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ABSTRACT 

 

Modeling of Transport in Lithium Ion Battery Electrodes. (May 2012) 

Michael Adam Martin, B.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Devesh Ranjan 
                                                                 Dr. Partha P. Mukherjee 

 

Lithium ion battery systems are promising solutions to current energy storage 

needs due to their high operating voltage and capacity. Numerous efforts have been 

conducted to model these systems in order to aid the design process and avoid expensive 

and time consuming prototypical experiments. Of the numerous processes occurring in 

these systems, solid state transport in particular has drawn a large amount of attention 

from the research community, as it tends to be one of the rate limiting steps in lithium 

ion battery performance. Recent studies have additionally indicated that purposeful 

design of battery electrodes using 3D microstructures offers new freedoms in design, 

better use of available cell area, and increased battery performance. 

The following study is meant to serve as a first principles investigation into the 

behaviors of 3D electrode architectures by monitoring concentration and cycle behaviors 

under realistic operating conditions. This was accomplished using computational tools to 

model the solid state diffusion behavior in several generated electrode morphologies. 

Developed computational codes were used to generate targeted structures under 

prescribed conditions of particle shape, size, and overall morphology. The diffusion 
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processes in these morphologies were simulated under conditions prescribed from 

literature. 

Primary results indicate that parameters usually employed to describe electrode 

geometry, such as volume to surface area ratio, cannot be solely relied upon to predict or 

characterize performance. Additionally, the interaction between particle shapes implies 

some design aspects that may be exploited to improve morphology behavior. Of major 

importance is the degree of particle isolation and overlap in 3D architectures, as these 

govern gradient development and lithium depletion within the electrode structures. The 

results of this study indicate that there are optimum levels of these parameters, and so 

purposeful design must make use of these behaviors. 
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NOMENCLATURE 

 

a  Activity Coefficient 

Ĉ   Specific Capacity 

cp  Specific Heat 

D  Diffusion Coefficient 

E  Equilibrium Potential 

Ê   Specific Energy 

E  Elementary Charge 

F  Faraday’s Constant 

ΔG  Free Energy of Reaction 

ΔH  Enthalpy of Reaction 

H  Heat Transfer Coefficient 

Iapp  Applied Cell Current 

i  Current Density 

j  Reaction Current, Species Flux 

k  Reaction Constant 

N  Species Flux 

Na  Avogadro’s Number 

n  Number of Electrons 

q  Heat Generation, Heat Loss 

R  Particle Radius, Universal Gas Constant 
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R  Radial Coordinate 

S  Electroactive Surface Area 

SOC  State of Charge 

ΔS  Entropy of Reaction 

T  Temperature 

t  Transference Number, Time 

U  Equilibrium Potential 

V  Operating Cell Voltage 

v  Velocity 

 

Greek 

   Transfer Coefficient 

   Activity Coefficient 

   Porosity, Strain 

Η  Overpotential 

   Fractional Occupancy 

   Conductivity of Electrolyte 

   Thermal Conductivity 

   Electrochemical Potential 

   Stoichiometric Coefficient 

   Conductivity 

   Tortuosity 
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   Potential 

 

Superscripts 

a  Anode Property 

c  Cathode Property 

eff  Effective Property 

e  Electrolyte Phase Property 

p  Positive Electrode 

n  Negative Electrode 

 

Subscripts 

r  Radial Direction 

ref  Value at Reference State 

s  Solid Phase Property 

surf  Surface Value 

max  Maximum Value 

   Tangential Direction 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

 The growing need for alternative energy resources has been fueled over the past 

few decades by a growing concern over the environment and rising fuel costs. Both 

alternative energy storage and production are becoming the center of research for much 

of the scientific community as the demands of society continue to increase. For these 

reasons, mathematical and computational modeling of these complex systems is an 

absolute necessity for advancement, as governing parameters can be easily modified and 

their resulting effects determined to aid in the design process. Costly and time 

consuming prototypical experiments cannot be the sole source for the realization of new 

and important design issues, and so the construction of new, advanced models that can 

capture true physical effects are paramount to progress in this area. 

The following discussion is an overview of some of the experimental and 

theoretical approaches to modeling the solid state diffusive processes in lithium ion 

batteries, which are currently promising solutions to current energy storage needs. The 

first section will introduce the complex nature of the battery, and some issues regarding 

the mathematical modeling of such an environment. The next section will introduce 

previous modeling work that has been completed, primarily focusing around that by 

Doyle and Newman(1), and later adaptations of their work, particularly concerning solid 

state diffusion. Finally, the advent of 3D microstructures for electrode design will also  

____________ 
This thesis follows the style of The Journal of the Electrochemical Society. 
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be introduced, along with previous works completed and design considerations for their 

implementation. 

The Lithium Ion Battery 

 In general, a battery is composed of two electrodes, an anode and cathode, 

separated by a porous, electronically insulating layer called the separator, which, 

however, is conductive to ions. Additionally, these three components are pinned between 

two current collectors. These aspects are illustrated in Figure 1. 

 
Figure 1. A simple schematic of a typical battery. During discharge, electrons are 

released from the anode to produce work through the applied load.  
 

Additionally, an electrolyte fills the porous separator to serve as the medium for ion 

transport. The usefulness of a battery comes from the electrical work it can produce, 

achieved by movement of electrons through some load as depicted. In particular, the 

lithium ion battery functions in this way, where, upon discharge, electrons are stripped 

from lithium atoms in the anode, move through the applied load, and finally end in the 
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cathode. Simultaneously, the resulting lithium ions leave the anode, or deintercalate, and 

move into the electrolyte where they travel through the porous separator, and finally 

recombine with electrons in the cathode. The structure of the three mentioned regions 

can be varied based upon material and physical construction. Two prominent designs are 

shown in Figure 2. 

 
Figure 2. Two prominent designs for lithium ion batteries involve either a metal anode 

and insertion type cathode (A), or an insertion type electrode for both electrodes. 
 

As can be seen from the above, the two designs employ either a lithium metal anode and 

what is known as an insertion cathode, as in Figure 2(A), or an insertion type for both 

electrodes as in Figure 2(B). Insertion type electrodes have drawn a large amount of 

attention because of their porous nature, which increases the surface area with which 

lithium ions can react, or intercalate, thereby improving performance. Furthermore, they 

have proven to be more reversible, or capable of being recharged. These electrodes, as 

depicted, are a compilation of several different materials, including active material, 

which provides intercalation sites for lithium ions, conductive filler, which is 



 4 

electronically conductive, a binder that provides mechanical stability to the electrode, 

and pores that are filled with the acting electrolyte. 

 In the case where both electrodes are of the insertion type, which is currently the 

predominant design of choice, typical materials used are a metal oxide for the cathode, 

such as LiyCoO2, and carbon, LixC6, for the anode. Here the subscripts x and y are the 

appropriate stoichiometric values. The reactions occurring at the cathode and anode for 

this example are represented by Equations (0.1) and (0.2), respectively(2). 

 + -

2 2Li +e +CoO LiCoO  (0.1) 

 + -

6 6Li +e +C LiC  (0.2) 

Thermodynamically, the available work of a battery is determined by the Gibbs free 

energy, which is related to the enthalpy H  and entropy S  of reaction, as well as the 

temperature T(3). 

 G H T S      (0.3) 

In the above, T S  is the term associated with heat generated during reaction, and the 

enthalpy and entropy are state values, meaning they are dependent only upon the initial 

and final states of reaction. However, electronically speaking, the work in a battery is 

accomplished by electrons moving through a potential, and therefore can be related to 

the Gibbs free energy through the following relation, where n is the number of electrons 

associated with the reaction, F is Faraday’s Constant, and E is the potential. 

 G nFE    (0.4) 
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The relation between the Gibbs free energy and a reaction can additionally be expressed 

using the van’t Hoff isotherm(4), where 0G  is the free energy at the standard state with 

unit activities, a is the activity of either the products or reactants, R is the universal gas 

constant, and vi is the stoichiometric coefficient in the reaction. 

 products0

reactants

ln
i

i

v

v

a
G G RT

a
   




 (0.5) 

Using Equation (0.4), the above can be written into the following, which is the Nernst 

Equation. 

 products0

reactants

ln
i

i

v

v

aRT
E E

nF a
 




 (0.6) 

This is the fundamental relationship that dictates the maximum potential that can be 

produced by a particular reaction under equilibrium, also known as the open circuit 

potential. 

 However, in order to extract useful work from a battery system current must be 

produced, and so equilibrium is disturbed by biasing the direction of reaction. This 

departure from equilibrium results in potential loss at the anode and cathode. This is 

known as the activation overvoltage, or overpotential, and is given the symbol η. The 

relation between the overpotential, the equilibrium potential, and the potential while 

drawing current, V, is given below. 

 E V    (0.7) 

The overpotential is related to the current density, i, associated with a reaction at an 

electrode surface by the Butler-Volmer equation, as shown below. 
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  1

0

FF

RT RT
i i

e e

    
 

 (0.8) 

In the above i0 is the exchange current density, which is a function of the activity, a, and 

the reaction rate constant k0 as shown below. 

 0 0i k Fa  (0.9) 

The transfer coefficient, α, when multiplied by the overpotential, governs how a change 

in overpotential will change the reaction. The above relations are the fundamental 

equations used in electrochemical processes. However, there are several other 

phenomena that occur in a battery, especially charge and species transport, as will be 

discussed later. 

 To judge battery performance, key parameters are voltage, capacity, power, and 

energy. Voltage is calculated by subtracting the anode potential from the cathode 

potential during battery operation. Further, capacity is the amount of charge that can be 

passed during discharge, and is usually a material property, as certain materials can only 

host so much lithium. Capacity is of significant importance as it determines the useful 

range for battery operation. Additionally, plotting the voltage of the cell versus capacity 

yields what is known as a discharge curve. An example of which is given below. 
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Figure 3. Discharge curve showing discharge to a cutoff potential of 3V, relaxation, and 

recharge to a cutoff potential of 4.1V. 
 

The above figure illustrates a cycle in which the cell is first discharged at constant 

current, or under galvanostatic conditions, to a cutoff potential of 3V, where the battery 

is considered fully spent. It is to be noted here that this can sometimes be a source of 

confusion, as capacity is technically increasing as the cell is discharged. Instead, one 

might think of the capacity values along the discharge curve to be that which is spent or 

consumed. At the cutoff point, the cell is opened and no current flows. Thus the cell is 

allowed to ‘relax’, and this is typically associated with a rise in voltage. This occurs 

because concentration gradients within the electrodes, as well as in the electrolyte, are 

allowed to become uniform. When this happens, the anode surface concentration grows 

as lithium is brought to the surface from the core by diffusive processes, as the surface 

was previously more deprived of lithium due to the discharge process. Simultaneously, 
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the surface concentration of the cathode drops, as the deposited lithium from the 

previous discharge process diffuses further into the electrode, lowering the surface 

concentration. As will be explained later, the open circuit potential functions are usually 

a function of the surface concentration, and as the above processes occur, the battery 

approaches the open circuit potential for the resulting surface concentrations. Finally, the 

battery is recharged to a cutoff potential of 4.1V at constant current. Typically, this can 

be followed by a voltage hold across the cell, or potentiostatic operation, so that 

additional current can flow and the cells may be returned to their original state of charge. 

This is usually stopped after the current drops to some small value. Discharge curves are 

extremely valuable, as they not only highlight the voltage and capacity response, but also 

indicate how reversible the processes occurring in the cell are. One can consider the 

hysteresis in the recharge curve, as well as the capacity regained from the galvanostatic 

recharge, which would ideally be all of the capacity lost in the discharge process. To 

compare energy and power, a Ragone plot is usually employed, and an example of such 

is shown below. 
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Figure 4. A Ragone plot comparing the specific power and energy of different 

electrochemical systems, such as batteries and fuel cells, versus other devices like 
capacitors and internal combustion (IC) engines. The goals for current hybrid and all 

electric vehicles are also illustrated. Adapted from (2). 
 

The dashed lines in the above plot indicate discharge rates, where very short discharge 

times are to the lower right. These types of plots are very useful for illustrating the 

different realms of applicability for many devices. Note the units on the axes of the 

above plots, as both energy and power have been normalized by the weight of the 

device. The specific energy of an electrochemical device is calculated from the 

following equation(2). 

 ˆ
1 1

ˆ ˆ

pos neg

pos neg

U U
E

C C






 (0.10) 

In the above equation Upos, Uneg, ˆ
posC , and ˆ

negC  are the equilibrium potentials and 

specific capacities of the positive and negative electrodes, respectively. Specific power is 



 10 

determined using the instantaneous voltage, which is again not equivalent to the open 

circuit potentials, due to the losses incurred in the cell during operation, such as the 

overpotential described earlier. 

Battery Modeling 

Equations that govern the interplay between the solid state regions in the 

electrodes, the liquid electrolyte, and the voltage across the cell are crucial to developing 

an accurate, physically representative model of the battery. In general, all governing 

equations are concerned with the conservation of charge and species, and their relation 

to the potential throughout the cell at each phase, and at the interfaces between each 

phase(5). 

To begin, charge must be conserved in both phases, namely the electrolyte phase, 

and the solid phase. Because no charge is generated or consumed, the following must 

hold in the kth phase, where ki  is the current density in that phase. 

 0ki   (0.11) 

In particular, for the solid phase, the current is carried via electrons, and therefore is 

related to the conductivity σ and the potential in the solid phase, s , by Ohm’s Law. 

 s si      (0.12) 

Furthermore, in the electrolyte, the current is carried by the lithium ions as they move 

from one electrode to the other. This is influenced by the potential across the electrolyte, 

as well as by the concentration of lithium in the electrolyte, ec . 
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  lne e D ei c        (0.13) 

Here, e is the potential in the electrolyte,  is the conductivity of the electrolyte, and D  

is the proportionality constant that relates the movement of the charged species to 

diffusive processes. Substituting Equations (0.12) and (0.13) into (0.11), the following 

are obtained, respectively. 

   0s     (0.14) 

    ln 0e D ec          (0.15) 

Concerning species conservation, the following equation governs the rate of change of 

concentration to the flux of species at some point, assuming no generation or 

consumption of chemical species. 

 k
k

c
N

t


 


 (0.16) 

In general, the flux of a species has three components, as shown below. 

 k
k k k k k k

t
N D c i c v

zF
      (0.17) 

The first component on the right hand side of the above equation represents diffusion, 

with a diffusion coefficient of kD . The second term dictates how the electric field drives 

motion, otherwise known as migration, and is related to the charge on the species z, 

Faraday’s Constant F, and the transference number tk. The final component is the 

convective term, with velocity vector kv . In the electrolyte and solid phases, convection 

is usually ignored. Additionally, in the solid phase, migration is additionally ignored, 
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yielding the characteristic Fick’s Second Law, as shown below, when equation (0.17) is 

inserted into (0.16) under these assumptions. 

  s
s s

c
D c

t


  


 (0.18) 

As will be shown later, thermal models for batteries are a very important consideration, 

especially with regards to performance and safety in operation. The governing equation 

for this additional phenomenon is an energy balance, as shown below. 

 
 

 
,k p k k

k k k k

c T
v T T q

t





    


 (0.19) 

Here, k , ,p kc , q , and k  are the density, specific heat, heat generation term, and 

thermal conductivity, respectively. The heat generation term, q, is given by the following 

relation(6). 

 n
n n

n

U
q I U T IV enthalpy of mixing phase change

T

 
     

 
  (0.20) 

In the above, nI  is the reaction current at the nth electrode, and I is the applied current 

density, based on boundary conditions discussed below. The first term on the right hand 

side is associated with the enthalpy of charge transfer reactions, and the second is the 

electrical work produced by the battery, as V is the voltage across the cell. The last two 

terms represent those contributions from gradient development in the electrode, as well 

as those from phase transformations in the active material. Finally, now that governing 

equations for charge, species, and potential have been derived for each individual phase, 



 13 

interface relations must now be considered. This is governed by the Butler-Volmer 

equation, as reproduced below. 

 , ,

0,

a n c n
n n

F F

n n RT RTi i
e e

 
  
 

 (0.21) 

In the above, in, is the current density, and 0,ni  is the exchange current density for the 

reaction at electrode n. Further, αa,n and αc,n are the anodic and cathodic transfer 

coefficients, and R is the universal gas constant. The overpotential for the reaction at the 

electrode, ηn, and again represents the amount of potential lost to bias the reaction 

direction, and is defined by the following equation. 

 n s e nU      (0.22) 

Notice that this equation is slightly different than that shown in Equation (0.7), as this is 

the overpotential associated with the specific electrode n. In the above equation, Un is 

the open circuit potential of the electrode, which can vary as a function of temperature, 

and is usually empirically fit to data as a function of the surface state of charge, as 

discussed later. Any temperature dependence can be modeled as a linear relation with 

the following equation, where ,n refU is the open circuit potential at some reference 

temperature. 

  ,
n

n n ref ref

U
U U T T

T


  


 (0.23) 

With these equations, all of the above relationships are now coupled together to form the 

basic framework for a battery model. 
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In the literature(5) several methods have been introduced to solve the above 

system, including Direct Numerical Simulation (DNS), and other volume averaged 

methods. In the DNS model, a discretization scheme is employed so that every 

computational cell in the domain represents a single phase, whether electrolyte or solid. 

Concerning a porous electrode, two discretiztions of this region are shown below, with 

different mesh sizes. 

 
Figure 5. Different discretizations of insertion electrodes provide a particular level of 
resolution of the region. As discretization is coarsened, microstructure details are lost, 

and so volume averaged methods must be employed. 
 

An obvious issue arises when using this particular method, as increasing the number of 

elements in the domain increases computational demand, but may offer increased 

accuracy. One of the primary advantages of this method, however, is that the governing 

equations discussed above can be directly applied to each appropriate cell as well as the 

appropriate coupling between computational cells.  

As one coarsens the discretization, a volume averaged approach to the above 

equations must be taken as microstructure details are lost and governing equations can 
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no longer be directly applied(7-10). Because of this, effective properties must be 

determined, and are usually empirical in nature, such as by a Bruggeman relation. These 

are shown below, for some general transport property P. 

 effP P   (0.24) 

 effP P



  (0.25) 

Here,   and   are the porosity and tortuosity, respectively, and γ is some empirical 

value. Using these volume averaged approach to modeling(11, 12), the above equations 

can now be rewritten in an appropriate form. Considering charge conservation in the 

solid phase, the following relation is used, where eff  can be determined from Equation 

(0.24) with γ=1(13-15). 

   0eff Li

s j      (0.26) 

For the charged species in the electrolyte phase, the following equations are used. 

    ln 0eff eff Li

e D ec j           (0.27) 

Here, eff

D  is expressed as a function of the transference number 0t , and mean molar 

activity coefficient f (16, 17). 

  0 ln2
1 1

ln

eff
eff

D

e

d fRT
t

F d c


 



 
   

 
 (0.28) 

Additionally, eff has been calculated using Equation (0.24) with γ=1.5. Analogously to 

the above, species are conserved in the electrolyte via the following relation. 

  
 

001e e eff Li e
e e

c i tt
D c j

t F F




 
   


 (0.29) 
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In the above equation, the transference number is usually assumed constant(18), setting 

the last term on the right hand side of the above equation equal to zero. Within the solid 

phase, the species conservation equation is governed by the following equation. 

  
 

Li
s s eff

s s

c j
D c

t F


   


 (0.30) 

In both of the above equations, the effective diffusion coefficients have been determined 

using Equation (0.24) with γ=1.5. It is to be noted that, in all of the above volume 

averaged formulations, Lij  is the reaction current at the surface of the electrode n, 

multiplied by the specific interfacial specific area asn, or the reactive area per volume, of 

that electrode as shown below. Also note, that Lij is zero in the separator. 

 , , ,

0,

n s nLi
j a n a c

j
separator


 


 (0.31) 

Considering the energy balance in Equation (0.19), the thermophysical properties must 

now be altered to reflect the weight of the respective constituents. These are represented 

by the following equations. 

 
,p k k p k

k

k k

k

c c  

  








 (0.32) 

Further, the heat generation term, q, is also altered, and is now represented by the 

following. 

  lneff eff effn
sn n s e n s s e e D e e

U
q a j U T c

T
         

 
             

 
(0.33) 
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The electrode kinetics as governed by the Butler-Volmer Equation must also be changed, 

via the exchange current density, as shown below. 

   ,
, ,

0, ,max , ,

a n
a n c n

n e s s surf s surfi kc c c c
 

   (0.34) 

In the above, ,s surfc  is the area averaged concentration of lithium at the interface between 

the solid and the electrolyte, and ,maxsc  is the maximum allowable concentration in the 

specific material for that electrode. The constant k is determined by concentrations and 

initial exchange current density. 

 During simulation of the cell, initial concentrations and temperatures in the solid 

and electrolyte phases are set to be uniform everywhere. 

 

0

0

0

0 , , 0

e e

s s

c c

c c at t and x y z

T T




  
 

 (0.35) 

Further, the following conditions are enforced on all boundaries, where n is the outward 

normal of the interface. 

 0 0ec
and at all boundaries

n n


 

 
 (0.36) 

The conditions for the potential in the solid phase are dependent upon which tab the 

applied current density, I, is applied, but in general can be expressed as the following 

two equations. 

 
0

eff s

s

I at chosen tab
n

at all other boundaries
n







 








 (0.37) 
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If the model does include thermal effects, Newton’s Law of Cooling, reproduced below 

with a heat transfer coefficient h and ambient temperature Tamb, serves as the boundary 

condition. 

  amb

T
h T T

n



  


 (0.38) 

If thermal effects are considered, the temperature dependence of particular parameters 

may be modeled using the Arrhenius Equation, shown below, for some parameter P, 

activation energy Eact, and the reference value at some temperature, Pref.  

 
1 1act

ref

E

R T T

refP P e

  
   

      (0.39) 

To couple the solid state diffusion behavior to the rest of the cell, the structure of the 

electrode can be approximated using a pseudo-2D approach, like that shown in Figure 6. 

 

 
Figure 6. The insertion electrodes are approximated as being composed of small spheres 

of radius Rs. 
 

This model was developed by Newman and coworkers in the early 1990s(1). In this 

model, the insertion electrodes are comprised of small spheres of radius Rs where, 

throughout the volume of each sphere, there is a superposition of electrolyte and solid 

phases. The figure below demonstrates these aspects of the model effort for an insertion 

electrode. 
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Figure 7. Doyle and Newman employ a pseudo-2D in the one-dimensional x direction 

and the pseudo-two-dimensional r direction. 
 

In this figure it can be seen that there are the active particles as previously discussed, 

with two coordinate systems. This particular model employed only one dimension in the 

electrolyte, labeled x, and the coordinate r within the sphere. Thus the previously 

mentioned volume average equations are solved in the single x dimension, and the solid 

state diffusion problem is solved in spherical coordinates, as shown below. 

 
2

2

2s s s
s

c c c
D

t r r r

   
  

   
 (0.40) 

Assuming symmetry at the core of the spherical particles, the following boundary 

conditions apply, where the coupling to Butler-Volmer kinetics is accomplished by the 

condition at the surface of the particle. 

 
0

0

s

Li

s s
s

r r R s

c c j
and D

r r a F 

 
  

 
 (0.41) 

 One last simplification to the above model is to assume that the entirety of each 

electrode can be represented as a single particle with equivalent surface area(19-21). 
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This model assumes that transport within the electrolyte can be neglected, and solid state 

diffusion is the dominant process. 

 As is clear from the above discussion, a decrease in computational cost is 

accompanied by an increase in difficulty with respect to governing equations and 

parameters. This is best represented by the following figure. 

 
Figure 8. Inverted pyramid scheme illustrates decreasing computational difficulty but 
increasing model complexity due to volume averaged quantities. (Adapted from (5)) 

 

As one moves down the pyramid, there is a decrease of computational difficulty as the 

discretization process is coarsened, which, however, results in larger model complexity 

due to volume averaged quantities. 
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Solid State Diffusion Related Model Simplifications and Expansions 

 In solving the model previously discussed, Doyle and Newman employ the use of 

a Duhamel superposition integral to solve the solid state diffusion equation for the 

spheres. It has been found that in carrying out these computations a severe time cost is 

incurred, as the solution to every time step must remain in computer memory and 

accessed during every calculation. Others have developed less demanding methods to 

approximate this equation and thus reduce the time taken for computation. In general, 

the equation to be solved is Fick’s law of diffusion, given below, in spherical 

coordinates. 

 2

2

1s s
s

c c
r D

t r r r

   
  

   
 (0.42) 

In the above equation, the diffusion coefficient, Ds, may be a function of concentration, 

so it has been left in the differential. In some preliminary first approximations for 

batteries and fuel cells, Wang et al. implemented a diffusion length method to solve the 

above equation(22, 23), and did show accurate results when the model was compared 

against the literature. Further, Liu(24) employs a pseudo-steady-state method (PSS), and 

is able to obtain accurate results for several boundary conditions, including a sinusoidal 

flux at the surface of the particle. Another possibility for simplifying the above problem 

is to assume a particular solution for the concentration profile in the sphere. One such 

study was performed by Subramanian and coworkers(25, 26), where they employ either 

employ a two or three parameter polynomial model within the sphere as shown in 

Equations (0.43) and (0.44). 
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      
2

2
,

p

r
c r t a t b t

R

 
    

 
 (0.43) 

        
2 4

2 4
,

p p

r r
c r t a t b t d t

R R

   
        

   
 (0.44) 

The above parameters a, b, c, and d are solved for using average bulk and surface 

concentrations, as well as volume-average concentration flux. Reasonable accuracy was 

obtained using these models for long times, however it was noted that special care would 

need to be taken when short times or pulsed currents were considered. Further 

expansions on the above approximations can be made, and are discussed in the 

References(27), and the uses of this model are very widespread, as can be viewed in the 

literature(19). A comparison study between the polynomial approximation, the PSS 

method, and a corrected diffusion length method was completed by Zhang et al.(28). 

Compared against the Duhamel Superposition Integral for a porous electrode, it was 

concluded that the higher order polynomial method or the PSS method should first be 

considered in approximate methods for porous electrodes. Smith and Wang employed a 

finite element method within the sphere to approximate the solution in their investigation 

of a cell to be used in a hybrid electric vehicle (HEV)(13). As illustrated in their work, 

the equation in spherical coordinates is first transformed to planar coordinates, where the 

elements are first established. This discretized system is then transformed back into 

spherical coordinates and represented in a state space form, where it is then rewritten as 

a transfer function and discretized in time. The results found indicate good accuracy 

under certain prescribed conditions, and studies are completed against the Duhamel 
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superposition integral, as well as the approximation from Reference(22). The authors in 

Reference (29) compare and contrast the above models, and investigate two additional 

methods for solving the solid phase diffusion problem in the spherical particles. One 

employs an eigenfunction based Galerkin collocation, and the other uses a finite 

difference method with uneven node spacing. In particular, for the latter case, the 

objective was to optimize the node spacing for the solution procedure, which was 

neglected in the work by Smith and Wang. The finite difference method is also 

developed below. In the literature a second order Taylor Series expansion of the 

equations were made, with variable step size. It was found that unequal node spacing can 

increase computational efficiency as there is a great computational cost for each 

additional node. To compare the performance of the two above methods with the full 

numerical solution, simulations were carried out at rates of 5C and 10C. Excellent 

agreement between the models was shown, and a very large reduction in computational 

time was realized. Additionally, it was also mentioned that in nonlinear cases, where the 

diffusion coefficient is a function of concentration, the finite difference method can be 

optimized in terms of node spacing to accommodate the higher complexity while still 

keeping the computational cost low. Employing more advanced methods for the single 

particle model, the authors in Reference (30) investigate the finite difference in addition 

to finite element and differential quadrature methodologies, and compare their results 

against the polynomial approximations. It was determined that the best results were 

obtained with the polynomial differential quadrature discretization scheme, and that 
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polynomial approximations perform very poorly when the applied currents were 

pulsated. 

Inclusion of other Forces 

Another important expansion on solid state diffusion is the inclusion of chemical 

potential within the activity coefficient, as well as the electrostatic forces that act during 

intercalation of the lithium ions. Portnyagin studies these other, non-diffusive, driving 

forces (31). The main portion of this work focused on cylindrical particles, instead of 

spherical ones, where the lithium intercalates along the radial direction only. In this 

model, the following governing equation and non-dimensional variables are used. 

 
1y y

Rf
R R R

   
  

   
 (0.45) 

 
2

,

     s s

s s max s

tD c r
y R

R c R
     (0.46) 

Following the notation used in the literature,       ,   , and    are the maximum 

allowable lithium concentration within the active material, the current lithium 

concentration, and the radius of the particle, respectively. From Equation (0.45) can be 

derived two forms of the solid state diffusion, one where the activity coefficient,  , is 

held constant at 1, or when Equation (0.47) is used. 

  
  

7
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ln γ Ω
1 1 1 s ss
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f s s y y
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 



 
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 

  (0.47) 
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In the above, Ωs  are the parameters that described the deviation from ideal behavior due 

to ion-ion interaction. In addition to activity effects, migration due to electrostatic effects 

can be included with a different formulation of Equation (0.45), as shown below. 

 
2

,

1 1
( )s

s s max

Dy y
R div E

t R R R R Fc


   
  

   
 (0.48) 

In the above,   is defined as follows, 

 
2

,
a s

s max

N D e
yc

kT
   (0.49) 

where  ,   ,   ,  , and   are Boltzmann’s Constant, Avogadro’s Number, the 

elementary charge, and temperature, respectively. Furthermore, the divergence of the 

electric field, E , is given by Equation (0.50). 

  ,

avr

,1 0

2 s max

n

s ef

Fc
divE j y y

R


 

    (0.50) 

Here,   is the delocalization parameter, ,1ef  is the effective conductivity in the solid 

phase, and 0  is the dielectric constant. For cylindrical particles, the following equation 

is additionally used to determine the non-dimensional average concentration, avry . 

 
1

avr

0

2y yRdR   (0.51) 

Using the other equations contained in the literature, four simulations, using different 

permutations of the above two effects, were solved at galvanostatic conditions. In every 
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case it was found that those models that incorporated the electrostatic components 

reflected higher battery capacitance and function time. 

 One important factor in the operation of lithium ion batteries is the stress that is 

generated as ions move in and out of insertion type electrodes. Such stresses can cause 

fragmentation of active material which leads to losses in capacity and battery life. Many 

studies have been performed on this particular issue, such as that performed by 

Christensen and Newman(32-34). Here, pressure diffusion is included in the transport 

equation due to stress formation, so that the flux equation becomes that shown below. 

   ,
LiS LiS LiS

LiSLiS LiS LiS S LiS S LiS

x x M p
N x N N cD V

r RT r




    
      

   

 (0.52) 

In the above, Ni is the flux of either occupied sites LiS, or unoccupied sites, S, and αLiS, is 

a thermodynamic factor which influences the diffusivity of the lithium ions. Further, one 

will notice the influence of the local pressure, p, through LiSV , LiSM , and ρ, which are 

the partial molar volume and molar mass of occupied sites, and the total density, 

respectively. Important conclusions drawn indicate that stresses will increase in the 

materials at high charge rates, and are also linked to particle size where fracture can be 

reduced with reduction in particle size. Cheng and Verbrugge(35, 36) approached stress 

as analogous to that generated during thermal diffusion, where the spherical particle is 

treated as an isotropic linear-elastic solid. Using this assumption, the relations between 

stress, σ, and strain, ε, in the radial and tangential directions r and θ can be expressed 

using the following equations. 

  
1 1

2
3

r r C
E

       (0.53) 
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  
1 1

1
3

r C
E

            (0.54) 

In the above, E, C, ν, and Ω are Young’s Modulus, the local concentration, Poisson’s 

Ratio, and the partial molar volume of lithium, respectively. Their results indicate 

similar conclusions as before, specifically concerning the particle size, where the particle 

radius should be reduced to the nanometer range. 

 Finally, one more expansion of the solid state diffusion model is completed by 

White et al.(37), where energy equations are included to solve for the thermal behavior 

of the cell during operation. The approach used here is actually the single particle model 

as discussed previously, where the entire electrode is viewed as one particle. In this 

particular work, the focus is on the solid state diffusion processes only, and thus a 

uniform current density is assumed across the electrode. This assumption is only 

accurate for low to modest discharge rates. The potential drop in the electrolyte, cellR , is 

modeled as a temperature dependent resistor that is based upon fits to data collected 

during experiment. The energy balance used to determine thermal variation in the cell is 

as shown below, and is similar to that discussed in Equations (0.19) and (0.20). 
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 (0.55) 

Here,  , v , and pC are the density, volume, and specific heat capacity of the cell. 

Further, iU  is the open circuit potential of electrode i, and is determined by 

experimental fits to data as a function of the surface concentration, and q is the heat lost 

by the cell to the surroundings, modeled by Newton’s Law of Cooling. The second term 
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in Equation (0.55) is the irreversible heat generated by electrode polarization. Using this 

thermal model for single particle electrodes, appropriate simulations were carried out 

and parameters were adjusted to fit experimentally acquired data. Further simulation 

showed good agreement with experimental data, as well as with another model 

developed by Kumaresan et al.(38). 

Experimental Determination of Material Parameters 

Computational models, while extremely powerful tools, inherently rely upon 

specific material characterization as inputs. While the literature on experimental methods 

for determining the behaviors of various materials to be used in battery modeling is vast, 

some significant work was performed by Tarascon and coworkers. Their studies focused 

on cells employing a LixMn2O4 cathode with a carbon anode(39-42). In their work, the 

cyclic behavior of the cell was studied under different temperatures, and they optimized 

the cell performance by using different electrolytes. It was found that cycle life could be 

maintained even at high temperatures, and that the cell could be safely discharged to 0V. 

Other electrolytes were further investigated and developed to continue to improve the 

performance of the system. In this investigation, experimental techniques were used to 

classify many important modeling parameters, including diffusion coefficients and 

capacities of materials. 

A novel investigation was completed by Verbrugge and Koch (43). They 

additionally completed a follow-up study using particular models to isolate desired 

physiochemical properties (44), such as the open circuit potential function U. In these 
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two studies, the properties of a single carbon fiber electrode were isolated, and later used 

in a new mathematical model for intercalation into such a fiber. The main advantage of 

this study was that by using a single carbon fiber the effects of other additives and 

components like conductive binder and current collectors were not present. In this way 

the carbon itself and its respective properties could be directly identified. In this 

mathematical formulation, intercalation only occurs in the radial direction of a carbon 

fiber, modeled as a cylinder, and the open circuit potential needed to be determined as a 

function of the degree of intercalation, and is expressed in Equation (0.56). 

 Θ S S
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Θ

Θ
FU FU RTln RTln




    (0.56) 

In the above, the subscripts ‘S’ and ‘I’ stand for those properties relating to the vacant 

site available for reaction and the intercalating species, respectively. Additionally,   and 

γ are the fractional occupancy and activity coefficients, respectively. The standard cell 

potential, Uθ, is given below. 
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The reference states chosen for this model require the following relations between the 

activity coefficients and the fractional occupancies. 
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To solve for the above activity coefficients, a binary interaction equation is used to 

related I-I interactions with non-vanishing free energies, GE, that cause deviation from 

ideal behavior. This is expressed as a series, shown in Equation (0.59). 
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In this series,    is the self interaction coefficient that characterizes I-I interactions and 

  
  is the frequency of such interaction. This series approaches a finite amount as the 

probability of larger scale interactions decreases with a larger number of interacting 

species. Using the above equation, the activity coefficients are given by the following. 
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Substituting these quantities into Equation (0.56) expresses the open circuit potential. 
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To determine Uθ and   , the authors used their previous experimental work with a least 

square polynomial regression fitting routine. Having obtained the open circuit potential 

function, the authors moved to test the validity of the model obtained within the carbon 

microfiber. Good agreement was made between experimental and theoretical data which 

can be reviewed in the literature. Another interesting application of this model was to 

determine the sensitivity of the diffusion coefficient as a function of concentration. Two 
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trials were conducted with a constant diffusion coefficient, and the theoretical results 

were found to be very different than those resulting from experiment. 

 

Insertion Electrodes as Packed Beds 

 In the above discussion, the psedo-2D model has been employed in numerous 

studies to approximate the mesoscopic nature of insertion type electrodes. This is 

particularly well suited for these electrodes, as they may be considered analogous to 

packed bed rectors(2). They are traditionally assembled by mixing small active particles 

with conductive filler and binder as stated previously, giving them the properties of a 

packed bed. This mix is then applied to current collectors to form the planar, insertion 

type electrodes. Many materials have been investigated to employ here, first beginning 

with the carbon and cobalt oxide system previously described. Disadvantages of these 

materials included higher cost, and possibilities for safety problems as they became fire 

hazards if overcharged, overheated, or overdischarged. Additionally, new materials are 

being sought that are more environmentally benign. These included LiMnO2, which 

eventually proved to be ineffective due to phase transformations in the crystal lattice, as 

well as mixes of Mn, Ni, and Co. One of the latest materials to be investigated is 

LiFePO4, which is environmentally friendly and low cost, and has already been used in 

commercial electronics. However, this material does suffer from low electronic 

conductivity, and so other dopants have been investigated to improve performance. 
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3D Architectures 

 While insertion type electrodes have attracted a large amount of focus in terms of 

modeling and experimentation, some of the next generation of batteries may consist of 

electrodes that are no longer suited to be considered in the above manner, as 

microstructure details will become important. Recently, it has been realized that 

improved use of available cell area may greatly increase the performance of battery 

systems through the use of 3D electrode architectures, particularly for use with 

microelectromechanical devices (MEMS). As these devices are made smaller, the 

scaling of a 2D electrodes causes drops in power, and are thus unable to meet necessary 

requirements. As explained in the literature(45, 46), 3D electrodes intend to take 

advantage of the space available in the third dimension, as opposed to confining the 

geometry to a 2D, or planar electrode. This can be best understood by considering the 

following figure, which compares these two designs. 
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Figure 9. (A) A 2D planar electrode does not take advantage of the full area available. 
(B) A 3D structure using the ‘height’ dimension makes far better use of available cell 

area.(Adapted from (46)) 
 

Here, 2D and 3D electrode designs are confined to equivalent cell footprints. However, 

it is clear that greater use is made of available space by construction of anode posts or 

rods. With the advent of 3D microstructures, there are numerous possibilities for 

architecture, as shown below in Figure 10.  
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Figure 10. Four possible designs for 3D architectures, including (A) interdigitated rod 

arrays, (B) a continuous rod array, (C) interdigitated plates, and (D) sponge like 
geometry.(Adapted from (47)) 

 

Here is shown four of many microstructures that are probable designs for 3D electrodes. 

One of the more intuitive designs is the interdigitated plates (C), where the electrodes are 

meshed in the above configuration. However, there is no reason for both electrodes to 

have such a defined ‘structure.’ An example of this is illustrated by the continuous 

electrode (B), where a rod array serves as one electrode, is coated with a thin film of 

electrolyte, and the second electrode fills the remainder volume. This approach is also 

employed with the sponge geometry (D), where now one electrode is in a random 

configuration. Finally, a more challenging design is the interdigitated rod electrodes (A), 

as with this design there are many different possibilities, including staggered and aligned 

rod arrays, as well as the spacing between each rod type.  

In the above figure it is clear that the 3D architecture offers new design 

possibilities for battery design, and can offer improved performance. This is possible by 
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increased amounts of active material with large surface area, and intimacy between the 

two electrodes. This latter point is critical, as short diffusion lengths reduce the ohmic 

and other potential drops that occur during ion transport through the electrolyte. Other 

advantages are a high power density, due to the low losses incurred by the diffusion path 

lengths, and high effective mass utilization. These advantages, however, are not without 

physical conditions that must be considered carefully in design. For instance, with 

respect to separator thickness, there is a lower limit on the distance between the two 

electrodes, as electron tunneling may occur if the distance of separation is on the order 

of 1nm. This in essence would provide a short for the battery and render it useless. Also, 

even if the thickness is great enough to prevent electron shorting through tunneling, the 

impact of electric fields on transport in the electrolyte become significant, as the double 

layers originating from each electrode may encounter one another. Ion transport through 

such conditions are not well known, and appropriate relations including transport, 

electrostatics, and statistical mechanics will need to be employed(48, 49). Further, 

limitless extension into the third dimension to increase capacity is ultimately limited by 

the electronic conductivity of the electrode material, as ohmic drops within the 

electrodes themselves may outweigh the benefits of increased capacity, and this is 

discussed later. Also, 2D designs will always have a greater energy to volume ratio, as 

the electrolyte does not constitute a great amount of the cell volume, unlike in 3D 

batteries. 

 The approaches to manufacturing 3D architectures are wide, but are capable of 

producing almost any geometry imaginable. These methods include lithography, 
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chemical vapor deposition (CVD), electroless deposition, and electrodeposition. While a 

functional 3D battery has yet to be assembled, numerous studies have laid significant 

ground work towards such a goal. In particular, for creating the ‘sponge geometry’ in 

Figure 10, aerogels and ambigels can be employed(50). What is advantageous about this 

method is that the pores developed are through connected, meaning that developed 

structures are in good contact, which is key for transport. The interdigitated rod array has 

already been manufactured via micromachining methods, and the resulting carbon rods 

showed good reversibility(51). To create rods of different materials, silicon molds can be 

formed using photolithography and other methods, so that any powder may be 

employed. It is important to note here that during the fabrication process, errors may be 

incurred when a specific geometry is targeted. It therefore becomes important to 

understand stochastically the impact of such small perturbations. 

To accompany the above experimental work in creating these architectures, 

computational and mathematical tools will need to play a key role in refining the design 

parameter space. Some studies have been completed on these types of structures using 

advanced computational tools, particularly finite element analysis. The authors in (52) 

made use of this approach to study the uniformity of the current distribution in several 

3D microstructure designs. It has been mentioned that obtaining a uniform current 

distribution is key for battery performance when using 3D electrodes, especially in the 

utilization of active material. The geometries considered focused primarily around rod 

arrays where both the anode and cathode were in rod form, as shown in the interdigitated 

electrodes from Figure 10. Alternative designs were made by having parallel rows of 
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anode and cathode rods, or with an alternating pattern in each row. Further, a study was 

conducted where an anode rod was surrounded by six cathode nearest neighbors in a 

hexagonal fashion, as well as rods with a triangular cross-section. It was concluded that 

uniform current densities were very difficult to obtain, and can vary greatly from one 

geometry to another(52). The most uniform current densities were obtained with the 

hexagonal arrangement, but for the anode only. It was underlined, however, that this 

might be advantageous should one electrode material require a more uniform current 

density than the other, or if there need not be an equal number of both. Significant 

contributions have also been made by Zadin et al., particularly with the interdigitated 

plate structures, otherwise known as the ‘trench’ design, as shown in Figure 10 (53, 54). 

Focused around the height of the plates, as well as the electrical conductivity for electron 

transport, the results indicated that the most favorable range for conductivity was such 

that the difference between the two electrodes should be no more than one order of 

magnitude. Additionally, it was found that even in this optimized regime, solid state 

transport was the limiting parameter for the battery as a whole, and that tuning the plate 

height exhibited a limited effect. 

 It is clear from the above discussion that computational tools will play a key role 

in identifying and gauging the performance of 3D electrode architectures. This is 

particularly true as these systems are currently in nascent stages, and the design space, as 

previously mentioned, is still extremely large. The aim of the current work is to aid in 

this process by using first principles approximations to gauge the performance of several 

types of 3D electrode architectures. The results obtained from this study will help to 
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isolate advantageous geometries, and develop strategies for studying system behavior 

that can be used in later, more developed models and tools. 
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CHAPTER II  

ELECTRODE ARCHITECTURE GENERATION AND CELL DESCRIPTION 

 

The objective of this study was to use first principle approximations to quantify 

the performance of various 3D structures through discharge behavior, and the globally 

averaged parameters of bulk and surface concentration. This was accomplished by 

developing several codes in MATLAB® software to first generate targeted 

microstructures to serve as the anode morphology. These 3D architectures were similar 

to the aperiodic structures described in Figure 10, and the effects of particle size 

distribution, particle shape, and overall morphology were included. Having generated the 

desired structures, MFiX® software was used to solve the diffusion problem in two 

dimensions using a finite volume formulation. A single particle cathode was additionally 

simulated in MATLAB® using the pdepe package. Post processing codes in 

MATLAB® were developed to solve for voltage profiles from the obtained surface 

concentrations. Further, two models were studied where both electrodes were of 3D 

design. The first was an aperiodic geometry, generated by additional MATLAB® codes, 

and the second was an interdigitated plate design with equal surface to volume ratios as 

the aperiodic design. From the results obtained, microstructures with advantageous 

properties may be targeted for implementation in fuller, more developed models. 
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Microstructure Generation 

To develop 3D architectures in a controlled manner, the current work used an 

approach similar to those using fractal methods (55-63). The fractal structure was 

represented by branch lengths, parent particles, and child particles as shown in Figure 

11. 

 
Figure 11. A cylindrical child particle is placed along the branch length only when the 

arc length swept between the parent particle’s nearest neighbors is large enough to 

accommodate it. 
 

Unlike previous efforts, a number of spawning particles was first specified by the user, 

and set as the 0th generation. Each particle then chose a random maximum number of 

branches to form, and each branch then chose a random particle type, whether spherical 

or cylindrical. The dimensions of that particle, or double the values of the major and 

minor axes as illustrated above, were based upon a normal distribution of values. One of 

these dimensions was placed along the branch direction, therefore setting the other 

perpendicular to it, if applicable, as spherical particles only required one dimension to be 

specified. The branch length, or the distance between the centers of the parent and child 

particle, was set to have a maximum value of the average of the parent and child 
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dimensions along the branch direction. A random percentage of that maximum was then 

chosen as the final branch length. This value then served as a radius about which a 

sweep was conducted to determine the parent particle’s nearest neighbor particles. Based 

upon the location of those neighbors, an angle range was defined. An arc-length was 

then formed using this angle range, as shown by the dashed line in Figure 11, and the 

child particle was only allowed to be placed if this arc-length was larger than that 

particle’s size by some criterion. The angle at which the particle was placed, relative to 

the coordinate system formed at the center of the parent particle, was then set to within a 

certain percentage of the midpoint of the angle range previously formed. This process 

was allowed to proceed until either a child particle could not be placed due to space 

restriction, or when the maximum allowable number of child generations was met. The 

coding for this procedure was completed in MATLAB® software, and is given in 

Appendix B. Further, after having created a base architecture, a code was developed to 

take this architecture and slightly perturb the values of the child angles and branch 

lengths, and is given in Appendix B. This procedure did not include initial spawning 

particles. This allowed for different realizations of one particular structure to be formed, 

and in doing so may lend insight to the impact of fabrication errors on particular 

microstructures in real cells. Typical output from the MATLAB codes are shown below, 

for a base structure in blue, and a perturbed realization in red. 
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Figure 12. Typical output from the fractal geometry code developed in MATLAB®. A 

base structure in blue has been perturbed to yield a new realization in red. 
 

Having completed generating a particular anode morphology, MFiX® software 

was used to solve the diffusion problem using the cut-cell option (64). MFiX® is a 

general purpose, computational code developed by the National Energy Technology 

Laboratory (NETL) capable of modeling various phenomena, including heat transfer, 

chemical reactions, and hydrodynamics(26). MFiX® software is unique in its ability to 

capture particular geometry using a Cartesian Grid by shaping the cells accordingly 

when they intersect with the problem geometry. This is illustrated in the following 

figure. 
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Figure 13.  The cut-cell technique is used to shape the Cartesian Grid to the specified 

geometry. Here, the thick line intersects the Cartesian Grid, forming cut cells. The 
velocity component uec must be adjusted to account for the realignment of cell centers. 

Adapted from (64). 
 

To generate the computational mesh using cut cells several procedures must take place. 

A search for cut cells is initially completed, and intersections points are calculated 

between the Cartesian Grid and the specified geometry. This is demonstrated in the 

following figure, and also underlines the importance of proper cell size, as only so many 

intersections will be considered by the mesh generation technique. 
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Figure 14. The intersections between the geometry defined (blue line in (A)) and the 

Cartesian Grid are determined to ultimately shape the resulting cut cell shown in (B). If 
improper cell size is used, some curvature aspects may be lost. Adapted from (64). 

 

Once complete, the cell faces are computed similar to convex polygons and cell volumes 

are computed by splitting the cells into pyramids, computing their volume, and then 

adding them together. Because cut cells are generated, nodes and face centers are 

realigned, and so adjustments must be made to the quantities that are evaluated at those 

points. For example, as shown in Figure 13 and in the case of a no slip wall, the velocity 

on the east face of node P is not the same as the velocity component that is used for the 

east node. Therefore, a new component uec must be determined, and is approximated by 

using the ratio of the distances from the wall to the centers of the respective faces, as 

shown in the following equation. 
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 (0.63) 

Other corresponding adjustments are made, and may be viewed in the literature(64). 
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Several studies have been completed to verify the cut cell technique, particularly within 

fluid dynamics and the study of fluidized beds (65, 66). The cut-cell technique is very 

flexible, as shown in the following figure, for generating almost any geometry 

imaginable. 

 
Figure 15. Depending on the type of flow and Boolean expression, the cut-cell 
technique is capable of capturing numerous geometrical shapes on a structured, 

Cartesian Grid. Adapted from (64). 
 

Using the appropriate definition for the type of flow, and Boolean Expressions, the two 

circles in Figure 15 can be used to create very complicated geometry. Numerous, 

standard geometries, called quadrics, are available in MFiX for manipulation and 

combination to produce almost any geometry. Furthermore, quadrics can be grouped, 

and used with further Boolean expressions to form more complicated geometry, as 

shown in the following figure. 
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Figure 16. Geometries in the Cut Cell Technique in MFiX® can be described using 
quadrics. Here, several quadrics numbered in (A), as well as groups of quadrics (B) 

through (E), which are combined to form a spouted bed geometry with a stabilizer (F). 
Adapted from (64). 

 

 From the above discussion it is clear that MFiX®, especially with respect to the 

cut cell mesh generation technique, is ideal for this study, as simple shapes can be used 

to create very complicated geometries. 

The scalar transport equation to be solved in this study is as shown below, where 

m , m , and mnX  are the void fraction, density, and mass fraction of the nth species in 

the mth solid phase. Further, miU , mnD , and mnR  are the velocity vector, diffusion 

coefficient, and rate of production due to chemical reaction, respectively(67). 
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Using a finite volume formulation, the above differential equation is rewritten into an 

algebraic expression by integration over a control volume. Doing so on the transient 
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term on the left hand side over a control volume at the node P is approximated by the 

following expression. 
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Here, the superscript o indicates a previous time step, t  is the discrete time step, and 

V  is the discretized volume. The next term on the left hand side of Equation (0.64) is 

the convective term, and is computed by the following equation. 
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 (0.66) 

In the above equation, the standard notation for node locations (in three dimensions) 

have been used, where N, E, S, W, T, and B, represent nodes at the north, east, south, 

west, top, and bottom directions relative to the node at P. Lowercase letters indicate the 

faces of the control volume at node P, and u, v, and w are the three velocity components. 

Notice that the above equation is the computation of weighted fluxes at the faces of the 

node P with area A. In order to calculate these weights, e  and e ,MFiX® utilizes 

various downwind factors to improve solution accuracy for the convective terms, and is 

dependent upon the scheme chosen as can be reviewed in the literature(68). Of primary 
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interest to this study is the diffusive term on the right hand side of Equation (0.64). Here, 

integration over the control volume yields the following. 
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In the above, the diffusive fluxes are approximated by finite differences, and an example 

for the east face is as shown below. 
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The diffusion coefficients,  , as implied by the above equation, are determined at the 

particular face, using a harmonic mean of the properties at the two nodes, as shown 

below. 
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Finally, the source term is usually nonlinear in nature, and is first linearized as shown 

below. 

 '
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Once this is complete, integration over the control volume is approximated by the 

following equation. 
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Combining Equations (0.65), (0.66), (0.67), and (0.71) yield an equation of the following 

form, with coefficients nba , where the index corresponds to either N, E, S, W, T, or B. 

 
P nb nb
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a a b    (0.72) 

It is important to mention further that in order to avoid large fluctuations in  , the 

continuity equation should be multiplied by   and subtracted from Equation (0.72). The 

reason for this is outlined in the literature(69), and yields the following requirement on 

the coefficients in Equation (0.72). 
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For modeling the single particle cathode, as described previously for the anode 

study, MATLAB® software was used utilizing the built in partial differential equation 

solver, pdepe. This method is specifically tailored to solve boundary and initial value 

problems of parabolic or elliptical type, as shown in the following equation. 
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Here, x and t, are the single spatial and temporal variables, with solution u. The functions 

f and s are the flux and source terms, and c is responsible for coupling multiple equations 

if required. The geometry under consideration, whether plate, cylindrical, or spherical is 

modified by the choice of the exponent m to 0, 1, or 2, respectively. The expected 

boundary conditions are an initial value throughout the domain at the initial time t0 and 
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appropriate Neumann or Dirichlet conditions on the domain boundaries, a and b. These 

are given by Equations (0.75) and (0.76). 

    0 0 0,u x t u x at t t   (0.75) 

    , , , , , , 0
u

p x t u q x t f x t u at a x b
x

 
    

 
 (0.76) 

In pdepe, MATLAB® first uses a specified number of mesh points to discretize the 

problem in space, which then yields a system of ordinary differential equations in time. 

Another built in solver, named ode15s, is then used to solve the integration problem over 

time, which can use either numerical differentiation formulas, or backward 

differentiation formulas, which are also known as Gear’s Method(42). As indicated by 

the usage of this package, orders of accuracy are only in the low to medium range, and 

thus a fine mesh is needed. More information on these methods can be found in the 

references (70-72). 

The diffusion problem in spherical coordinates is easily adaptable to the above 

forms and boundary conditions, and is reproduced below in different forms for clarity of 

comparison for a time period between t0 to tf, and over the radial coordinate from the 

center of the particle to the surface. 
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Note that in the above boundary condition at the surface of the particle, the sign of the 

flux must be correctly specified. 

Cell Setup 

 In order to study the effects of microstructure, appropriate, realistic cell 

properties needed to be obtained. White et. al(19, 37, 38, 73) have completed numerous 

studies on LiCoO2-mesocarbon microbead pouch cells, and in the process have well 

documented needed material properties, initial conditions, and equilibrium potential 

functions. Relevant quantities for this study are shown in the following table. 

 

Table 1. Material properties and other quantities for modeling the lithium ion cell(37). 
*Properties that apply to both the anode and cathode. 

 
Parameter Symbol Anode (i=n) Cathode (i=p) Units 

     Electrode Active Area Si 0.782 1.12 m2 

Solid State Diffusion Coefficient Ds,i 3.90×10-14 1.00×10-14 m2/s 
Particle Radius Rp 12.5 8.5 μm 
     Thermal Rate Constant k 1.80×10-11 6.70×10-11 m2.5mol-0.5s-1 

Maximum Concentration cs,max 31833 51410 mol/m3 

Initial State of Charge SOC .7522 .4952 - 
    Operating Temperature T 298* K 
Electrolyte Concentration ce 1000* mol/m3 

1C Rate C 1.656* A 
     

Using an approach similar to their investigation in to the thermal behavior of these cells, 

this study first assumed that at slow discharge rates Equation (0.78) could be used to 

determine a uniform flux on the electrode surface. 

 ,

,

app i

Li i

i
j

nF
  (0.78) 
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app

app i

i

I
i

S
  (0.79) 

In the above, appI , ,app ii , Si and ij  are the applied current to the cell, current density over 

the ith electrode, active surface area of the ith electrode, and lithium flux on the ith 

electrode. Knowing the flux on the structure, and with knowledge of the surface 

concentrations of both the anode and cathode at each temporal moment, the Butler-

Volmer Equation was used to solve for the overpotential, i , at the ith electrode at that 

moment. Below is shown the appropriate form of this equation for this study. 

  , max, , ,

n pnpn
i i

FF

Li i i e i surf i surf i RT RT
j k c c c c

e e

     
 

 (0.80) 

In the above equation, ec , and ,surf ic  are the electrolyte concentration, taken to be 

constant at the initial value of 1000 mol/m3, and the surface concentration of the ith 

electrode, respectively. Additionally, αc and αa are the transfer coefficients(35) taken to 

be .5 for both the anode and cathode. Furthermore, as shown in the literature, the 

equilibrium potentials for the anode and cathode at any point in time can be determined 

from empirically derived functions of surface concentration, as shown below. 

 -49.20361x -254.40067x 49.97886x -43.37888
U =.13966+.68920e +.41903e -e -

.028221arctan(22.52300x -3.65328)

-.01308arctan(28.34801x -13.43960)

n n n

n

n

n

 (0.81) 
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p p
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 (0.82) 
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In the above equations, xi is the ratio of the surface concentration to the maximum 

intercalatable concentration for the particular material, also known as the surface state of 

charge SOCsurf, as given in Equation (0.83). 

 ,

max,

, ,
surf i

i

i

c
x i n p

c
   (0.83) 

Having knowledge of the equilibrium potential and overpotential values at each 

electrode, the voltage across the cell can be calculated using Equation (0.84), assuming 

there is no potential drop across the electrolyte. 

    p n p nV U U       (0.84) 

Additionally, the capacity of the cell, in amp-hours, is calculated via the following 

equation. 

 1

3600
appCap I dt   (0.85) 
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CHAPTER III  

RESULTS AND DISCUSSION 

 

 In order to satisfy the objective of this study, the behavior of various 3D 

microstructures, in terms of concentration distribution and global cell performance, 

needed to be studied in detail. MATLAB® software was used to generate desired 

microstructures under provided conditions, which included variations in particle shape 

and size, as well as overall structure morphology. MFiX® software, for the first time as 

per the author’s knowledge, was used to simulate and extract quantities of interest from 

these morphologies. Post processing codes then utilized these data to provide insight into 

global cell behavior through discharge performance. The following discussion will first 

analyze those results concerning 3D anode structures that were discharged versus a 

single cathode particle. These results include the depth of discharge, relaxation 

phenomena, and recharge efficacy over cyclical conditions. Additionally, voltage and 

performance curves will also be considered. Two 3D cell geometries, equivalent in terms 

of volume to surface area ratio, will analogously be analyzed over discharge and 

relaxation to compare their respective performances. Lastly, the results of a sensitivity 

study used to verify the simulation accuracy will be discussed. 
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3D Anode Architectures 

 The above described MATLAB® codes were used to generate four base 

microstructures, as well as five perturbed realizations of each, to model the anode 

morphology. These morphologies differed in particle size distribution, type, and overall 

structure. These are illustrated below. Figures 17 and 18 illustrate the Spherical Column 

1 and 2 structures, respectively. The first of which was constructed using a mean particle 

radius of 12.5μm and a standard deviation of 1 μm, and the latter with 8.5μm and 2 μm, 

respectively. Spherical Tree-like structures are illustrated in Figure 19, and were 

constructed with the same distribution as Spherical Column 1, but with relaxed 

restrictions on branching behavior. The final microstructure, in Figure 20, is the 

Spherical/Cylindrical Column structure, which includes cylindrical and spherical 

particles, whose size was again drawn from the same distribution as Spherical Column 1. 
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Figure 17. Spherical Column 1 Base(A) and Realizations 1 through 5(B-F). All dimensions in micron. 
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Figure 18. Spherical Column 2 Base(A) and Realizations 1 through 5(B-F). All dimensions in micron. 
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Figure 19. Tree Base(A) and Realizations 1 through 5(B-F). All dimensions in micron. 
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Figure 20. Spherical/Cylindrical Column Base(A) and Realizations 1 through 5(B-F). All dimensions in micron. 
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However, this parameter only determined the major axis for the cylindrical particles to 

be placed along the branch direction, while the minor axis, or radius of the cylinder, was 

determined by enforcing a 2 to 1 length to radius ratio. All branch lengths were 

determined by a random percentage between 95% and 100% of the mean of the child 

and parent major axis. Regarding the perturbed incarnations, the branch length and 

particle angles were allowed to change by a maximum of 20% and 30%, relative to the 

base case, respectively.  

 

Concentration and Relaxation Behavior 

Using MFiX, all structures were discharged at the 1C rate to a cutoff potential of 

3V. A single particle model was employed for the cathode, using MATLAB® software 

to solve the diffusion problem in spherical coordinates as described previously. After 

discharge, the structures were allowed to relax for 2 hours, and the changes in overall 

bulk concentration were monitored. For the 1C discharge rate, the following figures 

illustrate this process over the two hour period for all four microstructure types. 
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Figure 21. Average bulk concentration for the Spherical Column 1 structures after 1C 

discharge and 2 hour relaxation. 
 

 

 
Figure 22. Average bulk concentration for the Spherical Column 2 structures after 1C 

discharge and 2 hour relaxation. 
 

0 2000 4000 6000 8000 10000 12000
1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Time (s)

A
v
e

ra
g

e
 B

u
lk

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m3

)

 

 

Base, V/A=10.4m

Rel 1, V/A=10.2m

Rel 2, V/A=11.5m

Rel 3, V/A=10.5m

Rel 4, V/A=10.5m

Rel 5, V/A=10.4m

0 2000 4000 6000 8000 10000 12000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Time (s)

A
v
e

ra
g

e
 B

u
lk

 C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
m3

)

 

 

Base, V/A=7.01m

Rel 1, V/A=6.87m

Rel 2, V/A=7.03m

Rel 3, V/A=6.90m

Rel 4, V/A=7.20m

Rel 5, V/A=6.89m



 

 

62 

 
Figure 23. Average bulk concentration for the Spherical Tree structures after 1C 

discharge and 2 hour relaxation. 
 

 

 
Figure 24. Average bulk concentration for the Spherical/Cylindrical Column structures 

after 1C discharge and 2 hour relaxation. 
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As is evident, the small perturbations in the realizations of each microstructure do 

introduce differences in the discharge process, and this may in some cases be attributable 

to the differences in the volume to surface area ratio of each structure, as shown in each 

legend. However, there are several cases where behaviors are not explainable by this 

ratio. One may consider the Base and Realization 5 of Spherical Column 1, which have 

equivalent values of this ratio but do show differences in the depth of discharge. 

Realizations 4 and 5 of the Spherical Tree structures additionally have similar values for 

this ratio, but show extremely large differences in concentration. There are also 

simulations that indicate identical behavior, despite large differences in this ratio. This 

can be illustrated by Realizations 2 and 4 of the Spherical Column 2 structures, as well 

in the Base and Realization 3 of the Spherical/Cylindrical Column structures. These 

differences occur due to the different transport processes occurring in these structures as 

the cutoff potential is approached. This can best be visualized if the following contour 

plots in are considered, when looking at the lowest concentration values in the structures. 
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Figure 25. Spherical Column 1 Base(A) and Realizations 1 through 5(B-F) after discharge at 1C. All dimensions in micron 
and all concentration values in mol/m3. 
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Figure 26. Spherical Column 2 Base(A) and Realizations 1 through 5(B-F) after discharge at 1C. All dimensions in micron 
and all concentration values in mol/m3. 
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Figure 27. Tree Base(A) and Realizations 1 through 5(B-F) after discharge at 1C. All dimensions in micron and all 
concentration values in mol/m3. 
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Figure 28. Spherical/Cylindrical Column Base(A) and Realizations 1 through 5(B-F) after discharge at 1C. All dimensions in 
micron and all concentration values in mol/m3. 
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Considering the above figures, there are clear differences between each anode 

morphology, as well as between different realizations. As mentioned before, the Base 

and Realization 5 morphologies under Spherical Column 1 show significant differences 

between concentration values, despite similar volume to area ratios. Considering Figures 

25(A) and 25(F), there are large areas of lithium depletion at the tops of the columns in 

the Base case that are not present in the other. Additionally, there are larger 

concentrations present in Realization 5 at the core of the structure that have remained 

due to differences in transport behavior. Of particular interest is the behavior of 

Realization 2, in Figure 25(C). This particular structure has an increased level of particle 

interconnectivity as is reflected in the volume to area ratio, as some of the active surface 

area has been lost due to the overlap in the upper areas of the columns. This structure has 

significant pockets of high concentration near these areas of overlap and this explains the 

low depth of discharge shown in Figure 21. This exact same behavior is seen in 

Realization 4 for Spherical Column 2, as there is the additional overlap in the column 

structures. Note here additionally, that because of the smaller particle mean size used for 

these structures, these structures show a far lower concentration after discharge. 

Considering the differences are between Realization 4 and Realization 5 of the Spherical 

Tree structures noted previously, Realization 4 shows a far more depleted profile, as 

shown in Figure 27(E), especially when one considers the left branch. This is due to 

increased particle isolation because of the small contact between the branch and the rest 

of the structure. Interestingly, with respect to the Spherical/Cylindrical Column 

structures, there are large areas of uniform concentration distribution in the cylindrical 
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particles composing the structure. This is due to the lower diffusion length perpendicular 

to the cylinder axis. In several cases there exist large concentrations in the centers of the 

top most spheres of the structures. This has occurred specifically due to the cylindrical 

particles, as the diffusion front has moved quickly through them and upwards to 

encapsulate these pockets in the spheres. 

To better visualize some of the previously mentioned effects, one may consider 

the variance in bulk and surface concentration between the realizations of each 

morphology over the discharge period. Shown below in Figures 29 and 30 are four 

averaged bulk concentration curves for the four different morphologies where the 

average bulk concentration values for each base and respective realizations have been 

averaged at each temporal point. Further, a 1 standard deviation bar has been applied to 

each curve to illustrate the kind of variance in the concentration values. 
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Figure 29. Average bulk concentration curves for the four morphologies. A 1 standard 
deviation bar has been applied at several times. 
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Figure 30. Average surface concentration curves for the four morphologies. A 1 
standard deviation bar has been applied at several times. 
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As is clear from the bottom of Figure 29 the Spherical Tree structures have the largest 

variance in bulk concentration over the course of discharge. This can be explained 

visually if the images in Figure 19 are considered, as the Spherical Tree structures show 

the most apparent change in overall morphology when the described perturbations were 

applied. With the inclusion of multiple branches, and under the same perturbing 

conditions, these extra branches offer increased degrees of freedom by which the overall 

structure can be altered when compared to the others. Further, as illustrated in Figure 29, 

the Spherical/Cylindrical Column structures follow next in the greatest amount of 

variance for bulk concentration, but also closely match the average bulk concentration 

values of the Spherical Tree structures. By this evidence, the inclusion of different 

particle types is also an extra degree of freedom by which the variance in structure 

performance can increase. This result is especially striking, as the inclusion of a larger 

particle distribution, as in the case of the Spherical Column 2 structures, does not seem 

to have as large of an effect. Considering Figure 30, it is interesting that the greatest 

variance in average surface concentration occurs with the Spherical Column 2 structures, 

as opposed to before with average bulk concentration. This is likely due to the fact that 

the larger particles smear out the effects of low concentration in the bulk concentration 

calculation. While, for the surface concentration, the effects of both the large and small 

particles are on more equal footing. Here again, the Spherical Tree and 

Spherical/Cylindrical Column structures follow each other especially well. 

If Realizations 2 and 3 of the Spherical/Cylindrical Column structures are 

considered in Figure 24, they are nearly indistinguishable from their discharge 
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behaviors, despite differences in their volume to surface are ratios. However, it is also 

clear that these two structures distinguish themselves during relaxation, indicating the 

need for another performance parameter, namely relaxation time. To investigate this 

parameter the temporal change in average bulk concentration was monitored until it 

dropped to .01 mol/m3s or below and the structure was considered fully relaxed (See 

Appendix A). Displayed in Table 2 are the results of this calculation, and there are 

clearly wide ranges in relaxation behavior when overall structure is compared, as well as 

between base cases and their respective realizations. Additionally shown is the change in 

bulk concentration, ∆cs, between current cutoff and the point of complete relaxation. 

Additionally, contour plots of each structure are shown in Figures 31, 32, 33, and 34 

after one hour of relaxation. Immediately noticeable is the fact that many of the 

Spherical Tree structures did not relax within the two hour period. This behavior can be 

best explained by the contour plots shown in Figures 27 and 33. The increased level of 

branching in the structure allows for more particle isolation, and therefore creates large 

lithium deprived zones in the structure relative to the main body. Another interesting 

development occurs in the Spherical/Cylindrical Column structures. 
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Table 2. Relaxation times for each microstructure and different realizations for the 
discharge rate of 1C to a cutoff potential of 3V. 

 
Architecture Relaxation Time 

(s) 

∆cs 

(mol/m
3
) 

V/A Ratio 

(µm) 
    Spherical Column 1     

     Base 1339.1 478.61 10.4 
    Realization 1 1342.8 505.78 10.2 
    Realization 2 1926.0 565.58 11.5 
    Realization 3 1732.5 545.15 10.5 
    Realization 4 2346.9 780.75 10.5 
    Realization 5 1421.4 568.04 10.4 
    Spherical Column 2    

     Base 2550.6 616.35 7.01 
    Realization 1 5166.2 753.30 6.87 
    Realization 2 3057.4 618.31 7.03 
    Realization 3 5900.3 1252.43 6.90 
    Realization 4 7154.4 1087.37 7.20 
    Realization 5 4081.2 810.35 6.89 
    Spherical Tree   

     Base 6392.2 1136.17 9.36 
    Realization 1 >7200.0 1489.09 9.12 
    Realization 2 >7200.0 1404.47 9.04 
    Realization 3 >7200.0 1299.80 9.22 
    Realization 4 >7200.0 1257.93 9.83 
    Realization 5 3926.6 1016.61 9.78 
    Spherical/Cylindrical 

Column 

  
     Base 1795.2 652.57 9.35 

    Realization 1 2323.2 646.69 9.36 
    Realization 2 2700.5 738.15 9.44 
    Realization 3 1409.2 503.47 9.88 
    Realization 4 2106.3 698.16 9.42 
    Realization 5 1988.6 637.65 9.33 
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Figure 31. Spherical Column 1 Base(A) and Realizations 1 through 5(B-F) after relaxation for 1 hour following discharge at 
1C. All dimensions in micron and all concentration values in mol/m3. 
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Figure 32. Spherical Column 2 Base(A) and Realizations 1 through 5(B-F) after relaxation for 1 hour following discharge at 
1C. All dimensions in micron and all concentration values in mol/m3. 
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Figure 33. Tree Base(A) and Realizations 1 through 5(B-F) after relaxation for 1 hour following discharge at 1C. All 
dimensions in micron and all concentration values in mol/m3. 
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Figure 34. Spherical/Cylindrical Column Base(A) and Realizations 1 through 5(B-F) after relaxation for 1 hour following 
discharge at 1C. All dimensions in micron and all concentration values in mol/m3. 
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The relaxation times for these are either on the order or slightly larger than those of the 

Spherical Column 1 structure. This is likely due to the fact that the most isolated 

particles, those at the tops of the columns, are, like the Spherical Tree structure, more 

isolated than those at the core due to the cylindrical particles. This is clearly visible 

when one compares Figures 28 and 34 and compares the top most spherical particles of 

Spherical/Cylindrical Structure with the Spherical Column 1 Structure. These cylinders 

create larger diffusion distances to these particles as lithium must now travel along the 

cylinder axis. While this is particularly detrimental to overall structure performance, 

cylindrical particles offer shorter diffusion distances perpendicular to their axis, as 

shown before, and thus take greatest advantage of the 3D geometry. 

An excellent example of the kinds of variation in relaxation time between 

realizations is that seen in the Spherical Tree structures. Here, the majority do not relax 

in two hours, while Realization 5 does so in less than 1 hour. Considering the geometry 

of this structure in Figure 19, this realization has less particle isolation, due to the 

‘clumping’ of the three particles on the left branch. Also, when comparing to Realization 

4, which has a similar volume to surface area ratio, the particles on the leftmost branch 

have a strong connection to the structure, unlike the choke point in Realization 4. 

Further, this structure has the second highest volume to area ratio, meaning that less 

lithium is lost upon discharge, as illustrated by Figure 23, and therefore gradients can be 

relaxed quickly. Considering Figures 27 and 33, the uniformity in concentration seen in 

Realization 5 is also very clear. Another example of large variances in relaxation time is 

evident in the Spherical Column 2 structures. If Figures 26 and 32 are considered, upon 
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discharge the leftmost half of the structure is fully depleted for all realizations, while 

there are larger concentrations in the large particles composing the rightmost sections. 

This unevenness in depletion speed creates large gradients across the entirety of the 

structure, meaning that diffusion distances are long, causing relaxation time to be that 

much longer as well. It is also to be noted here that in the relaxation of Realization 3 of 

the Spherical Column 2 structures, there is a slightly higher concentration in the largest 

particle in the middle column at the right most edge, visible in Figure 32(D). This has 

been identified as the behavior of a small scalar cell, but has been viewed as being 

erroneous in the consideration of the averaged quantities considered here. Another 

interesting behavior is noted when those structures with overlap in the upper portions of 

the columns are considered, namely Realizations 2, 4, and 3 from the Spherical Column 

1, Spherical Column 2, and Spherical/Cylindrical Column morphologies, respectively. It 

has already been noted that with the increased degree of overlap, less particle isolation 

occurs, but with a sacrifice in depth of discharge. It would be expected, however, that 

such structures would show some of the fastest relaxation times, as large gradients do 

not develop. While this seems to be true for the realization from the 

Spherical/Cylindrical Column morphology, this expected behavior is not evident in the 

other two. This result may actually be due to the fact that at these overlapped regions, 

while there is less gradient development, there is also less utilization of material, due to 

the local drop in surface area, which would tend to create regions of high concentration 

relative to the rest of the structure. Therefore, these regions of high concentration will 

take longer to redistribute. This is clearly visible in Figures 25(C) and 25(E), as well as 
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the ∆cs values from Table 2, as there is associated a large change in average bulk 

concentration for those structures with overlap. However, due to the performance of the 

Spherical/Cylindrical realization, there may be an optimum level of overlap to both 

prevent particle isolation and still maintain enough surface area to ensure uniformity of 

discharge. Finally, as discussed previously, the differences in Realizations 1 and 2 of the 

Spherical/Cylindrical Column are clear only when the relaxation behavior is considered, 

as displayed in Table 2.  

After relaxation, the base cases of each morphology were recharged at 1C to a 

cutoff potential of 4.1V. After this was completed, an important difference to consider is 

that between the surface and bulk concentration values, as well as the amount of 

concentration returned upon recharge. These are indicative of how well a particular 

structure can recharge, and therefore are imperative for judging how well a system can 

cycle through many uses. Shown in Figure 36 are the values of average bulk and surface 

concentration after recharge from an initial discharge at 1C, and contour plots over the 

entire cycle are shown in the following figure. 
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Figure 35. Spherical Column 1(Row A), Spherical Column 2(Row B), Tree(Row C) and Spherical/Cylindrical Column (Row 
D) over a cycle with initial discharge at 1C. All dimensions in micron and all concentration values in mol/m3.(To Scale from 

Figtures 17 to 20) 
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Figure 36. Surface and bulk concentrations in the base cases after relaxation and 

recharge to a potential of 4.1V from the initial 1C discharge rate. 
 

The differences between bulk and surface concentrations after recharge is due to the fact 

that the surface will saturate faster than lithium can diffuse into the core of the structure. 

When this happens, as the voltage is based on the surface concentration, the cutoff 

voltage will be reached that much faster. Those structures that show the most similar 

values after recharge are therefore advantageous, because obtaining uniformity is key for 

maximum capacity recovery. Immediately discernible from the above results is how 

poorly the Spherical Column 2 structure performs on reclaiming available capacity 

despite the small difference between surface and bulk concentration. Considering the 

highly depleted profile after recharge, it is clear that the cathode particle saturates faster 

than this structure can reclaim capacity, forcing the recharge voltage to cutoff. Figure 35 

illustrates these results very well, as it can be seen that in the Spherical Column 2 

structure there exist large areas of low concentration in the core of the structure, which 
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are not present in the others. Furthermore, one may additionally notice how much more 

uniform the concentration is in the cylindrical particles of the Spherical/Cylindrical 

Column after recharge. Comparatively, the Spherical Column 1 structure only has such 

uniformity at points where the spheres in the columns are barely in contact. This is a 

consequence of the local diffusion length, which is very short for the cylindrical 

particles. Further, these cylindrical particles aid in creating more uniform concentrations 

in the  spherical particles they are in contact with, as observed if one compares these 

spheres with those that are closely packed with other spheres in the same structure. This 

kind of interaction between particle shapes is a key design feature for 3D architectures 

that may be exploited. 

 In order to identify any rate dependencies in the above results, further cycles 

were conducted on the base cases with discharge rates of C/2 and C/10, one hour of 

relaxation, and recharge at 1C to the potential of 4.1V. Corresponding contour plots are 

shown below. 
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Figure 37. Spherical Column 1(Row A), Spherical Column 2(Row B), Tree(Row C) and Spherical/Cylindrical Column (Row 
D) over a cycle with initial discharge at C/2. All dimensions in micron and all concentration values in mol/m3. 
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Figure 38. Spherical Column 1(Row A), Spherical Column 2(Row B), Tree(Row C) and Spherical/Cylindrical Column (Row 

D) over a cycle with initial discharge at C/10. All dimensions in micron and all concentration values in mol/m3. 
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However, before recharging as completed before, the structures were given 2 hours of 

relaxation time and the same gradient analysis as before was conducted, and the results 

are shown below in the following Tables. 

 

Table 3. Relaxation times for each base case microstructure at the discharge rate of C/2 
to a cutoff potential of 3V. 

 
Architecture Relaxation Time 

(s) 

∆cs 

(mol/m
3
) 

V/A Ratio 

(µm) 
    Spherical Column 1     

     Base 958.70 233.50 10.4 
Spherical Column 2    

     Base 1764.10 303.35 7.01 
Spherical Tree    

     Base 5419.40 661.21 9.36 
Spherical/Cylindrical 

Column  

  
     Base 1194.00 310.68 9.35 

     

 

Table 4. Relaxation times for each base case microstructure at the discharge rate of C/10 
to a cutoff potential of 3V. 

 
Architecture Relaxation Time 

(s) 

∆cs 

(mol/m
3
) 

V/A Ratio 

(µm) 
    Spherical Column 1     

     Base 273.9 34.54 10.4 
Spherical Column 2    

     Base 447 52.01 7.01 
Spherical Tree    

     Base 1100.6 80.93 9.36 
Spherical/Cylindrical 

Column 

  
     Base 351.8 45.88 9.35 

     

 

As is expected, there is a reduction in relaxation time as the discharge rate decreases 

because the discharge process becomes more uniform, as illustrated in Figures 37 and 
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38. However, despite the fact that the trends seen before are invariant with the discharge 

rate, in terms of structure ranking, the drop in relaxation time as a function of discharge 

rate does vary greatly from structure to structure, as depicted in the following figure. 

 
Figure 39. Relaxation times for the base cases for the different initial discharge rates of 

1C, C/2, and C/10. 
 

Clearly from the above comparison the Spherical Tree structure shows rapid reduction in 

relaxation time as the discharge rate decreases, however still displaying the largest 

relaxation times over all discharge rates. After relaxation, the structures were again 

recharged at the 1C rate to a cutoff potential of 4.1 volts. 
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Figure 40. Surface and bulk concentrations in the base cases after relaxation and 

recharge to a potential of 4.1V from the initial C/2 discharge rate. 
 

 

 
Figure 41. Surface and bulk concentrations in the base cases after relaxation and 

recharge to a potential of 4.1V from the initial C/10 discharge rate. 

Sph Column 1 Sph Column 2 Sph Tree Sph/Cyl Column
0

0.5

1

1.5

2

2.5
x 10

4

Architecture

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
o
l/
m

3
)

 

 

Average Bulk Concentration

Average Surface Concentration

Sph Column 1 Sph Column 2 Sph Tree Sph/Cyl Column
0

0.5

1

1.5

2

2.5
x 10

4

Architecture

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
o
l/
m

3
)

 

 

Average Bulk Concentration

Average Surface Concentration



 

 

90 

As is clear from Figures 40 and 41 the overall ranking of structure performance does not 

change over the discharge rate. However, it is to be noted that the Spherical Tree 

Structure does recover more material than any other over these cycles. 

Additionally, with the decrease in discharge rate, the depth of discharge is a very 

important quantity for gauging the performance of a battery system. Shown in the 

following four figures are the average bulk concentrations for the base cases at each 

initial discharge rate and with two hours of relaxation time. For the majority of the 

structures there is an increase in depth of discharge with a decrease in discharge rate as 

expected. This occurs because with slower discharge rate, more lithium can diffuse to 

the surface to be extracted before the surface concentration drops to the point where the 

cutoff potential is reached. One of the more striking behaviors in the above results, 

however, is that seen in the Spherical Tree structure. As illustrated in Figure 44 there is 

initially a greater depth of discharge with a decrease in discharge rate, only to be 

followed by a larger concentration at the end of discharge for the C/10 initial discharge 

rate. 
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Figure 42. Depth of discharge for the Spherical Column 1 base structure at the 1C, C/2, 

and C/10 discharge rates. 
 

 

 
Figure 43. Depth of discharge for the Spherical Column 2 base structure at the 1C, C/2, 

and C/10 discharge rates. 
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Figure 44. Depth of discharge for the Spherical Tree base structure at the 1C, C/2, and 

C/10 discharge rates. 
 

 

 
Figure 45. Depth of discharge for the Spherical/Cylindrical Column base structure at the 

1C, C/2, and C/10 discharge rates. 
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This may indicate some rate dependence on the performance of this particular structure, 

and is therefore important for determining how best to utilize this particular geometry. 

However, the depth of discharge is more constant across all discharge rates for this 

structure when compared to the others. 

Discharge Performance 

 Having collected surface concentration values from both the anode and cathode 

at each temporal moment, the voltage profiles over the discharge, relaxation, and 

recharge processes could be produced. It was found that all structures showed similar 

capacity values after discharge. However, it is important to consider how effective a 

particular structure is in terms of utilizing the amount of lithium it can store for a 

particular capacity. This is best shown by plotting voltage versus the state of charge 

(SOC). As the structure is depleted of lithium, the SOC will change according to the 

bulk concentration. Here, however, similar to capacity plots, it is important to remember 

that these plots need to be read as though the values on the horizontal axis are the 

amounts of SOC lost or spent. These are shown below. 
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Figure 46. Discharge results for Spherical Column 1 base and realizations to a cutoff 

potential of 3V versus SOC. 
 

 

 
Figure 47. Discharge results for Spherical Column 2 base and realizations to a cutoff 

potential of 3V versus SOC. 
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Figure 48. Discharge results for Spherical Tree base and realizations to a cutoff 

potential of 3V versus SOC. 
 

 

 
Figure 49. Discharge results for Spherical/Cylindrical Column base and realizations to a 

cutoff potential of 3V versus SOC. 

0 0.1 0.2 0.3 0.4 0.5 0.6
3

3.2

3.4

3.6

3.8

4

SOC

C
e

ll 
P

o
te

n
ti
a

l 
(V

)

 

 

Base, V/A=9.36m

Rel 1, V/A=9.12m

Rel 2, V/A=9.04m

Rel 3, V/A=9.22m

Rel 4, V/A=9.83m

Rel 5, V/A=9.78m

0 0.1 0.2 0.3 0.4 0.5 0.6
3

3.2

3.4

3.6

3.8

4

SOC

C
e

ll 
P

o
te

n
ti
a

l 
(V

)

 

 

Base, V/A=9.35m

Rel 1, V/A=9.36m

Rel 2, V/A=9.44m

Rel 3, V/A=9.88m

Rel 4, V/A=9.42m

Rel 5, V/A=9.33m



 

 

96 

 These figures prove to be an excellent diagnostic tool for further gauging the 

performance of each of the above structures to each other. It is clear that although all of 

the structures show similar capacity after discharge, the utilization of available lithium is 

quite different. Spherical Column 1 shows the lowest SOC after discharge, meaning that 

although it has achieved similar capacity values to the other structures, it has been 

extremely inefficient. On the other hand, Spherical Column 2 shows the largest amount 

of SOC spent during discharge. This is likely attributable to the smaller volume to area 

ratios for these structures. A similar argument may also be appropriate for explaining the 

similarity in SOC behavior between the Spherical Tree and Spherical/Cylindrical 

Column structures. However, again, there are instances where volume to surface area 

ratios do not explain behavior, and many instances are similar to those for the bulk 

concentration analysis. For instance, Realizations 1 and 2 of the Spherical/Cylindrical 

Column structures do not distinguish themselves during discharge. This lack of 

distinction underlines the importance of analysis from multiple points of view, as 

completed previously. It is also to be noted that those structures showing increased 

particle overlap utilize less SOC over discharge, and this is due to a local drop in active 

surface area at those points. With this drop in surface area, lithium cannot be extracted as 

easily before the remaining surface area becomes depleted enough to force the structure 

to become fully discharged. This effect is also clear from the contour plots shown above. 

For an initial discharge at the 1C rate, the base cases were allowed to relax for 

one hour, and then were recharged at the 1C rate. The voltage behavior for all base 

microstructures is shown below. 
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Figure 50. Discharge curves for the initial discharge at 1C, relaxation for one hour, and 

recharge at 1C, versus SOC. 
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voltage versus SOC is shown in Figure 50 for the base structures. Here can be better 

visualized some of the effects of overall microstructure performance, as direct 

comparisons can now be drawn. As found previously, Spherical Column 2 shows the 

greatest use of available material for the same capacity, with Spherical Column 1 

showing the least. It is to be noted however, that Spherical Column 2 does not recover 

the same amount of active material upon recharge, which is very detrimental to further 

use of the battery, as discussed with recharge efficacy. 
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The discharge curves over the full cycles for the base cases at the lower initial 

discharge rates are shown below, in Figures51 and 52. 

 
Figure 51. Discharge curve for the initial discharge at C/2, relaxation for one hour, and 

recharge at 1C versus SOC. 
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Figure 52. Discharge curve for the initial discharge at C/10, relaxation for one hour, and 

recharge at 1C versus SOC 
 

The above figures clearly indicate the increase in capacity and the decrease in hysteresis 

as the discharge rate decreases. Also to be noted is the increase in recovered capacity as 

the discharge rate decreases. It is interesting to note that, as shown in Figure 52, the 

Spherical Tree and Spherical/Cylindrical Column structures have converged to show 
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generated using the Spherical Column 1 base anode, and using another code written in 

MATLAB®, as given in Appendix B, to generate a cathode around this anode geometry. 

Having completed this cell, an interdigitated plate, or trench, design was generated 

where both the anode and cathode had equivalent volume to surface area ratios as the 

first cell design. This geometry was also restrained to a similar cell footprint as the 

former. These two geometries are illustrated in below, and relevant quantities are given 

in the following table. 

 

Table 5. Geometrical properties of the 3D cell models. 
 

Architecture Volume(m
3
) Surface 

Area(m
2
) 

V/A Ratio 

(µm) 
    Aperiodic   

     Anode 2.34×10-13 2.30×10-8 10.2 
    Cathode 1.53×10-13 1.93×10-8 7.96 
Interdigitated Plates   

     Anode 1.95×10-13 1.91×10-8 10.2 
    Cathode 1.26×10-13 1.58×10-8 7.99 
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Figure 53. Aperiodic cell (A), and Interdigitated Plate cell (B). In both cases the bottom structure serves as the anode, and all 
dimensions are in micron. 
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Concentration and Relaxation Behaviors 

Similarly to the anode morphology study, the structures were discharged at the 1C rate, 

and then allowed to relax for two hours after the cutoff potential was reached. The bulk 

and surface concentration values over this process as well as respective contour plots, 

are shown below. As is clear from the above figures, the Interdigitated Plate design has a 

longer discharge time before cutoff is reached, and additionally reaches a higher depth of 

discharge. This is especially striking, as this structure has a lower volume than the 

aperiodic structure. What this indicates, is that the transport phenomena occurring within 

the Interdigitated Plate design is far more efficient than the other. Considering the 

contour plots, this is easily noted. Facile transport throughout the structure is maintained 

by large flux areas, as opposed to the Aperiodic design, which has choke points between 

spherical particles. 

It is to be noted at this point that during simulations, unphysical concentration 

cells of large lithium depletion were developed in both 3D cell configurations, despite 

the fact that bulk SOC values were in allowable ranges as provided in the literature(73). 
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Figure 54. Aperiodic cell (Row A), and Interdigitated Plate cell (Row B) over discharge at 1C and relaxation. All dimensions 
in micron and all concentration values in mol/m3. (To Scale from Figure 53) 
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Figure 55. Bulk concentration curves for both 3D designs for a discharge at 1C to a 

cutoff potential of 3V and relaxation for two hours. 
 

 

 
Figure 56. Surface concentration curves for both 3D designs for a discharge at 1C to a 

cutoff potential of 3V and relaxation for two hours. 
 

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

x 10
4

Time (s)

A
v
e

ra
g

e
 C

o
n

c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

 

 

Aperiodic Anode

Aperiodic Cathode

Plate Anode

Plate Anode

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

x 10
4

Time (s)

A
v
e

ra
g

e
 C

o
n

c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

 

 

Aperiodic Anode

Aperiodic Cathode

Plate Anode

Plate Anode



105 

 

 

 

These regions of low concentration were detected at the topmost spherical particles in 

the Aperiodic cell as well as at the sharp corners in the Interdigitated Plate cell. This 

behavior is a direct consequence of the constant flux assumption applied to the 

geometry. However, these results do not invalidate the value of this study, as this 

confirms many of the behaviors previously identified. Particle isolation at the top most 

spherical particles causes large depletion of lithium in these areas if particle overlap, as 

seen before, is not present. Additionally, Zadin et. al(53, 54) noted the exact same 

behavior in the trench design. What is important to mention, however, is that their study 

was performed with a full model, which included transport in the electrolyte. Here, using 

first principle approximations, the same conclusions were drawn at a greatly reduced 

computational cost. In order to mitigate this behavior in the interdigitated plate structure, 

rounding the sharp corners was found to be an effective method in the literature(53). 

 To compare the structures, relaxation behavior was considered over the two hour 

period. The results over this period for both structures and their respective anode and 

cathode are shown below. 
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Figure 57. Relaxation in bulk concentration for the Aperiodic anode. 

 

 

 
Figure 58. Relaxation in bulk concentration for the Aperiodic cathode. 
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Figure 59. Relaxation in bulk concentration for the Interdigitated Plate anode. 

 

 

 
Figure 60. Relaxation in bulk concentration for the Interdigitated Plate cathode. 
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The above structures do not relax within two hours using the definition applied 

previously for the anode morphologies. This is especially true for the cathode structures, 

likely due to the fact that the diffusion coefficient is four times smaller. Considering the 

anodes, there is a far greater change in the bulk concentration for the Interdigitated Plate 

design over the same time period. This is again due to the geometry of the structure, as it 

promotes facile transport for redistribution, and this is evident in Figure 54(B), which 

shows that the plate structures have a far more uniform distribution over discharge and 

after relaxation. 

Discharge Performance 

Similarly to what was completed before, surface concentration values were used 

to compute cell potential over the course of discharge. These results are illustrated 

below, and here especially is noted a difference in the voltage versus capacity behavior. 

 
Figure 61.  Discharge curve for the Aperiodic and Interdigitated Plate structures at 1C 

versus capacity. 
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Figure 62. Discharge curve for the Aperiodic and Interdigitated Plate structures at 1C 

versus SOC. 
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transport within these 3D structures has a profound effect on performance for a given 

volume of material, and so proper design must take these considerations into account. 

Sensitivity Study 

 In order to validate the results acquired in the above study, a mesh and tolerance 

refinement study was completed on the Spherical Tree base structure, as well as the 

anodes of the two 3D cell geometries at the 1C rate over discharge. As noted in the 

procedure in Appendix B, the geometry in MFiX® software is controlled not only by the 

mesh size specified, but the value TOL_F, which specifies the tolerance at which the 

desired geometry intersects the Cartesian Grid. 

To begin, all 3D anode morphology studies were completed on an equivalent 

mesh with 100 cells in both directions, with spatial extents of 240µm and 150µm in the 

horizontal and vertical directions, respectively. Additionally, a TOL_F value of 1×10-16 

was employed. To determine the kinds of variability possible, the number of cells was 

both increased and decreased by approximately a factor of 2 relative to the base case (or 

70 cells for the coarse grid, and 130 cells for the fine grid). Additionally, the TOL_F 

values were altered to 1×10-13 and 1×10-20 while keeping the base mesh. The results of 

the discharge process, in terms of average bulk and surface concentrations are displayed 

in the following figures. 
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Figure 63. Average bulk concentration over discharge at 1C for the Spherical Tree base 

structure with various refinements to mesh and TOL_F. 
 

 

 
Figure 64. Average surface concentration over discharge at 1C for the Spherical Tree 

base structure with various refinements to mesh and TOL_F. 
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Immediately noticeable from the above results, is the variance in the results utilizing a 

TOL_F value of 1×10-20. Upon further inspection of the data, these results were deemed 

to be erroneous, especially when the convergence behavior of the other studies was 

considered. The other results show excellent agreement over the discharge range, 

particularly considering both the scale and length of the simulation. 

Regarding the Aperiodic and Interedigitated Plate cells, base simulations were 

performed on meshes with 200 cells on spatial extents of 150µm in both directions. As 

completed previously, the base TOL_F value was set to 1×10-16. For the refinement 

studies, the number of cells was both increased and decreased by approximately a factor 

of 2, and the TOL_F values were varied similarly as previously. Here, only the anode 

has been analyzed. Shown in the following figures are analogous figures as previously 

shown for the anode morphologies for both the Aperiodic and Interdigitated Plate 3D 

cells. These results indicate more variability in the data, especially at the points where 

the cutoff potential was reached, due to the range at which the results cover. However, it 

is to be mentioned that unrealistic values for cell concentrations were detected in these 

simulations, as described previously, and these excessive gradients in the geometry may 

have caused increased variability. It is notable, however, that unlike in the 3D anode 

sensitivity study, those simulations with varying TOL_F values agree well with each 

other in these 3D cell designs.  
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Figure 65. Average bulk concentration over discharge at 1C for the Aperiodic anode 

with various refinements to mesh and TOL_F. 
 

 

 
Figure 66. Average surface concentration over discharge at 1C for the Aperiodic anode 

with various refinements to mesh and TOL_F. 
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Figure 67. Average bulk concentration over discharge at 1C for the Interdigitated Plate 

anode with various refinements to mesh and TOL_F. 
 

 

 
Figure 68. Average surface concentration over discharge at 1C for the Interdigitated 

Plate anode with various refinements to mesh and TOL_F. 
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CHAPTER IV  

SUMMARY AND OUTLOOK 

 

 Energy storage has been a growing field of interest and importance for both 

society and the research community for the past several decades. Lithium ion batteries in 

particular have attracted a large amount of attention, as these devices are now 

widespread in everything from portable electronics to hybrid electric vehicles. In order 

for continued progress to be made in this area, computational and mathematical tools 

will play a key role in the continued search for improvement in these systems. The 

objective of the above study was to use first principle approximations to quantify the 

performances of various electrode geometries for use in 3D battery design, which shows 

promise as the next step towards more efficient battery systems in terms of capacity and 

performance. 

Methodology 

The above objective was satisfied by first developing several MATLAB® codes 

to generate aperiodic anode structures, which included variability in particle size, shape, 

and overall morphology. Additionally, further codes were developed to introduce 

perturbed realizations of each base morphology, and to produce 3D cells using a chosen 

morphology for the anode. MFiX® software, an open source, generic, computational 

code developed by the National Energy Technology Laboratory (NETL) was used to 

simulate the above structures under conditions from literature. The results of these 
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studies yielded significant results by consideration of average bulk and surface 

concentrations, relaxation behavior, as well as cycle performance. 

Results 

Discharge profiles at the 1C, C/2, and C/10 rates were performed for the anode 

morphologies and results indicated that global parameters like volume to surface area 

ratio, as well as actual geometry, were both equally important for characterizing 

behavior. Expected increases in capacity with decreases in discharge rate were evident, 

as well as a decrease in recharge hysteresis. 

Furthermore, the variance in structure behavior under specified perturbed 

conditions were analyzed, and it was discovered that by increased branching in the 

aperiodic structures, as well as the inclusion of cylindrical particle shapes, produced the 

greatest differences in bulk concentration behavior. This finding was specifically 

important, as the inclusion of a wider particle size range did not produce such large 

differences. However, for surface concentration, those structures with greater particle 

distribution did show greatest variance. 

Relaxation studies of the structures proved to be some of the more useful for 

gauging structure behavior, especially as volume to surface area ratios were shown to be 

incapable of doing so. It was concluded that increased particle isolation due to branching 

in the structures caused large gradients to develop, and thus relaxation times were 

accordingly increased. Additionally, with the inclusion of greater particle size 

variability, relaxation times also showed a wide range of variability, but also a general 

increase relative to structures with more uniform particle distribution. This was 
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attributed to the uneven discharge between large and small particles, thus causing 

redistribution of concentration within the structures to take significantly more time. With 

the inclusion of cylindrical particles in the electrode geometry, a slightly larger 

relaxation time was noted relative to those structures with solely spherical particles. This 

was explained by considering that cylindrical particles, like additional branches, cause 

increase particle isolation due to the fact that diffusion distances for redistribution are 

increased as the primary mode of transport is along the cylindrical axis. 

 After one hour of relaxation, all structures were recharged at the 1C rate to a 

cutoff potential of 4.1V. After the recharge process was completed, differences between 

average bulk and surface concentrations were considered. It was determined that 

structures with larger particle size distributions were ineffective at recharging when 

initially discharged at the 1C rate. Further, upon visual investigation of the results, it was 

found that with the inclusion of cylindrical particles more uniform concentrations were 

developed in the core of the structure, due to the decreased diffusion length along the 

radial direction of the cylindrical axis. This finding is especially important, as it is an 

attribute that might be exploited in the design of new geometries. Considering these 

differences after initial discharge rates of C/2 and C/10 another important discovery was 

realized. With the decrease in initial discharge rate, there was a reversal in performance 

for the structure with additional branching. This structure was able to obtain uniform and 

greater concentrations after recharge. This indicates the need for consideration in 

electrode geometry as it pertains to a specific application, as some geometries may only 

be suitable for low discharge rates over long periods of time. 
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 Performance curves, in terms of voltage and either capacity or SOC were 

generated for the structures, and these were compared to yield significant findings. 

While all structures showed equivalent capacity over the discharge period, the utilization 

of available material showed large differences. The smallest structures investigated 

showed the greatest utilization, while the largest showed the poorest. It was additionally 

found that structures did show rate dependence on the utilization of material, and so 

careful consideration of these effects must be included in the design process. 

 After completion of the anode morphology study, two 3D cell geometries were 

developed with equivalent volume to surface area ratios. Simulated at a discharge rate of 

1C, these structures showed large increases in capacity. This behavior was attributed to 

the fact that the cathode was no longer considered as a single spherical particle as with 

the anode morphologies, but rather as a full 3D electrode. During these simulations, 

severe lithium deprived zones were detected in certain regions of the structure. While 

unphysical, these results indicated that with the inclusion of ‘sharp’ edges in the 

microstructure, such lithium depletion may occur. This same result was concluded by 

other studies in the literature using more complicated computational models. This thus 

ultimately underscored the value of the first principle approximations used in this study, 

as computational time and expense were lessened only to arrive at similar conclusions. 

Future Work 

 The results of this study should ultimately be used to target advantageous 

geometries for use in fuller, more developed models that include the other 

electrochemical behaviors not present here. The above study has used two dimensional 
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computational simulations to represent three dimensional slices of proposed geometry. 

Inclusion of these geometries in full, three dimensional models will be required to 

correct for the two dimensional approach employed here. This study has additionally 

assumed uniform current densities over the structures involved, and has neglected 

transport within the electrolyte. While suitable for low discharge rates, higher discharge 

rates will require knowledge of transport in the electrolyte as this becomes important, 

especially with regard to Butler-Volmer kinetics which governs current distribution over 

the structure. 

 Finally, experimental results are required to validate any numerical solution, 

whether it is a full cell simulation or an approximate approach as employed here. 

Representative architectures similar to those studied will need to be cycled over a wide 

range of discharge rates to generate results that can be compared against developed 

models. It is to be noted that these comparisons will likely be on the system level only, 

such as discharge performance and bulk behaviors. Once verification of system level 

results is complete, models can then be used to better investigate behavior at the scales 

considered in this study, which will lend further insight into architecture performance. 
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                      APPENDIX A 
 
RELAXATION TIME CALCULATION 

 

A typical result of the relaxation process is shown below, in Figure A.1, for the 

relaxation of the Spherical Column 1 Base structure over the two hour period. 

Additionally shown are the points at which a finite difference approximation was applied 

to calculate the derivative. To avoid potential ‘stair-stepping’ in the data causing an 

improper calculation of the derivative, smoothing has been applied by MATLAB® 

software to the data such that only the first appearance of a concentration value is 

recorded, and all others are neglected. Because this process may cause a non-uniform 

step size in time, as illustrated in the bottom of the figure, the following equation was 

used to calculate the derivative, and was derived using a second order Taylor Expansion 

with uneven node spacing. 

 
 

2 2 2 2

1 1 1 1

1 1

i i i i i i i i

i i i i

c h c h h c h cdc
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Figure A.1. Relaxation in average bulk concentration for the Base Spherical Column 1 
structure. To avoid ‘stair-stepping’ in the data and an incorrect approximation in the 

derivative, some smoothing as been applied. 
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Alternatively, one may use a polynomial regression to calculate the derivate using 

MATLAB® software. For the above data, the following uses this approach, as shown in 

Figure A.2. 

 

Figure A.2. Relaxation in average bulk concentration for the Base Spherical Column 1 
structure. A 9th order polynomial has been applied to compute the derivative. 
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             APPENDIX B 
 
SIMULATION PROCEDURE  

MATLAB GEOMETRY GENERATORS 

 The geometry files for MFiX® are generated using the 

Fractal_Geometry_Generator.m and Fractal_Geometry_Reader.m files. Here the user 

can specify the number of branches, generations, and other parameters to generate the 

desired geometry. This first will produce two text files GEOMFORMFIX.txt and 

GEOMFORMATLAB.txt. The second can be used to generate perturbed realizations by 

running the Fractal_Geometry_Reader.m file when the above text files are in the same 

directory, and will produce INCGEOMFORMFIX.txt and INCGEOMFORMATLAB.txt. 

Additionally, for the aperiodic 3D cell, a base anode structure is produced by using one 

of the above codes, and the Fractal_Aperiodic_Generator.m file can be used when the 

this case is in the same directory.These will be used in the mfix.dat file as discussed 

later. 

 

MATLAB PDEPE 

 MATLAB® software was used to solve the fickian diffusion problem in 

spherical coordinates. The corresponding file for doing so is FICKIANPDE.m. Here the 

user will specify the operating current, the radius of the particle, the diffusion 

coefficient, the maximum intercalatable concentration, the initial concentration, 

Faraday’s Constant, and the active surface area of the electrode on lines 21 through 26. 

The spatial discretization and time vector are specified on lines 34 and 35. Once run, this 
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file will produce three files: CATH_SConc.txt, CATH_AConc.txt, and CATH_FConc.txt, 

for the surface concentration, average bulk concentration, and final concentration after 

discharge, respectively.  

 In order to restart a simulation, such as when the relaxation studies were 

conducted, FICKIANPDERS.m file must be used. The CATH_FConc.txt file from above 

must be in the same directory, and renamed to CATH_IConc.txt, to serve as the initial 

conditions for the simulation. Once run, this file will produce the same as with 

FICKIANPDE.m.  

 

MFiX 

 The following instructions assume the user has properly installed MFiX® as per 

the instructions on the download website. These instructions will also assume that one 

folder per simulation will be made, and that the following files are in such a folder: 

mfix.dat, rrates.f, scalar_prop.f, usr0.f, and usr1.f. Additionally, the following folders 

need to be included in the simulation folder: cartesian_grid and post. The following files 

need to be included in cartesian_grid: allocate_cut_cell_arrays.f, cutcell_mod.f, 

vtk_out.f. The following files need to be included in post: post_cbar_time and post_epg.  

 The mfix.dat file contains all geometry specifications as well as tolerance values 

used in the simulation. It will also specify intial concentrations as well as the constant 

flux condition. The simulation time is specified by a start time of TIME and stop time 

TSTOP. The timestep used is specified by DT. The geometry produced by the 

MATLAB® file Fractal_Geometry_Geneartor.m is copied and placed under the 
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statement CARTESIAN_GRID=.TRUE. After the goemetry is specified, TOL_F can be 

altered to specify the desired accuracy for geometry definition. The simulation space is 

altered by changing the valuees of XLENGTH, YLENGTH, and ZLENGTH. The number 

of cells in each direction are specifed by IMAX, JMAX, and KMAX, respectively. For a 

2D simulation, the command NO_K=.TRUE. is entered under the cell definitions, and 

KMAX must be commented out. The initial conditions are enetered unter the Initial 

Conditions Section. Note that the spatial extents used before must be entered here, and 

the initial concentration is specified by IC_SCALAR(1,1). Further, the boundary 

condition on the structure is specified first by setting it to be a no slip wall, or 

BC_TYPE(12)=’CG_NSW’. Note there that the number twelve in the brackets 

corresponds to the group number of the geometry. BC_SCALARW  can be used to 

specify a constant value of concentration on the surface of the geometry, but is shut off 

by setting BC_HW_SCALAR equal to 0. The constant flux condition is applied by 

BC_C_SCALAR, and it is to be noted that the flux desired must be divided by the 

diffusion coefficient and the corrseponding value enetered here. The output of the code 

can be controlled by SPX_DT, which saves prescribed properties of the simulation at 

every time step.  

Once these values are altered, the mfix.exe executable file must first be generated 

by entering the following command in the terminal, where the directory is inside the 

simulation folder. 

 ~/mfix/model/make_mfix  (0.86) 
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This will produce the needed exectuable file. The simulation is started by typing the 

following commande 

 ./mfix.exe  (0.87) 

The simulation will run until TSTOP. The resulting .vtk files can be used to visualize 

results. The scalar_prop.f file is used to specify the diffusion coefficients within the 

structure. The file , usr0.f is used to calculate the surface concentration at every time step 

and will produce the file AVGSURF_CONC.dat. The file usr1.f is used to calculate the 

volume and surface area of the structure, and will be displayed in the terminal 

immediately after the simulation starts. Note, that for 2D simulations, these values are 

actually an area and length, multiplied by ZLENGTH as specified in the mfix.dat file. 

Once a simulation is complete, the following command is issued to produce the file 

cbar_c.dat. 

 ~/mfix/post_mfix/post_mfix<./post/post_cbar_time  (0.88) 

Additionally, the file void.dat is generated similarly by typing the following into the 

terminal. 

 ~/mfix/post_mfix/post_mfix<./post/post_epg  (0.89) 

These two files are used in conjuncture to calculate the average concentration in the 

geometry. The file cbar_c.dat contains average concentration values that have been 

multiplied by the void fraction of the simulation, as shown in void.dat. Therefore, to 

extract the average concentration values, the values in cbar_c.dat must be divided by the 

value calcualted by void.dat. It is noted that void.dat will contain void fraction values at 
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every time step, but these are the same as no change in geometry is occuring for these 

simulations. 

 In order to restart an MFiX simulation, a restart file at the desired time step must 

be produced. This is accomplished by entering the following command. 

 ~/mfix/post_mfix/post_mfix  (0.90) 

Following the onscreen instructions, one must produce a .RES file from the data stored 

in the .SPX files. Following the instructions, the user will be asked to retrieve the data 

from the desired time step. Once this is complete, the user will be asked for the time at 

which the restart file is to start, and the time step DT to be used. The mfix.dat file then 

needs to be altered accordingly if required, with the proper time and flux values. 

Additionally, when running a restart, the line in mfix.dat RUN_TYPE=’new’ needs to be 

changed to RUN_TYPE=’Restart_1’. 

 

Processing 

 After corresponding simulations are completed, the file Data_Processor.m is 

used to calculate the voltage values based on the surface concentrations stored in 

AVGSURF_CONC.dat. To use this code, the required files from both MFiX and 

MATLAB need to be in the same directory. Also, the user may wish to rename the files 

in a more descriptive fashion, especially if multiple realizations of the same geometry 

have been used, as this processing code is capable of processing any number of 

simulations. In the code attached, the anode bulk, surface, and volume fraction files have 

been renamed, so that for the instance of the base case these are Base_AConc.txt, 
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Base_SConc.txt, and Base_Void.txt. Correspondingly, the cathode simulations have been 

renamed to CATH_AConc.txt, CATH_SConc.txt, and CATH_Void.txt. It is to be noted, 

that when an MFiX simulation is restarted, the intial average bulk concentration value 

will not be recorded in cbar_c.dat. Therefore the user will need to take this value from 

the cbar_c.dat file from the original simulation. In Data_Processor.m the user will 

specify the bounds of the simulation time, the timestep, the applied current, and the 

bounds of the computational domain. Further, using the void.dat files, the volume 

fractions are specified beginning on line 27. The appropriate text files that specify bulk 

and surface concentrations are read in by MATLAB® beginning on line 36. It is to be 

noted that cbar_c.dat has headers and timestamps that need to be stripped before 

MATLAB® can read it. This can be accomplished easily in Microsoft Excel®. All of 

these concentration values are stored in a matrix called Sims_Conc. The global cell 

properties are defined beginning on line 54. Once this code is run, text files containing 

the voltage values will be produced at each time step. 
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Fracatal_Geometry_Generator.m 

%This m-file is meant to generate a fractal based microstructure for a 
%Lithium Ion Battery electrode 

  
clc, clear all, close all, format long, 
%%User Inputs 
    %Specify the maximum number of generations 
        max_gen=7; 

  
    %Specify the mean and standard deviation of the particle axes 
        axes_mean=12.5/8.5*10^-6; 
        axes_stdev=1/8.5*10^-6; 

     
%%Fractal Generation 
%Set a particle counters 
    part_count_new=0; 
    part_count_old=0; 

     
%Generate a number of spherical spawning particles, that are 

equidistant from each 
%other 
    for i=1:10 
        part_count_new=part_count_new+1; 
        

part_mjr_axis(1,part_count_new)=normrnd(axes_mean,axes_stdev,1); 
        

part_mnr_axis(1,part_count_new)=part_mjr_axis(1,part_count_new); 
        part_coord_x(1,part_count_new)=3*10^-6+1.5*axes_mean*i; 
        part_coord_y(1,part_count_new)=3*10^-6; 
        part_branlen(1,part_count_new)=0; 
        part_angle(1,part_count_new)=0; 
        part_type(1,part_count_new)=1; 
        part_parent_x(1,part_count_new)=0; 
        part_parent_y(1,part_count_new)=0; 
        part_parent_type(1,part_count_new)=0; 
        part_parent_angle(1,part_count_new)=0; 
        part_generation(1,part_count_new)=0; 
    end 

     
%Produce the number of specified generations 
    for i=1:max_gen 
        part_sweep_first=part_count_old+1; 
        part_sweep_last=part_count_old+part_count_new; 
        part_count_old=part_count_old+part_count_new; 
        part_count_new=0; 

         
        %Sweep over previous generation 
            for j=part_sweep_first:part_sweep_last 
                parent_x=part_coord_x(1,j); 
                parent_y=part_coord_y(1,j); 
                parent_mjr_axis=part_mjr_axis(1,j); 
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                parent_mnr_axis=part_mnr_axis(1,j); 
                parent_type=part_type(1,j); 
                parent_angle=part_angle(1,j); 

                 
                %Determine the number of branches the parent particle 

will 
                %produce 
                if parent_type~=3 
                    num_bran=randi([1,1],1); 
                else 
                    num_bran=1; 
                end 

                 
                if num_bran>0 

                         
                    for k=1:num_bran 

                             
                        %Determine the child particle type 1=sphere, 

2=ellipse, 
                        %3=cylinder. However, prevent 2 cylinders from 
                        %forming consecutively. 
                        if part_type(1,j)~=3 
                            type=randi([1,1],1); 
                            if type ==2 
                                type =1; 
                            end 
                        else 
                            type=randi([1,1],1); 
                        end     

                             

                         
                        if type==1 
                            %Determine the radius of the sphere 
                                

mjr_axis=normrnd(axes_mean,axes_stdev,1); 
                                mnr_axis=mjr_axis; 

                             
                            %Determine the branch length 
                                

bran_length=randi([50,95],1)/100*(parent_mjr_axis+mjr_axis); 
                        end 

                         
                        if type==3 
                            %The major axis of the cylinder is half its 

length, 
                            %the minor is its radius. Maintain an L/d 

ratio 
                            %of 2. 
                                

mjr_axis=normrnd(axes_mean,axes_stdev,1); 
                                mnr_axis=mjr_axis/2; 
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                            %Determine the branch length 
                                

bran_length=randi([50,95],1)/100*(parent_mjr_axis+mjr_axis); 
                        end 

                         
                        if type==2 
                            %The major axis is half the major axis of 

an elipse 
                                

mjr_axis=normrnd(axes_mean,axes_stdev,1); 
                                

mnr_axis=normrnd(axes_mean,axes_stdev,1); 

                             
                            %Determine the branch length 
                                

bran_length=randi([50,95],1)/100*(parent_mjr_axis+mjr_axis); 
                        end 

                         
                        neigh_x=zeros(0,0); 
                        neigh_y=zeros(0,0); 
                        neigh_mnr_axis=zeros(0,0); 
                        bran_angle_low=0; 
                        bran_angle_up=pi; 
                        near=1; 
                        %Determine if particle placement is possible by 
                        %searching for nearest particle neighbors that 

are 
                        %within (branch+major_axis) distance 
                        for l=1:length(part_coord_x) 
                            dist=sqrt((parent_x-

part_coord_x(1,l))^2+(parent_y-part_coord_y(1,l))^2); 
                            if dist>0 && 

dist<(bran_length+mjr_axis+part_mjr_axis(1,l)) 
                                neigh_x(1,near)=part_coord_x(1,l); 
                                neigh_y(1,near)=part_coord_y(1,l); 
                                

neigh_mjr_axis(1,near)=part_mjr_axis(1,l); 
                                near=near+1; 
                            end 
                        end 

                         
                        if prod(size(neigh_x))~=0 
                            for l=1:length(neigh_x) 
                                angle=atan2(neigh_y(1,l)-

parent_y,neigh_x(1,l)-parent_x); 
                                if angle>=0 && angle<pi/2 
                                    if angle>bran_angle_low 
                                        bran_angle_low=0; 
                                        

bran_angle_low=bran_angle_low+angle+2*atan2(neigh_mjr_axis(1,l),bran_le

ngth); 
                                    end 
                                end 



137 

 

 

 

  
                                if angle>=pi/2 &&angle<=pi 
                                    if angle<bran_angle_up 
                                        bran_angle_up=pi; 
                                        bran_angle_up=bran_angle_up-

(pi-angle)-2*atan2(neigh_mjr_axis(1,l),bran_length); 
                                    end 
                                end 
                            end 
                        end 

                         
                        if bran_length*(bran_angle_up-

bran_angle_low)>2*mnr_axis 
                            if parent_type~=3 
                                

bran_angle=(bran_angle_up+bran_angle_low)/2+randi([-

15,15],1)/100*(bran_angle_up+bran_angle_low)/2; 
                            else 
                                bran_angle=parent_angle; 
                            end 
                            part_count_new=part_count_new+1; 
                            

part_mjr_axis(1,part_count_new+part_count_old)=mjr_axis; 
                            

part_mnr_axis(1,part_count_new+part_count_old)=mnr_axis; 
                            

part_type(1,part_count_new+part_count_old)=type; 
                            

part_coord_x(1,part_count_new+part_count_old)=parent_x+bran_length*cos(

bran_angle); 
                            

part_coord_y(1,part_count_new+part_count_old)=parent_y+bran_length*sin(

bran_angle); 
                            

part_branlen(1,part_count_new+part_count_old)=bran_length; 
                            

part_angle(1,part_count_new+part_count_old)=bran_angle; 
                            

part_parent_x(1,part_count_new+part_count_old)=parent_x; 
                            

part_parent_y(1,part_count_new+part_count_old)=parent_y; 
                            

part_parent_type(1,part_count_new+part_count_old)=parent_type; 
                            

part_parent_angle(1,part_count_new+part_count_old)=parent_angle; 
                            

part_generation(1,part_count_new+part_count_old)=i; 
                        end 

                         
                    end 
                end 
            end 
    end 
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%Plot the particles 
    figure(1) 
    hold on 
    axis equal 
    for i=1:length(part_coord_x) 
        %Extract the particle type 
            type=part_type(1,i); 
        if type==1 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            [x y]=draw_circle(part_x, part_y, mjr_axis); 
            plot(x,y) 
        end 

         
        if type==3 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            a=[part_x+mnr_axis*cos(theta+3*pi/2) 

part_y+mnr_axis*sin(theta+3*pi/2)]; 
            b=[part_x+mnr_axis*cos(theta+pi/2) 

part_y+mnr_axis*sin(theta+pi/2)]; 
            line([a(1)+mjr_axis*cos(theta) 

b(1)+mjr_axis*cos(theta)],[a(2)+mjr_axis*sin(theta) 

b(2)+mjr_axis*sin(theta)]) 
            line([b(1)+mjr_axis*cos(theta) b(1)-

mjr_axis*cos(theta)],[b(2)+mjr_axis*sin(theta) b(2)-

mjr_axis*sin(theta)]) 
            line([b(1)-mjr_axis*cos(theta) a(1)-

mjr_axis*cos(theta)],[b(2)-mjr_axis*sin(theta) a(2)-

mjr_axis*sin(theta)]) 
            line([a(1)-mjr_axis*cos(theta) 

a(1)+mjr_axis*cos(theta)],[a(2)-mjr_axis*sin(theta) 

a(2)+mjr_axis*sin(theta)]) 
        end 

         
        if type==2 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            ellipse(mjr_axis,mnr_axis,theta,part_x,part_y) 
        end 
    end 

     
%Write the geometry so that MFIX can read it 
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    fid=fopen('GEOMFORMFIX.txt','w'); 

     
    str1=['N_QUADRIC = ',num2str(length(part_coord_x))]; 
    str2=[' ']; 
    fprintf(fid,'%s\n',str1); 
    fprintf(fid,'%s\n',str2); 

     
    for i=1:length(part_coord_x) 
        type=part_type(1,i); 

         
        if type==1 
            str1=['QUADRIC_FORM(',num2str(i),') = ''Z_CYL_INT''']; 
            str2=['RADIUS(',num2str(i),') = 

',num2str(part_mjr_axis(1,i))]; 
            str3=[' ']; 
            str4=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))]; 
            str5=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))]; 
            str6=[' ']; 
            fprintf(fid,'%s\n',str1); 
            fprintf(fid,'%s\n',str2); 
            fprintf(fid,'%s\n',str3); 
            fprintf(fid,'%s\n',str4); 
            fprintf(fid,'%s\n',str5); 
            fprintf(fid,'%s\n',str6); 
        end 

         
        if type==3 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            a=[part_x+mnr_axis*cos(theta+3*pi/2) 

part_y+mnr_axis*sin(theta+3*pi/2)]; 
            b=[part_x+mnr_axis*cos(theta+pi/2) 

part_y+mnr_axis*sin(theta+pi/2)]; 
            y1=a(2)+mjr_axis*sin(theta); 
            y2=b(2)+mjr_axis*sin(theta); 
            y3=b(2)-mjr_axis*sin(theta); 
            y4=a(2)-mjr_axis*sin(theta); 
            clip_ymax=max([y1, y2, y3, y4]); 
            clip_ymin=min([y1, y2, y3, y4]); 
            str1=['QUADRIC_FORM(',num2str(i),') = ''X_CYL_INT''']; 
            str2=['RADIUS(',num2str(i),') = ',num2str(mnr_axis)]; 
            str3=[' ']; 
            str4=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))]; 
            str5=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))]; 
            str6=[' ']; 
            str7=['THETA_Z(',num2str(i),')=',num2str(theta*180/pi)]; 
            str8=[' ']; 
            str9=['clip_ymin(',num2str(i),')=',num2str(clip_ymin)]; 
            str10=['clip_ymax(',num2str(i),')=',num2str(clip_ymax)]; 
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            str11=['FLUID_IN_CLIPPED_REGION(',num2str(i),') = 

.FALSE.']; 
            str12=[' ']; 
            fprintf(fid,'%s\n',str1); 
            fprintf(fid,'%s\n',str2); 
            fprintf(fid,'%s\n',str3); 
            fprintf(fid,'%s\n',str4); 
            fprintf(fid,'%s\n',str5); 
            fprintf(fid,'%s\n',str6); 
            fprintf(fid,'%s\n',str7); 
            fprintf(fid,'%s\n',str8); 
            fprintf(fid,'%s\n',str9); 
            fprintf(fid,'%s\n',str10); 
            fprintf(fid,'%s\n',str11); 
            fprintf(fid,'%s\n',str12); 
        end 

         
        if type==2 
            theta=part_angle(1,i); 
            a=part_mjr_axis(1,i); 
            b=part_mnr_axis(1,i); 
            str1=['lambda_x(',num2str(i),') = ',num2str(b^2)]; 
            str2=['lambda_y(',num2str(i),') = ',num2str(a^2)]; 
            str3=['lambda_z(',num2str(i),') = ',num2str(0)]; 
            str4=['dquadric(',num2str(i),')= ',num2str(-a^2*b^2)]; 
            str5=[' ']; 
            str6=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))]; 
            str7=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))]; 
            str8=[' ']; 
            str9=['THETA_Z(',num2str(i),')=',num2str(theta*180/pi)]; 
            str10=[' ']; 
            fprintf(fid,'%s\n',str1); 
            fprintf(fid,'%s\n',str2); 
            fprintf(fid,'%s\n',str3); 
            fprintf(fid,'%s\n',str4); 
            fprintf(fid,'%s\n',str5); 
            fprintf(fid,'%s\n',str6); 
            fprintf(fid,'%s\n',str7); 
            fprintf(fid,'%s\n',str8); 
            fprintf(fid,'%s\n',str9); 
            fprintf(fid,'%s\n',str10); 
        end 
    end 

     
    str8=['N_GROUP = 1']; 
    str9=['GROUP_SIZE(1) = ',num2str(length(part_coord_x))]; 
    fprintf(fid,'%s\n',str8); 
    fprintf(fid,'%s\n',str9); 
    for i=1:length(part_coord_x) 
        str=['GROUP_Q(1,',num2str(i),') = ',num2str(i)]; 
        fprintf(fid,'%s\n',str); 
    end 
    str=['GROUP_RELATION(1) = ''OR''']; 
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    fprintf(fid,'%s\r',str); 
    str=['BC_ID_Q(1) = ']; 
    fprintf(fid,str); 
    for i=1:length(part_coord_x) 
        str=[num2str(12),' ']; 
        fprintf(fid,str); 
    end 

  
fclose(fid); 

  
%Write geometry in a format that matlab can read for post processing if 
%needed 

  
for i=1:length(part_coord_x) 
    

M(i,[1:12])=[part_coord_x(1,i),part_coord_y(1,i),part_mjr_axis(1,i),par

t_mnr_axis(1,i),... 
        part_type(1,i), part_branlen(1,i), part_angle(1,i), 

part_parent_x(1,i),... 
        

part_parent_y(1,i),part_parent_type(1,i),part_parent_angle(1,i),part_ge

neration(1,i)]; 
end 

  
dlmwrite('GEOMFORMATLAB.txt',M,'precision',18) 
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Fractal_Geometry_Reader.m 

%The following m-file is meant to read in fractal geometry produced by 
%Fractal_Geometry_Generator, plot it, and, if required, perturb it to 
%create new incarnations. 

  
clc, clear all, close all, format long 

  
%Read in the fractal geometry from GEOMFORMATLAB.txt 
    M=dlmread('GEOMFORMATLAB.txt'); 

     
%Separate the columns of 'M' into appropriate arrays 
    part_coord_x(1,:)=M(:,1); 
    part_coord_y(1,:)=M(:,2); 
    part_mjr_axis(1,:)=M(:,3); 
    part_mnr_axis(1,:)=M(:,4); 
    part_type(1,:)=M(:,5);  
    part_branlen(1,:)=M(:,6);  
    part_angle(1,:)=M(:,7);  
    part_parent_x(1,:)=M(:,8); 
    part_parent_y(1,:)=M(:,9); 
    part_parent_type(1,:)=M(:,10); 
    part_parent_angle(1,:)=M(:,11); 
    part_generation(1,:)=M(:,12); 

     
%Plot the particles 
    figure(1) 
    hold on 
    axis equal 
    for i=1:length(part_coord_x) 
        %Extract the particle type 
            type=part_type(1,i); 
        if type==1 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            [x y]=draw_circle(part_x, part_y, mjr_axis); 
            plot(x,y,'b') 
        end 

         
        if type==3 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            a=[part_x+mnr_axis*cos(theta+3*pi/2) 

part_y+mnr_axis*sin(theta+3*pi/2)]; 
            b=[part_x+mnr_axis*cos(theta+pi/2) 

part_y+mnr_axis*sin(theta+pi/2)]; 
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            line([a(1)+mjr_axis*cos(theta) 

b(1)+mjr_axis*cos(theta)],[a(2)+mjr_axis*sin(theta) 

b(2)+mjr_axis*sin(theta)]) 
            line([b(1)+mjr_axis*cos(theta) b(1)-

mjr_axis*cos(theta)],[b(2)+mjr_axis*sin(theta) b(2)-

mjr_axis*sin(theta)]) 
            line([b(1)-mjr_axis*cos(theta) a(1)-

mjr_axis*cos(theta)],[b(2)-mjr_axis*sin(theta) a(2)-

mjr_axis*sin(theta)]) 
            line([a(1)-mjr_axis*cos(theta) 

a(1)+mjr_axis*cos(theta)],[a(2)-mjr_axis*sin(theta) 

a(2)+mjr_axis*sin(theta)]) 
        end 

         
        if type==2 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            ellipse(mjr_axis,mnr_axis,theta,part_x,part_y) 
        end 
    end 

     
%Introduce pertubations in the branch angles and lengths to create new 

incarnations 
%of the geometry 

  
    %Specify angle pertubation limits. These are percentages of how 

much the 
    %angle can increase or decrease 
        angle_pert_up=130; 
        angle_pert_low=70; 
        length_pert_up=120; 
        length_pert_low=80; 

     
    %Recalculate new coordinates based upon new angles 
    for i=1:length(part_coord_x) 
        parent_x=part_parent_x(1,i); 
        parent_y=part_parent_y(1,i); 
        parent_type=part_parent_type(1,i); 
        parent_angle=part_parent_angle(1,i); 
        part_gen=part_generation(1,i); 
        part_x=part_coord_x(1,i); 
        part_y=part_coord_y(1,i); 
        bran_length=part_branlen(1,i); 

         
        if part_gen~=0 
            bran_angle=part_angle(1,i); 
            if parent_type~=3 
                

part_angle(1,i)=randi([angle_pert_low,angle_pert_up],1)/100*bran_angle; 
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            else 
                part_angle(1,i)=part_parent_angle(1,i); 
            end 
            

part_branlen(1,i)=randi([length_pert_low,length_pert_up],1)/100*bran_le

ngth; 
            %Find the children of this particle, and reset their 

parent's 
            %coordinates 
            bran_length=part_branlen(1,i); 
                for j=1:length(part_coord_x) 
                    if part_generation(1,j)==part_gen+1 
                        if part_parent_x(1,j)==part_x && 

part_parent_y(1,j)==part_y 
                           

part_parent_x(1,j)=parent_x+bran_length*cos(part_angle(1,i)); 
                           

part_parent_y(1,j)=parent_y+bran_length*sin(part_angle(1,i)); 
                           part_parent_angle(1,j)=part_angle(1,i); 
                        end 
                    end 
                end     
            

part_coord_x(1,i)=parent_x+bran_length*cos(part_angle(1,i)); 
            

part_coord_y(1,i)=parent_y+bran_length*sin(part_angle(1,i));    
        end  
    end 

     
    %Replot the particles in red over the orignal blue 
    for i=1:length(part_coord_x) 
        %Extract the particle type 
            type=part_type(1,i); 
        if type==1 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            [x y]=draw_circle(part_x, part_y, mjr_axis); 
            plot(x,y,'r') 
        end 

         
        if type==3 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            a=[part_x+mnr_axis*cos(theta+3*pi/2) 

part_y+mnr_axis*sin(theta+3*pi/2)]; 
            b=[part_x+mnr_axis*cos(theta+pi/2) 

part_y+mnr_axis*sin(theta+pi/2)]; 
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            line([a(1)+mjr_axis*cos(theta) 

b(1)+mjr_axis*cos(theta)],[a(2)+mjr_axis*sin(theta) 

b(2)+mjr_axis*sin(theta)],'Color','r') 
            line([b(1)+mjr_axis*cos(theta) b(1)-

mjr_axis*cos(theta)],[b(2)+mjr_axis*sin(theta) b(2)-

mjr_axis*sin(theta)],'Color','r') 
            line([b(1)-mjr_axis*cos(theta) a(1)-

mjr_axis*cos(theta)],[b(2)-mjr_axis*sin(theta) a(2)-

mjr_axis*sin(theta)],'Color','r') 
            line([a(1)-mjr_axis*cos(theta) 

a(1)+mjr_axis*cos(theta)],[a(2)-mjr_axis*sin(theta) 

a(2)+mjr_axis*sin(theta)],'Color','r') 
        end 

         
        if type==2 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            ellipse(mjr_axis,mnr_axis,theta,part_x,part_y,'r') 
        end 
    end 

     
    %Write the geometry so that MFIX can read it 
    fid=fopen('INCGEOMFORMFIX.txt','w'); 

     
    str1=['N_QUADRIC = ',num2str(length(part_coord_x))]; 
    str2=[' ']; 
    fprintf(fid,'%s\n',str1); 
    fprintf(fid,'%s\n',str2); 

     
    for i=1:length(part_coord_x) 
        type=part_type(1,i); 

         
        if type==1 
            str1=['QUADRIC_FORM(',num2str(i),') = ''Z_CYL_INT''']; 
            str2=['RADIUS(',num2str(i),') = 

',num2str(part_mjr_axis(1,i))]; 
            str3=[' ']; 
            str4=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))]; 
            str5=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))]; 
            str6=[' ']; 
            fprintf(fid,'%s\n',str1); 
            fprintf(fid,'%s\n',str2); 
            fprintf(fid,'%s\n',str3); 
            fprintf(fid,'%s\n',str4); 
            fprintf(fid,'%s\n',str5); 
            fprintf(fid,'%s\n',str6); 
        end 

         
        if type==3 
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            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            a=[part_x+mnr_axis*cos(theta+3*pi/2) 

part_y+mnr_axis*sin(theta+3*pi/2)]; 
            b=[part_x+mnr_axis*cos(theta+pi/2) 

part_y+mnr_axis*sin(theta+pi/2)]; 
            y1=a(2)+mjr_axis*sin(theta); 
            y2=b(2)+mjr_axis*sin(theta); 
            y3=b(2)-mjr_axis*sin(theta); 
            y4=a(2)-mjr_axis*sin(theta); 
            clip_ymax=max([y1, y2, y3, y4]); 
            clip_ymin=min([y1, y2, y3, y4]); 
            str1=['QUADRIC_FORM(',num2str(i),') = ''X_CYL_INT''']; 
            str2=['RADIUS(',num2str(i),') = ',num2str(mnr_axis)]; 
            str3=[' ']; 
            str4=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))]; 
            str5=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))]; 
            str6=[' ']; 
            str7=['THETA_Z(',num2str(i),')=',num2str(theta*180/pi)]; 
            str8=[' ']; 
            str9=['clip_ymin(',num2str(i),')=',num2str(clip_ymin)]; 
            str10=['clip_ymax(',num2str(i),')=',num2str(clip_ymax)]; 
            str11=['FLUID_IN_CLIPPED_REGION(',num2str(i),') = 

.FALSE.']; 
            str12=[' ']; 
            fprintf(fid,'%s\n',str1); 
            fprintf(fid,'%s\n',str2); 
            fprintf(fid,'%s\n',str3); 
            fprintf(fid,'%s\n',str4); 
            fprintf(fid,'%s\n',str5); 
            fprintf(fid,'%s\n',str6); 
            fprintf(fid,'%s\n',str7); 
            fprintf(fid,'%s\n',str8); 
            fprintf(fid,'%s\n',str9); 
            fprintf(fid,'%s\n',str10); 
            fprintf(fid,'%s\n',str11); 
            fprintf(fid,'%s\n',str12); 
        end 

         
        if type==2 
            theta=part_angle(1,i); 
            a=part_mjr_axis(1,i); 
            b=part_mnr_axis(1,i); 
            str1=['lambda_x(',num2str(i),') = ',num2str(b^2)]; 
            str2=['lambda_y(',num2str(i),') = ',num2str(a^2)]; 
            str3=['lambda_z(',num2str(i),') = ',num2str(0)]; 
            str4=['dquadric(',num2str(i),')= ',num2str(-a^2*b^2)]; 
            str5=[' ']; 
            str6=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))]; 
            str7=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))]; 
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            str8=[' ']; 
            str9=['THETA_Z(',num2str(i),')=',num2str(theta*180/pi)]; 
            str10=[' ']; 
            fprintf(fid,'%s\n',str1); 
            fprintf(fid,'%s\n',str2); 
            fprintf(fid,'%s\n',str3); 
            fprintf(fid,'%s\n',str4); 
            fprintf(fid,'%s\n',str5); 
            fprintf(fid,'%s\n',str6); 
            fprintf(fid,'%s\n',str7); 
            fprintf(fid,'%s\n',str8); 
            fprintf(fid,'%s\n',str9); 
            fprintf(fid,'%s\n',str10); 
        end 
    end 

     
    str8=['N_GROUP = 1']; 
    str9=['GROUP_SIZE(1) = ',num2str(length(part_coord_x))]; 
    fprintf(fid,'%s\n',str8); 
    fprintf(fid,'%s\n',str9); 
    for i=1:length(part_coord_x) 
        str=['GROUP_Q(1,',num2str(i),') = ',num2str(i)]; 
        fprintf(fid,'%s\n',str); 
    end 
    str=['GROUP_RELATION(1) = ''OR''']; 
    fprintf(fid,'%s\r',str); 
    str=['BC_ID_Q(1) = ']; 
    fprintf(fid,str); 
    for i=1:length(part_coord_x) 
        str=[num2str(12),' ']; 
        fprintf(fid,str); 
    end 

  
fclose(fid); 

  
%Write geometry in a format that matlab can read for post processing if 
%needed 

  
for i=1:length(part_coord_x) 
    

M(i,[1:12])=[part_coord_x(1,i),part_coord_y(1,i),part_mjr_axis(1,i),par

t_mnr_axis(1,i),... 
        part_type(1,i), part_branlen(1,i), part_angle(1,i), 

part_parent_x(1,i),... 
        

part_parent_y(1,i),part_parent_type(1,i),part_parent_angle(1,i),part_ge

neration(1,i)]; 
end 

  
dlmwrite('INCGEOMFORMATLAB.txt',M,'precision',18) 
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Fractal_Aperiodic_Generator.m 

%The following m-file is meant to read in fractal geometry produced by 
%Fractal_Geometry_Generator, then produce an interdigitated cathode 
%structure 

  
clc, clear all, close all, format long 

  
%%User Inputs 
    %Specify the maximum number of generations of the cathode structure 
        max_gen=10; 

  
    %Specify the mean and standard deviation of the particle axes 
        axes_mean=8.5/8.5*10^-6; 
        axes_stdev=1/8.5*10^-6; 

         
%%Generate the Cathode Structure 

  
%Read in the fractal geometry from GEOMFORMATLAB.txt 
    M=dlmread('GEOMFORMATLAB.txt'); 

     
%Separate the columns of 'M' into appropriate arrays 
    part_coord_x(1,:)=M(:,1); 
    part_coord_y(1,:)=M(:,2); 
    part_mjr_axis(1,:)=M(:,3); 
    part_mnr_axis(1,:)=M(:,4); 
    part_type(1,:)=M(:,5);  
    part_branlen(1,:)=M(:,6);  
    part_angle(1,:)=M(:,7);  
    part_parent_x(1,:)=M(:,8); 
    part_parent_y(1,:)=M(:,9); 
    part_parent_type(1,:)=M(:,10); 
    part_parent_angle(1,:)=M(:,11); 
    part_generation(1,:)=M(:,12); 

     
%Set a particle counters 
    part_count_new=0; 
    part_count_old=length(part_coord_x); 
    anode_part=length(part_coord_x); 

     
%Generate a number of spherical spawning particles, that are 

equidistant from each 
%other 
    for i=1:14 
        part_count_new=part_count_new+1; 
        

part_mjr_axis(1,part_count_old+part_count_new)=normrnd(axes_mean,axes_s

tdev,1); 
        

part_mnr_axis(1,part_count_old+part_count_new)=part_mjr_axis(1,part_cou

nt_new); 
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        part_coord_x(1,part_count_old+part_count_new)=5*10^-

6+1.5*axes_mean*i; 
        part_coord_y(1,part_count_old+part_count_new)=21.5*10^-6; 
        part_branlen(1,part_count_old+part_count_new)=0; 
        part_angle(1,part_count_old+part_count_new)=0; 
        part_type(1,part_count_old+part_count_new)=1; 
        part_parent_x(1,part_count_old+part_count_new)=0; 
        part_parent_y(1,part_count_old+part_count_new)=0; 
        part_parent_type(1,part_count_old+part_count_new)=0; 
        part_parent_angle(1,part_count_old+part_count_new)=0; 
        part_generation(1,part_count_old+part_count_new)=0; 
    end 

     
%Produce the number of specified generations 
    for i=1:max_gen 
        part_sweep_first=part_count_old+1; 
        part_sweep_last=part_count_old+part_count_new; 
        part_count_old=part_count_old+part_count_new; 
        part_count_new=0; 

         
        %Sweep over previous generation 
            for j=part_sweep_first:part_sweep_last 
                parent_x=part_coord_x(1,j); 
                parent_y=part_coord_y(1,j); 
                parent_mjr_axis=part_mjr_axis(1,j); 
                parent_mnr_axis=part_mnr_axis(1,j); 
                parent_type=part_type(1,j); 
                parent_angle=part_angle(1,j); 

                 
                %Determine the number of branches the parent particle 

will 
                %produce 
                if parent_type~=3 
                    num_bran=randi([1,1],1); 
                else 
                    num_bran=1; 
                end 

                 
                if num_bran>0 

                         
                    for k=1:num_bran 

                             
                        %Determine the child particle type 1=sphere, 

2=ellipse, 
                        %3=cylinder. However, prevent 2 cylinders from 
                        %forming consecutively. 
                        if part_type(1,j)~=3 
                            type=randi([1,1],1); 
                            if type ==2 
                                type =1; 
                            end 
                        else 
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                            type=randi([1,1],1); 
                        end     

                             

                         
                        if type==1 
                            %Determine the radius of the sphere 
                                

mjr_axis=normrnd(axes_mean,axes_stdev,1); 
                                mnr_axis=mjr_axis; 

                             
                            %Determine the branch length 
                                

bran_length=randi([50,95],1)/100*(parent_mjr_axis+mjr_axis); 
                        end 

                         
                        if type==3 
                            %The major axis of the cylinder is half its 

length, 
                            %the minor is its radius. Maintain an L/d 

ratio 
                            %of 2. 
                                

mjr_axis=normrnd(axes_mean,axes_stdev,1); 
                                mnr_axis=mjr_axis/2; 

                                 
                            %Determine the branch length 
                                

bran_length=randi([50,95],1)/100*(parent_mjr_axis+mjr_axis); 
                        end 

                         
                        if type==2 
                            %The major axis is half the major axis of 

an elipse 
                                

mjr_axis=normrnd(axes_mean,axes_stdev,1); 
                                

mnr_axis=normrnd(axes_mean,axes_stdev,1); 

                             
                            %Determine the branch length 
                                

bran_length=randi([50,95],1)/100*(parent_mjr_axis+mjr_axis); 
                        end 

                         
                        neigh_x=zeros(0,0); 
                        neigh_y=zeros(0,0); 
                        neigh_mnr_axis=zeros(0,0); 
                        bran_angle_low=-pi; 
                        bran_angle_up=0; 
                        near=1; 
                        %Determine if particle placement is possible by 
                        %searching for nearest particle neighbors that 

are 
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                        %within (branch+major_axis) distance 
                        for l=1:length(part_coord_x) 
                            dist=sqrt((parent_x-

part_coord_x(1,l))^2+(parent_y-part_coord_y(1,l))^2); 
                            if dist>0 && 

dist<(bran_length+mjr_axis+part_mjr_axis(1,l)) 
                                neigh_x(1,near)=part_coord_x(1,l); 
                                neigh_y(1,near)=part_coord_y(1,l); 
                                

neigh_mjr_axis(1,near)=part_mjr_axis(1,l); 
                                near=near+1; 
                            end 
                        end 

                         
                        if prod(size(neigh_x))~=0 
                            for l=1:length(neigh_x) 
                                angle=atan2(neigh_y(1,l)-

parent_y,neigh_x(1,l)-parent_x); 
                                if angle>=-pi && angle<-pi/2 
                                    if angle>bran_angle_low 
                                        bran_angle_low=angle 
                                        

%+2*atan2(neigh_mjr_axis(1,l),bran_length); 
                                    end 
                                end 

  
                                if angle>=-pi/2 &&angle<=0 
                                    if angle<bran_angle_up 
                                        bran_angle_up=pi; 
                                        bran_angle_up=angle 
                                        %-

2*atan2(neigh_mjr_axis(1,l),bran_length); 
                                    end 
                                end 
                            end 
                        end 

                         
                        if bran_length*(bran_angle_up-

bran_angle_low)>3*mnr_axis 
                            if parent_type~=3 
                                

bran_angle=(bran_angle_up+bran_angle_low)/2+randi([-

15,15],1)/100*(bran_angle_up+bran_angle_low)/2; 
                            else 
                                bran_angle=parent_angle; 
                            end 
                            part_count_new=part_count_new+1; 
                            

part_mjr_axis(1,part_count_new+part_count_old)=mjr_axis; 
                            

part_mnr_axis(1,part_count_new+part_count_old)=mnr_axis; 
                            

part_type(1,part_count_new+part_count_old)=type; 



152 

 

 

 

                            

part_coord_x(1,part_count_new+part_count_old)=parent_x+bran_length*cos(

bran_angle); 
                            

part_coord_y(1,part_count_new+part_count_old)=parent_y+bran_length*sin(

bran_angle); 
                            

part_branlen(1,part_count_new+part_count_old)=bran_length; 
                            

part_angle(1,part_count_new+part_count_old)=bran_angle; 
                            

part_parent_x(1,part_count_new+part_count_old)=parent_x; 
                            

part_parent_y(1,part_count_new+part_count_old)=parent_y; 
                            

part_parent_type(1,part_count_new+part_count_old)=parent_type; 
                            

part_parent_angle(1,part_count_new+part_count_old)=parent_angle; 
                            

part_generation(1,part_count_new+part_count_old)=i; 
                        end 

                         
                    end 
                end 
            end 
    end 

     
%Plot the particles 
    figure(1) 
    hold on 
    axis equal 
    for i=1:length(part_coord_x) 
        %Extract the particle type 
            type=part_type(1,i); 
        if type==1 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            [x y]=draw_circle(part_x, part_y, mjr_axis); 
            if i<=anode_part 
                plot(x,y) 
            else 
                plot(x,y,'r') 
            end 
        end 

         
        if type==3 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
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            part_y=part_coord_y(1,i); 
            a=[part_x+mnr_axis*cos(theta+3*pi/2) 

part_y+mnr_axis*sin(theta+3*pi/2)]; 
            b=[part_x+mnr_axis*cos(theta+pi/2) 

part_y+mnr_axis*sin(theta+pi/2)]; 
            if i<=anode_part 
                line([a(1)+mjr_axis*cos(theta) 

b(1)+mjr_axis*cos(theta)],[a(2)+mjr_axis*sin(theta) 

b(2)+mjr_axis*sin(theta)]) 
                line([b(1)+mjr_axis*cos(theta) b(1)-

mjr_axis*cos(theta)],[b(2)+mjr_axis*sin(theta) b(2)-

mjr_axis*sin(theta)]) 
                line([b(1)-mjr_axis*cos(theta) a(1)-

mjr_axis*cos(theta)],[b(2)-mjr_axis*sin(theta) a(2)-

mjr_axis*sin(theta)]) 
                line([a(1)-mjr_axis*cos(theta) 

a(1)+mjr_axis*cos(theta)],[a(2)-mjr_axis*sin(theta) 

a(2)+mjr_axis*sin(theta)]) 
            else 
                line([a(1)+mjr_axis*cos(theta) 

b(1)+mjr_axis*cos(theta)],[a(2)+mjr_axis*sin(theta) 

b(2)+mjr_axis*sin(theta)],'Color','r') 
                line([b(1)+mjr_axis*cos(theta) b(1)-

mjr_axis*cos(theta)],[b(2)+mjr_axis*sin(theta) b(2)-

mjr_axis*sin(theta)],'Color','r') 
                line([b(1)-mjr_axis*cos(theta) a(1)-

mjr_axis*cos(theta)],[b(2)-mjr_axis*sin(theta) a(2)-

mjr_axis*sin(theta)],'Color','r') 
                line([a(1)-mjr_axis*cos(theta) 

a(1)+mjr_axis*cos(theta)],[a(2)-mjr_axis*sin(theta) 

a(2)+mjr_axis*sin(theta)],'Color','r') 
            end 
        end 

         
        if type==2 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            ellipse(mjr_axis,mnr_axis,theta,part_x,part_y) 
        end 
    end 

     

  

     
    %Write the geometry so that MFIX can read it 
    fid=fopen('INCGEOMFORMFIX.txt','w'); 

     
    str1=['N_QUADRIC = ',num2str(length(part_coord_x))]; 
    str2=[' ']; 
    fprintf(fid,'%s\n',str1); 
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    fprintf(fid,'%s\n',str2); 

     
    for i=1:length(part_coord_x) 
        type=part_type(1,i); 

         
        if type==1 
            str1=['QUADRIC_FORM(',num2str(i),') = ''Z_CYL_INT''']; 
            str2=['RADIUS(',num2str(i),') = 

',num2str(part_mjr_axis(1,i))]; 
            str3=[' ']; 
            str4=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))]; 
            str5=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))]; 
            str6=[' ']; 
            fprintf(fid,'%s\n',str1); 
            fprintf(fid,'%s\n',str2); 
            fprintf(fid,'%s\n',str3); 
            fprintf(fid,'%s\n',str4); 
            fprintf(fid,'%s\n',str5); 
            fprintf(fid,'%s\n',str6); 
        end 

         
        if type==3 
            theta=part_angle(1,i); 
            mjr_axis=part_mjr_axis(1,i); 
            mnr_axis=part_mnr_axis(1,i); 
            part_x=part_coord_x(1,i); 
            part_y=part_coord_y(1,i); 
            a=[part_x+mnr_axis*cos(theta+3*pi/2) 

part_y+mnr_axis*sin(theta+3*pi/2)]; 
            b=[part_x+mnr_axis*cos(theta+pi/2) 

part_y+mnr_axis*sin(theta+pi/2)]; 
            y1=a(2)+mjr_axis*sin(theta); 
            y2=b(2)+mjr_axis*sin(theta); 
            y3=b(2)-mjr_axis*sin(theta); 
            y4=a(2)-mjr_axis*sin(theta); 
            clip_ymax=max([y1, y2, y3, y4]); 
            clip_ymin=min([y1, y2, y3, y4]); 
            str1=['QUADRIC_FORM(',num2str(i),') = ''X_CYL_INT''']; 
            str2=['RADIUS(',num2str(i),') = ',num2str(mnr_axis)]; 
            str3=[' ']; 
            str4=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))]; 
            str5=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))]; 
            str6=[' ']; 
            str7=['THETA_Z(',num2str(i),')=',num2str(theta*180/pi)]; 
            str8=[' ']; 
            str9=['clip_ymin(',num2str(i),')=',num2str(clip_ymin)]; 
            str10=['clip_ymax(',num2str(i),')=',num2str(clip_ymax)]; 
            str11=['FLUID_IN_CLIPPED_REGION(',num2str(i),') = 

.FALSE.']; 
            str12=[' ']; 
            fprintf(fid,'%s\n',str1); 
            fprintf(fid,'%s\n',str2); 
            fprintf(fid,'%s\n',str3); 
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            fprintf(fid,'%s\n',str4); 
            fprintf(fid,'%s\n',str5); 
            fprintf(fid,'%s\n',str6); 
            fprintf(fid,'%s\n',str7); 
            fprintf(fid,'%s\n',str8); 
            fprintf(fid,'%s\n',str9); 
            fprintf(fid,'%s\n',str10); 
            fprintf(fid,'%s\n',str11); 
            fprintf(fid,'%s\n',str12); 
        end 

         
        if type==2 
            theta=part_angle(1,i); 
            a=part_mjr_axis(1,i); 
            b=part_mnr_axis(1,i); 
            str1=['lambda_x(',num2str(i),') = ',num2str(b^2)]; 
            str2=['lambda_y(',num2str(i),') = ',num2str(a^2)]; 
            str3=['lambda_z(',num2str(i),') = ',num2str(0)]; 
            str4=['dquadric(',num2str(i),')= ',num2str(-a^2*b^2)]; 
            str5=[' ']; 
            str6=['t_x(',num2str(i),') = ',num2str(part_coord_x(1,i))]; 
            str7=['t_y(',num2str(i),') = ',num2str(part_coord_y(1,i))]; 
            str8=[' ']; 
            str9=['THETA_Z(',num2str(i),')=',num2str(theta*180/pi)]; 
            str10=[' ']; 
            fprintf(fid,'%s\n',str1); 
            fprintf(fid,'%s\n',str2); 
            fprintf(fid,'%s\n',str3); 
            fprintf(fid,'%s\n',str4); 
            fprintf(fid,'%s\n',str5); 
            fprintf(fid,'%s\n',str6); 
            fprintf(fid,'%s\n',str7); 
            fprintf(fid,'%s\n',str8); 
            fprintf(fid,'%s\n',str9); 
            fprintf(fid,'%s\n',str10); 
        end 
    end 

     
    str8=['N_GROUP = 1']; 
    str9=['GROUP_SIZE(1) = ',num2str(length(part_coord_x))]; 
    fprintf(fid,'%s\n',str8); 
    fprintf(fid,'%s\n',str9); 
    for i=1:length(part_coord_x) 
        str=['GROUP_Q(1,',num2str(i),') = ',num2str(i)]; 
        fprintf(fid,'%s\n',str); 
    end 
    str=['GROUP_RELATION(1) = ''OR''']; 
    fprintf(fid,'%s\r',str); 
    str=['BC_ID_Q(1) = ']; 
    fprintf(fid,str); 
    for i=1:length(part_coord_x) 
        str=[num2str(12),' ']; 
        fprintf(fid,str); 
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    end 

  
fclose(fid); 

  
%Write geometry in a format that matlab can read for post processing if 
%needed 

  
for i=1:length(part_coord_x) 
    

M(i,[1:12])=[part_coord_x(1,i),part_coord_y(1,i),part_mjr_axis(1,i),par

t_mnr_axis(1,i),... 
        part_type(1,i), part_branlen(1,i), part_angle(1,i), 

part_parent_x(1,i),... 
        

part_parent_y(1,i),part_parent_type(1,i),part_parent_angle(1,i),part_ge

neration(1,i)]; 
end 

  
dlmwrite('INCGEOMFORMATLAB.txt',M,'precision',18) 
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Data_Processor.m 

%The following m-file is meant to read in 2 files produced by MFIX 
%simulation and post processed by the user, *_CONC.txt and *_SCONC.txt, 
%and to produce needed quantities. NOTE: MFIX will produce cbar_c.dat 

and 
%AVGSURF_CONC.dat. These need to be trimmed of any headers so that 

MATLAB  
%can read it. Use excel and create the above text file names. 

  
clc, clear all, close all, format long 

  
%%User Inputs: 

  
    %Specify the bounds of simulation time and the time step used 
        t_start = 0; 
        t_stop = 7200; 
        dt = .1; 

         
    %Specify the Discharge/Charge Current (positive is discharging, and 
    %vice versa) 
        I_app=1.656; %A 

         
    %Specify the bounds of the computational domain 
        xmin=0; 
        ymin=0; 
        xmax=2.4*10^-4; 
        ymax=15.0*10^-5; 

         
    %Specify the void volume fractions of each simulation 
        Base_ep=.56; 

 
    %Read-in average concentration and surface average concentration 

values 
    %of each simulation, and group them in one matrix for processing 
        Base_AConc=dlmread('Base_AConc.txt'); 
        Base_SConc=dlmread('Base_SConc.txt'); 
        CATH_AConc=dlmread('CATH_AConc.txt'); 
        CATH_SConc=dlmread('CATH_SConc.txt'); 
        Sims_Conc=horzcat(Base_AConc, Base_SConc); 

         
     %Specify the Li-Ion Cell Properties 
            %Anode Properties 
                A_n=.08; %m^2 
                c_max_n=31833; %mol/m^3  
                D_s_n=3.9*10^-14; %m^2/s 
                alpha_n=.5; 
                k_n=1.764*10^-11; 
                c_0_n=.7522*c_max_n; %mol/m^3 
                S_n=.7824; %m^2 
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            %Mock Cathode Properties 
                R_p_p=8.5*10^-6; %m 
                c_max_p=51410; %mol/m^3 
                D_s_p=1.0*10^-14; 
                alpha_p=.5; 
                k_p=6.6667*10^-11; 
                c_0_p=.4952*c_max_p; 
                S_p=1.1167; 

                 
             %Assume a constant concentration in the electrolyte for 

both 
             %electrodes 
                c_e_n=1000; 
                c_e_p=1000; 

                 
             %Other Properties 
                nodes_p_r=100; 
                sample_freq=1; 
                F=96487; %C/mol 
                R_gas=8.3143; %J/mol*K 
                N_A=6.022*10^23; %atom/mol 
                k=1.380*10^-23; %m^2 kg/(s^2 K) 
                e=1.9*10^-19; %C 
                T=298; %K 
                eps_0=8.85*10^-12; %C^2/(N m^2) 

  
%%Process 

  
    %Generate time vector 
        t=t_start:dt:t_stop; 

        
    %Calculate the Equilibrium Potentials, Overpotentials, and Overall 

Cell 
    %Voltage vs time. 

     
        %Equilibrium Potentials 
            Eq_Pot_n=zeros(length(t),length(Sims_Conc(1,:))/2); 
            for i=1:length(Sims_Conc(1,:))/2 
                Eq_Pot_n(:,i)=U_n(Sims_Conc(:,(i+i)),c_max_n); 
            end 
            Eq_Pot_p=U_p(CATH_SConc,c_max_p); 

             
        %Overpotentials 
            eta_n=zeros(length(t),length(Sims_Conc(1,:))/2); 
            eta_p=zeros(length(t),1); 
            for i=1:length(Sims_Conc(1,:))/2 
                for j=1:length(Sims_Conc(:,1)) 
                    if c_max_n-Sims_Conc(j,i+i)>0 
                    Butler_Volmer_n= @(eta) 

k_n.*c_e_n.^alpha_n.*Sims_Conc(j,(i+i)).^... 
                        alpha_p.*(c_max_n-

Sims_Conc(j,(i+i))).^alpha_n*(exp(alpha_n.*... 
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                        F./(R_gas.*T).*eta)-exp(-

alpha_p.*F./(R_gas.*T).*eta))-I_app/(F*S_n); 
                        eta_n(j,i)=fzero(Butler_Volmer_n,0); 
                    end 
                end 
            end 

             
            for i=1:length(CATH_SConc(:,1)) 
                if c_max_p-CATH_SConc(i,1)>0 
                    Butler_Volmer_p= @(eta) 

k_p.*c_e_p.^alpha_n.*CATH_SConc(i,1).^... 
                        alpha_p.*(c_max_p-

CATH_SConc(i,1)).^alpha_n*(exp(alpha_n.*... 
                        F./(R_gas.*T).*eta)-exp(-

alpha_p.*F./(R_gas.*T).*eta))-(-I_app)/(F*S_p); 
                        eta_p(i,1)=fzero(Butler_Volmer_p,0); 
                end 
            end 

             
            %Calculate Overall Cell Potential 
                Base_V=(eta_p(:,1)-eta_n(:,1))+(Eq_Pot_p(:,1)-... 
                    Eq_Pot_n(:,1));             
            %Record Overall Cell Voltage Values 
                dlmwrite('Base_V.txt',Base_V,'precision',18) 
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FICKIANPDE.m 

function FickianPDE 
clc, close all, clear all 
%   This function file solves the fickian diffusion problem in 

spherical 
%   coordinates where concentration gradients exist in the radial 

direction 
%   only. This will output a file meant to be used in the 

Data_Processor 
%   m-file 
% 
%   In the form expected by PDEPE, the single PDE is written as 
% 
%       1        dc_s        d^2c_s         2    dc_s 
%      ---       ----    =   ------    +   ---   ---- 
%      D_Li       dt          dr^2          r     dr      
%      ----      ----    -------------    ------------- 
%       c         u      f(x,t,u,Du/Dx)   s(x,t,u,Du/Dx) 

  

  
%Declare and define global variables. Operating current, Particle 

radius, diffusion 
%coefficient,  maximum lithium concentration, initial lithium 
%concentration, Faraday's Constant, and active surface area. 
    global R_p_p D_s_p c_0_p c_max_p j_n; 
    I_app=1.656; %A 
    R_p_p=8.5*10^-6; %m 
    D_s_p=1*10^-14; 
    c_max_p=51410; %mol/m^3 
    c_0_p=.4952*c_max_p; 
    F=96487; %C/mol 
    S_p=1.1167; %m^2 
    j_n=-I_app/(F*S_p); 

     
%PDEPE expects a particular power on the spacial variable. Define 'm'     
    m = 0; 

  
%Define spacial and time limits 
    r = linspace(0,R_p_p,100); 
    t = 0:.1:4298.5; 

     
%Solve the PDE 
    options=odeset('RelTol',1*10^-6,'AbsTol',1*10^-12); 
    sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,r,t,options); 

  
%Extract Solution  
    c_s = sol(:,:,1); 

     
%Plot final concentration profile 
    figure(1) 
    plot(r, c_s(end,:)) 
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    title('Final Concentration Profile') 
    xlabel('Radial Position (m)') 
    ylabel('Concentration (mol/m^3)') 

     
%Calculate and plot mass conservation vs. time 
    Mass_NOM=zeros(1,length(t)); 
    Mass_Fick=zeros(1,length(t)); 
    sum=0; 
    for i=1:length(t) 
        Mass_Fick(i)=trapz(r,4*pi*r.^2.*c_s(i,:)); 
        Mass_NOM(i)=4/3*pi*R_p_p^3*c_0_p-4*pi*R_p_p^2*(t(i)-t(1))*j_n; 
        sum=sum+(Mass_Fick(i)-Mass_NOM(i))^2; 
    end 
    RMS=sqrt(sum); 
    figure(2) 
    hold on 
    plot(t,Mass_NOM,'r') 
    plot(t,Mass_Fick,'k--') 
    title('Mass Conservation') 
    xlabel('Time (s)') 
    ylabel('Moles of Li (mol)') 
    str=['Fickain, RMS=',num2str(RMS)]; 
    legend('Theoretical',str) 

     
%Record Average and Surface Concentrations 
    c_s_avg=zeros(1,length(t)); 
    for i=1:length(t) 
        c_s_avg(1,i)=trapz(r,4*pi*r.^2.*c_s(i,:)); 
    end 
    dlmwrite('CATH_SConc.txt', c_s(:,end));     
    dlmwrite('CATH_AConc.txt',c_s_avg); 
    dlmwrite('CATH_FConc.txt',c_s(end,:)); 
    t(end) 
%Construct the PDE as Matlab requires 
function [c,f,s] = pdex1pde(r,t,c_s,Dc_sDr) 
    global D_s_p  
    c = 1/D_s_p; 
    f = Dc_sDr; 
    s = 2/r.*Dc_sDr; 

  
%Set initial Concentration in the Sphere 
function c_s_0 = pdex1ic(r) 
    global c_0_p dr 
    c_s_0 = c_0_p; %mol/m^3 

     
%Set Boundary Conditions on the 'left' and 'right' sides 
%NOTE: MUST define the pore wall flux of Li 'j_n' 
function [pl,ql,pr,qr] = pdex1bc(rl,c_sl,rr,c_sr,t) 
    global D_s_p c_0 j_n 
    c_s_0=c_0; %mol/m^3 
    pl = c_sl.*0; 
    ql = D_s_p; 
    pr = j_n; 
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    qr = D_s_p; 
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FICKIANPDERS.m 

function FickianPDERS 
clc, close all, clear all 
%   This function file solves the fickian diffusion problem in 

spherical 
%   coordinates where concentration gradients exist in the radial 

direction 
%   only. This will output a file meant to be used in the 

Data_Processor 
%   m-file 
% 
%   In the form expected by PDEPE, the single PDE is written as 
% 
%       1        dc_s        d^2c_s         2    dc_s 
%      ---       ----    =   ------    +   ---   ---- 
%      D_Li       dt          dr^2          r     dr      
%      ----      ----    -------------    ------------- 
%       c         u      f(x,t,u,Du/Dx)   s(x,t,u,Du/Dx) 

  

  
%Declare and define global variables. Particle radius, diffusion 
%coefficient, initial lithium concentration, maximum lithium 

concentration, 
% Faraday's Constant, the universal gas constant, and operating 

temperature. 
    global R_p_p D_s_p c_0_p c_max_p j_n dr; 
    I_app=0; %A 
    R_p_p=8.5*10^-6; %m 
    c_max_p=51410; %mol/m^3 
    D_s_p=1*10^-14; 
    c_0_p=dlmread('CATH_IConcB.txt'); 
    S_p=1.1167; %m^2 
    F=96487; %C/mol 
    j_n=-I_app/(F*S_p); 

     
%PDEPE expects a particular power on the spacial variable. Define 'm'     
    m = 0; 

  
%Define spacial and time limits 
    r = linspace(0,R_p_p,100); 
    t = (4298.3):.1:(4298.3+3600); 
    dr = R_p_p/99; 

     
%Solve the PDE 
    options=odeset('RelTol',1*10^-6,'AbsTol',1*10^-12); 
    sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,r,t,options); 

  
%Extract Solution  
    c_s = sol(:,:,1); 

     
%Plot final concentration profile 
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    figure(1) 
    plot(r, c_s(end,:)) 
    title('Final Concentration Profile') 
    xlabel('Radial Position (m)') 
    ylabel('Concentration (mol/m^3)') 

     
%Calculate and plot mass conservation vs. time 
    Mass_NOM=zeros(1,length(t)); 
    Mass_Fick=zeros(1,length(t)); 
    sum=0; 
    for i=1:length(t) 
        Mass_Fick(i)=trapz(r,4*pi*r.^2.*c_s(i,:)); 
        Mass_NOM(i)=trapz(r,4*pi*r.^2.*c_0_p(1,:))-4*pi*R_p_p^2*(t(i)-

t(1))*j_n; 
        sum=sum+(Mass_Fick(i)-Mass_NOM(i))^2; 
    end 
    RMS=sqrt(sum); 
    figure(2) 
    hold on 
    plot(t,Mass_NOM,'r') 
    plot(t,Mass_Fick,'k--') 
    title('Mass Conservation') 
    xlabel('Time (s)') 
    ylabel('Moles of Li (mol)') 
    str=['Fickain, RMS=',num2str(RMS)]; 
    legend('Theoretical',str) 

     
%Record Average and Surface Concentrations 
    c_s_avg=zeros(1,length(t)); 
    for i=1:length(t) 
        c_s_avg(1,i)=trapz(r,4*pi*r.^2.*c_s(i,:)); 
    end 
    dlmwrite('CATH_SConcB.txt', c_s(:,end));     
    dlmwrite('CATH_AConcB.txt',c_s_avg); 
    dlmwrite('CATH_FConcB.txt',c_s(end,:)); 
    c_s(1,end) 

     
%Construct the PDE as Matlab requires 
function [c,f,s] = pdex1pde(r,t,c_s,Dc_sDr) 
    global D_s_p  
    c = 1/D_s_p; 
    f = Dc_sDr; 
    s = 2/r.*Dc_sDr; 

  
%Set initial Concentration in the Sphere 
function c_s_0 = pdex1ic(r) 
    global c_0_p dr 
    c_s_0 = c_0_p(round(r/dr)+1); %mol/m^3 

     
%Set Boundary Conditions on the 'left' and 'right' sides 
%NOTE: MUST define the pore wall flux of Li 'j_n' 
function [pl,ql,pr,qr] = pdex1bc(rl,c_sl,rr,c_sr,t) 
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    global D_s_p c_0 j_n 
    pl = c_sl.*0; 
    ql = D_s_p; 
    pr = j_n; 
    qr = D_s_p; 
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mfix.dat 

! Run-control section                                                            

                                                                                

   RUN_NAME              =  'PBED'            

 

   DESCRIPTION           = 'Diffusion in a Packed Bed' 

   RUN_TYPE              = 'new'              

   UNITS                 = 'SI' 

   TIME                  = 0.0                !start time 

   TSTOP                 = 7200.0 

   DT                    = 0.1               !time step 

   ENERGY_EQ             = .FALSE.            !do not solve 

energy eq 

   SPECIES_EQ            = .FALSE.    .FALSE. !do not solve 

species eq 

   CALL_USR          = .TRUE.            !Call usr1.f   

   

   DT_FAC = 1.0 

   DETECT_STALL = .FALSE. 

 

   TOL_RESID_Scalar      = 1.0e-3 

   TOL_RESID             = 1.0e-3 

 

   GRAVITY = 0.0 

 

   DISCRETIZE(1) = 2 

   DISCRETIZE(3) = 2 

   DISCRETIZE(4) = 2 

 

   DEF_COR       = .TRUE. 

   FPFOI         = .FALSE. 

  

   TOL_RESID     = 1.0E-6 

 

   MAX_NIT       = 5000  

 

   MOMENTUM_X_EQ(1) = .FALSE. 

   MOMENTUM_Y_EQ(1) = .FALSE. 

   MOMENTUM_Z_EQ(1) = .FALSE. 

 

   CYCLIC_X = .TRUE. 

   CYCLIC_Y = .TRUE. 

   CYCLIC_Z = .TRUE. 

 

!===============================================================

================ 

! Cartesian Grid - Quadric definition: 
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! Quadric surface Normal form :  

! f(x,y,z) = lambda_x * x^2 + lambda_y * y^2 + lambda_z * z^2 + 

d = 0 

! Regions where f(x,y,z) < 0 are part of the computational 

domain. 

! Regions where f(x,y,z) > 0 are excluded from the computational 

domain. 

! 

! Predefined quadrics: set QUADRIC_FORM to one of the following: 

! Plane:                    'PLANE' 

! Cylinder (internal flow): 'X_CYL_INT' or 'Y_CYL_INT' or 

'Z_CYL_INT' 

! Cylinder (external flow): 'X_CYL_EXT' or 'Y_CYL_EXT' or 

'Z_CYL_EXT' 

! Cone     (internal flow): 'X_CONE'    or 'Y_CONE'    or 

'Z_CONE' 

!===============================================================

================ 

 

  CARTESIAN_GRID = .TRUE. 

 

  N_QUADRIC = 17 

  

QUADRIC_FORM(1) = 'Z_CYL_INT' 

RADIUS(1) = 1.2866e-005 

  

t_x(1) = 9.875e-005 

t_y(1) = 5e-005 

  

QUADRIC_FORM(2) = 'Z_CYL_INT' 

RADIUS(2) = 1.6027e-005 

  

t_x(2) = 0.0001175 

t_y(2) = 5e-005 

  

QUADRIC_FORM(3) = 'Z_CYL_INT' 

RADIUS(3) = 1.2388e-005 

  

t_x(3) = 0.00013625 

t_y(3) = 5e-005 

  

QUADRIC_FORM(4) = 'Z_CYL_INT' 

RADIUS(4) = 1.0943e-005 

  

t_x(4) = 0.000155 

t_y(4) = 5e-005 

  

QUADRIC_FORM(5) = 'Z_CYL_INT' 

RADIUS(5) = 1.4415e-005 
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t_x(5) = 0.00017375 

t_y(5) = 5e-005 

  

QUADRIC_FORM(6) = 'Z_CYL_INT' 

RADIUS(6) = 1.5117e-005 

  

t_x(6) = 9.7695e-005 

t_y(6) = 7.2362e-005 

  

QUADRIC_FORM(7) = 'Z_CYL_INT' 

RADIUS(7) = 1.1353e-005 

  

t_x(7) = 0.00015378 

t_y(7) = 6.3032e-005 

  

QUADRIC_FORM(8) = 'Z_CYL_INT' 

RADIUS(8) = 1.4354e-005 

  

t_x(8) = 0.00018826 

t_y(8) = 6.9325e-005 

  

QUADRIC_FORM(9) = 'Z_CYL_INT' 

RADIUS(9) = 1.2744e-005 

  

t_x(9) = 9.9958e-005 

t_y(9) = 9.2855e-005 

  

QUADRIC_FORM(10) = 'Z_CYL_INT' 

RADIUS(10) = 1.1177e-005 

  

t_x(10) = 0.00014589 

t_y(10) = 7.7722e-005 

  

QUADRIC_FORM(11) = 'Z_CYL_INT' 

RADIUS(11) = 1.4796e-005 

  

t_x(11) = 0.00019988 

t_y(11) = 9.3168e-005 

  

QUADRIC_FORM(12) = 'Z_CYL_INT' 

RADIUS(12) = 1.2219e-005 

  

t_x(12) = 9.4785e-005 

t_y(12) = 0.000116 

  

QUADRIC_FORM(13) = 'Z_CYL_INT' 

RADIUS(13) = 1.2567e-005 
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t_x(13) = 0.00014513 

t_y(13) = 9.385e-005 

  

QUADRIC_FORM(14) = 'Z_CYL_INT' 

RADIUS(14) = 1.2695e-005 

  

t_x(14) = 0.00019988 

t_y(14) = 0.00011406 

  

QUADRIC_FORM(15) = 'Z_CYL_INT' 

RADIUS(15) = 1.2256e-005 

  

t_x(15) = 9.7536e-005 

t_y(15) = 0.00013042 

  

QUADRIC_FORM(16) = 'Z_CYL_INT' 

RADIUS(16) = 1.2853e-005 

  

t_x(16) = 0.0001481 

t_y(16) = 0.00011474 

  

QUADRIC_FORM(17) = 'Z_CYL_INT' 

RADIUS(17) = 1.2383e-005 

  

t_x(17) = 0.00020234 

t_y(17) = 0.00013347 

  

N_GROUP = 1 

GROUP_SIZE(1) = 17 

GROUP_Q(1,1) = 1 

GROUP_Q(1,2) = 2 

GROUP_Q(1,3) = 3 

GROUP_Q(1,4) = 4 

GROUP_Q(1,5) = 5 

GROUP_Q(1,6) = 6 

GROUP_Q(1,7) = 7 

GROUP_Q(1,8) = 8 

GROUP_Q(1,9) = 9 

GROUP_Q(1,10) = 10 

GROUP_Q(1,11) = 11 

GROUP_Q(1,12) = 12 

GROUP_Q(1,13) = 13 

GROUP_Q(1,14) = 14 

GROUP_Q(1,15) = 15 

GROUP_Q(1,16) = 16 

GROUP_Q(1,17) = 17 

GROUP_RELATION(1) = 'OR' 

BC_ID_Q(1) = 12 

BC_ID_Q(2) = 12 
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BC_ID_Q(3) = 12 

BC_ID_Q(4) = 12 

BC_ID_Q(5) = 12 

BC_ID_Q(6) = 12 

BC_ID_Q(7) = 12 

BC_ID_Q(8) = 12 

BC_ID_Q(9) = 12 

BC_ID_Q(10) = 12 

BC_ID_Q(11) = 12 

BC_ID_Q(12) = 12 

BC_ID_Q(13) = 12 

BC_ID_Q(14) = 12 

BC_ID_Q(15) = 12 

BC_ID_Q(16) = 12 

BC_ID_Q(17) = 12 

   

 

  TOL_F = 1.0D-16 

 

  PRINT_WARNINGS = .TRUE. 

 

  PRINT_PROGRESS_BAR = .TRUE. 

  WRITE_DASHBOARD = .TRUE. 

 

!===============================================================

================ 

! VTK file options 

!===============================================================

================ 

  WRITE_VTK_FILES  = .TRUE. 

  TIME_DEPENDENT_FILENAME = .TRUE. 

  VTK_DT = 1000 

 

! Available flags for VTK_VAR are : 

!  1 : Void fraction (EP_g) 

!  2 : Gas pressure, solids pressure (P_g, P_star) 

!  3 : Gas velocity (U_g, V_g, W_g) 

!  4 : Solids velocity (U_s, V_s, W_s) 

!  5 : Solids density (ROP_s) 

!  6 : Gas and solids temperature (T_g, T_s1, T_s2) 

!  7 : Gas and solids mass fractions (X_g, X_s) 

!  8 : Granular temperature (G) 

! 11 : Turbulence quantities (k and Îµ) 

! 12 : Gas Vorticity magnitude and Lambda_2 (VORTICITY, 

LAMBDA_2) 

!100 : Processor assigned to scalar cell (Partition) 

!101 : Boundary condition flag for scalar cell (BC_ID) 
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  VTK_VAR = 9 101 102 

 

! Geometry Section                                                               

                                                                                

  COORDINATES           = 'cartesian'  

 

  XLENGTH               =  2.4d-4               ! length 

  YLENGTH               =  15.0d-5               ! height 

  ZLENGTH               =  30.0d-6               ! depth 

 

  IMAX                  =  100             ! cells in i 

direction 

  JMAX                  =  100             ! cells in j 

direction 

  !KMAX                  =  50             ! cells in k 

direction 

 

  NO_K=.TRUE. 

                          

! Scalar field definition  

 

   NSCALAR               = 1 

   PHASE4SCALAR(1)       = 0 

  

# GAS SECTION                                                                    

 

  NMAX(0) = 1 

  MW_avg = 29.0 

  MU_g0  = 1.8e-4 

  RO_g0  = 1.0d0 ! 

 

! Solids-phase Section                                                           

   

  MMAX = 0 

 

! Initial Conditions Section  

 

IC_X_w(1)             =     0.0     

IC_X_e(1)             =     2.4d-4     

IC_Y_s(1)             =     0.0  

IC_Y_n(1)             =     15.0d-5 

IC_Z_b(1)             =     0.0 

IC_Z_t(1)             =     30.0d-6     

 

IC_EP_g(1)            =     1.0  

IC_U_g(1)             =     0.0  

IC_V_g(1)             =     0.0  

IC_W_g(1)             =     0.0  

IC_SCALAR(1,1)        =     23944.7826 
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! cut-cell boundary condition 

  BC_TYPE(12)           = 'CG_NSW' 

 

  BC_SCALARW(12,1)      = 23944.7826  

  BC_HW_SCALAR(12,1) = 0.0              

  BC_C_SCALAR(12,1)     = -5.62e8 

 

!                                                                                

!  Output Control                                                                

!                   

  OUT_DT                = 10.                  !write text file 

CYL.OUT 

                                               !  every 10 s 

  RES_DT                = 100.0                !write binary 

restart file 

                                               !  CYl.RES every 

100.0 s 

  NLOG                  = 25                   !write logfile 

CYL.LOG  

                                               !every 25 time 

steps 

  FULL_LOG              = .TRUE.               !display 

residuals on screen 

 

  Resid_string    = "P0", "U0", "V0" , "S0" 

 

! 

        ! EP_g P_g       U_g  U_s  ROP_s     T_g  X_g 

        !      P_star    V_g  V_s            T_s  X_s     Theta   

Scalar  

        !                W_g  W_s 

 SPX_DT = 100. 100000 100000 100000 100000 100000 100000 100000.   

0.1         

                                                                                 

!  The decomposition in I, J, and K directions for a Distributed 

Memory Parallel machine 

   

  NODESI = 1   NODESJ = 1  NODESK = 1 

 

 

!  Sweep Direction 

 

 LEQ_SWEEP(1) = 'ISIS' 

 LEQ_SWEEP(2) = 'ISIS' 

 LEQ_SWEEP(3) = 'ISIS' 

 LEQ_SWEEP(4) = 'ISIS' 

 LEQ_SWEEP(5) = 'ISIS' 
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 LEQ_SWEEP(6) = 'ISIS' 

 LEQ_SWEEP(7) = 'ISIS' 

 LEQ_SWEEP(8) = 'ISIS' 

 LEQ_SWEEP(9) = 'ISIS' 

 

! # Maximum iterations for linear solve 
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rrates.f 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 

!  Module name: RRATES(IER)                                            

C 

!  Purpose: Calculate reaction rates for various reactions in 

cell ijk C 

!                                                                      

C 

!  Author:                                            Date:            

C 

!  Reviewer:                                          Date:            

C 

!                                                                      

C 

!  Revision Number:                                                    

C 

!  Purpose:                                                            

C 

!  Author:                                            Date: dd-

mmm-yy  C 

!  Reviewer:                                          Date: dd-

mmm-yy  C 

!                                                                      

C 

!  Literature/Document References:                                     

C 

!                                                                      

C 

!  Variables referenced: MMAX, IJK, T_g, T_s1, D_p, X_g, X_s, 

EP_g,    C 

!            P_g, HOR_g, HOR_s                                         

C 

!                                                                      

C 

!                                                                      

C 

!  Variables modified: M, N, R_gp, R_sp, RoX_gc, RoX_sc, 

SUM_R_g,      C 

!                      SUM_R_s                                         

C 

!                                                                      

C 

!  Local variables:                                                    

C 
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!                                                                      

C 

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

! 

! 

      SUBROUTINE RRATES(IER)  

!...Translated by Pacific-Sierra Research VAST-90 2.06G5  

12:17:31  12/09/98   

!...Switches: -xf 

!----------------------------------------------- 

!   M o d u l e s  

!----------------------------------------------- 

      USE param  

      USE param1  

      USE parallel  

      USE fldvar 

      USE rxns 

      USE energy 

      USE geometry 

      USE run 

      USE indices 

      USE physprop 

      USE constant 

      USE funits  

      USE compar        !//d 

      USE sendrecv      !// 400 

      IMPLICIT NONE 

!----------------------------------------------- 

!   G l o b a l   P a r a m e t e r s 

!----------------------------------------------- 

!----------------------------------------------- 

!   D u m m y   A r g u m e n t s 

!----------------------------------------------- 

! 

!                      Error index 

      INTEGER          IER 

! 

!                      Local phase and species indices 

      INTEGER          L, LM, M, N 

 

!                      cell index 

      INTEGER          IJK 

       

      DOUBLE PRECISION R_tmp(0:MMAX, 0:MMAX), RxH_xfr(0:MMAX, 

0:MMAX) 

      DOUBLE PRECISION X_tmp(0:MMAX, 0:MMAX, Dimension_n_all) 

      DOUBLE PRECISION RXNA, Trxn 

      DOUBLE PRECISION, EXTERNAL ::calc_h 
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! 

!----------------------------------------------- 

      INCLUDE 'function.inc' 

 

 

!*******  REMOVE THE FOLLOWING LINES to activate the routine 

************** 

! The following section is provided so that species equation 

calculations are  

! NOT accidentally performed with the default routine.  To 

activate this routine 

! remove the following two lines and insert information in 

sections 1-4. 

 

      IF(CALL_DI.OR.CALL_ISAT) THEN ! These use functions 

external to this routine for rates calculations 

 

         RETURN 

 

      ELSE  

 

!        IER = 1 

         RETURN 

 

      ENDIF 

 

!***************************************************************

********* 

      R_tmp = UNDEFINED 

! 

!  ---  Remember to include all the local variables here for 

parallel 

!  ---- processing 

!$omp  parallel do firstprivate(R_tmp), & 

!$omp  private(ijk, L, LM, M, N) 

 

      DO IJK = IJKSTART3, IJKEND3  

       

         IF (FLUID_AT(IJK)) THEN  

! 

! 

!  User input is required in sections 1 through 4. 

! 

!111111111111111111111111111111111111111111111111111111111111111

1111111111111111 

! 

! 1. Write the rates of various reactions: 

!    Write the reaction rates for each of the reactions as RXNxF 

and RXNxB (both 
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!    quantities >= 0), where x identifies the reaction, F stands 

for forward 

!    rate, and B stands for the backward rate.  The rates can be 

in 

!    g-mole/(cm^3.s) or g/(cm^3.s).  For the sake of clarity, 

give the reaction 

!    scheme and the units in a comment statement above the rate 

expression. 

!    The volume (cm^3) is that of the computational cell.  

Therefore, for 

!    example, the rate term of a gas phase reaction will have a 

multiplicative 

!    factor of epsilon. Note that X_g and X_s are mass fractions 

! 

! 

! 

!222222222222222222222222222222222222222222222222222222222222222

2222222222222222 

! 

! 2. Write the formation and consumption rates of various 

species: 

!    Obtain the rates of formation and consumption of various 

species 

!    in g/(cm^3.s) from the rate expressions RXNxF and RXNxB 

obtained in the 

!    previous section.  Pay attention to the units of RXNxF and 

RXNxB. 

!    the formation rates for gas species n are added to get R_gp 

(IJK, n). 

!    All the consumption rates are added and then divided by 

X_g(IJK, n) to 

!    get RoX_gc(IJK, n).  If X_g(IJK, n) is zero and species n 

is likely 

!    to be consumed in a reaction then it is recommended that 

RoX_gc (IJK, n) 

!    be initialized to the derivative of the consumption rate 

with respect to 

!    X_g at X_g=0. 

!    If the slope is not known analytically a small value such 

as 1.0e-9 may 

!    instead be used.  A similar procedure is used for all the 

species in the 

!    solids phases also. 

! 

!  GAS SPECIES 

! 

! 

!  SOLIDS SPECIES 

! 
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! 

!333333333333333333333333333333333333333333333333333333333333333

3333333333333333 

! 

! 3.  Determine the g/(cm^3.s) transferred from one phase to the 

other. 

!          R_tmp(To phase #, From phase #) 

!     e.g. R_tmp(0,1) -  mass generation of gas phase from 

solids-1, 

!          R_tmp(0,2) -  mass generation of gas phase from 

solids-2, 

!          R_tmp(1,0) -  mass generation of solid-1 from gas = -

R_tmp(0,1) 

!          R_tmp(1,2) -  mass generation of solid-1 from solids-

2. 

!     Note, for example, that if gas is generated from solids-1 

then 

!     R_tmp(0,1) > 0. 

!     The R-phase matrix is skew-symmetric and diagonal elements 

are not needed. 

!     Only one of the two skew-symmetric elements -- e.g., 

R_tmp(0,1) or 

!     R_tmp(1,0) -- needs to be specified. 

! 

!     X_tmp(M,L, N) is the mass fraction of species N in the 

material transferred 

!     between phase-M and phase-L. If the destination phase is 

M, then N is the 

!     index of the species in phase-M, otherwise N is the index 

of the species 

!     in phase-L; e.g. (1) In the reaction C+1/2O2 --> CO, 

!     the destination phase is gas phase. Then N will be equal 

to the index of CO  

!     in gas phase. (2) If H2O is trasferred between liquid and 

gas phases either 

!     evaporation or condensation, then the index must change 

depending upon the 

!     direction of mass transfer. For condensation, N is the 

species index 

!     of H2O in the liquid phase and for evaporation it is the 

species index 

!     of H2O in the gas phase. Also Sum_over_N (X_tmp(M,L, N)) 

should be equal to 1.  

! 

      if(MMAX > 0) then 

        R_tmp(0,1) =  ZERO 

 X_tmp(0, 1, :) = ZERO 

 if(R_tmp(0,1) > 0) then 

   X_tmp(0, 1, 1) = 1.0 
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 else 

   X_tmp(0, 1, 1) = 1.0 

 endif 

      endif 

! 

!444444444444444444444444444444444444444444444444444444444444444

4444444444444444 

! 

! 4.  Determine the heat of reactions in cal/(cm^3.s) at the 

!     temperature T_g or T_s1.  Note that for exothermic 

reactions 

!     HOR_g (or HOR_s) will be negative. The assignment of heat 

of reaction 

!     is user defined as it depends upon the microphysics near 

the interface, 

!     which is averaged out in the multiphase flow equations.  

For example, 

!     heat of Reaction for the C + O2 reaction is split into 

parts; 

!     CO formation is assigned to the solid phase and CO2 

formation from CO to 

!     the gas phase. 

!     *** This section is no longer needed as the heats of 

reactions are   

!         calculated below.  If you need to override the 

automatic calculation,  

!         comment out the calculations below.    

! 

!===============================================================

=============== 

! 

!     No user input is required below this line 

!---------------------------------------------------------------

-------------- 

!   Determine g/(cm^3.s) of mass generation for each of the 

phases by adding 

!   the reaction rates of all the individual species. 

 

            SUM_R_G(IJK) = ZERO  

            IF (SPECIES_EQ(0)) THEN  

               IF (NMAX(0) > 0) THEN  

                  SUM_R_G(IJK) = SUM_R_G(IJK) + 

SUM(R_GP(IJK,:NMAX(0))-ROX_GC(& 

                     IJK,:NMAX(0))*X_G(IJK,:NMAX(0)))  

               ENDIF 

     ELSE 

       DO M = 1, MMAX 

         IF(R_tmp(0,M) .NE. UNDEFINED)THEN 

    SUM_R_G(IJK) = SUM_R_G(IJK) + R_tmp(0,M) 
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  ELSEIF(R_tmp(M,0) .NE. UNDEFINED)THEN 

    SUM_R_G(IJK) = SUM_R_G(IJK) - R_tmp(M,0) 

  ENDIF 

       ENDDO  

            ENDIF  

! 

            DO M = 1, MMAX  

               SUM_R_S(IJK,M) = ZERO  

               IF (SPECIES_EQ(M)) THEN  

                  IF (NMAX(M) > 0) THEN  

                     SUM_R_S(IJK,M) = SUM_R_S(IJK,M) + 

SUM(R_SP(IJK,M,:NMAX(M))& 

                        -

ROX_SC(IJK,M,:NMAX(M))*X_S(IJK,M,:NMAX(M)))  

                  ENDIF  

        ELSE 

           DO L = 0, MMAX 

            IF(R_tmp(M,L) .NE. UNDEFINED)THEN 

       SUM_R_s(IJK,M) = SUM_R_s(IJK,M) + R_tmp(M,L) 

     ELSEIF(R_tmp(L,M) .NE. UNDEFINED)THEN 

       SUM_R_s(IJK,M) = SUM_R_s(IJK,M) - R_tmp(L,M) 

     ENDIF 

          ENDDO  

               ENDIF  

            END DO  

      

! 

!           Calculate the enthalpy of transferred material 

! 

 

            DO M = 0, MMAX-1 

        DO L = M+1, MMAX 

         RxH_xfr(M, L) = zero  

         IF(R_tmp(M,L) .NE. UNDEFINED)THEN 

     IF(R_tmp(M,L) > ZERO) then ! phase-M is generated 

from phase-L 

                     DO N = 1, NMAX(M) 

                       RxH_xfr(M, L) =  RxH_xfr(M, L) + 

R_tmp(M,L) * X_tmp(M,L, N) * & 

                                 CALC_H(IJK, M, N) 

                     

                     END DO  

     else    ! phase-L is generated from phase-M 

                     DO N = 1, NMAX(L) 

                       RxH_xfr(M, L) =  RxH_xfr(M, L) + 

R_tmp(M,L) * X_tmp(M,L, N) * & 

                                 CALC_H(IJK, L, N) 

                     END DO 

     endif 
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  ELSEIF(R_tmp(L,M) .NE. UNDEFINED)THEN 

     IF(R_tmp(L,M)> ZERO) then ! phase-L is generated 

from phase-M 

                     DO N = 1, NMAX(L) 

                       RxH_xfr(M, L) =  RxH_xfr(M, L) - 

R_tmp(L,M) * X_tmp(L,M, N) * & 

                                 CALC_H(IJK, L, N)  

                     END DO 

     else ! phase-M is generated from phase-L 

                     DO N = 1, NMAX(M) 

                       RxH_xfr(M, L) =  RxH_xfr(M, L) - 

R_tmp(L,M) * X_tmp(L,M, N) * & 

                                 CALC_H(IJK, M, N) 

                     END DO  

     endif 

         ENDIF 

       ENDDO  

            END DO  

      

            DO M = 1, MMAX 

        DO L = 0, M-1 

         RxH_xfr(M, L) = -RxH_xfr(L, M)  

       ENDDO  

            END DO  

 

! 

!           Calculate heats of reactions 

! 

            HOR_G(IJK) = zero 

            DO N = 1, NMAX(0) 

              HOR_G(IJK) = HOR_G(IJK) + & 

          (R_gp(IJK, N) - RoX_gc(IJK, N) * X_g(IJK, N)) * 

CALC_H(IJK, 0, N) 

            END DO  

            DO L = 1, MMAX 

       HOR_G(IJK) = HOR_G(IJK) - RxH_xfr(0, L) 

     ENDDO 

            IF (UNITS == 'SI') HOR_G(IJK) = 

4183.925D0*HOR_G(IJK)    !in J/kg K 

      

            DO M = 1, MMAX  

              HOR_s(IJK, M) = zero 

              DO N = 1, NMAX(M) 

                HOR_s(IJK, M) = HOR_s(IJK, M) + & 

    (R_sp(IJK, M, N) - RoX_sc(IJK, M, N) * X_s(IJK, M, 

N)) * CALC_H(IJK, M, N) 

              END DO  

              DO L = 0, MMAX 
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         if(M .NE. L) HOR_s(IJK, M) = HOR_s(IJK, M) - 

RxH_xfr(M, L) 

       ENDDO 

              IF (UNITS == 'SI') HOR_s(IJK, M) = 

4183.925D0*HOR_s(IJK, M)    !in J/kg K 

          END DO  

! 

! 

!     Store R_tmp values in an array.  Only store the upper 

triangle without 

!     the diagonal of R_tmp array. 

! 

            DO L = 0, MMAX  

               DO M = L + 1, MMAX  

                  LM = L + 1 + (M - 1)*M/2  

                  IF (R_TMP(L,M) /= UNDEFINED) THEN  

                     R_PHASE(IJK,LM) = R_TMP(L,M)  

                  ELSE IF (R_TMP(M,L) /= UNDEFINED) THEN  

                     R_PHASE(IJK,LM) = -R_TMP(M,L)  

                  ELSE  

                     CALL START_LOG  

                     IF(.not.DMP_LOG)call open_pe_log(ier) 

                     WRITE (UNIT_LOG, 1000) L, M  

                     CALL END_LOG  

                     call mfix_exit(myPE)   

                  ENDIF  

               END DO  

            END DO  

     

         ENDIF  

      END DO  

       

 1000 FORMAT(/1X,70('*')//' From: RRATES',/& 

         ' Message: Mass transfer between phases ',I2,' and 

',I2,& 

         ' (R_tmp) not specified',/1X,70('*')/)  

      RETURN   

      END SUBROUTINE RRATES  
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scalarprop.f 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 

!  Module name: Scalar_PROP(IER)                                       

C 

!  Purpose: Calculate diffusion coefficeint and sources for 

user-defined 

!           scalars 

!                                                                      

C 

!  Author:                                                    

Date:    C 

!  Reviewer:                                                  

Date:    C 

!                                                                      

C 

!                                                                      

C 

!  Literature/Document References:                                     

C 

!                                                                      

C 

!  Variables referenced: None                                          

C 

!  Variables modified: None                                            

C 

!                                                                      

C 

!  Local variables: None                                               

C 

!                                                                      

C 

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

! 

      SUBROUTINE SCALAR_PROP( IER)  

!...Translated by Pacific-Sierra Research VAST-90 2.06G5  

12:17:31  12/09/98   

!...Switches: -xf 

! 

!----------------------------------------------- 

!   M o d u l e s  

!----------------------------------------------- 

      USE param  

      USE param1  
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      USE fldvar 

      USE physprop 

      USE geometry 

      USE indices 

      USE run 

      USE scalars 

      USE toleranc  

      USE compar 

      USE sendrecv 

      IMPLICIT NONE 

!----------------------------------------------- 

!   G l o b a l   P a r a m e t e r s 

!----------------------------------------------- 

!----------------------------------------------- 

!   D u m m y   A r g u m e n t s 

!----------------------------------------------- 

! 

!                       Error index 

      INTEGER          IER 

 

      INTEGER          L,IJK 

!                  

!----------------------------------------------- 

 

      INCLUDE 'function.inc' 

 

      IF(NScalar == 0) RETURN 

! 

!  ---  Remember to include all the local variables here for 

parallel 

!  ---- processing 

!$omp  parallel do private(ijk, L) 

      DO IJK = IJKSTART3, IJKEND3 

         IF (FLUID_AT(IJK)) THEN 

           DO L = 1, NScalar  

 

!            d (Scalar)/dt = S 

!            S is linearized as S = Scalar_c - Scalar_p * Scalar 

!            Scalar_c and Scalar_p must be >= 0 

!            *** Uncomment next two lines *** 

              Scalar_c (IJK, L) = ZERO  

              Scalar_p (IJK, L) = ZERO 

! 

!            Diffusion coefficient for User-defined Scalars 

!            *** Uncomment next one line *** 

!              Dif_Scalar(IJK, L) = 1.0e-6 

              Dif_Scalar(IJK, L) = 3.9e-14 !Anode 

!              Dif_Scalar(IJK, L) = 1.0e-14 !Cathode 

           END DO  
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! 

         ENDIF  

      END DO  

!\\Sendrecv operations - just to make sure all the variables 

computed are 

!  are passed and updated locally - fool-proof approach - 

Sreekanth - 102199 

 

!      call send_recv(Scalar_c,2) 

!      call send_recv(Scalar_p,2) 

!      call send_recv(Dif_Scalar,2) 

      RETURN   

      END SUBROUTINE SCALAR_PROP  
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usr0.f 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 

!  Module name: USR0                                                   

C 

!  Purpose: This routine is called before the time loop starts 

and is  C 

!           user-definable.  The user may insert code in this 

routine  C 

!           or call appropriate user defined subroutines.  This        

C 

!           can be used for setting constants and checking 

errors in   C 

!           data.  This routine is not called from an IJK loop, 

hence  C 

!           all indices are undefined.                                 

C 

!                                                                      

C 

!  Author:                                            Date: dd-

mmm-yy  C 

!  Reviewer:                                          Date: dd-

mmm-yy  C 

!                                                                      

C 

!  Revision Number:                                                    

C 

!  Purpose:                                                            

C 

!  Author:                                            Date: dd-

mmm-yy  C 

!  Reviewer:                                          Date: dd-

mmm-yy  C 

!                                                                      

C 

!  Literature/Document References:                                     

C 

!                                                                      

C 

!  Variables referenced:                                               

C 

!  Variables modified:                                                 

C 

!                                                                      

C 
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!  Local variables:                                                    

C 

!                                                                      

C 

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

! 

      SUBROUTINE USR0  

!...Translated by Pacific-Sierra Research VAST-90 2.06G5  

12:17:31  12/09/98   

!...Switches: -xf 

      Use usr 

      USE param  

      USE param1  

      USE parallel  

      USE matrix  

      USE scales  

      USE constant 

      USE physprop 

      USE fldvar 

      USE visc_s 

      USE rxns 

      USE run 

      USE toleranc  

      USE geometry 

      USE indices 

      USE is 

      USE tau_s 

      USE bc 

      USE compar     

      USE sendrecv   

      use kintheory 

      USE ghdtheory 

      USE drag 

      USE cutcell 

      USE quadric 

      USE scalars 

      IMPLICIT NONE 

!----------------------------------------------- 

! 

!  Include files defining common blocks here 

! 

! 

!  Define local variables here 

 

      INTEGER :: I,J,K,IJK 

      INTEGER :: BCV,ACTIVE_ZONE,FZ 

      INTEGER, PARAMETER :: MAX_ZONES = 1000 
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      DOUBLE PRECISION, DIMENSION(MAX_ZONES) ::VOL_FLUID_ZONE  ! 

Volume in 3D, Surface area times ZLENGTH in 2D 

      DOUBLE PRECISION, DIMENSION(MAX_ZONES) ::AREA_FLUID_ZONE ! 

Surface area in 3D, Perimeter times ZLENGTH in 2D 

! 

! 

!  Include files defining statement functions here 

! 

      INCLUDE 'fun_avg1.inc' 

      INCLUDE 'function.inc' 

! 

!  Insert user-defined code here 

 

 

      FLUID_ZONE = 0 

 

      DO K = KSTART3, KEND3            ! Loop through cells and 

assign a fluid zone ID to contiguous cells 

         DO J = JSTART3, JEND3         ! in regions surrounded 

by the same BC_ID value 

            DO I = ISTART3, IEND3      ! Works only for closed 

domains !! 

 

               IJK = FUNIJK(I,J,K) 

 

               BCV = BC_ID(IJK) 

 

               IF(BCV > 0 ) ACTIVE_ZONE = BCV 

 

               IF(FLUID_AT(IJK)) FLUID_ZONE(IJK) = ACTIVE_ZONE 

 

            END DO 

         END DO 

      ENDDO 

 

 

      VOL_FLUID_ZONE = ZERO 

      AREA_FLUID_ZONE  = ZERO 

 

 

      DO IJK = IJKSTART3, IJKEND3    ! Compute volume and and 

surface area of boundary for each fluid zone identified above 

 

         FZ = FLUID_ZONE(IJK) 

 

         IF(FZ>0) THEN 

 

            VOL_FLUID_ZONE(FZ) = VOL_FLUID_ZONE(FZ) + VOL(IJK) 
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            IF(CUT_CELL_AT(IJK)) AREA_FLUID_ZONE(FZ) = 

AREA_FLUID_ZONE(FZ) + AREA_CUT(IJK) 

 

         ENDIF 

 

      END DO 

 

      

WRITE(*,100)'===================================================

==========================' 

      WRITE(*,*)' FLUID ZONE   VOLUME          AREA' 

      DO FZ = 1,MAX_ZONES 

         IF (VOL_FLUID_ZONE(FZ)>ZERO) 

WRITE(*,110)FZ,VOL_FLUID_ZONE(FZ),AREA_FLUID_ZONE(FZ) 

      ENDDO 

      

WRITE(*,100)'===================================================

==========================' 

 

 

 

! 

      RETURN 

 

100   FORMAT(1X,A) 

110   FORMAT(1X,I4,10X,E14.8,2X,E14.8) 

   

      END SUBROUTINE USR0  
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usr1.f 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 

!  Module name: USR1                                                   

C 

!  Purpose: This routine is called after the time loop ends and 

is    

!           user-definable.  The user may insert code in this 

routine    

!           or call appropriate user defined subroutines.   

!           This routine is not called from an IJK loop, hence   

!           all indices are undefined.                                 

C 

!                                                                      

C 

!  Author:                                            Date: dd-

mmm-yy  C 

!  Reviewer:                                          Date: dd-

mmm-yy  C 

!                                                                      

C 

!  Revision Number:                                                    

C 

!  Purpose:                                                            

C 

!  Author:                                            Date: dd-

mmm-yy  C 

!  Reviewer:                                          Date: dd-

mmm-yy  C 

!                                                                      

C 

!  Literature/Document References:                                     

C 

!                                                                      

C 

!  Variables referenced:                                               

C 

!  Variables modified:                                                 

C 

!                                                                      

C 

!  Local variables:                                                    

C 

!                                                                      

C 
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!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

! 

      SUBROUTINE USR1  

!...Translated by Pacific-Sierra Research VAST-90 2.06G5  

12:17:31  12/09/98   

!...Switches: -xf 

      USE param  

      USE param1  

      USE parallel  

      USE matrix  

      USE scales  

      USE constant 

      USE physprop 

      USE fldvar 

      USE visc_s 

      USE rxns 

      USE run 

      USE toleranc  

      USE geometry 

      USE indices 

      USE is 

      USE tau_s 

      USE bc 

      USE compar     

      USE sendrecv   

      use kintheory 

      USE ghdtheory 

      USE drag 

      USE cutcell 

      USE quadric 

      USE scalars 

      IMPLICIT NONE 

!----------------------------------------------- 

! 

!  Include files defining common blocks here 

! 

! 

!  Define local variables here 

! 

      INTEGER IJK, BCV 

      DOUBLE PRECISION VOL_TOTAL, WTSUM_CONC, AVGSURF_CONC 

      CHARACTER(LEN=9) :: BCT 

! 

!  Include files defining statement functions here 

! 

      INCLUDE 'fun_avg1.inc' 

      INCLUDE 'function.inc' 

! 
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!  Insert user-defined code here 

! 

!  Loop over all cells looking for boundary cells. Compute the 

volume weighted 

!  average concentration of those cells. 

 

   VOL_TOTAL = 0.0 

   WTSUM_CONC  = 0.0 

   AVGSURF_CONC = 0.0 

 

      DO IJK = IJKSTART3, IJKEND3 

 

!         BCV = BC_V_ID(IJK) 

         BCV = BC_ID(IJK) 

 

         IF(BCV > 0 ) THEN 

            BCT = BC_TYPE(BCV) 

         ELSE 

            BCT = 'NONE' 

         ENDIF 

 

         SELECT CASE (BCT) 

 

            CASE ('CG_NSW') 

               VOL_TOTAL = VOL_TOTAL + VOL(IJK) 

               WTSUM_CONC = WTSUM_CONC+VOL(IJK)*Scalar(IJK,1) 

 

         END SELECT 

 

      END DO 

 

      AVGSURF_CONC = WTSUM_CONC/VOL_TOTAL 

 

!  Write the results to a text file 

      Open(5,File='AVGSURF_CONC.dat',position ='append') 

      write(5,'(//f12.5//)'), AVGSURF_CONC 

      Close(5) 

      RETURN   

      END SUBROUTINE USR1  

 

  



193 

 

 

 

allocate_cut_cell_arrays.f 

 

      SUBROUTINE ALLOCATE_CUT_CELL_ARRAYS   

       

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvv 

!                                                                       

!  Module name: ALLOCATE_ARRAYS                                      

!  Purpose: allocate arrays 

!                                                                      

C 

!  Author: Jeff Dietiker                              Date: 21-

Feb-08  C 

!  Reviewer:  

!                                                                      

!----------------------------------------------- 

!   M o d u l e s  

!----------------------------------------------- 

      USE param  

      USE param1 

      Use indices 

 

      USE cutcell 

      USE stl 

 

      IMPLICIT NONE 

       

      DIMENSION_MAX_CUT_CELL = 

INT(FAC_DIM_MAX_CUT_CELL*DIMENSION_3G) 

 

      Allocate(  INTERIOR_CELL_AT  (DIMENSION_3) ) 

 

      Allocate( XG_E(0:DIMENSION_I) ) 

      Allocate( YG_N(0:DIMENSION_J) ) 

      Allocate( ZG_T(0:DIMENSION_K) ) 

 

      Allocate(  X_U (DIMENSION_3) ) 

      Allocate(  Y_U (DIMENSION_3) ) 

      Allocate(  Z_U (DIMENSION_3) ) 

 

      Allocate(  X_V (DIMENSION_3) ) 

      Allocate(  Y_V (DIMENSION_3) ) 

      Allocate(  Z_V (DIMENSION_3) ) 

 

      Allocate(  X_W (DIMENSION_3) ) 

      Allocate(  Y_W (DIMENSION_3) ) 

      Allocate(  Z_W (DIMENSION_3) ) 
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      Allocate(  INTERSECT_X  (DIMENSION_3) ) 

      Allocate(  INTERSECT_Y  (DIMENSION_3) ) 

      Allocate(  INTERSECT_Z  (DIMENSION_3) ) 

 

      Allocate(  X_int (DIMENSION_3) ) 

      Allocate(  Y_int (DIMENSION_3) ) 

      Allocate(  Z_int (DIMENSION_3) ) 

 

      Allocate(  X_NEW_POINT  (DIMENSION_MAX_CUT_CELL) ) 

      Allocate(  Y_NEW_POINT  (DIMENSION_MAX_CUT_CELL) ) 

      Allocate(  Z_NEW_POINT  (DIMENSION_MAX_CUT_CELL) ) 

 

      Allocate(  X_NEW_U_POINT  (DIMENSION_MAX_CUT_CELL) ) 

      Allocate(  Y_NEW_U_POINT  (DIMENSION_MAX_CUT_CELL) ) 

      Allocate(  Z_NEW_U_POINT  (DIMENSION_MAX_CUT_CELL) ) 

 

      Allocate(  X_NEW_V_POINT  (DIMENSION_MAX_CUT_CELL) ) 

      Allocate(  Y_NEW_V_POINT  (DIMENSION_MAX_CUT_CELL) ) 

      Allocate(  Z_NEW_V_POINT  (DIMENSION_MAX_CUT_CELL) ) 

 

      Allocate(  X_NEW_W_POINT  (DIMENSION_MAX_CUT_CELL) ) 

      Allocate(  Y_NEW_W_POINT  (DIMENSION_MAX_CUT_CELL) ) 

      Allocate(  Z_NEW_W_POINT  (DIMENSION_MAX_CUT_CELL) ) 

 

      Allocate(  NUMBER_OF_NODES  (DIMENSION_3) ) 

      Allocate(  NUMBER_OF_U_NODES  (DIMENSION_3) ) 

      Allocate(  NUMBER_OF_V_NODES  (DIMENSION_3) ) 

      Allocate(  NUMBER_OF_W_NODES  (DIMENSION_3) ) 

 

      Allocate(  CONNECTIVITY  (DIMENSION_3,15) ) 

      Allocate(  CONNECTIVITY_U  (DIMENSION_3,15) ) 

      Allocate(  CONNECTIVITY_V  (DIMENSION_3,15) ) 

      Allocate(  CONNECTIVITY_W  (DIMENSION_3,15) ) 

 

      Allocate(  PARTITION  (DIMENSION_3) ) 

 

      Allocate(  WALL_U_AT (DIMENSION_3) ) 

      Allocate(  WALL_V_AT (DIMENSION_3) ) 

      Allocate(  WALL_W_AT (DIMENSION_3) ) 

 

      Allocate( Area_CUT  (DIMENSION_3) ) 

      Allocate( Area_U_CUT  (DIMENSION_3) ) 

      Allocate( Area_V_CUT  (DIMENSION_3) ) 

      Allocate( Area_W_CUT  (DIMENSION_3) ) 

 

 

      Allocate( DELX_Ue  (DIMENSION_3) ) 

      Allocate( DELX_Uw  (DIMENSION_3) ) 
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      Allocate( DELY_Un  (DIMENSION_3) ) 

      Allocate( DELY_Us  (DIMENSION_3) ) 

      Allocate( DELZ_Ut  (DIMENSION_3) ) 

      Allocate( DELZ_Ub  (DIMENSION_3) ) 

 

      Allocate( DELX_Ve  (DIMENSION_3) ) 

      Allocate( DELX_Vw  (DIMENSION_3) ) 

      Allocate( DELY_Vn  (DIMENSION_3) ) 

      Allocate( DELY_Vs  (DIMENSION_3) ) 

      Allocate( DELZ_Vt  (DIMENSION_3) ) 

      Allocate( DELZ_Vb  (DIMENSION_3) ) 

 

      Allocate( DELX_We  (DIMENSION_3) ) 

      Allocate( DELX_Ww  (DIMENSION_3) ) 

      Allocate( DELY_Wn  (DIMENSION_3) ) 

      Allocate( DELY_Ws  (DIMENSION_3) ) 

      Allocate( DELZ_Wt  (DIMENSION_3) ) 

      Allocate( DELZ_Wb  (DIMENSION_3) ) 

 

      Allocate( X_U_ec  (DIMENSION_3) ) 

      Allocate( Y_U_ec  (DIMENSION_3) ) 

      Allocate( Z_U_ec  (DIMENSION_3) ) 

      Allocate( X_U_nc  (DIMENSION_3) ) 

      Allocate( Y_U_nc  (DIMENSION_3) ) 

      Allocate( Z_U_nc  (DIMENSION_3) ) 

      Allocate( X_U_tc  (DIMENSION_3) ) 

      Allocate( Y_U_tc  (DIMENSION_3) ) 

      Allocate( Z_U_tc  (DIMENSION_3) ) 

 

      Allocate( X_V_ec  (DIMENSION_3) ) 

      Allocate( Y_V_ec  (DIMENSION_3) ) 

      Allocate( Z_V_ec  (DIMENSION_3) ) 

      Allocate( X_V_nc  (DIMENSION_3) ) 

      Allocate( Y_V_nc  (DIMENSION_3) ) 

      Allocate( Z_V_nc  (DIMENSION_3) ) 

      Allocate( X_V_tc  (DIMENSION_3) ) 

      Allocate( Y_V_tc  (DIMENSION_3) ) 

      Allocate( Z_V_tc  (DIMENSION_3) ) 

 

      Allocate( X_W_ec  (DIMENSION_3) ) 

      Allocate( Y_W_ec  (DIMENSION_3) ) 

      Allocate( Z_W_ec  (DIMENSION_3) ) 

      Allocate( X_W_nc  (DIMENSION_3) ) 

      Allocate( Y_W_nc  (DIMENSION_3) ) 

      Allocate( Z_W_nc  (DIMENSION_3) ) 

      Allocate( X_W_tc  (DIMENSION_3) ) 

      Allocate( Y_W_tc  (DIMENSION_3) ) 

      Allocate( Z_W_tc  (DIMENSION_3) ) 
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      Allocate( DELH_U  (DIMENSION_3) ) 

      Allocate( Theta_Ue  (DIMENSION_3) ) 

      Allocate( Theta_Ue_bar (DIMENSION_3) ) 

      Allocate( Theta_U_ne  (DIMENSION_3) ) 

      Allocate( Theta_U_nw  (DIMENSION_3) ) 

      Allocate( Theta_U_te  (DIMENSION_3) ) 

      Allocate( Theta_U_tw  (DIMENSION_3) ) 

      Allocate( ALPHA_Ue_c  (DIMENSION_3) ) 

      Allocate( NOC_U_E  (DIMENSION_3) ) 

      Allocate( Theta_Un  (DIMENSION_3) ) 

      Allocate( Theta_Un_bar (DIMENSION_3) ) 

      Allocate( ALPHA_Un_c  (DIMENSION_3) ) 

      Allocate( NOC_U_N  (DIMENSION_3) ) 

      Allocate( Theta_Ut  (DIMENSION_3) ) 

      Allocate( Theta_Ut_bar (DIMENSION_3) ) 

      Allocate( ALPHA_Ut_c  (DIMENSION_3) ) 

      Allocate( NOC_U_T  (DIMENSION_3) ) 

      Allocate( A_UPG_E (DIMENSION_3) ) 

      Allocate( A_UPG_W (DIMENSION_3) ) 

 

      Allocate( DELH_V  (DIMENSION_3) ) 

      Allocate( Theta_V_ne  (DIMENSION_3) ) 

      Allocate( Theta_V_se  (DIMENSION_3) ) 

      Allocate( Theta_Vn  (DIMENSION_3) ) 

      Allocate( Theta_Vn_bar (DIMENSION_3) ) 

      Allocate( Theta_V_nt  (DIMENSION_3) ) 

      Allocate( Theta_V_st (DIMENSION_3) ) 

      Allocate( Theta_Ve  (DIMENSION_3) ) 

      Allocate( Theta_Ve_bar (DIMENSION_3) ) 

      Allocate( ALPHA_Ve_c  (DIMENSION_3) ) 

      Allocate( NOC_V_E  (DIMENSION_3) ) 

      Allocate( ALPHA_Vn_c  (DIMENSION_3) ) 

      Allocate( NOC_V_N  (DIMENSION_3) ) 

      Allocate( Theta_Vt  (DIMENSION_3) ) 

      Allocate( Theta_Vt_bar (DIMENSION_3) ) 

      Allocate( ALPHA_Vt_c  (DIMENSION_3) ) 

      Allocate( NOC_V_T  (DIMENSION_3) ) 

      Allocate( A_VPG_N (DIMENSION_3) ) 

      Allocate( A_VPG_S (DIMENSION_3) ) 

 

      Allocate( DELH_W (DIMENSION_3) ) 

      Allocate( Theta_W_te (DIMENSION_3) ) 

      Allocate( Theta_W_be (DIMENSION_3) ) 

      Allocate( Theta_W_tn (DIMENSION_3) ) 

      Allocate( Theta_W_bn (DIMENSION_3) ) 

      Allocate( Theta_Wt (DIMENSION_3) ) 

      Allocate( Theta_Wt_bar (DIMENSION_3) ) 

      Allocate( Theta_We (DIMENSION_3) ) 

      Allocate( Theta_We_bar (DIMENSION_3) ) 
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      Allocate( ALPHA_We_c (DIMENSION_3) ) 

      Allocate( NOC_W_E (DIMENSION_3) ) 

      Allocate( Theta_Wn (DIMENSION_3) ) 

      Allocate( Theta_Wn_bar (DIMENSION_3) ) 

      Allocate( ALPHA_Wn_c (DIMENSION_3) ) 

      Allocate( NOC_W_N (DIMENSION_3) ) 

      Allocate( ALPHA_Wt_c (DIMENSION_3) ) 

      Allocate( NOC_W_T (DIMENSION_3) ) 

      Allocate( A_WPG_T (DIMENSION_3) ) 

      Allocate( A_WPG_B (DIMENSION_3) ) 

 

 

      Allocate( NORMAL_S (DIMENSION_3,3) ) 

      Allocate( NORMAL_U (DIMENSION_3,3) ) 

      Allocate( NORMAL_V (DIMENSION_3,3) ) 

      Allocate( NORMAL_W (DIMENSION_3,3) ) 

 

      Allocate( REFP_S (DIMENSION_3,3) ) 

      Allocate( REFP_U (DIMENSION_3,3) ) 

      Allocate( REFP_V (DIMENSION_3,3) ) 

      Allocate( REFP_W (DIMENSION_3,3) ) 

 

      Allocate(  ONEoDX_E_U (DIMENSION_3) ) 

      Allocate(  ONEoDY_N_U (DIMENSION_3) ) 

      Allocate(  ONEoDZ_T_U (DIMENSION_3) ) 

 

      Allocate(  ONEoDX_E_V (DIMENSION_3) ) 

      Allocate(  ONEoDY_N_V (DIMENSION_3) ) 

      Allocate(  ONEoDZ_T_V (DIMENSION_3) ) 

 

      Allocate(  ONEoDX_E_W (DIMENSION_3) ) 

      Allocate(  ONEoDY_N_W (DIMENSION_3) ) 

      Allocate(  ONEoDZ_T_W (DIMENSION_3) ) 

 

      Allocate(  Xn_int (DIMENSION_3) ) 

      Allocate(  Xn_U_int (DIMENSION_3) ) 

      Allocate(  Xn_V_int (DIMENSION_3) ) 

      Allocate(  Xn_W_int (DIMENSION_3) ) 

 

      Allocate(  Ye_int (DIMENSION_3) ) 

      Allocate(  Ye_U_int (DIMENSION_3) ) 

      Allocate(  Ye_V_int (DIMENSION_3) ) 

      Allocate(  Ye_W_int (DIMENSION_3) ) 

 

      Allocate(  Zt_int (DIMENSION_3) ) 

      Allocate(  Zt_U_int (DIMENSION_3) ) 

      Allocate(  Zt_V_int (DIMENSION_3) ) 

      Allocate(  Zt_W_int (DIMENSION_3) ) 
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      Allocate(  SNAP (DIMENSION_3) ) 

 

 

 

      Allocate(  CUT_TREATMENT_AT (DIMENSION_3) ) 

      Allocate(  CUT_U_TREATMENT_AT (DIMENSION_3) ) 

      Allocate(  CUT_V_TREATMENT_AT (DIMENSION_3) ) 

      Allocate(  CUT_W_TREATMENT_AT (DIMENSION_3) ) 

 

      Allocate(  CUT_CELL_AT (DIMENSION_3) ) 

      Allocate(  CUT_U_CELL_AT (DIMENSION_3) ) 

      Allocate(  CUT_V_CELL_AT (DIMENSION_3) ) 

      Allocate(  CUT_W_CELL_AT (DIMENSION_3) ) 

 

 

      Allocate( SMALL_CELL_AT  (DIMENSION_3) ) 

 

      Allocate( SMALL_CELL_FLAG  (DIMENSION_3) ) 

 

      Allocate(  BLOCKED_CELL_AT (DIMENSION_3) ) 

      Allocate(  BLOCKED_U_CELL_AT (DIMENSION_3) ) 

      Allocate(  BLOCKED_V_CELL_AT (DIMENSION_3) ) 

      Allocate(  BLOCKED_W_CELL_AT (DIMENSION_3) ) 

 

      Allocate(  STANDARD_CELL_AT (DIMENSION_3) ) 

      Allocate(  STANDARD_U_CELL_AT (DIMENSION_3) ) 

      Allocate(  STANDARD_V_CELL_AT (DIMENSION_3) ) 

      Allocate(  STANDARD_W_CELL_AT (DIMENSION_3) ) 

 

 

      Allocate(  VORTICITY (DIMENSION_3) ) 

      Allocate(  LAMBDA2 (DIMENSION_3) ) 

 

      Allocate(  TRD_G_OUT (DIMENSION_3) ) 

      Allocate(  PP_G_OUT (DIMENSION_3) ) 

      Allocate(  EPP_OUT (DIMENSION_3) ) 

 

      Allocate(  dudx_OUT (DIMENSION_3) ) 

      Allocate(  dvdy_OUT (DIMENSION_3) ) 

      Allocate(  delv_OUT (DIMENSION_3) ) 

 

      Allocate(  U_MASTER_OF (DIMENSION_3) ) 

      Allocate(  V_MASTER_OF (DIMENSION_3) ) 

      Allocate(  W_MASTER_OF (DIMENSION_3) ) 

 

      Allocate(  BC_ID (DIMENSION_3) ) 

      Allocate(  BC_U_ID (DIMENSION_3) ) 

      Allocate(  BC_V_ID (DIMENSION_3) ) 

      Allocate(  BC_W_ID (DIMENSION_3) ) 



199 

 

 

 

 

      Allocate(  DEBUG_CG (DIMENSION_3,15) ) 

 

      Allocate(  U_g_CC (DIMENSION_3) ) 

      Allocate(  V_g_CC (DIMENSION_3) ) 

      Allocate(  W_g_CC (DIMENSION_3) ) 

 

      Allocate(  U_s_CC (DIMENSION_3, DIMENSION_M) ) 

      Allocate(  V_s_CC (DIMENSION_3, DIMENSION_M) ) 

      Allocate(  W_s_CC (DIMENSION_3, DIMENSION_M) ) 

 

 

      ALLOCATE(N_FACET_AT(DIMENSION_3)) 

      ALLOCATE(LIST_FACET_AT(DIMENSION_3,10)) 

 

 

      Allocate(  FLUID_ZONE (DIMENSION_3) ) 

  

      RETURN 

      END SUBROUTINE ALLOCATE_CUT_CELL_ARRAYS  
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cutcell_mod.f 

      MODULE cutcell  

  

      Use param  

      Use param1 

      USE progress_bar 

 

!     CUT_CELL.LOG unit number 

      INTEGER  UNIT_CUT_CELL_LOG 

      PARAMETER (UNIT_CUT_CELL_LOG = 111) 

 

!     Flag to activate Cartesian grid  

 

      LOGICAL :: CARTESIAN_GRID 

 

!     maximum number of cut cells 

      INTEGER :: DIMENSION_MAX_CUT_CELL 

 

!     Factor used to allocate cut cells arrays 

      DOUBLE PRECISION :: FAC_DIM_MAX_CUT_CELL 

 

!     Flag to identify interior cells 

      LOGICAL, DIMENSION(:), ALLOCATABLE :: INTERIOR_CELL_AT 

 

!     One-Dimensional Arrays for East, North, Top location of  

!     original (uncut) scalar cells 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::XG_E 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::YG_N 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::ZG_T 

 

!     location of U-momentum nodes 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_U 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_U 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_U 

 

!     location of V-momentum nodes 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_V 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_V 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_V 

 

!     location of W-momentum nodes 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_W 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_W 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_W 

 

!     Intersection flags 

      LOGICAL, DIMENSION(:), ALLOCATABLE :: INTERSECT_X 
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      LOGICAL, DIMENSION(:), ALLOCATABLE :: INTERSECT_Y 

      LOGICAL, DIMENSION(:), ALLOCATABLE :: INTERSECT_Z 

 

!     Location of intersections 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_int 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_int 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_int 

 

!     Location of original (uncut) corner cell nodes 

      DOUBLE PRECISION, DIMENSION(0:15):: X_NODE 

      DOUBLE PRECISION, DIMENSION(0:15):: Y_NODE 

      DOUBLE PRECISION, DIMENSION(0:15):: Z_NODE 

      DOUBLE PRECISION, DIMENSION(0:15):: F_NODE 

      INTEGER, DIMENSION(0:15) :: IJK_OF_NODE 

 

!     Location of new (along intersecting edges) nodes 

      INTEGER :: NUMBER_OF_NEW_POINTS 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

X_NEW_POINT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Y_NEW_POINT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Z_NEW_POINT 

 

!     Location of new (along intersecting edges) nodes 

      INTEGER :: NUMBER_OF_NEW_U_POINTS 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

X_NEW_U_POINT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Y_NEW_U_POINT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Z_NEW_U_POINT 

 

!     Location of new (along intersecting edges) nodes 

      INTEGER :: NUMBER_OF_NEW_V_POINTS 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

X_NEW_V_POINT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Y_NEW_V_POINT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Z_NEW_V_POINT 

 

!     Location of new (along intersecting edges) nodes 

      INTEGER :: NUMBER_OF_NEW_W_POINTS 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

X_NEW_W_POINT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Y_NEW_W_POINT 
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      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Z_NEW_W_POINT 

 

!     Number of nodes 

      INTEGER, DIMENSION(:), ALLOCATABLE ::  NUMBER_OF_NODES 

      INTEGER, DIMENSION(:), ALLOCATABLE ::  NUMBER_OF_U_NODES 

      INTEGER, DIMENSION(:), ALLOCATABLE ::  NUMBER_OF_V_NODES 

      INTEGER, DIMENSION(:), ALLOCATABLE ::  NUMBER_OF_W_NODES 

 

!     Connectivity 

      INTEGER, DIMENSION(:,:), ALLOCATABLE :: CONNECTIVITY 

      INTEGER, DIMENSION(:,:), ALLOCATABLE :: CONNECTIVITY_U 

      INTEGER, DIMENSION(:,:), ALLOCATABLE :: CONNECTIVITY_V 

      INTEGER, DIMENSION(:,:), ALLOCATABLE :: CONNECTIVITY_W 

 

!     Processor assign to cell IJK 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: PARTITION 

 

!     Normal Vector Defining cut face in Scalar Cell 

      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::  NORMAL_S 

 

!     Reference point Defining cut face in Scalar Cell 

      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::  REFP_S 

 

!     Flags for Wall momentum cells 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  WALL_U_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  WALL_V_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  WALL_W_AT 

 

!     Areas of cut faces 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Area_CUT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Area_U_CUT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Area_V_CUT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Area_W_CUT 

 

!     Distances from cell center to face center 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELX_Ue 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELX_Uw 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELY_Un 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELY_Us 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELZ_Ut 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELZ_Ub 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELX_Ve 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELX_Vw 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELY_Vn 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELY_Vs 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELZ_Vt 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELZ_Vb 
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      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELX_We 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELX_Ww 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELY_Wn 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELY_Ws 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELZ_Wt 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELZ_Wb 

 

!     Location of face centers 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_U_ec 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_U_ec 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_U_ec 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_U_nc 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_U_nc 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_U_nc 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_U_tc 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_U_tc 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_U_tc 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_V_ec 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_V_ec 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_V_ec 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_V_nc 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_V_nc 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_V_nc 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_V_tc 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_V_tc 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_V_tc 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_W_ec 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_W_ec 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_W_ec 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_W_nc 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_W_nc 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_W_nc 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  X_W_tc 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Y_W_tc 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Z_W_tc 

 

 

!     Distance to cut face in U-Momentum Cell 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELH_U 
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!     Normal Vector Defining cut face in U-Momentum Cell 

      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::  NORMAL_U 

 

!     Reference point Defining cut face in W-Momentum Cell 

      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::  REFP_U 

 

 

!     Correction factors for U-Momentum Cell 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_Ue 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Theta_Ue_bar 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_U_ne 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_U_nw 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_U_te 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_U_tw 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ALPHA_Ue_c 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  NOC_U_E 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_Un 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Theta_Un_bar 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ALPHA_Un_c 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  NOC_U_N 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_Ut 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Theta_Ut_bar 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ALPHA_Ut_c 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  NOC_U_T 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  A_UPG_E 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  A_UPG_W 

 

!     Distance to cut face in V-Momentum Cell 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELH_V 

 

!     Normal Vector Defining cut face in V-Momentum Cell 

      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::  NORMAL_V 

 

!     Reference point Defining cut face in V-Momentum Cell 

      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::  REFP_V 

 

 

!     Correction factors for V-Momentum Cell 
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      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_V_ne 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_V_se 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_Vn 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Theta_Vn_bar 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_V_nt 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_V_st 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_Ve 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Theta_Ve_bar 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ALPHA_Ve_c 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  NOC_V_E 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ALPHA_Vn_c 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  NOC_V_N 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_Vt 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Theta_Vt_bar 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ALPHA_Vt_c 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  NOC_V_T 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  A_VPG_N 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  A_VPG_S 

 

 

!     Distance to cut face in W-Momentum Cell 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  DELH_W 

 

!     Normal Vector Defining cut face in W-Momentum Cell 

      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::  NORMAL_W 

 

!     Reference point Defining cut face in W-Momentum Cell 

      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::  REFP_W 

 

 

!     Correction factors for W-Momentum Cell 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_W_te 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_W_be 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_W_tn 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_W_bn 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_Wt 
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      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Theta_Wt_bar 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_We 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Theta_We_bar 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ALPHA_We_c 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  NOC_W_E 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Theta_Wn 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

Theta_Wn_bar 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ALPHA_Wn_c 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  NOC_W_N 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ALPHA_Wt_c 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  NOC_W_T 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  A_WPG_T 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  A_WPG_B 

 

!     1/dx, 1/dy, 1/dz 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ONEoDX_E_U 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ONEoDY_N_U 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ONEoDZ_T_U 

 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ONEoDX_E_V 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ONEoDY_N_V 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ONEoDZ_T_V 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ONEoDX_E_W 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ONEoDY_N_W 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  ONEoDZ_T_W 

 

 

 

      LOGICAL, DIMENSION(:), ALLOCATABLE :: 

ALONG_DOMAIN_BOUNDARY 

 

!     Location of intersection points 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Xn_int 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Xn_U_int 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Xn_V_int 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Xn_W_int 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Ye_int 
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      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Ye_U_int 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Ye_V_int 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Ye_W_int 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Zt_int 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Zt_U_int 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Zt_V_int 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  Zt_W_int 

 

!     Cut cell treatment flags 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  CUT_TREATMENT_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  CUT_U_TREATMENT_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  CUT_V_TREATMENT_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  CUT_W_TREATMENT_AT 

 

!     Various cell flags 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  CUT_CELL_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  CUT_U_CELL_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  CUT_V_CELL_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  CUT_W_CELL_AT 

 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  SMALL_CELL_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  BLOCKED_CELL_AT 

      INTEGER,  DIMENSION(:), ALLOCATABLE ::  SMALL_CELL_FLAG 

 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  BLOCKED_U_CELL_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  BLOCKED_V_CELL_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  BLOCKED_W_CELL_AT 

 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  STANDARD_CELL_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  STANDARD_U_CELL_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  STANDARD_V_CELL_AT 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  STANDARD_W_CELL_AT 

 

!     Tolerance for snapping procedure 

      DOUBLE PRECISION, DIMENSION(3) :: TOL_SNAP 

 

!     Tolerances for wall distance 

      DOUBLE PRECISION :: TOL_DELH 

 

!     Tolerance for detecting small scalar cells 

      DOUBLE PRECISION :: TOL_SMALL_CELL 

      DOUBLE PRECISION :: TOL_SMALL_AREA 

!     Maximum value of ALPHA correction factor 

      DOUBLE PRECISION :: ALPHA_MAX 

 

!     Flags to include effect of cut cells 

      LOGICAL :: 

NOC,NOC_UG,NOC_VG,NOC_WG,NOC_US,NOC_VS,NOC_WS,NOC_TRDG,NOC_TRDS 



208 

 

 

 

      LOGICAL :: 

CUT_TAU_UG,CUT_TAU_VG,CUT_TAU_WG,CUT_TAU_US,CUT_TAU_VS,CUT_TAU_W

S 

 

!     pressure gradient option flag 

      INTEGER :: PG_OPTION 

 

!     Number of cells 

      INTEGER NUMBER_OF_U_CUT_CELLS  

      INTEGER NUMBER_OF_V_CUT_CELLS  

      INTEGER NUMBER_OF_W_CUT_CELLS  

      INTEGER NUMBER_OF_SMALL_CELLS  

 

      INTEGER NUMBER_OF_U_WALL_CELLS 

      INTEGER NUMBER_OF_V_WALL_CELLS 

      INTEGER NUMBER_OF_W_WALL_CELLS 

 

!     Vorticity and lambda2 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  VORTICITY 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  LAMBDA2 

 

!     Re-ordering array 

      INTEGER, DIMENSION(15) :: ORDER 

 

!     Snapping flag 

      LOGICAL,  DIMENSION(:), ALLOCATABLE ::  SNAP 

 

      INTEGER, DIMENSION(10) :: CG_SAFE_MODE 

      LOGICAL :: PRINT_WARNINGS 

      LOGICAL :: SET_CORNER_CELLS 

 

!     Master cell of wall cell (FSW) 

      INTEGER,  DIMENSION(:), ALLOCATABLE ::  U_MASTER_OF 

      INTEGER,  DIMENSION(:), ALLOCATABLE ::  V_MASTER_OF 

      INTEGER,  DIMENSION(:), ALLOCATABLE ::  W_MASTER_OF 

 

      INTEGER :: N_USR_DEF 

 

      LOGICAL :: USE_POLYGON 

 

      LOGICAL :: USE_STL 

 

      LOGICAL :: USE_MSH 

 

!     Boundary condition flag 

      INTEGER,  DIMENSION(:), ALLOCATABLE ::  BC_ID 

      INTEGER,  DIMENSION(:), ALLOCATABLE ::  BC_U_ID 

      INTEGER,  DIMENSION(:), ALLOCATABLE ::  BC_V_ID 

      INTEGER,  DIMENSION(:), ALLOCATABLE ::  BC_W_ID 
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      INTEGER :: NSW_GHOST_BC_ID 

 

!     Under-relaxation flag applied to cut cells 

      DOUBLE PRECISION, DIMENSION(9):: CG_UR_FAC 

 

!     Debugging_variables 

      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::DEBUG_CG 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::U_g_CC 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::V_g_CC 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::W_g_CC 

 

      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::U_s_CC 

      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::V_s_CC 

      DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE ::W_s_CC 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  TRD_G_OUT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  PP_G_OUT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  EPP_OUT 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  dudx_OUT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  dvdy_OUT 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  delv_OUT 

 

!     Fluid zone flag 

      INTEGER,  DIMENSION(:), ALLOCATABLE ::  FLUID_ZONE 

 

      END MODULE cutcell 
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vtk_out.f 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 

!  Module name: WRITE_VTK_FILE                                         

C 

!  Purpose: Writes the cut cell grid in VTK format                     

C 

!                                                                      

C 

!  Author: Jeff Dietiker                              Date: 21-

Feb-08  C 

!  Reviewer:                                          Date:            

C 

!                                                                      

C 

!  Revision Number #                                  Date: ##-

###-##  C 

!  Author: #                                                           

C 

!  Purpose: #                                                          

C 

!                                                                      

C  

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

  SUBROUTINE WRITE_VTK_FILE 

     

      USE param 

      USE param1 

      USE parallel 

      USE constant 

      USE run 

      USE toleranc 

      USE geometry 

      USE indices   

      USE compar 

      USE sendrecv 

      USE quadric 

      USE cutcell 

      USE fldvar 

      USE visc_s 

      USE physprop 

      USE pgcor 

      USE vtk 

      USE rxns       
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      USE output 

      USE scalars 

 

      USE pgcor 

      USE pscor 

 

 

      IMPLICIT NONE 

      DOUBLE PRECISION:: Xw,Xe,Yn,Ys 

      INTEGER :: I,J,K,L,M,N,IM,JM,KM,IP,JP,KP,IJK 

      INTEGER :: IMJK,IJMK,IJKM,IMJMK,IMJKM,IJMKM,IMJMKM 

 

      INTEGER sw,se,ne,nw 

      INTEGER, DIMENSION(10) :: additional_node 

      DOUBLE PRECISION, DIMENSION(2*DIMENSION_3) ::  X_OF 

      DOUBLE PRECISION, DIMENSION(2*DIMENSION_3) ::  Y_OF 

      DOUBLE PRECISION, DIMENSION(2*DIMENSION_3) ::  Z_OF 

      INTEGER, DIMENSION(DIMENSION_3) ::  INDEX_OF_E_ADD_NODE 

      INTEGER, DIMENSION(DIMENSION_3) ::  INDEX_OF_N_ADD_NODE 

      INTEGER :: SPECIES_COUNTER,LT 

 

      CHARACTER (LEN=32) :: SUBM,SUBN 

      CHARACTER (LEN=64) :: VAR_NAME 

 

      DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE ::  

DP_BC_ID,DP_FLUID_ZONE 

 

      include "function.inc" 

 

      IF(.NOT.CARTESIAN_GRID) RETURN 

 

      DX(IEND3+1) = DX(IEND3) 

      DY(JEND3+1) = DY(JEND3) 

      DZ(KEND3+1) = DZ(KEND3) 

 

!     Location of U-momentum cells for original (uncut grid) 

      IF (DO_I) THEN  

        XG_E(1) = ZERO 

        DO I = IMIN1, IMAX2  

           XG_E(I) = XG_E(I-1) + DX(I)  

        END DO  

      ENDIF 

 

!     Location of V-momentum cells for original (uncut grid) 

      IF (DO_J) THEN  

        YG_N(1) = ZERO 

        DO J = JMIN1, JMAX2  

           YG_N(J) = YG_N(J-1) + DY(J)  

        END DO  
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      ENDIF 

 

!     Location of W-momentum cells for original (uncut grid) 

      IF (DO_K) THEN  

        ZG_T(1) = ZERO 

        DO K = KMIN1, KMAX2  

           ZG_T(K) = ZG_T(K-1) + DZ(K)  

        END DO  

      ELSE 

         ZG_T = ZERO 

      ENDIF 

 

      IF(WRITE_ANI_CUTCELL) THEN 

         CALL OPEN_VTK_FILE 

         CALL WRITE_GEOMETRY_IN_VTK 

         CALL CLOSE_VTK_FILE 

         IF (FULL_LOG) THEN 

            WRITE(*,30)'WROTE VTK FILE : ani_cutcell.vtk' 

         ENDIF 

         WRITE_ANI_CUTCELL = .FALSE. 

         RETURN 

      ENDIF 

 

      CALL OPEN_VTK_FILE 

 

      CALL WRITE_GEOMETRY_IN_VTK 

 

      DO L = 1, DIM_VTK_VAR 

 

         SELECT CASE (VTK_VAR(L)) 

            

            CASE (1) 

               CALL WRITE_SCALAR_IN_VTK('EP_G',EP_G) 

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

              

            CASE (2) 

               CALL WRITE_SCALAR_IN_VTK('P_G',P_G) 

               CALL WRITE_SCALAR_IN_VTK('P_S',P_S) 

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

 

            CASE (3) 

               CALL 

WRITE_VECTOR_IN_VTK('Gas_Velocity',U_G,V_G,W_G) 

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

             

            CASE (4) 

               DO M = 1,MMAX 

                  WRITE(SUBM,*)M 
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                  CALL 

WRITE_VECTOR_IN_VTK('Solids_Velocity_'//ADJUSTL(SUBM),U_S(:,M),V

_S(:,M),W_S(:,M)) 

               END DO 

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

             

            CASE (5) 

               DO M = 1,MMAX 

                  WRITE(SUBM,*)M 

                  CALL 

WRITE_SCALAR_IN_VTK('Solids_density_'//ADJUSTL(SUBM),ROP_S(:,M)) 

               END DO 

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

             

            CASE (6) 

               CALL WRITE_SCALAR_IN_VTK('Gas_temperature',T_g) 

               DO M = 1,MMAX 

                  WRITE(SUBM,*)M 

                  CALL 

WRITE_SCALAR_IN_VTK('Solids_temperature_'//ADJUSTL(SUBM),T_S(:,M

)) 

               END DO 

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

             

            CASE (7) 

               SPECIES_COUNTER = 0 

               DO N = 1,NMAX(0) 

                  WRITE(SUBN,*)N 

                  SPECIES_COUNTER = SPECIES_COUNTER + 1 

                  VAR_NAME = 

ADJUSTL(SPECIES_NAME(SPECIES_COUNTER)) 

                  LT = 

LEN_TRIM(ADJUSTL(SPECIES_NAME(SPECIES_COUNTER))) 

                  VAR_NAME = 

VAR_NAME(1:LT)//'_Gas_mass_fractions_'//ADJUSTL(SUBN) 

                  CALL WRITE_SCALAR_IN_VTK(VAR_NAME,X_g(:,N)) 

               END DO 

 

               DO M = 1, MMAX  

                  WRITE(SUBM,*)M 

                  DO N = 1,NMAX(M) 

                     WRITE(SUBN,*)N 

                     SPECIES_COUNTER = SPECIES_COUNTER + 1 

                     VAR_NAME = 

ADJUSTL(SPECIES_NAME(SPECIES_COUNTER)) 

                     LT = 

LEN_TRIM(ADJUSTL(SPECIES_NAME(SPECIES_COUNTER))) 
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                     VAR_NAME = 

VAR_NAME(1:LT)//'_Solids_mass_fractions_'//TRIM(ADJUSTL(SUBM))//

'_'//ADJUSTL(SUBN) 

                     CALL 

WRITE_SCALAR_IN_VTK(VAR_NAME,X_s(:,M,N)) 

                  END DO 

               END DO   

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

             

            CASE (8) 

               DO M = 1,MMAX 

                  WRITE(SUBM,*)M 

                  CALL 

WRITE_SCALAR_IN_VTK('Granular_temperature_'//ADJUSTL(SUBM),Theta

_m(:,M)) 

               END DO 

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

             

            CASE (9) 

               SPECIES_COUNTER = 0 

               DO N = 1,NSCALAR 

                  WRITE(SUBN,*)N 

                  SPECIES_COUNTER = SPECIES_COUNTER + 1 

                  VAR_NAME = 'Scalar_'//ADJUSTL(SUBN) 

                  CALL WRITE_SCALAR_IN_VTK(VAR_NAME,Scalar(:,N)) 

               END DO 

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

 

            CASE (11) 

               IF(K_EPSILON) THEN 

                  CALL WRITE_SCALAR_IN_VTK('K_Turb_G',K_Turb_G)                 

                  CALL WRITE_SCALAR_IN_VTK('E_Turb_G',E_Turb_G)                 

                  IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

               ENDIF 

 

            CASE (12) 

               CALL CALC_VORTICITY 

 

               CALL 

WRITE_SCALAR_IN_VTK('VORTICITY_MAG',VORTICITY)                 

               CALL WRITE_SCALAR_IN_VTK('LAMBDA_2',LAMBDA2)                 

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

             

            CASE (100) 

               CALL WRITE_SCALAR_IN_VTK('PARTITION',PARTITION) 

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

             

            CASE (101) 
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               Allocate(DP_BC_ID(DIMENSION_3)) 

               DP_BC_ID = DFLOAT(BC_ID) 

!               CALL WRITE_SCALAR_IN_VTK('BC_ID',DFLOAT(BC_ID)) 

               CALL WRITE_SCALAR_IN_VTK('BC_ID',DP_BC_ID) 

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

               DeAllocate(DP_BC_ID) 

 

            CASE (102) 

        

               Allocate(DP_FLUID_ZONE(DIMENSION_3)) 

               DP_FLUID_ZONE = DFLOAT(FLUID_ZONE) 

               CALL 

WRITE_SCALAR_IN_VTK('FLUID_ZONE',DP_FLUID_ZONE) 

               IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,10)'.' 

               DeAllocate(DP_FLUID_ZONE) 

 

            CASE (0) ! do nothing 

 

            CASE (UNDEFINED_I) ! do nothing 

 

            CASE DEFAULT 

 

               WRITE(*,30) ' Unknown VTK variable flag 

',L,':',VTK_VAR(L) 

               WRITE(*,30) ' Available flags are : ' 

               WRITE(*,30) ' 1 : Void fraction (EP_g)' 

               WRITE(*,30) ' 2 : Gas pressure, solids pressure 

(P_g, P_star)' 

               WRITE(*,30) ' 3 : Gas velocity (U_g, V_g, W_g)' 

               WRITE(*,30) ' 4 : Solids velocity (U_s, V_s, 

W_s)' 

               WRITE(*,30) ' 5 : Solids density (ROP_s)' 

               WRITE(*,30) ' 6 : Gas and solids temperature 

(T_g, T_s1, T_s2)' 

               WRITE(*,30) ' 7 : Gas and solids mass fractions 

(X_g, X-s)' 

               WRITE(*,30) ' 8 : Granular temperature (G)' 

!               write(*,30) ' 9 : User defined scalars' 

!               write(*,30) '10 : Reaction Rates' 

               write(*,30) '11 : Turbulence quantities (k and 

Îµ)' 

               write(*,30) '12 : Gas Vorticity magnitude and 

Lambda_2 (VORTICITY, LAMBDA_2)' 

               write(*,30) '100: Processor assigned to scalar 

cell (Partition)' 

               write(*,30) '101: Boundary condition flag for 

scalar cell (BC_ID)' 

               write(*,30) 'MFiX will exit now.' 

               CALL MFIX_EXIT(myPE)  
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            END SELECT 

 

      END DO 

 

      CALL CLOSE_VTK_FILE 

 

 

     IF (FULL_LOG.AND.myPE == PE_IO) WRITE(*,20)' DONE.' 

 

10    FORMAT(A,$) 

20    FORMAT(A,1X/) 

30    FORMAT(1X,A)     

      RETURN 

       

      END SUBROUTINE WRITE_VTK_FILE 

 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 

!  Module name: OPEN_VTK_FILE                                          

C 

!  Purpose: Open a vtk file and writes the header                      

C 

!                                                                      

C 

!  Author: Jeff Dietiker                              Date: 21-

Feb-08  C 

!  Reviewer:                                          Date:            

C 

!                                                                      

C 

!  Revision Number #                                  Date: ##-

###-##  C 

!  Author: #                                                           

C 

!  Purpose: #                                                          

C 

!                                                                      

C  

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

  SUBROUTINE OPEN_VTK_FILE 

     

      USE param 

      USE param1 

      USE parallel 

      USE constant 
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      USE run 

      USE toleranc 

      USE geometry 

      USE indices   

      USE compar 

      USE sendrecv 

      USE output 

      USE quadric 

      USE cutcell 

      USE fldvar 

      USE vtk 

       

      IMPLICIT NONE 

      DOUBLE PRECISION:: Xw,Xe,Yn,Ys 

      INTEGER :: I,J,K,L,IM,JM,KM,IP,JP,KP,IJK 

      INTEGER :: IMJK,IJMK,IJKM,IMJMK,IMJKM,IJMKM,IMJMKM 

 

      include "function.inc" 

 

      IF (myPE /= PE_IO) RETURN  

 

      IF(.NOT.WRITE_ANI_CUTCELL) THEN 

 

         VTK_FILENAME = TRIM(RUN_NAME) 

 

         IF(TIME_DEPENDENT_FILENAME) THEN 

            FRAME = FRAME + 1  

            WRITE(FRAME_CHAR,*) FRAME 

            FRAME_CHAR = ADJUSTL(FRAME_CHAR) 

            VTK_FILENAME = TRIM(VTK_FILENAME) // '_' // 

TRIM(FRAME_CHAR) // '.vtk' 

         ELSE 

            VTK_FILENAME = TRIM(VTK_FILENAME) // '.vtk' 

         ENDIF 

 

         IF (FULL_LOG) THEN 

            WRITE(*,10)' WRITING VTK FILE : ', 

TRIM(VTK_FILENAME),' .' 

         ENDIF 

 

      ELSE 

   

         VTK_FILENAME = 'ani_cutcell.vtk' 

 

      ENDIF 

 

      VTK_UNIT   = 123 

 

      OPEN(UNIT     = VTK_UNIT,           & 
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           FILE     = TRIM(VTK_FILENAME), & 

           FORM     = 'UNFORMATTED',    &  ! works with gfortran 

4.3.4 and ifort 10.1 but may not be supported by all compilers 

                                           ! use 'BINARY' if 

'UNFORMATTED' is not supported  

           ACCESS   = 'STREAM',   &        ! works with gfortran 

4.3.4 and ifort 10.1 but may not be supported by all compilers 

                                           ! use 'SEQUENTIAL' if 

'STREAM' is not supported  

           ACTION   = 'WRITE', & 

           CONVERT  = 'BIG_ENDIAN') 

 

      WRITE(UNIT=VTK_UNIT)'# vtk DataFile Version 2.0'//END_REC 

      WRITE(BUFFER,FMT='(A,A,E14.8)')TRIM(RUN_NAME),', Time = 

',TIME 

      WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC 

      WRITE(UNIT=VTK_UNIT)TRIM('BINARY')//END_REC 

      IF(NO_K) THEN 

         WRITE(UNIT=VTK_UNIT)'DATASET POLYDATA'//END_REC 

      ELSE 

         WRITE(UNIT=VTK_UNIT)'DATASET 

UNSTRUCTURED_GRID'//END_REC 

      ENDIF 

 

10    FORMAT(/1X,3A,$) 

 

      RETURN 

 

      END SUBROUTINE OPEN_VTK_FILE 

 

 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 

!  Module name: WRITE_GEOMETRY_IN_VTK                                  

C 

!  Purpose: Write Geometry and connectivity in a vtk file              

C 

!                                                                      

C 

!  Author: Jeff Dietiker                              Date: 21-

Feb-08  C 

!  Reviewer:                                          Date:            

C 

!                                                                      

C 

!  Revision Number #                                  Date: ##-

###-##  C 
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!  Author: #                                                           

C 

!  Purpose: #                                                          

C 

!                                                                      

C  

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

  SUBROUTINE WRITE_GEOMETRY_IN_VTK 

     

      USE param 

      USE param1 

      USE parallel 

      USE constant 

      USE run 

      USE toleranc 

      USE geometry 

      USE indices   

      USE compar 

      USE mpi_utility  

      USE sendrecv 

      USE quadric 

      USE cutcell 

      USE fldvar 

      USE vtk 

 

      

      IMPLICIT NONE 

 

      INTEGER :: IJK,I,J,K,L 

      INTEGER :: IJK_OFFSET 

 

      INTEGER :: iproc,IERR 

      INTEGER, DIMENSION(0:numPEs-1) :: disp,rcount 

      INTEGER, DIMENSION(:,:), ALLOCATABLE :: 

SHIFTED_CONNECTIVITY 

 

      include "function.inc" 

 

      IF (myPE /= PE_IO) RETURN 

 

         NUMBER_OF_VTK_CELLS = NUMBER_OF_CELLS - 

NUMBER_OF_BLOCKED_CELLS 

 

         WRITE(BUFFER,FMT='(A,I8,A)')'POINTS 

',NUMBER_OF_POINTS,' double' 

         WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC 
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         WRITE(UNIT=VTK_UNIT) 

(XG_E(GLOBAL_I_OF(IJK)),YG_N(GLOBAL_J_OF(IJK)),ZG_T(GLOBAL_K_OF(

IJK)), IJK = 1,IJKMAX3), & 

                              

(GLOBAL_X_NEW_POINT(IJK),GLOBAL_Y_NEW_POINT(IJK),GLOBAL_Z_NEW_PO

INT(IJK),IJK = 1,& 

                              GLOBAL_NUMBER_OF_NEW_POINTS) 

         WRITE(UNIT=VTK_UNIT) END_REC 

 

         IF(NO_K) THEN 

            WRITE(BUFFER,FMT='(A,2(I8,2X))')'POLYGONS 

',NUMBER_OF_VTK_CELLS,POLY_COUNTER 

         ELSE 

            WRITE(BUFFER,FMT='(A,2(I8,2X))')'CELLS 

',NUMBER_OF_VTK_CELLS,POLY_COUNTER 

         ENDIF 

 

         WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC 

 

         DO IJK = 1,IJKMAX3 

            IF (GLOBAL_INTERIOR_CELL_AT(IJK))      THEN 

              IF (.NOT.GLOBAL_BLOCKED_CELL_AT(IJK)) 

WRITE(UNIT=VTK_UNIT) GLOBAL_NUMBER_OF_NODES(IJK),& 

              (GLOBAL_CONNECTIVITY(IJK,L)-

1,L=1,GLOBAL_NUMBER_OF_NODES(IJK)) 

            ENDIF 

         END DO 

         WRITE(UNIT=VTK_UNIT) END_REC 

 

         IF(DO_K) THEN 

            WRITE(BUFFER,FMT='(A,I8)')'CELL_TYPES 

',NUMBER_OF_VTK_CELLS 

            WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC 

 

            DO IJK = 1,IJKMAX3 

               IF (GLOBAL_INTERIOR_CELL_AT(IJK))      THEN 

                  IF (.NOT.GLOBAL_BLOCKED_CELL_AT(IJK)) THEN 

                     IF(GLOBAL_CUT_CELL_AT(IJK)) THEN 

                        WRITE(UNIT=VTK_UNIT) 41 

                     ELSE 

                        WRITE(UNIT=VTK_UNIT) 11 

                     ENDIF 

                  ENDIF 

               ENDIF 

            END DO 

            WRITE(UNIT=VTK_UNIT) END_REC 

         ENDIF 
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         WRITE(BUFFER,FMT='(A,I8)') 'CELL_DATA 

',NUMBER_OF_VTK_CELLS 

         WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC 

 

      RETURN 

       

      END SUBROUTINE WRITE_GEOMETRY_IN_VTK 

 

 

 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 

!  Module name: WRITE_SCALAR_IN_VTK                                    

C 

!  Purpose: Write Scalar variable in a vtk file                        

C 

!                                                                      

C 

!  Author: Jeff Dietiker                              Date: 21-

Feb-08  C 

!  Reviewer:                                          Date:            

C 

!                                                                      

C 

!  Revision Number #                                  Date: ##-

###-##  C 

!  Author: #                                                           

C 

!  Purpose: #                                                          

C 

!                                                                      

C  

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

  SUBROUTINE WRITE_SCALAR_IN_VTK(VAR_NAME,VAR) 

     

      USE param 

      USE param1 

      USE parallel 

      USE constant 

      USE run 

      USE toleranc 

      USE geometry 

      USE indices   

      USE compar 

      USE mpi_utility  

      USE sendrecv 
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      USE quadric 

      USE cutcell 

      USE fldvar 

      USE vtk 

       

      IMPLICIT NONE 

      INTEGER :: I,IJK,L 

 

      CHARACTER (*) :: VAR_NAME 

      DOUBLE PRECISION, DIMENSION(DIMENSION_3) ::  VAR 

      DOUBLE PRECISION, ALLOCATABLE :: GLOBAL_VAR(:) 

 

      include "function.inc" 

 

 

      IF (myPE == PE_IO) THEN 

         allocate (GLOBAL_VAR(ijkmax3))      

      ELSE 

         allocate (GLOBAL_VAR(1))      

      ENDIF 

 

      call gather (VAR,GLOBAL_VAR,root)  

 

 

      IF (myPE /= PE_IO) RETURN 

 

 

      DO I = 1,LEN_TRIM(VAR_NAME) 

         IF(VAR_NAME(I:I) == ' ') VAR_NAME(I:I) = '_' 

      ENDDO 

 

 

      WRITE(BUFFER,FMT='(A)')'SCALARS '//TRIM(VAR_NAME)//' 

double 1' 

      WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC 

      WRITE(BUFFER,FMT='(A)')'LOOKUP_TABLE default' 

      WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC 

 

      DO IJK = 1,IJKMAX3 

         IF (GLOBAL_INTERIOR_CELL_AT(IJK))      THEN 

            IF (.NOT.GLOBAL_BLOCKED_CELL_AT(IJK))   

WRITE(UNIT=VTK_UNIT) GLOBAL_VAR(IJK) 

         ENDIF 

      ENDDO 

      WRITE(UNIT=VTK_UNIT)END_REC 

 

      Deallocate (GLOBAL_VAR)    

 

      RETURN 
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      END SUBROUTINE WRITE_SCALAR_IN_VTK 

 

 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 

!  Module name: WRITE_VECTOR_IN_VTK                                    

C 

!  Purpose: Write Vector variable in a vtk file                        

C 

!                                                                      

C 

!  Author: Jeff Dietiker                              Date: 21-

Feb-08  C 

!  Reviewer:                                          Date:            

C 

!                                                                      

C 

!  Revision Number #                                  Date: ##-

###-##  C 

!  Author: #                                                           

C 

!  Purpose: #                                                          

C 

!                                                                      

C  

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

  SUBROUTINE WRITE_VECTOR_IN_VTK(VAR_NAME,VARX,VARY,VARZ) 

     

      USE param 

      USE param1 

      USE parallel 

      USE constant 

      USE run 

      USE toleranc 

      USE geometry 

      USE indices   

      USE compar 

      USE mpi_utility  

      USE sendrecv 

      USE quadric 

      USE cutcell 

      USE fldvar 

      USE vtk 

       

      IMPLICIT NONE 
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      INTEGER :: IJK,L 

 

      CHARACTER (*) :: VAR_NAME 

      DOUBLE PRECISION, DIMENSION(DIMENSION_3) ::  

VARX,VARY,VARZ 

      DOUBLE PRECISION, ALLOCATABLE :: 

GLOBAL_VARX(:),GLOBAL_VARY(:),GLOBAL_VARZ(:) 

 

      include "function.inc" 

 

 

      IF (myPE == PE_IO) THEN 

         allocate (GLOBAL_VARX(ijkmax3)) 

         allocate (GLOBAL_VARY(ijkmax3))      

         allocate (GLOBAL_VARZ(ijkmax3))           

      ELSE 

         allocate (GLOBAL_VARX(1)) 

         allocate (GLOBAL_VARY(1))      

         allocate (GLOBAL_VARZ(1))           

      ENDIF 

 

      call gather (VARX,GLOBAL_VARX,root) 

      call gather (VARY,GLOBAL_VARY,root)  

      call gather (VARZ,GLOBAL_VARZ,root)   

 

      IF (myPE /= PE_IO) RETURN 

 

 

      WRITE(BUFFER,FMT='(A)')'VECTORS '//TRIM(VAR_NAME)//' 

double' 

      WRITE(UNIT=VTK_UNIT)TRIM(BUFFER)//END_REC 

 

      DO IJK = 1,IJKMAX3 

         IF (GLOBAL_INTERIOR_CELL_AT(IJK))      THEN 

            IF (.NOT.GLOBAL_BLOCKED_CELL_AT(IJK))   

WRITE(UNIT=VTK_UNIT) 

GLOBAL_VARX(IJK),GLOBAL_VARY(IJK),GLOBAL_VARZ(IJK) 

         ENDIF 

      ENDDO 

      WRITE(UNIT=VTK_UNIT)END_REC 

 

 

      Deallocate (GLOBAL_VARX) 

      Deallocate (GLOBAL_VARY)    

      Deallocate (GLOBAL_VARZ)       

 

      RETURN 

       

      END SUBROUTINE WRITE_VECTOR_IN_VTK 
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!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 

!  Module name: CLOSE_VTK_FILE                                         

C 

!  Purpose: Close a vtk file                                           

C 

!                                                                      

C 

!  Author: Jeff Dietiker                              Date: 21-

Feb-08  C 

!  Reviewer:                                          Date:            

C 

!                                                                      

C 

!  Revision Number #                                  Date: ##-

###-##  C 

!  Author: #                                                           

C 

!  Purpose: #                                                          

C 

!                                                                      

C  

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

  SUBROUTINE CLOSE_VTK_FILE 

     

      USE vtk 

 

      IF (myPE /= PE_IO) RETURN  

 

      CLOSE(VTK_UNIT) 

 

      RETURN 

 

      END SUBROUTINE CLOSE_VTK_FILE 

 

 

 

 

 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 
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!  Module name: WRITE_CUT_SURFACE_VTK                                  

C 

!  Purpose: Writes the cut cell surface in VTK format                  

C 

!                                                                      

C 

!  Author: Jeff Dietiker                              Date: 21-

Feb-08  C 

!  Reviewer:                                          Date:            

C 

!                                                                      

C 

!  Revision Number #                                  Date: ##-

###-##  C 

!  Author: #                                                           

C 

!  Purpose: #                                                          

C 

!                                                                      

C  

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

  SUBROUTINE WRITE_CUT_SURFACE_VTK 

     

      USE param 

      USE param1 

      USE parallel 

      USE constant 

      USE run 

      USE toleranc 

      USE geometry 

      USE indices   

      USE compar 

      USE sendrecv 

      USE quadric 

      USE cutcell 

      USE fldvar 

      USE vtk 

      USE polygon 

      USE stl 

       

      IMPLICIT NONE 

 

      INTEGER :: I,J,K,L,IM,JM,KM,IP,JP,KP,IJK,NODE 

      INTEGER :: IMJK,IJMK,IJKM,IMJMK,IMJKM,IJMKM,IMJMKM 

      INTEGER :: POINT_ID,POLY_COUNT,FACE_ID,Q_ID,Q_ID2 

      INTEGER :: N_CUT_FACE_NODES,BCID2 

 

      INTEGER NUMBER_OF_FACES 
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      INTEGER NUMBER_OF_SURFACE_POINTS 

 

      DOUBLE PRECISION, DIMENSION(15,3) :: COORD_CUT_FACE_NODES 

      DOUBLE PRECISION, DIMENSION(3)    :: NORMAL 

 

      INTEGER, DIMENSION(DIMENSION_MAX_CUT_CELL,6) ::  

FACE_CONNECTIVITY 

      INTEGER, DIMENSION(DIMENSION_MAX_CUT_CELL)   ::  

NUMBER_OF_CUT_FACE_POINTS 

 

      DOUBLE PRECISION, DIMENSION(DIMENSION_MAX_CUT_CELL) ::  

X_FACE_POINT 

      DOUBLE PRECISION, DIMENSION(DIMENSION_MAX_CUT_CELL) ::  

Y_FACE_POINT 

      DOUBLE PRECISION, DIMENSION(DIMENSION_MAX_CUT_CELL) ::  

Z_FACE_POINT 

 

      DOUBLE PRECISION :: X_COPY,Y_COPY,Z_COPY,F_COPY,F2 

 

      LOGICAL :: CLIP_FLAG,INTERSECT_FLAG,PRINT_FLAG 

 

      CHARACTER (LEN=32) :: FILENAME 

 

      include "function.inc" 

 

      IF(myPE/=0) RETURN 

 

!===============================================================

======= 

!  Set-up connectivity for each cell, i.e., regular cells and 

cut cells 

!===============================================================

======= 

 

      POLY_COUNT = 0 

 

      NUMBER_OF_SURFACE_POINTS = 0 

 

      NUMBER_OF_FACES = 0 

 

      DO IJK = 1,IJKMAX3 

 

         IF(GLOBAL_CUT_CELL_AT(IJK)) THEN 

 

!===============================================================

======= 

!  Filter the connectivity to identify nodes belonging to cut 

face 
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!===============================================================

======= 

 

 

            NUMBER_OF_FACES = NUMBER_OF_FACES + 1 

      

            N_CUT_FACE_NODES = 0 

 

            CALL GET_GLOBAL_CELL_NODE_COORDINATES(IJK,'SCALAR') 

 

            DO L = 1, GLOBAL_NUMBER_OF_NODES(IJK) 

               IF(GLOBAL_CONNECTIVITY(IJK,L)>IJKMAX3) THEN   ! 

One of the new point           

                  X_COPY = 

GLOBAL_X_NEW_POINT(GLOBAL_CONNECTIVITY(IJK,L)-IJKMAX3) 

                  Y_COPY = 

GLOBAL_Y_NEW_POINT(GLOBAL_CONNECTIVITY(IJK,L)-IJKMAX3) 

                  Z_COPY = 

GLOBAL_Z_NEW_POINT(GLOBAL_CONNECTIVITY(IJK,L)-IJKMAX3) 

               ELSE                                   ! An 

existing point           

                  DO NODE = 1,8 

                     IF(GLOBAL_CONNECTIVITY(IJK,L) == 

IJK_OF_NODE(NODE)) THEN 

                        X_COPY = X_NODE(NODE) 

                        Y_COPY = Y_NODE(NODE) 

                        Z_COPY = Z_NODE(NODE) 

 

 

                        IF (GLOBAL_SNAP(IJK_OF_NODE(NODE))) THEN 

! One of the snapped corner point which now belongs to the cut 

face 

                           N_CUT_FACE_NODES = N_CUT_FACE_NODES + 

1 

                           

COORD_CUT_FACE_NODES(N_CUT_FACE_NODES,1) = X_COPY 

                           

COORD_CUT_FACE_NODES(N_CUT_FACE_NODES,2) = Y_COPY 

                           

COORD_CUT_FACE_NODES(N_CUT_FACE_NODES,3) = Z_COPY 

                        ENDIF 

                     ENDIF 

                  END DO 

 

               ENDIF 

 

               Q_ID = 1 
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               CALL 

EVAL_F('QUADRIC',X_COPY,Y_COPY,Z_COPY,Q_ID,F_COPY,CLIP_FLAG) 

 

               CALL 

EVAL_F('POLYGON',X_COPY,Y_COPY,Z_COPY,N_POLYGON,F_COPY,CLIP_FLAG

) 

 

               CALL 

EVAL_F('USR_DEF',X_COPY,Y_COPY,Z_COPY,N_USR_DEF,F_COPY,CLIP_FLAG

) 

 

               X_NODE(15) = X_COPY 

               Y_NODE(15) = Y_COPY 

               Z_NODE(15) = Z_COPY 

 

               CALL 

EVAL_STL_FCT_AT('SCALAR',IJK,15,F_COPY,CLIP_FLAG,BCID2) 

 

               IF (ABS(F_COPY) < TOL_F ) THEN ! belongs to cut 

face 

                  N_CUT_FACE_NODES = N_CUT_FACE_NODES + 1 

                  COORD_CUT_FACE_NODES(N_CUT_FACE_NODES,1) = 

X_COPY 

                  COORD_CUT_FACE_NODES(N_CUT_FACE_NODES,2) = 

Y_COPY 

                  COORD_CUT_FACE_NODES(N_CUT_FACE_NODES,3) = 

Z_COPY 

               ENDIF 

 

            END DO 

 

            CALL 

REORDER_POLYGON(N_CUT_FACE_NODES,COORD_CUT_FACE_NODES,NORMAL) 

 

            NUMBER_OF_CUT_FACE_POINTS(NUMBER_OF_FACES) = 

N_CUT_FACE_NODES  

            POLY_COUNT = POLY_COUNT + N_CUT_FACE_NODES + 1 

            DO NODE = 1,N_CUT_FACE_NODES 

               NUMBER_OF_SURFACE_POINTS = 

NUMBER_OF_SURFACE_POINTS + 1 

 

               

IF(NUMBER_OF_SURFACE_POINTS>=DIMENSION_MAX_CUT_CELL) THEN 

                  WRITE(*,3000) 'ERROR IN SUBROUTINE 

WRITE_3DCUT_SURFACE_VTK:' 

                  WRITE(*,3000) 

'NUMBER_OF_SURFACE_POINTS>=DIMENSION_MAX_CUT_CELL:' 

                  WRITE(*,3000) 'INCREASE VALUE OF 

FAC_DIM_MAX_CUT_CELL.' 
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                  WRITE(*,3010) 'CURRENT VALUE OF 

FAC_DIM_MAX_CUT_CELL =',FAC_DIM_MAX_CUT_CELL 

                  WRITE(*,3020) 'CURRENT VALUE OF 

DIMENSION_MAX_CUT_CELL =',DIMENSION_MAX_CUT_CELL 

                  WRITE(*,3000) 'MFiX will exit now.' 

                  CALL MFIX_EXIT(myPE) 

               ENDIF 

 

               X_FACE_POINT(NUMBER_OF_SURFACE_POINTS) = 

COORD_CUT_FACE_NODES(NODE,1) 

               Y_FACE_POINT(NUMBER_OF_SURFACE_POINTS) = 

COORD_CUT_FACE_NODES(NODE,2) 

               Z_FACE_POINT(NUMBER_OF_SURFACE_POINTS) = 

COORD_CUT_FACE_NODES(NODE,3) 

               FACE_CONNECTIVITY(NUMBER_OF_FACES,NODE) = 

NUMBER_OF_SURFACE_POINTS 

            ENDDO 

 

         ENDIF 

 

      END DO 

 

 

 

      FILENAME= TRIM(RUN_NAME) // '_boundary.vtk' 

      FILENAME = TRIM(FILENAME) 

      OPEN(UNIT = 123, FILE = FILENAME) 

      WRITE(123,1001)'# vtk DataFile Version 2.0' 

      WRITE(123,1001)'3D CUT-CELL SURFACE' 

      WRITE(123,1001)'ASCII' 

 

      IF(NO_K) THEN   ! 2D GEOMETRY 

         WRITE(123,1001)'DATASET UNSTRUCTURED_GRID'       

      ELSE            ! 3D GEOMETRY 

         WRITE(123,1001)'DATASET POLYDATA'       

      ENDIF 

 

      WRITE(123,1010)'POINTS ',NUMBER_OF_SURFACE_POINTS,' float' 

 

      DO POINT_ID = 1,NUMBER_OF_SURFACE_POINTS 

         WRITE(123,1020) 

X_FACE_POINT(POINT_ID),Y_FACE_POINT(POINT_ID),Z_FACE_POINT(POINT

_ID) 

      ENDDO 

      

      IF(NO_K) THEN   ! 2D GEOMETRY 

 

         WRITE(123,1030)'CELLS ',NUMBER_OF_FACES,POLY_COUNT 

         DO FACE_ID = 1 , NUMBER_OF_FACES 
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            WRITE(123,1040) 

NUMBER_OF_CUT_FACE_POINTS(FACE_ID),(FACE_CONNECTIVITY(FACE_ID,L)

-1,& 

            L=1,NUMBER_OF_CUT_FACE_POINTS(FACE_ID))          

         ENDDO 

         WRITE(123,1030)'CELL_TYPES ',NUMBER_OF_FACES 

         DO FACE_ID = 1 , NUMBER_OF_FACES 

            WRITE(123,1040) 3 

         ENDDO 

 

      ELSE            ! 3D GEOMETRY 

       

         WRITE(123,1030)'POLYGONS ',NUMBER_OF_FACES,POLY_COUNT 

         DO FACE_ID = 1 , NUMBER_OF_FACES 

            WRITE(123,1040) 

NUMBER_OF_CUT_FACE_POINTS(FACE_ID),(FACE_CONNECTIVITY(FACE_ID,L)

-1,& 

            L=1,NUMBER_OF_CUT_FACE_POINTS(FACE_ID))          

         ENDDO 

 

      ENDIF 

 

1001  FORMAT(A) 

1010  FORMAT(A,I8,A) 

1020  FORMAT(3(E16.8,2X)) 

1030  FORMAT(A,2(I8,2X)) 

1040  FORMAT(20(I8,2X)) 

1050  FORMAT(A,I8) 

1060  FORMAT(E16.8) 

1070  FORMAT(3(E16.8,2X)) 

1080  FORMAT(I5) 

3000  FORMAT(1X,A)  

3010  FORMAT(1X,A,F8.4)  

3020  FORMAT(1X,A,I8)  

3030  FORMAT(1X,A,A)  

      CLOSE (123) 

 

 

      WRITE(*,3030)'WROTE BOUNDARY IN VTK FILE : ',FILENAME 

      RETURN 

 

       

      END SUBROUTINE WRITE_CUT_SURFACE_VTK 

 

 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 



232 

 

 

 

!  Module name: GATHER_DATA                                            

C 

!  Purpose: Gather data from all processes in preparation of           

C 

!           Writing VTK files                                          

C 

!                                                                      

C 

!  Author: Jeff Dietiker                              Date: 21-

Feb-08  C 

!  Reviewer:                                          Date:            

C 

!                                                                      

C 

!  Revision Number #                                  Date: ##-

###-##  C 

!  Author: #                                                           

C 

!  Purpose: #                                                          

C 

!                                                                      

C  

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

  SUBROUTINE GATHER_DATA 

     

      USE param 

      USE param1 

      USE parallel 

      USE constant 

      USE run 

      USE toleranc 

      USE geometry 

      USE indices   

      USE compar 

      USE mpi_utility  

      USE sendrecv 

      USE quadric 

      USE cutcell 

      USE fldvar 

      USE vtk 

 

      

      IMPLICIT NONE 

 

      INTEGER :: IJK,I,J,K,L 

      INTEGER :: IJK_OFFSET 

 

      INTEGER :: iproc,IERR 
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      INTEGER, DIMENSION(0:numPEs-1) :: disp,rcount 

      INTEGER, DIMENSION(:,:), ALLOCATABLE :: 

SHIFTED_CONNECTIVITY 

 

      include "function.inc" 

 

 

!===============================================================

======= 

!  parallel processing 

!===============================================================

======= 

 

      CALL allgather_1i (NUMBER_OF_NEW_POINTS,rcount,IERR) 

 

      IF (myPE == 0) THEN 

         IJK_OFFSET = 0 

      ELSE 

         IJK_OFFSET = 0 

         DO iproc=0,myPE-1 

            IJK_OFFSET = IJK_OFFSET + rcount(iproc) 

         ENDDO 

      ENDIF 

 

      CALL allgather_1i (IJK_OFFSET,disp,IERR) 

 

      IF(.NOT.GLOBAL_VAR_ALLOCATED) THEN 

 

         IF (myPE == PE_IO) THEN 

            allocate (GLOBAL_I_OF(ijkmax3))      

            allocate (GLOBAL_J_OF(ijkmax3))      

            allocate (GLOBAL_K_OF(ijkmax3))      

            allocate (GLOBAL_CONNECTIVITY(ijkmax3,15))  

            allocate (GLOBAL_NUMBER_OF_NODES(ijkmax3))  

            allocate (GLOBAL_INTERIOR_CELL_AT(ijkmax3)) 

            allocate (GLOBAL_BLOCKED_CELL_AT(ijkmax3))  

            allocate (GLOBAL_STANDARD_CELL_AT(ijkmax3)) 

            allocate (GLOBAL_CUT_CELL_AT(ijkmax3))     

            allocate (GLOBAL_SNAP(ijkmax3))     

            allocate (GLOBAL_X_NEW_POINT(ijkmax3))      

            allocate (GLOBAL_Y_NEW_POINT(ijkmax3))      

            allocate (GLOBAL_Z_NEW_POINT(ijkmax3))      

 

         ELSE 

            allocate (GLOBAL_I_OF(1)) 

            allocate (GLOBAL_J_OF(1)) 

            allocate (GLOBAL_K_OF(1)) 

            allocate (GLOBAL_CONNECTIVITY(1,1))      

            allocate (GLOBAL_NUMBER_OF_NODES(1))     
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            allocate (GLOBAL_INTERIOR_CELL_AT(1))    

            allocate (GLOBAL_BLOCKED_CELL_AT(1))     

            allocate (GLOBAL_STANDARD_CELL_AT(1))    

            allocate (GLOBAL_CUT_CELL_AT(1))     

            allocate (GLOBAL_SNAP(1))      

            allocate (GLOBAL_X_NEW_POINT(1))      

            allocate (GLOBAL_Y_NEW_POINT(1))      

            allocate (GLOBAL_Z_NEW_POINT(1))      

         ENDIF 

 

         GLOBAL_VAR_ALLOCATED = .TRUE. 

  

      ENDIF 

 

      call gatherv_1d( X_NEW_POINT, NUMBER_OF_NEW_POINTS, 

GLOBAL_X_NEW_POINT, rcount, disp, PE_IO, ierr ) 

      call gatherv_1d( Y_NEW_POINT, NUMBER_OF_NEW_POINTS, 

GLOBAL_Y_NEW_POINT, rcount, disp, PE_IO, ierr ) 

      call gatherv_1d( Z_NEW_POINT, NUMBER_OF_NEW_POINTS, 

GLOBAL_Z_NEW_POINT, rcount, disp, PE_IO, ierr ) 

 

      call global_sum(NUMBER_OF_NEW_POINTS, 

GLOBAL_NUMBER_OF_NEW_POINTS,  PE_IO, ierr ) 

 

      Allocate(  SHIFTED_CONNECTIVITY  (DIMENSION_3,15) ) 

 

      SHIFTED_CONNECTIVITY = CONNECTIVITY 

 

      WHERE (SHIFTED_CONNECTIVITY > IJKEND3) 

         SHIFTED_CONNECTIVITY = SHIFTED_CONNECTIVITY - IJKEND3 + 

IJKMAX3 + disp(myPE) 

      END WHERE 

 

      DO IJK = IJKSTART3,IJKEND3 

         DO L=1,NUMBER_OF_NODES(IJK) 

            IF(CONNECTIVITY(IJK,L) <= IJKEND3) THEN 

               I = I_OF(CONNECTIVITY(IJK,L)) 

               J = J_OF(CONNECTIVITY(IJK,L)) 

               K = K_OF(CONNECTIVITY(IJK,L)) 

               SHIFTED_CONNECTIVITY(IJK,L) = funijk_gl(I,J,K)  

            ENDIF 

         ENDDO 

      ENDDO 

 

      call gather (I_OF,GLOBAL_I_OF,root)     

      call gather (J_OF,GLOBAL_J_OF,root)     

      call gather (K_OF,GLOBAL_K_OF,root)     

      call gather 

(SHIFTED_CONNECTIVITY,GLOBAL_CONNECTIVITY,root)     
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      call gather (NUMBER_OF_NODES,GLOBAL_NUMBER_OF_NODES,root)     

      call gather 

(INTERIOR_CELL_AT,GLOBAL_INTERIOR_CELL_AT,root)   

      call gather (BLOCKED_CELL_AT,GLOBAL_BLOCKED_CELL_AT,root)     

      call gather 

(STANDARD_CELL_AT,GLOBAL_STANDARD_CELL_AT,root)   

      call gather (CUT_CELL_AT,GLOBAL_CUT_CELL_AT,root)    

      call gather (SNAP,GLOBAL_SNAP,root)    

 

      Deallocate(  SHIFTED_CONNECTIVITY ) 

 

      IF (myPE == PE_IO) THEN 

 

         POLY_COUNTER = 0 

   

         NUMBER_OF_CELLS = 0 

 

         NUMBER_OF_CUT_CELLS = 0 

 

         NUMBER_OF_BLOCKED_CELLS = 0 

 

         NUMBER_OF_STANDARD_CELLS = 0 

 

         DO IJK = 1, IJKMAX3    

 

            IF (GLOBAL_INTERIOR_CELL_AT(IJK)) THEN 

 

               NUMBER_OF_CELLS = NUMBER_OF_CELLS + 1 

 

               IF (GLOBAL_BLOCKED_CELL_AT(IJK))  

NUMBER_OF_BLOCKED_CELLS  = NUMBER_OF_BLOCKED_CELLS + 1 

               IF (GLOBAL_STANDARD_CELL_AT(IJK)) 

NUMBER_OF_STANDARD_CELLS = NUMBER_OF_STANDARD_CELLS + 1 

               IF (GLOBAL_CUT_CELL_AT(IJK))      

NUMBER_OF_CUT_CELLS = NUMBER_OF_CUT_CELLS + 1 

     

               IF (.NOT.GLOBAL_BLOCKED_CELL_AT(IJK))   

POLY_COUNTER = POLY_COUNTER + GLOBAL_NUMBER_OF_NODES(IJK) + 1 

 

            ENDIF 

 

         END DO 

 

 

         NUMBER_OF_POINTS = IJKMAX3 + 

GLOBAL_NUMBER_OF_NEW_POINTS 

 

      ENDIF 

 



236 

 

 

 

      RETURN 

 

       

      END SUBROUTINE GATHER_DATA 

 

 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvvvvC 

!                                                                      

C 

!  Module name: PRINT_GRID_STATISTICS                                  

C 

!  Purpose: PRINT_GRID_STATISTICS ON SCREEN                            

C 

!                                                                      

C 

!                                                                      

C 

!  Author: Jeff Dietiker                              Date: 21-

Feb-08  C 

!  Reviewer:                                          Date:            

C 

!                                                                      

C 

!  Revision Number #                                  Date: ##-

###-##  C 

!  Author: #                                                           

C 

!  Purpose: #                                                          

C 

!                                                                      

C  

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^C 

  SUBROUTINE PRINT_GRID_STATISTICS 

     

      USE param 

      USE param1 

      USE parallel 

      USE constant 

      USE run 

      USE toleranc 

      USE geometry 

      USE indices   

      USE compar 

      USE mpi_utility  

      USE sendrecv 

      USE quadric 

      USE cutcell 
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      USE fldvar 

      USE vtk 

 

      

      IMPLICIT NONE 

 

      INTEGER :: IJK,I,J,K,L 

      INTEGER :: IJK_OFFSET 

 

      INTEGER :: iproc,IERR 

 

      DOUBLE PRECISION :: MIN_VOL, MAX_VOL, 

GLOBAL_MIN_VOL,GLOBAL_MAX_VOL 

      DOUBLE PRECISION :: MIN_AYZ, MAX_AYZ, 

GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ 

      DOUBLE PRECISION :: MIN_AXZ, MAX_AXZ, 

GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ 

      DOUBLE PRECISION :: MIN_AXY, MAX_AXY, 

GLOBAL_MIN_AXY,GLOBAL_MAX_AXY 

      DOUBLE PRECISION :: MIN_CUT, MAX_CUT, 

GLOBAL_MIN_CUT,GLOBAL_MAX_CUT 

      DOUBLE PRECISION :: LOCAL_MIN_Q,LOCAL_MAX_Q, 

GLOBAL_MIN_Q,GLOBAL_MAX_Q 

 

 

      include "function.inc" 

 

      IF (myPE == PE_IO) THEN 

 

         IF(.NOT.GRID_INFO_PRINTED_ON_SCREEN) THEN 

            WRITE(*,5) 'GRID STATISTICS:' 

            WRITE(*,5) 'NUMBER OF CELLS          = ', 

NUMBER_OF_CELLS  

            WRITE(*,10)'NUMBER OF STANDARD CELLS = ', & 

                        

NUMBER_OF_STANDARD_CELLS,DFLOAT(NUMBER_OF_STANDARD_CELLS) / 

DFLOAT(NUMBER_OF_CELLS) * 100.0D0 

            WRITE(*,10)'NUMBER OF CUT CELLS      = ', & 

                        

NUMBER_OF_CUT_CELLS,DFLOAT(NUMBER_OF_CUT_CELLS) / 

DFLOAT(NUMBER_OF_CELLS) * 100.0D0 

            WRITE(*,10)'NUMBER OF BLOCKED CELLS  = ', & 

                        

NUMBER_OF_BLOCKED_CELLS,DFLOAT(NUMBER_OF_BLOCKED_CELLS) / 

DFLOAT(NUMBER_OF_CELLS) * 100.0D0 

 

5           FORMAT(1X,A,I8) 

10          FORMAT(1X,A,I8,' (',F6.2,' % of Total)') 
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         ENDIF 

 

         GRID_INFO_PRINTED_ON_SCREEN = .TRUE. 

 

      ENDIF 

 

 

!===============================================================

======= 

!  Scalar Cell volumes and areas 

!===============================================================

======= 

 

      MIN_VOL =   LARGE_NUMBER 

      MAX_VOL = - LARGE_NUMBER 

      MIN_AYZ =   LARGE_NUMBER  

      MAX_AYZ = - LARGE_NUMBER  

      MIN_AXZ =   LARGE_NUMBER  

      MAX_AXZ = - LARGE_NUMBER 

      MIN_AXY =   LARGE_NUMBER 

      MAX_AXY = - LARGE_NUMBER 

 

      DO IJK = IJKSTART3, IJKEND3 

         IF(STANDARD_CELL_AT(IJK)) THEN              ! STANDARD 

CELLS 

 

            MIN_VOL =   DMIN1(MIN_VOL,VOL(IJK)) 

            MAX_VOL =   DMAX1(MAX_VOL,VOL(IJK)) 

            MIN_AYZ =   DMIN1(MIN_AYZ,AYZ(IJK)) 

            MAX_AYZ =   DMAX1(MAX_AYZ,AYZ(IJK)) 

            MIN_AXZ =   DMIN1(MIN_AXZ,AXZ(IJK)) 

            MAX_AXZ =   DMAX1(MAX_AXZ,AXZ(IJK)) 

            MIN_AXY =   DMIN1(MIN_AXY,AXY(IJK)) 

            MAX_AXY =   DMAX1(MAX_AXY,AXY(IJK)) 

 

         ENDIF 

      END DO 

 

      call global_min(MIN_VOL, GLOBAL_MIN_VOL,  PE_IO, ierr ) 

      call global_max(MAX_VOL, GLOBAL_MAX_VOL,  PE_IO, ierr ) 

      call global_min(MIN_AYZ, GLOBAL_MIN_AYZ,  PE_IO, ierr ) 

      call global_max(MAX_AYZ, GLOBAL_MAX_AYZ,  PE_IO, ierr ) 

      call global_min(MIN_AXZ, GLOBAL_MIN_AXZ,  PE_IO, ierr ) 

      call global_max(MAX_AXZ, GLOBAL_MAX_AXZ,  PE_IO, ierr ) 

      call global_min(MIN_AXY, GLOBAL_MIN_AXY,  PE_IO, ierr ) 

      call global_max(MAX_AXY, GLOBAL_MAX_AXY,  PE_IO, ierr ) 

 

      IF (myPE == PE_IO) THEN 
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         WRITE(UNIT_CUT_CELL_LOG,1000)  

'###############################################################

#' 

         WRITE(UNIT_CUT_CELL_LOG,1000)  '                       

CELLS STATISTICS                         ' 

         WRITE(UNIT_CUT_CELL_LOG,1000)  

'###############################################################

#' 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'SCALAR STANDARD CELLS:' 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXY                   

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXZ                   

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AYZ                   

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF VOLUME                

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL 

      ENDIF 

 

 

      MIN_VOL =   LARGE_NUMBER 

      MAX_VOL = - LARGE_NUMBER 

      MIN_AYZ =   LARGE_NUMBER  

      MAX_AYZ = - LARGE_NUMBER  

      MIN_AXZ =   LARGE_NUMBER  

      MAX_AXZ = - LARGE_NUMBER 

      MIN_AXY =   LARGE_NUMBER 

      MAX_AXY = - LARGE_NUMBER 

 

      DO IJK = IJKSTART3, IJKEND3 

         IF(CUT_CELL_AT(IJK)) THEN                   ! CUT CELLS 

 

            MIN_VOL =   DMIN1(MIN_VOL,VOL(IJK)) 

            MAX_VOL =   DMAX1(MAX_VOL,VOL(IJK)) 

            MIN_AYZ =   DMIN1(MIN_AYZ,AYZ(IJK)) 

            MAX_AYZ =   DMAX1(MAX_AYZ,AYZ(IJK)) 

            MIN_AXZ =   DMIN1(MIN_AXZ,AXZ(IJK)) 

            MAX_AXZ =   DMAX1(MAX_AXZ,AXZ(IJK)) 

            MIN_AXY =   DMIN1(MIN_AXY,AXY(IJK)) 

            MAX_AXY =   DMAX1(MAX_AXY,AXY(IJK)) 

 

         ENDIF 

      END DO 

 

      call global_min(MIN_VOL, GLOBAL_MIN_VOL,  PE_IO, ierr ) 

      call global_max(MAX_VOL, GLOBAL_MAX_VOL,  PE_IO, ierr ) 

      call global_min(MIN_AYZ, GLOBAL_MIN_AYZ,  PE_IO, ierr ) 

      call global_max(MAX_AYZ, GLOBAL_MAX_AYZ,  PE_IO, ierr ) 

      call global_min(MIN_AXZ, GLOBAL_MIN_AXZ,  PE_IO, ierr ) 
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      call global_max(MAX_AXZ, GLOBAL_MAX_AXZ,  PE_IO, ierr ) 

      call global_min(MIN_AXY, GLOBAL_MIN_AXY,  PE_IO, ierr ) 

      call global_max(MAX_AXY, GLOBAL_MAX_AXY,  PE_IO, ierr ) 

 

      IF (myPE == PE_IO) THEN 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'SCALAR CUT CELLS:' 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXY                   

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXZ                   

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AYZ                   

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF VOLUME                

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL 

         WRITE(UNIT_CUT_CELL_LOG,1010)  'NUMBER OF SMALL SCALAR 

CELLS   = ', NUMBER_OF_SMALL_CELLS  

         WRITE(UNIT_CUT_CELL_LOG,1000)  

'###############################################################

#' 

      ENDIF 

 

 

1000 FORMAT(A,E14.8,2X,E14.8) 

1010 FORMAT(A,I8) 

 

!===============================================================

======= 

!  U-Momentum Cell volumes and areas 

!===============================================================

======= 

 

 

 

      MIN_VOL =   LARGE_NUMBER 

      MAX_VOL = - LARGE_NUMBER 

      MIN_AYZ =   LARGE_NUMBER  

      MAX_AYZ = - LARGE_NUMBER  

      MIN_AXZ =   LARGE_NUMBER  

      MAX_AXZ = - LARGE_NUMBER 

      MIN_AXY =   LARGE_NUMBER 

      MAX_AXY = - LARGE_NUMBER 

 

      DO IJK = IJKSTART3, IJKEND3 

         IF(STANDARD_U_CELL_AT(IJK)) THEN              ! 

STANDARD CELLS 

 

            MIN_VOL =   DMIN1(MIN_VOL,VOL_U(IJK)) 

            MAX_VOL =   DMAX1(MAX_VOL,VOL_U(IJK)) 

            MIN_AYZ =   DMIN1(MIN_AYZ,AYZ_U(IJK)) 
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            MAX_AYZ =   DMAX1(MAX_AYZ,AYZ_U(IJK)) 

            MIN_AXZ =   DMIN1(MIN_AXZ,AXZ_U(IJK)) 

            MAX_AXZ =   DMAX1(MAX_AXZ,AXZ_U(IJK)) 

            MIN_AXY =   DMIN1(MIN_AXY,AXY_U(IJK)) 

            MAX_AXY =   DMAX1(MAX_AXY,AXY_U(IJK)) 

 

         ENDIF 

      END DO 

 

      call global_min(MIN_VOL, GLOBAL_MIN_VOL,  PE_IO, ierr ) 

      call global_max(MAX_VOL, GLOBAL_MAX_VOL,  PE_IO, ierr ) 

      call global_min(MIN_AYZ, GLOBAL_MIN_AYZ,  PE_IO, ierr ) 

      call global_max(MAX_AYZ, GLOBAL_MAX_AYZ,  PE_IO, ierr ) 

      call global_min(MIN_AXZ, GLOBAL_MIN_AXZ,  PE_IO, ierr ) 

      call global_max(MAX_AXZ, GLOBAL_MAX_AXZ,  PE_IO, ierr ) 

      call global_min(MIN_AXY, GLOBAL_MIN_AXY,  PE_IO, ierr ) 

      call global_max(MAX_AXY, GLOBAL_MAX_AXY,  PE_IO, ierr ) 

 

      IF (myPE == PE_IO) THEN 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'U-MOMENTUM STANDARD 

CELLS:' 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXY                   

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXZ                   

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AYZ                   

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF VOLUME                

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL 

      ENDIF 

 

      MIN_VOL =   LARGE_NUMBER 

      MAX_VOL = - LARGE_NUMBER 

      MIN_AYZ =   LARGE_NUMBER  

      MAX_AYZ = - LARGE_NUMBER  

      MIN_AXZ =   LARGE_NUMBER  

      MAX_AXZ = - LARGE_NUMBER 

      MIN_AXY =   LARGE_NUMBER 

      MAX_AXY = - LARGE_NUMBER 

      MIN_CUT =   LARGE_NUMBER 

      MAX_CUT = - LARGE_NUMBER 

 

      DO IJK = IJKSTART3, IJKEND3 

         IF(CUT_U_CELL_AT(IJK).AND.(.NOT.WALL_U_AT(IJK))) THEN      

! CUT CELLS 

 

            MIN_VOL =   DMIN1(MIN_VOL,VOL_U(IJK)) 

            MAX_VOL =   DMAX1(MAX_VOL,VOL_U(IJK)) 

            MIN_AYZ =   DMIN1(MIN_AYZ,AYZ_U(IJK)) 
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            MAX_AYZ =   DMAX1(MAX_AYZ,AYZ_U(IJK)) 

            MIN_AXZ =   DMIN1(MIN_AXZ,AXZ_U(IJK)) 

            MAX_AXZ =   DMAX1(MAX_AXZ,AXZ_U(IJK)) 

            MIN_AXY =   DMIN1(MIN_AXY,AXY_U(IJK)) 

            MAX_AXY =   DMAX1(MAX_AXY,AXY_U(IJK)) 

            MIN_CUT =   DMIN1(MIN_CUT,AREA_U_CUT(IJK)) 

            MAX_CUT =   DMAX1(MAX_CUT,AREA_U_CUT(IJK)) 

 

         ENDIF 

      END DO 

 

      call global_min(MIN_VOL, GLOBAL_MIN_VOL,  PE_IO, ierr ) 

      call global_max(MAX_VOL, GLOBAL_MAX_VOL,  PE_IO, ierr ) 

      call global_min(MIN_AYZ, GLOBAL_MIN_AYZ,  PE_IO, ierr ) 

      call global_max(MAX_AYZ, GLOBAL_MAX_AYZ,  PE_IO, ierr ) 

      call global_min(MIN_AXZ, GLOBAL_MIN_AXZ,  PE_IO, ierr ) 

      call global_max(MAX_AXZ, GLOBAL_MAX_AXZ,  PE_IO, ierr ) 

      call global_min(MIN_AXY, GLOBAL_MIN_AXY,  PE_IO, ierr ) 

      call global_max(MAX_AXY, GLOBAL_MAX_AXY,  PE_IO, ierr ) 

      call global_min(MIN_CUT, GLOBAL_MIN_CUT,  PE_IO, ierr ) 

      call global_max(MAX_CUT, GLOBAL_MAX_CUT,  PE_IO, ierr ) 

 

      IF (myPE == PE_IO) THEN 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'U-MOMENTUM CUT CELLS:' 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXY                   

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXZ                   

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AYZ                   

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF CUT AREA              

= ', GLOBAL_MIN_CUT,GLOBAL_MAX_CUT 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF VOLUME                

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL 

         WRITE(UNIT_CUT_CELL_LOG,1010)  'NUMBER OF U WALL CELLS         

= ', NUMBER_OF_U_WALL_CELLS  

         WRITE(UNIT_CUT_CELL_LOG,1000)  

'###############################################################

#' 

      ENDIF 

!===============================================================

======= 

!  V-Momentum Cell volumes and areas 

!===============================================================

======= 

 

 

      MIN_VOL =   LARGE_NUMBER 

      MAX_VOL = - LARGE_NUMBER 
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      MIN_AYZ =   LARGE_NUMBER  

      MAX_AYZ = - LARGE_NUMBER  

      MIN_AXZ =   LARGE_NUMBER  

      MAX_AXZ = - LARGE_NUMBER 

      MIN_AXY =   LARGE_NUMBER 

      MAX_AXY = - LARGE_NUMBER 

 

      DO IJK = IJKSTART3, IJKEND3 

         IF(STANDARD_V_CELL_AT(IJK)) THEN              ! 

STANDARD CELLS 

 

            MIN_VOL =   DMIN1(MIN_VOL,VOL_V(IJK)) 

            MAX_VOL =   DMAX1(MAX_VOL,VOL_V(IJK)) 

            MIN_AYZ =   DMIN1(MIN_AYZ,AYZ_V(IJK)) 

            MAX_AYZ =   DMAX1(MAX_AYZ,AYZ_V(IJK)) 

            MIN_AXZ =   DMIN1(MIN_AXZ,AXZ_V(IJK)) 

            MAX_AXZ =   DMAX1(MAX_AXZ,AXZ_V(IJK)) 

            MIN_AXY =   DMIN1(MIN_AXY,AXY_V(IJK)) 

            MAX_AXY =   DMAX1(MAX_AXY,AXY_V(IJK)) 

 

         ENDIF 

      END DO 

 

      call global_min(MIN_VOL, GLOBAL_MIN_VOL,  PE_IO, ierr ) 

      call global_max(MAX_VOL, GLOBAL_MAX_VOL,  PE_IO, ierr ) 

      call global_min(MIN_AYZ, GLOBAL_MIN_AYZ,  PE_IO, ierr ) 

      call global_max(MAX_AYZ, GLOBAL_MAX_AYZ,  PE_IO, ierr ) 

      call global_min(MIN_AXZ, GLOBAL_MIN_AXZ,  PE_IO, ierr ) 

      call global_max(MAX_AXZ, GLOBAL_MAX_AXZ,  PE_IO, ierr ) 

      call global_min(MIN_AXY, GLOBAL_MIN_AXY,  PE_IO, ierr ) 

      call global_max(MAX_AXY, GLOBAL_MAX_AXY,  PE_IO, ierr ) 

 

      IF (myPE == PE_IO) THEN 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'V-MOMENTUM STANDARD 

CELLS:' 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXY                   

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXZ                   

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AYZ                   

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF VOLUME                

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL 

      ENDIF 

 

      MIN_VOL =   LARGE_NUMBER 

      MAX_VOL = - LARGE_NUMBER 

      MIN_AYZ =   LARGE_NUMBER  

      MAX_AYZ = - LARGE_NUMBER  
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      MIN_AXZ =   LARGE_NUMBER  

      MAX_AXZ = - LARGE_NUMBER 

      MIN_AXY =   LARGE_NUMBER 

      MAX_AXY = - LARGE_NUMBER 

      MIN_CUT =   LARGE_NUMBER 

      MAX_CUT = - LARGE_NUMBER 

 

      DO IJK = IJKSTART3, IJKEND3 

         IF(CUT_V_CELL_AT(IJK).AND.(.NOT.WALL_V_AT(IJK))) THEN      

! CUT CELLS 

 

            MIN_VOL =   DMIN1(MIN_VOL,VOL_V(IJK)) 

            MAX_VOL =   DMAX1(MAX_VOL,VOL_V(IJK)) 

            MIN_AYZ =   DMIN1(MIN_AYZ,AYZ_V(IJK)) 

            MAX_AYZ =   DMAX1(MAX_AYZ,AYZ_V(IJK)) 

            MIN_AXZ =   DMIN1(MIN_AXZ,AXZ_V(IJK)) 

            MAX_AXZ =   DMAX1(MAX_AXZ,AXZ_V(IJK)) 

            MIN_AXY =   DMIN1(MIN_AXY,AXY_V(IJK)) 

            MAX_AXY =   DMAX1(MAX_AXY,AXY_V(IJK)) 

            MIN_CUT =   DMIN1(MIN_CUT,AREA_V_CUT(IJK)) 

            MAX_CUT =   DMAX1(MAX_CUT,AREA_V_CUT(IJK)) 

 

         ENDIF 

      END DO 

 

      call global_min(MIN_VOL, GLOBAL_MIN_VOL,  PE_IO, ierr ) 

      call global_max(MAX_VOL, GLOBAL_MAX_VOL,  PE_IO, ierr ) 

      call global_min(MIN_AYZ, GLOBAL_MIN_AYZ,  PE_IO, ierr ) 

      call global_max(MAX_AYZ, GLOBAL_MAX_AYZ,  PE_IO, ierr ) 

      call global_min(MIN_AXZ, GLOBAL_MIN_AXZ,  PE_IO, ierr ) 

      call global_max(MAX_AXZ, GLOBAL_MAX_AXZ,  PE_IO, ierr ) 

      call global_min(MIN_AXY, GLOBAL_MIN_AXY,  PE_IO, ierr ) 

      call global_max(MAX_AXY, GLOBAL_MAX_AXY,  PE_IO, ierr ) 

      call global_min(MIN_CUT, GLOBAL_MIN_CUT,  PE_IO, ierr ) 

      call global_max(MAX_CUT, GLOBAL_MAX_CUT,  PE_IO, ierr ) 

 

      IF (myPE == PE_IO) THEN 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'V-MOMENTUM CUT CELLS:' 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXY                   

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXZ                   

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AYZ                   

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF CUT AREA              

= ', GLOBAL_MIN_CUT,GLOBAL_MAX_CUT 

         WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF VOLUME                

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL 
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         WRITE(UNIT_CUT_CELL_LOG,1010)  'NUMBER OF V WALL CELLS         

= ', NUMBER_OF_V_WALL_CELLS  

         WRITE(UNIT_CUT_CELL_LOG,1000)  

'###############################################################

#' 

      ENDIF 

 

!===============================================================

======= 

!  W-Momentum Cell volumes and areas 

!===============================================================

======= 

 

 

      IF(DO_K) THEN 

 

         MIN_VOL =   LARGE_NUMBER 

         MAX_VOL = - LARGE_NUMBER 

         MIN_AYZ =   LARGE_NUMBER  

         MAX_AYZ = - LARGE_NUMBER  

         MIN_AXZ =   LARGE_NUMBER  

         MAX_AXZ = - LARGE_NUMBER 

         MIN_AXY =   LARGE_NUMBER 

         MAX_AXY = - LARGE_NUMBER 

 

         DO IJK = IJKSTART3, IJKEND3 

            IF(STANDARD_W_CELL_AT(IJK)) THEN              ! 

STANDARD CELLS 

 

               MIN_VOL =   DMIN1(MIN_VOL,VOL_W(IJK)) 

               MAX_VOL =   DMAX1(MAX_VOL,VOL_W(IJK)) 

               MIN_AYZ =   DMIN1(MIN_AYZ,AYZ_W(IJK)) 

               MAX_AYZ =   DMAX1(MAX_AYZ,AYZ_W(IJK)) 

               MIN_AXZ =   DMIN1(MIN_AXZ,AXZ_W(IJK)) 

               MAX_AXZ =   DMAX1(MAX_AXZ,AXZ_W(IJK)) 

               MIN_AXY =   DMIN1(MIN_AXY,AXY_W(IJK)) 

               MAX_AXY =   DMAX1(MAX_AXY,AXY_W(IJK)) 

 

            ENDIF 

         END DO 

 

         call global_min(MIN_VOL, GLOBAL_MIN_VOL,  PE_IO, ierr ) 

         call global_max(MAX_VOL, GLOBAL_MAX_VOL,  PE_IO, ierr ) 

         call global_min(MIN_AYZ, GLOBAL_MIN_AYZ,  PE_IO, ierr ) 

         call global_max(MAX_AYZ, GLOBAL_MAX_AYZ,  PE_IO, ierr ) 

         call global_min(MIN_AXZ, GLOBAL_MIN_AXZ,  PE_IO, ierr ) 

         call global_max(MAX_AXZ, GLOBAL_MAX_AXZ,  PE_IO, ierr ) 

         call global_min(MIN_AXY, GLOBAL_MIN_AXY,  PE_IO, ierr ) 

         call global_max(MAX_AXY, GLOBAL_MAX_AXY,  PE_IO, ierr ) 
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         IF (myPE == PE_IO) THEN 

            WRITE(UNIT_CUT_CELL_LOG,1000)  'W-MOMENTUM STANDARD 

CELLS:' 

            WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXY                   

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY 

            WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXZ                   

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ 

            WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AYZ                   

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ 

            WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF VOLUME                

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL 

         ENDIF 

 

         MIN_VOL =   LARGE_NUMBER 

         MAX_VOL = - LARGE_NUMBER 

         MIN_AYZ =   LARGE_NUMBER  

         MAX_AYZ = - LARGE_NUMBER  

         MIN_AXZ =   LARGE_NUMBER  

         MAX_AXZ = - LARGE_NUMBER 

         MIN_AXY =   LARGE_NUMBER 

         MAX_AXY = - LARGE_NUMBER 

         MIN_CUT =   LARGE_NUMBER 

         MAX_CUT = - LARGE_NUMBER 

 

         DO IJK = IJKSTART3, IJKEND3 

            IF(CUT_W_CELL_AT(IJK).AND.(.NOT.WALL_W_AT(IJK))) 

THEN      ! CUT CELLS 

 

               MIN_VOL =   DMIN1(MIN_VOL,VOL_W(IJK)) 

               MAX_VOL =   DMAX1(MAX_VOL,VOL_W(IJK)) 

               MIN_AYZ =   DMIN1(MIN_AYZ,AYZ_W(IJK)) 

               MAX_AYZ =   DMAX1(MAX_AYZ,AYZ_W(IJK)) 

               MIN_AXZ =   DMIN1(MIN_AXZ,AXZ_W(IJK)) 

               MAX_AXZ =   DMAX1(MAX_AXZ,AXZ_W(IJK)) 

               MIN_AXY =   DMIN1(MIN_AXY,AXY_W(IJK)) 

               MAX_AXY =   DMAX1(MAX_AXY,AXY_W(IJK)) 

               MIN_CUT =   DMIN1(MIN_CUT,AREA_W_CUT(IJK)) 

               MAX_CUT =   DMAX1(MAX_CUT,AREA_W_CUT(IJK)) 

 

            ENDIF 

         END DO 

 

         call global_min(MIN_VOL, GLOBAL_MIN_VOL,  PE_IO, ierr ) 

         call global_max(MAX_VOL, GLOBAL_MAX_VOL,  PE_IO, ierr ) 

         call global_min(MIN_AYZ, GLOBAL_MIN_AYZ,  PE_IO, ierr ) 

         call global_max(MAX_AYZ, GLOBAL_MAX_AYZ,  PE_IO, ierr ) 

         call global_min(MIN_AXZ, GLOBAL_MIN_AXZ,  PE_IO, ierr ) 

         call global_max(MAX_AXZ, GLOBAL_MAX_AXZ,  PE_IO, ierr ) 
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         call global_min(MIN_AXY, GLOBAL_MIN_AXY,  PE_IO, ierr ) 

         call global_max(MAX_AXY, GLOBAL_MAX_AXY,  PE_IO, ierr ) 

         call global_min(MIN_CUT, GLOBAL_MIN_CUT,  PE_IO, ierr ) 

         call global_max(MAX_CUT, GLOBAL_MAX_CUT,  PE_IO, ierr ) 

 

         IF (myPE == PE_IO) THEN 

            WRITE(UNIT_CUT_CELL_LOG,1000)  'W-MOMENTUM CUT 

CELLS:' 

            WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXY                   

= ', GLOBAL_MIN_AXY,GLOBAL_MAX_AXY 

            WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AXZ                   

= ', GLOBAL_MIN_AXZ,GLOBAL_MAX_AXZ 

            WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF AYZ                   

= ', GLOBAL_MIN_AYZ,GLOBAL_MAX_AYZ 

            WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF CUT AREA              

= ', GLOBAL_MIN_CUT,GLOBAL_MAX_CUT 

            WRITE(UNIT_CUT_CELL_LOG,1000)  'RANGE OF VOLUME                

= ', GLOBAL_MIN_VOL,GLOBAL_MAX_VOL 

            WRITE(UNIT_CUT_CELL_LOG,1010)  'NUMBER OF W WALL 

CELLS         = ', NUMBER_OF_W_WALL_CELLS  

            WRITE(UNIT_CUT_CELL_LOG,1000)  

'###############################################################

#' 

         ENDIF 

 

      ENDIF 

 

 

 

      LOCAL_MIN_Q = MINVAL(Alpha_Ue_c) 

      LOCAL_MAX_Q = MAXVAL(Alpha_Ue_c) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO)  WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF U-MOMENTUM Alpha_Ue_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

 

      LOCAL_MIN_Q = MINVAL(Alpha_Un_c) 

      LOCAL_MAX_Q = MAXVAL(Alpha_Un_c) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF U-MOMENTUM Alpha_Un_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

 

      LOCAL_MIN_Q = MINVAL(Alpha_Ut_c) 

      LOCAL_MAX_Q = MAXVAL(Alpha_Ut_c) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF U-MOMENTUM Alpha_Ut_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 
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      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)   

 

      LOCAL_MIN_Q = MINVAL(Theta_Ue) 

      LOCAL_MAX_Q = MAXVAL(Theta_Ue) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF U-MOMENTUM Theta_Ue   = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

 

      LOCAL_MIN_Q = MINVAL(Theta_Un) 

      LOCAL_MAX_Q = MAXVAL(Theta_Un) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF U-MOMENTUM Theta_Un   = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

 

      LOCAL_MIN_Q = MINVAL(Theta_Ut) 

      LOCAL_MAX_Q = MAXVAL(Theta_Ut) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF U-MOMENTUM Theta_Ut   = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)   

 

      LOCAL_MIN_Q = MINVAL(Theta_U_ne) 

      LOCAL_MAX_Q = MAXVAL(Theta_U_ne) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF U-MOMENTUM Theta_U_ne = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

 

      LOCAL_MIN_Q = MINVAL(Theta_U_te) 

      LOCAL_MAX_Q = MAXVAL(Theta_U_te) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF U-MOMENTUM Theta_U_te = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)   

 

      LOCAL_MIN_Q = MINVAL(NOC_U_E) 

      LOCAL_MAX_Q = MAXVAL(NOC_U_E) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF U-MOMENTUM NOC_U_E    = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

 

      LOCAL_MIN_Q = MINVAL(NOC_U_N) 

      LOCAL_MAX_Q = MAXVAL(NOC_U_N) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 
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      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF U-MOMENTUM NOC_U_N    = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

 

      LOCAL_MIN_Q = MINVAL(NOC_U_T) 

      LOCAL_MAX_Q = MAXVAL(NOC_U_T) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF U-MOMENTUM NOC_U_T    = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)   

 

      LOCAL_MIN_Q = MINVAL(DELH_U) 

      LOCAL_MAX_Q = MAXVAL(DELH_U) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF U-MOMENTUM DELH_U     = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  

'###############################################################

#' 

 

 

 

      LOCAL_MIN_Q = MINVAL(Alpha_Ve_c) 

      LOCAL_MAX_Q = MAXVAL(Alpha_Ve_c) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF V-MOMENTUM Alpha_Ve_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      LOCAL_MIN_Q = MINVAL(Alpha_Vn_c) 

      LOCAL_MAX_Q = MAXVAL(Alpha_Vn_c) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF V-MOMENTUM Alpha_Vn_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      LOCAL_MIN_Q = MINVAL(Alpha_Vt_c) 

      LOCAL_MAX_Q = MAXVAL(Alpha_Vt_c) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF V-MOMENTUM Alpha_Vt_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)   

      LOCAL_MIN_Q = MINVAL(Theta_Ve) 

      LOCAL_MAX_Q = MAXVAL(Theta_Ve) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF V-MOMENTUM Theta_Ve   = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 
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      LOCAL_MIN_Q = MINVAL(Theta_Vn) 

      LOCAL_MAX_Q = MAXVAL(Theta_Vn) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF V-MOMENTUM Theta_Vn   = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      LOCAL_MIN_Q = MINVAL(Theta_Vt) 

      LOCAL_MAX_Q = MAXVAL(Theta_Vt) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF V-MOMENTUM Theta_Vt   = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)   

      LOCAL_MIN_Q = MINVAL(Theta_V_ne) 

      LOCAL_MAX_Q = MAXVAL(Theta_V_ne) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF V-MOMENTUM Theta_V_ne = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      LOCAL_MIN_Q = MINVAL(Theta_V_nt) 

      LOCAL_MAX_Q = MAXVAL(Theta_V_nt) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF V-MOMENTUM Theta_V_nt = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)   

      LOCAL_MIN_Q = MINVAL(NOC_V_E) 

      LOCAL_MAX_Q = MAXVAL(NOC_V_E) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF V-MOMENTUM NOC_V_E    = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      LOCAL_MIN_Q = MINVAL(NOC_V_N) 

      LOCAL_MAX_Q = MAXVAL(NOC_V_N) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF V-MOMENTUM NOC_V_N    = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      LOCAL_MIN_Q = MINVAL(NOC_V_T) 

      LOCAL_MAX_Q = MAXVAL(NOC_V_T) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF V-MOMENTUM NOC_V_T    = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)   

      LOCAL_MIN_Q = MINVAL(DELH_V) 

      LOCAL_MAX_Q = MAXVAL(DELH_V) 

      call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr ) 

      call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr ) 
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      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' RANGE 

OF V-MOMENTUM DELH_V     = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

      IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  

'###############################################################

#' 

 

 

      IF(DO_K) THEN 

 

         LOCAL_MIN_Q = MINVAL(Alpha_We_c) 

         LOCAL_MAX_Q = MAXVAL(Alpha_We_c) 

         call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr 

) 

         call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr 

) 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' 

RANGE OF W-MOMENTUM Alpha_We_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

         LOCAL_MIN_Q = MINVAL(Alpha_Wn_c) 

         LOCAL_MAX_Q = MAXVAL(Alpha_Wn_c) 

         call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr 

) 

         call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr 

) 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' 

RANGE OF W-MOMENTUM Alpha_Wn_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

         LOCAL_MIN_Q = MINVAL(Alpha_Wt_c) 

         LOCAL_MAX_Q = MAXVAL(Alpha_Wt_c) 

         call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr 

) 

         call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr 

) 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' 

RANGE OF W-MOMENTUM Alpha_Wt_c = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)   

         LOCAL_MIN_Q = MINVAL(Theta_We) 

         LOCAL_MAX_Q = MAXVAL(Theta_We) 

         call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr 

) 

         call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr 

) 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' 

RANGE OF W-MOMENTUM Theta_We   = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

         LOCAL_MIN_Q = MINVAL(Theta_Wn) 

         LOCAL_MAX_Q = MAXVAL(Theta_Wn) 

         call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr 

) 

         call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr 

) 
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         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' 

RANGE OF W-MOMENTUM Theta_Wn   = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

         LOCAL_MIN_Q = MINVAL(Theta_Wt) 

         LOCAL_MAX_Q = MAXVAL(Theta_Wt) 

         call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr 

) 

         call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr 

) 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' 

RANGE OF W-MOMENTUM Theta_Wt   = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)   

         LOCAL_MIN_Q = MINVAL(Theta_W_te) 

         LOCAL_MAX_Q = MAXVAL(Theta_W_te) 

         call global_min(LOCAL_MAX_Q, GLOBAL_MIN_Q,  PE_IO, ierr 

) 

         call global_max(LOCAL_MIN_Q, GLOBAL_MAX_Q,  PE_IO, ierr 

) 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' 

RANGE OF W-MOMENTUM Theta_W_te = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

         LOCAL_MIN_Q = MINVAL(Theta_W_tn) 

         LOCAL_MAX_Q = MAXVAL(Theta_W_tn) 

         call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr 

) 

         call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr 

) 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' 

RANGE OF W-MOMENTUM Theta_W_tn = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)   

         LOCAL_MIN_Q = MINVAL(NOC_W_E) 

         LOCAL_MAX_Q = MAXVAL(NOC_W_E) 

         call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr 

) 

         call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr 

) 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' 

RANGE OF W-MOMENTUM NOC_W_E    = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

         LOCAL_MIN_Q = MINVAL(NOC_W_N) 

         LOCAL_MAX_Q = MAXVAL(NOC_W_N) 

         call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr 

) 

         call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr 

) 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' 

RANGE OF W-MOMENTUM NOC_W_N    = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

         LOCAL_MIN_Q = MINVAL(NOC_W_T) 

         LOCAL_MAX_Q = MAXVAL(NOC_W_T) 

         call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr 

) 
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         call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr 

) 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' 

RANGE OF W-MOMENTUM NOC_W_T    = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)   

         LOCAL_MIN_Q = MINVAL(DELH_W) 

         LOCAL_MAX_Q = MAXVAL(DELH_W) 

         call global_min(LOCAL_MIN_Q, GLOBAL_MIN_Q,  PE_IO, ierr 

) 

         call global_max(LOCAL_MAX_Q, GLOBAL_MAX_Q,  PE_IO, ierr 

) 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  ' 

RANGE OF W-MOMENTUM DELH_W     = ', GLOBAL_MIN_Q, GLOBAL_MAX_Q 

         IF (myPE == PE_IO) WRITE(UNIT_CUT_CELL_LOG,1000)  

'###############################################################

#' 

    

      ENDIF 

 

      RETURN 

 

       

      END SUBROUTINE PRINT_GRID_STATISTICS 
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post_cbar_time 

PBED 

1 

T 

10 

10 

0.0, 7200.0 !Start, Stop Time 

N 

Scalar 

1 

10 

2,101 !xmax+1  

Y 

2,101 !ymax+1 

Y 

1,1 

cbar_c.dat 

-1 

0 
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post_epg 

PBED 

1 

T 

10 

10 

0.0, 7200.0 !Start, Stop Time 

N 

EP_g 

10 

2,101 !xmax+1  

Y 

2,101 !ymax+1 

Y 

1,1 

void.dat 

-1 

0 
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