material does suffer from low electronic

conductivity, and so other dopants have been investigated to improve performance.

 32

3D Architectures

 While insertion type electrodes have attracted a large amount of focus in terms of

modeling and experimentation, some of the next generation of batteries may consist of

electrodes that are no longer suited to be considered in the above manner, as

microstructure details will become important. Recently, it has been realized that

improved use of available cell area may greatly increase the performance of battery

systems through the use of 3D electrode architectures, particularly for use with

microelectromechanical devices (MEMS). As these devices are made smaller, the

scaling of a 2D electrodes causes drops in power, and are thus unable to meet necessary

requirements. As explained in the literature(45, 46), 3D electrodes intend to take

advantage of the space available in the third dimension, as opposed to confining the

geometry to a 2D, or planar electrode. This can be best understood by considering the

following figure, which compares these two designs.

 33

Figure 9. (A) A 2D planar electrode does not take advantage of the full area available.
(B) A 3D structure using the ‘height’ dimension makes far better use of available cell

area.(Adapted from (46))

Here, 2D and 3D electrode designs are confined to equivalent cell footprints. However,

it is clear that greater use is made of available space by construction of anode posts or

rods. With the advent of 3D microstructures, there are numerous possibilities for

architecture, as shown below in Figure 10.

 34

Figure 10. Four possible designs for 3D architectures, including (A) interdigitated rod

arrays, (B) a continuous rod array, (C) interdigitated plates, and (D) sponge like
geometry.(Adapted from (47))

Here is shown four of many microstructures that are probable designs for 3D electrodes.

One of the more intuitive designs is the interdigitated plates (C), where the electrodes are

meshed in the above configuration. However, there is no reason for both electrodes to

have such a defined ‘structure.’ An example of this is illustrated by the continuous

electrode (B), where a rod array serves as one electrode, is coated with a thin film of

electrolyte, and the second electrode fills the remainder volume. This approach is also

employed with the sponge geometry (D), where now one electrode is in a random

configuration. Finally, a more challenging design is the interdigitated rod electrodes (A),

as with this design there are many different possibilities, including staggered and aligned

rod arrays, as well as the spacing between each rod type.

In the above figure it is clear that the 3D architecture offers new design

possibilities for battery design, and can offer improved performance. This is possible by

 35

increased amounts of active material with large surface area, and intimacy between the

two electrodes. This latter point is critical, as short diffusion lengths reduce the ohmic

and other potential drops that occur during ion transport through the electrolyte. Other

advantages are a high power density, due to the low losses incurred by the diffusion path

lengths, and high effective mass utilization. These advantages, however, are not without

physical conditions that must be considered carefully in design. For instance, with

respect to separator thickness, there is a lower limit on the distance between the two

electrodes, as electron tunneling may occur if the distance of separation is on the order

of 1nm. This in essence would provide a short for the battery and render it useless. Also,

even if the thickness is great enough to prevent electron shorting through tunneling, the

impact of electric fields on transport in the electrolyte become significant, as the double

layers originating from each electrode may encounter one another. Ion transport through

such conditions are not well known, and appropriate relations including transport,

electrostatics, and statistical mechanics will need to be employed(48, 49). Further,

limitless extension into the third dimension to increase capacity is ultimately limited by

the electronic conductivity of the electrode material, as ohmic drops within the

electrodes themselves may outweigh the benefits of increased capacity, and this is

discussed later. Also, 2D designs will always have a greater energy to volume ratio, as

the electrolyte does not constitute a great amount of the cell volume, unlike in 3D

batteries.

 The approaches to manufacturing 3D architectures are wide, but are capable of

producing almost any geometry imaginable. These methods include lithography,

 36

chemical vapor deposition (CVD), electroless deposition, and electrodeposition. While a

functional 3D battery has yet to be assembled, numerous studies have laid significant

ground work towards such a goal. In particular, for creating the ‘sponge geometry’ in

Figure 10, aerogels and ambigels can be employed(50). What is advantageous about this

method is that the pores developed are through connected, meaning that developed

structures are in good contact, which is key for transport. The interdigitated rod array has

already been manufactured via micromachining methods, and the resulting carbon rods

showed good reversibility(51). To create rods of different materials, silicon molds can be

formed using photolithography and other methods, so that any powder may be

employed. It is important to note here that during the fabrication process, errors may be

incurred when a specific geometry is targeted. It therefore becomes important to

understand stochastically the impact of such small perturbations.

To accompany the above experimental work in creating these architectures,

computational and mathematical tools will need to play a key role in refining the design

parameter space. Some studies have been completed on these types of structures using

advanced computational tools, particularly finite element analysis. The authors in (52)

made use of this approach to study the uniformity of the current distribution in several

3D microstructure designs. It has been mentioned that obtaining a uniform current

distribution is key for battery performance when using 3D electrodes, especially in the

utilization of active material. The geometries considered focused primarily around rod

arrays where both the anode and cathode were in rod form, as shown in the interdigitated

electrodes from Figure 10. Alternative designs were made by having parallel rows of

 37

anode and cathode rods, or with an alternating pattern in each row. Further, a study was

conducted where an anode rod was surrounded by six cathode nearest neighbors in a

hexagonal fashion, as well as rods with a triangular cross-section. It was concluded that

uniform current densities were very difficult to obtain, and can vary greatly from one

geometry to another(52). The most uniform current densities were obtained with the

hexagonal arrangement, but for the anode only. It was underlined, however, that this

might be advantageous should one electrode material require a more uniform current

density than the other, or if there need not be an equal number of both. Significant

contributions have also been made by Zadin et al., particularly with the interdigitated

plate structures, otherwise known as the ‘trench’ design, as shown in Figure 10 (53, 54).

Focused around the height of the plates, as well as the electrical conductivity for electron

transport, the results indicated that the most favorable range for conductivity was such

that the difference between the two electrodes should be no more than one order of

magnitude. Additionally, it was found that even in this optimized regime, solid state

transport was the limiting parameter for the battery as a whole, and that tuning the plate

height exhibited a limited effect.

 It is clear from the above discussion that computational tools will play a key role

in identifying and gauging the performance of 3D electrode architectures. This is

particularly true as these systems are currently in nascent stages, and the design space, as

previously mentioned, is still extremely large. The aim of the current work is to aid in

this process by using first principles approximations to gauge the performance of several

types of 3D electrode architectures. The results obtained from this study will help to

 38

isolate advantageous geometries, and develop strategies for studying system behavior

that can be used in later, more developed models and tools.

 39

CHAPTER II

ELECTRODE ARCHITECTURE GENERATION AND CELL DESCRIPTION

The objective of this study was to use first principle approximations to quantify

the performance of various 3D structures through discharge behavior, and the globally

averaged parameters of bulk and surface concentration. This was accomplished by

developing several codes in MATLAB® software to first generate targeted

microstructures to serve as the anode morphology. These 3D architectures were similar

to the aperiodic structures described in Figure 10, and the effects of particle size

distribution, particle shape, and overall morphology were included. Having generated the

desired structures, MFiX® software was used to solve the diffusion problem in two

dimensions using a finite volume formulation. A single particle cathode was additionally

simulated in MATLAB® using the pdepe package. Post processing codes in

MATLAB® were developed to solve for voltage profiles from the obtained surface

concentrations. Further, two models were studied where both electrodes were of 3D

design. The first was an aperiodic geometry, generated by additional MATLAB® codes,

and the second was an interdigitated plate design with equal surface to volume ratios as

the aperiodic design. From the results obtained, microstructures with advantageous

properties may be targeted for implementation in fuller, more developed models.

 40

Microstructure Generation

To develop 3D architectures in a controlled manner, the current work used an

approach similar to those using fractal methods (55-63). The fractal structure was

represented by branch lengths, parent particles, and child particles as shown in Figure

11.

Figure 11. A cylindrical child particle is placed along the branch length only when the

arc length swept between the parent particle’s nearest neighbors is large enough to

accommodate it.

Unlike previous efforts, a number of spawning particles was first specified by the user,

and set as the 0th generation. Each particle then chose a random maximum number of

branches to form, and each branch then chose a random particle type, whether spherical

or cylindrical. The dimensions of that particle, or double the values of the major and

minor axes as illustrated above, were based upon a normal distribution of values. One of

these dimensions was placed along the branch direction, therefore setting the other

perpendicular to it, if applicable, as spherical particles only required one dimension to be

specified. The branch length, or the distance between the centers of the parent and child

particle, was set to have a maximum value of the average of the parent and child

 41

dimensions along the branch direction. A random percentage of that maximum was then

chosen as the final branch length. This value then served as a radius about which a

sweep was conducted to determine the parent particle’s nearest neighbor particles. Based

upon the location of those neighbors, an angle range was defined. An arc-length was

then formed using this angle range, as shown by the dashed line in Figure 11, and the

child particle was only allowed to be placed if this arc-length was larger than that

particle’s size by some criterion. The angle at which the particle was placed, relative to

the coordinate system formed at the center of the parent particle, was then set to within a

certain percentage of the midpoint of the angle range previously formed. This process

was allowed to proceed until either a child particle could not be placed due to space

restriction, or when the maximum allowable number of child generations was met. The

coding for this procedure was completed in MATLAB® software, and is given in

Appendix B. Further, after having created a base architecture, a code was developed to

take this architecture and slightly perturb the values of the child angles and branch

lengths, and is given in Appendix B. This procedure did not include initial spawning

particles. This allowed for different realizations of one particular structure to be formed,

and in doing so may lend insight to the impact of fabrication errors on particular

microstructures in real cells. Typical output from the MATLAB codes are shown below,

for a base structure in blue, and a perturbed realization in red.

 42

Figure 12. Typical output from the fractal geometry code developed in MATLAB®. A

base structure in blue has been perturbed to yield a new realization in red.

Having completed generating a particular anode morphology, MFiX® software

was used to solve the diffusion problem using the cut-cell option (64). MFiX® is a

general purpose, computational code developed by the National Energy Technology

Laboratory (NETL) capable of modeling various phenomena, including heat transfer,

chemical reactions, and hydrodynamics(26). MFiX® software is unique in its ability to

capture particular geometry using a Cartesian Grid by shaping the cells accordingly

when they intersect with the problem geometry. This is illustrated in the following

figure.

 43

Figure 13. The cut-cell technique is used to shape the Cartesian Grid to the specified

geometry. Here, the thick line intersects the Cartesian Grid, forming cut cells. The
velocity component uec must be adjusted to account for the realignment of cell centers.

Adapted from (64).

To generate the computational mesh using cut cells several procedures must take place.

A search for cut cells is initially completed, and intersections points are calculated

between the Cartesian Grid and the specified geometry. This is demonstrated in the

following figure, and also underlines the importance of proper cell size, as only so many

intersections will be considered by the mesh generation technique.

 44

Figure 14. The intersections between the geometry defined (blue line in (A)) and the

Cartesian Grid are determined to ultimately shape the resulting cut cell shown in (B). If
improper cell size is used, some curvature aspects may be lost. Adapted from (64).

Once complete, the cell faces are computed similar to convex polygons and cell volumes

are computed by splitting the cells into pyramids, computing their volume, and then

adding them together. Because cut cells are generated, nodes and face centers are

realigned, and so adjustments must be made to the quantities that are evaluated at those

points. For example, as shown in Figure 13 and in the case of a no slip wall, the velocity

on the east face of node P is not the same as the velocity component that is used for the

east node. Therefore, a new component uec must be determined, and is approximated by

using the ratio of the distances from the wall to the centers of the respective faces, as

shown in the following equation.

 ec
ec e

e

h
u u

h





 (0.63)

Other corresponding adjustments are made, and may be viewed in the literature(64).

 45

Several studies have been completed to verify the cut cell technique, particularly within

fluid dynamics and the study of fluidized beds (65, 66). The cut-cell technique is very

flexible, as shown in the following figure, for generating almost any geometry

imaginable.

Figure 15. Depending on the type of flow and Boolean expression, the cut-cell
technique is capable of capturing numerous geometrical shapes on a structured,

Cartesian Grid. Adapted from (64).

Using the appropriate definition for the type of flow, and Boolean Expressions, the two

circles in Figure 15 can be used to create very complicated geometry. Numerous,

standard geometries, called quadrics, are available in MFiX for manipulation and

combination to produce almost any geometry. Furthermore, quadrics can be grouped,

and used with further Boolean expressions to form more complicated geometry, as

shown in the following figure.

 46

Figure 16. Geometries in the Cut Cell Technique in MFiX® can be described using
quadrics. Here, several quadrics numbered in (A), as well as groups of quadrics (B)

through (E), which are combined to form a spouted bed geometry with a stabilizer (F).
Adapted from (64).

 From the above discussion it is clear that MFiX®, especially with respect to the

cut cell mesh generation technique, is ideal for this study, as simple shapes can be used

to create very complicated geometries.

The scalar transport equation to be solved in this study is as shown below, where

m , m , and mnX are the void fraction, density, and mass fraction of the nth species in

the mth solid phase. Further, miU , mnD , and mnR are the velocity vector, diffusion

coefficient, and rate of production due to chemical reaction, respectively(67).

     mn
m m mn m m mi mn mn mn

i i i

X
X U X D R

t x x x
   

   
   

    
 (0.64)

Using a finite volume formulation, the above differential equation is rewritten into an

algebraic expression by integration over a control volume. Doing so on the transient

 47

term on the left hand side over a control volume at the node P is approximated by the

following expression.

      
o

m m m m m mP P

V
dV

t t
        

   
   (0.65)

Here, the superscript o indicates a previous time step, t is the discrete time step, and

V is the discretized volume. The next term on the left hand side of Equation (0.64) is

the convective term, and is computed by the following equation.

 

     

     

     

     

     

     

m m mi

i

ee m m m m m eE P e

ww m m m m m wE W w

nn m m m m m nN P n

ss m m m m m sP S s

tt m m m m m tT P t

bb m m m m m bP B b

v dV
x

u A

u A

v A

v A

w A

w A

  

       

       

       

       

       

       








 

 

 

 

 



 (0.66)

In the above equation, the standard notation for node locations (in three dimensions)

have been used, where N, E, S, W, T, and B, represent nodes at the north, east, south,

west, top, and bottom directions relative to the node at P. Lowercase letters indicate the

faces of the control volume at node P, and u, v, and w are the three velocity components.

Notice that the above equation is the computation of weighted fluxes at the faces of the

node P with area A. In order to calculate these weights, e and e ,MFiX® utilizes

various downwind factors to improve solution accuracy for the convective terms, and is

dependent upon the scheme chosen as can be reviewed in the literature(68). Of primary

 48

interest to this study is the diffusive term on the right hand side of Equation (0.64). Here,

integration over the control volume yields the following.

e w

i i i ie w

n s

i in s

t b

i it b

dV A A
x x x x

A A
x x

A A
x x

  

 

 

  

 

 

        
         

        

    
      

    

    
      

    



 (0.67)

In the above, the diffusive fluxes are approximated by finite differences, and an example

for the east face is as shown below.

   E P
e e

i ee

A
x x

 

   
   

  
 (0.68)

The diffusion coefficients,  , as implied by the above equation, are determined at the

particular face, using a harmonic mean of the properties at the two nodes, as shown

below.

  
   

   
    

1

1
,

1

e e P E E
ee

P Ee eP E P E

f f x
where f

x xf f

 



   



    
     

        

 (0.69)

Finally, the source term is usually nonlinear in nature, and is first linearized as shown

below.

 '

PR R R   (0.70)

Once this is complete, integration over the control volume is approximated by the

following equation.

 49

 '

PR dV R V R V     (0.71)

Combining Equations (0.65), (0.66), (0.67), and (0.71) yield an equation of the following

form, with coefficients nba , where the index corresponds to either N, E, S, W, T, or B.

P nb nb

nb

a a b   (0.72)

It is important to mention further that in order to avoid large fluctuations in  , the

continuity equation should be multiplied by  and subtracted from Equation (0.72). The

reason for this is outlined in the literature(69), and yields the following requirement on

the coefficients in Equation (0.72).

P nb

nb

a a (0.73)

For modeling the single particle cathode, as described previously for the anode

study, MATLAB® software was used utilizing the built in partial differential equation

solver, pdepe. This method is specifically tailored to solve boundary and initial value

problems of parabolic or elliptical type, as shown in the following equation.

 , , , , , , , , ,m mu u u u
c x t u x x f x t u s x t u

x t x x x

           
       

          
 (0.74)

Here, x and t, are the single spatial and temporal variables, with solution u. The functions

f and s are the flux and source terms, and c is responsible for coupling multiple equations

if required. The geometry under consideration, whether plate, cylindrical, or spherical is

modified by the choice of the exponent m to 0, 1, or 2, respectively. The expected

boundary conditions are an initial value throughout the domain at the initial time t0 and

 50

appropriate Neumann or Dirichlet conditions on the domain boundaries, a and b. These

are given by Equations (0.75) and (0.76).

    0 0 0,u x t u x at t t  (0.75)

    , , , , , , 0
u

p x t u q x t f x t u at a x b
x

 
    

 
 (0.76)

In pdepe, MATLAB® first uses a specified number of mesh points to discretize the

problem in space, which then yields a system of ordinary differential equations in time.

Another built in solver, named ode15s, is then used to solve the integration problem over

time, which can use either numerical differentiation formulas, or backward

differentiation formulas, which are also known as Gear’s Method(42). As indicated by

the usage of this package, orders of accuracy are only in the low to medium range, and

thus a fine mesh is needed. More information on these methods can be found in the

references (70-72).

The diffusion problem in spherical coordinates is easily adaptable to the above

forms and boundary conditions, and is reproduced below in different forms for clarity of

comparison for a time period between t0 to tf, and over the radial coordinate from the

center of the particle to the surface.

2 2

0

,

, 0

0 0

0

s f s

Li i

s

s

c c
r r D t t t and r R

t r r

c
at r

r

jc
at r R

r D

   
     

   


 




  



 (0.77)

 51

Note that in the above boundary condition at the surface of the particle, the sign of the

flux must be correctly specified.

Cell Setup

 In order to study the effects of microstructure, appropriate, realistic cell

properties needed to be obtained. White et. al(19, 37, 38, 73) have completed numerous

studies on LiCoO2-mesocarbon microbead pouch cells, and in the process have well

documented needed material properties, initial conditions, and equilibrium potential

functions. Relevant quantities for this study are shown in the following table.

Table 1. Material properties and other quantities for modeling the lithium ion cell(37).
*Properties that apply to both the anode and cathode.

Parameter Symbol Anode (i=n) Cathode (i=p) Units

 Electrode Active Area Si 0.782 1.12 m2

Solid State Diffusion Coefficient Ds,i 3.90×10-14 1.00×10-14 m2/s
Particle Radius Rp 12.5 8.5 μm
 Thermal Rate Constant k 1.80×10-11 6.70×10-11 m2.5mol-0.5s-1

Maximum Concentration cs,max 31833 51410 mol/m3

Initial State of Charge SOC .7522 .4952 -
 Operating Temperature T 298* K
Electrolyte Concentration ce 1000* mol/m3

1C Rate C 1.656* A

Using an approach similar to their investigation in to the thermal behavior of these cells,

this study first assumed that at slow discharge rates Equation (0.78) could be used to

determine a uniform flux on the electrode surface.

 ,

,

app i

Li i

i
j

nF
 (0.78)

 52

 ,

app

app i

i

I
i

S
 (0.79)

In the above, appI , ,app ii , Si and ij are the applied current to the cell, current density over

the ith electrode, active surface area of the ith electrode, and lithium flux on the ith

electrode. Knowing the flux on the structure, and with knowledge of the surface

concentrations of both the anode and cathode at each temporal moment, the Butler-

Volmer Equation was used to solve for the overpotential, i , at the ith electrode at that

moment. Below is shown the appropriate form of this equation for this study.

  , max, , ,

n pnpn
i i

FF

Li i i e i surf i surf i RT RT
j k c c c c

e e

     
 

 (0.80)

In the above equation, ec , and ,surf ic are the electrolyte concentration, taken to be

constant at the initial value of 1000 mol/m3, and the surface concentration of the ith

electrode, respectively. Additionally, αc and αa are the transfer coefficients(35) taken to

be .5 for both the anode and cathode. Furthermore, as shown in the literature, the

equilibrium potentials for the anode and cathode at any point in time can be determined

from empirically derived functions of surface concentration, as shown below.

 -49.20361x -254.40067x 49.97886x -43.37888
U =.13966+.68920e +.41903e -e -

.028221arctan(22.52300x -3.65328)

-.01308arctan(28.34801x -13.43960)

n n n

n

n

n

 (0.81)

-42.30027x +16.56714

78.24095x -78.68074

U =4.04596+e -.04880arctan(50.01833x -26.48897)-

.05447arctan(18.99678x -12.32362)-e

p

p

p p

p

 (0.82)

 53

In the above equations, xi is the ratio of the surface concentration to the maximum

intercalatable concentration for the particular material, also known as the surface state of

charge SOCsurf, as given in Equation (0.83).

 ,

max,

, ,
surf i

i

i

c
x i n p

c
  (0.83)

Having knowledge of the equilibrium potential and overpotential values at each

electrode, the voltage across the cell can be calculated using Equation (0.84), assuming

there is no potential drop across the electrolyte.

    p n p nV U U      (0.84)

Additionally, the capacity of the cell, in amp-hours, is calculated via the following

equation.

 1

3600
appCap I dt  (0.85)

 54

CHAPTER III

RESULTS AND DISCUSSION

 In order to satisfy the objective of this study, the behavior of various 3D

microstructures, in terms of concentration distribution and global cell performance,

needed to be studied in detail. MATLAB® software was used to generate desired

microstructures under provided conditions, which included variations in particle shape

and size, as well as overall structure morphology. MFiX® software, for the first time as

per the author’s knowledge, was used to simulate and extract quantities of interest from

these morphologies. Post processing codes then utilized these data to provide insight into

global cell behavior through discharge performance. The following discussion will first

analyze those results concerning 3D anode structures that were discharged versus a

single cathode particle. These results include the depth of discharge, relaxation

phenomena, and recharge efficacy over cyclical conditions. Additionally, voltage and

performance curves will also be considered. Two 3D cell geometries, equivalent in terms

of volume to surface area ratio, will analogously be analyzed over discharge and

relaxation to compare their respective performances. Lastly, the results of a sensitivity

study used to verify the simulation accuracy will be discussed.

 55

3D Anode Architectures

 The above described MATLAB® codes were used to generate four base

microstructures, as well as five perturbed realizations of each, to model the anode

morphology. These morphologies differed in particle size distribution, type, and overall

structure. These are illustrated below. Figures 17 and 18 illustrate the Spherical Column

1 and 2 structures, respectively. The first of which was constructed using a mean particle

radius of 12.5μm and a standard deviation of 1 μm, and the latter with 8.5μm and 2 μm,

respectively. Spherical Tree-like structures are illustrated in Figure 19, and were

constructed with the same distribution as Spherical Column 1, but with relaxed

restrictions on branching behavior. The final microstructure, in Figure 20, is the

Spherical/Cylindrical Column structure, which includes cylindrical and spherical

particles, whose size was again drawn from the same distribution as Spherical Column 1.

56

Figure 17. Spherical Column 1 Base(A) and Realizations 1 through 5(B-F). All dimensions in micron.

57

Figure 18. Spherical Column 2 Base(A) and Realizations 1 through 5(B-F). All dimensions in micron.

58

Figure 19. Tree Base(A) and Realizations 1 through 5(B-F). All dimensions in micron.

59

Figure 20. Spherical/Cylindrical Column Base(A) and Realizations 1 through 5(B-F). All dimensions in micron.

60

However, this parameter only determined the major axis for the cylindrical particles to

be placed along the branch direction, while the minor axis, or radius of the cylinder, was

determined by enforcing a 2 to 1 length to radius ratio. All branch lengths were

determined by a random percentage between 95% and 100% of the mean of the child

and parent major axis. Regarding the perturbed incarnations, the branch length and

particle angles were allowed to change by a maximum of 20% and 30%, relative to the

base case, respectively.

Concentration and Relaxation Behavior

Using MFiX, all structures were discharged at the 1C rate to a cutoff potential of

3V. A single particle model was employed for the cathode, using MATLAB® software

to solve the diffusion problem in spherical coordinates as described previously. After

discharge, the structures were allowed to relax for 2 hours, and the changes in overall

bulk concentration were monitored. For the 1C discharge rate, the following figures

illustrate this process over the two hour period for all four microstructure types.

61

Figure 21. Average bulk concentration for the Spherical Column 1 structures after 1C

discharge and 2 hour relaxation.

Figure 22. Average bulk concentration for the Spherical Column 2 structures after 1C

discharge and 2 hour relaxation.

0 2000 4000 6000 8000 10000 12000
1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Time (s)

A
v
e

ra
g

e
 B

u
lk

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m3

)

Base, V/A=10.4m

Rel 1, V/A=10.2m

Rel 2, V/A=11.5m

Rel 3, V/A=10.5m

Rel 4, V/A=10.5m

Rel 5, V/A=10.4m

0 2000 4000 6000 8000 10000 12000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Time (s)

A
v
e

ra
g

e
 B

u
lk

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m3

)

Base, V/A=7.01m

Rel 1, V/A=6.87m

Rel 2, V/A=7.03m

Rel 3, V/A=6.90m

Rel 4, V/A=7.20m

Rel 5, V/A=6.89m

62

Figure 23. Average bulk concentration for the Spherical Tree structures after 1C

discharge and 2 hour relaxation.

Figure 24. Average bulk concentration for the Spherical/Cylindrical Column structures

after 1C discharge and 2 hour relaxation.

0 2000 4000 6000 8000 10000 12000
1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Time (s)

A
v
e

ra
g

e
 B

u
lk

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m3

)

Base, V/A=9.36m

Rel 1, V/A=9.12m

Rel 2, V/A=9.04m

Rel 3, V/A=9.22m

Rel 4, V/A=9.83m

Rel 5, V/A=9.78m

0 2000 4000 6000 8000 10000 12000
1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Time (s)

A
v
e

ra
g

e
 B

u
lk

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m3

)

Base, V/A=9.35m

Rel 1, V/A=9.36m

Rel 2, V/A=9.44m

Rel 3, V/A=9.88m

Rel 4, V/A=9.42m

Rel 5, V/A=9.33m

63

As is evident, the small perturbations in the realizations of each microstructure do

introduce differences in the discharge process, and this may in some cases be attributable

to the differences in the volume to surface area ratio of each structure, as shown in each

legend. However, there are several cases where behaviors are not explainable by this

ratio. One may consider the Base and Realization 5 of Spherical Column 1, which have

equivalent values of this ratio but do show differences in the depth of discharge.

Realizations 4 and 5 of the Spherical Tree structures additionally have similar values for

this ratio, but show extremely large differences in concentration. There are also

simulations that indicate identical behavior, despite large differences in this ratio. This

can be illustrated by Realizations 2 and 4 of the Spherical Column 2 structures, as well

in the Base and Realization 3 of the Spherical/Cylindrical Column structures. These

differences occur due to the different transport processes occurring in these structures as

the cutoff potential is approached. This can best be visualized if the following contour

plots in are considered, when looking at the lowest concentration values in the structures.

64

Figure 25. Spherical Column 1 Base(A) and Realizations 1 through 5(B-F) after discharge at 1C. All dimensions in micron
and all concentration values in mol/m3.

65

Figure 26. Spherical Column 2 Base(A) and Realizations 1 through 5(B-F) after discharge at 1C. All dimensions in micron
and all concentration values in mol/m3.

66

Figure 27. Tree Base(A) and Realizations 1 through 5(B-F) after discharge at 1C. All dimensions in micron and all
concentration values in mol/m3.

67

Figure 28. Spherical/Cylindrical Column Base(A) and Realizations 1 through 5(B-F) after discharge at 1C. All dimensions in
micron and all concentration values in mol/m3.

68

Considering the above figures, there are clear differences between each anode

morphology, as well as between different realizations. As mentioned before, the Base

and Realization 5 morphologies under Spherical Column 1 show significant differences

between concentration values, despite similar volume to area ratios. Considering Figures

25(A) and 25(F), there are large areas of lithium depletion at the tops of the columns in

the Base case that are not present in the other. Additionally, there are larger

concentrations present in Realization 5 at the core of the structure that have remained

due to differences in transport behavior. Of particular interest is the behavior of

Realization 2, in Figure 25(C). This particular structure has an increased level of particle

interconnectivity as is reflected in the volume to area ratio, as some of the active surface

area has been lost due to the overlap in the upper areas of the columns. This structure has

significant pockets of high concentration near these areas of overlap and this explains the

low depth of discharge shown in Figure 21. This exact same behavior is seen in

Realization 4 for Spherical Column 2, as there is the additional overlap in the column

structures. Note here additionally, that because of the smaller particle mean size used for

these structures, these structures show a far lower concentration after discharge.

Considering the differences are between Realization 4 and Realization 5 of the Spherical

Tree structures noted previously, Realization 4 shows a far more depleted profile, as

shown in Figure 27(E), especially when one considers the left branch. This is due to

increased particle isolation because of the small contact between the branch and the rest

of the structure. Interestingly, with respect to the Spherical/Cylindrical Column

structures, there are large areas of uniform concentration distribution in the cylindrical

69

particles composing the structure. This is due to the lower diffusion length perpendicular

to the cylinder axis. In several cases there exist large concentrations in the centers of the

top most spheres of the structures. This has occurred specifically due to the cylindrical

particles, as the diffusion front has moved quickly through them and upwards to

encapsulate these pockets in the spheres.

To better visualize some of the previously mentioned effects, one may consider

the variance in bulk and surface concentration between the realizations of each

morphology over the discharge period. Shown below in Figures 29 and 30 are four

averaged bulk concentration curves for the four different morphologies where the

average bulk concentration values for each base and respective realizations have been

averaged at each temporal point. Further, a 1 standard deviation bar has been applied to

each curve to illustrate the kind of variance in the concentration values.

70

Figure 29. Average bulk concentration curves for the four morphologies. A 1 standard
deviation bar has been applied at several times.

0 1000 2000 3000 4000 5000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Time (s)

A
v
e

ra
g
e

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

(A)

Spherical Column 2

Spherical Column 1

Spherical Tree

Sph/Cyl Column

3500 4000 4500 5000
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Time (s)

A
v
e

ra
g
e

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

Spherical Column 2

Spherical Tree

Spherical Column 1

Sph/Cyl Column

(B)

71

Figure 30. Average surface concentration curves for the four morphologies. A 1
standard deviation bar has been applied at several times.

0 1000 2000 3000 4000 5000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Time (s)

A
v
e

ra
g
e

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

Spherical Column 2

Sph/Cyl Column

Spherical Column 1

Spherical Tree

(A)

3600 3800 4000 4200 4400 4600 4800

6000

7000

8000

9000

10000

11000

12000

13000

14000

Time (s)

A
v
e

ra
g
e

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
) Spherical Column 1

Spherical Tree

Sph/Cyl Column

Spherical Column 2

(B)

72

As is clear from the bottom of Figure 29 the Spherical Tree structures have the largest

variance in bulk concentration over the course of discharge. This can be explained

visually if the images in Figure 19 are considered, as the Spherical Tree structures show

the most apparent change in overall morphology when the described perturbations were

applied. With the inclusion of multiple branches, and under the same perturbing

conditions, these extra branches offer increased degrees of freedom by which the overall

structure can be altered when compared to the others. Further, as illustrated in Figure 29,

the Spherical/Cylindrical Column structures follow next in the greatest amount of

variance for bulk concentration, but also closely match the average bulk concentration

values of the Spherical Tree structures. By this evidence, the inclusion of different

particle types is also an extra degree of freedom by which the variance in structure

performance can increase. This result is especially striking, as the inclusion of a larger

particle distribution, as in the case of the Spherical Column 2 structures, does not seem

to have as large of an effect. Considering Figure 30, it is interesting that the greatest

variance in average surface concentration occurs with the Spherical Column 2 structures,

as opposed to before with average bulk concentration. This is likely due to the fact that

the larger particles smear out the effects of low concentration in the bulk concentration

calculation. While, for the surface concentration, the effects of both the large and small

particles are on more equal footing. Here again, the Spherical Tree and

Spherical/Cylindrical Column structures follow each other especially well.

If Realizations 2 and 3 of the Spherical/Cylindrical Column structures are

considered in Figure 24, they are nearly indistinguishable from their discharge

73

behaviors, despite differences in their volume to surface are ratios. However, it is also

clear that these two structures distinguish themselves during relaxation, indicating the

need for another performance parameter, namely relaxation time. To investigate this

parameter the temporal change in average bulk concentration was monitored until it

dropped to .01 mol/m3s or below and the structure was considered fully relaxed (See

Appendix A). Displayed in Table 2 are the results of this calculation, and there are

clearly wide ranges in relaxation behavior when overall structure is compared, as well as

between base cases and their respective realizations. Additionally shown is the change in

bulk concentration, ∆cs, between current cutoff and the point of complete relaxation.

Additionally, contour plots of each structure are shown in Figures 31, 32, 33, and 34

after one hour of relaxation. Immediately noticeable is the fact that many of the

Spherical Tree structures did not relax within the two hour period. This behavior can be

best explained by the contour plots shown in Figures 27 and 33. The increased level of

branching in the structure allows for more particle isolation, and therefore creates large

lithium deprived zones in the structure relative to the main body. Another interesting

development occurs in the Spherical/Cylindrical Column structures.

74

Table 2. Relaxation times for each microstructure and different realizations for the
discharge rate of 1C to a cutoff potential of 3V.

Architecture Relaxation Time

(s)

∆cs

(mol/m
3
)

V/A Ratio

(µm)
 Spherical Column 1

 Base 1339.1 478.61 10.4
 Realization 1 1342.8 505.78 10.2
 Realization 2 1926.0 565.58 11.5
 Realization 3 1732.5 545.15 10.5
 Realization 4 2346.9 780.75 10.5
 Realization 5 1421.4 568.04 10.4
 Spherical Column 2

 Base 2550.6 616.35 7.01
 Realization 1 5166.2 753.30 6.87
 Realization 2 3057.4 618.31 7.03
 Realization 3 5900.3 1252.43 6.90
 Realization 4 7154.4 1087.37 7.20
 Realization 5 4081.2 810.35 6.89
 Spherical Tree

 Base 6392.2 1136.17 9.36
 Realization 1 >7200.0 1489.09 9.12
 Realization 2 >7200.0 1404.47 9.04
 Realization 3 >7200.0 1299.80 9.22
 Realization 4 >7200.0 1257.93 9.83
 Realization 5 3926.6 1016.61 9.78
 Spherical/Cylindrical

Column

 Base 1795.2 652.57 9.35

 Realization 1 2323.2 646.69 9.36
 Realization 2 2700.5 738.15 9.44
 Realization 3 1409.2 503.47 9.88
 Realization 4 2106.3 698.16 9.42
 Realization 5 1988.6 637.65 9.33

75

Figure 31. Spherical Column 1 Base(A) and Realizations 1 through 5(B-F) after relaxation for 1 hour following discharge at
1C. All dimensions in micron and all concentration values in mol/m3.

76

Figure 32. Spherical Column 2 Base(A) and Realizations 1 through 5(B-F) after relaxation for 1 hour following discharge at
1C. All dimensions in micron and all concentration values in mol/m3.

77

Figure 33. Tree Base(A) and Realizations 1 through 5(B-F) after relaxation for 1 hour following discharge at 1C. All
dimensions in micron and all concentration values in mol/m3.

78

Figure 34. Spherical/Cylindrical Column Base(A) and Realizations 1 through 5(B-F) after relaxation for 1 hour following
discharge at 1C. All dimensions in micron and all concentration values in mol/m3.

79

The relaxation times for these are either on the order or slightly larger than those of the

Spherical Column 1 structure. This is likely due to the fact that the most isolated

particles, those at the tops of the columns, are, like the Spherical Tree structure, more

isolated than those at the core due to the cylindrical particles. This is clearly visible

when one compares Figures 28 and 34 and compares the top most spherical particles of

Spherical/Cylindrical Structure with the Spherical Column 1 Structure. These cylinders

create larger diffusion distances to these particles as lithium must now travel along the

cylinder axis. While this is particularly detrimental to overall structure performance,

cylindrical particles offer shorter diffusion distances perpendicular to their axis, as

shown before, and thus take greatest advantage of the 3D geometry.

An excellent example of the kinds of variation in relaxation time between

realizations is that seen in the Spherical Tree structures. Here, the majority do not relax

in two hours, while Realization 5 does so in less than 1 hour. Considering the geometry

of this structure in Figure 19, this realization has less particle isolation, due to the

‘clumping’ of the three particles on the left branch. Also, when comparing to Realization

4, which has a similar volume to surface area ratio, the particles on the leftmost branch

have a strong connection to the structure, unlike the choke point in Realization 4.

Further, this structure has the second highest volume to area ratio, meaning that less

lithium is lost upon discharge, as illustrated by Figure 23, and therefore gradients can be

relaxed quickly. Considering Figures 27 and 33, the uniformity in concentration seen in

Realization 5 is also very clear. Another example of large variances in relaxation time is

evident in the Spherical Column 2 structures. If Figures 26 and 32 are considered, upon

80

discharge the leftmost half of the structure is fully depleted for all realizations, while

there are larger concentrations in the large particles composing the rightmost sections.

This unevenness in depletion speed creates large gradients across the entirety of the

structure, meaning that diffusion distances are long, causing relaxation time to be that

much longer as well. It is also to be noted here that in the relaxation of Realization 3 of

the Spherical Column 2 structures, there is a slightly higher concentration in the largest

particle in the middle column at the right most edge, visible in Figure 32(D). This has

been identified as the behavior of a small scalar cell, but has been viewed as being

erroneous in the consideration of the averaged quantities considered here. Another

interesting behavior is noted when those structures with overlap in the upper portions of

the columns are considered, namely Realizations 2, 4, and 3 from the Spherical Column

1, Spherical Column 2, and Spherical/Cylindrical Column morphologies, respectively. It

has already been noted that with the increased degree of overlap, less particle isolation

occurs, but with a sacrifice in depth of discharge. It would be expected, however, that

such structures would show some of the fastest relaxation times, as large gradients do

not develop. While this seems to be true for the realization from the

Spherical/Cylindrical Column morphology, this expected behavior is not evident in the

other two. This result may actually be due to the fact that at these overlapped regions,

while there is less gradient development, there is also less utilization of material, due to

the local drop in surface area, which would tend to create regions of high concentration

relative to the rest of the structure. Therefore, these regions of high concentration will

take longer to redistribute. This is clearly visible in Figures 25(C) and 25(E), as well as

81

the ∆cs values from Table 2, as there is associated a large change in average bulk

concentration for those structures with overlap. However, due to the performance of the

Spherical/Cylindrical realization, there may be an optimum level of overlap to both

prevent particle isolation and still maintain enough surface area to ensure uniformity of

discharge. Finally, as discussed previously, the differences in Realizations 1 and 2 of the

Spherical/Cylindrical Column are clear only when the relaxation behavior is considered,

as displayed in Table 2.

After relaxation, the base cases of each morphology were recharged at 1C to a

cutoff potential of 4.1V. After this was completed, an important difference to consider is

that between the surface and bulk concentration values, as well as the amount of

concentration returned upon recharge. These are indicative of how well a particular

structure can recharge, and therefore are imperative for judging how well a system can

cycle through many uses. Shown in Figure 36 are the values of average bulk and surface

concentration after recharge from an initial discharge at 1C, and contour plots over the

entire cycle are shown in the following figure.

82

Figure 35. Spherical Column 1(Row A), Spherical Column 2(Row B), Tree(Row C) and Spherical/Cylindrical Column (Row
D) over a cycle with initial discharge at 1C. All dimensions in micron and all concentration values in mol/m3.(To Scale from

Figtures 17 to 20)

83

Figure 36. Surface and bulk concentrations in the base cases after relaxation and

recharge to a potential of 4.1V from the initial 1C discharge rate.

The differences between bulk and surface concentrations after recharge is due to the fact

that the surface will saturate faster than lithium can diffuse into the core of the structure.

When this happens, as the voltage is based on the surface concentration, the cutoff

voltage will be reached that much faster. Those structures that show the most similar

values after recharge are therefore advantageous, because obtaining uniformity is key for

maximum capacity recovery. Immediately discernible from the above results is how

poorly the Spherical Column 2 structure performs on reclaiming available capacity

despite the small difference between surface and bulk concentration. Considering the

highly depleted profile after recharge, it is clear that the cathode particle saturates faster

than this structure can reclaim capacity, forcing the recharge voltage to cutoff. Figure 35

illustrates these results very well, as it can be seen that in the Spherical Column 2

structure there exist large areas of low concentration in the core of the structure, which

Sph Column 1 Sph Column 2 Sph Tree Sph/Cyl Column
0

0.5

1

1.5

2

2.5
x 10

4

Architecture

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
o
l/
m

3
)

Average Bulk Concentration

Average Surface Concentration

84

are not present in the others. Furthermore, one may additionally notice how much more

uniform the concentration is in the cylindrical particles of the Spherical/Cylindrical

Column after recharge. Comparatively, the Spherical Column 1 structure only has such

uniformity at points where the spheres in the columns are barely in contact. This is a

consequence of the local diffusion length, which is very short for the cylindrical

particles. Further, these cylindrical particles aid in creating more uniform concentrations

in the spherical particles they are in contact with, as observed if one compares these

spheres with those that are closely packed with other spheres in the same structure. This

kind of interaction between particle shapes is a key design feature for 3D architectures

that may be exploited.

 In order to identify any rate dependencies in the above results, further cycles

were conducted on the base cases with discharge rates of C/2 and C/10, one hour of

relaxation, and recharge at 1C to the potential of 4.1V. Corresponding contour plots are

shown below.

85

Figure 37. Spherical Column 1(Row A), Spherical Column 2(Row B), Tree(Row C) and Spherical/Cylindrical Column (Row
D) over a cycle with initial discharge at C/2. All dimensions in micron and all concentration values in mol/m3.

86

Figure 38. Spherical Column 1(Row A), Spherical Column 2(Row B), Tree(Row C) and Spherical/Cylindrical Column (Row

D) over a cycle with initial discharge at C/10. All dimensions in micron and all concentration values in mol/m3.

87

However, before recharging as completed before, the structures were given 2 hours of

relaxation time and the same gradient analysis as before was conducted, and the results

are shown below in the following Tables.

Table 3. Relaxation times for each base case microstructure at the discharge rate of C/2
to a cutoff potential of 3V.

Architecture Relaxation Time

(s)

∆cs

(mol/m
3
)

V/A Ratio

(µm)
 Spherical Column 1

 Base 958.70 233.50 10.4
Spherical Column 2

 Base 1764.10 303.35 7.01
Spherical Tree

 Base 5419.40 661.21 9.36
Spherical/Cylindrical

Column

 Base 1194.00 310.68 9.35

Table 4. Relaxation times for each base case microstructure at the discharge rate of C/10
to a cutoff potential of 3V.

Architecture Relaxation Time

(s)

∆cs

(mol/m
3
)

V/A Ratio

(µm)
 Spherical Column 1

 Base 273.9 34.54 10.4
Spherical Column 2

 Base 447 52.01 7.01
Spherical Tree

 Base 1100.6 80.93 9.36
Spherical/Cylindrical

Column

 Base 351.8 45.88 9.35

As is expected, there is a reduction in relaxation time as the discharge rate decreases

because the discharge process becomes more uniform, as illustrated in Figures 37 and

88

38. However, despite the fact that the trends seen before are invariant with the discharge

rate, in terms of structure ranking, the drop in relaxation time as a function of discharge

rate does vary greatly from structure to structure, as depicted in the following figure.

Figure 39. Relaxation times for the base cases for the different initial discharge rates of

1C, C/2, and C/10.

Clearly from the above comparison the Spherical Tree structure shows rapid reduction in

relaxation time as the discharge rate decreases, however still displaying the largest

relaxation times over all discharge rates. After relaxation, the structures were again

recharged at the 1C rate to a cutoff potential of 4.1 volts.

Sph Column 1 Sph Column 2 Sph Tree Sph/Cyl Column
0

1000

2000

3000

4000

5000

6000

7000

Architecture

R
e
la

x
a
ti
o
n
 T

im
e
 (

s
)

1C Discharge

C/2 Dicharge

C/10 Dicharge

89

Figure 40. Surface and bulk concentrations in the base cases after relaxation and

recharge to a potential of 4.1V from the initial C/2 discharge rate.

Figure 41. Surface and bulk concentrations in the base cases after relaxation and

recharge to a potential of 4.1V from the initial C/10 discharge rate.

Sph Column 1 Sph Column 2 Sph Tree Sph/Cyl Column
0

0.5

1

1.5

2

2.5
x 10

4

Architecture

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
o
l/
m

3
)

Average Bulk Concentration

Average Surface Concentration

Sph Column 1 Sph Column 2 Sph Tree Sph/Cyl Column
0

0.5

1

1.5

2

2.5
x 10

4

Architecture

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
o
l/
m

3
)

Average Bulk Concentration

Average Surface Concentration

90

As is clear from Figures 40 and 41 the overall ranking of structure performance does not

change over the discharge rate. However, it is to be noted that the Spherical Tree

Structure does recover more material than any other over these cycles.

Additionally, with the decrease in discharge rate, the depth of discharge is a very

important quantity for gauging the performance of a battery system. Shown in the

following four figures are the average bulk concentrations for the base cases at each

initial discharge rate and with two hours of relaxation time. For the majority of the

structures there is an increase in depth of discharge with a decrease in discharge rate as

expected. This occurs because with slower discharge rate, more lithium can diffuse to

the surface to be extracted before the surface concentration drops to the point where the

cutoff potential is reached. One of the more striking behaviors in the above results,

however, is that seen in the Spherical Tree structure. As illustrated in Figure 44 there is

initially a greater depth of discharge with a decrease in discharge rate, only to be

followed by a larger concentration at the end of discharge for the C/10 initial discharge

rate.

91

Figure 42. Depth of discharge for the Spherical Column 1 base structure at the 1C, C/2,

and C/10 discharge rates.

Figure 43. Depth of discharge for the Spherical Column 2 base structure at the 1C, C/2,

and C/10 discharge rates.

0 1 2 3 4 5 6

x 10
4

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Time (s)

A
v
e

ra
g
e

 B
u

lk
 C

o
n

c
e
n

tr
a

ti
o

n
 (

m
o

l/
m

3
)

1C Discharge

C/2 Discharge

C/10 Discharge

0 1 2 3 4 5 6

x 10
4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Time (s)

A
v
e

ra
g
e

 B
u

lk
 C

o
n

c
e
n

tr
a

ti
o

n
 (

m
o

l/
m

3
)

1C Discharge

C/2 Discharge

C/10 Discharge

92

Figure 44. Depth of discharge for the Spherical Tree base structure at the 1C, C/2, and

C/10 discharge rates.

Figure 45. Depth of discharge for the Spherical/Cylindrical Column base structure at the

1C, C/2, and C/10 discharge rates.

0 1 2 3 4 5 6

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Time (s)

A
v
e

ra
g
e

 B
u

lk
 C

o
n

c
e
n

tr
a

ti
o

n
 (

m
o

l/
m

3
)

1C Discharge

C/2 Discharge

C/10 Discharge

0 1 2 3 4 5 6

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Time (s)

A
v
e

ra
g
e

 B
u

lk
 C

o
n

c
e
n

tr
a

ti
o

n
 (

m
o

l/
m

3
)

1C Discharge

C/2 Discharge

C/10 Discharge

93

This may indicate some rate dependence on the performance of this particular structure,

and is therefore important for determining how best to utilize this particular geometry.

However, the depth of discharge is more constant across all discharge rates for this

structure when compared to the others.

Discharge Performance

 Having collected surface concentration values from both the anode and cathode

at each temporal moment, the voltage profiles over the discharge, relaxation, and

recharge processes could be produced. It was found that all structures showed similar

capacity values after discharge. However, it is important to consider how effective a

particular structure is in terms of utilizing the amount of lithium it can store for a

particular capacity. This is best shown by plotting voltage versus the state of charge

(SOC). As the structure is depleted of lithium, the SOC will change according to the

bulk concentration. Here, however, similar to capacity plots, it is important to remember

that these plots need to be read as though the values on the horizontal axis are the

amounts of SOC lost or spent. These are shown below.

94

Figure 46. Discharge results for Spherical Column 1 base and realizations to a cutoff

potential of 3V versus SOC.

Figure 47. Discharge results for Spherical Column 2 base and realizations to a cutoff

potential of 3V versus SOC.

0 0.1 0.2 0.3 0.4 0.5 0.6
3

3.2

3.4

3.6

3.8

4

SOC

C
e

ll
P

o
te

n
ti
a

l
(V

)

Base, V/A=10.4m

Rel 1, V/A=10.2m

Rel 2, V/A=11.5m

Rel 3, V/A=10.5m

Rel 4, V/A=10.5m

Rel 5, V/A=10.4m

0 0.1 0.2 0.3 0.4 0.5 0.6
3

3.2

3.4

3.6

3.8

4

SOC

C
e

ll
P

o
te

n
ti
a

l
(V

)

Base, V/A=7.01m

Rel 1, V/A=6.87m

Rel 2, V/A=7.03m

Rel 3, V/A=6.90m

Rel 4, V/A=7.20m

Rel 5, V/A=6.89m

95

Figure 48. Discharge results for Spherical Tree base and realizations to a cutoff

potential of 3V versus SOC.

Figure 49. Discharge results for Spherical/Cylindrical Column base and realizations to a

cutoff potential of 3V versus SOC.

0 0.1 0.2 0.3 0.4 0.5 0.6
3

3.2

3.4

3.6

3.8

4

SOC

C
e

ll
P

o
te

n
ti
a

l
(V

)

Base, V/A=9.36m

Rel 1, V/A=9.12m

Rel 2, V/A=9.04m

Rel 3, V/A=9.22m

Rel 4, V/A=9.83m

Rel 5, V/A=9.78m

0 0.1 0.2 0.3 0.4 0.5 0.6
3

3.2

3.4

3.6

3.8

4

SOC

C
e

ll
P

o
te

n
ti
a

l
(V

)

Base, V/A=9.35m

Rel 1, V/A=9.36m

Rel 2, V/A=9.44m

Rel 3, V/A=9.88m

Rel 4, V/A=9.42m

Rel 5, V/A=9.33m

96

 These figures prove to be an excellent diagnostic tool for further gauging the

performance of each of the above structures to each other. It is clear that although all of

the structures show similar capacity after discharge, the utilization of available lithium is

quite different. Spherical Column 1 shows the lowest SOC after discharge, meaning that

although it has achieved similar capacity values to the other structures, it has been

extremely inefficient. On the other hand, Spherical Column 2 shows the largest amount

of SOC spent during discharge. This is likely attributable to the smaller volume to area

ratios for these structures. A similar argument may also be appropriate for explaining the

similarity in SOC behavior between the Spherical Tree and Spherical/Cylindrical

Column structures. However, again, there are instances where volume to surface area

ratios do not explain behavior, and many instances are similar to those for the bulk

concentration analysis. For instance, Realizations 1 and 2 of the Spherical/Cylindrical

Column structures do not distinguish themselves during discharge. This lack of

distinction underlines the importance of analysis from multiple points of view, as

completed previously. It is also to be noted that those structures showing increased

particle overlap utilize less SOC over discharge, and this is due to a local drop in active

surface area at those points. With this drop in surface area, lithium cannot be extracted as

easily before the remaining surface area becomes depleted enough to force the structure

to become fully discharged. This effect is also clear from the contour plots shown above.

For an initial discharge at the 1C rate, the base cases were allowed to relax for

one hour, and then were recharged at the 1C rate. The voltage behavior for all base

microstructures is shown below.

97

Figure 50. Discharge curves for the initial discharge at 1C, relaxation for one hour, and

recharge at 1C, versus SOC.

It is to be noted that the ohmic drops between discharge and recharge have been drawn

over to form a continuous curve over relaxation. These jumps occur in the data due to

the fact that at the same surface and bulk state of charge, the flux is suddenly cutoff,

causing the overpotential to instantaneously assume a zero value, while the equilibrium

potential values remain the same. Analogously to what was discussed previously, the

voltage versus SOC is shown in Figure 50 for the base structures. Here can be better

visualized some of the effects of overall microstructure performance, as direct

comparisons can now be drawn. As found previously, Spherical Column 2 shows the

greatest use of available material for the same capacity, with Spherical Column 1

showing the least. It is to be noted however, that Spherical Column 2 does not recover

the same amount of active material upon recharge, which is very detrimental to further

use of the battery, as discussed with recharge efficacy.

0 0.1 0.2 0.3 0.4 0.5 0.6
3

3.2

3.4

3.6

3.8

4

SOC

C
e

ll
P

o
te

n
ti
a

l
(V

)

Spherical Column 1

Spherical Column 2

Spherical Tree

Sph/Cyl Column

98

The discharge curves over the full cycles for the base cases at the lower initial

discharge rates are shown below, in Figures51 and 52.

Figure 51. Discharge curve for the initial discharge at C/2, relaxation for one hour, and

recharge at 1C versus SOC.

0 0.1 0.2 0.3 0.4 0.5 0.6
3

3.2

3.4

3.6

3.8

4

SOC

C
e

ll
P

o
te

n
ti
a

l
(V

)

Spherical Column 1

Spherical Column 2

Spherical Tree

Sph/Cyl Column

99

Figure 52. Discharge curve for the initial discharge at C/10, relaxation for one hour, and

recharge at 1C versus SOC

The above figures clearly indicate the increase in capacity and the decrease in hysteresis

as the discharge rate decreases. Also to be noted is the increase in recovered capacity as

the discharge rate decreases. It is interesting to note that, as shown in Figure 52, the

Spherical Tree and Spherical/Cylindrical Column structures have converged to show

nearly identical behavior. However, the Spherical Tree structure does recover more

material during recharge, as found during the recharge efficacy study, and utilizes nearly

the same SOC over all discharge rates.

3D Cell Model

 Having completed the above initial studies on anode architectures versus a single

cathode particle, two 3D cell systems were developed with representative 3D electrodes

serving for both the anode and cathode. The first of which was an Aperiodic structure

0 0.1 0.2 0.3 0.4 0.5 0.6
3

3.2

3.4

3.6

3.8

4

SOC

C
e

ll
P

o
te

n
ti
a

l
(V

)

Spherical Column 1

Spherical Column 2

Spherical Tree

Sph/Cyl Column

100

generated using the Spherical Column 1 base anode, and using another code written in

MATLAB®, as given in Appendix B, to generate a cathode around this anode geometry.

Having completed this cell, an interdigitated plate, or trench, design was generated

where both the anode and cathode had equivalent volume to surface area ratios as the

first cell design. This geometry was also restrained to a similar cell footprint as the

former. These two geometries are illustrated in below, and relevant quantities are given

in the following table.

Table 5. Geometrical properties of the 3D cell models.

Architecture Volume(m
3
) Surface

Area(m
2
)

V/A Ratio

(µm)
 Aperiodic

 Anode 2.34×10-13 2.30×10-8 10.2
 Cathode 1.53×10-13 1.93×10-8 7.96
Interdigitated Plates

 Anode 1.95×10-13 1.91×10-8 10.2
 Cathode 1.26×10-13 1.58×10-8 7.99

101

Figure 53. Aperiodic cell (A), and Interdigitated Plate cell (B). In both cases the bottom structure serves as the anode, and all
dimensions are in micron.

102

Concentration and Relaxation Behaviors

Similarly to the anode morphology study, the structures were discharged at the 1C rate,

and then allowed to relax for two hours after the cutoff potential was reached. The bulk

and surface concentration values over this process as well as respective contour plots,

are shown below. As is clear from the above figures, the Interdigitated Plate design has a

longer discharge time before cutoff is reached, and additionally reaches a higher depth of

discharge. This is especially striking, as this structure has a lower volume than the

aperiodic structure. What this indicates, is that the transport phenomena occurring within

the Interdigitated Plate design is far more efficient than the other. Considering the

contour plots, this is easily noted. Facile transport throughout the structure is maintained

by large flux areas, as opposed to the Aperiodic design, which has choke points between

spherical particles.

It is to be noted at this point that during simulations, unphysical concentration

cells of large lithium depletion were developed in both 3D cell configurations, despite

the fact that bulk SOC values were in allowable ranges as provided in the literature(73).

103

Figure 54. Aperiodic cell (Row A), and Interdigitated Plate cell (Row B) over discharge at 1C and relaxation. All dimensions
in micron and all concentration values in mol/m3. (To Scale from Figure 53)

104

Figure 55. Bulk concentration curves for both 3D designs for a discharge at 1C to a

cutoff potential of 3V and relaxation for two hours.

Figure 56. Surface concentration curves for both 3D designs for a discharge at 1C to a

cutoff potential of 3V and relaxation for two hours.

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

x 10
4

Time (s)

A
v
e

ra
g

e
 C

o
n

c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

Aperiodic Anode

Aperiodic Cathode

Plate Anode

Plate Anode

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

x 10
4

Time (s)

A
v
e

ra
g

e
 C

o
n

c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

Aperiodic Anode

Aperiodic Cathode

Plate Anode

Plate Anode

105

These regions of low concentration were detected at the topmost spherical particles in

the Aperiodic cell as well as at the sharp corners in the Interdigitated Plate cell. This

behavior is a direct consequence of the constant flux assumption applied to the

geometry. However, these results do not invalidate the value of this study, as this

confirms many of the behaviors previously identified. Particle isolation at the top most

spherical particles causes large depletion of lithium in these areas if particle overlap, as

seen before, is not present. Additionally, Zadin et. al(53, 54) noted the exact same

behavior in the trench design. What is important to mention, however, is that their study

was performed with a full model, which included transport in the electrolyte. Here, using

first principle approximations, the same conclusions were drawn at a greatly reduced

computational cost. In order to mitigate this behavior in the interdigitated plate structure,

rounding the sharp corners was found to be an effective method in the literature(53).

 To compare the structures, relaxation behavior was considered over the two hour

period. The results over this period for both structures and their respective anode and

cathode are shown below.

106

Figure 57. Relaxation in bulk concentration for the Aperiodic anode.

Figure 58. Relaxation in bulk concentration for the Aperiodic cathode.

0.6 0.8 1 1.2 1.4 1.6

x 10
4

5650

5700

5750

5800

5850

5900

5950

6000

6050

6100

Time (s)

A
v
e

ra
g
e

 B
u

lk
 C

o
n

c
e
n

tr
a

ti
o

n
 (

m
o

l/
m

3
)

0.6 0.8 1 1.2 1.4 1.6

x 10
4

4.52

4.54

4.56

4.58

4.6

4.62

4.64

4.66
x 10

4

Time (s)

A
v
e

ra
g
e

 B
u

lk
 C

o
n

c
e
n

tr
a

ti
o

n
 (

m
o

l/
m

3
)

107

Figure 59. Relaxation in bulk concentration for the Interdigitated Plate anode.

Figure 60. Relaxation in bulk concentration for the Interdigitated Plate cathode.

1 1.2 1.4 1.6 1.8

x 10
4

2400

2500

2600

2700

2800

2900

3000

3100

3200

3300

Time (s)

A
v
e

ra
g
e

 B
u

lk
 C

o
n

c
e
n

tr
a

ti
o

n
 (

m
o

l/
m

3
)

1 1.2 1.4 1.6 1.8

x 10
4

4.56

4.57

4.58

4.59

4.6

4.61

4.62

4.63
x 10

4

Time (s)

A
v
e

ra
g
e

 B
u

lk
 C

o
n

c
e
n

tr
a

ti
o

n
 (

m
o

l/
m

3
)

108

The above structures do not relax within two hours using the definition applied

previously for the anode morphologies. This is especially true for the cathode structures,

likely due to the fact that the diffusion coefficient is four times smaller. Considering the

anodes, there is a far greater change in the bulk concentration for the Interdigitated Plate

design over the same time period. This is again due to the geometry of the structure, as it

promotes facile transport for redistribution, and this is evident in Figure 54(B), which

shows that the plate structures have a far more uniform distribution over discharge and

after relaxation.

Discharge Performance

Similarly to what was completed before, surface concentration values were used

to compute cell potential over the course of discharge. These results are illustrated

below, and here especially is noted a difference in the voltage versus capacity behavior.

Figure 61. Discharge curve for the Aperiodic and Interdigitated Plate structures at 1C

versus capacity.

0 1 2 3 4 5
3

3.2

3.4

3.6

3.8

4

Capacity (Ah)

C
e

ll
P

o
te

n
ti
a

l
(V

)

Aperiodic

Interdigitated Plates

109

Figure 62. Discharge curve for the Aperiodic and Interdigitated Plate structures at 1C

versus SOC.

With regard to the above results versus capacity, the aperiodic structure showed far

larger capacity than the Spherical Column 1 Base case studied previously, despite the

fact that the anode structure is the same. This is due to the increased capacity of the

cathode, as it is no longer treated as a single spherical particle. When the Interdigitated

Plate cell is considered, there is a very large difference in capacity relative to the

Aperiodic structure, despite equivalent volume to surface area ratios. This finding is

similar to what was discovered in the anode analysis, where, in many cases, global

parameters were not sufficient to describe or predict cell behavior. Here again it is

surprising to find that the plate design shows both increased capacity and utilization of

active material, despite having a lower volume. The above results illustrate the

importance of this behavior more clearly than what was discussed above. Facilitating

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
3

3.2

3.4

3.6

3.8

4

SOC

C
e

ll
P

o
te

n
ti
a

l
(V

)

Aperiodic

Interdigitated Plates

110

transport within these 3D structures has a profound effect on performance for a given

volume of material, and so proper design must take these considerations into account.

Sensitivity Study

 In order to validate the results acquired in the above study, a mesh and tolerance

refinement study was completed on the Spherical Tree base structure, as well as the

anodes of the two 3D cell geometries at the 1C rate over discharge. As noted in the

procedure in Appendix B, the geometry in MFiX® software is controlled not only by the

mesh size specified, but the value TOL_F, which specifies the tolerance at which the

desired geometry intersects the Cartesian Grid.

To begin, all 3D anode morphology studies were completed on an equivalent

mesh with 100 cells in both directions, with spatial extents of 240µm and 150µm in the

horizontal and vertical directions, respectively. Additionally, a TOL_F value of 1×10-16

was employed. To determine the kinds of variability possible, the number of cells was

both increased and decreased by approximately a factor of 2 relative to the base case (or

70 cells for the coarse grid, and 130 cells for the fine grid). Additionally, the TOL_F

values were altered to 1×10-13 and 1×10-20 while keeping the base mesh. The results of

the discharge process, in terms of average bulk and surface concentrations are displayed

in the following figures.

111

Figure 63. Average bulk concentration over discharge at 1C for the Spherical Tree base

structure with various refinements to mesh and TOL_F.

Figure 64. Average surface concentration over discharge at 1C for the Spherical Tree

base structure with various refinements to mesh and TOL_F.

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5
x 10

4

Time (s)

A
v
e

ra
g
e

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

Base Grid Tol=1*10
-16

Base Grid Tol=1*10
-13

Base Grid Tol=1*10
-20

Coarse Grid

Fine Grid

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5
x 10

4

Time (s)

A
v
e

ra
g
e

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

Base Grid Tol=1*10
-16

Base Grid Tol=1*10
-13

Base Grid Tol=1*10
-20

Coarse Grid

Fine Grid

112

Immediately noticeable from the above results, is the variance in the results utilizing a

TOL_F value of 1×10-20. Upon further inspection of the data, these results were deemed

to be erroneous, especially when the convergence behavior of the other studies was

considered. The other results show excellent agreement over the discharge range,

particularly considering both the scale and length of the simulation.

Regarding the Aperiodic and Interedigitated Plate cells, base simulations were

performed on meshes with 200 cells on spatial extents of 150µm in both directions. As

completed previously, the base TOL_F value was set to 1×10-16. For the refinement

studies, the number of cells was both increased and decreased by approximately a factor

of 2, and the TOL_F values were varied similarly as previously. Here, only the anode

has been analyzed. Shown in the following figures are analogous figures as previously

shown for the anode morphologies for both the Aperiodic and Interdigitated Plate 3D

cells. These results indicate more variability in the data, especially at the points where

the cutoff potential was reached, due to the range at which the results cover. However, it

is to be mentioned that unrealistic values for cell concentrations were detected in these

simulations, as described previously, and these excessive gradients in the geometry may

have caused increased variability. It is notable, however, that unlike in the 3D anode

sensitivity study, those simulations with varying TOL_F values agree well with each

other in these 3D cell designs.

113

Figure 65. Average bulk concentration over discharge at 1C for the Aperiodic anode

with various refinements to mesh and TOL_F.

Figure 66. Average surface concentration over discharge at 1C for the Aperiodic anode

with various refinements to mesh and TOL_F.

0 1000 2000 3000 4000 5000 6000 7000
0.5

1

1.5

2

2.5
x 10

4

Time (s)

A
v
e

ra
g
e

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

Base Grid Tol=1*10
-16

Base Grid Tol=1*10
-13

Base Grid Tol=1*10
-20

Coarse Grid

Fine Grid

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

2.5
x 10

4

Time (s)

A
v
e

ra
g
e

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

Base Grid Tol=1*10
-16

Base Grid Tol=1*10
-13

Base Grid Tol=1*10
-20

Coarse Grid

Fine Grid

114

Figure 67. Average bulk concentration over discharge at 1C for the Interdigitated Plate

anode with various refinements to mesh and TOL_F.

Figure 68. Average surface concentration over discharge at 1C for the Interdigitated

Plate anode with various refinements to mesh and TOL_F.

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5
x 10

4

Time (s)

A
v
e

ra
g
e

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

Base Grid Tol=1*10
-16

Base Grid Tol=1*10
-13

Base Grid Tol=1*10
-20

Coarse Grid

Fine Grid

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5
x 10

4

Time (s)

A
v
e

ra
g
e

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

Base Grid Tol=1*10
-16

Base Grid Tol=1*10
-13

Base Grid Tol=1*10
-20

Coarse Grid

Fine Grid

115

CHAPTER IV

SUMMARY AND OUTLOOK

 Energy storage has been a growing field of interest and importance for both

society and the research community for the past several decades. Lithium ion batteries in

particular have attracted a large amount of attention, as these devices are now

widespread in everything from portable electronics to hybrid electric vehicles. In order

for continued progress to be made in this area, computational and mathematical tools

will play a key role in the continued search for improvement in these systems. The

objective of the above study was to use first principle approximations to quantify the

performances of various electrode geometries for use in 3D battery design, which shows

promise as the next step towards more efficient battery systems in terms of capacity and

performance.

Methodology

The above objective was satisfied by first developing several MATLAB® codes

to generate aperiodic anode structures, which included variability in particle size, shape,

and overall morphology. Additionally, further codes were developed to introduce

perturbed realizations of each base morphology, and to produce 3D cells using a chosen

morphology for the anode. MFiX® software, an open source, generic, computational

code developed by the National Energy Technology Laboratory (NETL) was used to

simulate the above structures under conditions from literature. The results of these

116

studies yielded significant results by consideration of average bulk and surface

concentrations, relaxation behavior, as well as cycle performance.

Results

Discharge profiles at the 1C, C/2, and C/10 rates were performed for the anode

morphologies and results indicated that global parameters like volume to surface area

ratio, as well as actual geometry, were both equally important for characterizing

behavior. Expected increases in capacity with decreases in discharge rate were evident,

as well as a decrease in recharge hysteresis.

Furthermore, the variance in structure behavior under specified perturbed

conditions were analyzed, and it was discovered that by increased branching in the

aperiodic structures, as well as the inclusion of cylindrical particle shapes, produced the

greatest differences in bulk concentration behavior. This finding was specifically

important, as the inclusion of a wider particle size range did not produce such large

differences. However, for surface concentration, those structures with greater particle

distribution did show greatest variance.

Relaxation studies of the structures proved to be some of the more useful for

gauging structure behavior, especially as volume to surface area ratios were shown to be

incapable of doing so. It was concluded that increased particle isolation due to branching

in the structures caused large gradients to develop, and thus relaxation times were

accordingly increased. Additionally, with the inclusion of greater particle size

variability, relaxation times also showed a wide range of variability, but also a general

increase relative to structures with more uniform particle distribution. This was

117

attributed to the uneven discharge between large and small particles, thus causing

redistribution of concentration within the structures to take significantly more time. With

the inclusion of cylindrical particles in the electrode geometry, a slightly larger

relaxation time was noted relative to those structures with solely spherical particles. This

was explained by considering that cylindrical particles, like additional branches, cause

increase particle isolation due to the fact that diffusion distances for redistribution are

increased as the primary mode of transport is along the cylindrical axis.

 After one hour of relaxation, all structures were recharged at the 1C rate to a

cutoff potential of 4.1V. After the recharge process was completed, differences between

average bulk and surface concentrations were considered. It was determined that

structures with larger particle size distributions were ineffective at recharging when

initially discharged at the 1C rate. Further, upon visual investigation of the results, it was

found that with the inclusion of cylindrical particles more uniform concentrations were

developed in the core of the structure, due to the decreased diffusion length along the

radial direction of the cylindrical axis. This finding is especially important, as it is an

attribute that might be exploited in the design of new geometries. Considering these

differences after initial discharge rates of C/2 and C/10 another important discovery was

realized. With the decrease in initial discharge rate, there was a reversal in performance

for the structure with additional branching. This structure was able to obtain uniform and

greater concentrations after recharge. This indicates the need for consideration in

electrode geometry as it pertains to a specific application, as some geometries may only

be suitable for low discharge rates over long periods of time.

118

 Performance curves, in terms of voltage and either capacity or SOC were

generated for the structures, and these were compared to yield significant findings.

While all structures showed equivalent capacity over the discharge period, the utilization

of available material showed large differences. The smallest structures investigated

showed the greatest utilization, while the largest showed the poorest. It was additionally

found that structures did show rate dependence on the utilization of material, and so

careful consideration of these effects must be included in the design process.

 After completion of the anode morphology study, two 3D cell geometries were

developed with equivalent volume to surface area ratios. Simulated at a discharge rate of

1C, these structures showed large increases in capacity. This behavior was attributed to

the fact that the cathode was no longer considered as a single spherical particle as with

the anode morphologies, but rather as a full 3D electrode. During these simulations,

severe lithium deprived zones were detected in certain regions of the structure. While

unphysical, these results indicated that with the inclusion of ‘sharp’ edges in the

microstructure, such lithium depletion may occur. This same result was concluded by

other studies in the literature using more complicated computational models. This thus

ultimately underscored the value of the first principle approximations used in this study,

as computational time and expense were lessened only to arrive at similar conclusions.

Future Work

 The results of this study should ultimately be used to target advantageous

geometries for use in fuller, more developed models that include the other

electrochemical behaviors not present here. The above study has used two dimensional

119

computational simulations to represent three dimensional slices of proposed geometry.

Inclusion of these geometries in full, three dimensional models will be required to

correct for the two dimensional approach employed here. This study has additionally

assumed uniform current densities over the structures involved, and has neglected

transport within the electrolyte. While suitable for low discharge rates, higher discharge

rates will require knowledge of transport in the electrolyte as this becomes important,

especially with regard to Butler-Volmer kinetics which governs current distribution over

the structure.

 Finally, experimental results are required to validate any numerical solution,

whether it is a full cell simulation or an approximate approach as employed here.

Representative architectures similar to those studied will need to be cycled over a wide

range of discharge rates to generate results that can be compared against developed

models. It is to be noted that these comparisons will likely be on the system level only,

such as discharge performance and bulk behaviors. Once verification of system level

results is complete, models can then be used to better investigate behavior at the scales

considered in this study, which will lend further insight into architecture performance.

120

REFERENCES

1. C. M. Doyle, Ph. D. Thesis, University of California, Berkeley, CA (1995).

2. E. J. Cairns and P. Albertus, Annual Review of Chemical and Biomolecular

Engineering, 1, 299 (2010).

3. M. Winter and R. J. Brodd, Chemical Reviews, 105, 1021 (2005).

4. S.-W. Cha, R.P O'Hayre, W. Colella and F. B. Prinz, Fuel Cell Fundamentals,

John Wiley & Sons, New York (2006).

5. P. P. Mukherjee, S. Pannala and J. A. Turner, in Handbook of Battery Materials,

2nd ed., Wiley-VCH, Weinheim, Germany (2011).

6. D. Bernardi, E. Pawlikowski and J. Newman, Journal of The Electrochemical

Society, 132, 5 (1985).

7. J. C. Slattery, Aiche J., 15, 866 (1969).

8. S. Whitaker, Industrial & Engineering Chemistry, 61, 14 (1969).

9. J. Bear and J. M. Buchlin, Modeling and Applications of Transport Phenomena

in Porous Media, Kluwer Academic Publishers, Boston (1991).

10. J. C. Slattery, Momentum, Energy and Mass Transfer in Continua, R. E. Krieger

Publishing Company, New York (1981).

11. W. B. Gu and C. Y. Wang, Journal of The Electrochemical Society, 147, 2910

(2000).

12. P. M. Gomadam, J. W. Weidner, R. A. Dougal and R. E. White, Journal of

Power Sources, 110, 267 (2002).

13. K. Smith and C.-Y. Wang, Journal of Power Sources, 161, 628 (2006).

14. V. Srinivasan and C. Y. Wang, Journal of The Electrochemical Society, 150,

A98 (2003).

15. W. B. Gu and C. Y. Wang, Lithium Ion Batteries, Proceedings, 748, (2000).

121

16. J. Newman, K. E. Thomas, R. M. Darling, in Advances in Lithium-Ion Batteries,
Kluwer Academic/Plenum Publishers, New York (2002).

17. J. Newman, K.E. Thomas-Alyea, Electrochemical Systems, Wiley Interscience,

Hoboken, N.J. (2004).

18. M. Doyle, J. Newman, A. S. Gozdz, C. N. Schmutz and J.-M. Tarascon, Journal

of The Electrochemical Society, 143, 1890 (1996).

19. S. Santhanagopalan, Q. Guo, P. Ramadass and R. E. White, Journal of Power

Sources, 156, 620 (2006).

20. B. S. Haran, B. N. Popov and R. E. White, Journal of Power Sources, 75, 56

(1998).

21. G. Ning and B. N. Popov, Journal of The Electrochemical Society, 151, A1584

(2004).

22. W. B. Gu, C. Y. Wang and B. Y. Liaw, Journal of The Electrochemical Society,

145, 3418 (1998).

23. C. Y. Wang and V. Srinivasan, Journal of Power Sources, 110, 364 (2002).

24. L. Shengyi, Solid State Ionics, 177, 53 (2006).

25. V. R. Subramanian, J. A. Ritter and R. E. White, Journal of The Electrochemical

Society, 148, E444 (2001).

26. V. R. Subramanian, V. D. Diwakar and D. Tapriyal, Journal of The

Electrochemical Society, 152, A2002 (2005).

27. V. R. Subramanian and R. E. White, Journal of Power Sources, 96, 385 (2001).

28. Q. Zhang and R. E. White, Journal of Power Sources, 165, 880 (2007).

29. V. Ramadesigan, V. Boovaragavan, J. C. Pirkle, Jr. and V. R. Subramanian,

Journal of The Electrochemical Society, 157, A854 (2010).

30. A. Romero-Becerril and L. Alvarez-Icaza, Journal of Power Sources, 196, 10267

(2011).

31. D. Portnyagin, Russian Journal of Electrochemistry, 46, 144 (2010).

122

32. J. Christensen and J. Newman, Journal of Solid State Electrochemistry, 10, 293
(2006).

33. J. Christensen and J. Newman, Journal of The Electrochemical Society, 153,

A1019 (2006).

34. J. Christensen, Journal of The Electrochemical Society, 157, A366 (2010).

35. Y.-T. Cheng and M. W. Verbrugge, Journal of Applied Physics, 104, 083521

(2008).

36. Y.-T. Cheng and M. W. Verbrugge, Journal of The Electrochemical Society, 157,

A508 (2010).

37. G. Sikha, M. Guo and R. E. White, Journal of The Electrochemical Society, 158,

A122 (2011).

38. G. Sikha, K. Kumaresan and R. E. White, Journal of The Electrochemical

Society, 155, A164 (2008).

39. D. Guyomard and J. M. Tarascon, Journal of The Electrochemical Society, 139,

937 (1992).

40. J. M. Tarascon and D. Guyomard, Solid State Ionics, 69, 293 (1994).

41. J. M. Tarascon and D. Guyomard, Journal of The Electrochemical Society, 138,

2864 (1991).

42. D. Guyomard and J. M. Tarascon, Journal of The Electrochemical Society, 140,

3071 (1993).

43. M. W. Verbrugge and B. J. Koch, Journal of The Electrochemical Society, 143,

24 (1996).

44. M. W. Verbrugge and B. J. Koch, Journal of The Electrochemical Society, 143,

600 (1996).

45. B. Dunn, J. Long, D. Rolison and H. White, American Chemical Society, 104,

4463 (2004).

46. T. Arthur, D. Bates, N. Cirigliano, D. C. Johnson, P. Malati, J. M. Mosby, E.

Perre, M. T. Rawls, A. L. Prieto and B. Dunn, Materials Research Society, 36,
532 (2011).

123

47. D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M.
McEvoy, M. E. Bourg and A. M. Lubers, Chemical Society Reviews, 38 (2009).

48. C. P. Smith and H. S. White, Analytical Chemistry, 65, 3343 (1993).

49. V. G. Levich, Physicochemical Hydrodynamics, Prentice Hall, New York (1962).

50. D. R. Rolison and B. Dunn, Journal of Materials Chemistry, 11 (2001).

51. C. Wang, L. Taherabadi, G. Jia, M. Madou, Y. Yeh and B. Dunn,

Electrochemical and Solid-State Letters, 7, A435 (2004).

52. R. W. Hart, H. S. White, B. Dunn and D. R. Rolison, Electrochemistry

Communications, 5, 120 (2003).

53. V. Zadin, D. Brandell, H. Kasemägi, A. Aabloo and J. O. Thomas, Solid State

Ionics, 192, 279 (2011).

54. V. Zadin, H. Kasemägi, A. Aabloo and D. Brandell, Journal of Power Sources,

195, 6218 (2010).

55. A. Le Mehaute and G. Crepy, C. R. Acad. Sci., 294, 685 (1982).

56. S. Havlin, and A. Bunde, Fractals and Disordered Systems, Springer-Verlag,

Berlin (1996).

57. G. T. Teixidor, B. Y. Park, P. P. Mukherjee, Q. Kang and M. J. Madou

Electrochimica Acta, 54, 5928 (2009).

58. L. Fruchter, G. Crepy and A. Le Mehaute, J. Power Sources, 18 (1986).

59. L. Nyikos and T. Pajkossy, Electrochimica Acta, 30 (1985).

60. L. Nyikos and T. Pajkossy, Electrochimica Acta, 31 (1986).

61. M. Filoche and B. Sapoval Phys. Rev. Lett., 84 (2000).

62. T. Pajkossy, J. Electroanal. Chem, 300, 1 (1991).

63. T. Pajkossy and L. Nyikos, Phys. Rev. B, 42 (1) (1990).

64. J. Dietiker, MFIX: Cartesian User Guide, https://mfix.netl.doe.gov/ (2009).

https://mfix.netl.doe.gov/

124

65. T. Li, J. Dietiker, Y. Zhang and M. Shahnam, Chemical Engineering Science, 66,
6220 (2011).

66. T. McKeen and T. Pugsley, Powder Technology, 129, 139 (2003).

67. S. Benyahia, M. Syamlal and T.J. Obrien, Summary of MFIX Equations 2012-1,

https://mfix.netl.doe.gov/ (2012).

68. M. Syamlal, Mfix Documentation Numerical Technique,

https://mfix.netl.doe.gov/ (1998).

69. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere

Publishing Corporation, New York (1980).

70. L. F. Shampine and M. W. Reichelt, SIAM J. Sci. Comput., 18, 1 (1997).

71. R. D. Skeel and M. Berzins, SIAM Journal on Scientific and Statistical

Computing, 11, 1 (1990).

72. L. F. Shampine, M. W. Reichelt and J. A. Kierzenka, SIAM Review, 41, 538

(1999).

73. K. Kumaresan, Q. Guo, P. Ramadass and R. E. White, Journal of Power Sources,

158, 679 (2006).

https://mfix.netl.doe.gov/
https://mfix.netl.doe.gov/

125

 APPENDIX A

RELAXATION TIME CALCULATION

A typical result of the relaxation process is shown below, in Figure A.1, for the

relaxation of the Spherical Column 1 Base structure over the two hour period.

Additionally shown are the points at which a finite difference approximation was applied

to calculate the derivative. To avoid potential ‘stair-stepping’ in the data causing an

improper calculation of the derivative, smoothing has been applied by MATLAB®

software to the data such that only the first appearance of a concentration value is

recorded, and all others are neglected. Because this process may cause a non-uniform

step size in time, as illustrated in the bottom of the figure, the following equation was

used to calculate the derivative, and was derived using a second order Taylor Expansion

with uneven node spacing.

 

2 2 2 2

1 1 1 1

1 1

i i i i i i i i

i i i i

c h c h h c h cdc

dt h h h h

   

 

   




126

Figure A.1. Relaxation in average bulk concentration for the Base Spherical Column 1
structure. To avoid ‘stair-stepping’ in the data and an incorrect approximation in the

derivative, some smoothing as been applied.

4000 6000 8000 10000 12000
1.35

1.36

1.37

1.38

1.39

1.4

1.41

1.42
x 10

4

Time (s)

A
v
e

ra
g
e

 B
u

lk
 C

o
n

c
e
n

tr
a

ti
o

n
 (

m
o

l/
m

3
)

Base

FD points

6597.8 6598 6598.2 6598.4

1.4073

1.4074

1.4075

1.4076

1.4077

1.4078

1.4079

x 10
4

Time (s)

A
v
e

ra
g
e

 B
u

lk
 C

o
n

c
e
n

tr
a

ti
o

n
 (

m
o

l/
m

3
)

Base

FD points

127

Alternatively, one may use a polynomial regression to calculate the derivate using

MATLAB® software. For the above data, the following uses this approach, as shown in

Figure A.2.

Figure A.2. Relaxation in average bulk concentration for the Base Spherical Column 1
structure. A 9th order polynomial has been applied to compute the derivative.

5000 6000 7000 8000 9000 10000 11000

1.36

1.37

1.38

1.39

1.4

1.41

x 10
4

Time(s)

A
v
e

ra
g

e
 B

u
lk

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m3

)

Base Data

9th Order Polynomial

128

 APPENDIX B

SIMULATION PROCEDURE

MATLAB GEOMETRY GENERATORS

 The geometry files for MFiX® are generated using the

Fractal_Geometry_Generator.m and Fractal_Geometry_Reader.m files. Here the user

can specify the number of branches, generations, and other parameters to generate the

desired geometry. This first will produce two text files GEOMFORMFIX.txt and

GEOMFORMATLAB.txt. The second can be used to generate perturbed realizations by

running the Fractal_Geometry_Reader.m file when the above text files are in the same

directory, and will produce INCGEOMFORMFIX.txt and INCGEOMFORMATLAB.txt.

Additionally, for the aperiodic 3D cell, a base anode structure is produced by using one

of the above codes, and the Fractal_Aperiodic_Generator.m file can be used when the

this case is in the same directory.These will be used in the mfix.dat file as discussed

later.

MATLAB PDEPE

 MATLAB® software was used to solve the fickian diffusion problem in

spherical coordinates. The corresponding file for doing so is FICKIANPDE.m. Here the

user will specify the operating current, the radius of the particle, the diffusion

coefficient, the maximum intercalatable concentration, the initial concentration,

Faraday’s Constant, and the active surface area of the electrode on lines 21 through 26.

The spatial discretization and time vector are specified on lines 34 and 35. Once run, this

129

file will produce three files: CATH_SConc.txt, CATH_AConc.txt, and CATH_FConc.txt,

for the surface concentration, average bulk concentration, and final concentration after

discharge, respectively.

 In order to restart a simulation, such as when the relaxation studies were

conducted, FICKIANPDERS.m file must be used. The CATH_FConc.txt file from above

must be in the same directory, and renamed to CATH_IConc.txt, to serve as the initial

conditions for the simulation. Once run, this file will produce the same as with

FICKIANPDE.m.

MFiX

 The following instructions assume the user has properly installed MFiX® as per

the instructions on the download website. These instructions will also assume that one

folder per simulation will be made, and that the following files are in such a folder:

mfix.dat, rrates.f, scalar_prop.f, usr0.f, and usr1.f. Additionally, the following folders

need to be included in the simulation folder: cartesian_grid and post. The following files

need to be included in cartesian_grid: allocate_cut_cell_arrays.f, cutcell_mod.f,

vtk_out.f. The following files need to be included in post: post_cbar_time and post_epg.

 The mfix.dat file contains all geometry specifications as well as tolerance values

used in the simulation. It will also specify intial concentrations as well as the constant

flux condition. The simulation time is specified by a start time of TIME and stop time

TSTOP. The timestep used is specified by DT. The geometry produced by the

MATLAB® file Fractal_Geometry_Geneartor.m is copied and placed under the

130

statement CARTESIAN_GRID=.TRUE. After the goemetry is specified, TOL_F can be

altered to specify the desired accuracy for geometry definition. The simulation space is

altered by changing the valuees of XLENGTH, YLENGTH, and ZLENGTH. The number

of cells in each direction are specifed by IMAX, JMAX, and KMAX, respectively. For a

2D simulation, the command NO_K=.TRUE. is entered under the cell definitions, and

KMAX must be commented out. The initial conditions are enetered unter the Initial

Conditions Section. Note that the spatial extents used before must be entered here, and

the initial concentration is specified by IC_SCALAR(1,1). Further, the boundary

condition on the structure is specified first by setting it to be a no slip wall, or

BC_TYPE(12)=’CG_NSW’. Note there that the number twelve in the brackets

corresponds to the group number of the geometry. BC_SCALARW can be used to

specify a constant value of concentration on the surface of the geometry, but is shut off

by setting BC_HW_SCALAR equal to 0. The constant flux condition is applied by

BC_C_SCALAR, and it is to be noted that the flux desired must be divided by the

diffusion coefficient and the corrseponding value enetered here. The output of the code

can be controlled by SPX_DT, which saves prescribed properties of the simulation at

every time step.

Once these values are altered, the mfix.exe executable file must first be generated

by entering the following command in the terminal, where the directory is inside the

simulation folder.

 ~/mfix/model/make_mfix (0.86)

131

This will produce the needed exectuable file. The simulation is started by typing the

following commande

 ./mfix.exe (0.87)

The simulation will run until TSTOP. The resulting .vtk files can be used to visualize

results. The scalar_prop.f file is used to specify the diffusion coefficients within the

structure. The file , usr0.f is used to calculate the surface concentration at every time step

and will produce the file AVGSURF_CONC.dat. The file usr1.f is used to calculate the

volume and surface area of the structure, and will be displayed in the terminal

immediately after the simulation starts. Note, that for 2D simulations, these values are

actually an area and length, multiplied by ZLENGTH as specified in the mfix.dat file.

Once a simulation is complete, the following command is issued to produce the file

cbar_c.dat.

 ~/mfix/post_mfix/post_mfix<./post/post_cbar_time (0.88)

Additionally, the file void.dat is generated similarly by typing the following into the

terminal.

 ~/mfix/post_mfix/post_mfix<./post/post_epg (0.89)

These two files are used in conjuncture to calculate the average concentration in the

geometry. The file cbar_c.dat contains average concentration values that have been

multiplied by the void fraction of the simulation, as shown in void.dat. Therefore, to

extract the average concentration values, the values in cbar_c.dat must be divided by the

value calcualted by void.dat. It is noted that void.dat will contain void fraction values at

132

every time step, but these are the same as no change in geometry is occuring for these

simulations.

 In order to restart an MFiX simulation, a restart file at the desired time step must

be produced. This is accomplished by entering the following command.

 ~/mfix/post_mfix/post_mfix (0.90)

Following the onscreen instructions, one must produce a .RES file from the data stored

in the .SPX files. Following the instructions, the user will be asked to retrieve the data

from the desired time step. Once this is complete, the user will be asked for the time at

which the restart file is to start, and the time step DT to be used. The mfix.dat file then

needs to be altered accordingly if required, with the proper time and flux values.

Additionally, when running a restart, the line in mfix.dat RUN_TYPE=’new’ needs to be

changed to RUN_TYPE=’Restart_1’.

Processing

 After corresponding simulations are completed, the file Data_Processor.m is

used to calculate the voltage values based on the surface concentrations stored in

AVGSURF_CONC.dat. To use this code, the required files from both MFiX and

MATLAB need to be in the same directory. Also, the user may wish to rename the files

in a more descriptive fashion, especially if multiple realizations of the same geometry

have been used, as this processing code is capable of processing any number of

simulations. In the code attached, the anode bulk, surface, and volume fraction files have

been renamed, so that for the instance of the base case these are Base_AConc.txt,

133

Base_SConc.txt, and Base_Void.txt. Correspondingly, the cathode simulations have been

renamed to CATH_AConc.txt, CATH_SConc.txt, and CATH_Void.txt. It is to be noted,

that when an MFiX simulation is restarted, the intial average bulk concentration value

will not be recorded in cbar_c.dat. Therefore the user will need to take this value from

the cbar_c.dat file from the original simulation. In Data_Processor.m the user will

specify the bounds of the simulation time, the timestep, the applied current, and the

bounds of the computational domain. Further, using the void.dat files, the volume

fractions are specified beginning on line 27. The appropriate text files that specify bulk

and surface concentrations are read in by MATLAB® beginning on line 36. It is to be

noted that cbar_c.dat has headers and timestamps that need to be stripped before

MATLAB® can read it. This can be accomplished easily in Microsoft Excel®. All of

these concentration values are stored in a matrix called Sims_Conc. The global cell

properties are defined beginning on line 54. Once this code is run, text files containing

the voltage values will be produced at each time step.

134

Fracatal_Geometry_Generator.m

%This m-file is meant to generate a fractal based microstructure for a
%Lithium Ion Battery electrode

clc, clear all, close all, format long,
%%User Inputs
 %Specify the maximum number of generations
 max_gen=7;

 %Specify the mean and standard deviation of the particle axes
 axes_mean=12.5/8.5*10^-6;
 axes_stdev=1/8.5*10^-6;

%%Fractal Generation
%Set a particle counters
 part_count_new=0;
 part_count_old=0;

%Generate a number of spherical spawning particles, that are

equidistant from each
%other
 for i=1:10
 part_count_new=part_count_new+1;

part_mjr_axis(1,part_count_new)=normrnd(axes_mean,axes_stdev,1);

part_mnr_axis(1,part_count_new)=part_mjr_axis(1,part_count_new);
 part_coord_x(1,part_count_new)=3*10^-6+1.5*axes_mean*i;
 part_coord_y(1,part_count_new)=3*10^-6;
 part_branlen(1,part_count_new)=0;
 part_angle(1,part_count_new)=0;
 part_type(1,part_count_new)=1;
 part_parent_x(1,part_count_new)=0;
 part_parent_y(1,part_count_new)=0;
 part_parent_type(1,part_count_new)=0;
 part_parent_angle(1,part_count_new)=0;
 part_generation(1,part_count_new)=0;
 end

%Produce the number of specified generations
 for i=1:max_gen
 part_sweep_first=part_count_old+1;
 part_sweep_last=part_count_old+part_count_new;
 part_count_old=part_count_old+part_count_new;
 part_count_new=0;

 %Sweep over previous generation
 for j=part_sweep_first:part_sweep_last
 parent_x=part_coord_x(1,j);
 parent_y=part_coord_y(1,j);
 parent_mjr_axis=part_mjr_axis(1,j);

135

 parent_mnr_axis=part_mnr_axis(1,j);
 parent_type=part_type(1,j);
 parent_angle=part_angle(1,j);

 %Determine the number of branches the parent particle

will
 %produce
 if parent_type~=3
 num_bran=randi([1,1],1);
 else
 num_bran=1;
 end

 if num_bran>0

 for k=1:num_bran

 %Determine the child particle type 1=sphere,

2=ellipse,
 %3=cylinder. However, prevent 2 cylinders from
 %forming consecutively.
 if part_type(1,j)~=3
 type=randi([1,1],1);
 if type ==2
 type =1;
 end
 else
 type=randi([1,1],1);
 end

 if type==1
 %Determine the radius of the sphere

mjr_axis=normrnd(axes_mean,axes_stdev,1);
 mnr_axis=mjr_axis;

 %Determine the branch length

bran_length=randi([50,95],1)/100*(parent_mjr_axis+mjr_axis);
 end

 if type==3
 %The major axis of the cylinder is half its

length,
 %the minor is its radius. Maintain an L/d

ratio
 %of 2.

mjr_axis=normrnd(axes_mean,axes_stdev,1);
 mnr_axis=mjr_axis/2;

136

 %Determine the branch length

bran_length=randi([50,95],1)/100*(parent_mjr_axis+mjr_axis);
 end

 if type==2
 %The major axis is half the major axis of

an elipse

mjr_axis=normrnd(axes_mean,axes_stdev,1);

mnr_axis=normrnd(axes_mean,axes_stdev,1);

 %Determine the branch length

bran_length=randi([50,95],1)/100*(parent_mjr_axis+mjr_axis);
 end

 neigh_x=zeros(0,0);
 neigh_y=zeros(0,0);
 neigh_mnr_axis=zeros(0,0);
 bran_angle_low=0;
 bran_angle_up=pi;
 near=1;
 %Determine if particle placement is possible by
 %searching for nearest particle neighbors that

are
 %within (branch+major_axis) distance
 for l=1:length(part_coord_x)
 dist=sqrt((parent_x-

part_coord_x(1,l))^2+(parent_y-part_coord_y(1,l))^2);
 if dist>0 &&

dist<(bran_length+mjr_axis+part_mjr_axis(1,l))
 neigh_x(1,near)=part_coord_x(1,l);
 neigh_y(1,near)=part_coord_y(1,l);

neigh_mjr_axis(1,near)=part_mjr_axis(1,l);
 near=near+1;
 end
 end

 if prod(size(neigh_x))~=0
 for l=1:length(neigh_x)
 angle=atan2(neigh_y(1,l)-

parent_y,neigh_x(1,l)-parent_x);
 if angle>=0 && angle<pi/2
 if angle>bran_angle_low
 bran_angle_low=0;

bran_angle_low=bran_angle_low+angle+2*atan2(neigh_mjr_axis(1,l),bran_le

ngth);
 end
 end

137

 if angle>=pi/2 &&angle<=pi
 if angle<bran_angle_up
 bran_angle_up=pi;
 bran_angle_up=bran_angle_up-

(pi-angle)-2*atan2(neigh_mjr_axis(1,l),bran_length);
 end
 end
 end
 end

 if bran_length*(bran_angle_up-

bran_angle_low)>2*mnr_axis
 if parent_type~=3

bran_angle=(bran_angle_up+bran_angle_low)/2+randi([-

15,15],1)/100*(bran_angle_up+bran_angle_low)/2;
 else
 bran_angle=parent_angle;
 end
 part_count_new=part_count_new+1;

part_mjr_axis(1,part_count_new+part_count_old)=mjr_axis;

part_mnr_axis(1,part_count_new+part_count_old)=mnr_axis;

part_type(1,part_count_new+part_count_old)=type;

part_coord_x(1,part_count_new+part_count_old)=parent_x+bran_length*cos(

bran_angle);

part_coord_y(1,part_count_new+part_count_old)=parent_y+bran_length*sin(

bran_angle);

part_branlen(1,part_count_new+part_count_old)=bran_length;

part_angle(1,part_count_new+part_count_old)=bran_angle;

part_parent_x(1,part_count_new+part_count_old)=parent_x;

part_parent_y(1,part_count_new+part_count_old)=parent_y;

part_parent_type(1,part_count_new+part_count_old)=parent_type;

part_parent_angle(1,part_count_new+part_count_old)=parent_angle;

part_generation(1,part_count_new+part_count_old)=i;
 end

 end
 end
 end
 end

138

%Plot the particles
 figure(1)
 hold on
 axis equal
 for i=1:length(part_coord_x)
 %Extract the particle type
 type=part_type(1,i);
 if type==1
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 [x y]=draw_circle(part_x, part_y, mjr_axis);
 plot(x,y)
 end

 if type==3
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 a=[part_x+mnr_axis*cos(theta+3*pi/2)

part_y+mnr_axis*sin(theta+3*pi/2)];
 b=[part_x+mnr_axis*cos(theta+pi/2)

part_y+mnr_axis*sin(theta+pi/2)];
 line([a(1)+mjr_axis*cos(theta)

b(1)+mjr_axis*cos(theta)],[a(2)+mjr_axis*sin(theta)

b(2)+mjr_axis*sin(theta)])
 line([b(1)+mjr_axis*cos(theta) b(1)-

mjr_axis*cos(theta)],[b(2)+mjr_axis*sin(theta) b(2)-

mjr_axis*sin(theta)])
 line([b(1)-mjr_axis*cos(theta) a(1)-

mjr_axis*cos(theta)],[b(2)-mjr_axis*sin(theta) a(2)-

mjr_axis*sin(theta)])
 line([a(1)-mjr_axis*cos(theta)

a(1)+mjr_axis*cos(theta)],[a(2)-mjr_axis*sin(theta)

a(2)+mjr_axis*sin(theta)])
 end

 if type==2
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 ellipse(mjr_axis,mnr_axis,theta,part_x,part_y)
 end
 end

%Write the geometry so that MFIX can read it

139

 fid=fopen('GEOMFORMFIX.txt','w');

 str1=['N_QUADRIC = ',num2str(length(part_coord_x))];
 str2=[' '];
 fprintf(fid,'%s\n',str1);
 fprintf(fid,'%s\n',str2);

 for i=1:length(part_coord_x)
 type=part_type(1,i);

 if type==1
 str1=['QUADRIC_FORM(',num2str(i),') = ''Z_CYL_INT'''];
 str2=['RADIUS(',num2str(i),') =

',num2str(part_mjr_axis(1,i))];
 str3=[' '];
 str4=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))];
 str5=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))];
 str6=[' '];
 fprintf(fid,'%s\n',str1);
 fprintf(fid,'%s\n',str2);
 fprintf(fid,'%s\n',str3);
 fprintf(fid,'%s\n',str4);
 fprintf(fid,'%s\n',str5);
 fprintf(fid,'%s\n',str6);
 end

 if type==3
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 a=[part_x+mnr_axis*cos(theta+3*pi/2)

part_y+mnr_axis*sin(theta+3*pi/2)];
 b=[part_x+mnr_axis*cos(theta+pi/2)

part_y+mnr_axis*sin(theta+pi/2)];
 y1=a(2)+mjr_axis*sin(theta);
 y2=b(2)+mjr_axis*sin(theta);
 y3=b(2)-mjr_axis*sin(theta);
 y4=a(2)-mjr_axis*sin(theta);
 clip_ymax=max([y1, y2, y3, y4]);
 clip_ymin=min([y1, y2, y3, y4]);
 str1=['QUADRIC_FORM(',num2str(i),') = ''X_CYL_INT'''];
 str2=['RADIUS(',num2str(i),') = ',num2str(mnr_axis)];
 str3=[' '];
 str4=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))];
 str5=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))];
 str6=[' '];
 str7=['THETA_Z(',num2str(i),')=',num2str(theta*180/pi)];
 str8=[' '];
 str9=['clip_ymin(',num2str(i),')=',num2str(clip_ymin)];
 str10=['clip_ymax(',num2str(i),')=',num2str(clip_ymax)];

140

 str11=['FLUID_IN_CLIPPED_REGION(',num2str(i),') =

.FALSE.'];
 str12=[' '];
 fprintf(fid,'%s\n',str1);
 fprintf(fid,'%s\n',str2);
 fprintf(fid,'%s\n',str3);
 fprintf(fid,'%s\n',str4);
 fprintf(fid,'%s\n',str5);
 fprintf(fid,'%s\n',str6);
 fprintf(fid,'%s\n',str7);
 fprintf(fid,'%s\n',str8);
 fprintf(fid,'%s\n',str9);
 fprintf(fid,'%s\n',str10);
 fprintf(fid,'%s\n',str11);
 fprintf(fid,'%s\n',str12);
 end

 if type==2
 theta=part_angle(1,i);
 a=part_mjr_axis(1,i);
 b=part_mnr_axis(1,i);
 str1=['lambda_x(',num2str(i),') = ',num2str(b^2)];
 str2=['lambda_y(',num2str(i),') = ',num2str(a^2)];
 str3=['lambda_z(',num2str(i),') = ',num2str(0)];
 str4=['dquadric(',num2str(i),')= ',num2str(-a^2*b^2)];
 str5=[' '];
 str6=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))];
 str7=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))];
 str8=[' '];
 str9=['THETA_Z(',num2str(i),')=',num2str(theta*180/pi)];
 str10=[' '];
 fprintf(fid,'%s\n',str1);
 fprintf(fid,'%s\n',str2);
 fprintf(fid,'%s\n',str3);
 fprintf(fid,'%s\n',str4);
 fprintf(fid,'%s\n',str5);
 fprintf(fid,'%s\n',str6);
 fprintf(fid,'%s\n',str7);
 fprintf(fid,'%s\n',str8);
 fprintf(fid,'%s\n',str9);
 fprintf(fid,'%s\n',str10);
 end
 end

 str8=['N_GROUP = 1'];
 str9=['GROUP_SIZE(1) = ',num2str(length(part_coord_x))];
 fprintf(fid,'%s\n',str8);
 fprintf(fid,'%s\n',str9);
 for i=1:length(part_coord_x)
 str=['GROUP_Q(1,',num2str(i),') = ',num2str(i)];
 fprintf(fid,'%s\n',str);
 end
 str=['GROUP_RELATION(1) = ''OR'''];

141

 fprintf(fid,'%s\r',str);
 str=['BC_ID_Q(1) = '];
 fprintf(fid,str);
 for i=1:length(part_coord_x)
 str=[num2str(12),' '];
 fprintf(fid,str);
 end

fclose(fid);

%Write geometry in a format that matlab can read for post processing if
%needed

for i=1:length(part_coord_x)

M(i,[1:12])=[part_coord_x(1,i),part_coord_y(1,i),part_mjr_axis(1,i),par

t_mnr_axis(1,i),...
 part_type(1,i), part_branlen(1,i), part_angle(1,i),

part_parent_x(1,i),...

part_parent_y(1,i),part_parent_type(1,i),part_parent_angle(1,i),part_ge

neration(1,i)];
end

dlmwrite('GEOMFORMATLAB.txt',M,'precision',18)

142

Fractal_Geometry_Reader.m

%The following m-file is meant to read in fractal geometry produced by
%Fractal_Geometry_Generator, plot it, and, if required, perturb it to
%create new incarnations.

clc, clear all, close all, format long

%Read in the fractal geometry from GEOMFORMATLAB.txt
 M=dlmread('GEOMFORMATLAB.txt');

%Separate the columns of 'M' into appropriate arrays
 part_coord_x(1,:)=M(:,1);
 part_coord_y(1,:)=M(:,2);
 part_mjr_axis(1,:)=M(:,3);
 part_mnr_axis(1,:)=M(:,4);
 part_type(1,:)=M(:,5);
 part_branlen(1,:)=M(:,6);
 part_angle(1,:)=M(:,7);
 part_parent_x(1,:)=M(:,8);
 part_parent_y(1,:)=M(:,9);
 part_parent_type(1,:)=M(:,10);
 part_parent_angle(1,:)=M(:,11);
 part_generation(1,:)=M(:,12);

%Plot the particles
 figure(1)
 hold on
 axis equal
 for i=1:length(part_coord_x)
 %Extract the particle type
 type=part_type(1,i);
 if type==1
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 [x y]=draw_circle(part_x, part_y, mjr_axis);
 plot(x,y,'b')
 end

 if type==3
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 a=[part_x+mnr_axis*cos(theta+3*pi/2)

part_y+mnr_axis*sin(theta+3*pi/2)];
 b=[part_x+mnr_axis*cos(theta+pi/2)

part_y+mnr_axis*sin(theta+pi/2)];

143

 line([a(1)+mjr_axis*cos(theta)

b(1)+mjr_axis*cos(theta)],[a(2)+mjr_axis*sin(theta)

b(2)+mjr_axis*sin(theta)])
 line([b(1)+mjr_axis*cos(theta) b(1)-

mjr_axis*cos(theta)],[b(2)+mjr_axis*sin(theta) b(2)-

mjr_axis*sin(theta)])
 line([b(1)-mjr_axis*cos(theta) a(1)-

mjr_axis*cos(theta)],[b(2)-mjr_axis*sin(theta) a(2)-

mjr_axis*sin(theta)])
 line([a(1)-mjr_axis*cos(theta)

a(1)+mjr_axis*cos(theta)],[a(2)-mjr_axis*sin(theta)

a(2)+mjr_axis*sin(theta)])
 end

 if type==2
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 ellipse(mjr_axis,mnr_axis,theta,part_x,part_y)
 end
 end

%Introduce pertubations in the branch angles and lengths to create new

incarnations
%of the geometry

 %Specify angle pertubation limits. These are percentages of how

much the
 %angle can increase or decrease
 angle_pert_up=130;
 angle_pert_low=70;
 length_pert_up=120;
 length_pert_low=80;

 %Recalculate new coordinates based upon new angles
 for i=1:length(part_coord_x)
 parent_x=part_parent_x(1,i);
 parent_y=part_parent_y(1,i);
 parent_type=part_parent_type(1,i);
 parent_angle=part_parent_angle(1,i);
 part_gen=part_generation(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 bran_length=part_branlen(1,i);

 if part_gen~=0
 bran_angle=part_angle(1,i);
 if parent_type~=3

part_angle(1,i)=randi([angle_pert_low,angle_pert_up],1)/100*bran_angle;

144

 else
 part_angle(1,i)=part_parent_angle(1,i);
 end

part_branlen(1,i)=randi([length_pert_low,length_pert_up],1)/100*bran_le

ngth;
 %Find the children of this particle, and reset their

parent's
 %coordinates
 bran_length=part_branlen(1,i);
 for j=1:length(part_coord_x)
 if part_generation(1,j)==part_gen+1
 if part_parent_x(1,j)==part_x &&

part_parent_y(1,j)==part_y

part_parent_x(1,j)=parent_x+bran_length*cos(part_angle(1,i));

part_parent_y(1,j)=parent_y+bran_length*sin(part_angle(1,i));
 part_parent_angle(1,j)=part_angle(1,i);
 end
 end
 end

part_coord_x(1,i)=parent_x+bran_length*cos(part_angle(1,i));

part_coord_y(1,i)=parent_y+bran_length*sin(part_angle(1,i));
 end
 end

 %Replot the particles in red over the orignal blue
 for i=1:length(part_coord_x)
 %Extract the particle type
 type=part_type(1,i);
 if type==1
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 [x y]=draw_circle(part_x, part_y, mjr_axis);
 plot(x,y,'r')
 end

 if type==3
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 a=[part_x+mnr_axis*cos(theta+3*pi/2)

part_y+mnr_axis*sin(theta+3*pi/2)];
 b=[part_x+mnr_axis*cos(theta+pi/2)

part_y+mnr_axis*sin(theta+pi/2)];

145

 line([a(1)+mjr_axis*cos(theta)

b(1)+mjr_axis*cos(theta)],[a(2)+mjr_axis*sin(theta)

b(2)+mjr_axis*sin(theta)],'Color','r')
 line([b(1)+mjr_axis*cos(theta) b(1)-

mjr_axis*cos(theta)],[b(2)+mjr_axis*sin(theta) b(2)-

mjr_axis*sin(theta)],'Color','r')
 line([b(1)-mjr_axis*cos(theta) a(1)-

mjr_axis*cos(theta)],[b(2)-mjr_axis*sin(theta) a(2)-

mjr_axis*sin(theta)],'Color','r')
 line([a(1)-mjr_axis*cos(theta)

a(1)+mjr_axis*cos(theta)],[a(2)-mjr_axis*sin(theta)

a(2)+mjr_axis*sin(theta)],'Color','r')
 end

 if type==2
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 ellipse(mjr_axis,mnr_axis,theta,part_x,part_y,'r')
 end
 end

 %Write the geometry so that MFIX can read it
 fid=fopen('INCGEOMFORMFIX.txt','w');

 str1=['N_QUADRIC = ',num2str(length(part_coord_x))];
 str2=[' '];
 fprintf(fid,'%s\n',str1);
 fprintf(fid,'%s\n',str2);

 for i=1:length(part_coord_x)
 type=part_type(1,i);

 if type==1
 str1=['QUADRIC_FORM(',num2str(i),') = ''Z_CYL_INT'''];
 str2=['RADIUS(',num2str(i),') =

',num2str(part_mjr_axis(1,i))];
 str3=[' '];
 str4=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))];
 str5=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))];
 str6=[' '];
 fprintf(fid,'%s\n',str1);
 fprintf(fid,'%s\n',str2);
 fprintf(fid,'%s\n',str3);
 fprintf(fid,'%s\n',str4);
 fprintf(fid,'%s\n',str5);
 fprintf(fid,'%s\n',str6);
 end

 if type==3

146

 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 a=[part_x+mnr_axis*cos(theta+3*pi/2)

part_y+mnr_axis*sin(theta+3*pi/2)];
 b=[part_x+mnr_axis*cos(theta+pi/2)

part_y+mnr_axis*sin(theta+pi/2)];
 y1=a(2)+mjr_axis*sin(theta);
 y2=b(2)+mjr_axis*sin(theta);
 y3=b(2)-mjr_axis*sin(theta);
 y4=a(2)-mjr_axis*sin(theta);
 clip_ymax=max([y1, y2, y3, y4]);
 clip_ymin=min([y1, y2, y3, y4]);
 str1=['QUADRIC_FORM(',num2str(i),') = ''X_CYL_INT'''];
 str2=['RADIUS(',num2str(i),') = ',num2str(mnr_axis)];
 str3=[' '];
 str4=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))];
 str5=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))];
 str6=[' '];
 str7=['THETA_Z(',num2str(i),')=',num2str(theta*180/pi)];
 str8=[' '];
 str9=['clip_ymin(',num2str(i),')=',num2str(clip_ymin)];
 str10=['clip_ymax(',num2str(i),')=',num2str(clip_ymax)];
 str11=['FLUID_IN_CLIPPED_REGION(',num2str(i),') =

.FALSE.'];
 str12=[' '];
 fprintf(fid,'%s\n',str1);
 fprintf(fid,'%s\n',str2);
 fprintf(fid,'%s\n',str3);
 fprintf(fid,'%s\n',str4);
 fprintf(fid,'%s\n',str5);
 fprintf(fid,'%s\n',str6);
 fprintf(fid,'%s\n',str7);
 fprintf(fid,'%s\n',str8);
 fprintf(fid,'%s\n',str9);
 fprintf(fid,'%s\n',str10);
 fprintf(fid,'%s\n',str11);
 fprintf(fid,'%s\n',str12);
 end

 if type==2
 theta=part_angle(1,i);
 a=part_mjr_axis(1,i);
 b=part_mnr_axis(1,i);
 str1=['lambda_x(',num2str(i),') = ',num2str(b^2)];
 str2=['lambda_y(',num2str(i),') = ',num2str(a^2)];
 str3=['lambda_z(',num2str(i),') = ',num2str(0)];
 str4=['dquadric(',num2str(i),')= ',num2str(-a^2*b^2)];
 str5=[' '];
 str6=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))];
 str7=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))];

147

 str8=[' '];
 str9=['THETA_Z(',num2str(i),')=',num2str(theta*180/pi)];
 str10=[' '];
 fprintf(fid,'%s\n',str1);
 fprintf(fid,'%s\n',str2);
 fprintf(fid,'%s\n',str3);
 fprintf(fid,'%s\n',str4);
 fprintf(fid,'%s\n',str5);
 fprintf(fid,'%s\n',str6);
 fprintf(fid,'%s\n',str7);
 fprintf(fid,'%s\n',str8);
 fprintf(fid,'%s\n',str9);
 fprintf(fid,'%s\n',str10);
 end
 end

 str8=['N_GROUP = 1'];
 str9=['GROUP_SIZE(1) = ',num2str(length(part_coord_x))];
 fprintf(fid,'%s\n',str8);
 fprintf(fid,'%s\n',str9);
 for i=1:length(part_coord_x)
 str=['GROUP_Q(1,',num2str(i),') = ',num2str(i)];
 fprintf(fid,'%s\n',str);
 end
 str=['GROUP_RELATION(1) = ''OR'''];
 fprintf(fid,'%s\r',str);
 str=['BC_ID_Q(1) = '];
 fprintf(fid,str);
 for i=1:length(part_coord_x)
 str=[num2str(12),' '];
 fprintf(fid,str);
 end

fclose(fid);

%Write geometry in a format that matlab can read for post processing if
%needed

for i=1:length(part_coord_x)

M(i,[1:12])=[part_coord_x(1,i),part_coord_y(1,i),part_mjr_axis(1,i),par

t_mnr_axis(1,i),...
 part_type(1,i), part_branlen(1,i), part_angle(1,i),

part_parent_x(1,i),...

part_parent_y(1,i),part_parent_type(1,i),part_parent_angle(1,i),part_ge

neration(1,i)];
end

dlmwrite('INCGEOMFORMATLAB.txt',M,'precision',18)

148

Fractal_Aperiodic_Generator.m

%The following m-file is meant to read in fractal geometry produced by
%Fractal_Geometry_Generator, then produce an interdigitated cathode
%structure

clc, clear all, close all, format long

%%User Inputs
 %Specify the maximum number of generations of the cathode structure
 max_gen=10;

 %Specify the mean and standard deviation of the particle axes
 axes_mean=8.5/8.5*10^-6;
 axes_stdev=1/8.5*10^-6;

%%Generate the Cathode Structure

%Read in the fractal geometry from GEOMFORMATLAB.txt
 M=dlmread('GEOMFORMATLAB.txt');

%Separate the columns of 'M' into appropriate arrays
 part_coord_x(1,:)=M(:,1);
 part_coord_y(1,:)=M(:,2);
 part_mjr_axis(1,:)=M(:,3);
 part_mnr_axis(1,:)=M(:,4);
 part_type(1,:)=M(:,5);
 part_branlen(1,:)=M(:,6);
 part_angle(1,:)=M(:,7);
 part_parent_x(1,:)=M(:,8);
 part_parent_y(1,:)=M(:,9);
 part_parent_type(1,:)=M(:,10);
 part_parent_angle(1,:)=M(:,11);
 part_generation(1,:)=M(:,12);

%Set a particle counters
 part_count_new=0;
 part_count_old=length(part_coord_x);
 anode_part=length(part_coord_x);

%Generate a number of spherical spawning particles, that are

equidistant from each
%other
 for i=1:14
 part_count_new=part_count_new+1;

part_mjr_axis(1,part_count_old+part_count_new)=normrnd(axes_mean,axes_s

tdev,1);

part_mnr_axis(1,part_count_old+part_count_new)=part_mjr_axis(1,part_cou

nt_new);

149

 part_coord_x(1,part_count_old+part_count_new)=5*10^-

6+1.5*axes_mean*i;
 part_coord_y(1,part_count_old+part_count_new)=21.5*10^-6;
 part_branlen(1,part_count_old+part_count_new)=0;
 part_angle(1,part_count_old+part_count_new)=0;
 part_type(1,part_count_old+part_count_new)=1;
 part_parent_x(1,part_count_old+part_count_new)=0;
 part_parent_y(1,part_count_old+part_count_new)=0;
 part_parent_type(1,part_count_old+part_count_new)=0;
 part_parent_angle(1,part_count_old+part_count_new)=0;
 part_generation(1,part_count_old+part_count_new)=0;
 end

%Produce the number of specified generations
 for i=1:max_gen
 part_sweep_first=part_count_old+1;
 part_sweep_last=part_count_old+part_count_new;
 part_count_old=part_count_old+part_count_new;
 part_count_new=0;

 %Sweep over previous generation
 for j=part_sweep_first:part_sweep_last
 parent_x=part_coord_x(1,j);
 parent_y=part_coord_y(1,j);
 parent_mjr_axis=part_mjr_axis(1,j);
 parent_mnr_axis=part_mnr_axis(1,j);
 parent_type=part_type(1,j);
 parent_angle=part_angle(1,j);

 %Determine the number of branches the parent particle

will
 %produce
 if parent_type~=3
 num_bran=randi([1,1],1);
 else
 num_bran=1;
 end

 if num_bran>0

 for k=1:num_bran

 %Determine the child particle type 1=sphere,

2=ellipse,
 %3=cylinder. However, prevent 2 cylinders from
 %forming consecutively.
 if part_type(1,j)~=3
 type=randi([1,1],1);
 if type ==2
 type =1;
 end
 else

150

 type=randi([1,1],1);
 end

 if type==1
 %Determine the radius of the sphere

mjr_axis=normrnd(axes_mean,axes_stdev,1);
 mnr_axis=mjr_axis;

 %Determine the branch length

bran_length=randi([50,95],1)/100*(parent_mjr_axis+mjr_axis);
 end

 if type==3
 %The major axis of the cylinder is half its

length,
 %the minor is its radius. Maintain an L/d

ratio
 %of 2.

mjr_axis=normrnd(axes_mean,axes_stdev,1);
 mnr_axis=mjr_axis/2;

 %Determine the branch length

bran_length=randi([50,95],1)/100*(parent_mjr_axis+mjr_axis);
 end

 if type==2
 %The major axis is half the major axis of

an elipse

mjr_axis=normrnd(axes_mean,axes_stdev,1);

mnr_axis=normrnd(axes_mean,axes_stdev,1);

 %Determine the branch length

bran_length=randi([50,95],1)/100*(parent_mjr_axis+mjr_axis);
 end

 neigh_x=zeros(0,0);
 neigh_y=zeros(0,0);
 neigh_mnr_axis=zeros(0,0);
 bran_angle_low=-pi;
 bran_angle_up=0;
 near=1;
 %Determine if particle placement is possible by
 %searching for nearest particle neighbors that

are

151

 %within (branch+major_axis) distance
 for l=1:length(part_coord_x)
 dist=sqrt((parent_x-

part_coord_x(1,l))^2+(parent_y-part_coord_y(1,l))^2);
 if dist>0 &&

dist<(bran_length+mjr_axis+part_mjr_axis(1,l))
 neigh_x(1,near)=part_coord_x(1,l);
 neigh_y(1,near)=part_coord_y(1,l);

neigh_mjr_axis(1,near)=part_mjr_axis(1,l);
 near=near+1;
 end
 end

 if prod(size(neigh_x))~=0
 for l=1:length(neigh_x)
 angle=atan2(neigh_y(1,l)-

parent_y,neigh_x(1,l)-parent_x);
 if angle>=-pi && angle<-pi/2
 if angle>bran_angle_low
 bran_angle_low=angle

%+2*atan2(neigh_mjr_axis(1,l),bran_length);
 end
 end

 if angle>=-pi/2 &&angle<=0
 if angle<bran_angle_up
 bran_angle_up=pi;
 bran_angle_up=angle
 %-

2*atan2(neigh_mjr_axis(1,l),bran_length);
 end
 end
 end
 end

 if bran_length*(bran_angle_up-

bran_angle_low)>3*mnr_axis
 if parent_type~=3

bran_angle=(bran_angle_up+bran_angle_low)/2+randi([-

15,15],1)/100*(bran_angle_up+bran_angle_low)/2;
 else
 bran_angle=parent_angle;
 end
 part_count_new=part_count_new+1;

part_mjr_axis(1,part_count_new+part_count_old)=mjr_axis;

part_mnr_axis(1,part_count_new+part_count_old)=mnr_axis;

part_type(1,part_count_new+part_count_old)=type;

152

part_coord_x(1,part_count_new+part_count_old)=parent_x+bran_length*cos(

bran_angle);

part_coord_y(1,part_count_new+part_count_old)=parent_y+bran_length*sin(

bran_angle);

part_branlen(1,part_count_new+part_count_old)=bran_length;

part_angle(1,part_count_new+part_count_old)=bran_angle;

part_parent_x(1,part_count_new+part_count_old)=parent_x;

part_parent_y(1,part_count_new+part_count_old)=parent_y;

part_parent_type(1,part_count_new+part_count_old)=parent_type;

part_parent_angle(1,part_count_new+part_count_old)=parent_angle;

part_generation(1,part_count_new+part_count_old)=i;
 end

 end
 end
 end
 end

%Plot the particles
 figure(1)
 hold on
 axis equal
 for i=1:length(part_coord_x)
 %Extract the particle type
 type=part_type(1,i);
 if type==1
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 [x y]=draw_circle(part_x, part_y, mjr_axis);
 if i<=anode_part
 plot(x,y)
 else
 plot(x,y,'r')
 end
 end

 if type==3
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);

153

 part_y=part_coord_y(1,i);
 a=[part_x+mnr_axis*cos(theta+3*pi/2)

part_y+mnr_axis*sin(theta+3*pi/2)];
 b=[part_x+mnr_axis*cos(theta+pi/2)

part_y+mnr_axis*sin(theta+pi/2)];
 if i<=anode_part
 line([a(1)+mjr_axis*cos(theta)

b(1)+mjr_axis*cos(theta)],[a(2)+mjr_axis*sin(theta)

b(2)+mjr_axis*sin(theta)])
 line([b(1)+mjr_axis*cos(theta) b(1)-

mjr_axis*cos(theta)],[b(2)+mjr_axis*sin(theta) b(2)-

mjr_axis*sin(theta)])
 line([b(1)-mjr_axis*cos(theta) a(1)-

mjr_axis*cos(theta)],[b(2)-mjr_axis*sin(theta) a(2)-

mjr_axis*sin(theta)])
 line([a(1)-mjr_axis*cos(theta)

a(1)+mjr_axis*cos(theta)],[a(2)-mjr_axis*sin(theta)

a(2)+mjr_axis*sin(theta)])
 else
 line([a(1)+mjr_axis*cos(theta)

b(1)+mjr_axis*cos(theta)],[a(2)+mjr_axis*sin(theta)

b(2)+mjr_axis*sin(theta)],'Color','r')
 line([b(1)+mjr_axis*cos(theta) b(1)-

mjr_axis*cos(theta)],[b(2)+mjr_axis*sin(theta) b(2)-

mjr_axis*sin(theta)],'Color','r')
 line([b(1)-mjr_axis*cos(theta) a(1)-

mjr_axis*cos(theta)],[b(2)-mjr_axis*sin(theta) a(2)-

mjr_axis*sin(theta)],'Color','r')
 line([a(1)-mjr_axis*cos(theta)

a(1)+mjr_axis*cos(theta)],[a(2)-mjr_axis*sin(theta)

a(2)+mjr_axis*sin(theta)],'Color','r')
 end
 end

 if type==2
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 ellipse(mjr_axis,mnr_axis,theta,part_x,part_y)
 end
 end

 %Write the geometry so that MFIX can read it
 fid=fopen('INCGEOMFORMFIX.txt','w');

 str1=['N_QUADRIC = ',num2str(length(part_coord_x))];
 str2=[' '];
 fprintf(fid,'%s\n',str1);

154

 fprintf(fid,'%s\n',str2);

 for i=1:length(part_coord_x)
 type=part_type(1,i);

 if type==1
 str1=['QUADRIC_FORM(',num2str(i),') = ''Z_CYL_INT'''];
 str2=['RADIUS(',num2str(i),') =

',num2str(part_mjr_axis(1,i))];
 str3=[' '];
 str4=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))];
 str5=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))];
 str6=[' '];
 fprintf(fid,'%s\n',str1);
 fprintf(fid,'%s\n',str2);
 fprintf(fid,'%s\n',str3);
 fprintf(fid,'%s\n',str4);
 fprintf(fid,'%s\n',str5);
 fprintf(fid,'%s\n',str6);
 end

 if type==3
 theta=part_angle(1,i);
 mjr_axis=part_mjr_axis(1,i);
 mnr_axis=part_mnr_axis(1,i);
 part_x=part_coord_x(1,i);
 part_y=part_coord_y(1,i);
 a=[part_x+mnr_axis*cos(theta+3*pi/2)

part_y+mnr_axis*sin(theta+3*pi/2)];
 b=[part_x+mnr_axis*cos(theta+pi/2)

part_y+mnr_axis*sin(theta+pi/2)];
 y1=a(2)+mjr_axis*sin(theta);
 y2=b(2)+mjr_axis*sin(theta);
 y3=b(2)-mjr_axis*sin(theta);
 y4=a(2)-mjr_axis*sin(theta);
 clip_ymax=max([y1, y2, y3, y4]);
 clip_ymin=min([y1, y2, y3, y4]);
 str1=['QUADRIC_FORM(',num2str(i),') = ''X_CYL_INT'''];
 str2=['RADIUS(',num2str(i),') = ',num2str(mnr_axis)];
 str3=[' '];
 str4=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))];
 str5=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))];
 str6=[' '];
 str7=['THETA_Z(',num2str(i),')=',num2str(theta*180/pi)];
 str8=[' '];
 str9=['clip_ymin(',num2str(i),')=',num2str(clip_ymin)];
 str10=['clip_ymax(',num2str(i),')=',num2str(clip_ymax)];
 str11=['FLUID_IN_CLIPPED_REGION(',num2str(i),') =

.FALSE.'];
 str12=[' '];
 fprintf(fid,'%s\n',str1);
 fprintf(fid,'%s\n',str2);
 fprintf(fid,'%s\n',str3);

155

 fprintf(fid,'%s\n',str4);
 fprintf(fid,'%s\n',str5);
 fprintf(fid,'%s\n',str6);
 fprintf(fid,'%s\n',str7);
 fprintf(fid,'%s\n',str8);
 fprintf(fid,'%s\n',str9);
 fprintf(fid,'%s\n',str10);
 fprintf(fid,'%s\n',str11);
 fprintf(fid,'%s\n',str12);
 end

 if type==2
 theta=part_angle(1,i);
 a=part_mjr_axis(1,i);
 b=part_mnr_axis(1,i);
 str1=['lambda_x(',num2str(i),') = ',num2str(b^2)];
 str2=['lambda_y(',num2str(i),') = ',num2str(a^2)];
 str3=['lambda_z(',num2str(i),') = ',num2str(0)];
 str4=['dquadric(',num2str(i),')= ',num2str(-a^2*b^2)];
 str5=[' '];
 str6=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))];
 str7=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))];
 str8=[' '];
 str9=['THETA_Z(',num2str(i),')=',num2str(theta*180/pi)];
 str10=[' '];
 fprintf(fid,'%s\n',str1);
 fprintf(fid,'%s\n',str2);
 fprintf(fid,'%s\n',str3);
 fprintf(fid,'%s\n',str4);
 fprintf(fid,'%s\n',str5);
 fprintf(fid,'%s\n',str6);
 fprintf(fid,'%s\n',str7);
 fprintf(fid,'%s\n',str8);
 fprintf(fid,'%s\n',str9);
 fprintf(fid,'%s\n',str10);
 end
 end

 str8=['N_GROUP = 1'];
 str9=['GROUP_SIZE(1) = ',num2str(length(part_coord_x))];
 fprintf(fid,'%s\n',str8);
 fprintf(fid,'%s\n',str9);
 for i=1:length(part_coord_x)
 str=['GROUP_Q(1,',num2str(i),') = ',num2str(i)];
 fprintf(fid,'%s\n',str);
 end
 str=['GROUP_RELATION(1) = ''OR'''];
 fprintf(fid,'%s\r',str);
 str=['BC_ID_Q(1) = '];
 fprintf(fid,str);
 for i=1:length(part_coord_x)
 str=[num2str(12),' '];
 fprintf(fid,str);

156

 end

fclose(fid);

%Write geometry in a format that matlab can read for post processing if
%needed

for i=1:length(part_coord_x)

M(i,[1:12])=[part_coord_x(1,i),part_coord_y(1,i),part_mjr_axis(1,i),par

t_mnr_axis(1,i),...
 part_type(1,i), part_branlen(1,i), part_angle(1,i),

part_parent_x(1,i),...

part_parent_y(1,i),part_parent_type(1,i),part_parent_angle(1,i),part_ge

neration(1,i)];
end

dlmwrite('INCGEOMFORMATLAB.txt',M,'precision',18)

157

Data_Processor.m

%The following m-file is meant to read in 2 files produced by MFIX
%simulation and post processed by the user, *_CONC.txt and *_SCONC.txt,
%and to produce needed quantities. NOTE: MFIX will produce cbar_c.dat

and
%AVGSURF_CONC.dat. These need to be trimmed of any headers so that

MATLAB
%can read it. Use excel and create the above text file names.

clc, clear all, close all, format long

%%User Inputs:

 %Specify the bounds of simulation time and the time step used
 t_start = 0;
 t_stop = 7200;
 dt = .1;

 %Specify the Discharge/Charge Current (positive is discharging, and
 %vice versa)
 I_app=1.656; %A

 %Specify the bounds of the computational domain
 xmin=0;
 ymin=0;
 xmax=2.4*10^-4;
 ymax=15.0*10^-5;

 %Specify the void volume fractions of each simulation
 Base_ep=.56;

 %Read-in average concentration and surface average concentration

values
 %of each simulation, and group them in one matrix for processing
 Base_AConc=dlmread('Base_AConc.txt');
 Base_SConc=dlmread('Base_SConc.txt');
 CATH_AConc=dlmread('CATH_AConc.txt');
 CATH_SConc=dlmread('CATH_SConc.txt');
 Sims_Conc=horzcat(Base_AConc, Base_SConc);

 %Specify the Li-Ion Cell Properties
 %Anode Properties
 A_n=.08; %m^2
 c_max_n=31833; %mol/m^3
 D_s_n=3.9*10^-14; %m^2/s
 alpha_n=.5;
 k_n=1.764*10^-11;
 c_0_n=.7522*c_max_n; %mol/m^3
 S_n=.7824; %m^2

158

 %Mock Cathode Properties
 R_p_p=8.5*10^-6; %m
 c_max_p=51410; %mol/m^3
 D_s_p=1.0*10^-14;
 alpha_p=.5;
 k_p=6.6667*10^-11;
 c_0_p=.4952*c_max_p;
 S_p=1.1167;

 %Assume a constant concentration in the electrolyte for

both
 %electrodes
 c_e_n=1000;
 c_e_p=1000;

 %Other Properties
 nodes_p_r=100;
 sample_freq=1;
 F=96487; %C/mol
 R_gas=8.3143; %J/mol*K
 N_A=6.022*10^23; %atom/mol
 k=1.380*10^-23; %m^2 kg/(s^2 K)
 e=1.9*10^-19; %C
 T=298; %K
 eps_0=8.85*10^-12; %C^2/(N m^2)

%%Process

 %Generate time vector
 t=t_start:dt:t_stop;

 %Calculate the Equilibrium Potentials, Overpotentials, and Overall

Cell
 %Voltage vs time.

 %Equilibrium Potentials
 Eq_Pot_n=zeros(length(t),length(Sims_Conc(1,:))/2);
 for i=1:length(Sims_Conc(1,:))/2
 Eq_Pot_n(:,i)=U_n(Sims_Conc(:,(i+i)),c_max_n);
 end
 Eq_Pot_p=U_p(CATH_SConc,c_max_p);

 %Overpotentials
 eta_n=zeros(length(t),length(Sims_Conc(1,:))/2);
 eta_p=zeros(length(t),1);
 for i=1:length(Sims_Conc(1,:))/2
 for j=1:length(Sims_Conc(:,1))
 if c_max_n-Sims_Conc(j,i+i)>0
 Butler_Volmer_n= @(eta)

k_n.*c_e_n.^alpha_n.*Sims_Conc(j,(i+i)).^...
 alpha_p.*(c_max_n-

Sims_Conc(j,(i+i))).^alpha_n*(exp(alpha_n.*...

159

 F./(R_gas.*T).*eta)-exp(-

alpha_p.*F./(R_gas.*T).*eta))-I_app/(F*S_n);
 eta_n(j,i)=fzero(Butler_Volmer_n,0);
 end
 end
 end

 for i=1:length(CATH_SConc(:,1))
 if c_max_p-CATH_SConc(i,1)>0
 Butler_Volmer_p= @(eta)

k_p.*c_e_p.^alpha_n.*CATH_SConc(i,1).^...
 alpha_p.*(c_max_p-

CATH_SConc(i,1)).^alpha_n*(exp(alpha_n.*...
 F./(R_gas.*T).*eta)-exp(-

alpha_p.*F./(R_gas.*T).*eta))-(-I_app)/(F*S_p);
 eta_p(i,1)=fzero(Butler_Volmer_p,0);
 end
 end

 %Calculate Overall Cell Potential
 Base_V=(eta_p(:,1)-eta_n(:,1))+(Eq_Pot_p(:,1)-...
 Eq_Pot_n(:,1));
 %Record Overall Cell Voltage Values
 dlmwrite('Base_V.txt',Base_V,'precision',18)

160

FICKIANPDE.m

function FickianPDE
clc, close all, clear all
% This function file solves the fickian diffusion problem in

spherical
% coordinates where concentration gradients exist in the radial

direction
% only. This will output a file meant to be used in the

Data_Processor
% m-file
%
% In the form expected by PDEPE, the single PDE is written as
%
% 1 dc_s d^2c_s 2 dc_s
% --- ---- = ------ + --- ----
% D_Li dt dr^2 r dr
% ---- ---- ------------- -------------
% c u f(x,t,u,Du/Dx) s(x,t,u,Du/Dx)

%Declare and define global variables. Operating current, Particle

radius, diffusion
%coefficient, maximum lithium concentration, initial lithium
%concentration, Faraday's Constant, and active surface area.
 global R_p_p D_s_p c_0_p c_max_p j_n;
 I_app=1.656; %A
 R_p_p=8.5*10^-6; %m
 D_s_p=1*10^-14;
 c_max_p=51410; %mol/m^3
 c_0_p=.4952*c_max_p;
 F=96487; %C/mol
 S_p=1.1167; %m^2
 j_n=-I_app/(F*S_p);

%PDEPE expects a particular power on the spacial variable. Define 'm'
 m = 0;

%Define spacial and time limits
 r = linspace(0,R_p_p,100);
 t = 0:.1:4298.5;

%Solve the PDE
 options=odeset('RelTol',1*10^-6,'AbsTol',1*10^-12);
 sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,r,t,options);

%Extract Solution
 c_s = sol(:,:,1);

%Plot final concentration profile
 figure(1)
 plot(r, c_s(end,:))

161

 title('Final Concentration Profile')
 xlabel('Radial Position (m)')
 ylabel('Concentration (mol/m^3)')

%Calculate and plot mass conservation vs. time
 Mass_NOM=zeros(1,length(t));
 Mass_Fick=zeros(1,length(t));
 sum=0;
 for i=1:length(t)
 Mass_Fick(i)=trapz(r,4*pi*r.^2.*c_s(i,:));
 Mass_NOM(i)=4/3*pi*R_p_p^3*c_0_p-4*pi*R_p_p^2*(t(i)-t(1))*j_n;
 sum=sum+(Mass_Fick(i)-Mass_NOM(i))^2;
 end
 RMS=sqrt(sum);
 figure(2)
 hold on
 plot(t,Mass_NOM,'r')
 plot(t,Mass_Fick,'k--')
 title('Mass Conservation')
 xlabel('Time (s)')
 ylabel('Moles of Li (mol)')
 str=['Fickain, RMS=',num2str(RMS)];
 legend('Theoretical',str)

%Record Average and Surface Concentrations
 c_s_avg=zeros(1,length(t));
 for i=1:length(t)
 c_s_avg(1,i)=trapz(r,4*pi*r.^2.*c_s(i,:));
 end
 dlmwrite('CATH_SConc.txt', c_s(:,end));
 dlmwrite('CATH_AConc.txt',c_s_avg);
 dlmwrite('CATH_FConc.txt',c_s(end,:));
 t(end)
%Construct the PDE as Matlab requires
function [c,f,s] = pdex1pde(r,t,c_s,Dc_sDr)
 global D_s_p
 c = 1/D_s_p;
 f = Dc_sDr;
 s = 2/r.*Dc_sDr;

%Set initial Concentration in the Sphere
function c_s_0 = pdex1ic(r)
 global c_0_p dr
 c_s_0 = c_0_p; %mol/m^3

%Set Boundary Conditions on the 'left' and 'right' sides
%NOTE: MUST define the pore wall flux of Li 'j_n'
function [pl,ql,pr,qr] = pdex1bc(rl,c_sl,rr,c_sr,t)
 global D_s_p c_0 j_n
 c_s_0=c_0; %mol/m^3
 pl = c_sl.*0;
 ql = D_s_p;
 pr = j_n;

162

 qr = D_s_p;

163

FICKIANPDERS.m

function FickianPDERS
clc, close all, clear all
% This function file solves the fickian diffusion problem in

spherical
% coordinates where concentration gradients exist in the radial

direction
% only. This will output a file meant to be used in the

Data_Processor
% m-file
%
% In the form expected by PDEPE, the single PDE is written as
%
% 1 dc_s d^2c_s 2 dc_s
% --- ---- = ------ + --- ----
% D_Li dt dr^2 r dr
% ---- ---- ------------- -------------
% c u f(x,t,u,Du/Dx) s(x,t,u,Du/Dx)

%Declare and define global variables. Particle radius, diffusion
%coefficient, initial lithium concentration, maximum lithium

concentration,
% Faraday's Constant, the universal gas constant, and operating

temperature.
 global R_p_p D_s_p c_0_p c_max_p j_n dr;
 I_app=0; %A
 R_p_p=8.5*10^-6; %m
 c_max_p=51410; %mol/m^3
 D_s_p=1*10^-14;
 c_0_p=dlmread('CATH_IConcB.txt');
 S_p=1.1167; %m^2
 F=96487; %C/mol
 j_n=-I_app/(F*S_p);

%PDEPE expects a particular power on the spacial variable. Define 'm'
 m = 0;

%Define spacial and time limits
 r = linspace(0,R_p_p,100);
 t = (4298.3):.1:(4298.3+3600);
 dr = R_p_p/99;

%Solve the PDE
 options=odeset('RelTol',1*10^-6,'AbsTol',1*10^-12);
 sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,r,t,options);

%Extract Solution
 c_s = sol(:,:,1);

%Plot final concentration profile

164

 figure(1)
 plot(r, c_s(end,:))
 title('Final Concentration Profile')
 xlabel('Radial Position (m)')
 ylabel('Concentration (mol/m^3)')

%Calculate and plot mass conservation vs. time
 Mass_NOM=zeros(1,length(t));
 Mass_Fick=zeros(1,length(t));
 sum=0;
 for i=1:length(t)
 Mass_Fick(i)=trapz(r,4*pi*r.^2.*c_s(i,:));
 Mass_NOM(i)=trapz(r,4*pi*r.^2.*c_0_p(1,:))-4*pi*R_p_p^2*(t(i)-

t(1))*j_n;
 sum=sum+(Mass_Fick(i)-Mass_NOM(i))^2;
 end
 RMS=sqrt(sum);
 figure(2)
 hold on
 plot(t,Mass_NOM,'r')
 plot(t,Mass_Fick,'k--')
 title('Mass Conservation')
 xlabel('Time (s)')
 ylabel('Moles of Li (mol)')
 str=['Fickain, RMS=',num2str(RMS)];
 legend('Theoretical',str)

%Record Average and Surface Concentrations
 c_s_avg=zeros(1,length(t));
 for i=1:length(t)
 c_s_avg(1,i)=trapz(r,4*pi*r.^2.*c_s(i,:));
 end
 dlmwrite('CATH_SConcB.txt', c_s(:,end));
 dlmwrite('CATH_AConcB.txt',c_s_avg);
 dlmwrite('CATH_FConcB.txt',c_s(end,:));
 c_s(1,end)

%Construct the PDE as Matlab requires
function [c,f,s] = pdex1pde(r,t,c_s,Dc_sDr)
 global D_s_p
 c = 1/D_s_p;
 f = Dc_sDr;
 s = 2/r.*Dc_sDr;

%Set initial Concentration in the Sphere
function c_s_0 = pdex1ic(r)
 global c_0_p dr
 c_s_0 = c_0_p(round(r/dr)+1); %mol/m^3

%Set Boundary Conditions on the 'left' and 'right' sides
%NOTE: MUST define the pore wall flux of Li 'j_n'
function [pl,ql,pr,qr] = pdex1bc(rl,c_sl,rr,c_sr,t)

165

 global D_s_p c_0 j_n
 pl = c_sl.*0;
 ql = D_s_p;
 pr = j_n;
 qr = D_s_p;

166

mfix.dat

! Run-control section

 RUN_NAME = 'PBED'

 DESCRIPTION = 'Diffusion in a Packed Bed'

 RUN_TYPE = 'new'

 UNITS = 'SI'

 TIME = 0.0 !start time

 TSTOP = 7200.0

 DT = 0.1 !time step

 ENERGY_EQ = .FALSE. !do not solve

energy eq

 SPECIES_EQ = .FALSE. .FALSE. !do not solve

species eq

 CALL_USR = .TRUE. !Call usr1.f

 DT_FAC = 1.0

 DETECT_STALL = .FALSE.

 TOL_RESID_Scalar = 1.0e-3

 TOL_RESID = 1.0e-3

 GRAVITY = 0.0

 DISCRETIZE(1) = 2

 DISCRETIZE(3) = 2

 DISCRETIZE(4) = 2

 DEF_COR = .TRUE.

 FPFOI = .FALSE.

 TOL_RESID = 1.0E-6

 MAX_NIT = 5000

 MOMENTUM_X_EQ(1) = .FALSE.

 MOMENTUM_Y_EQ(1) = .FALSE.

 MOMENTUM_Z_EQ(1) = .FALSE.

 CYCLIC_X = .TRUE.

 CYCLIC_Y = .TRUE.

 CYCLIC_Z = .TRUE.

!===

================

! Cartesian Grid - Quadric definition:

167

! Quadric surface Normal form :

! f(x,y,z) = lambda_x * x^2 + lambda_y * y^2 + lambda_z * z^2 +

d = 0

! Regions where f(x,y,z) < 0 are part of the computational

domain.

! Regions where f(x,y,z) > 0 are excluded from the computational

domain.

!

! Predefined quadrics: set QUADRIC_FORM to one of the following:

! Plane: 'PLANE'

! Cylinder (internal flow): 'X_CYL_INT' or 'Y_CYL_INT' or

'Z_CYL_INT'

! Cylinder (external flow): 'X_CYL_EXT' or 'Y_CYL_EXT' or

'Z_CYL_EXT'

! Cone (internal flow): 'X_CONE' or 'Y_CONE' or

'Z_CONE'

!===

================

 CARTESIAN_GRID = .TRUE.

 N_QUADRIC = 17

QUADRIC_FORM(1) = 'Z_CYL_INT'

RADIUS(1) = 1.2866e-005

t_x(1) = 9.875e-005

t_y(1) = 5e-005

QUADRIC_FORM(2) = 'Z_CYL_INT'

RADIUS(2) = 1.6027e-005

t_x(2) = 0.0001175

t_y(2) = 5e-005

QUADRIC_FORM(3) = 'Z_CYL_INT'

RADIUS(3) = 1.2388e-005

t_x(3) = 0.00013625

t_y(3) = 5e-005

QUADRIC_FORM(4) = 'Z_CYL_INT'

RADIUS(4) = 1.0943e-005

t_x(4) = 0.000155

t_y(4) = 5e-005

QUADRIC_FORM(5) = 'Z_CYL_INT'

RADIUS(5) = 1.4415e-005

168

t_x(5) = 0.00017375

t_y(5) = 5e-005

QUADRIC_FORM(6) = 'Z_CYL_INT'

RADIUS(6) = 1.5117e-005

t_x(6) = 9.7695e-005

t_y(6) = 7.2362e-005

QUADRIC_FORM(7) = 'Z_CYL_INT'

RADIUS(7) = 1.1353e-005

t_x(7) = 0.00015378

t_y(7) = 6.3032e-005

QUADRIC_FORM(8) = 'Z_CYL_INT'

RADIUS(8) = 1.4354e-005

t_x(8) = 0.00018826

t_y(8) = 6.9325e-005

QUADRIC_FORM(9) = 'Z_CYL_INT'

RADIUS(9) = 1.2744e-005

t_x(9) = 9.9958e-005

t_y(9) = 9.2855e-005

QUADRIC_FORM(10) = 'Z_CYL_INT'

RADIUS(10) = 1.1177e-005

t_x(10) = 0.00014589

t_y(10) = 7.7722e-005

QUADRIC_FORM(11) = 'Z_CYL_INT'

RADIUS(11) = 1.4796e-005

t_x(11) = 0.00019988

t_y(11) = 9.3168e-005

QUADRIC_FORM(12) = 'Z_CYL_INT'

RADIUS(12) = 1.2219e-005

t_x(12) = 9.4785e-005

t_y(12) = 0.000116

QUADRIC_FORM(13) = 'Z_CYL_INT'

RADIUS(13) = 1.2567e-005

169

t_x(13) = 0.00014513

t_y(13) = 9.385e-005

QUADRIC_FORM(14) = 'Z_CYL_INT'

RADIUS(14) = 1.2695e-005

t_x(14) = 0.00019988

t_y(14) = 0.00011406

QUADRIC_FORM(15) = 'Z_CYL_INT'

RADIUS(15) = 1.2256e-005

t_x(15) = 9.7536e-005

t_y(15) = 0.00013042

QUADRIC_FORM(16) = 'Z_CYL_INT'

RADIUS(16) = 1.2853e-005

t_x(16) = 0.0001481

t_y(16) = 0.00011474

QUADRIC_FORM(17) = 'Z_CYL_INT'

RADIUS(17) = 1.2383e-005

t_x(17) = 0.00020234

t_y(17) = 0.00013347

N_GROUP = 1

GROUP_SIZE(1) = 17

GROUP_Q(1,1) = 1

GROUP_Q(1,2) = 2

GROUP_Q(1,3) = 3

GROUP_Q(1,4) = 4

GROUP_Q(1,5) = 5

GROUP_Q(1,6) = 6

GROUP_Q(1,7) = 7

GROUP_Q(1,8) = 8

GROUP_Q(1,9) = 9

GROUP_Q(1,10) = 10

GROUP_Q(1,11) = 11

GROUP_Q(1,12) = 12

GROUP_Q(1,13) = 13

GROUP_Q(1,14) = 14

GROUP_Q(1,15) = 15

GROUP_Q(1,16) = 16

GROUP_Q(1,17) = 17

GROUP_RELATION(1) = 'OR'

BC_ID_Q(1) = 12

BC_ID_Q(2) = 12

170

BC_ID_Q(3) = 12

BC_ID_Q(4) = 12

BC_ID_Q(5) = 12

BC_ID_Q(6) = 12

BC_ID_Q(7) = 12

BC_ID_Q(8) = 12

BC_ID_Q(9) = 12

BC_ID_Q(10) = 12

BC_ID_Q(11) = 12

BC_ID_Q(12) = 12

BC_ID_Q(13) = 12

BC_ID_Q(14) = 12

BC_ID_Q(15) = 12

BC_ID_Q(16) = 12

BC_ID_Q(17) = 12

 TOL_F = 1.0D-16

 PRINT_WARNINGS = .TRUE.

 PRINT_PROGRESS_BAR = .TRUE.

 WRITE_DASHBOARD = .TRUE.

!===

================

! VTK file options

!===

================

 WRITE_VTK_FILES = .TRUE.

 TIME_DEPENDENT_FILENAME = .TRUE.

 VTK_DT = 1000

! Available flags for VTK_VAR are :

! 1 : Void fraction (EP_g)

! 2 : Gas pressure, solids pressure (P_g, P_star)

! 3 : Gas velocity (U_g, V_g, W_g)

! 4 : Solids velocity (U_s, V_s, W_s)

! 5 : Solids density (ROP_s)

! 6 : Gas and solids temperature (T_g, T_s1, T_s2)

! 7 : Gas and solids mass fractions (X_g, X_s)

! 8 : Granular temperature (G)

! 11 : Turbulence quantities (k and Îµ)

! 12 : Gas Vorticity magnitude and Lambda_2 (VORTICITY,

LAMBDA_2)

!100 : Processor assigned to scalar cell (Partition)

!101 : Boundary condition flag for scalar cell (BC_ID)

171

 VTK_VAR = 9 101 102

! Geometry Section

 COORDINATES = 'cartesian'

 XLENGTH = 2.4d-4 ! length

 YLENGTH = 15.0d-5 ! height

 ZLENGTH = 30.0d-6 ! depth

 IMAX = 100 ! cells in i

direction

 JMAX = 100 ! cells in j

direction

 !KMAX = 50 ! cells in k

direction

 NO_K=.TRUE.

! Scalar field definition

 NSCALAR = 1

 PHASE4SCALAR(1) = 0

GAS SECTION

 NMAX(0) = 1

 MW_avg = 29.0

 MU_g0 = 1.8e-4

 RO_g0 = 1.0d0 !

! Solids-phase Section

 MMAX = 0

! Initial Conditions Section

IC_X_w(1) = 0.0

IC_X_e(1) = 2.4d-4

IC_Y_s(1) = 0.0

IC_Y_n(1) = 15.0d-5

IC_Z_b(1) = 0.0

IC_Z_t(1) = 30.0d-6

IC_EP_g(1) = 1.0

IC_U_g(1) = 0.0

IC_V_g(1) = 0.0

IC_W_g(1) = 0.0

IC_SCALAR(1,1) = 23944.7826

172

! cut-cell boundary condition

 BC_TYPE(12) = 'CG_NSW'

 BC_SCALARW(12,1) = 23944.7826

 BC_HW_SCALAR(12,1) = 0.0

 BC_C_SCALAR(12,1) = -5.62e8

!

! Output Control

!

 OUT_DT = 10. !write text file

CYL.OUT

 ! every 10 s

 RES_DT = 100.0 !write binary

restart file

 ! CYl.RES every

100.0 s

 NLOG = 25 !write logfile

CYL.LOG

 !every 25 time

steps

 FULL_LOG = .TRUE. !display

residuals on screen

 Resid_string = "P0", "U0", "V0" , "S0"

!

 ! EP_g P_g U_g U_s ROP_s T_g X_g

 ! P_star V_g V_s T_s X_s Theta

Scalar

 ! W_g W_s

 SPX_DT = 100. 100000 100000 100000 100000 100000 100000 100000.

0.1

! The decomposition in I, J, and K directions for a Distributed

Memory Parallel machine

 NODESI = 1 NODESJ = 1 NODESK = 1

! Sweep Direction

 LEQ_SWEEP(1) = 'ISIS'

 LEQ_SWEEP(2) = 'ISIS'

 LEQ_SWEEP(3) = 'ISIS'

 LEQ_SWEEP(4) = 'ISIS'

 LEQ_SWEEP(5) = 'ISIS'

173

 LEQ_SWEEP(6) = 'ISIS'

 LEQ_SWEEP(7) = 'ISIS'

 LEQ_SWEEP(8) = 'ISIS'

 LEQ_SWEEP(9) = 'ISIS'

! # Maximum iterations for linear solve

174

rrates.f

!vvv

vvvvvvvC

!

C

! Module name: RRATES(IER)

C

! Purpose: Calculate reaction rates for various reactions in

cell ijk C

!

C

! Author: Date:

C

! Reviewer: Date:

C

!

C

! Revision Number:

C

! Purpose:

C

! Author: Date: dd-

mmm-yy C

! Reviewer: Date: dd-

mmm-yy C

!

C

! Literature/Document References:

C

!

C

! Variables referenced: MMAX, IJK, T_g, T_s1, D_p, X_g, X_s,

EP_g, C

! P_g, HOR_g, HOR_s

C

!

C

!

C

! Variables modified: M, N, R_gp, R_sp, RoX_gc, RoX_sc,

SUM_R_g, C

! SUM_R_s

C

!

C

! Local variables:

C

175

!

C

!^^^

^^^^^^^C

!

!

 SUBROUTINE RRATES(IER)

!...Translated by Pacific-Sierra Research VAST-90 2.06G5

12:17:31 12/09/98

!...Switches: -xf

!---

! M o d u l e s

!---

 USE param

 USE param1

 USE parallel

 USE fldvar

 USE rxns

 USE energy

 USE geometry

 USE run

 USE indices

 USE physprop

 USE constant

 USE funits

 USE compar !//d

 USE sendrecv !// 400

 IMPLICIT NONE

!---

! G l o b a l P a r a m e t e r s

!---

!---

! D u m m y A r g u m e n t s

!---

!

! Error index

 INTEGER IER

!

! Local phase and species indices

 INTEGER L, LM, M, N

! cell index

 INTEGER IJK

 DOUBLE PRECISION R_tmp(0:MMAX, 0:MMAX), RxH_xfr(0:MMAX,

0:MMAX)

 DOUBLE PRECISION X_tmp(0:MMAX, 0:MMAX, Dimension_n_all)

 DOUBLE PRECISION RXNA, Trxn

 DOUBLE PRECISION, EXTERNAL ::calc_h

176

!

!---

 INCLUDE 'function.inc'

!******* REMOVE THE FOLLOWING LINES to activate the routine

! The following section is provided so that species equation

calculations are

! NOT accidentally performed with the default routine. To

activate this routine

! remove the following two lines and insert information in

sections 1-4.

 IF(CALL_DI.OR.CALL_ISAT) THEN ! These use functions

external to this routine for rates calculations

 RETURN

 ELSE

! IER = 1

 RETURN

 ENDIF

!***

 R_tmp = UNDEFINED

!

! --- Remember to include all the local variables here for

parallel

! ---- processing

!$omp parallel do firstprivate(R_tmp), &

!$omp private(ijk, L, LM, M, N)

 DO IJK = IJKSTART3, IJKEND3

 IF (FLUID_AT(IJK)) THEN

!

!

! User input is required in sections 1 through 4.

!

!111

1111111111111111

!

! 1. Write the rates of various reactions:

! Write the reaction rates for each of the reactions as RXNxF

and RXNxB (both

177

! quantities >= 0), where x identifies the reaction, F stands

for forward

! rate, and B stands for the backward rate. The rates can be

in

! g-mole/(cm^3.s) or g/(cm^3.s). For the sake of clarity,

give the reaction

! scheme and the units in a comment statement above the rate

expression.

! The volume (cm^3) is that of the computational cell.

Therefore, for

! example, the rate term of a gas phase reaction will have a

multiplicative

! factor of epsilon. Note that X_g and X_s are mass fractions

!

!

!

!222

2222222222222222

!

! 2. Write the formation and consumption rates of various

species:

! Obtain the rates of formation and consumption of various

species

! in g/(cm^3.s) from the rate expressions RXNxF and RXNxB

obtained in the

! previous section. Pay attention to the units of RXNxF and

RXNxB.

! the formation rates for gas species n are added to get R_gp

(IJK, n).

! All the consumption rates are added and then divided by

X_g(IJK, n) to

! get RoX_gc(IJK, n). If X_g(IJK, n) is zero and species n

is likely

! to be consumed in a reaction then it is recommended that

RoX_gc (IJK, n)

! be initialized to the derivative of the consumption rate

with respect to

! X_g at X_g=0.

! If the slope is not known analytically a small value such

as 1.0e-9 may

! instead be used. A similar procedure is used for all the

species in the

! solids phases also.

!

! GAS SPECIES

!

!

! SOLIDS SPECIES

!

178

!

!333

3333333333333333

!

! 3. Determine the g/(cm^3.s) transferred from one phase to the

other.

! R_tmp(To phase #, From phase #)

! e.g. R_tmp(0,1) - mass generation of gas phase from

solids-1,

! R_tmp(0,2) - mass generation of gas phase from

solids-2,

! R_tmp(1,0) - mass generation of solid-1 from gas = -

R_tmp(0,1)

! R_tmp(1,2) - mass generation of solid-1 from solids-

2.

! Note, for example, that if gas is generated from solids-1

then

! R_tmp(0,1) > 0.

! The R-phase matrix is skew-symmetric and diagonal elements

are not needed.

! Only one of the two skew-symmetric elements -- e.g.,

R_tmp(0,1) or

! R_tmp(1,0) -- needs to be specified.

!

! X_tmp(M,L, N) is the mass fraction of species N in the

material transferred

! between phase-M and phase-L. If the destination phase is

M, then N is the

! index of the species in phase-M, otherwise N is the index

of the species

! in phase-L; e.g. (1) In the reaction C+1/2O2 --> CO,

! the destination phase is gas phase. Then N will be equal

to the index of CO

! in gas phase. (2) If H2O is trasferred between liquid and

gas phases either

! evaporation or condensation, then the index must change

depending upon the

! direction of mass transfer. For condensation, N is the

species index

! of H2O in the liquid phase and for evaporation it is the

species index

! of H2O in the gas phase. Also Sum_over_N (X_tmp(M,L, N))

should be equal to 1.

!

 if(MMAX > 0) then

 R_tmp(0,1) = ZERO

 X_tmp(0, 1, :) = ZERO

 if(R_tmp(0,1) > 0) then

 X_tmp(0, 1, 1) = 1.0

179

 else

 X_tmp(0, 1, 1) = 1.0

 endif

 endif

!

!444

4444444444444444

!

! 4. Determine the heat of reactions in cal/(cm^3.s) at the

! temperature T_g or T_s1. Note that for exothermic

reactions

! HOR_g (or HOR_s) will be negative. The assignment of heat

of reaction

! is user defined as it depends upon the microphysics near

the interface,

! which is averaged out in the multiphase flow equations.

For example,

! heat of Reaction for the C + O2 reaction is split into

parts;

! CO formation is assigned to the solid phase and CO2

formation from CO to

! the gas phase.

! *** This section is no longer needed as the heats of

reactions are

! calculated below. If you need to override the

automatic calculation,

! comment out the calculations below.

!

!===

===============

!

! No user input is required below this line

!---

! Determine g/(cm^3.s) of mass generation for each of the

phases by adding

! the reaction rates of all the individual species.

 SUM_R_G(IJK) = ZERO

 IF (SPECIES_EQ(0)) THEN

 IF (NMAX(0) > 0) THEN

 SUM_R_G(IJK) = SUM_R_G(IJK) +

SUM(R_GP(IJK,:NMAX(0))-ROX_GC(&

 IJK,:NMAX(0))*X_G(IJK,:NMAX(0)))

 ENDIF

 ELSE

 DO M = 1, MMAX

 IF(R_tmp(0,M) .NE. UNDEFINED)THEN

 SUM_R_G(IJK) = SUM_R_G(IJK) + R_tmp(0,M)

180

 ELSEIF(R_tmp(M,0) .NE. UNDEFINED)THEN

 SUM_R_G(IJK) = SUM_R_G(IJK) - R_tmp(M,0)

 ENDIF

 ENDDO

 ENDIF

!

 DO M = 1, MMAX

 SUM_R_S(IJK,M) = ZERO

 IF (SPECIES_EQ(M)) THEN

 IF (NMAX(M) > 0) THEN

 SUM_R_S(IJK,M) = SUM_R_S(IJK,M) +

SUM(R_SP(IJK,M,:NMAX(M))&

 -

ROX_SC(IJK,M,:NMAX(M))*X_S(IJK,M,:NMAX(M)))

 ENDIF

 ELSE

 DO L = 0, MMAX

 IF(R_tmp(M,L) .NE. UNDEFINED)THEN

 SUM_R_s(IJK,M) = SUM_R_s(IJK,M) + R_tmp(M,L)

 ELSEIF(R_tmp(L,M) .NE. UNDEFINED)THEN

 SUM_R_s(IJK,M) = SUM_R_s(IJK,M) - R_tmp(L,M)

 ENDIF

 ENDDO

 ENDIF

 END DO

!

! Calculate the enthalpy of transferred material

!

 DO M = 0, MMAX-1

 DO L = M+1, MMAX

 RxH_xfr(M, L) = zero

 IF(R_tmp(M,L) .NE. UNDEFINED)THEN

 IF(R_tmp(M,L) > ZERO) then ! phase-M is generated

from phase-L

 DO N = 1, NMAX(M)

 RxH_xfr(M, L) = RxH_xfr(M, L) +

R_tmp(M,L) * X_tmp(M,L, N) * &

 CALC_H(IJK, M, N)

 END DO

 else ! phase-L is generated from phase-M

 DO N = 1, NMAX(L)

 RxH_xfr(M, L) = RxH_xfr(M, L) +

R_tmp(M,L) * X_tmp(M,L, N) * &

 CALC_H(IJK, L, N)

 END DO

 endif

181

 ELSEIF(R_tmp(L,M) .NE. UNDEFINED)THEN

 IF(R_tmp(L,M)> ZERO) then ! phase-L is generated

from phase-M

 DO N = 1, NMAX(L)

 RxH_xfr(M, L) = RxH_xfr(M, L) -

R_tmp(L,M) * X_tmp(L,M, N) * &

 CALC_H(IJK, L, N)

 END DO

 else ! phase-M is generated from phase-L

 DO N = 1, NMAX(M)

 RxH_xfr(M, L) = RxH_xfr(M, L) -

R_tmp(L,M) * X_tmp(L,M, N) * &

 CALC_H(IJK, M, N)

 END DO

 endif

 ENDIF

 ENDDO

 END DO

 DO M = 1, MMAX

 DO L = 0, M-1

 RxH_xfr(M, L) = -RxH_xfr(L, M)

 ENDDO

 END DO

!

! Calculate heats of reactions

!

 HOR_G(IJK) = zero

 DO N = 1, NMAX(0)

 HOR_G(IJK) = HOR_G(IJK) + &

 (R_gp(IJK, N) - RoX_gc(IJK, N) * X_g(IJK, N)) *

CALC_H(IJK, 0, N)

 END DO

 DO L = 1, MMAX

 HOR_G(IJK) = HOR_G(IJK) - RxH_xfr(0, L)

 ENDDO

 IF (UNITS == 'SI') HOR_G(IJK) =

4183.925D0*HOR_G(IJK) !in J/kg K

 DO M = 1, MMAX

 HOR_s(IJK, M) = zero

 DO N = 1, NMAX(M)

 HOR_s(IJK, M) = HOR_s(IJK, M) + &

 (R_sp(IJK, M, N) - RoX_sc(IJK, M, N) * X_s(IJK, M,

N)) * CALC_H(IJK, M, N)

 END DO

 DO L = 0, MMAX

182

 if(M .NE. L) HOR_s(IJK, M) = HOR_s(IJK, M) -

RxH_xfr(M, L)

 ENDDO

 IF (UNITS == 'SI') HOR_s(IJK, M) =

4183.925D0*HOR_s(IJK, M) !in J/kg K

 END DO

!

!

! Store R_tmp values in an array. Only store the upper

triangle without

! the diagonal of R_tmp array.

!

 DO L = 0, MMAX

 DO M = L + 1, MMAX

 LM = L + 1 + (M - 1)*M/2

 IF (R_TMP(L,M) /= UNDEFINED) THEN

 R_PHASE(IJK,LM) = R_TMP(L,M)

 ELSE IF (R_TMP(M,L) /= UNDEFINED) THEN

 R_PHASE(IJK,LM) = -R_TMP(M,L)

 ELSE

 CALL START_LOG

 IF(.not.DMP_LOG)call open_pe_log(ier)

 WRITE (UNIT_LOG, 1000) L, M

 CALL END_LOG

 call mfix_exit(myPE)

 ENDIF

 END DO

 END DO

 ENDIF

 END DO

 1000 FORMAT(/1X,70('*')//' From: RRATES',/&

 ' Message: Mass transfer between phases ',I2,' and

',I2,&

 ' (R_tmp) not specified',/1X,70('*')/)

 RETURN

 END SUBROUTINE RRATES

183

scalarprop.f

!vvv

vvvvvvvC

!

C

! Module name: Scalar_PROP(IER)

C

! Purpose: Calculate diffusion coefficeint and sources for

user-defined

! scalars

!

C

! Author:

Date: C

! Reviewer:

Date: C

!

C

!

C

! Literature/Document References:

C

!

C

! Variables referenced: None

C

! Variables modified: None

C

!

C

! Local variables: None

C

!

C

!^^^

^^^^^^^C

!

 SUBROUTINE SCALAR_PROP(IER)

!...Translated by Pacific-Sierra Research VAST-90 2.06G5

12:17:31 12/09/98

!...Switches: -xf

!

!---

! M o d u l e s

!---

 USE param

 USE param1

184

 USE fldvar

 USE physprop

 USE geometry

 USE indices

 USE run

 USE scalars

 USE toleranc

 USE compar

 USE sendrecv

 IMPLICIT NONE

!---

! G l o b a l P a r a m e t e r s

!---

!---

! D u m m y A r g u m e n t s

!---

!

! Error index

 INTEGER IER

 INTEGER L,IJK

!

!---

 INCLUDE 'function.inc'

 IF(NScalar == 0) RETURN

!

! --- Remember to include all the local variables here for

parallel

! ---- processing

!$omp parallel do private(ijk, L)

 DO IJK = IJKSTART3, IJKEND3

 IF (FLUID_AT(IJK)) THEN

 DO L = 1, NScalar

! d (Scalar)/dt = S

! S is linearized as S = Scalar_c - Scalar_p * Scalar

! Scalar_c and Scalar_p must be >= 0

! *** Uncomment next two lines ***

 Scalar_c (IJK, L) = ZERO

 Scalar_p (IJK, L) = ZERO

!

! Diffusion coefficient for User-defined Scalars

! *** Uncomment next one line ***

! Dif_Scalar(IJK, L) = 1.0e-6

 Dif_Scalar(IJK, L) = 3.9e-14 !Anode

! Dif_Scalar(IJK, L) = 1.0e-14 !Cathode

 END DO

185

!

 ENDIF

 END DO

!\\Sendrecv operations - just to make sure all the variables

computed are

! are passed and updated locally - fool-proof approach -

Sreekanth - 102199

! call send_recv(Scalar_c,2)

! call send_recv(Scalar_p,2)

! call send_recv(Dif_Scalar,2)

 RETURN

 END SUBROUTINE SCALAR_PROP

186

usr0.f

!vvv

vvvvvvvC

!

C

! Module name: USR0

C

! Purpose: This routine is called before the time loop starts

and is C

! user-definable. The user may insert code in this

routine C

! or call appropriate user defined subroutines. This

C

! can be used for setting constants and checking

errors in C

! data. This routine is not called from an IJK loop,

hence C

! all indices are undefined.

C

!

C

! Author: Date: dd-

mmm-yy C

! Reviewer: Date: dd-

mmm-yy C

!

C

! Revision Number:

C

! Purpose:

C

! Author: Date: dd-

mmm-yy C

! Reviewer: Date: dd-

mmm-yy C

!

C

! Literature/Document References:

C

!

C

! Variables referenced:

C

! Variables modified:

C

!

C

187

! Local variables:

C

!

C

!^^^

^^^^^^^C

!

 SUBROUTINE USR0

!...Translated by Pacific-Sierra Research VAST-90 2.06G5

12:17:31 12/09/98

!...Switches: -xf

 Use usr

 USE param

 USE param1

 USE parallel

 USE matrix

 USE scales

 USE constant

 USE physprop

 USE fldvar

 USE visc_s

 USE rxns

 USE run

 USE toleranc

 USE geometry

 USE indices

 USE is

 USE tau_s

 USE bc

 USE compar

 USE sendrecv

 use kintheory

 USE ghdtheory

 USE drag

 USE cutcell

 USE quadric

 USE scalars

 IMPLICIT NONE

!---

!

! Include files defining common blocks here

!

!

! Define local variables here

 INTEGER :: I,J,K,IJK

 INTEGER :: BCV,ACTIVE_ZONE,FZ

 INTEGER, PARAMETER :: MAX_ZONES = 1000

188

 DOUBLE PRECISION, DIMENSION(MAX_ZONES) ::VOL_FLUID_ZONE !

Volume in 3D, Surface area times ZLENGTH in 2D

 DOUBLE PRECISION, DIMENSION(MAX_ZONES) ::AREA_FLUID_ZONE !

Surface area in 3D, Perimeter times ZLENGTH in 2D

!

!

! Include files defining statement functions here

!

 INCLUDE 'fun_avg1.inc'

 INCLUDE 'function.inc'

!

! Insert user-defined code here

 FLUID_ZONE = 0

 DO K = KSTART3, KEND3 ! Loop through cells and

assign a fluid zone ID to contiguous cells

 DO J = JSTART3, JEND3 ! in regions surrounded

by the same BC_ID value

 DO I = ISTART3, IEND3 ! Works only for closed

domains !!

 IJK = FUNIJK(I,J,K)

 BCV = BC_ID(IJK)

 IF(BCV > 0) ACTIVE_ZONE = BCV

 IF(FLUID_AT(IJK)) FLUID_ZONE(IJK) = ACTIVE_ZONE

 END DO

 END DO

 ENDDO

 VOL_FLUID_ZONE = ZERO

 AREA_FLUID_ZONE = ZERO

 DO IJK = IJKSTART3, IJKEND3 ! Compute volume and and

surface area of boundary for each fluid zone identified above

 FZ = FLUID_ZONE(IJK)

 IF(FZ>0) THEN

 VOL_FLUID_ZONE(FZ) = VOL_FLUID_ZONE(FZ) + VOL(IJK)

189

 IF(CUT_CELL_AT(IJK)) AREA_FLUID_ZONE(FZ) =

AREA_FLUID_ZONE(FZ) + AREA_CUT(IJK)

 ENDIF

 END DO

WRITE(*,100)'===

=========================='

 WRITE(*,*)' FLUID ZONE VOLUME AREA'

 DO FZ = 1,MAX_ZONES

 IF (VOL_FLUID_ZONE(FZ)>ZERO)

WRITE(*,110)FZ,VOL_FLUID_ZONE(FZ),AREA_FLUID_ZONE(FZ)

 ENDDO

WRITE(*,100)'===

=========================='

!

 RETURN

100 FORMAT(1X,A)

110 FORMAT(1X,I4,10X,E14.8,2X,E14.8)

 END SUBROUTINE USR0

190

usr1.f

!vvv

vvvvvvvC

!

C

! Module name: USR1

C

! Purpose: This routine is called after the time loop ends and

is

! user-definable. The user may insert code in this

routine

! or call appropriate user defined subroutines.

! This routine is not called from an IJK loop, hence

! all indices are undefined.

C

!

C

! Author: Date: dd-

mmm-yy C

! Reviewer: Date: dd-

mmm-yy C

!

C

! Revision Number:

C

! Purpose:

C

! Author: Date: dd-

mmm-yy C

! Reviewer: Date: dd-

mmm-yy C

!

C

! Literature/Document References:

C

!

C

! Variables referenced:

C

! Variables modified:

C

!

C

! Local variables:

C

!

C

191

!^^^

^^^^^^^C

!

 SUBROUTINE USR1

!...Translated by Pacific-Sierra Research VAST-90 2.06G5

12:17:31 12/09/98

!...Switches: -xf

 USE param

 USE param1

 USE parallel

 USE matrix

 USE scales

 USE constant

 USE physprop

 USE fldvar

 USE visc_s

 USE rxns

 USE run

 USE toleranc

 USE geometry

 USE indices

 USE is

 USE tau_s

 USE bc

 USE compar

 USE sendrecv

 use kintheory

 USE ghdtheory

 USE drag

 USE cutcell

 USE quadric

 USE scalars

 IMPLICIT NONE

!---

!

! Include files defining common blocks here

!

!

! Define local variables here

!

 INTEGER IJK, BCV

 DOUBLE PRECISION VOL_TOTAL, WTSUM_CONC, AVGSURF_CONC

 CHARACTER(LEN=9) :: BCT

!

! Include files defining statement functions here

!

 INCLUDE 'fun_avg1.inc'

 INCLUDE 'function.inc'

!

192

! Insert user-defined code here

!

! Loop over all cells looking for boundary cells. Compute the

volume weighted

! average concentration of those cells.

 VOL_TOTAL = 0.0

 WTSUM_CONC = 0.0

 AVGSURF_CONC = 0.0

 DO IJK = IJKSTART3, IJKEND3

! BCV = BC_V_ID(IJK)

 BCV = BC_ID(IJK)

 IF(BCV > 0) THEN

 BCT = BC_TYPE(BCV)

 ELSE

 BCT = 'NONE'

 ENDIF

 SELECT CASE (BCT)

 CASE ('CG_NSW')

 VOL_TOTAL = VOL_TOTAL + VOL(IJK)

 WTSUM_CONC = WTSUM_CONC+VOL(IJK)*Scalar(IJK,1)

 END SELECT

 END DO

 AVGSURF_CONC = WTSUM_CONC/VOL_TOTAL

! Write the results to a text file

 Open(5,File='AVGSURF_CONC.dat',position ='append')

 write(5,'(//f12.5//)'), AVGSURF_CONC

 Close(5)

 RETURN

 END SUBROUTINE USR1

193

allocate_cut_cell_arrays.f

 SUBROUTINE ALLOCATE_CUT_CELL_ARRAYS

!vvv

vvvvvvv

!

! Module name: ALLOCATE_ARRAYS

! Purpose: allocate arrays

!

C

! Author: Jeff Dietiker Date: 21-

Feb-08 C

! Reviewer:

!

!---

! M o d u l e s

!---

 USE param

 USE param1

 Use indices

 USE cutcell

 USE stl

 IMPLICIT NONE

 DIMENSION_MAX_CUT_CELL =

INT(FAC_DIM_MAX_CUT_CELL*DIMENSION_3G)

 Allocate(INTERIOR_CELL_AT (DIMENSION_3))

 Allocate(XG_E(0:DIMENSION_I))

 Allocate(YG_N(0:DIMENSION_J))

 Allocate(ZG_T(0:DIMENSION_K))

 Allocate(X_U (DIMENSION_3))

 Allocate(Y_U (DIMENSION_3))

 Allocate(Z_U (DIMENSION_3))

 Allocate(X_V (DIMENSION_3))

 Allocate(Y_V (DIMENSION_3))

 Allocate(Z_V (DIMENSION_3))

 Allocate(X_W (DIMENSION_3))

 Allocate(Y_W (DIMENSION_3))

 Allocate(Z_W (DIMENSION_3))

194

 Allocate(INTERSECT_X (DIMENSION_3))

 Allocate(INTERSECT_Y (DIMENSION_3))

 Allocate(INTERSECT_Z (DIMENSION_3))

 Allocate(X_int (DIMENSION_3))

 Allocate(Y_int (DIMENSION_3))

 Allocate(Z_int (DIMENSION_3))

 Allocate(X_NEW_POINT (DIMENSION_MAX_CUT_CELL))

 Allocate(Y_NEW_POINT (DIMENSION_MAX_CUT_CELL))

 Allocate(Z_NEW_POINT (DIMENSION_MAX_CUT_CELL))

 Allocate(X_NEW_U_POINT (DIMENSION_MAX_CUT_CELL))

 Allocate(Y_NEW_U_POINT (DIMENSION_MAX_CUT_CELL))

 Allocate(Z_NEW_U_POINT (DIMENSION_MAX_CUT_CELL))

 Allocate(X_NEW_V_POINT (DIMENSION_MAX_CUT_CELL))

 Allocate(Y_NEW_V_POINT (DIMENSION_MAX_CUT_CELL))

 Allocate(Z_NEW_V_POINT (DIMENSION_MAX_CUT_CELL))

 Allocate(X_NEW_W_POINT (DIMENSION_MAX_CUT_CELL))

 Allocate(Y_NEW_W_POINT (DIMENSION_MAX_CUT_CELL))

 Allocate(Z_NEW_W_POINT (DIMENSION_MAX_CUT_CELL))

 Allocate(NUMBER_OF_NODES (DIMENSION_3))

 Allocate(NUMBER_OF_U_NODES (DIMENSION_3))

 Allocate(NUMBER_OF_V_NODES (DIMENSION_3))

 Allocate(NUMBER_OF_W_NODES (DIMENSION_3))

 Allocate(CONNECTIVITY (DIMENSION_3,15))

 Allocate(CONNECTIVITY_U (DIMENSION_3,15))

 Allocate(CONNECTIVITY_V (DIMENSION_3,15))

 Allocate(CONNECTIVITY_W (DIMENSION_3,15))

 Allocate(PARTITION (DIMENSION_3))

 Allocate(WALL_U_AT (DIMENSION_3))

 Allocate(WALL_V_AT (DIMENSION_3))

 Allocate(WALL_W_AT (DIMENSION_3))

 Allocate(Area_CUT (DIMENSION_3))

 Allocate(Area_U_CUT (DIMENSION_3))

 Allocate(Area_V_CUT (DIMENSION_3))

 Allocate(Area_W_CUT (DIMENSION_3))

 Allocate(DELX_Ue (DIMENSION_3))

 Allocate(DELX_Uw (DIMENSION_3))

195

 Allocate(DELY_Un (DIMENSION_3))

 Allocate(DELY_Us (DIMENSION_3))

 Allocate(DELZ_Ut (DIMENSION_3))

 Allocate(DELZ_Ub (DIMENSION_3))

 Allocate(DELX_Ve (DIMENSION_3))

 Allocate(DELX_Vw (DIMENSION_3))

 Allocate(DELY_Vn (DIMENSION_3))

 Allocate(DELY_Vs (DIMENSION_3))

 Allocate(DELZ_Vt (DIMENSION_3))

 Allocate(DELZ_Vb (DIMENSION_3))

 Allocate(DELX_We (DIMENSION_3))

 Allocate(DELX_Ww (DIMENSION_3))

 Allocate(DELY_Wn (DIMENSION_3))

 Allocate(DELY_Ws (DIMENSION_3))

 Allocate(DELZ_Wt (DIMENSION_3))

 Allocate(DELZ_Wb (DIMENSION_3))

 Allocate(X_U_ec (DIMENSION_3))

 Allocate(Y_U_ec (DIMENSION_3))

 Allocate(Z_U_ec (DIMENSION_3))

 Allocate(X_U_nc (DIMENSION_3))

 Allocate(Y_U_nc (DIMENSION_3))

 Allocate(Z_U_nc (DIMENSION_3))

 Allocate(X_U_tc (DIMENSION_3))

 Allocate(Y_U_tc (DIMENSION_3))

 Allocate(Z_U_tc (DIMENSION_3))

 Allocate(X_V_ec (DIMENSION_3))

 Allocate(Y_V_ec (DIMENSION_3))

 Allocate(Z_V_ec (DIMENSION_3))

 Allocate(X_V_nc (DIMENSION_3))

 Allocate(Y_V_nc (DIMENSION_3))

 Allocate(Z_V_nc (DIMENSION_3))

 Allocate(X_V_tc (DIMENSION_3))

 Allocate(Y_V_tc (DIMENSION_3))

 Allocate(Z_V_tc (DIMENSION_3))

 Allocate(X_W_ec (DIMENSION_3))

 Allocate(Y_W_ec (DIMENSION_3))

 Allocate(Z_W_ec (DIMENSION_3))

 Allocate(X_W_nc (DIMENSION_3))

 Allocate(Y_W_nc (DIMENSION_3))

 Allocate(Z_W_nc (DIMENSION_3))

 Allocate(X_W_tc (DIMENSION_3))

 Allocate(Y_W_tc (DIMENSION_3))

 Allocate(Z_W_tc (DIMENSION_3))

196

 Allocate(DELH_U (DIMENSION_3))

 Allocate(Theta_Ue (DIMENSION_3))

 Allocate(Theta_Ue_bar (DIMENSION_3))

 Allocate(Theta_U_ne (DIMENSION_3))

 Allocate(Theta_U_nw (DIMENSION_3))

 Allocate(Theta_U_te (DIMENSION_3))

 Allocate(Theta_U_tw (DIMENSION_3))

 Allocate(ALPHA_Ue_c (DIMENSION_3))

 Allocate(NOC_U_E (DIMENSION_3))

 Allocate(Theta_Un (DIMENSION_3))

 Allocate(Theta_Un_bar (DIMENSION_3))

 Allocate(ALPHA_Un_c (DIMENSION_3))

 Allocate(NOC_U_N (DIMENSION_3))

 Allocate(Theta_Ut (DIMENSION_3))

 Allocate(Theta_Ut_bar (DIMENSION_3))

 Allocate(ALPHA_Ut_c (DIMENSION_3))

 Allocate(NOC_U_T (DIMENSION_3))

 Allocate(A_UPG_E (DIMENSION_3))

 Allocate(A_UPG_W (DIMENSION_3))

 Allocate(DELH_V (DIMENSION_3))

 Allocate(Theta_V_ne (DIMENSION_3))

 Allocate(Theta_V_se (DIMENSION_3))

 Allocate(Theta_Vn (DIMENSION_3))

 Allocate(Theta_Vn_bar (DIMENSION_3))

 Allocate(Theta_V_nt (DIMENSION_3))

 Allocate(Theta_V_st (DIMENSION_3))

 Allocate(Theta_Ve (DIMENSION_3))

 Allocate(Theta_Ve_bar (DIMENSION_3))

 Allocate(ALPHA_Ve_c (DIMENSION_3))

 Allocate(NOC_V_E (DIMENSION_3))

 Allocate(ALPHA_Vn_c (DIMENSION_3))

 Allocate(NOC_V_N (DIMENSION_3))

 Allocate(Theta_Vt (DIMENSION_3))

 Allocate(Theta_Vt_bar (DIMENSION_3))

 Allocate(ALPHA_Vt_c (DIMENSION_3))

 Allocate(NOC_V_T (DIMENSION_3))

 Allocate(A_VPG_N (DIMENSION_3))

 Allocate(A_VPG_S (DIMENSION_3))

 Allocate(DELH_W (DIMENSION_3))

 Allocate(Theta_W_te (DIMENSION_3))

 Allocate(Theta_W_be (DIMENSION_3))

 Allocate(Theta_W_tn (DIMENSION_3))

 Allocate(Theta_W_bn (DIMENSION_3))

 Allocate(Theta_Wt (DIMENSION_3))

 Allocate(Theta_Wt_bar (DIMENSION_3))

 Allocate(Theta_We (DIMENSION_3))

 Allocate(Theta_We_bar (DIMENSION_3))

197

 Allocate(ALPHA_We_c (DIMENSION_3))

 Allocate(NOC_W_E (DIMENSION_3))

 Allocate(Theta_Wn (DIMENSION_3))

 Allocate(Theta_Wn_bar (DIMENSION_3))

 Allocate(ALPHA_Wn_c (DIMENSION_3))

 Allocate(NOC_W_N (DIMENSION_3))

 Allocate(ALPHA_Wt_c (DIMENSION_3))

 Allocate(NOC_W_T (DIMENSION_3))

 Allocate(A_WPG_T (DIMENSION_3))

 Allocate(A_WPG_B (DIMENSION_3))

 Allocate(NORMAL_S (DIMENSION_3,3))

 Allocate(NORMAL_U (DIMENSION_3,3))

 Allocate(NORMAL_V (DIMENSION_3,3))

 Allocate(NORMAL_W (DIMENSION_3,3))

 Allocate(REFP_S (DIMENSION_3,3))

 Allocate(REFP_U (DIMENSION_3,3))

 Allocate(REFP_V (DIMENSION_3,3))

 Allocate(REFP_W (DIMENSION_3,3))

 Allocate(ONEoDX_E_U (DIMENSION_3))

 Allocate(ONEoDY_N_U (DIMENSION_3))

 Allocate(ONEoDZ_T_U (DIMENSION_3))

 Allocate(ONEoDX_E_V (DIMENSION_3))

 Allocate(ONEoDY_N_V (DIMENSION_3))

 Allocate(ONEoDZ_T_V (DIMENSION_3))

 Allocate(ONEoDX_E_W (DIMENSION_3))

 Allocate(ONEoDY_N_W (DIMENSION_3))

 Allocate(ONEoDZ_T_W (DIMENSION_3))

 Allocate(Xn_int (DIMENSION_3))

 Allocate(Xn_U_int (DIMENSION_3))

 Allocate(Xn_V_int (DIMENSION_3))

 Allocate(Xn_W_int (DIMENSION_3))

 Allocate(Ye_int (DIMENSION_3))

 Allocate(Ye_U_int (DIMENSION_3))

 Allocate(Ye_V_int (DIMENSION_3))

 Allocate(Ye_W_int (DIMENSION_3))

 Allocate(Zt_int (DIMENSION_3))

 Allocate(Zt_U_int (DIMENSION_3))

 Allocate(Zt_V_int (DIMENSION_3))

 Allocate(Zt_W_int (DIMENSION_3))

198

 Allocate(SNAP (DIMENSION_3))

 Allocate(CUT_TREATMENT_AT (DIMENSION_3))

 Allocate(CUT_U_TREATMENT_AT (DIMENSION_3))

 Allocate(CUT_V_TREATMENT_AT (DIMENSION_3))

 Allocate(CUT_W_TREATMENT_AT (DIMENSION_3))

 Allocate(CUT_CELL_AT (DIMENSION_3))

 Allocate(CUT_U_CELL_AT (DIMENSION_3))

 Allocate(CUT_V_CELL_AT (DIMENSION_3))

 Allocate(CUT_W_CELL_AT (DIMENSION_3))

 Allocate(SMALL_CELL_AT (DIMENSION_3))

 Allocate(SMALL_CELL_FLAG (DIMENSION_3))

 Allocate(BLOCKED_CELL_AT (DIMENSION_3))

 Allocate(BLOCKED_U_CELL_AT (DIMENSION_3))

 Allocate(BLOCKED_V_CELL_AT (DIMENSION_3))

 Allocate(BLOCKED_W_CELL_AT (DIMENSION_3))

 Allocate(STANDARD_CELL_AT (DIMENSION_3))

 Allocate(STANDARD_U_CELL_AT (DIMENSION_3))

 Allocate(STANDARD_V_CELL_AT (DIMENSION_3))

 Allocate(STANDARD_W_CELL_AT (DIMENSION_3))

 Allocate(VORTICITY (DIMENSION_3))

 Allocate(LAMBDA2 (DIMENSION_3))

 Allocate(TRD_G_OUT (DIMENSION_3))

 Allocate(PP_G_OUT (DIMENSION_3))

 Allocate(EPP_OUT (DIMENSION_3))

 Allocate(dudx_OUT (DIMENSION_3))

 Allocate(dvdy_OUT (DIMENSION_3))

 Allocate(delv_OUT (DIMENSION_3))

 Allocate(U_MASTER_OF (DIMENSION_3))

 Allocate(V_MASTER_OF (DIMENSION_3))

 Allocate(W_MASTER_OF (DIMENSION_3))

 Allocate(BC_ID (DIMENSION_3))

 Allocate(BC_U_ID (DIMENSION_3))

 Allocate(BC_V_ID (DIMENSION_3))

 Allocate(BC_W_ID (DIMENSION_3))

199

 Allocate(DEBUG_CG (DIMENSION_3,15))

 Allocate(U_g_CC (DIMENSION_3))

 Allocate(V_g_CC (DIMENSION_3))

 Allocate(W_g_CC (DIMENSION_3))

 Allocate(U_s_CC (DIMENSION_3, DIMENSION_M))

 Allocate(V_s_CC (DIMENSION_3, DIMENSION_M))

 Allocate(W_s_CC (DIMENSION_3, DIMENSION_M))

 ALLOCATE(N_FACET_AT(DIMENSION_3))

 ALLOCATE(LIST_FACET_AT(DIMENSION_3,10))

 Allocate(FLUID_ZONE (DIMENSION_3))

 RETURN

 END SUBROUTINE ALLOCATE_CUT_CELL_ARRAYS

200

cutcell_mod.f

 MODULE cutcell

 Use param

 Use param1

 USE progress_bar

! CUT_CELL.LOG unit number

 INTEGER UNIT_CUT_CELL_LOG

 PARAMETER (UNIT_CUT_CELL_LOG = 111)

! Flag to activate Cartesian grid

 LOGICAL :: CARTESIAN_GRID

! maximum number of cut cells

 INTEGER :: DIMENSION_MAX_CUT_CELL

! Factor used to allocate cut cells arrays

 DOUBLE PRECISION :: FAC_DIM_MAX_CUT_CELL

! Flag to identify interior cells

 LOGICAL, DIMENSION(:), ALLOCATABLE :: INTERIOR_CELL_AT

! One-Dimensional Arrays for East, North, Top location of

! original (uncut) scalar cells

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::XG_E

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::YG_N

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::ZG_T

! location of U-momentum nodes

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_U

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_U

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_U

! location of V-momentum nodes

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_V

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_V

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_V

! location of W-momentum nodes

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_W

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_W

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_W

! Intersection flags

 LOGICAL, DIMENSION(:), ALLOCATABLE :: INTERSECT_X

201

 LOGICAL, DIMENSION(:), ALLOCATABLE :: INTERSECT_Y

 LOGICAL, DIMENSION(:), ALLOCATABLE :: INTERSECT_Z

! Location of intersections

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_int

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_int

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_int

! Location of original (uncut) corner cell nodes

 DOUBLE PRECISION, DIMENSION(0:15):: X_NODE

 DOUBLE PRECISION, DIMENSION(0:15):: Y_NODE

 DOUBLE PRECISION, DIMENSION(0:15):: Z_NODE

 DOUBLE PRECISION, DIMENSION(0:15):: F_NODE

 INTEGER, DIMENSION(0:15) :: IJK_OF_NODE

! Location of new (along intersecting edges) nodes

 INTEGER :: NUMBER_OF_NEW_POINTS

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

X_NEW_POINT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Y_NEW_POINT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Z_NEW_POINT

! Location of new (along intersecting edges) nodes

 INTEGER :: NUMBER_OF_NEW_U_POINTS

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

X_NEW_U_POINT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Y_NEW_U_POINT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Z_NEW_U_POINT

! Location of new (along intersecting edges) nodes

 INTEGER :: NUMBER_OF_NEW_V_POINTS

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

X_NEW_V_POINT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Y_NEW_V_POINT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Z_NEW_V_POINT

! Location of new (along intersecting edges) nodes

 INTEGER :: NUMBER_OF_NEW_W_POINTS

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

X_NEW_W_POINT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Y_NEW_W_POINT

202

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Z_NEW_W_POINT

! Number of nodes

 INTEGER, DIMENSION(:), ALLOCATABLE :: NUMBER_OF_NODES

 INTEGER, DIMENSION(:), ALLOCATABLE :: NUMBER_OF_U_NODES

 INTEGER, DIMENSION(:), ALLOCATABLE :: NUMBER_OF_V_NODES

 INTEGER, DIMENSION(:), ALLOCATABLE :: NUMBER_OF_W_NODES

! Connectivity

 INTEGER, DIMENSION(:,:), ALLOCATABLE :: CONNECTIVITY

 INTEGER, DIMENSION(:,:), ALLOCATABLE :: CONNECTIVITY_U

 INTEGER, DIMENSION(:,:), ALLOCATABLE :: CONNECTIVITY_V

 INTEGER, DIMENSION(:,:), ALLOCATABLE :: CONNECTIVITY_W

! Processor assign to cell IJK

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: PARTITION

! Normal Vector Defining cut face in Scalar Cell

 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: NORMAL_S

! Reference point Defining cut face in Scalar Cell

 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: REFP_S

! Flags for Wall momentum cells

 LOGICAL, DIMENSION(:), ALLOCATABLE :: WALL_U_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: WALL_V_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: WALL_W_AT

! Areas of cut faces

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Area_CUT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Area_U_CUT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Area_V_CUT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Area_W_CUT

! Distances from cell center to face center

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELX_Ue

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELX_Uw

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELY_Un

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELY_Us

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELZ_Ut

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELZ_Ub

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELX_Ve

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELX_Vw

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELY_Vn

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELY_Vs

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELZ_Vt

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELZ_Vb

203

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELX_We

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELX_Ww

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELY_Wn

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELY_Ws

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELZ_Wt

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELZ_Wb

! Location of face centers

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_U_ec

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_U_ec

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_U_ec

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_U_nc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_U_nc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_U_nc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_U_tc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_U_tc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_U_tc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_V_ec

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_V_ec

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_V_ec

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_V_nc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_V_nc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_V_nc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_V_tc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_V_tc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_V_tc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_W_ec

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_W_ec

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_W_ec

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_W_nc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_W_nc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_W_nc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: X_W_tc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Y_W_tc

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Z_W_tc

! Distance to cut face in U-Momentum Cell

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELH_U

204

! Normal Vector Defining cut face in U-Momentum Cell

 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: NORMAL_U

! Reference point Defining cut face in W-Momentum Cell

 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: REFP_U

! Correction factors for U-Momentum Cell

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_Ue

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Theta_Ue_bar

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_U_ne

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_U_nw

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_U_te

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_U_tw

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ALPHA_Ue_c

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: NOC_U_E

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_Un

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Theta_Un_bar

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ALPHA_Un_c

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: NOC_U_N

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_Ut

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Theta_Ut_bar

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ALPHA_Ut_c

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: NOC_U_T

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: A_UPG_E

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: A_UPG_W

! Distance to cut face in V-Momentum Cell

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELH_V

! Normal Vector Defining cut face in V-Momentum Cell

 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: NORMAL_V

! Reference point Defining cut face in V-Momentum Cell

 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: REFP_V

! Correction factors for V-Momentum Cell

205

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_V_ne

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_V_se

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_Vn

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Theta_Vn_bar

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_V_nt

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_V_st

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_Ve

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Theta_Ve_bar

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ALPHA_Ve_c

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: NOC_V_E

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ALPHA_Vn_c

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: NOC_V_N

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_Vt

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Theta_Vt_bar

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ALPHA_Vt_c

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: NOC_V_T

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: A_VPG_N

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: A_VPG_S

! Distance to cut face in W-Momentum Cell

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DELH_W

! Normal Vector Defining cut face in W-Momentum Cell

 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: NORMAL_W

! Reference point Defining cut face in W-Momentum Cell

 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: REFP_W

! Correction factors for W-Momentum Cell

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_W_te

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_W_be

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_W_tn

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_W_bn

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_Wt

206

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Theta_Wt_bar

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_We

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Theta_We_bar

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ALPHA_We_c

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: NOC_W_E

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Theta_Wn

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

Theta_Wn_bar

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ALPHA_Wn_c

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: NOC_W_N

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ALPHA_Wt_c

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: NOC_W_T

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: A_WPG_T

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: A_WPG_B

! 1/dx, 1/dy, 1/dz

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ONEoDX_E_U

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ONEoDY_N_U

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ONEoDZ_T_U

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ONEoDX_E_V

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ONEoDY_N_V

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ONEoDZ_T_V

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ONEoDX_E_W

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ONEoDY_N_W

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ONEoDZ_T_W

 LOGICAL, DIMENSION(:), ALLOCATABLE ::

ALONG_DOMAIN_BOUNDARY

! Location of intersection points

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Xn_int

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Xn_U_int

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Xn_V_int

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Xn_W_int

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Ye_int

207

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Ye_U_int

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Ye_V_int

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Ye_W_int

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Zt_int

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Zt_U_int

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Zt_V_int

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Zt_W_int

! Cut cell treatment flags

 LOGICAL, DIMENSION(:), ALLOCATABLE :: CUT_TREATMENT_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: CUT_U_TREATMENT_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: CUT_V_TREATMENT_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: CUT_W_TREATMENT_AT

! Various cell flags

 LOGICAL, DIMENSION(:), ALLOCATABLE :: CUT_CELL_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: CUT_U_CELL_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: CUT_V_CELL_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: CUT_W_CELL_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: SMALL_CELL_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: BLOCKED_CELL_AT

 INTEGER, DIMENSION(:), ALLOCATABLE :: SMALL_CELL_FLAG

 LOGICAL, DIMENSION(:), ALLOCATABLE :: BLOCKED_U_CELL_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: BLOCKED_V_CELL_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: BLOCKED_W_CELL_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: STANDARD_CELL_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: STANDARD_U_CELL_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: STANDARD_V_CELL_AT

 LOGICAL, DIMENSION(:), ALLOCATABLE :: STANDARD_W_CELL_AT

! Tolerance for snapping procedure

 DOUBLE PRECISION, DIMENSION(3) :: TOL_SNAP

! Tolerances for wall distance

 DOUBLE PRECISION :: TOL_DELH

! Tolerance for detecting small scalar cells

 DOUBLE PRECISION :: TOL_SMALL_CELL

 DOUBLE PRECISION :: TOL_SMALL_AREA

! Maximum value of ALPHA correction factor

 DOUBLE PRECISION :: ALPHA_MAX

! Flags to include effect of cut cells

 LOGICAL ::

NOC,NOC_UG,NOC_VG,NOC_WG,NOC_US,NOC_VS,NOC_WS,NOC_TRDG,NOC_TRDS

208

 LOGICAL ::

CUT_TAU_UG,CUT_TAU_VG,CUT_TAU_WG,CUT_TAU_US,CUT_TAU_VS,CUT_TAU_W

S

! pressure gradient option flag

 INTEGER :: PG_OPTION

! Number of cells

 INTEGER NUMBER_OF_U_CUT_CELLS

 INTEGER NUMBER_OF_V_CUT_CELLS

 INTEGER NUMBER_OF_W_CUT_CELLS

 INTEGER NUMBER_OF_SMALL_CELLS

 INTEGER NUMBER_OF_U_WALL_CELLS

 INTEGER NUMBER_OF_V_WALL_CELLS

 INTEGER NUMBER_OF_W_WALL_CELLS

! Vorticity and lambda2

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: VORTICITY

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: LAMBDA2

! Re-ordering array

 INTEGER, DIMENSION(15) :: ORDER

! Snapping flag

 LOGICAL, DIMENSION(:), ALLOCATABLE :: SNAP

 INTEGER, DIMENSION(10) :: CG_SAFE_MODE

 LOGICAL :: PRINT_WARNINGS

 LOGICAL :: SET_CORNER_CELLS

! Master cell of wall cell (FSW)

 INTEGER, DIMENSION(:), ALLOCATABLE :: U_MASTER_OF

 INTEGER, DIMENSION(:), ALLOCATABLE :: V_MASTER_OF

 INTEGER, DIMENSION(:), ALLOCATABLE :: W_MASTER_OF

 INTEGER :: N_USR_DEF

 LOGICAL :: USE_POLYGON

 LOGICAL :: USE_STL

 LOGICAL :: USE_MSH

! Boundary condition flag

 INTEGER, DIMENSION(:), ALLOCATABLE :: BC_ID

 INTEGER, DIMENSION(:), ALLOCATABLE :: BC_U_ID

 INTEGER, DIMENSION(:), ALLOCATABLE :: BC_V_ID

 INTEGER, DIMENSION(:), ALLOCATABLE :: BC_W_ID

209

 INTEGER :: NSW_GHOST_BC_ID

! Under-relaxation flag applied to cut cells

 DOUBLE PRECISION, DIMENSION(9):: CG_UR_FAC

! Debugging_variables

 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::DEBUG_CG

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::U_g_CC

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::V_g_CC

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::W_g_CC

 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::U_s_CC

 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::V_s_CC

 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::W_s_CC

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: TRD_G_OUT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: PP_G_OUT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: EPP_OUT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: dudx_OUT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: dvdy_OUT

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: delv_OUT

! Fluid zone flag

 INTEGER, DIMENSION(:), ALLOCATABLE :: FLUID_ZONE

 END MODULE cutcell

210

vtk_out.f

!vvv

vvvvvvvC

!

C

! Module name: WRITE_VTK_FILE

C

! Purpose: Writes the cut cell grid in VTK format

C

!

C

! Author: Jeff Dietiker Date: 21-

Feb-08 C

! Reviewer: Date:

C

!

C

! Revision Number # Date: ##-

###-## C

! Author: #

C

! Purpose: #

C

!

C

!^^^

^^^^^^^C

 SUBROUTINE WRITE_VTK_FILE

 USE param

 USE param1

 USE parallel

 USE constant

 USE run

 USE toleranc

 USE geometry

 USE indices

 USE compar

 USE sendrecv

 USE quadric

 USE cutcell

 USE fldvar

 USE visc_s

 USE physprop

 USE pgcor

 USE vtk

 USE rxns

211

 USE output

 USE scalars

 USE pgcor

 USE pscor

 IMPLICIT NONE

 DOUBLE PRECISION:: Xw,Xe,Yn,Ys

 INTEGER :: I,J,K,L,M,N,IM,JM,KM,IP,JP,KP,IJK

 INTEGER :: IMJK,IJMK,IJKM,IMJMK,IMJKM,IJMKM,IMJMKM

 INTEGER sw,se,ne,nw

 INTEGER, DIMENSION(10) :: additional_node

 DOUBLE PRECISION, DIMENSION(2*DIMENSION_3) :: X_OF

 DOUBLE PRECISION, DIMENSION(2*DIMENSION_3) :: Y_OF

 DOUBLE PRECISION, DIMENSION(2*DIMENSION_3) :: Z_OF

 INTEGER, DIMENSION(DIMENSION_3) :: INDEX_OF_E_ADD_NODE

 INTEGER, DIMENSION(DIMENSION_3) :: INDEX_OF_N_ADD_NODE

 INTEGER :: SPECIES_COUNTER,LT

 CHARACTER (LEN=32) :: SUBM,SUBN

 CHARACTER (LEN=64) :: VAR_NAME

 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::

DP_BC_ID,DP_FLUID_ZONE

 include "function.inc"

 IF(.NOT.CARTESIAN_GRID) RETURN

 DX(IEND3+1) = DX(IEND3)

 DY(JEND3+1) = DY(JEND3)

 DZ(KEND3+1) = DZ(KEND3)

! Location of U-momentum cells for original (uncut grid)

 IF (DO_I) THEN

 XG_E(1) = ZERO

 DO I = IMIN1, IMAX2

 XG_E(I) = XG_E(I-1) + DX(I)

 END DO

 ENDIF

! Location of V-momentum cells for original (uncut grid)

 IF (DO_J) THEN

 YG_N(1) = ZERO

 DO J = JMIN1, JMAX2

 YG_N(J) = YG_N(J-1) + DY(J)

 END DO

212

 ENDIF

! Location of W-momentum cells for original (uncut grid)

 IF (DO_K) THEN

 ZG_T(1) = ZERO

 DO K = KMIN1, KMAX2

 ZG_T(K) = ZG_T(K-1) + DZ(K)

 END DO

 ELSE

 ZG_T = ZERO

 ENDIF

 IF(WRITE_ANI_CUTCELL) THEN

 CALL OPEN_VTK_FILE

 CALL WRITE_GEOMETRY_IN_VTK

 CALL CLOSE_VTK_FILE

 IF (FULL_LOG) THEN

 WRITE(*,30)'WROTE VTK FILE : ani_cutcell.vtk'

 ENDIF

 WRITE_ANI_CUTCELL = .FALSE.

 RETURN

 ENDIF

 CALL OPEN_VTK_FILE

 CALL WRITE_GEOMETRY_IN_VTK

 DO L = 1, DIM_VTK_VAR

 SELECT CASE (VTK_VAR(L))

 CASE (1)

 CALL WRITE_SCALAR_IN_VTK('EP_G',EP_G)

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 CASE (2)

 CALL WRITE_SCALAR_IN_VTK('P_G',P_G)

 CALL WRITE_SCALAR_IN_VTK('P_S',P_S)

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 CASE (3)

 CALL

WRITE_VECTOR_IN_VTK('Gas_Velocity',U_G,V_G,W_G)

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 CASE (4)

 DO M = 1,MMAX

 WRITE(SUBM,*)M

213

 CALL

WRITE_VECTOR_IN_VTK('Solids_Velocity_'//ADJUSTL(SUBM),U_S(:,M),V

_S(:,M),W_S(:,M))

 END DO

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 CASE (5)

 DO M = 1,MMAX

 WRITE(SUBM,*)M

 CALL

WRITE_SCALAR_IN_VTK('Solids_density_'//ADJUSTL(SUBM),ROP_S(:,M))

 END DO

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 CASE (6)

 CALL WRITE_SCALAR_IN_VTK('Gas_temperature',T_g)

 DO M = 1,MMAX

 WRITE(SUBM,*)M

 CALL

WRITE_SCALAR_IN_VTK('Solids_temperature_'//ADJUSTL(SUBM),T_S(:,M

))

 END DO

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 CASE (7)

 SPECIES_COUNTER = 0

 DO N = 1,NMAX(0)

 WRITE(SUBN,*)N

 SPECIES_COUNTER = SPECIES_COUNTER + 1

 VAR_NAME =

ADJUSTL(SPECIES_NAME(SPECIES_COUNTER))

 LT =

LEN_TRIM(ADJUSTL(SPECIES_NAME(SPECIES_COUNTER)))

 VAR_NAME =

VAR_NAME(1:LT)//'_Gas_mass_fractions_'//ADJUSTL(SUBN)

 CALL WRITE_SCALAR_IN_VTK(VAR_NAME,X_g(:,N))

 END DO

 DO M = 1, MMAX

 WRITE(SUBM,*)M

 DO N = 1,NMAX(M)

 WRITE(SUBN,*)N

 SPECIES_COUNTER = SPECIES_COUNTER + 1

 VAR_NAME =

ADJUSTL(SPECIES_NAME(SPECIES_COUNTER))

 LT =

LEN_TRIM(ADJUSTL(SPECIES_NAME(SPECIES_COUNTER)))

214

 VAR_NAME =

VAR_NAME(1:LT)//'_Solids_mass_fractions_'//TRIM(ADJUSTL(SUBM))//

'_'//ADJUSTL(SUBN)

 CALL

WRITE_SCALAR_IN_VTK(VAR_NAME,X_s(:,M,N))

 END DO

 END DO

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 CASE (8)

 DO M = 1,MMAX

 WRITE(SUBM,*)M

 CALL

WRITE_SCALAR_IN_VTK('Granular_temperature_'//ADJUSTL(SUBM),Theta

_m(:,M))

 END DO

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 CASE (9)

 SPECIES_COUNTER = 0

 DO N = 1,NSCALAR

 WRITE(SUBN,*)N

 SPECIES_COUNTER = SPECIES_COUNTER + 1

 VAR_NAME = 'Scalar_'//ADJUSTL(SUBN)

 CALL WRITE_SCALAR_IN_VTK(VAR_NAME,Scalar(:,N))

 END DO

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 CASE (11)

 IF(K_EPSILON) THEN

 CALL WRITE_SCALAR_IN_VTK('K_Turb_G',K_Turb_G)

 CALL WRITE_SCALAR_IN_VTK('E_Turb_G',E_Turb_G)

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 ENDIF

 CASE (12)

 CALL CALC_VORTICITY

 CALL

WRITE_SCALAR_IN_VTK('VORTICITY_MAG',VORTICITY)

 CALL WRITE_SCALAR_IN_VTK('LAMBDA_2',LAMBDA2)

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 CASE (100)

 CALL WRITE_SCALAR_IN_VTK('PARTITION',PARTITION)

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 CASE (101)

215

 Allocate(DP_BC_ID(DIMENSION_3))

 DP_BC_ID = DFLOAT(BC_ID)

! CALL WRITE_SCALAR_IN_VTK('BC_ID',DFLOAT(BC_ID))

 CALL WRITE_SCALAR_IN_VTK('BC_ID',DP_BC_ID)

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 DeAllocate(DP_BC_ID)

 CASE (102)

 Allocate(DP_FLUID_ZONE(DIMENSION_3))

 DP_FLUID_ZONE = DFLOAT(FLUID_ZONE)

 CALL

WRITE_SCALAR_IN_VTK('FLUID_ZONE',DP_FLUID_ZONE)

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.'

 DeAllocate(DP_FLUID_ZONE)

 CASE (0) ! do nothing

 CASE (UNDEFINED_I) ! do nothing

 CASE DEFAULT

 WRITE(*,30) ' Unknown VTK variable flag

',L,':',VTK_VAR(L)

 WRITE(*,30) ' Available flags are : '

 WRITE(*,30) ' 1 : Void fraction (EP_g)'

 WRITE(*,30) ' 2 : Gas pressure, solids pressure

(P_g, P_star)'

 WRITE(*,30) ' 3 : Gas velocity (U_g, V_g, W_g)'

 WRITE(*,30) ' 4 : Solids velocity (U_s, V_s,

W_s)'

 WRITE(*,30) ' 5 : Solids density (ROP_s)'

 WRITE(*,30) ' 6 : Gas and solids temperature

(T_g, T_s1, T_s2)'

 WRITE(*,30) ' 7 : Gas and solids mass fractions

(X_g, X-s)'

 WRITE(*,30) ' 8 : Granular temperature (G)'

! write(*,30) ' 9 : User defined scalars'

! write(*,30) '10 : Reaction Rates'

 write(*,30) '11 : Turbulence quantities (k and

Îµ)'

 write(*,30) '12 : Gas Vorticity magnitude and

Lambda_2 (VORTICITY, LAMBDA_2)'

 write(*,30) '100: Processor assigned to scalar

cell (Partition)'

 write(*,30) '101: Boundary condition flag for

scalar cell (BC_ID)'

 write(*,30) 'MFiX will exit now.'

 CALL MFIX_EXIT(myPE)

216

 END SELECT

 END DO

 CALL CLOSE_VTK_FILE

 IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,20)' DONE.'

10 FORMAT(A,$)

20 FORMAT(A,1X/)

30 FORMAT(1X,A)

 RETURN

 END SUBROUTINE WRITE_VTK_FILE

!vvv

vvvvvvvC

!

C

! Module name: OPEN_VTK_FILE

C

! Purpose: Open a vtk file and writes the header

C

!

C

! Author: Jeff Dietiker Date: 21-

Feb-08 C

! Reviewer: Date:

C

!

C

! Revision Number # Date: ##-

###-## C

! Author: #

C

! Purpose: #

C

!

C

!^^^

^^^^^^^C

 SUBROUTINE OPEN_VTK_FILE

 USE param

 USE param1

 USE parallel

 USE constant

217

 USE run

 USE toleranc

 USE geometry

 USE indices

 USE compar

 USE sendrecv

 USE output

 USE quadric

 USE cutcell

 USE fldvar

 USE vtk

 IMPLICIT NONE

 DOUBLE PRECISION:: Xw,Xe,Yn,Ys

 INTEGER :: I,J,K,L,IM,JM,KM,IP,JP,KP,IJK

 INTEGER :: IMJK,IJMK,IJKM,IMJMK,IMJKM,IJMKM,IMJMKM

 include "function.inc"

 IF (myPE /= PE_IO) RETURN

 IF(.NOT.WRITE_ANI_CUTCELL) THEN

 VTK_FILENAME = TRIM(RUN_NAME)

 IF(TIME_DEPENDENT_FILENAME) THEN

 FRAME = FRAME + 1

 WRITE(FRAME_CHAR,*) FRAME

 FRAME_CHAR = ADJUSTL(FRAME_CHAR)

 VTK_FILENAME = TRIM(VTK_FILENAME) // '_' //

TRIM(FRAME_CHAR) // '.vtk'

 ELSE

 VTK_FILENAME = TRIM(VTK_FILENAME) // '.vtk'

 ENDIF

 IF (FULL_LOG) THEN

 WRITE(*,10)' WRITING VTK FILE : ',

TRIM(VTK_FILENAME),' .'

 ENDIF

 ELSE

 VTK_FILENAME = 'ani_cutcell.vtk'

 ENDIF

 VTK_UNIT = 123

 OPEN(UNIT = VTK_UNIT, &

218

 FILE = TRIM(VTK_FILENAME), &

 FORM = 'UNFORMATTED', & ! works with gfortran

4.3.4 and ifort 10.1 but may not be supported by all compilers

 ! use 'BINARY' if

'UNFORMATTED' is not supported

 ACCESS = 'STREAM', & ! works with gfortran

4.3.4 and ifort 10.1 but may not be supported by all compilers

 ! use 'SEQUENTIAL' if

'STREAM' is not supported

 ACTION = 'WRITE', &

 CONVERT = 'BIG_ENDIAN')

 WRITE(UNIT=VTK_UNIT)'# vtk DataFile Version 2.0'//END_REC

 WRITE(BUFFER,FMT='(A,A,E14.8)')TRIM(RUN_NAME),', Time =

',TIME

 WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC

 WRITE(UNIT=VTK_UNIT)TRIM('BINARY')//END_REC

 IF(NO_K) THEN

 WRITE(UNIT=VTK_UNIT)'DATASET POLYDATA'//END_REC

 ELSE

 WRITE(UNIT=VTK_UNIT)'DATASET

UNSTRUCTURED_GRID'//END_REC

 ENDIF

10 FORMAT(/1X,3A,$)

 RETURN

 END SUBROUTINE OPEN_VTK_FILE

!vvv

vvvvvvvC

!

C

! Module name: WRITE_GEOMETRY_IN_VTK

C

! Purpose: Write Geometry and connectivity in a vtk file

C

!

C

! Author: Jeff Dietiker Date: 21-

Feb-08 C

! Reviewer: Date:

C

!

C

! Revision Number # Date: ##-

###-## C

219

! Author: #

C

! Purpose: #

C

!

C

!^^^

^^^^^^^C

 SUBROUTINE WRITE_GEOMETRY_IN_VTK

 USE param

 USE param1

 USE parallel

 USE constant

 USE run

 USE toleranc

 USE geometry

 USE indices

 USE compar

 USE mpi_utility

 USE sendrecv

 USE quadric

 USE cutcell

 USE fldvar

 USE vtk

 IMPLICIT NONE

 INTEGER :: IJK,I,J,K,L

 INTEGER :: IJK_OFFSET

 INTEGER :: iproc,IERR

 INTEGER, DIMENSION(0:numPEs-1) :: disp,rcount

 INTEGER, DIMENSION(:,:), ALLOCATABLE ::

SHIFTED_CONNECTIVITY

 include "function.inc"

 IF (myPE /= PE_IO) RETURN

 NUMBER_OF_VTK_CELLS = NUMBER_OF_CELLS -

NUMBER_OF_BLOCKED_CELLS

 WRITE(BUFFER,FMT='(A,I8,A)')'POINTS

',NUMBER_OF_POINTS,' double'

 WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC

220

 WRITE(UNIT=VTK_UNIT)

(XG_E(GLOBAL_I_OF(IJK)),YG_N(GLOBAL_J_OF(IJK)),ZG_T(GLOBAL_K_OF(

IJK)), IJK = 1,IJKMAX3), &

(GLOBAL_X_NEW_POINT(IJK),GLOBAL_Y_NEW_POINT(IJK),GLOBAL_Z_NEW_PO

INT(IJK),IJK = 1,&

 GLOBAL_NUMBER_OF_NEW_POINTS)

 WRITE(UNIT=VTK_UNIT) END_REC

 IF(NO_K) THEN

 WRITE(BUFFER,FMT='(A,2(I8,2X))')'POLYGONS

',NUMBER_OF_VTK_CELLS,POLY_COUNTER

 ELSE

 WRITE(BUFFER,FMT='(A,2(I8,2X))')'CELLS

',NUMBER_OF_VTK_CELLS,POLY_COUNTER

 ENDIF

 WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC

 DO IJK = 1,IJKMAX3

 IF (GLOBAL_INTERIOR_CELL_AT(IJK)) THEN

 IF (.NOT.GLOBAL_BLOCKED_CELL_AT(IJK))

WRITE(UNIT=VTK_UNIT) GLOBAL_NUMBER_OF_NODES(IJK),&

 (GLOBAL_CONNECTIVITY(IJK,L)-

1,L=1,GLOBAL_NUMBER_OF_NODES(IJK))

 ENDIF

 END DO

 WRITE(UNIT=VTK_UNIT) END_REC

 IF(DO_K) THEN

 WRITE(BUFFER,FMT='(A,I8)')'CELL_TYPES

',NUMBER_OF_VTK_CELLS

 WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC

 DO IJK = 1,IJKMAX3

 IF (GLOBAL_INTERIOR_CELL_AT(IJK)) THEN

 IF (.NOT.GLOBAL_BLOCKED_CELL_AT(IJK)) THEN

 IF(GLOBAL_CUT_CELL_AT(IJK)) THEN

 WRITE(UNIT=VTK_UNIT) 41

 ELSE

 WRITE(UNIT=VTK_UNIT) 11

 ENDIF

 ENDIF

 ENDIF

 END DO

 WRITE(UNIT=VTK_UNIT) END_REC

 ENDIF

221

 WRITE(BUFFER,FMT='(A,I8)') 'CELL_DATA

',NUMBER_OF_VTK_CELLS

 WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC

 RETURN

 END SUBROUTINE WRITE_GEOMETRY_IN_VTK

!vvv

vvvvvvvC

!

C

! Module name: WRITE_SCALAR_IN_VTK

C

! Purpose: Write Scalar variable in a vtk file

C

!

C

! Author: Jeff Dietiker Date: 21-

Feb-08 C

! Reviewer: Date:

C

!

C

! Revision Number # Date: ##-

###-## C

! Author: #

C

! Purpose: #

C

!

C

!^^^

^^^^^^^C

 SUBROUTINE WRITE_SCALAR_IN_VTK(VAR_NAME,VAR)

 USE param

 USE param1

 USE parallel

 USE constant

 USE run

 USE toleranc

 USE geometry

 USE indices

 USE compar

 USE mpi_utility

 USE sendrecv

222

 USE quadric

 USE cutcell

 USE fldvar

 USE vtk

 IMPLICIT NONE

 INTEGER :: I,IJK,L

 CHARACTER (*) :: VAR_NAME

 DOUBLE PRECISION, DIMENSION(DIMENSION_3) :: VAR

 DOUBLE PRECISION, ALLOCATABLE :: GLOBAL_VAR(:)

 include "function.inc"

 IF (myPE == PE_IO) THEN

 allocate (GLOBAL_VAR(ijkmax3))

 ELSE

 allocate (GLOBAL_VAR(1))

 ENDIF

 call gather (VAR,GLOBAL_VAR,root)

 IF (myPE /= PE_IO) RETURN

 DO I = 1,LEN_TRIM(VAR_NAME)

 IF(VAR_NAME(I:I) == ' ') VAR_NAME(I:I) = '_'

 ENDDO

 WRITE(BUFFER,FMT='(A)')'SCALARS '//TRIM(VAR_NAME)//'

double 1'

 WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC

 WRITE(BUFFER,FMT='(A)')'LOOKUP_TABLE default'

 WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC

 DO IJK = 1,IJKMAX3

 IF (GLOBAL_INTERIOR_CELL_AT(IJK)) THEN

 IF (.NOT.GLOBAL_BLOCKED_CELL_AT(IJK))

WRITE(UNIT=VTK_UNIT) GLOBAL_VAR(IJK)

 ENDIF

 ENDDO

 WRITE(UNIT=VTK_UNIT)END_REC

 Deallocate (GLOBAL_VAR)

 RETURN

223

 END SUBROUTINE WRITE_SCALAR_IN_VTK

!vvv

vvvvvvvC

!

C

! Module name: WRITE_VECTOR_IN_VTK

C

! Purpose: Write Vector variable in a vtk file

C

!

C

! Author: Jeff Dietiker Date: 21-

Feb-08 C

! Reviewer: Date:

C

!

C

! Revision Number # Date: ##-

###-## C

! Author: #

C

! Purpose: #

C

!

C

!^^^

^^^^^^^C

 SUBROUTINE WRITE_VECTOR_IN_VTK(VAR_NAME,VARX,VARY,VARZ)

 USE param

 USE param1

 USE parallel

 USE constant

 USE run

 USE toleranc

 USE geometry

 USE indices

 USE compar

 USE mpi_utility

 USE sendrecv

 USE quadric

 USE cutcell

 USE fldvar

 USE vtk

 IMPLICIT NONE

224

 INTEGER :: IJK,L

 CHARACTER (*) :: VAR_NAME

 DOUBLE PRECISION, DIMENSION(DIMENSION_3) ::

VARX,VARY,VARZ

 DOUBLE PRECISION, ALLOCATABLE ::

GLOBAL_VARX(:),GLOBAL_VARY(:),GLOBAL_VARZ(:)

 include "function.inc"

 IF (myPE == PE_IO) THEN

 allocate (GLOBAL_VARX(ijkmax3))

 allocate (GLOBAL_VARY(ijkmax3))

 allocate (GLOBAL_VARZ(ijkmax3))

 ELSE

 allocate (GLOBAL_VARX(1))

 allocate (GLOBAL_VARY(1))

 allocate (GLOBAL_VARZ(1))

 ENDIF

 call gather (VARX,GLOBAL_VARX,root)

 call gather (VARY,GLOBAL_VARY,root)

 call gather (VARZ,GLOBAL_VARZ,root)

 IF (myPE /= PE_IO) RETURN

 WRITE(BUFFER,FMT='(A)')'VECTORS '//TRIM(VAR_NAME)//'

double'

 WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC

 DO IJK = 1,IJKMAX3

 IF (GLOBAL_INTERIOR_CELL_AT(IJK)) THEN

 IF (.NOT.GLOBAL_BLOCKED_CELL_AT(IJK))

WRITE(UNIT=VTK_UNIT)

GLOBAL_VARX(IJK),GLOBAL_VARY(IJK),GLOBAL_VARZ(IJK)

 ENDIF

 ENDDO

 WRITE(UNIT=VTK_UNIT)END_REC

 Deallocate (GLOBAL_VARX)

 Deallocate (GLOBAL_VARY)

 Deallocate (GLOBAL_VARZ)

 RETURN

 END SUBROUTINE WRITE_VECTOR_IN_VTK

225

!vvv

vvvvvvvC

!

C

! Module name: CLOSE_VTK_FILE

C

! Purpose: Close a vtk file

C

!

C

! Author: Jeff Dietiker Date: 21-

Feb-08 C

! Reviewer: Date:

C

!

C

! Revision Number # Date: ##-

###-## C

! Author: #

C

! Purpose: #

C

!

C

!^^^

^^^^^^^C

 SUBROUTINE CLOSE_VTK_FILE

 USE vtk

 IF (myPE /= PE_IO) RETURN

 CLOSE(VTK_UNIT)

 RETURN

 END SUBROUTINE CLOSE_VTK_FILE

!vvv

vvvvvvvC

!

C

226

! Module name: WRITE_CUT_SURFACE_VTK

C

! Purpose: Writes the cut cell surface in VTK format

C

!

C

! Author: Jeff Dietiker Date: 21-

Feb-08 C

! Reviewer: Date:

C

!

C

! Revision Number # Date: ##-

###-## C

! Author: #

C

! Purpose: #

C

!

C

!^^^

^^^^^^^C

 SUBROUTINE WRITE_CUT_SURFACE_VTK

 USE param

 USE param1

 USE parallel

 USE constant

 USE run

 USE toleranc

 USE geometry

 USE indices

 USE compar

 USE sendrecv

 USE quadric

 USE cutcell

 USE fldvar

 USE vtk

 USE polygon

 USE stl

 IMPLICIT NONE

 INTEGER :: I,J,K,L,IM,JM,KM,IP,JP,KP,IJK,NODE

 INTEGER :: IMJK,IJMK,IJKM,IMJMK,IMJKM,IJMKM,IMJMKM

 INTEGER :: POINT_ID,POLY_COUNT,FACE_ID,Q_ID,Q_ID2

 INTEGER :: N_CUT_FACE_NODES,BCID2

 INTEGER NUMBER_OF_FACES

227

 INTEGER NUMBER_OF_SURFACE_POINTS

 DOUBLE PRECISION, DIMENSION(15,3) :: COORD_CUT_FACE_NODES

 DOUBLE PRECISION, DIMENSION(3) :: NORMAL

 INTEGER, DIMENSION(DIMENSION_MAX_CUT_CELL,6) ::

FACE_CONNECTIVITY

 INTEGER, DIMENSION(DIMENSION_MAX_CUT_CELL) ::

NUMBER_OF_CUT_FACE_POINTS

 DOUBLE PRECISION, DIMENSION(DIMENSION_MAX_CUT_CELL) ::

X_FACE_POINT

 DOUBLE PRECISION, DIMENSION(DIMENSION_MAX_CUT_CELL) ::

Y_FACE_POINT

 DOUBLE PRECISION, DIMENSION(DIMENSION_MAX_CUT_CELL) ::

Z_FACE_POINT

 DOUBLE PRECISION :: X_COPY,Y_COPY,Z_COPY,F_COPY,F2

 LOGICAL :: CLIP_FLAG,INTERSECT_FLAG,PRINT_FLAG

 CHARACTER (LEN=32) :: FILENAME

 include "function.inc"

 IF(myPE/=0) RETURN

!===

=======

! Set-up connectivity for each cell, i.e., regular cells and

cut cells

!===

=======

 POLY_COUNT = 0

 NUMBER_OF_SURFACE_POINTS = 0

 NUMBER_OF_FACES = 0

 DO IJK = 1,IJKMAX3

 IF(GLOBAL_CUT_CELL_AT(IJK)) THEN

!===

=======

! Filter the connectivity to identify nodes belonging to cut

face

228

!===

=======

 NUMBER_OF_FACES = NUMBER_OF_FACES + 1

 N_CUT_FACE_NODES = 0

 CALL GET_GLOBAL_CELL_NODE_COORDINATES(IJK,'SCALAR')

 DO L = 1, GLOBAL_NUMBER_OF_NODES(IJK)

 IF(GLOBAL_CONNECTIVITY(IJK,L)>IJKMAX3) THEN !

One of the new point

 X_COPY =

GLOBAL_X_NEW_POINT(GLOBAL_CONNECTIVITY(IJK,L)-IJKMAX3)

 Y_COPY =

GLOBAL_Y_NEW_POINT(GLOBAL_CONNECTIVITY(IJK,L)-IJKMAX3)

 Z_COPY =

GLOBAL_Z_NEW_POINT(GLOBAL_CONNECTIVITY(IJK,L)-IJKMAX3)

 ELSE ! An

existing point

 DO NODE = 1,8

 IF(GLOBAL_CONNECTIVITY(IJK,L) ==

IJK_OF_NODE(NODE)) THEN

 X_COPY = X_NODE(NODE)

 Y_COPY = Y_NODE(NODE)

 Z_COPY = Z_NODE(NODE)

 IF (GLOBAL_SNAP(IJK_OF_NODE(NODE))) THEN

! One of the snapped corner point which now belongs to the cut

face

 N_CUT_FACE_NODES = N_CUT_FACE_NODES +

1

COORD_CUT_FACE_NODES(N_CUT_FACE_NODES,1) = X_COPY

COORD_CUT_FACE_NODES(N_CUT_FACE_NODES,2) = Y_COPY

COORD_CUT_FACE_NODES(N_CUT_FACE_NODES,3) = Z_COPY

 ENDIF

 ENDIF

 END DO

 ENDIF

 Q_ID = 1

229

 CALL

EVAL_F('QUADRIC',X_COPY,Y_COPY,Z_COPY,Q_ID,F_COPY,CLIP_FLAG)

 CALL

EVAL_F('POLYGON',X_COPY,Y_COPY,Z_COPY,N_POLYGON,F_COPY,CLIP_FLAG

)

 CALL

EVAL_F('USR_DEF',X_COPY,Y_COPY,Z_COPY,N_USR_DEF,F_COPY,CLIP_FLAG

)

 X_NODE(15) = X_COPY

 Y_NODE(15) = Y_COPY

 Z_NODE(15) = Z_COPY

 CALL

EVAL_STL_FCT_AT('SCALAR',IJK,15,F_COPY,CLIP_FLAG,BCID2)

 IF (ABS(F_COPY) < TOL_F) THEN ! belongs to cut

face

 N_CUT_FACE_NODES = N_CUT_FACE_NODES + 1

 COORD_CUT_FACE_NODES(N_CUT_FACE_NODES,1) =

X_COPY

 COORD_CUT_FACE_NODES(N_CUT_FACE_NODES,2) =

Y_COPY

 COORD_CUT_FACE_NODES(N_CUT_FACE_NODES,3) =

Z_COPY

 ENDIF

 END DO

 CALL

REORDER_POLYGON(N_CUT_FACE_NODES,COORD_CUT_FACE_NODES,NORMAL)

 NUMBER_OF_CUT_FACE_POINTS(NUMBER_OF_FACES) =

N_CUT_FACE_NODES

 POLY_COUNT = POLY_COUNT + N_CUT_FACE_NODES + 1

 DO NODE = 1,N_CUT_FACE_NODES

 NUMBER_OF_SURFACE_POINTS =

NUMBER_OF_SURFACE_POINTS + 1

IF(NUMBER_OF_SURFACE_POINTS>=DIMENSION_MAX_CUT_CELL) THEN

 WRITE(*,3000) 'ERROR IN SUBROUTINE

WRITE_3DCUT_SURFACE_VTK:'

 WRITE(*,3000)

'NUMBER_OF_SURFACE_POINTS>=DIMENSION_MAX_CUT_CELL:'

 WRITE(*,3000) 'INCREASE VALUE OF

FAC_DIM_MAX_CUT_CELL.'

230

 WRITE(*,3010) 'CURRENT VALUE OF

FAC_DIM_MAX_CUT_CELL =',FAC_DIM_MAX_CUT_CELL

 WRITE(*,3020) 'CURRENT VALUE OF

DIMENSION_MAX_CUT_CELL =',DIMENSION_MAX_CUT_CELL

 WRITE(*,3000) 'MFiX will exit now.'

 CALL MFIX_EXIT(myPE)

 ENDIF

 X_FACE_POINT(NUMBER_OF_SURFACE_POINTS) =

COORD_CUT_FACE_NODES(NODE,1)

 Y_FACE_POINT(NUMBER_OF_SURFACE_POINTS) =

COORD_CUT_FACE_NODES(NODE,2)

 Z_FACE_POINT(NUMBER_OF_SURFACE_POINTS) =

COORD_CUT_FACE_NODES(NODE,3)

 FACE_CONNECTIVITY(NUMBER_OF_FACES,NODE) =

NUMBER_OF_SURFACE_POINTS

 ENDDO

 ENDIF

 END DO

 FILENAME= TRIM(RUN_NAME) // '_boundary.vtk'

 FILENAME = TRIM(FILENAME)

 OPEN(UNIT = 123, FILE = FILENAME)

 WRITE(123,1001)'# vtk DataFile Version 2.0'

 WRITE(123,1001)'3D CUT-CELL SURFACE'

 WRITE(123,1001)'ASCII'

 IF(NO_K) THEN ! 2D GEOMETRY

 WRITE(123,1001)'DATASET UNSTRUCTURED_GRID'

 ELSE ! 3D GEOMETRY

 WRITE(123,1001)'DATASET POLYDATA'

 ENDIF

 WRITE(123,1010)'POINTS ',NUMBER_OF_SURFACE_POINTS,' float'

 DO POINT_ID = 1,NUMBER_OF_SURFACE_POINTS

 WRITE(123,1020)

X_FACE_POINT(POINT_ID),Y_FACE_POINT(POINT_ID),Z_FACE_POINT(POINT

_ID)

 ENDDO

 IF(NO_K) THEN ! 2D GEOMETRY

 WRITE(123,1030)'CELLS ',NUMBER_OF_FACES,POLY_COUNT

 DO FACE_ID = 1 , NUMBER_OF_FACES

231

 WRITE(123,1040)

NUMBER_OF_CUT_FACE_POINTS(FACE_ID),(FACE_CONNECTIVITY(FACE_ID,L)

-1,&

 L=1,NUMBER_OF_CUT_FACE_POINTS(FACE_ID))

 ENDDO

 WRITE(123,1030)'CELL_TYPES ',NUMBER_OF_FACES

 DO FACE_ID = 1 , NUMBER_OF_FACES

 WRITE(123,1040) 3

 ENDDO

 ELSE ! 3D GEOMETRY

 WRITE(123,1030)'POLYGONS ',NUMBER_OF_FACES,POLY_COUNT

 DO FACE_ID = 1 , NUMBER_OF_FACES

 WRITE(123,1040)

NUMBER_OF_CUT_FACE_POINTS(FACE_ID),(FACE_CONNECTIVITY(FACE_ID,L)

-1,&

 L=1,NUMBER_OF_CUT_FACE_POINTS(FACE_ID))

 ENDDO

 ENDIF

1001 FORMAT(A)

1010 FORMAT(A,I8,A)

1020 FORMAT(3(E16.8,2X))

1030 FORMAT(A,2(I8,2X))

1040 FORMAT(20(I8,2X))

1050 FORMAT(A,I8)

1060 FORMAT(E16.8)

1070 FORMAT(3(E16.8,2X))

1080 FORMAT(I5)

3000 FORMAT(1X,A)

3010 FORMAT(1X,A,F8.4)

3020 FORMAT(1X,A,I8)

3030 FORMAT(1X,A,A)

 CLOSE (123)

 WRITE(*,3030)'WROTE BOUNDARY IN VTK FILE : ',FILENAME

 RETURN

 END SUBROUTINE WRITE_CUT_SURFACE_VTK

!vvv

vvvvvvvC

!

C

232

! Module name: GATHER_DATA

C

! Purpose: Gather data from all processes in preparation of

C

! Writing VTK files

C

!

C

! Author: Jeff Dietiker Date: 21-

Feb-08 C

! Reviewer: Date:

C

!

C

! Revision Number # Date: ##-

###-## C

! Author: #

C

! Purpose: #

C

!

C

!^^^

^^^^^^^C

 SUBROUTINE GATHER_DATA

 USE param

 USE param1

 USE parallel

 USE constant

 USE run

 USE toleranc

 USE geometry

 USE indices

 USE compar

 USE mpi_utility

 USE sendrecv

 USE quadric

 USE cutcell

 USE fldvar

 USE vtk

 IMPLICIT NONE

 INTEGER :: IJK,I,J,K,L

 INTEGER :: IJK_OFFSET

 INTEGER :: iproc,IERR

233

 INTEGER, DIMENSION(0:numPEs-1) :: disp,rcount

 INTEGER, DIMENSION(:,:), ALLOCATABLE ::

SHIFTED_CONNECTIVITY

 include "function.inc"

!===

=======

! parallel processing

!===

=======

 CALL allgather_1i (NUMBER_OF_NEW_POINTS,rcount,IERR)

 IF (myPE == 0) THEN

 IJK_OFFSET = 0

 ELSE

 IJK_OFFSET = 0

 DO iproc=0,myPE-1

 IJK_OFFSET = IJK_OFFSET + rcount(iproc)

 ENDDO

 ENDIF

 CALL allgather_1i (IJK_OFFSET,disp,IERR)

 IF(.NOT.GLOBAL_VAR_ALLOCATED) THEN

 IF (myPE == PE_IO) THEN

 allocate (GLOBAL_I_OF(ijkmax3))

 allocate (GLOBAL_J_OF(ijkmax3))

 allocate (GLOBAL_K_OF(ijkmax3))

 allocate (GLOBAL_CONNECTIVITY(ijkmax3,15))

 allocate (GLOBAL_NUMBER_OF_NODES(ijkmax3))

 allocate (GLOBAL_INTERIOR_CELL_AT(ijkmax3))

 allocate (GLOBAL_BLOCKED_CELL_AT(ijkmax3))

 allocate (GLOBAL_STANDARD_CELL_AT(ijkmax3))

 allocate (GLOBAL_CUT_CELL_AT(ijkmax3))

 allocate (GLOBAL_SNAP(ijkmax3))

 allocate (GLOBAL_X_NEW_POINT(ijkmax3))

 allocate (GLOBAL_Y_NEW_POINT(ijkmax3))

 allocate (GLOBAL_Z_NEW_POINT(ijkmax3))

 ELSE

 allocate (GLOBAL_I_OF(1))

 allocate (GLOBAL_J_OF(1))

 allocate (GLOBAL_K_OF(1))

 allocate (GLOBAL_CONNECTIVITY(1,1))

 allocate (GLOBAL_NUMBER_OF_NODES(1))

234

 allocate (GLOBAL_INTERIOR_CELL_AT(1))

 allocate (GLOBAL_BLOCKED_CELL_AT(1))

 allocate (GLOBAL_STANDARD_CELL_AT(1))

 allocate (GLOBAL_CUT_CELL_AT(1))

 allocate (GLOBAL_SNAP(1))

 allocate (GLOBAL_X_NEW_POINT(1))

 allocate (GLOBAL_Y_NEW_POINT(1))

 allocate (GLOBAL_Z_NEW_POINT(1))

 ENDIF

 GLOBAL_VAR_ALLOCATED = .TRUE.

 ENDIF

 call gatherv_1d(X_NEW_POINT, NUMBER_OF_NEW_POINTS,

GLOBAL_X_NEW_POINT, rcount, disp, PE_IO, ierr)

 call gatherv_1d(Y_NEW_POINT, NUMBER_OF_NEW_POINTS,

GLOBAL_Y_NEW_POINT, rcount, disp, PE_IO, ierr)

 call gatherv_1d(Z_NEW_POINT, NUMBER_OF_NEW_POINTS,

GLOBAL_Z_NEW_POINT, rcount, disp, PE_IO, ierr)

 call global_sum(NUMBER_OF_NEW_POINTS,

GLOBAL_NUMBER_OF_NEW_POINTS, PE_IO, ierr)

 Allocate(SHIFTED_CONNECTIVITY (DIMENSION_3,15))

 SHIFTED_CONNECTIVITY = CONNECTIVITY

 WHERE (SHIFTED_CONNECTIVITY > IJKEND3)

 SHIFTED_CONNECTIVITY = SHIFTED_CONNECTIVITY - IJKEND3 +

IJKMAX3 + disp(myPE)

 END WHERE

 DO IJK = IJKSTART3,IJKEND3

 DO L=1,NUMBER_OF_NODES(IJK)

 IF(CONNECTIVITY(IJK,L) <= IJKEND3) THEN

 I = I_OF(CONNECTIVITY(IJK,L))

 J = J_OF(CONNECTIVITY(IJK,L))

 K = K_OF(CONNECTIVITY(IJK,L))

 SHIFTED_CONNECTIVITY(IJK,L) = funijk_gl(I,J,K)

 ENDIF

 ENDDO

 ENDDO

 call gather (I_OF,GLOBAL_I_OF,root)

 call gather (J_OF,GLOBAL_J_OF,root)

 call gather (K_OF,GLOBAL_K_OF,root)

 call gather

(SHIFTED_CONNECTIVITY,GLOBAL_CONNECTIVITY,root)

235

 call gather (NUMBER_OF_NODES,GLOBAL_NUMBER_OF_NODES,root)

 call gather

(INTERIOR_CELL_AT,GLOBAL_INTERIOR_CELL_AT,root)

 call gather (BLOCKED_CELL_AT,GLOBAL_BLOCKED_CELL_AT,root)

 call gather

(STANDARD_CELL_AT,GLOBAL_STANDARD_CELL_AT,root)

 call gather (CUT_CELL_AT,GLOBAL_CUT_CELL_AT,root)

 call gather (SNAP,GLOBAL_SNAP,root)

 Deallocate(SHIFTED_CONNECTIVITY)

 IF (myPE == PE_IO) THEN

 POLY_COUNTER = 0

 NUMBER_OF_CELLS = 0

 NUMBER_OF_CUT_CELLS = 0

 NUMBER_OF_BLOCKED_CELLS = 0

 NUMBER_OF_STANDARD_CELLS = 0

 DO IJK = 1, IJKMAX3

 IF (GLOBAL_INTERIOR_CELL_AT(IJK)) THEN

 NUMBER_OF_CELLS = NUMBER_OF_CELLS + 1

 IF (GLOBAL_BLOCKED_CELL_AT(IJK))

NUMBER_OF_BLOCKED_CELLS = NUMBER_OF_BLOCKED_CELLS + 1

 IF (GLOBAL_STANDARD_CELL_AT(IJK))

NUMBER_OF_STANDARD_CELLS = NUMBER_OF_STANDARD_CELLS + 1

 IF (GLOBAL_CUT_CELL_AT(IJK))

NUMBER_OF_CUT_CELLS = NUMBER_OF_CUT_CELLS + 1

 IF (.NOT.GLOBAL_BLOCKED_CELL_AT(IJK))

POLY_COUNTER = POLY_COUNTER + GLOBAL_NUMBER_OF_NODES(IJK) + 1

 ENDIF

 END DO

 NUMBER_OF_POINTS = IJKMAX3 +

GLOBAL_NUMBER_OF_NEW_POINTS

 ENDIF

236

 RETURN

 END SUBROUTINE GATHER_DATA

!vvv

vvvvvvvC

!

C

! Module name: PRINT_GRID_STATISTICS

C

! Purpose: PRINT_GRID_STATISTICS ON SCREEN

C

!

C

!

C

! Author: Jeff Dietiker Date: 21-

Feb-08 C

! Reviewer: Date:

C

!

C

! Revision Number # Date: ##-

###-## C

! Author: #

C

! Purpose: #

C

!

C

!^^^

^^^^^^^C

 SUBROUTINE PRINT_GRID_STATISTICS

 USE param

 USE param1

 USE parallel

 USE constant

 USE run

 USE toleranc

 USE geometry

 USE indices

 USE compar

 USE mpi_utility

 USE sendrecv

 USE quadric

 USE cutcell

237

 USE fldvar

 USE vtk

 IMPLICIT NONE

 INTEGER :: IJK,I,J,K,L

 INTEGER :: IJK_OFFSET

 INTEGER :: iproc,IERR

 DOUBLE PRECISION :: MIN_VOL, MAX_VOL,

GLOBAL_MIN_VOL,GLOBAL_MAX_VOL

 DOUBLE PRECISION :: MIN_AYZ, MAX_AYZ,

GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ

 DOUBLE PRECISION :: MIN_AXZ, MAX_AXZ,

GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ

 DOUBLE PRECISION :: MIN_AXY, MAX_AXY,

GLOBAL_MIN_AXY,GLOBAL_MAX_AXY

 DOUBLE PRECISION :: MIN_CUT, MAX_CUT,

GLOBAL_MIN_CUT,GLOBAL_MAX_CUT

 DOUBLE PRECISION :: LOCAL_MIN_Q,LOCAL_MAX_Q,

GLOBAL_MIN_Q,GLOBAL_MAX_Q

 include "function.inc"

 IF (myPE == PE_IO) THEN

 IF(.NOT.GRID_INFO_PRINTED_ON_SCREEN) THEN

 WRITE(*,5) 'GRID STATISTICS:'

 WRITE(*,5) 'NUMBER OF CELLS = ',

NUMBER_OF_CELLS

 WRITE(*,10)'NUMBER OF STANDARD CELLS = ', &

NUMBER_OF_STANDARD_CELLS,DFLOAT(NUMBER_OF_STANDARD_CELLS) /

DFLOAT(NUMBER_OF_CELLS) * 100.0D0

 WRITE(*,10)'NUMBER OF CUT CELLS = ', &

NUMBER_OF_CUT_CELLS,DFLOAT(NUMBER_OF_CUT_CELLS) /

DFLOAT(NUMBER_OF_CELLS) * 100.0D0

 WRITE(*,10)'NUMBER OF BLOCKED CELLS = ', &

NUMBER_OF_BLOCKED_CELLS,DFLOAT(NUMBER_OF_BLOCKED_CELLS) /

DFLOAT(NUMBER_OF_CELLS) * 100.0D0

5 FORMAT(1X,A,I8)

10 FORMAT(1X,A,I8,' (',F6.2,' % of Total)')

238

 ENDIF

 GRID_INFO_PRINTED_ON_SCREEN = .TRUE.

 ENDIF

!===

=======

! Scalar Cell volumes and areas

!===

=======

 MIN_VOL = LARGE_NUMBER

 MAX_VOL = - LARGE_NUMBER

 MIN_AYZ = LARGE_NUMBER

 MAX_AYZ = - LARGE_NUMBER

 MIN_AXZ = LARGE_NUMBER

 MAX_AXZ = - LARGE_NUMBER

 MIN_AXY = LARGE_NUMBER

 MAX_AXY = - LARGE_NUMBER

 DO IJK = IJKSTART3, IJKEND3

 IF(STANDARD_CELL_AT(IJK)) THEN ! STANDARD

CELLS

 MIN_VOL = DMIN1(MIN_VOL,VOL(IJK))

 MAX_VOL = DMAX1(MAX_VOL,VOL(IJK))

 MIN_AYZ = DMIN1(MIN_AYZ,AYZ(IJK))

 MAX_AYZ = DMAX1(MAX_AYZ,AYZ(IJK))

 MIN_AXZ = DMIN1(MIN_AXZ,AXZ(IJK))

 MAX_AXZ = DMAX1(MAX_AXZ,AXZ(IJK))

 MIN_AXY = DMIN1(MIN_AXY,AXY(IJK))

 MAX_AXY = DMAX1(MAX_AXY,AXY(IJK))

 ENDIF

 END DO

 call global_min(MIN_VOL, GLOBAL_MIN_VOL, PE_IO, ierr)

 call global_max(MAX_VOL, GLOBAL_MAX_VOL, PE_IO, ierr)

 call global_min(MIN_AYZ, GLOBAL_MIN_AYZ, PE_IO, ierr)

 call global_max(MAX_AYZ, GLOBAL_MAX_AYZ, PE_IO, ierr)

 call global_min(MIN_AXZ, GLOBAL_MIN_AXZ, PE_IO, ierr)

 call global_max(MAX_AXZ, GLOBAL_MAX_AXZ, PE_IO, ierr)

 call global_min(MIN_AXY, GLOBAL_MIN_AXY, PE_IO, ierr)

 call global_max(MAX_AXY, GLOBAL_MAX_AXY, PE_IO, ierr)

 IF (myPE == PE_IO) THEN

239

 WRITE(UNIT_CUT_CELL_LOG,1000)

'###

#'

 WRITE(UNIT_CUT_CELL_LOG,1000) '

CELLS STATISTICS '

 WRITE(UNIT_CUT_CELL_LOG,1000)

'###

#'

 WRITE(UNIT_CUT_CELL_LOG,1000) 'SCALAR STANDARD CELLS:'

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXY

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXZ

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AYZ

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF VOLUME

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL

 ENDIF

 MIN_VOL = LARGE_NUMBER

 MAX_VOL = - LARGE_NUMBER

 MIN_AYZ = LARGE_NUMBER

 MAX_AYZ = - LARGE_NUMBER

 MIN_AXZ = LARGE_NUMBER

 MAX_AXZ = - LARGE_NUMBER

 MIN_AXY = LARGE_NUMBER

 MAX_AXY = - LARGE_NUMBER

 DO IJK = IJKSTART3, IJKEND3

 IF(CUT_CELL_AT(IJK)) THEN ! CUT CELLS

 MIN_VOL = DMIN1(MIN_VOL,VOL(IJK))

 MAX_VOL = DMAX1(MAX_VOL,VOL(IJK))

 MIN_AYZ = DMIN1(MIN_AYZ,AYZ(IJK))

 MAX_AYZ = DMAX1(MAX_AYZ,AYZ(IJK))

 MIN_AXZ = DMIN1(MIN_AXZ,AXZ(IJK))

 MAX_AXZ = DMAX1(MAX_AXZ,AXZ(IJK))

 MIN_AXY = DMIN1(MIN_AXY,AXY(IJK))

 MAX_AXY = DMAX1(MAX_AXY,AXY(IJK))

 ENDIF

 END DO

 call global_min(MIN_VOL, GLOBAL_MIN_VOL, PE_IO, ierr)

 call global_max(MAX_VOL, GLOBAL_MAX_VOL, PE_IO, ierr)

 call global_min(MIN_AYZ, GLOBAL_MIN_AYZ, PE_IO, ierr)

 call global_max(MAX_AYZ, GLOBAL_MAX_AYZ, PE_IO, ierr)

 call global_min(MIN_AXZ, GLOBAL_MIN_AXZ, PE_IO, ierr)

240

 call global_max(MAX_AXZ, GLOBAL_MAX_AXZ, PE_IO, ierr)

 call global_min(MIN_AXY, GLOBAL_MIN_AXY, PE_IO, ierr)

 call global_max(MAX_AXY, GLOBAL_MAX_AXY, PE_IO, ierr)

 IF (myPE == PE_IO) THEN

 WRITE(UNIT_CUT_CELL_LOG,1000) 'SCALAR CUT CELLS:'

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXY

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXZ

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AYZ

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF VOLUME

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL

 WRITE(UNIT_CUT_CELL_LOG,1010) 'NUMBER OF SMALL SCALAR

CELLS = ', NUMBER_OF_SMALL_CELLS

 WRITE(UNIT_CUT_CELL_LOG,1000)

'###

#'

 ENDIF

1000 FORMAT(A,E14.8,2X,E14.8)

1010 FORMAT(A,I8)

!===

=======

! U-Momentum Cell volumes and areas

!===

=======

 MIN_VOL = LARGE_NUMBER

 MAX_VOL = - LARGE_NUMBER

 MIN_AYZ = LARGE_NUMBER

 MAX_AYZ = - LARGE_NUMBER

 MIN_AXZ = LARGE_NUMBER

 MAX_AXZ = - LARGE_NUMBER

 MIN_AXY = LARGE_NUMBER

 MAX_AXY = - LARGE_NUMBER

 DO IJK = IJKSTART3, IJKEND3

 IF(STANDARD_U_CELL_AT(IJK)) THEN !

STANDARD CELLS

 MIN_VOL = DMIN1(MIN_VOL,VOL_U(IJK))

 MAX_VOL = DMAX1(MAX_VOL,VOL_U(IJK))

 MIN_AYZ = DMIN1(MIN_AYZ,AYZ_U(IJK))

241

 MAX_AYZ = DMAX1(MAX_AYZ,AYZ_U(IJK))

 MIN_AXZ = DMIN1(MIN_AXZ,AXZ_U(IJK))

 MAX_AXZ = DMAX1(MAX_AXZ,AXZ_U(IJK))

 MIN_AXY = DMIN1(MIN_AXY,AXY_U(IJK))

 MAX_AXY = DMAX1(MAX_AXY,AXY_U(IJK))

 ENDIF

 END DO

 call global_min(MIN_VOL, GLOBAL_MIN_VOL, PE_IO, ierr)

 call global_max(MAX_VOL, GLOBAL_MAX_VOL, PE_IO, ierr)

 call global_min(MIN_AYZ, GLOBAL_MIN_AYZ, PE_IO, ierr)

 call global_max(MAX_AYZ, GLOBAL_MAX_AYZ, PE_IO, ierr)

 call global_min(MIN_AXZ, GLOBAL_MIN_AXZ, PE_IO, ierr)

 call global_max(MAX_AXZ, GLOBAL_MAX_AXZ, PE_IO, ierr)

 call global_min(MIN_AXY, GLOBAL_MIN_AXY, PE_IO, ierr)

 call global_max(MAX_AXY, GLOBAL_MAX_AXY, PE_IO, ierr)

 IF (myPE == PE_IO) THEN

 WRITE(UNIT_CUT_CELL_LOG,1000) 'U-MOMENTUM STANDARD

CELLS:'

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXY

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXZ

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AYZ

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF VOLUME

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL

 ENDIF

 MIN_VOL = LARGE_NUMBER

 MAX_VOL = - LARGE_NUMBER

 MIN_AYZ = LARGE_NUMBER

 MAX_AYZ = - LARGE_NUMBER

 MIN_AXZ = LARGE_NUMBER

 MAX_AXZ = - LARGE_NUMBER

 MIN_AXY = LARGE_NUMBER

 MAX_AXY = - LARGE_NUMBER

 MIN_CUT = LARGE_NUMBER

 MAX_CUT = - LARGE_NUMBER

 DO IJK = IJKSTART3, IJKEND3

 IF(CUT_U_CELL_AT(IJK).AND.(.NOT.WALL_U_AT(IJK))) THEN

! CUT CELLS

 MIN_VOL = DMIN1(MIN_VOL,VOL_U(IJK))

 MAX_VOL = DMAX1(MAX_VOL,VOL_U(IJK))

 MIN_AYZ = DMIN1(MIN_AYZ,AYZ_U(IJK))

242

 MAX_AYZ = DMAX1(MAX_AYZ,AYZ_U(IJK))

 MIN_AXZ = DMIN1(MIN_AXZ,AXZ_U(IJK))

 MAX_AXZ = DMAX1(MAX_AXZ,AXZ_U(IJK))

 MIN_AXY = DMIN1(MIN_AXY,AXY_U(IJK))

 MAX_AXY = DMAX1(MAX_AXY,AXY_U(IJK))

 MIN_CUT = DMIN1(MIN_CUT,AREA_U_CUT(IJK))

 MAX_CUT = DMAX1(MAX_CUT,AREA_U_CUT(IJK))

 ENDIF

 END DO

 call global_min(MIN_VOL, GLOBAL_MIN_VOL, PE_IO, ierr)

 call global_max(MAX_VOL, GLOBAL_MAX_VOL, PE_IO, ierr)

 call global_min(MIN_AYZ, GLOBAL_MIN_AYZ, PE_IO, ierr)

 call global_max(MAX_AYZ, GLOBAL_MAX_AYZ, PE_IO, ierr)

 call global_min(MIN_AXZ, GLOBAL_MIN_AXZ, PE_IO, ierr)

 call global_max(MAX_AXZ, GLOBAL_MAX_AXZ, PE_IO, ierr)

 call global_min(MIN_AXY, GLOBAL_MIN_AXY, PE_IO, ierr)

 call global_max(MAX_AXY, GLOBAL_MAX_AXY, PE_IO, ierr)

 call global_min(MIN_CUT, GLOBAL_MIN_CUT, PE_IO, ierr)

 call global_max(MAX_CUT, GLOBAL_MAX_CUT, PE_IO, ierr)

 IF (myPE == PE_IO) THEN

 WRITE(UNIT_CUT_CELL_LOG,1000) 'U-MOMENTUM CUT CELLS:'

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXY

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXZ

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AYZ

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF CUT AREA

= ', GLOBAL_MIN_CUT,GLOBAL_MAX_CUT

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF VOLUME

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL

 WRITE(UNIT_CUT_CELL_LOG,1010) 'NUMBER OF U WALL CELLS

= ', NUMBER_OF_U_WALL_CELLS

 WRITE(UNIT_CUT_CELL_LOG,1000)

'###

#'

 ENDIF

!===

=======

! V-Momentum Cell volumes and areas

!===

=======

 MIN_VOL = LARGE_NUMBER

 MAX_VOL = - LARGE_NUMBER

243

 MIN_AYZ = LARGE_NUMBER

 MAX_AYZ = - LARGE_NUMBER

 MIN_AXZ = LARGE_NUMBER

 MAX_AXZ = - LARGE_NUMBER

 MIN_AXY = LARGE_NUMBER

 MAX_AXY = - LARGE_NUMBER

 DO IJK = IJKSTART3, IJKEND3

 IF(STANDARD_V_CELL_AT(IJK)) THEN !

STANDARD CELLS

 MIN_VOL = DMIN1(MIN_VOL,VOL_V(IJK))

 MAX_VOL = DMAX1(MAX_VOL,VOL_V(IJK))

 MIN_AYZ = DMIN1(MIN_AYZ,AYZ_V(IJK))

 MAX_AYZ = DMAX1(MAX_AYZ,AYZ_V(IJK))

 MIN_AXZ = DMIN1(MIN_AXZ,AXZ_V(IJK))

 MAX_AXZ = DMAX1(MAX_AXZ,AXZ_V(IJK))

 MIN_AXY = DMIN1(MIN_AXY,AXY_V(IJK))

 MAX_AXY = DMAX1(MAX_AXY,AXY_V(IJK))

 ENDIF

 END DO

 call global_min(MIN_VOL, GLOBAL_MIN_VOL, PE_IO, ierr)

 call global_max(MAX_VOL, GLOBAL_MAX_VOL, PE_IO, ierr)

 call global_min(MIN_AYZ, GLOBAL_MIN_AYZ, PE_IO, ierr)

 call global_max(MAX_AYZ, GLOBAL_MAX_AYZ, PE_IO, ierr)

 call global_min(MIN_AXZ, GLOBAL_MIN_AXZ, PE_IO, ierr)

 call global_max(MAX_AXZ, GLOBAL_MAX_AXZ, PE_IO, ierr)

 call global_min(MIN_AXY, GLOBAL_MIN_AXY, PE_IO, ierr)

 call global_max(MAX_AXY, GLOBAL_MAX_AXY, PE_IO, ierr)

 IF (myPE == PE_IO) THEN

 WRITE(UNIT_CUT_CELL_LOG,1000) 'V-MOMENTUM STANDARD

CELLS:'

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXY

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXZ

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AYZ

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF VOLUME

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL

 ENDIF

 MIN_VOL = LARGE_NUMBER

 MAX_VOL = - LARGE_NUMBER

 MIN_AYZ = LARGE_NUMBER

 MAX_AYZ = - LARGE_NUMBER

244

 MIN_AXZ = LARGE_NUMBER

 MAX_AXZ = - LARGE_NUMBER

 MIN_AXY = LARGE_NUMBER

 MAX_AXY = - LARGE_NUMBER

 MIN_CUT = LARGE_NUMBER

 MAX_CUT = - LARGE_NUMBER

 DO IJK = IJKSTART3, IJKEND3

 IF(CUT_V_CELL_AT(IJK).AND.(.NOT.WALL_V_AT(IJK))) THEN

! CUT CELLS

 MIN_VOL = DMIN1(MIN_VOL,VOL_V(IJK))

 MAX_VOL = DMAX1(MAX_VOL,VOL_V(IJK))

 MIN_AYZ = DMIN1(MIN_AYZ,AYZ_V(IJK))

 MAX_AYZ = DMAX1(MAX_AYZ,AYZ_V(IJK))

 MIN_AXZ = DMIN1(MIN_AXZ,AXZ_V(IJK))

 MAX_AXZ = DMAX1(MAX_AXZ,AXZ_V(IJK))

 MIN_AXY = DMIN1(MIN_AXY,AXY_V(IJK))

 MAX_AXY = DMAX1(MAX_AXY,AXY_V(IJK))

 MIN_CUT = DMIN1(MIN_CUT,AREA_V_CUT(IJK))

 MAX_CUT = DMAX1(MAX_CUT,AREA_V_CUT(IJK))

 ENDIF

 END DO

 call global_min(MIN_VOL, GLOBAL_MIN_VOL, PE_IO, ierr)

 call global_max(MAX_VOL, GLOBAL_MAX_VOL, PE_IO, ierr)

 call global_min(MIN_AYZ, GLOBAL_MIN_AYZ, PE_IO, ierr)

 call global_max(MAX_AYZ, GLOBAL_MAX_AYZ, PE_IO, ierr)

 call global_min(MIN_AXZ, GLOBAL_MIN_AXZ, PE_IO, ierr)

 call global_max(MAX_AXZ, GLOBAL_MAX_AXZ, PE_IO, ierr)

 call global_min(MIN_AXY, GLOBAL_MIN_AXY, PE_IO, ierr)

 call global_max(MAX_AXY, GLOBAL_MAX_AXY, PE_IO, ierr)

 call global_min(MIN_CUT, GLOBAL_MIN_CUT, PE_IO, ierr)

 call global_max(MAX_CUT, GLOBAL_MAX_CUT, PE_IO, ierr)

 IF (myPE == PE_IO) THEN

 WRITE(UNIT_CUT_CELL_LOG,1000) 'V-MOMENTUM CUT CELLS:'

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXY

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXZ

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AYZ

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF CUT AREA

= ', GLOBAL_MIN_CUT,GLOBAL_MAX_CUT

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF VOLUME

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL

245

 WRITE(UNIT_CUT_CELL_LOG,1010) 'NUMBER OF V WALL CELLS

= ', NUMBER_OF_V_WALL_CELLS

 WRITE(UNIT_CUT_CELL_LOG,1000)

'###

#'

 ENDIF

!===

=======

! W-Momentum Cell volumes and areas

!===

=======

 IF(DO_K) THEN

 MIN_VOL = LARGE_NUMBER

 MAX_VOL = - LARGE_NUMBER

 MIN_AYZ = LARGE_NUMBER

 MAX_AYZ = - LARGE_NUMBER

 MIN_AXZ = LARGE_NUMBER

 MAX_AXZ = - LARGE_NUMBER

 MIN_AXY = LARGE_NUMBER

 MAX_AXY = - LARGE_NUMBER

 DO IJK = IJKSTART3, IJKEND3

 IF(STANDARD_W_CELL_AT(IJK)) THEN !

STANDARD CELLS

 MIN_VOL = DMIN1(MIN_VOL,VOL_W(IJK))

 MAX_VOL = DMAX1(MAX_VOL,VOL_W(IJK))

 MIN_AYZ = DMIN1(MIN_AYZ,AYZ_W(IJK))

 MAX_AYZ = DMAX1(MAX_AYZ,AYZ_W(IJK))

 MIN_AXZ = DMIN1(MIN_AXZ,AXZ_W(IJK))

 MAX_AXZ = DMAX1(MAX_AXZ,AXZ_W(IJK))

 MIN_AXY = DMIN1(MIN_AXY,AXY_W(IJK))

 MAX_AXY = DMAX1(MAX_AXY,AXY_W(IJK))

 ENDIF

 END DO

 call global_min(MIN_VOL, GLOBAL_MIN_VOL, PE_IO, ierr)

 call global_max(MAX_VOL, GLOBAL_MAX_VOL, PE_IO, ierr)

 call global_min(MIN_AYZ, GLOBAL_MIN_AYZ, PE_IO, ierr)

 call global_max(MAX_AYZ, GLOBAL_MAX_AYZ, PE_IO, ierr)

 call global_min(MIN_AXZ, GLOBAL_MIN_AXZ, PE_IO, ierr)

 call global_max(MAX_AXZ, GLOBAL_MAX_AXZ, PE_IO, ierr)

 call global_min(MIN_AXY, GLOBAL_MIN_AXY, PE_IO, ierr)

 call global_max(MAX_AXY, GLOBAL_MAX_AXY, PE_IO, ierr)

246

 IF (myPE == PE_IO) THEN

 WRITE(UNIT_CUT_CELL_LOG,1000) 'W-MOMENTUM STANDARD

CELLS:'

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXY

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXZ

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AYZ

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF VOLUME

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL

 ENDIF

 MIN_VOL = LARGE_NUMBER

 MAX_VOL = - LARGE_NUMBER

 MIN_AYZ = LARGE_NUMBER

 MAX_AYZ = - LARGE_NUMBER

 MIN_AXZ = LARGE_NUMBER

 MAX_AXZ = - LARGE_NUMBER

 MIN_AXY = LARGE_NUMBER

 MAX_AXY = - LARGE_NUMBER

 MIN_CUT = LARGE_NUMBER

 MAX_CUT = - LARGE_NUMBER

 DO IJK = IJKSTART3, IJKEND3

 IF(CUT_W_CELL_AT(IJK).AND.(.NOT.WALL_W_AT(IJK)))

THEN ! CUT CELLS

 MIN_VOL = DMIN1(MIN_VOL,VOL_W(IJK))

 MAX_VOL = DMAX1(MAX_VOL,VOL_W(IJK))

 MIN_AYZ = DMIN1(MIN_AYZ,AYZ_W(IJK))

 MAX_AYZ = DMAX1(MAX_AYZ,AYZ_W(IJK))

 MIN_AXZ = DMIN1(MIN_AXZ,AXZ_W(IJK))

 MAX_AXZ = DMAX1(MAX_AXZ,AXZ_W(IJK))

 MIN_AXY = DMIN1(MIN_AXY,AXY_W(IJK))

 MAX_AXY = DMAX1(MAX_AXY,AXY_W(IJK))

 MIN_CUT = DMIN1(MIN_CUT,AREA_W_CUT(IJK))

 MAX_CUT = DMAX1(MAX_CUT,AREA_W_CUT(IJK))

 ENDIF

 END DO

 call global_min(MIN_VOL, GLOBAL_MIN_VOL, PE_IO, ierr)

 call global_max(MAX_VOL, GLOBAL_MAX_VOL, PE_IO, ierr)

 call global_min(MIN_AYZ, GLOBAL_MIN_AYZ, PE_IO, ierr)

 call global_max(MAX_AYZ, GLOBAL_MAX_AYZ, PE_IO, ierr)

 call global_min(MIN_AXZ, GLOBAL_MIN_AXZ, PE_IO, ierr)

 call global_max(MAX_AXZ, GLOBAL_MAX_AXZ, PE_IO, ierr)

247

 call global_min(MIN_AXY, GLOBAL_MIN_AXY, PE_IO, ierr)

 call global_max(MAX_AXY, GLOBAL_MAX_AXY, PE_IO, ierr)

 call global_min(MIN_CUT, GLOBAL_MIN_CUT, PE_IO, ierr)

 call global_max(MAX_CUT, GLOBAL_MAX_CUT, PE_IO, ierr)

 IF (myPE == PE_IO) THEN

 WRITE(UNIT_CUT_CELL_LOG,1000) 'W-MOMENTUM CUT

CELLS:'

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXY

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AXZ

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF AYZ

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF CUT AREA

= ', GLOBAL_MIN_CUT,GLOBAL_MAX_CUT

 WRITE(UNIT_CUT_CELL_LOG,1000) 'RANGE OF VOLUME

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL

 WRITE(UNIT_CUT_CELL_LOG,1010) 'NUMBER OF W WALL

CELLS = ', NUMBER_OF_W_WALL_CELLS

 WRITE(UNIT_CUT_CELL_LOG,1000)

'###

#'

 ENDIF

 ENDIF

 LOCAL_MIN_Q = MINVAL(Alpha_Ue_c)

 LOCAL_MAX_Q = MAXVAL(Alpha_Ue_c)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF U-MOMENTUM Alpha_Ue_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Alpha_Un_c)

 LOCAL_MAX_Q = MAXVAL(Alpha_Un_c)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF U-MOMENTUM Alpha_Un_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Alpha_Ut_c)

 LOCAL_MAX_Q = MAXVAL(Alpha_Ut_c)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF U-MOMENTUM Alpha_Ut_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

248

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

 LOCAL_MIN_Q = MINVAL(Theta_Ue)

 LOCAL_MAX_Q = MAXVAL(Theta_Ue)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF U-MOMENTUM Theta_Ue = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Theta_Un)

 LOCAL_MAX_Q = MAXVAL(Theta_Un)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF U-MOMENTUM Theta_Un = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Theta_Ut)

 LOCAL_MAX_Q = MAXVAL(Theta_Ut)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF U-MOMENTUM Theta_Ut = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

 LOCAL_MIN_Q = MINVAL(Theta_U_ne)

 LOCAL_MAX_Q = MAXVAL(Theta_U_ne)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF U-MOMENTUM Theta_U_ne = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Theta_U_te)

 LOCAL_MAX_Q = MAXVAL(Theta_U_te)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF U-MOMENTUM Theta_U_te = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

 LOCAL_MIN_Q = MINVAL(NOC_U_E)

 LOCAL_MAX_Q = MAXVAL(NOC_U_E)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF U-MOMENTUM NOC_U_E = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(NOC_U_N)

 LOCAL_MAX_Q = MAXVAL(NOC_U_N)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

249

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF U-MOMENTUM NOC_U_N = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(NOC_U_T)

 LOCAL_MAX_Q = MAXVAL(NOC_U_T)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF U-MOMENTUM NOC_U_T = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

 LOCAL_MIN_Q = MINVAL(DELH_U)

 LOCAL_MAX_Q = MAXVAL(DELH_U)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF U-MOMENTUM DELH_U = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

'###

#'

 LOCAL_MIN_Q = MINVAL(Alpha_Ve_c)

 LOCAL_MAX_Q = MAXVAL(Alpha_Ve_c)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF V-MOMENTUM Alpha_Ve_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Alpha_Vn_c)

 LOCAL_MAX_Q = MAXVAL(Alpha_Vn_c)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF V-MOMENTUM Alpha_Vn_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Alpha_Vt_c)

 LOCAL_MAX_Q = MAXVAL(Alpha_Vt_c)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF V-MOMENTUM Alpha_Vt_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

 LOCAL_MIN_Q = MINVAL(Theta_Ve)

 LOCAL_MAX_Q = MAXVAL(Theta_Ve)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF V-MOMENTUM Theta_Ve = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

250

 LOCAL_MIN_Q = MINVAL(Theta_Vn)

 LOCAL_MAX_Q = MAXVAL(Theta_Vn)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF V-MOMENTUM Theta_Vn = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Theta_Vt)

 LOCAL_MAX_Q = MAXVAL(Theta_Vt)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF V-MOMENTUM Theta_Vt = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

 LOCAL_MIN_Q = MINVAL(Theta_V_ne)

 LOCAL_MAX_Q = MAXVAL(Theta_V_ne)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF V-MOMENTUM Theta_V_ne = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Theta_V_nt)

 LOCAL_MAX_Q = MAXVAL(Theta_V_nt)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF V-MOMENTUM Theta_V_nt = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

 LOCAL_MIN_Q = MINVAL(NOC_V_E)

 LOCAL_MAX_Q = MAXVAL(NOC_V_E)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF V-MOMENTUM NOC_V_E = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(NOC_V_N)

 LOCAL_MAX_Q = MAXVAL(NOC_V_N)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF V-MOMENTUM NOC_V_N = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(NOC_V_T)

 LOCAL_MAX_Q = MAXVAL(NOC_V_T)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF V-MOMENTUM NOC_V_T = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

 LOCAL_MIN_Q = MINVAL(DELH_V)

 LOCAL_MAX_Q = MAXVAL(DELH_V)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr)

251

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) ' RANGE

OF V-MOMENTUM DELH_V = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

'###

#'

 IF(DO_K) THEN

 LOCAL_MIN_Q = MINVAL(Alpha_We_c)

 LOCAL_MAX_Q = MAXVAL(Alpha_We_c)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr

)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr

)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) '

RANGE OF W-MOMENTUM Alpha_We_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Alpha_Wn_c)

 LOCAL_MAX_Q = MAXVAL(Alpha_Wn_c)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr

)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr

)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) '

RANGE OF W-MOMENTUM Alpha_Wn_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Alpha_Wt_c)

 LOCAL_MAX_Q = MAXVAL(Alpha_Wt_c)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr

)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr

)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) '

RANGE OF W-MOMENTUM Alpha_Wt_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

 LOCAL_MIN_Q = MINVAL(Theta_We)

 LOCAL_MAX_Q = MAXVAL(Theta_We)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr

)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr

)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) '

RANGE OF W-MOMENTUM Theta_We = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Theta_Wn)

 LOCAL_MAX_Q = MAXVAL(Theta_Wn)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr

)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr

)

252

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) '

RANGE OF W-MOMENTUM Theta_Wn = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Theta_Wt)

 LOCAL_MAX_Q = MAXVAL(Theta_Wt)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr

)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr

)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) '

RANGE OF W-MOMENTUM Theta_Wt = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

 LOCAL_MIN_Q = MINVAL(Theta_W_te)

 LOCAL_MAX_Q = MAXVAL(Theta_W_te)

 call global_min(LOCAL_MAX_Q, GLOBAL_MIN_Q, PE_IO, ierr

)

 call global_max(LOCAL_MIN_Q, GLOBAL_MAX_Q, PE_IO, ierr

)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) '

RANGE OF W-MOMENTUM Theta_W_te = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(Theta_W_tn)

 LOCAL_MAX_Q = MAXVAL(Theta_W_tn)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr

)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr

)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) '

RANGE OF W-MOMENTUM Theta_W_tn = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

 LOCAL_MIN_Q = MINVAL(NOC_W_E)

 LOCAL_MAX_Q = MAXVAL(NOC_W_E)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr

)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr

)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) '

RANGE OF W-MOMENTUM NOC_W_E = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(NOC_W_N)

 LOCAL_MAX_Q = MAXVAL(NOC_W_N)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr

)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr

)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) '

RANGE OF W-MOMENTUM NOC_W_N = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 LOCAL_MIN_Q = MINVAL(NOC_W_T)

 LOCAL_MAX_Q = MAXVAL(NOC_W_T)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr

)

253

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr

)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) '

RANGE OF W-MOMENTUM NOC_W_T = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

 LOCAL_MIN_Q = MINVAL(DELH_W)

 LOCAL_MAX_Q = MAXVAL(DELH_W)

 call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q, PE_IO, ierr

)

 call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q, PE_IO, ierr

)

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000) '

RANGE OF W-MOMENTUM DELH_W = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q

 IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)

'###

#'

 ENDIF

 RETURN

 END SUBROUTINE PRINT_GRID_STATISTICS

254

post_cbar_time

PBED

1

T

10

10

0.0, 7200.0 !Start, Stop Time

N

Scalar

1

10

2,101 !xmax+1

Y

2,101 !ymax+1

Y

1,1

cbar_c.dat

-1

0

255

post_epg

PBED

1

T

10

10

0.0, 7200.0 !Start, Stop Time

N

EP_g

10

2,101 !xmax+1

Y

2,101 !ymax+1

Y

1,1

void.dat

-1

0

256

VITA

Name: Michael Adam Martin

Address: Texas A&M University

Department of Mechanical Engineering
3123 TAMU
College Station TX 77843-3123
Phone: (979) 845-1251
Fax: (979) 845-3081

Education: B.S., Mechanical Engineering, Texas A&M University 2010
 M.S., Mechanical Engineering, Texas A&M University 2012

