
IMPROVING EFFICIENCY AND EFFECTIVENESS OF MULTIPATH

ROUTING IN COMPUTER NETWORKS

A Dissertation

by

YONG OH LEE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2012

Major Subject: Computer Engineering

IMPROVING EFFICIENCY AND EFFECTIVENESS OF MULTIPATH

ROUTING IN COMPUTER NETWORKS

A Dissertation

by

YONG OH LEE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, A. L. Narasimha Reddy
Committee Members, Srinivas Shakkottai

Jean-Francois Chamberland
Radu Stoleru

Head of Department, Costas Georghiades

May 2012

Major Subject: Computer Engineering

iii

ABSTRACT

Improving Efficiency and Effectiveness of Multipath Routing

in Computer Networks. (May 2012)

Yong Oh Lee, B.S., Yonsei University;

M.S., Yonsei University

Chair of Advisory Committee: Dr. A. L. Narasimha Reddy

In this dissertation, we studied methods for improving efficiency and effective-

ness of multipath routing in computer networks. We showed that multipath routing

can improve network performance for failure recovery, load balancing, Quality of

Service (QoS), and energy consumption. We presented a method for reducing the

overhead of computing dynamic path metrics, one of the obstacles for implementing

dynamic multipath routing in real world networks.

In the first part, we proposed a method for building disjoint multipaths that could

be used for local failure recovery as well as for multipath routing. Proactive failure

recovery schemes have been recently proposed for continuous service of delay-sensitive

applications during failure transients at the cost of extra infrastructural support in

the form of routing table entries, extra addresses, etc. These extra infrastructure

supports could be exploited to build alternative disjoint paths in those frameworks,

while keeping the lengths of the alternative paths close to those of the primary paths.

The evaluations showed that it was possible to extend the proactive failure recovery

schemes to provide support for nearly-disjoint paths which could be employed in

multipath routing for load balancing and QoS.

In the second part, we proposed a method for reducing overhead of measuring

dynamic link state information for multipath routing, specifically path delays used

in Wardrop routing. Even when dynamic routing could be shown to offer conver-

iv

gence properties without oscillations, it has not been widely adopted. One of reasons

was that the expected cost of keeping the link metrics updated at various nodes in

the network. We proposed threshold-based updates to propagate the link state only

when the currently measured link state differs from the last updated state consider-

ably. Threshold-based updates were shown through analysis and simulations to offer

bounded guarantees on path quality while significantly reducing the cost of propa-

gating the dynamic link metric information. The simulation studies indicated that

threshold based updates can reduce the number of link updates by up to 90-95% in

some cases.

In the third part, we proposed methods of using multipath routing for reduc-

ing energy consumption in computer networks. Two different approaches have been

advocated earlier, from traffic engineering and topology control to hardware-based

approaches. We proposed solutions at two different time scales. On a finer time

granularity, we employed a method of forwarding through alternate paths to enable

longer sleep schedules of links. The proposed schemes achieved more energy saving

by increasing the usage of active links and the down time of sleeping links as well

as avoiding too frequent link state changes. To the best of our knowledge, this was

the first technique combining a routing scheme with hardware scheme to save energy

consumption in networks. In our evaluation, alternative forwarding reduced energy

consumption by 10% on top of a hardware-based sleeping scheme. On a longer time

granularity, we proposed a technique that combined multipath routing with topology

control. The proposed scheme achieved increased energy savings by maximizing the

link utilization on a reduced topology where the number of active nodes and links are

minimized. The proposed technique reduced energy consumption by an additional

17% over previous schemes with single/shortest path routing.

v

To my father in heaven

vi

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. A. L. Narasimha Reddy, for his perceptive

guidance and consistent support to whole graduate studies. I also appreciate to my

committee members: Dr. Shakkottai, Dr. Stoleru, and Dr. Chamberland, for their

valuable suggestions and comments on this research.

My thanks also go to mentors in AT&T Labs Research: Vinay Vaishampayan and

Rittwik Jana, as well as collegues in the Computer Science department: Myounggyu

Won and Wei Zhou, even though our works were not included in this dissertation.

I give to heartfelt thanks to my wife, mother, and family-in-law. Without their

support, trust, and love, I could not complete this work.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Constructing disjoint paths for multipath routing 2

B. Reducing overhead of dynamic multipath routing 4

C. Reducing energy consumption by multipath routing 7

II CONSTRUCTING DISJOINT PATHS FOR FAILURE RE-

COVERY AND MULTIPATH ROUTING 10

A. Proactive recovery schemes 10

B. Building disjoint paths using proactive recovery schemes . 14

1. Disjoint Multiple Routing Configuration (D-MRC) . . 16

2. Disjoint NotVia (D-NotVia) 21

3. Overhead analysis . 25

C. Simulation . 26

1. Constructing disjoint paths 26

2. Applying to multipath routing for load balancing

and QoS . 28

3. Applying to failure recovery 31

D. Related work . 34

III REDUCING OVERHEAD OF LINK STATE UPDATE FOR

WARDROP EQUILIBRIUM IN NETWORKS 36

A. Threshold based updates 36

B. Convergence and error analysis 38

1. Convergence to approximate Wardrop equilibria . . . 40

2. Speed of convergence 41

C. Simulation . 42

1. Comparison between approximate and Exact Wardrop

routing . 45

2. Convergence to approximate Wardrop equilibrium . . 47

3. Impact of traffic bursts 49

4. Impact of the update interval 54

D. Related work . 55

viii

CHAPTER Page

IV REDUCING ENERGY CONSUMPTION USING MULTI-

PATH ROUTING I - TRAFFIC ENGINEERING APPROACH 59

A. Problem formulation . 59

B. Overview of topology control and multipath routing 61

C. Topology control . 63

D. Multipath routing . 67

1. Bin packing algorithms 69

2. Multipath routing based on bin packing algorithms . . 71

E. Simulation . 74

1. Comparison between optimum solution and the heuristics 75

2. Simulation on grid topologies 77

3. Simulation on a random topology 83

F. Related work . 88

V REDUCING ENERGY CONSUMPTION USING MULTI-

PATH ROUTING II - HARDWARE APPROACH 89

A. Multi-state power mode and alternative forwarding 89

B. Simulation . 92

C. Related work . 95

VI CONCLUSION . 96

REFERENCES . 98

VITA . 107

ix

LIST OF TABLES

TABLE Page

I The number of backup topologies in MRC and D-MRC 27

II Power consumption of various energy models in watts 75

III NR/N and LR/L of ST-S, ST-M, and CPLEX on a 4-by-4 topology . 77

IV NR/N of ST-M, ST-M(LL), ST-M(LL-chunk), and ST-M(SPL)

on a 5-by-5 and a 6-by-6 topologies 80

V Average path length of the proposed schemes on a 5-by-5 topology . 83

VI The performance of alternative forwarding corresponding to the

length of alternative path . 92

VII Simulation setup for alternative forwarding for energy saving 92

x

LIST OF FIGURES

FIGURE Page

1 Computing subroots in the sink and the source routing trees 15

2 Disjoint path forwarding from source s to destination d 16

3 D-MRC forwarding . 21

4 Examples of D-NotVia . 22

5 Isrc and Isnk . 24

6 Stretch and disjointness of the secondary path 27

7 Average link cost and maximum link utilization in hot source scenario 30

8 Average link cost and maximum link utilization in hot sink scenario . 30

9 End-to-end delay, call blocking, and path selection probability on

realistic topologies . 32

10 Stretch of the proposed schemes for link- and node-failure 33

11 Splitting ratio, number of link updates, and throughput on NSF

topology. 45

12 Splitting ratio, number of link updates, and throughput on Tiscali

topology. 46

13 Simple topology for approximate Wardrop routing simulations 47

14 Splitting ratio, route utilization, and the number of link updates

for the case of 1/10 Mbps . 48

15 Splitting ratio, route utilization, and the number of link updates

for the case of 5/10 Mbps . 48

xi

FIGURE Page

16 Splitting ratio, route utilization, and the number of link updates

for the case of 10/10 Mbps . 49

17 The path latency gap and the number of link updates for scenario 1 . 50

18 The path latency gap and the number of link updates for scenario 2 . 51

19 The path latency gap and the number of link updates for scenario 3 . 51

20 The path latency gap and the number of link updates for scenario 4 . 52

21 The path latency gap and the number of link updates for scenario 5 . 53

22 The path latency gap with the different T on the periodic burst traffic 54

23 The number of link updates with different T on the periodic burst traffic 55

24 Example of comparing energy saving between single path and multipath 62

25 Example of the proposed bin pack algorithms 69

26 Comparison between optimum solution and the hueristics 76

27 Comparison between ST-S, ST-M, ST-M(LL), ST-M(LL-chunk),

and ST-M(SPL) with identical traffic demand and link capacity

on grid topologies . 78

28 Comparison between ST-S and ST-M with different traffic demand

and link capacity on grid topologies 81

29 Energy savings on a random topology 84

30 NR/N and LR/L on a random topology 84

31 Energy savings after second run of topology control on a random

topology . 86

32 NR/N and LR/L after second run of topology control on a random

topology . 86

33 Example of alternative forwarding for energy saving 91

xii

FIGURE Page

34 Energy consumption and end-to-end delay on a 4-by-4 grid topology 93

35 Energy consumption and end-to-end delay on NSF topology 94

1

CHAPTER I

INTRODUCTION

The Internet takes an increasingly central role in our communication infrastructure.

Traditional application data were delivered in a manner of best efforts. However, the

demands of delay-sensitive applications, such as voice over IP (VoIP), video stream-

ing, and gaming, have been increasing. These applications require more continuous

availability compared to data applications. Availability is not only related to failure

recovery, but also to QoS such as end-to-end delay or available bandwidth.

Multipath routing is one of the promising schemes to improve availability. Most

currently deployed routing protocols select only a single path for the traffic between

a source-destination pair. However, single path routing takes additional time to

compute a new path after a failure and when congested, and may not provide sufficient

bandwidth to the application even when alternate paths exist between the source and

the destination. Multipath routing can overcome these problems by forwarding to

alternate paths and flexibly splitting traffic among multiple paths when the primary

path does not meet availability. The well-known benefits of multipath routing include

flexibility in meeting application performance requirements, improving end-to-end

reliability, and avoiding congested paths [1].

Traditionally networks are built to handle peak traffic demands and varying

traffic loads, the network may have excess capacity beyond the current requirements.

The excess capacity results in wasted energy and there is a growing interest in reducing

the energy consumption in networks. By providing increased number of options for

routing traffic, multipath is expected to enable increased energy savings in networks.

The journal model is IEEE Transactions on Automatic Control.

2

This dissertation aims to improve efficiency and effectiveness of multipath rout-

ing. The first contribution of this dissertation is constructing disjoint paths for failure

recovery and multipath routing. The infrastructure necessary for proactive failure re-

covery schemes is exploited to provide disjoint paths for multipath routing during

normal time. The second contribution of this dissertation is in reducing overhead

of link state updates for dynamic multipath routing, specifically Wardrop routing,

in networks. One of the reasons why dynamic multipath routing was not deployed

in today’s Internet was overhead of link state updates. A method of reducing these

overheads is proposed. The last contribution of this dissertation is reducing energy

consumption using multipath routing. Multipath routing reduces network energy con-

sumption compared to single path routing. The following of this chapter introduces

these three parts of this dissertation.

A. Constructing disjoint paths for multipath routing

Applications, such as Voice over IP, video streaming, and gaming, require more con-

tinuous availability compared to the traditional data applications. Link/node failures

are common in IP networks today [2]. Traditional routing schemes compute recovery

paths after detecting a failure. Routing convergence can take several tens of seconds

after a failure. During this transient time, from the time of a failure to the time

when all the nodes have new routing tables computed, applications can observe se-

vere disruptions in service. This disruption of service during failure situations can

be a serious problem for continuous media applications. Several proactive recovery

schemes have been recently proposed to reduce failure transient time [3–5]. In these

schemes, backup paths are pre-computed before a failure. The failure-discovering

router employs the backup next-hop after a failure, until the new routing tables are

3

computed taking the failure into account. As a result, the fast recovery mechanisms

provide an almost instantaneous response to a failure. Proactive recovery schemes

strive to provide continuous service even during the failure transients.

Proactive recovery schemes require additional infrastructure to provide fast re-

covery from failures. This additional support includes extra routing table entries,

extra fields or bits in the packet headers to indicate which links or nodes are failed, or

extra addresses depending on the employed scheme. Also, proactive recovery schemes

may not employ some of the links of the primary path (before the failure) in the recov-

ery/backup path (during the failure transient). This can result in increased backup

path lengths. Increased backup path lengths can increase the load on the network

which can result in unbalanced load and increased delay. The length of the recovery

path when compared to the length of the primary path, is a measure of success, for

these schemes. Ideally, the length of the recovery path is not much longer than the

length of the primary path.

In this work, techniques for reducing the backup path lengths without increasing

the overhead in network infrastructure are proposed. Furthermore, we study whether

the recovery paths can be made disjoint, when possible, from the primary path. We

explore if the primary path and the recovery path can be made disjoint, such that the

additional infrastructure put in place for failure recovery, could be used potentially

for multi-path routing during normal times when no failures occur. Thus, the same

infrastructure can be utilized for two purposes: not only failure recovery when failures

present, but also multi-path routing when no failures are present in the network.

The problem of building recovery paths disjoint from the primary paths while

keeping the length of recovery paths close to the length of primary paths is considered

here. Also, the cost of the proactive recovery schemes is analyzed. The construction

of primary paths is not constrained and hence any routing algorithm can be employed

4

to construct the primary paths. The length of secondary paths is important for both

failure recovery and multipath routing.

Two proactive recovery schemes are considered here: Multiple routing configu-

rations (MRC) [3] and NotVia [4]. We study how those schemes for fast recovery can

be enhanced to build disjoint recovery paths in those frameworks. To this end, tech-

niques for disjoint multi-path computation are developed: disjoint multiple routing

configuration (D-MRC) and disjoint NotVia (D-NotVia).

In this work, a secondary path is built, that is disjoint or maximally disjoint

from the primary path, which can be used for failure recovery, load balancing or QoS

routing. The focus is on computing efficient secondary paths and not on the schemes

for utilization of secondary paths.

In this work, the contributions are following: algorithms for exploiting the MRC

and NotVia frameworks for the construction of disjoint paths are proposed; it is shown

through evaluations that MRC and NotVia can be enhanced to provide nearly disjoint

paths with small increment of path length; and it is shown that the computed disjoint

paths can be used for multi-path routing for load balancing and QoS.

B. Reducing overhead of dynamic multipath routing

Current routing algorithms utilize static link costs to compute routing tables between

different nodes in the network. The link costs are static for long periods of time (over

the duration of several hours) and are determined by the traffic engineering constraints

of the network. The problem of determining the link costs has received significant at-

tention [6–8]. Typically, the traffic matrix and several considerations, such as keeping

maximum link utilization low, are factored into obtaining link costs. The problem of

determining link costs may be simultaneously coupled with the problem of computing

5

routing paths in some approaches [9–11]. The current approaches to determine link

costs take traffic matrices over several hours into account such that varying traffic

matrices may be reasonably accommodated with one set of link costs [12, 13].

Dynamic link metrics, such as link delay, queueing lengths and available link

bandwidth, have been considered earlier as potential link cost metrics for routing

purposes. For example, routing high bandwidth video flows might benefit from an

idea of available link bandwidth in QoS routing [14]. Similarly, path lengths or

delays can be useful in Wardrop routing [15]. Early ARPAnet considered link delays

as a cost metric and the resulting oscillations prompted the use of other metrics

based on capacity. QoS routing has explored the use of different dynamic metrics in

routing traffic, for example in [16–19]. Dynamic metrics such as available bandwidth

and path delay have been proposed for use in routing video and audio traffic in

the network. This body of work considered the tradeoff in keeping the link state

information disseminated and the quality of paths that can be computed. Some of

this work proposed techniques for finding new paths efficiently, for example [19].

Most current networks, however, do not employ dynamic link metrics for vari-

ous reasons. Since these metrics are dynamic, as the link metrics change over time,

the traffic might be routed at different times through different paths in the net-

work, potentially causing oscillations with incorrect choice of link metrics or routing

algorithms. Even when the routing algorithms are carefully designed to not cause

oscillations, the cost of propagating the link metrics has been one of the obstacles to

the adoption of these algorithms.

As the dynamic link metrics change over time, these metrics need to be measured

and propagated to other nodes in the network in order to keep the routing paths from

deviating far from ideal. The more frequently the link metric information is prop-

agated, the more accurate the information that the nodes have about the state of

6

the network, and the better the efficiency of the computed network paths. However,

higher frequency of updates leads to higher cost in propagating the link metric infor-

mation. This tension or tradeoff has been studied through simulations, for example,

in QoS routing [20].

Recently, dynamic routing algorithms, have received renewed interest for bal-

ancing load in wireless networks [15], for dynamic traffic management in wired net-

works [9] and traffic management across multiple paths in a multi-homed network [21].

These algorithms have used link delays or utilizations for dynamic routing.

Link updates can be sent periodically or triggered on link up/down events in

OSPF routing. In order to prevent spurious link up/down events from generating

excessive link update traffic, timers may be employed. These timers are in the range of

several seconds (typically 30s). The importance of conveying reliable link information

without generating excessive number of link updates has been earlier recognized [22,

23].

A related question that arises with the quality of link information is whether the

routing algorithm can converge to a stable state despite the delay or inaccuracies in

the link state information that is used in making the routing decisions.

In this work, these problems of reducing the cost of propagating dynamic link

metric information across the network while ensuring stability of the routing algorithm

are addressed here. Wardrop routing that employs link delays as a link cost metric is

considered as an example dynamic routing approach. In Wardrop routing, the traffic

is split across available paths in such a way as to equalize the delay across all the

available paths at a node. The traffic splitting can be done at the end hosts [24]

or further split at the routers in the network as traffic moves from one hop to the

next [9]. However, the results can be equally applied to other algorithms, with suitable

modifications.

7

This work makes the following significant contributions: we proposes a simple

technique, called threshold-based propagation, for propagating link metric informa-

tion; we presents an analysis that threshold propagation can guarantee that the ob-

served path quality will be within an error bound of the optimal path quality if the

exact information is available; and we show, through simulations, that threshold prop-

agation reduces the cost of propagating link cost information significantly, in some

cases by up to 90-95%.

C. Reducing energy consumption by multipath routing

Reducing energy consumption in wireless networks has received significant attention.

In wireless networks, energy saving is important, because wireless network devices

have limited life time that depends on battery energy. Energy saving in the wired

networks has been traditionally overlooked because power supplies to wired network

devices are unlimited. However, network researchers have started studying energy

issues even in wired network due to environmental and cost considerations. The

potential energy saving of the US network infrastructure could be 0.5-24 billion dollars

per year [25].

The opportunity to save energy consumption comes from several factors. Net-

work capacity is normally provisioned for peak traffic loads. High traffic load demands

due to special events and the need for tolerating network failures may factor into es-

timating peak traffic loads. As a result, the average link utilization could be less than

30-40% and the duration of peak traffic load a small fraction of the entire day [26].

Reducing the link capacity during off-peak duration is a promising scheme to save

energy consumption. To deal with the variations of traffic load at different times of

the day, topology control and traffic engineering can be used to shutdown some links

8

and nodes of the network while leaving the network connected and with sufficient

capacity to carry the traffic load. Energy consumption of network equipment remains

substantial even when the network is idle. Forcing the link to sleep mode during idle

duration is another approach to save energy consumption.

Traffic engineering approaches power off the network elements while the powered-

up network capacity meets the traffic demand. Powering off the links is first attempted

to reduce the energy consumption [27]. However, several studies report that the power

consumption of a node is much higher than the power consumption of a link. In [28],

authors attempt to power off nodes first with single shortest path routing. However,

the number of active node is not greatly reduced.

We study how to reduce the number of active nodes for energy savings. A

new topology control and multipath routing is proposed. The proposed topology

control takes an approach of building an appropriately provisioned network to meet

the demands of all the terminal nodes. This is in contrast with existing approaches

where nodes and links are removed from the given network. Also, we study the

effectiveness of employing multi-path routing to reduce energy consumption. While

multi-path routing allows more possibilities for routing the traffic demands, if longer

alternate paths are employed, the power consumption can actually increase. An

effective multi-path routing strategy for reducing energy consumption is proposed.

The proposed scheme is evaluated by various simulations. In most cases, even if

single shortest path is used, our topology control achieves more energy saving with

a smaller number of active nodes than previous schemes. The proposed topology

control reduces the number of iterations for finding a suitable topology. In addition,

multipath routing with the proposed topology control reduces the number of active

nodes further, and achieves more energy savings.

Another avenue for energy saving in networks is through hardware mechanisms

9

operating at smaller time scales. Some of the network hardware can operate in dif-

ferent modes with multiple power consumption levels. When such hardware modes

are available, the links can enter sleeping mode that consumes lower power to save

energy. The performance of hardware schemes depends on its power level decision

based on the estimation of the inter packet arrival time. However, network traffic is

hard to estimate due to its dynamics and hardware is forced to wake up and operate

in a higher power consuming mode when a packet arrives at the switch or the link.

We propose a scheme that combines routing with hardware sleeping modes to

reduce energy consumption. The proposed scheme employs alternate path forwarding

of packets to enable links in sleeping mode to staying that mode longer. It is expected

that longer sleep cycles will lead to higher energy savings. Alternate forwarding has

to be carefully employed as alternate paths can be longer than primary paths and

hence may result in higher power consumption. However, alternate forwarding can

reduce the latency of forwarding a packet as the delays in waking up sleeping links

and switches can be avoided through the alternate path. The proposed alternative

forwarding combining hardware sleeping scheme reduces energy consumption without

increasing the packet forwarding latency.

10

CHAPTER II

CONSTRUCTING DISJOINT PATHS FOR FAILURE RECOVERY AND

MULTIPATH ROUTING

In this chapter, techniques for building recovery paths disjoint from the primary paths

while keeping the length of recovery paths close to the length of primary paths are

proposed.

Two proactive recovery schemes are discussed here: Multiple routing configura-

tions (MRC) [3] and NotVia [4]. If those schemes for fast recovery can be enhanced

to build backup paths that are disjoint or maximally disjoint from the primary path,

the backup paths can be used for failure recovery, load balancing, or QoS routing. We

focus on computing efficient secondary paths and not on the schemes for utilization

of secondary paths.

A. Proactive recovery schemes

We consider a network represented by a graph G = (V,E). s ∈ V is the source

node, and d ∈ V is the destination node. i ∈ V is the current node where a routing

decision needs to be made. We denote P (s, d) as a set of links on the path from s to

d. Traditional shortest path routing in IP networks computes the routing cost from

s to d, C(s, d), and the next-hop node for the route from s to d, NH(s, d).

If there is no failure in G, a packet is forwarded to the next-hop node NH(i, d) at

each node i. We denote the primary next-hop node on G as NHp(i, d). When there

is a failed link or node in G, proactive recovery scheme is used to detour the failure

and to recover from the failure. In proactive recovery schems, the node i detecting

the failure reroutes the packet to a different next-hop node, referred to as the backup

next-hop node, NHb(i, d), in order to recover from the failure. The backup next-hop

11

nodes at different nodes in the network must be chosen in a consistent manner to

avoid routing loops.

MRC [3] employs multiple configurations. A configuration is a network topology

with associated link weights. The different configurations employed by MRC employ

the same network topology, but with different link weights. In addition to normal

routing configuration with no failures where all link weights are the same as the link

weight on original topology, the additional backup configurations, Gk, k = 1, ..., N , are

designed to cover the failure of some nodes and links. In each backup configuration, a

number of nodes are isolated to model their failure and hence not employed in routing.

The links connected to an isolated node should be either isolated or restricted in

backup configurations. A number of links are isolated, i.e., link weights set to infinite,

to model their failure and hence not employed in routing. A link may be restricted,

with its weight set to a very large finite weight, such that this link is used only to

reach the node attached to that link. The weight on a restricted link in a backup

configuration prevents forwarding to the isolated as an intermediate node but allows

losing connectivity in the backup configuration.

Sk is the set of the isolated nodes in Gk, and Lk is the set of the isolated links:

link(i, N i), where i ∈ Sk and N i is the neighbor of i. Each link is isolated in at

least one of backup configurations, Gk, k = 1, ..., N . It means
N⋃
k=1

Sk = V and

N⋃
k=1

Lk = E. Every node maintains one routing table entry corresponding to each

backup configuration for every destination. If NHp(i, d) or link(i, NHp(i, d)) fails,

a packet is routed over Gk where NHp(i, d) ∈ Sk or link(i, NHp(i, d)) ∈ Lk. The

indicator(k) of backup topology(Gk) over which the packet is forwarded is carried in

the header of every packet.

We can show that the cost of recovery path by backup configuration is not less

12

than the cost of the primary path.

Theorem 1. C(s, d) ≤ Ck(s, d) where C(s, d) is the routing cost on G, and Ck(s, d)

is the routing cost on Gk(k = 1, 2, ...N).

Proof. If ∀link(i, NHp(i, d)) /∈ Lk where link(i, NHp(i, d)) ∈ P (s, d), then C(i, d) =

Ck(i, d).

If ∀link(i, NHp(i, d)) ∈ Lk where link(i, NHp(i, d)) ∈ P (s, d), then C(i, d) ≤ Ck(i, d).

Suppose link(i, NHp(i, d)) ∈ Lk where link(i, NHp(i, d)) ∈ P (s, d).

If C(i, NHp(i, d)) + C(NHp(i, d), d) < C(i, NHb(i, d)) + C(NHb(i, d), d),

then C(i, d) < Ck(i, d). Then, C(s, d) < Ck(s, d).

If C(i, NHp(i, d)) + C(NHp(i, d), d) = C(i, NHb(i, d)) + C(NHb(i, d), d),

then C(i, d) = Ck(i, d). Then, C(s, d) = Ck(s, d).

Each configuration results in extra infrastructure support at each node (propor-

tional to the number of configurations, N) and a larger number of configurations also

need a larger number of bits in the packet header (log2N + 1). In order to minimize

the number of configurations(N), greedy algorithms are employed where as many

nodes and links as possible are removed in a single backup topology. The focus on

decreasing the number of configurations can result in longer backup paths.

Lemma 2. If Sk ⊂ Sl, Ck(s, d) ≤ Cl(s, d).

Proof. The proof follows from the fact the shortest paths available in the network

with Sk failures is a superset of the paths available with Sl.

In NotVia [4], routers are provided additional IP addresses. These additional

addresses are used during a failure to route around the failed link or node. NotVia has

two kinds of NotVia addresses: one is for the recovery of link failure (we denote it as

NVlink(i, j) which is used for recovery of the link (i,j)) and another is for the recovery

13

of a node failure (we denote it as NVnode(i, d) which is used for recovery of node i

and whose destination is d). When NVlink(i, NHp(i, d)) is used, NotVia finds the

shortest path destined to NHp(i, d) with the removal of the failed link(i,NHp(i, d)).

NVnode(NHp(i, d), d) allows finding the shortest path from i to NHp(NHp(i, d), d)

without NHp(i, d) (all the links connected to NHp(i, d) are removed). NotVia uses

tunneling. The node detecting the failure encapsulates the packet with a NotVia

address as a destination to route around the failure.

Each NotVia address is designated for tolerating an individual failure and the

routing tables are computed accordingly to route packets destined to these NotVia

addresses, ahead of time. However, NotVia increases the path length due to the

increased hop count between the failure detecting node and the next-hop of the failure

detecting node on the primary path.

Theorem 3. C(s, d) ≤ CNV (s, d) where C(s, d) is the routing cost on G, and CNV (s, d)

is the routing cost of the routing with the NotVia address.

Proof. The path from s to d with NVlink(s,NHp(s, d)) removes link(s,NHp(s, d)).

Removing the links on the primary path makes,

C(s,NHp(s, d)) ≤ C(s,NVlink(s,NHp(s, d))). As a result, C(s, d) ≤ CNV (s, d).

The path from s to d with NVnode(NHp(s, d), d) removes link(s,NHp(s, d)) and

link(NHp(s, d), NHp(NHp(s, d), d)). Removing the links on the primary path makes,

C(s,NHp(NHp(s, d))) ≤ C(s,NVnode(NHp(s, d), d)). As a result, C(s, d) ≤ CNV (s, d).

Moreover, the backup path is not disjoint from the primary path because the

packet is expected to continue on the primary path after reaching the NotVia address.

Both MRC and NotVia precompute backup routing tables at each node based

on available topology information which can be obtained through link-state routing

14

algorithms.

B. Building disjoint paths using proactive recovery schemes

The proposed schemes do not constrain the construction of primary paths, unlike

other approaches that try to construct a pair of shortest disjoint paths simultane-

ously [29]. Disjoint path routing with the augmented cycles also could not use the

shortest primary path [30]. Disjoint paths are computed and built using the same

infrastructure that is put in place for failure recovery.

The simplest method to construct a secondary path is to find the shortest path

after removing the primary path. However, the simplest method, while useful for

source routing, can be very expensive in terms of the required infrastructure support

for hop-by-hop routing.

In this chapter, disjointness is defined as follows (similar to the novelty mea-

sure in [31]). Let Pprimary(s, d) = {(s, p1), (p1, p2), ..., (pn, d)} be denoted as a set of

links on the primary path constructed by the routing scheme. Let Pbackup(s, d) =

{(s, b1), (b1, b2), ..., (bn, d)} be denoted as a set of links on the backup path. The

disjointness of the backup path with respect to the primary path is measured as

disjointness = 1− |Pprimary(s, d) ∩ Pbackup(s, d)|
|Pprimary(s, d)|

(2.1)

We also define stretch of backup as the ratio of the path length of Pprimary to the

path length of Pbackup.

stretch =
|Pbackup(s, d)|
|Pprimary(s, d)|

(2.2)

The proposed schemes try to construct backup/recovery paths whose disjointness

is as close to 1 as possible, while keeping path stretch as small as possible. The success

of the failure recovery schemes based on these two measures of disjointness and stretch

15

is meausred. The necessary infrastructure support of the different schemes is also

compared.

d

(,)
snk

subroot s d

s

(a) Subtree of sink routing tree

s

(,)
src

subroot s d

d

(b) Subtree of source routing tree

Fig. 1. Computing subroots in the sink and the source routing trees

In a routing tree, the children of the root are called subroots. The trees rooted

at the subroots are called subtrees. subrootsnk(s, d) is the subroot of s in the sink

routing tree destined to d (Fig. 1(a)). subrootsrc(s, d) is the subroot of d in the source

routing tree rooted at s (Fig. 1(b)). It is assumed that sink and source routing tree

are symmetric.

For a disjoint path, the routing protocol should forward the packet to a different

subtree in the sink routing tree, as shown in figure 2. (NHb(i, d) = j, and j /∈

subtree rooted from subrootsnk (s, d)). Once the packet reaches a different subtree,

the packet can be forwarded along its primary path (from j to d in Fig. 2). However,

there are sometimes no neighbor nodes in the other subtrees. In such a case, the

routing protocol should forward to a node in the same subtree, but one that is not

used in the primary path (NHb(s, d) = i and i ∈ subtree rooted from subrootsrc

(s, d)). The constructed secondary path can be used both during a failure (that it is

designed to tolerate) and as a disjoint path during normal operation with no failures.

16

d

s
i

j

Primary path Backup path

Fig. 2. Disjoint path forwarding from source s to destination d

In OSPF and IS-IS routing algorithms, the source routing trees are computed for

routing tables. The subrootsrc(i, d) and subrootsnk(i, d) are computed from the exist-

ing source routing trees. Each node computes subrootsrc(N
i, d) and subrootsnk(N

i,

d) from the source routing trees of its neighbor nodes (N i) or the neighbor nodes can

communicate their subrootsrc(N
i, D) and subrootsnk(N

i, D) with each other.

1. Disjoint Multiple Routing Configuration (D-MRC)

Links and nodes can be isolated or restricted in backup configuration in MRC. Packets

cannot be routed through an isolated node to another node in a backup configuration.

The links connected with the isolated node are either isolated or restricted. The

isolated link never delivers packets. For this purpose, the link weight of the isolated

link is set to infinite. To prevent the last hop problem [3], the restricted link could

deliver only the packets headed to the isolated node. The weight of the restricted link

is set as a very high value (e.g., at least the sum of the weights of all the links in [3]).

17

D-MRC is developed based on MRC [3] to enhance disjointness and to reduce

stretch. In order to compute disjoint or maximally disjoint backup paths whose

stretch is close to 1 in the MRC framework, the following ideas are employed.

The set of isolated and restricted nodes/links are chosen carefully in each backup

configuration. The maximum number of isolated nodes (Max.Iso) is restricted in a

single backup configuration. This is expected to potentially provide shorter backup

paths while keeping the number of backup configurations from getting too large. In

contrast to this idea, MRC [3] is a greedy algorithm to minimize the number of

backup configurations. As a result, the early computed backup configurations have a

tendency to have more isolated nodes than the later computed backup configurations.

A large number of isolated nodes could result in large path lengths in a single backup

configuration. The maximum number of isolated nodes tries to distribute the number

of isolated nodes evenly through all the backup configurations such that the backup

paths are smaller in length.

The neighbor nodes of the isolated node play a key role in the construction of a

disjoint path and keeping the path lengths short in backup configurations. Since an

isolated node can only receive (or send sometimes) packets via the restricted link, the

neighbor node of the isolated node, connected with this restricted link, carries all of

the traffic of the isolated node in the backup configuration. Hence, it is important to

choose this node carefully (termed restricted node here).

RD(i, j) =
∑

d={v∈V−{i}}
rdji (d)

rdji (d) =

 1 NHp(i, d) = j

0 otherwise

 .

(2.3)

18

Routing density(RD(i, j)) is defined as the number of times a neighbor node

(node j ∈ N i) is selected as the next-hop of node i to all destinations in normal

routing. Routing density is computed using the entries of the routing table for the

primary path.

The node which has the lowest routing density is selected as the restricted node.

It is expected that since this node is used the least number of times in the primary

paths, by making it the only option for routing to the isolated node in a backup

configuration, the set of paths used in the backup configuration will be very likely

different from the set of paths used in the primary configuration.

In order to facilitate this idea, a weight proportional to the routing density (as

shown in (4)) is added to the link weights in backup topologies. This particular weight

function retains the restrictions on routing to the isolated nodes.

w(i, j) = w(i, j) +
(RD(i, j))

maxk∈N i RD(i, k)
W (2.4)

w(i, j) is the link weight of link(i, j) and W =
∑

(i,j)∈E
w(i, j).

The construction of backup topologies is given in algorithm 1 as a pseudo code.

In algorithm 1, div(i) is the function to check if isolating node i leaves the graph

disconnected, and N(s) is the number of elements in S.

In each configuration, D-MRC finds isolated nodes and restricted nodes until a

maximum of Max.Iso nodes. Based on the decision on isolated/restricted node/link

in the configuration, the new link weight is assigned. D-MRC finds a sufficient number

of configurations to cover the failure of all the nodes and links. Limiting the number of

isolated nodes, choosing the isolated and restricted links based on routing density, and

modifying link weights in the different configurations are expected to yield shorter,

more disjoint paths than in MRC [3].

19

Algorithm 1 D-MRC

p← 0
S ← ∅ {S is isolated nodes in all configurations}
R← ∅ {R is restricted links in all configurations}
while N(S) < N(V) do

p + +
Gp ← G {Gp is the graph in configuration p}
Sp ← ∅ {Sp is isolated nodes in configuration p}
for all vi ∈ V do

for all vj ∈ Nvi do
wp(vi, vj)← wp(vi, vj) + (RD(vi,vj))

maxk∈Nvi RD(vi,k)
W

{adding to weight proportional to the routing density}
end for
if vi /∈ S then

if div(vi)=FALSE &N(Sp) < Max.Iso then
Rc ← ∅
for all vj ∈ Nvi do

if vj /∈ R then
Rc ← Rc ∪ vj
wp(vi, vj)←∞ {isolated link}

end if
end for
vR = arg minvk∈Rc RD (vi, vk)
R← R ∪ (vi, vR)
wp(vi, vR)← 2W {restricted link}
Sp ← Sp ∪ vi

end if
end if

end for
S ← S ∪ Sp

end while

20

Two fields in the packet header to enable packet forwarding are employed. Backup

topology indicator (BTI) field indicates which topology is being used for forwarding

this packet. If BTI is 0, the packets are forwarded to NHp(i, d). Otherwise, the pack-

ets are forwarded to NHb(i, d) indicated by BTI. The switching number (SN) field

indicates how many times a backup topology is switched while this packet has been

forwarded. D-MRC allows switching topologies multiple times to increase the chance

of creating a disjoint path from the primary path. In order to avoid potential loops

in routing, the number of backup topologies utilized in routing a packet is limited to

maximum switching number (MSN).

Every backup configuration is a connected graph. In a single backup configura-

tion, routing on any given backup topology guarantees the delivery of a packet to the

destination without a routing loop. Multiple backup topologies may be employed to

increase the disjointness of the backup path with the primary path. However, when a

packet is switched among multiple backup topologies, routing loops can occur and this

is the reason for limiting the MSN such that the packet can be eventually delivered.

For constructing a disjoint path, D-MRC use an alternate topology if the NH(i, d)

are identical in the primary configuration and the current configuration that is being

employed for routing. In addition, if BTI is not 0, but subrootsnk(i, d) is different

from subrootsnk(NHb(i, d), d), BTI is changed to 0, and the packet is forwarded to

NHp(i, d).

The state diagram in Fig. 3 shows the steps that are taken in a node’s forwarding

process. First, packets that are not affected by the failure are forwarded to primary

next hop. Special steps are only taken for packets that would be forwarded along a

backup path (BTI 6=0).

21

Packet arrives at i

BTI=0?

Subrootsnk(NHB(i,d),d)

≠ Subrootsnk(i,d)

NHP(I,d) is

failed?

BTI=0

Forward to NHP(I,d)
Y

N

Y

Y

N
Find backup topology Gk

N

NHB(I,d) is

failed?

NHB(I,d)

=NHP(I,d)?
SN<MSN?

Find backup topology Gl

BTI=l

SN=SN+1

Forward to NHB(I,d)

Y

N

N

Y Y

Find backup topology Gk

BTI=k

SN=SN+1

N

Fig. 3. D-MRC forwarding

2. Disjoint NotVia (D-NotVia)

Let d′ denote subrootsnk(s, d). dist(s, d) is hop count of the shortest path between s

and d. It is assumed that the minimum node degree in the topology is 2, guaranteeing

at least two link-disjoint paths for any source-destination pair.

For constructing a disjoint path, D-NotVia uses NVlink(d
′, d) or NVnode(d

′, d)

first. NVlink(d
′, d) or NVnode(d

′, d) guarantees the disjoint path if dist(s, d) ≤ 2

Theorem 4. If dist(s, d) is 1, NVlink(d
′, d) guarantees a disjoint path (case 1 in Fig.

4(a)). If dist(s, d) is 2, NVnode(d
′, d) guarantees a disjoint path (case 2 in Fig. 4(b)).

Proof. If dist(s, d) is 1 or 2, NVlink(d
′, d) and NVnode(d

′, d) remove all the links on

22

Primary path

NotVia path

s d

NotVia path

Deleted link by

NotVia

(a) Case 1: Using NVlink(d
′, d) when

dist(s, d)=1

s d’ d

(b) Case 2: Using NVnode(d
′, d) when

dist(s,d)=2

s d’ d

(c) Case 3: Using NVnode(d
′, d) when

dist(s,d)≥ 2

s d’ d

(d) Case 4: Failed case using
NVnode(d

′, d) when dist(s,d)≥ 2

s d

I I’’

(e) Case 5: Using NVnode(N
I , I) is used

when Isnk ∩ Isrc 6= ∅

s d

(f) Case 6: Using NVnode(I
′, I) is used

when Isnk ∩ Isrc = ∅

Fig. 4. Examples of D-NotVia

23

the primary path. As a result, the backup path using NVlink(d
′, d) and NVnode(d

′, d)

never uses the links on the primary path and hence a disjoint path is constructed.

If dist(s, d) is greater than 2, NVnode(d
′, d) is used, but it does not guarantee a

disjoint path.

The case 3 in Fig. 4(c) finds a disjoint path, but the case 4 in Fig. 4(d) fails to

find a disjoint path with this method. The failed case forwards to the node in the

same tree which is used in the primary path.

Alternatively, when NVnode(d
′, d) fails to find a disjoint path, D-NotVia finds an

intermediate node (node I) whose primary path to node d does not have a common

link of the primary path from s to d. Node I plays a role as a stepping stone router for

creating a backup disjoint path between s and d. NotVia addresses is used to deliver

packets to node I. After the packet reaches node I with NotVia address, the primary

path to the destination is used from node I. The questions are how to find such a

node I and how to guarantee the path between node s and node I to be disjoint from

the primary path from s to d. The strength of forwarding to node I with NotVia

address is gaurantee of decapsulting the original packet and reaching at d [32].

For each s-d pair, define:

• Isnk(s, d) : the nodes in subtrees which do not contain s in the sink routing tree

destined to d

• Isrc(s, d) : the nodes in subtrees which do not contain d in the source routing

tree rooted from s

Forwarding to I ∈ Isrc(s, d) detours the failed link and guarantees the first hop

of the backup path is different from the first hop of the primary path. Forwarding

from I ∈ Isnk(s, d) to d uses nodes in a different subtree in the sink routing tree. So,

the path from I ∈ Isnk(s, d) to d will be disjoint with the primary path.

24

s

Isrc

d

I

(a) Isrc

d
Isnk

s

I

(b) Isnk

Fig. 5. Isrc and Isnk

The nodes in intersection of Isnk(s, d) and Isrc(s, d) are candidates for node I.

Theorem 5. Forwarding along the primary path from s to I and the primary path

I to d constructs a disjoint path from s to d, when I belongs to the intersection of

Isnk(s, d) and Isrc(s, d).

Proof. Since I ∈ Isnk(s, d), it guarantees that the primary path from I ∈ Isnk(s, d) to

d is disjoint from the path from s to d (figure 5(b)). Since I ∈ Isrc(s, d), it guarantees

that the first hop of the primary path from s to I is not a common link with the

primary path from s to d (figure 5(a)).

If candidates for node I exist, i.e., the intersection is not null, I whose dist(s, I)+

dist(I, d) is the shortest is selected node I in order to decrease the backup path length.

To forward from s to I, NVnode(I
′′, I) is used, where I ′′ is the neighbor node of I, but

is not I ′ (I ′ = subrootsnk(s, I)). Case 5 in Fig. 4(e) is an example of finding node I.

If the intersection of Isnk(s, d) and Isrc(s, d) is null, it means the first hop of the

primary path from s to I ∈ Isnk(s, d) is a common link with the primary path from s

to d. In this case, NVnode(subrootsnk(s, I), I ∈ Isnk(s, d)) is searched to find node I.

25

If forwarding by NVnode(subrootsnk(s, I), I ∈ Isnk(s, d)) does not use the first-hop

of the primary path from s to d, I is selected as node I, and then we use NVnode(I
′, I)

where I ′ is subrootsnk(s, I). In case 6 in Fig. 4(f), the primary path from s to I fails

to make a disjoint path, but the path computed by NVnode(I
′, I) succeeds in finding

a disjoint path.

If we cannot find a node I, NVnode(NHp(s, d), d) is used to create the backup

path (which may not be completely disjoint from the primary path).

The strength of D-NotVia is

• the forwarding method to the intermediate node is simpler than D-MRC.

• the complexity of the scheme for computing the disjoint path is less than the

existing complexity of computing routing table entries for NotVia addresses.

3. Overhead analysis

In this section, the complexity of the proposed schemes is analyzed.

The computational overhead is the overhead of constructing disjoint path on the

proposed scheme’s frame works. The complexity of computing the source routing tree

is O(V log(V) + E).

D-MRC computes backup topologies with complexity O(BδNV
2) where B is the

number of backup topologies, and δN is the node degree. After that, all nodes compute

the backup paths in all topologies with complexity BV O(V log(V) +E). As a result,

the computational overhead of D-MRC is O(BδNV
2) +BV O(V log(V) + E).

NotVia computes the routing trees for all NotVia addresses. This complexity

is (V 2 + E)O(V log(V) + E). The complexity of finding the intersection of Isnk and

Isrc is O(V log(V)). As a result, the computational overhead of D-NotVia is (V 2 +

E)O(V log(V) + E).

26

The memory overhead is the overhead of constructing and maintaining the rout-

ing table. In D-MRC, the number of entries in the routing table is proportional to

the number of backup topologies, for a total of O(BV) at each node. In addition,

D-MRC has to maintain information about the topology in which a node is isolated.

In D-NotVia, the number of additional entries in the routing table is proportional

to the number of NotVia addresses, O(V 2 + E). In addition, D-NotVia should have

information about which NotVia address corresponds to which link or node failure.

The packet overhead is the amount of additional bits in a packet for the proposed

schemes. In D-MRC, BTI (2-4 bits), and SN (2 bits) are required.

In D-NotVia, packet encapsulation is employed to redirect packets to NotVia

addresses. Even though this does not require additional fields in the packet headers,

packet payloads need to be smaller to avoid fragmentation after encapsulation.

C. Simulation

The different schemes are evaluated for simultaneous failure recovery and disjoint-

path routing in this section. A number of network topologies are employed in this

study. The networks used for this evaluation are COST 239 (11 nodes, 26 links),

GEANT (19 nodes, 29 links), NSF (14 nodes, 22 links), DARPA (20 nodes, 32 links),

and Tiscali (40 nodes, 67 links) networks [33].

1. Constructing disjoint paths

The number of backup topologies required for D-MRC is compared to MRC [3] in

Table I. The maximum number of the isolated nodes in a single backup topology is

3 for COST239, GEANT, and NSF, and 4 for DARPA and Tiscali. D-MRC requires

more backup topologies compared to MRC. It is because of the restriction of the

27

1.50

2.00

2.50

3.00

OPT

MRC

D-MRC(1)

0.00

0.50

1.00

COST GEANT NSF DARPA Tiscali

D-MRC(3)

NotVia

D-NotVia

(a) Stretch of the secondary path

0.60

0.80

1.00

1.20

OPT

MRC

D-MRC(1)

0.00

0.20

0.40

COST GEANT NSF DARPA Tiscali

D-MRC(3)

NotVia

D-NotVia

(b) Disjointness of the secondary path

Fig. 6. Stretch and disjointness of the secondary path

maximum number of the isolated nodes in a single backup topology.

Table I. The number of backup topologies in MRC and D-MRC

COST239 GEANT NSF DARPA Tiscali

MRC 3 6 4 5 7

D-MRC 6 8 6 6 15

With the pre-computed backup topologies, the path stretch based on the average

length of the backup paths and disjointness for all the source-destination pairs in

the networks are measured. Path length is measured by the number of hops from

the source to destination. The backup paths are computed by MRC [3], D-MRC

(MSN=1), D-MRC (MSN=3), NotVia [4], D-NotVia, and OPT. To compute the

disjoint path with MRC and NotVia, the first hop of the primary path is regarded as

the failed link. We also show the results for optimal disjoint path computation OPT

(computed by removing all the links of the primary path for each source-destination

pair) for comparison purposes.

The results of creating disjoint paths using MRC and NotVia are shown in Fig.

28

6.D-MRC achieves similar disjointness to MRC. However, D-MRC has much lower

stretch cost. When multiple backup topology switching is allowed to be used for

creating a disjoint backup path, an improvement is seen in disjointness of backup

paths, at the cost of slightly longer paths. It is also observed that nearly 100% of

the time disjoint backup paths can be created using D-MRC in all the networks.

In the networks such as COST239 and NSF network which have higher node degree,

disjointness of the backup paths is very close to 1. In the remaining networks, allowing

multiple backup topologies to be employed in constructing the backup path improves

disjointness without significantly increasing the backup path length.

The disjointness of NotVia is poor because it uses primary path after forwarding

to the first hop of the primary path. In D-NotVia, the source node selects NotVia

address considering the disjointness of the backup path, so it improves disjointness

compared to NotVia. D-NotVia shows similar disjointness to D-MRC. D-NotVia

has smaller stretch on average than D-MRC, because it uses the primary path after

forwarding to the node destined with NotVia address.

It is also observed that the stretches for D-MRC and D-Notvia schemes are not

much larger than that of the optimal OPT scheme. In some networks, D-NotVia and

D-MRC show smaller stretch than OPT because their disjointness is not 1 for all the

backup paths.

2. Applying to multipath routing for load balancing and QoS

In this section, we show the utility of computed disjoint paths by considering multi-

path routing. Primary path and backup path from D-MRC and D-NotVia are applied

to DEFT [34] in order to exam how well the disjoint multipath contributes to load

balancing. DEFT assigns flows to next-hops with the probabilities that decrease

exponentially with the extra length of the path compared to the shortest path.

29

Hot source and hot sink scenarios are considered. Traffic demands from a single

source are doubled, while the others are not changed in the hot source scenario. Sim-

ilarly, traffic demands to a single sink are doubled, while the others are not changed

in the hot sink scenario.

The given traffic demands are computed until the link utilizations are between

0.4 and 0.6 with single path routing. During the simulation, only one node can be

selected as hot source or hot sink with a probability of 1/V at a time.

DEFT with the computed maximally disjoint paths (using D-MRC and D-NotVia)

are compared to OSPF with a single route. The average link cost and the maximum

link utilization as metrics are measured for evaluation. Link cost function (ϕ) given

in [6] is employed with the utilization of link (i, j), u(i, j).

ϕ′(i, j) =



1 for 0 ≤ u(i, j) < 1/3

3 for 1/3 ≤ u(i, j) < 2/3

10 for 2/3 ≤ u(i, j) < 9/10

70 for 9/10 ≤ u(i, j) < 1

500 for 1 ≤ u(i, j) < 11/10

5000 for 11/10 ≤ u(i, j)



. (2.5)

The results are shown Fig. 7 for hot source scenario and Fig. 8 for hot sink scenario.

Single path routing shows the highest average link cost and maximum link utilization.

D-MRC has lower average link cost and lower maximum utilization than single path

but higher than OPT. The average link cost and maximum utilization of D-NotVia

multi-path routing is very close to that of OPT with multi-path routing.

Primary path and backup path by D-MRC and D-NotVia is applied to the

shortest-widest path routing [35] in order to examine how well the computed dis-

30

0.8

1

1.2

1.4

1.6

Single path

D-MRC(1)

D-MRC(3)

0

0.2

0.4

0.6

COST GEANT NSF DARPA Tiscali

D-MRC(3)

D-NotVia

OPT

(a) Average link cost in hot source
senario

0.6

0.8

1

1.2

Single path

D-MRC(1)

D-MRC(3)

0

0.2

0.4

COST GEANT NSF DARPA Tiscali

D-MRC(3)

D-NotVia

OPT

(b) Maximum link utilization in hot
source senario

Fig. 7. Average link cost and maximum link utilization in hot source scenario

0.8

1

1.2

1.4

1.6

Single path

D-MRC(1)

D-MRC(3)

0

0.2

0.4

0.6

COST GEANT NSF DARPA Tiscali

D-MRC(3)

D-NotVia

OPT

(a) Average link cost in hot sink senario

0.6

0.8

1

1.2

Single path

D-MRC(1)

D-MRC(3)

0

0.2

0.4

COST GEANT NSF DARPA Tiscali

D-MRC(3)

D-NotVia

OPT

(b) Maximum link utilization in hot
sink senario

Fig. 8. Average link cost and maximum link utilization in hot sink scenario

31

joint multipath contributes to improving QoS. The shortest-widest path finds feasible

paths with the largest available bandwidth. If there are several paths, the path with

the minimum hop count is selected. In this simulation, the shortest-widest path rout-

ing measures the minimum available bandwidth of the primary path. If the measured

bandwidth is greater than the required bandwidth, the primary path is used. When

the available bandwidth of the primary path is less than the required bandwidth,

the shortest-widest path routing measures the available bandwidth of the alternative

path. If the measured bandwidth is greater than the required bandwidth, the alter-

native path is used. If both paths cannot provide the required bandwidth, the flow

or call is blocked or dropped. We measure the end-to-end delay, the fraction of the

time primary/secondary path is selected, and the percentage of calls blocked.

As shown Fig. 9(a), the end-to-end delay is high in MRC and NotVia due to high

stretch. D-MRC and D-NotVia have lower end-to-end delay than MRC and NotVia

due to lower stretch. The end-to-end delay of OPT is the best.

As shown Fig. 9(c) and 9(d), the fraction of time alternative path is chosen is

high in the proposed scheme and OPT. Also, Fig. 9(b) shows that the percentage

of blocked calls is lower in D-MRC, D-NotVia and OPT. It is observed that higher

disjointness of alternative path results in choosing the alternative path successfully

more often and reduces the call blocking probability.

3. Applying to failure recovery

In this section, the average length of recovery paths against link/node failures is

measured. The backup paths constructed in D-MRC and D-Notvia is used for tol-

erating failures and compare them against the failure recovery paths constructed in

MRC and NotVia. All source-destination pairs and all link/node failures are not

considered. Only source-destination pairs whose paths contain the failed link/node

32

0.03

0.04

0.05

0.06

OPT

MRC

D-MRC(1)

0

0.01

0.02

NSF DARPA

D-MRC(3)

NotVia

D-NotVia

(a) End-to-end delay (sec)

0.15

0.2

0.25

0.3

0.35

OPT

MRC

D-MRC(1)

0

0.05

0.1

0.15

NSF DARPA

D-MRC(3)

NotVia

D-NotVia

(b) Call blocking probability

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

OPT MRC D-MRC(1)D-MRC(3) NotVia D-NotVia

Primary Alternative

(c) Path selection probability on NSF
network

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

OPT MRC D-MRC(1)D-MRC(3) NotVia D-NotVia

Primary Alternative

(d) Path selection probability on
DARPA network

Fig. 9. End-to-end delay, call blocking, and path selection probability on realistic

topologies

33

1.50

2.00

2.50

3.00

MRC

DMRC(3)

0.00

0.50

1.00

COST GEANT NSF DARPA Tiscali

NotVia

D-NotVia

(a) Stretch of the proposed schemes for
link-failure

1.00

1.50

2.00

2.50

MRC

DMRC(3)

0.00

0.50

1.00

COST GEANT NSF DARPA Tiscali

NotVia

D-NotVia

(b) Stretch of the proposed schemes for
node-failure

Fig. 10. Stretch of the proposed schemes for link- and node-failure

is counted for this evaluation. The results of this comparison are shown in Fig. 10.

It is observed that D-NotVia has lower stretch than NotVia except in GEANT and

Tiscali networks. D-MRC has lower stretch than MRC because it selects the failed

nodes in backup configurations carefully and since D-MRC employs more topologies

(shown in Table I). D-NotVia has lower stretch than D-MRC.

In sum, it has been shown that the proposed algorithms for constructing disjoint

paths in MRC and NotVia frameworks can build secondary paths that are nearly

disjoint with the primary paths while providing secondary paths that are close to

optimal (stretch similar to OPT). It is also shown that the constructed disjoint paths

can be used with multipath routing algorithms to diffuse traffic hot spots to reduce

maximum link utilizations. The constructed disjoint paths can be used for fast recov-

ery from link/node failures with small stretch until the routing tables are recomputed

taking the failures into account.

34

D. Related work

Multi-topology framework is investigated in [36]. Based on this framework, several

QoS and failure recovery routings are proposed. QoS routing based on multi-topology

is studied in [37]. In this scheme, the packet is delivered on different topologies

according to priority. Failure recovery is not considered in their work. Schemes for

load-balancing after proactive failure recovery are proposed in [38] and [39]. In these

approaches, traffic engineering is applied to alternate topologies. rMRC, a scheme for

increasing the diversity of backup topologies with no isolated links, but only restriced

links, is proposed in [40]. These approaches based on [3] improve load balance and

path selection diversity for failure recovery, but the disjointness of alternative paths

is worse and stretch is higher than D-MRC, because they do not consider disjointness

of paths [41].

Path splicing [31] provides multi-path routing through source level control of

derouting a packet from the primary path. In path splicing, the link weight is ran-

domly changed to improve the path disjointness, which is shown to vary from 20% to

100%. Compared to Path splicing, D-MRC and D-NotVia achieve higher disjointness

of alternate paths. Red-blue tree construction [42] is proposed for disjoint multi-path

routing. While this approach provides disjoint paths, the primary path may not be

the shortest cost path and hence may result in providing higher cost even when no

failures exist. A failure recovery scheme, using disjoint paths of coloring trees, is

proposed in [43, 44]. Red-blue tree construction provides maximaly disjoint paths,

but does not provide shortest primary paths.

LFA [5] is light-weight failure recovery scheme, but LFA does not guarantee a

disjoint path from the primary path. Additional conditions can guarantee a disjoint

path [41], but LFA next hop does not always exist at a node to all the destinations.

35

According to an analysis on real ISP topologies, over 40% links and nodes are not

protected by LFA [45].

Classical algorithms for computing disjoint backup paths remove or reverse links

along the primary path. This approach has high complexity and is hard to implement

in the manner of hop-by-hop routing. Disjoint path routing schemes are proposed

in [30] and [29]. However, these schemes constrain the construction of the primary

path, hence cannot work with the currently used routing protocols.

The idea of using node I in D-NotVia is similar to [32]. However, only 40% of

the time the intermediate nodes are employed in this approach instead of 100% of

the time in steeping stone routing. In addition, the NotVia infrastructure provides

for decapsulation at the network layer.

MADSWIP [46] provides maximally disjoint paths. Since this approach is based

on [29], it constrains the computation of the primary path. Our work here tries to

utilize MRC and NotVia frameworks for computing maximally disjoint secondary

path without constraining the computation of the primary path.

36

CHAPTER III

REDUCING OVERHEAD OF LINK STATE UPDATE FOR WARDROP

EQUILIBRIUM IN NETWORKS

In this chapter, the technique of reducing the cost of propagating dynamic link met-

ric information across the network is proposed while ensuring stability of the routing

algorithm. The threshold-based update, proposed for propagating link metric infor-

mation only if the change of the dynamic link metric is high, guarantees that the

observed path quality will be within an error bound of the optimal path quality, and

it reduces the cost of propagating link cost information significantly.

A. Threshold based updates

Most earlier approaches assume that nodes measure the state of their links at regular

intervals and propagate this information to the other nodes in the network. The

nodes compute new routing tables or new traffic distribution ratios when all the

information is received. In order to keep the information from getting too stale,

the measurements and the propagation of the link state are carried out at regular

intervals. The cost of propagating this information and the staleness of link state are

controlled by controlling the frequency or rate of measuring and the propagation of

the link state.

A possible approach to reducing the cost of updates is based on observing the

local link state. Every node keeps track of the last link state that is propagated to

the rest of the network. When the currently measured link state differs from the last

updated state considerably, and the difference exceeds a threshold, only then does

the node propagate the link state information to other nodes in the network. We

call such a policy threshold based updates. The thresholds can be based on allowable

37

absolute error in link state or on the maximum allowable relative error. For exam-

ple, thresholds can be such as 1ms or 20%. Absolute error thresholds may not be

universally applicable. A 1ms error threshold may be reasonable when link delay is

say 10ms, but may not be reasonable when link delays are in the range of 100ms or

1ms. Relative error thresholds can cover wide range of link states. However, relative

thresholds can be problematic as the links get heavily loaded. While, in this regime,

it may be necessary to propagate information more quickly in order to distribute the

load to other parts of the network and higher thresholds would not be beneficial.

In order to accommodate all the conflicting needs, we pursue a policy here that

tries to combine both absolute and relative error thresholds. A node propagates its

link state if its current link state exceeds the minimum of absolute or relative error

thresholds. More formally, if |li − lj| ≥ min(eabs, erellj), where lj is the last link

state that is propagated by the node, li is the current link state and eabs and erel

are the absolute and relative error thresholds, then link state li is propagated and

remembered locally as the last propagated link state.

The rationale for the threshold based update policy is simple: propagate link

state only when not propagating the state will lead to errors beyond acceptable tol-

erance limits. With such an approach, we expect that we can bound the error in the

link state while reducing the cost and the number of updates of link state across the

network. While triggered updates of link state are used, for example, in OSPF rout-

ing on link up/down events and available link bandwidth changes in [20], we consider

granular change in link state and directly relate the impact of the thresholds used in

determining the propagation of link state to the final quality of routing goals (both

through analysis and simulations).

The allowed or acceptable error thresholds may depend on the link state and

the role played by the link state in the routing algorithm. Again, to demonstrate

38

the potential viability of such threshold based updates, we will focus on one routing

algorithm, Wardrop routing [9, 24], one of the dynamic routing approach employing

link delays as a link cost metric. In Wardrop routing, the traffic is split across available

paths in such a way as to equalize the delay across all the available paths at a node.

The traffic splitting can be done at the end hosts [24] or further split at the routers

in the network as traffic moves from one hop to the next [9].

The allowed error in link state updates directly gets reflected in allowed error

in the path delay metrics used in routing. It is assumed that nodes operate syn-

chronously in order to make the analysis portion simple. As the link state propagation

gets delayed, the routing decisions can be made on stale information. As inaccuracy

is allowed in link delays, the resulting decisions can be erroneous, potentially leading

to oscillations, where stability could be guaranteed with exact information.

The following sections answer several questions as we go forward: (a) how does

the allowed link state update error influence the maximum observed path delay? This

reflects on the path quality degradation as a result of threshold based updates. (b)

can we still guarantee convergence of Wardrop routing, now albeit a looser notion of

convergence i.e., do different paths converge to approximately equal delays (the errors

or bounds being determined by (a))? (c) how much gain can be had in reducing the

cost of link state updates through threshold based updates?

B. Convergence and error analysis

We consider a network represented by a graph G = (V,E). The traffic demand is

specified by a set of commodity flows K with commodity k ∈ K corresponding to

traffic λk from a source sk ∈ V to a destination dk ∈ V . Let P be the set of all allowed

paths connecting source-destination pairs and Pk ⊆ P be the set of paths connecting

39

sk to dk. Note that each path p ∈ P is a set of edges e ∈ E. We assume that the

maximum length of a path in the network is bounded by Lmax. For simplicity, we

assume that Pk are disjoint. The routing state of the network is given by a flow

vector ~x = {xp} ∈ R|P |, where |P | denotes the cardinality of P . For a flow vector to

correspond to a feasible routing state requires ~x ≥ 0 and
∑

p∈Pk
xp = λk. The flow

on an edge e ∈ E is denoted xe =
∑

p3e xp. The latency of an edge e supporting flow

xe is specified by a function le(x
e), and that the function is upper bounded by lmax

for all e ∈ E. The latency of a path is then given by lp(~x) =
∑

e∈p le(x
e). We denote

lkmin(~x) = minp∈Pk
lp.

For simplicity, we focus in this section on the class of adaptive routing policies

whose convergence properties under a model with periodic updates have been studied

in [47]. Consider a fluid model with an infinite number of agents each make routing

decisions for an infinitesimal fraction of the traffic on the network. A flow vector ~x

corresponds to xp agents routing traffic over path p. The route used by each agent

is revised periodically at discrete points in time based on the available information

about the link and path metrics. The current path delay metric for path p that is

available to all agents (potentially with errors) is denoted l̂p. An agent controlling

traffic belonging to commodity k and currently using path p ∈ Pk samples a path

q ∈ Pk with probability σpq and switches to the path q, if it is better, with probability

µ(l̂p, l̂q). In this chapter, only the subset of policies that are α-smooth is considered,

i.e., policies that satisfy µ(l̂p, l̂q) ≤ α(l̂p−l̂q). In the case of the threshold based scheme,

an agent decides that the sampled path q is better only if the sampled latency l̂q is

less than the current latency of path p, l̂p, by an error margin which will be discussed

further in the sequel.

40

1. Convergence to approximate Wardrop equilibria

Through such threshold based updates, we do not aim to converge precisely to a

Wardrop equilibrium but instead to an approximate equilibrium defined below.

Definition 6. A flow vector ~x corresponds to a δ - approximate Wardrop equilibrium

if: xp > 0 only if ∃ a commodity k such that lp(~x) ≤ lkmin(~x) + δ.

As simulation study in the next section, such an approximate equilibrium allows

the network to leverage the benefits of Wardrop routing at a fraction of the cost.

Lemma 7. If link updates are propagated with an absolute error threshold eabs <

δ
2Lmax

, and an agent shifts traffic from path p to q only if (l̂p− l̂q) ≥ 2Lmaxeabs, and σpq

assigns positive probability to all paths, the flow vector ~x converges to a δ-approximate

Wardrop equilibrium.

Proof. Assume that the network is in a routing state ~x that is not a δ-approximate

Wardrop equilibrium. When agents sample path with higher latency, no traffic is

shifted. If an agent decides that path q is better than p based on the measured

latencies, then (l̂p − l̂q) > 2Lmaxeabs. Since link metrics are propagated whenever the

change in link delay exceeds eabs and the maximum path length is Lmax, the maximum

error in the sampled latency of a path is bounded by Lmaxeabs. Thus, using an error

margin of 2Lmaxeabs, it is guaranteed that if an agent decides to switch traffic from

path p to q based on the propagated link metrics, then indeed lp > lq also. Since any

feasible path is sampled with positive probability, an agent not on the lowest latency

path will eventually sample a better path and switch to it with a positive probability.

As shown in [47], the potential function

Φ =
∑
e∈E

∫ xe

0

le(x)dx (3.1)

41

is a Lyapunov function which is minimized at the Wardrop equilibrium. When the

network is not at a δ-approximate Wardrop equilibrium, there will eventually be a

traffic shift between paths that lowers the potential function while no shifts that

increase the function are possible. Thus, the gradient of the potential function is

negative as long as the system is not in a δ-approximate Wardrop equilibrium. This

in turn implies the lemma.

2. Speed of convergence

In this part, we consider for simplicity the case with one commodity coupled with an

adaptive routing scheme using

1. Uniform sampling: σpq = |P |−1, ∀p, q ∈ P

2. Linear rule to switch traffic: µ(l̂p, l̂q) = (l̂p−l̂q)

lmax
.

As in [47], the time is bound to reach a (δ, ε)-approximate Wardrop equilibrium,

defined in [47] as:

Definition 8. If at most ε agents use paths p such that lp(~x) > lmin(~x) + δ, then (~x)

corresponds to a (δ, ε)-approximate Wardrop equilibrium.

Lemma 9. Assume that agents sample alternate paths at a rate ω, and the threshold

update policy is used with the absolute error threshold chosen such that eabs <
δ

2Lmax
.

Then, for the uniform sampling policy that shifts traffic between paths following a

linear rule, the time spent in a routing state that is not a (δ, ε)-approximate Wardrop

equilibrium is upper bounded by

|P |l2max

ωεδ(δ − 2Lmaxeabs)
(3.2)

42

Proof. An agent using a path p such that lp(~x) > lmin(~x) + δ samples the cheapest

path with a probability of at least 1
|P| . The agent shifts the controlled traffic to the

cheapest path with probability of at least (l̂p−l̂min)

lmax
≥ (δ−2Lmaxeabs)

lmax
. Also, until reaching

the (δ, ε)-approximate Wardrop equilibrium, there are at least ε such agents. Thus,

the rate at which agents switch to the current minimum latency path thereby reducing

their latency by at least δ is at least

ωε(δ − 2Lmaxeabs)

|P |lmax

, (3.3)

and the rate at which the potential function decreases is then given by

ωεδ(δ − 2Lmaxeabs)

|P |lmax

, (3.4)

The potential function Φ is bounded above by lmax and below by 0. Thus, the

time to reach the (δ, ε)-approximate Wardrop equilibrium is bounded by

|P|l2max

ωεδ(δ − 2Lmaxeabs)
(3.5)

C. Simulation

In this section, the behavior of the fixed interval update scheme which sends link

updates at fixed time intervals to that of the threshold based update scheme is com-

pared. In the fixed interval update scheme, the interval of link update is set to T =

2 seconds. The link state update, and the traffic splitting ratio changes are based on

the algorithm in [9].

It is noted that in order to slow down the propagation of update messages during

rapid traffic changes, the link state measurements are controlled by a measurement

43

interval of T = 2 seconds or 1 second, even in the threshold based update scheme.

For the link state update, the fixed interval update scheme and the threshold

based update scheme set the same interval, T . Since traffic (and hence link laten-

cies) can be very bursty at short timescales, each node measures the current latency

(l(i, j)), and then updates its link latency by computing an exponential moving av-

erage (l̂(i, j)) at every T to smooth out the noise.

l̂(i, j) = γl̂(i, j) + (1− γ)l(i, j) (3.6)

For propagating the link state and updating the path latency, we define L(i, j, k) and

LP (k, j).

• L(i, j, k) : the expected path latency from i to j via neighbor k.

L(i, j, k) = l̂(i, k) + LP (k, j) (3.7)

• LP (k, j) :the expected path latency from k to j

LP (k, j) =
∑

nj∈N(k,j)

p(k, j, nj)L(k, j, nj) (3.8)

where p(i, j, k) is the splitting ratio from i to j via k, and Nk is the neighbor of k.

L(i, j, k) is computed and LP (i, j) is propagated to the network based on the

update policy of the schemes. In the fixed interval update scheme, L(i, j, k) is com-

puted and LP (i, j) is propagated at every T . In the threshold based update scheme,

L(i, j, k) is computed at every T , but LP (i, j) is propagated only when the change

of l̂(i, j) is greater than min(eabs, erel l̂(i, j)). In all simulation, eabs is set to 7.5 msec

and erel is set to 0.1. The maximum allowed path length,Lmax, is 3.

The splitting ratio update is determined by the condition of the (δ, ε)-approximate

Wardrop equilibrium. The traffic splitting ratios p(i, j, k1) are changed only when

L(i, j, k1)− L(i, j, k2) > e where e = min(eabs, erel ∗ l̂(i, j)) ∗ 2Lmax.

44

The amount of change (∆) in traffic splitting ratios is given by, from [9],

∆ = κ

(
(1− β) p (i, j, k1) +

β

|N(i, j)|

)
L(i, j, k1)− L(i, j, k2)

L(i, j, k1) + α
(3.9)

The details about weigh shift factor(κ), virtual latency offset α, and exploration

ratio (β) are desgined for preventing oscillations and exploring new paths. (Please

refer [9]).

The topologies ranging from simple four node graphs to medium and large topolo-

gies in [33] are considered. Identical weights are assigned to links so that hop count is

the routing cost, and it increases equal cost multiple paths. To simulate traffic on the

networks, a workload is generated based on the Web workload generators in [48]. The

workload mimics that generated by a user requesting a web page, and then remaining

idle for a period while reading the page and then requesting another web page and

so on. The sizes of the files (requests) are drawn from a heavy-tail distribution. This

results in a mix of short-term flows and a considerable number of long-term flows.

In all simulations, the threshold-based scheme is simulated along with the fixed

interval update scheme to compare their performance. The following metrics are

measured.

• Total splitting ratio changes: the sum of the splitting ratio change(∆) at time

t (for subsection 1)

• Throughput: the sum of the throughput at time t (for subsection 1)

• Splitting ratio: p(r1, r4, r2) and p(r1, r4, r3) (for subsection 2)

• Route utilization: U(r1−r2−r4) and U(r1−r3−r4) where U(P) is the utilization

of path(P) (for subsection 2)

• Path latency gap(Gp(t)): L(r1, r4, r2)-L(r1, r4, r2) at time t (for subsection 3-4)

45

• Cumulative path latency gap:
t∑
i=1

Gp(i) (for subsection 3)

• The number of link updates: the cumulative number of update message (for

subsection 1-4)

1. Comparison between approximate and Exact Wardrop routing

In this section, The approximate Wardrop routing (APWD) is compared with exact

Wardrop routing (WD) on realistic networks: NSF topology with 14 nodes and 22

links for medium size network simulation, and tiscali topology with 40 nodes and 67

links for large size network simulation [33]. The results from simulations in other

realistic topologies and other workloads are similar.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

time(sec)

T
o
ta

l
s
p
lit

in
g
 r

a
ti
o
 u

p
d
a
te

WD-fixed interval
WD-threshold based
APWD-fixed interval
APWD-threshold based

(a) Total splitting ratio
changes

0 50 100 150 200 250
0

1000

2000

3000

4000

time(sec)

T
h
ro

u
g
h
p
u
t(

p
k
t/

s
e
c
)

WD-fixed interval
WD-threshold based
APWD-fixed interval
APWD-threshold based

(b) Throughput

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

time(sec)

T
h
e
 n

u
m

b
e
r

o
f

lo
c
a
l
u
p
d
a
te

s

WD-fixed interval
WD-threshold based
APWD-fixed interval
APWD-threshold based

(c) The cumulative num-
ber of link updates

Fig. 11. Splitting ratio, number of link updates, and throughput on NSF topology.

The simulation results of both timer-based link updates and threshold-based

updates with exact and approximate Wardrop equilibria are shown in Fig. 11 and

Fig. 12. It is shown that approximate Wardrop routing reaches similar performance

as exact Wardrop routing, within the allowed error bounds (shown in Fig. 11(b)

and Fig. 12(b)). It is noted that both the schemes employed threshold based (or

timer based) link updates and that the only difference in the two schemes is the goal

for convergence. In the exact Wardrop routing case, the traffic splitting ratios are

46

0 50 100 150 200 250
0

2

4

6

8

10

time(sec)

T
o
ta

l
s
p
lit

in
g
 r

a
ti
o
 u

p
d
a
te

WD-fixed interval
WD-threshold based
APWD-fixed interval
APWD-threshold based

(a) Total splitting ratio
changes

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

time(sec)

T
h
ro

u
g
h
p
u
t(

p
k
t/

s
e
c
)

WD-fixed interval
WD-threshold based
APWD-fixed interval
APWD-threshold based

(b) Throughput

0 50 100 150 200 250
0

0.5

1

1.5

2
x 10

4

time(sec)

T
h
e
 n

u
m

b
e
r

o
f

lo
c
a
l
u
p
d
a
te

s WD-fixed interval
WD-threshold based
APWD-fixed interval
APWD-threshold based

(c) The cumulative num-
ber of link updates

Fig. 12. Splitting ratio, number of link updates, and throughput on Tiscali topology.

updated to make the differences in path delays go to zero and in the approximate

case, the traffic splitting ratios are updated to make the differences in the path delays

approach the allowed error bounds for the paths.

The sum of all route splitting ratio changes at all routers to test the oscilation in

the schemes is measured. This measurement is expected to show quick convergence

and small fluctuations after the convergence. Also, adjustment of splitting ratios is

expected to contribute to the improvement of throughput of TCP connections.

In this experiment, 6 clients generate HTTP traffic between every source-destination

pair during the simulation time (=250 sec). The splitting ratio chage is allowed after

20 sec.

Both schemes show small fluctuations of total splitting ratio changes after 70

seconds as seen in Fig. 11(a) and after 120 seconds as seen in Fig. 12(a). As the

traffic splitting ratio is changed, the total throughput increased in both the networks,

especially during the period between 30s and 60s. Even though both schemes show

similar performance, the link update overhead of the threshold based update scheme

is less than 50% compared to that of the fixed interval update scheme (in Fig.11(c)

and Fig.12(c)).

The results show that approximate Wardrop routing provides similar perfor-

47

mance, with a slightly lower number of traffic splitting updates and slightly lower

number of link updates, within each type of link update mechanism. It is also noted

that the threshold based mechanisms required far fewer link updates than timer based

link update mechanisms.

From here on, only approximate Wardrop equilibrium is considered in following

experiments .

2. Convergence to approximate Wardrop equilibrium

The first simulated network topology consists of 4 routers. (As shown in Fig. 13).

The 20 clients connected with r4 download the HTTP files from the routers connected

with r1. There are two possible paths: r1-r2-r4, and r1-r3-r4 between r1 and r4.

...

r1

r2

r3

r4..
.

..
.

..
.

..
.

Fig. 13. Simple topology for approximate Wardrop routing simulations

To study the performance of the Wardrop routing scheme using threshold based

updates, we examine the splitting ratio and the route utilization of the two routes over

time under three cases. We assign bandwidths of 1, 5, and 10 Mbps to link(r1, r2) and

link(r2, r4) while keeping the other links at 10Mbps. These three cases are denoted

1/10 Mbps, 5/10 Mbps and 10/10 Mbps. If the algorithm works well, we expect

the load on both routes to be balanced. The optimal splitting ratio, ignoring the

48

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

time(sec)

s
p
lit

in
g
 r

a
ti
o p(r

1
,r

4
,r

3
):fixed interval

p(r
1
,r

4
,r

2
):fixed interval

p(r
1
,r

4
,r

3
):threshold based

p(r
1
,r

4
,r

2
):threshold based

(a) Splitting ratio to the
routes

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

time(sec)

u
ti
liz

a
ti
o
n

U(r
1
-r

3
-r

4
):fixed interval

U(r
1
-r

2
-r

4
):fixed interval

U(r
1
-r

3
-r

4
):threshold based

U(r
1
-r

2
-r

4
):threshold based

(b) Route utilization

0 100 200 300 400 500
0

500

1000

1500

2000

time(sec)

th
e
 n

u
m

b
e
r

o
f

lin
k
 u

p
d
a
te

s

fixed interval
threshold based

(c) The cumulative num-
ber of link updates

Fig. 14. Splitting ratio, route utilization, and the number of link updates for the case

of 1/10 Mbps

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

time(sec)

s
p
lit

in
g
 r

a
ti
o p(r

1
,r

4
,r

3
):fixed interval

p(r
1
,r

4
,r

2
):fixed interval

p(r
1
,r

4
,r

3
):threshold based

p(r
1
,r

4
,r

2
):threshold based

(a) Splitting ratio to the
routes

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

time(sec)

u
ti
liz

a
ti
o
n

U(r
1
-r

3
-r

4
):fixed interval

U(r
1
-r

2
-r

4
):fixed interval

U(r
1
-r

3
-r

4
):threshold based

U(r
1
-r

2
-r

4
):threshold based

(b) Route utilization

0 100 200 300 400 500
0

500

1000

1500

2000

time(sec)

th
e
 n

u
m

b
e
r

o
f

lin
k
 u

p
d
a
te

s

fixed interval
threshold based

(c) The cumulative num-
ber of link updates

Fig. 15. Splitting ratio, route utilization, and the number of link updates for the case

of 5/10 Mbps

traffic variability, should consequently converge to 0.09/0.91, 0.33/0.67, and 0.5/0.5

respectively.

In Fig. 14(a),15(a), and 16(a), both schemes converge to near optimal splitting

ratios. Then we can see the route utilizations converge to nearly the same utilization

on both paths in both schemes (in Fig. 14(b),15(b),and 16(b)). However, the number

of link updates of the fixed interval update scheme is much higher than the number

of link updates of the threshold based update scheme (in Fig. 14(c),15(c),and 16(c)).

The fixed interval update scheme keeps sending the path latency information after

49

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

time(sec)

s
p
lit

in
g
 r

a
ti
o

p(r
1
,r

4
,r

3
):fixed interval

p(r
1
,r

4
,r

2
):fixed interval

p(r
1
,r

4
,r

3
):threshold based

p(r
1
,r

4
,r

2
):threshold based

(a) Splitting ratio to the
routes

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

time(sec)

u
ti
liz

a
ti
o
n

U(r
1
-r

3
-r

4
):fixed interval

U(r
1
-r

2
-r

4
):fixed interval

U(r
1
-r

3
-r

4
):threshold based

U(r
1
-r

2
-r

4
):threshold based

(b) Route utilization

0 100 200 300 400 500
0

500

1000

1500

2000

time(sec)

th
e
 n

u
m

b
e
r

o
f

lin
k
 u

p
d
a
te

s

fixed interval
threshold based

(c) The cumulative num-
ber of link updates

Fig. 16. Splitting ratio, route utilization, and the number of link updates for the case

of 10/10 Mbps

convergence. However, the threshold based update scheme sends the path latency

information scarcely after convergence.

3. Impact of traffic bursts

It is assumed that the traffic demands are static in the previous subsection. However,

the dynamic routing protocol should respond to the changes in the traffic rapidly.

This simulation examines if the threshold based update scheme can adjust quickly to

changes in the traffic.

This simulation adds a traffic burst to different links to see the impact of how

quickly the traffic burst results in making traffic adjustments across the two paths and

how much overhead is required for adjusting to changes in traffic. Additional traffic

on one or more links is generated in the network of Fig. 13. At the begining of the

simulation, clients connected to r4 download HTTP files from the routers connected

with r1. Additional HTTP clients, become active after a burst start time (=50 sec).

Before the burst of traffic due to additional HTTP clients, the traffic is balanced well

between the two routes. The traffic ratios are changed as a result of this traffic burst.

In scenario 1, all link capacities are 2 Mbps and the burst traffic is put on link

50

0 50 100 150 200 250 300 350 400 450 500
-0.01

0

0.01

0.02

0.03

0.04

0.05

time(sec)

p
a
th

 l
a
te

n
c
y
 g

a
p
(s

e
c
)

fixed interval
threshold based
error bound

(a) Path latency gap

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

time(sec)

c
u
m

u
la

ti
v
e
 p

a
th

 l
a
te

n
c
y
 g

a
p
(s

e
c
)

fixed interval
threshold based

(b) Cumulative path la-
tency gap

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time(sec)

th
e
 n

u
m

b
e
r

o
f

lin
k
 u

p
d
a
te

s

fixed interval
threshold based

(c) Cumulative number of
link updates

Fig. 17. The path latency gap and the number of link updates for scenario 1

(r1, r2). In this case, r1 detects the traffic change through link latency measurements.

In addition, r1 has an alternative path (path(r1 − r3 − r4)) avoiding the congested

path (path(r1 − r3 − r4)).

In scenario 2, all link capacities are 2Mbps and the burst traffic is put on

link(r2, r4). Node r1 cannot detect the traffic change directly. Instead, r2 can de-

tect the traffic change, but it does not have any alternative path. In this case, r2

propagates the traffic change with link updates, and r1 changes the splitting ratio

based on the received updates. We examine how fast link update is propagated with

the threshold based update scheme.

In scenario 3, we consider different link capacities by setting link capacities on

link(r1, r3) and link(r3, r4) to 4Mbps and 4/3Mbps respectively and the burst traffic

is put on link(r1, r2) while the capacities of link(r1, r2) and link(r2, r4) are 2 Mbps.

In this setting, the path latencies of two paths is the same as before the burst traffic.

We put the burst traffic on link(r1, r2). Similar to scenario 1, r1 detects the traffic

change and it has an alternative path. However, the link update is important in this

scenario. Since, the capacity of link(r3, r4) is less than that of link(r2, r4), swithcing

the traffic on link(r1, r2) to link(r1, r3) can cause another congestion on link(r3, r4).

The splitting ratio change is dependent both on the link state update in this scenario.

51

0 50 100 150 200 250 300 350 400 450 500
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

time(sec)

p
a
th

 l
a
te

n
c
y
 g

a
p
(s

e
c
)

fixed interval
threshold based
error bound

(a) Path latency gap

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

time(sec)

c
u
m

u
la

ti
v
e
 p

a
th

 l
a
te

n
c
y
 g

a
p
(s

e
c
)

fixed interval
threshold based

(b) Cumulative path la-
tency gap

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time(sec)

th
e
 n

u
m

b
e
r

o
f

lin
k
 u

p
d
a
te

s

fixed interval
threshold based

(c) Cumulative number of
link updates

Fig. 18. The path latency gap and the number of link updates for scenario 2

0 50 100 150 200 250 300 350 400 450 500
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

time(sec)

p
a
th

 l
a
te

n
c
y
 g

a
p
(s

e
c
)

fixed interval
threshold based
error bound

(a) Path latency gap

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

time(sec)

c
u
m

u
la

ti
v
e
 p

a
th

 l
a
te

n
c
y
 g

a
p
(s

e
c
)

fixed interval
threshold based

(b) Cumulative path la-
tency gap

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time(sec)

th
e
 n

u
m

b
e
r

o
f

lin
k
 u

p
d
a
te

s

fixed interval
threshold based

(c) Cumulative number of
link updates

Fig. 19. The path latency gap and the number of link updates for scenario 3

52

0 50 100 150 200 250 300 350 400 450 500
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

time(sec)

p
a
th

 l
a
te

n
c
y
 g

a
p
(s

e
c
)

fixed interval
threshold based
error bound

(a) Path latency gap

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time(sec)

c
u
m

u
la

ti
v
e
 p

a
th

 l
a
te

n
c
y
 g

a
p
(s

e
c
)

fixed interval
threshold based

(b) Cumulative path la-
tency gap

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time(sec)

th
e
 n

u
m

b
e
r

o
f

lin
k
 u

p
d
a
te

s

fixed interval
threshold based

(c) Cumulative number of
link update

Fig. 20. The path latency gap and the number of link updates for scenario 4

In scenario 1,2 and 3, the fixed interval update scheme and the threshold based

update scheme both change the traffic splitting ratios. The path latency gap (|L(r1, r4, r2)-

L(r1, r4, r3)|) is measured. The behaviors of the path latency gap are similar in both

schemes (in Fig. 17(a),18(a), and 19(a)). However, the difference in the number of

link updates in the two schemes is significant as seen in Fig. 17(c),18(c), and 19(c).

In scenario 1, 2, and 3, the link utilizations are high before the burst traffic. If

the link utilization is high when the additional burst of traffic joins the link, the link

latency is likely to change and hence impact the path latency. However, if the link

utilization is low before the new burst of traffic joins the link, the path latency may

not be affected much. As a result, the traffic splitting ratio across available paths may

not change. The threshold based update scheme does not exchange the link latency

information in this case, so we can reduce the overhead. For simulation of this case,

all link capacities are 4 Mbps and the burst traffic is put on link (r1, r2) (we refer this

as scenario 4).

Under the low utilization scenario, the burst traffic does not make the path

latency gap higher than the error bound (in Fig. 20(a)). As a result, there is no

change to traffic splitting ratios across the paths. In this case, there are little or no

link updates in the theshold based scheme while the fixed interval update scheme

53

0 50 100 150 200 250 300 350 400 450 500
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

time(sec)

p
a

th
 l
a

te
n

c
y
 g

a
p

(s
e

c
)

fixed interval
threshold based
error bound

(a) Path latency gap

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

time(sec)

c
u

m
u

la
ti
v
e

 p
a

th
 l
a

te
n

c
y
 g

a
p

(s
e

c
)

fixed interval
threshold based

(b) Cumulative path la-
tency gap

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time(sec)

th
e

 n
u

m
b

e
r

o
f
lin

k
 u

p
d

a
te

s

fixed interval
threshold based

(c) Cumulative number of
link updates

Fig. 21. The path latency gap and the number of link updates for scenario 5

continues sending the same number of link updates as seen in Fig. 20(c).

To see the adoption for dynamic change of the traffic, the following simulations

are examined. The capacities of all links are set to 2Mbps. The burst traffic is on

link(r1, r2) between 50 sec and 450 sec, and the burst traffic is on link(r1, r3) between

100 sec and 400 sec. Node r1 can react these traffic changes with measuring the link

state. In addition, the burst traffic is on link(r2, r4) between 150 sec and 350 sec, and

the burst traffic is on link(r3, r4) between 200 sec and 300 sec. It can be tested how

both schemes react to the dynamic change of traffic (We refer this scenario 5).

Even in such dynamic situation of rapid fluctuations in traffic across different

links, threshold-based updates maintain the paths within the error bounds (As seen in

Fig. 21(a)). Fig. 21(b) shows that the cumulative path latency gap, that measures the

total cumulative difference in path quality across the simulation time, is slightly better

for threshold-based updates. It is again noted that the threshold-based propagation

requires far fewer updates to reach similar routing goals. The number of link updates

in the threshold based update scheme is also much lower than the fixed interval update

scheme.

54

0 50 100 150 200 250
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

time(sec)

p
a
th

 l
a
te

n
c
y
 g

a
p
(s

e
c
)

fixed interval(T=2sec)
threshold based(T=2sec)
fixed interval(T=1sec)
threshold based(T=1sec)

(a) Burst traffic pe-
riod=100sec

0 50 100 150 200 250
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

time(sec)

p
a
th

 l
a
te

n
c
y
 g

a
p
(s

e
c
)

fixed interval(T=2sec)
threshold based(T=2sec)
fixed interval(T=1sec)
threshold based(T=1sec)

(b) Burst traffic pe-
riod=50sec

0 50 100 150 200 250
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

time(sec)

p
a
th

 l
a
te

n
c
y
 g

a
p
(s

e
c
)

fixed interval(T=2sec)
threshold based(T=2sec)
fixed interval(T=1sec)
threshold based(T=1sec)

(c) Burst traffic pe-
riod=20sec

Fig. 22. The path latency gap with the different T on the periodic burst traffic

4. Impact of the update interval

In this section, the impact of the update interval is tested with the different T :

T= 2 sec and T=1 sec. The more frequent updates are expected to lead to faster

convergence.

For the simulation, we put a periodic burst traffic from 50 second on link(r2, r4)

of the network (Fig. 13). The burst traffic is active in the first half of the burst traffic

period, and then the burst traffic is inactive in the second half of the burst traffic

period. We exame three burst traffic periods: 100, 50, and 20 seconds. If the burst

traffic period is long enough to make splitting ratio near to the optimal splitting ratio,

the path latency gap does not exceed the error bound in next burst traffic period.

This simulation is expected to test the speed of convergence.

Both update schemes with T=1 update the increased latency information faster

than those with T=2. As a result, both update schemes with T=1 achieve convergence

earlier than those with T=2 (in Fig. 22(a), 22(b), and 22(c)). Even worse, both

update schemes with T=2 do not converge at the end of the simulation if the burst

traffic period is 20 sec. The update scheme with T=1 outperform the update scheme

with T=2, but the problem is overhead of link updates. As seen in Fig. 23(a), 23(b),

55

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time(sec)

th
e
 n

u
m

b
e
r

o
f

lin
k
 u

p
d
a
te

s

fixed interval(T=2sec)
threshold based(T=2sec)
fixed interval(T=1sec)
threshold based(T=1sec)

(a) Burst traffic pe-
riod=100sec

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time(sec)

th
e
 n

u
m

b
e
r

o
f

lin
k
 u

p
d
a
te

s

fixed interval(T=2sec)
threshold based(T=2sec)
fixed interval(T=1sec)
threshold based(T=1sec)

(b) Burst traffic pe-
riod=50sec

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time(sec)

th
e
 n

u
m

b
e
r

o
f

lin
k
 u

p
d
a
te

s

fixed interval(T=2sec)
threshold based(T=2sec)
fixed interval(T=1sec)
threshold based(T=1sec)

(c) Burst traffic pe-
riod=20sec

Fig. 23. The number of link updates with different T on the periodic burst traffic

and 23(c), the number of link updates in the update schemes with T=1 is twice of

that in the update schemes with T=2. However, the threshold based update scheme

with T=1 has lower overhead than that with the fixed interval update scheme with

T=2.

D. Related work

Dynamic routing has received much attention. Early ARPAnet considered link delays

as a cost metric and the resulting oscillations prompted the use of other metrics based

on capacity.

In most networks, the link costs are now determined based on traffic engineering

considerations [6, 49].

Simultaneous traffic engineering and routing table computation is considered in

DEFT [34]. DEFT splits a flow’s traffic across multiple paths based on an exponential

function of the path delay differences, preferring smaller delay paths.

Recently, intelligent route control devices have been employed to route traffic

efficiently when stub networks are multi-homed [21]. These devices measure path

delays through Internet and utilize this information in making decisions on which of

the available network connections will be utilized for routing traffic. Oscillations and

56

convergence issues are considered [50, 51]. In such systems, path delay information

is obtained at the end stub network, through passive or active measurements and

individual network link state is not propagated by the network elements.

Dynamic routing has been studied widely. Dynamic routing is proposed recently

for wireless networks [24], and for dynamic traffic engineering in wired networks [9]

and for multi-path adaptive routing [52]. These approaches utilize network delays for

making routing decisions. These approaches rely on network elements propagating

the dynamic link state information around the network and hence can directly benefit

from this work reported here.

The problem of reducing link state updates have been studied previously in

[53, 54] for QOS routing and shortest-path routing. Our threshold based update

scheme combines both fixed and relative error thresholds in order to be more widely

applicable and we formally prove the impact of the proposed scheme on stability of

the routing paths along with bounding the expected errors.

The work [20] considered triggered updates of available bandwidth for QOS rout-

ing. The updates are triggered based on inverse of the available bandwidth at a link.

It was shown that the triggered updates can be effective for QOS routing. Available

link bandwidth is a dynamic link metric, as it fluctuates with call admission and

departure in QOS routing. Our work is similar to this earlier work, but focuses on

utilizing link delays as the dynamic link metric in Wardrop routing, and rigorously

examines the effect of the triggered update rate on algorithm performance.

While the focus in [53] and [20] is on simulation study, we additionally analyti-

cally bound the errors in link delays and study the impact on the performance of the

routing algorithm in reaching approximate Wardrop equilibrium. In [20], no generally

applicable answer to the question of ”how big a change in the link metric is signif-

icant?” is determined. In this work, we present a method to set the threshold and

57

thus the rate of triggered updates based on the deviation from the exact equilibria

that is tolerable as well as the acceptable rate at which the algorithm converges.

Delay and convergence analysis of Wardrop routing with regular update of link

state information is studied in [47,55]. Our analysis here shows that threshold-based

updates can reach convergence (within error bounds instead of exact equalization of

delays) with less restrictive assumptions. Note that, in [55], the link latency function

is assumed to have a bounded slope. This condition is satisfied, for example, when the

growth of the latency function is polynomially bounded. Both the interval at which

the regular link updates must be sent as well as the speed of convergence depend on

the upper bound of the rate at which link latency can grow. Thus, the periodic update

policy will have to be reconfigured for different networks with different link latency

characteristics and also when networks expand by adding new links. The threshold

based update policy proposed in this paper will adaptively vary the rate of updates,

implicitly taking into account changes in the rate of growth of the latency function

both as the regime of operation (low or high load) as well as the network topology

vary. Also, since link latency also includes queueing latency, the rate of growth of

link latency in many practical systems cannot be bounded by polynomial functions.

Consider for example, even a simple M/M/1 queueing model to see that this is true.

The convergence and indeed even the speed of convergence of the threshold based

policy does not depend on the characteristics of the latency function, enabling its use

in various practical systems with queueing delay at the links. Thus, the threshold

based policy will adaptively vary the rate of updates and converge to the approximate

Wardrop equilibrium without requiring configuration based on knowledge of the link

latency growth rates and can be used even in systems with link delays that can grow

at unbounded rates depending on the load on the link.

REPLEX [9] proposed Wardrop routing for dynamic traffic engineering purposes.

58

Our work is motivated by this and other earlier work on Wardrop routing. REPLEX

utilized periodic updates of state and used the most recent observed state in mak-

ing routing decisions. Our work used REPLEX for comparing the threshold-based

updates to the fixed interval updates. Our results are equally applicable whether

Wardrop equilibrium is used for routing or for traffic engineering purposes among the

paths made available by the underlying routing algorithm.

This work here focused on reaching approximate equilibrium in Wardrop routing

(a form of multi-path routing). However, the results can be generalized for other

routing algorithms.

This work does not attempt to exactly equalize the delays across different paths.

However, this loss in exact equilibrium is well compensated by the observed reduction

in update traffic of the link state information.

59

CHAPTER IV

REDUCING ENERGY CONSUMPTION USING MULTIPATH ROUTING I -

TRAFFIC ENGINEERING APPROACH

In this chapter, the techniques of energy saving in the networks by reducing the

number of active network elements. A new topology control based on Steiner tree

approach and a multipath routing based bin-packing approach are proposed. The

topology control takes an approach of building an appropriately provisioned network

to meet the demands of all the terminal nodes. This is in contrast with existing

approaches where nodes and links are removed from the given network. Also, the

effectiveness of employing multi-path routing is studied to reduce energy consumption.

While multi-path routing allows more possibilities for routing the traffic demands, if

longer alternate paths are employed, the power consumption can actually increase.

We propose an effective multi-path routing strategy for reducing energy consumption.

The topology control reduces the number of iterations for finding a suitable topology.

In addition, multipath routing with the topology control reduces the number of active

nodes further, and achieves more energy savings.

A. Problem formulation

To minimize energy consumption, an optimization problem considering the network

topology and the traffic demand is solved. An optimal solution minimizes the number

of nodes and links, while all traffic demands are delivered with maximally utilized link

capacities.

G(V,E) represents the network as a directed graph that consists of a set V of

nodes and a set E of links, where each link (i, j) ∈ E between two nodes i, j ∈ V

has a capacity c(i, j). The total number of nodes is N = |V |, and the total number

60

of links is L = |E|. Let tsd be traffic demand: the amount of traffic going from node

s = 1, ..., N to node d = 1, ..., N .

Let xij ∈ [0, 1], i = 1, ..., N, j = 1, ..., N be binary variable being the value of 1 if

link (i, j) is present and powered on, and the value of 0 if link (i, j) is not present or

powered off. Similarly, let yi ∈ [0, 1], i = 1, ..., N be binary variables of router power

status.

Let f sdij ∈ [0, tsd] denote the amount of flow from s to d routed through link (i, j).

Similarly, let fij be the total traffic flowing on the link (i, j).

Let PL and PN be the power consumption of link and node, respectively. Here,

it is assumed the power consumption of link and node is constant, because turning on

network components consumes most of power, and today’s network components are

not energy proportional. While focusing on a constant power budget for a powered-on

link here, it is straightforward to modify this analysis to account for higher power

consumption at higher link utilization.

Given the previous definitions, the problem is formulated as follows.

Minimize

PN

N∑
i=1

yi + PL

N∑
i=1

N∑
j=1

xij (4.1)

Subject to:

N∑
j=1

f sdij −
N∑
j=1

f sdji =


tsd, ∀s, d, i = s

−tsd, ∀s, d, i = d

0, ∀s, d, i 6= s, d

(4.2)

fij =
N∑
s=1

N∑
d=1

f sdij ∀i, j (4.3)

fij ≤ cijxijxji ∀i, j (4.4)

61

N∑
j=1

xij +
N∑
j=1

xji ≤Myi ∀i (4.5)

Constraint 4.3 is the flow conservation constraints. Eq. 4.4 constraints the total

load on a link to be less than the link capacity with power state of bi-directional

links. Constraint 4.5 states that a node can be turned off only if bi-directional links

are powered off. The big-M method is used to force this constraint, M = 2N [28].

This problem is a multi-commodity minimum cost flow problem known as NP-

hard [56]. In addition, PN and PL vary widely depending on the devices, but generally

PN is much higher than PL [57]. So, the assumption is PL << PN . In this case, this

problem aims to switch off the largest possible number of network nodes first and

then switches off as many links as possible.

B. Overview of topology control and multipath routing

The proposed scheme relies on the intuition that the energy saving achieved by pow-

ering off nodes is higher than by powering off single links, and powering off a node is

more difficult than powering off a single link.

For powering off nodes, a network is constructed such that it has the connectivity

between the terminal nodes with a minimum number of nodes. If the capacity of the

constructed network is not enough to carry the traffic demand, nodes are added until

the capacity meets the traffic demand. Different from the schemes in [28] which

visits all nodes and tries to delete a node iteratively, the proposed scheme has less

complexity of finding a subset of nodes with connectivity than the complexity of the

feasibility test, and reduces the number of iterations of deleting nodes and feasibility

testing. The detail of this topology control in section C. The required topology can

be constructed either with single path routing or multi-path routing. In single path

62

routing, the traffic from an origin takes the shortest path to the destination and all

the traffic between that od-pair takes the same path. Multi-path routing allows the

traffic between an od-pair to be split up and sent along multiple paths. It allows

more possibilities for consolidating the traffic onto fewer nodes and links and hence

the constructed topology depends on the choice of the routing algorithm.

i j

s1 d1

p1

p2

i j

sM dM

pM-1

pM

Fig. 24. Example of comparing energy saving between single path and multipath

Multipath routing has the potential for multipath routing to aid in energy sav-

ings. When the topology control checks whether the capacity of a subset of network

elements is enough to carry traffic demand, multipath routing may need smaller

number of network elements than single shortest path routing. The following exam-

ple shows that multipath routing can power-off more nodes and links on the topology

of Fig. 24. The given topology has M od-pairs (s1 − d1,s2 − d2,...,sM − dM). Each

od-pair has M available paths (p1,p2,...,pM), and the capacity of each path between i

and j is 1 (Cij(pk) = 1, k = 1, 2, ...M , where Csd(p) is the minimum link capacity on

the path p from s to d). Suppose the traffic demand of each od-pair is x ∈ [0, 1]. Any

path can deliver
⌊

1
x

⌋
od-pairs , if od-pairs use a single path, and do not allow traffic

63

split. So, the minimum number of path for M od-pair is

⌈
M

b 1
xc

⌉
with single path

routing. However, if od-pairs use multiple paths and allow traffic split, the minimum

number of paths for M od-pair is dMxe. The number of path used for delivering

traffic can be reduced as

⌈
M

b 1
xc

⌉
-dMxe by using spliting traffic on multiple paths. In

case of x > 0.5, a single path without traffic split uses M path, but multipath routing

with split can potentially limit the number of paths to dMxe. This motivation is to

study multipath routing’s impact on energy savings. We describe the detail of this

topology control in section D.

C. Topology control

Algorithm 2 Topology control
Input: A graph G = (V,E, w) and a terminal set VT ∈ V Output: T

{Switching off nodes}
T=MST-Steiner(G, VT)
nodeArray = sortNodes(V − T ,routingDensity or btwCentrality)
i← 0
paths = compute K-shortest path with extra two hops
compute all link flow(paths)
while checkFlow(paths) = FALSE do

i + +
T ← T∪ nodeArray(i)
paths = compute K-shortest path with extra two hops
compute all link flow(paths)

end while
{Switching off links}
linkArray=sortLink(E,routingDensity)
for all j ∈ linkArray do

disableLink(linkArray(j))
paths = compute K-shortest path with extra two hops
compute all link flow(paths)
if checkPath(paths)=FALSE ‖ checkFlow(paths) = FALSE then

enableLink(linkArray(j))
end if

end for

Output: T

64

Topology control is described in Algorithm 2. Since turning off a node can achieve

more energy saving than turning off a link, we turn off nodes first, and then turn off

links.

Turning off nodes begins with finding a small number of nodes that can provide

connectivity to all the terminal nodes. Finding the minimum number of nodes with

connectivity is NP-hard [58]. A heuristic based on the construction of a Steiner tree

is proposed. The original Steiner tree problem is to minimize the total link weight

with connectivity among the terminal nodes. To change this problem to the problem

of minimizing the number of nodes, we need the modified minimal spanning tree

approximation of [58].

The proposed topology control realizes that traffic routing between od pairs

depends on a number of factors such as the number of paths between the od pairs,

their path length and how many od pairs may share a link or node etc. In order

to account for these factors, a virtual topology of NT is constructed, which connects

a terminal node pair with a single link with a weight which is a function of these

different factors

(δN(s) + δN(d))(max(i,j)∈od−pairsdist(i, j)
|PATH(s,d)|)

dist(s, d)2
, (4.6)

where s is a source node, d is a destination node. We denote δN(i) as degree of node

i, |PATH(s, d)| as the number of equal cost paths from s to d, and dist(s, d) as

the shortest path length from s to d. The rationale of Eq. 4.6 is the following. The

nodes on the shortest path of od-pair which has a small number of multiple equal cost

paths should be powered on first, because path length of such an od-pair increases

significantly after removing nodes on its shortest path. Similarly, the nodes on the

shortest path whose path length is high should be powered on first in order to reduce

increment of path length of entire od-pairs and to reduce the number of iterations of

65

the construction of spanning tree. The degree of node is used for tie break. Then

a spanning tree is computed with smallest edge weights on the virtual topology, in

which each edge corresponds to one shortest path on the original graph. Finally, the

spanning tree is transformed back to a Steiner tree by replacing each edge with the

shortest path and some straightforward postprocessing to remove any possible cycle.

The pseudocode is presented in Algorithm 3.

Algorithm 3 MST-Steiner
Input: A graph G = (V,E) and a terminal set VT ∈ V
Output: A Steiner tree T

Construct the virtual topology GVT
on the terminal set VT

Find an MST TVT
on GL with weight of Eq. 4.6

T ← 0
for all e = (u, v) ∈ E(TVT

) do
Find a shortest path P from u to v on G
if P contains less than two vertices in T then

Add P to T
else

Let pi and pj be the first and the last vertices already in T
Add subpaths from u to pi and from pj to v to T

end if
end for

Output: T

After finding the minimum number of nodes with connectivity, traffic demand

flowing through the network element is routed by the proper routing scheme. (This

routing scheme is introduced in section VI.) When the traffic is assigned, traffic de-

mand constraints (Eq. 4.3) and the link utilization constraints (Eq. 4.5) are checked.

If no violation is present, then we move to switching off links. If a violation occurs,

we add nodes by the following sorted order.

The node set is sorted by the following criteria: (1) routing density, which is the

sum of routing density of links, Xi =
N∑
j=1

xijRD(i, j) +
N∑
j=1

xjiRD(j, i), where RD(i, j)

66

is the routing density of link(i, j) in chapter II. Routing density of a link is a count of

how many times a link is incident on the shortest path between different od pairs. (2)

betweenness centrality [59], which is the number of shortest paths of all possible od-

pairs that pass through a node, Yi = yiBCi =
∑

s 6=i 6=d
σsd(i)
σsd

, where σsd is total number

of shortest paths from node s to d, and σsd(i) is the number of those paths that pass

through node i. Nodes with large value of criteria are checked first, i.e., V is sorted in

decreasing value of routing density or betweenness centrality. We use the criteria of

routing density as a default and compare with the criteria of betweenness centrality in

section 2 and 3. The complexity of computing routing density and the complexity of

between centrality is dominated by the complexity of the length and the number of all

shortest paths. Consequently, the complexity of routing density and the complexity

of between centrality is O(|V ||E|+ |V |2log|V |) [60].

Adding extra nodes to the topology is repeated until traffic can be routed with no

violations of constraints stated earlier. It is expected that adding nodes with higher

aggregate link capacity will lead to adding larger amount of capacity to the network

and thus requiring fewer nodes and hence lead to larger energy savings.

After finding the minimum number of nodes, the minimum number of links on

the subset of network elements is computed. The link set is sorted by amount of flow

on the link. Links with a smaller amount of flow on the link are checked first, i.e.,

E is sorted in increasing value of Fij = fij + fji. Switching off the cable (i, j) affects

link(i, j) and link(j, i),in both directions and it is expected that links with smaller

amount of traffic can be switched off and the traffic on this link can be routed to

other links in the reduced topology (without this cable). If switching off a link does

not cause violate connectivity, traffic demand and link utilization constraints, the link

is switched off. The algorithm progresses turning off as many links as possible and

terminates when all e ∈ E is visited.

67

Here, the complexity of the proposed topology control is compared to the com-

plexity of the topology control in [28]. Both topology controls use a similar scheme

for switching off links, only the complexity of switching off nodes is compared here. In

the proposed topology control, the complexity of the Steiner tree graph with the min-

imum number of nodes is O(|V ||E|(log|V |)(log|E|)). The complexity of sorting the

removed nodes and finding K-shortest paths is O((|V | − |Vm|)|V |(|E|+ |V |2log|V |)),

where |Vm| is the number of the active nodes on topology with the minimum number

of nodes. The latter one is greater than the former. The complexity of the pro-

posed topology control is the complexity of sorting the removed nodes and finding

K-shortest paths times the complexity of the feasibility test to ensure traffic can be

routed.

With single shortest path routing, the complexity of feasibility testing does not

change based on the topology control algorithm. It means the complexity comparison

between two topology controls is dependent on the number of iterations of feasibility

test. The iteration number of the proposed topology control is O(|V | − |Vm|), com-

pared to earlier scheme of |V |. We can say the proposed topology control is slightly

less complex than the topology control in [28].

The complexity of feasible test with multipath routing becomes as K times as

the complexity of feasible test with single shortest path routing. The complexity

comparison between the proposed topology control and the topology control in [28]

is conditional to network topology.

D. Multipath routing

In this section, the approach to assign the traffic demands of an od-pair among

the multiple paths allowed by the multi-path routing algorithm is presented. It is

68

noted that the proposed approach does not constrain the choice of multi-path routing

algorithms. Among the many choices available to route the traffic between an od-pair,

the algorithm allocates the traffic or fractions of that traffic to different paths with a

view to minimizing the number of nodes and links in the network.

This problem of assigning the traffic demand to multiple paths can be seen as

a modified bin-packing problem, where available paths or the bins and the traffic

demand is the object to be packed. In order to assign the traffic demand to a path,

we look at the minimum residual capacity of all the links on that path and employ it

as the bin capacity for that path. In single path routing, the traffic demand between

an od-pair cannot be split and hence has to be assigned as a whole to one of the

paths. In single shortest path routing, the traffic demand is sent along the shortest

path. In multi-path routing, the traffic demand can be split and allocated to the

available paths. The choice of paths and the choices of splitting the traffic demand

can determine the performance. Two bin packing algorithms are proposed in order

to assign the traffic demand of an od-pair to multiple paths.

Multipath routing is ‘compute all link flows’ in Algorithm 2. Link flows are

computed by multipath routing done through bin packing in order to minimize the

number of nodes and links in topology control. This section introduces two bin

packing algorithms and explains how to use these bin packing algorithms for multipath

routing. At any given time, the choice of available paths for an od-pair constrain the

choices of bins. All available paths are considered as bins, and divided into these

bins into several set of ‘closed bin set’ which satisfies a certain condition, i.e. path

length. If the traffic demand cannot be met by the capacity of all the bins, it would

be needed to add nodes/links to the topology to increase capacity. The intent of the

algorithms below is to assign traffic demands to minimize the number of needed bins.

69

1. Bin packing algorithms

• Closed first fit (Algorithm 4): Closed first fit is first fit algorithm within

the closed bin set (a subset of all the bins which satisfy some conditions). For

each item, it attempts to place the item from the first bin to the last bin among

the closed bin set that can accommodate the item. If there are no bins to

accommodate the item in the closed bin set, closed first fit returns failure.

• Closed next fit with fragmentation (Algorithm 5): Closed next fit with

fragmentation is next fit with fragmentation algorithm within the closed bin

set. In each stage, there is only one open bin. The items are packed, according

to their order in the list, into the open bin. When an item does not fit in the

open bin, it is fragmented into two parts. The first part fills the open bin and

the bin is closed. The second part is packed into a new bin which becomes the

open bin. If there are no more bins to open in the closed bin set, and a fragment

remains, closed next fit with fragmentation returns failure.

A B

B

A

A

A

B

BINSET0 BINSET1

bin00 bin01 bin10 bin11

A

A A A

A

A

(a) Closed first fit

A

C

C

B

B

C

A

A

A

B

BINSET0

C

BINSET1

bin00 bin01 bin10 bin11

A

A A A

A

A

(b) Closed next fit with fragmenta-
tion

Fig. 25. Example of the proposed bin pack algorithms

70

Algorithm 4 closedFirstFit(PATH, TD, linkUsage)

i← 0
TD′ ← TD
while i < N(PATH) & TD′ > 0 do

minCapa = min(i,j)∈PATH(i)c(i, j)− linkUsage(i, j)
if minCapa ≥ TD then

for all (j, k) ∈ PATH(i) do
linkUsage(j, k)← linkUsage(j, k) + TD

end for
TD′ ← 0

end if
i + +

end while

Output: TD′, linkUsage

Algorithm 5 closedNextFitFrag(PATH, TD, linkUsage)

i← 0
TD′ ← TD
while i < N(PATH) & TD′ > 0 do

minCapa = min(i,j)∈PATH(i)c(i, j)− linkUsage(i, j)
if minCapa ≥ 0 then

for all (j, k) ∈ PATH do
linkUsage(j, k)← linkUsage(j, k) + minCapa

end for
TD′ ← TD′ −minCapa

end if
i + +

end while

Output: TD′, linkUsage

71

Examples are shown in Figure 25(a) and 25(b). ‘A’ items are packed inBINSET0

and BINSET1. When allocating three ’B’ items, we try closed first fit in BINSET0.

bin00 is not enough to allocate three ‘B’ items, we move to bin01. bin01 has enough

capacity, we allocate three ‘B’ items on bin01. Next, we try to allocate four ‘C’

items in BINSET0. bin00 and bin01 do not have enough capacity for closed first

fit. However, closed next fit with fragmentation can allocate three ‘C’ items in bin00

and bin01. We still have a ‘C’ item. Then we move to BINSET1 and allocate it in

bin11.

2. Multipath routing based on bin packing algorithms

In order to assign all the traffic demand on a small number of nodes and links,

multipath routing is proposed for energy saving with the bin packing algorithms.

First, the order of od-pairs is sorted. Before sorting, each od-pair computes

multiple paths whose path length is from the length of the shortest path to the

length of the shortest path plus two extra hops. If the number of possible paths is

larger than K, available paths are restricted to K-shortest paths. To enhance usage

of multipath, the order of od-pairs is sorted by the number of paths. If there is

no room for assigning traffic on the shortest path, the proposed scheme can assign

traffic on an alternative (possibly longer) path. However, some od-pairs have small

number of paths. In order to increase the possibility of finding alternate paths, od-

pairs with smaller number of paths is first considered. As traffic gets assigned to

available links, the number of possible paths with sufficient capacity to route a given

od-pair decrease. Hence having a larger number of choices for later assigned od-pairs

is expected to increase the chances of success of assigning the traffic demand to a

smaller number of links and nodes.

Similarly od-pairs that have smaller paths lengths and smaller traffic demands

72

are expected to be easier to route. Based on this rationale, these sorting criterions

are tested. The number of paths is the most critical, so od-pairs are sorted by the

number of paths first. The result from the sorting order by path length first shows

assigning more traffic on the same topology than the result from the sorting order

by volume of traffic demand first. As a result, the second sorting criterion is path

length, and the third is volume of traffic demand. In sum, the od-pairs are sorted by

the number of paths first, then by the path length and then by the volume of traffic

demand.

After sorting od-pairs, the traffic demand is assigned to multiple paths. To assign

the traffic demand of an od-pair, the multiple paths are sorted by path length, routing

density, and capacity. Routing density is defined as how many times a link on the path

is used as a next-hop of all possible od-pairs and it is expected to given an indication

of how critical or useful this link can be in routing various flows. If multiple paths

are options for the traffic of an od-pair, paths and the amount of traffic split on the

paths are chosen so that remaining network capacity of the links remains as high as

possible. It is expected that maximizing the remainder capacity makes it easier to

route later od-pairs. The preferred path is the path with low path length, and low

routing density and retains large residual capacity for other traffic demands. Multiple

paths are sorted by path length first, then by routing density, and then by residual

capacity.

PATH0(s, d) is the set of paths from s to d with the shortest path length.

PATH1(s, d) is the set of paths from s to d with an extra hop. PATH2(s, d) is the

set of paths from s to d with two extra hops. tsd is the traffic demand from s to d.

The path capacity is the minimum remaining link capacity on the path.

First, tsd is assigned on PATH0(s, d) by closed first fit. ts,d is assigned on the

first path of PATH0(s, d). If the capacity of the first path of PATH0(s, d) is not

73

Algorithm 6 Multipath routing for energy saving
Input: G,odpairArray,TD,PATH
Output: checkFlow

odpairSortedArray=sorting(odpairArray, [PATH, TD])
i← 0
overCapa← FALSE
for all (i, j) ∈ E do

u(i, j)← 0
end for
while i < N(odpairSortedArray)&overCapa = FALSE do

s = odpairSortedArray[i].src
d = odpairSortedArray[i].dst
(TD′, u)=closedFirstFit(PATH0(s, d), tsd, u)
if TD′ > 0 then

(TD′, u)=closedNextFitFrag(PATH0(s, d), TD′, u)
end if
if TD′ > 0 then

(TD′, u)=closedFirstFit(PATH1(s, d), TD′, u)
end if
if TD′ > 0 then

(TD′, u)=closedNextFitFrag(PATH1(s, d), TD′, u)
end if
if TD′ > 0 then

(TD′, u)=closedFirstFit(PATH2(s, d), TD′, u)
end if
if TD′ > 0 then

(TD′, u)=closedNextFitFrag(PATH2(s, d), TD′, u)
end if
if TD′ > 0 then

overCapa← TRUE
end if

end while

74

enough to assign tsd, next trial is to assign tsd on the next path of PATH0(s, d).

If closed first fit fails, tsd is assigned by closed next fit with fragmentation. For de-

tail, tsd is first assigned on the first path of PATH0(s, d). If the capacity of the

first path of PATH0(s, d) is not enough to assign tsd, tsd is fragmented into the

capacity of the first path of PATH0(s, d) and the rest of tsd. Then the first frag-

mentation is assigned to the first path of PATH0(s, d). These steps are repeated

util tsd is assigned to PATH0(s, d) or closed next fit with fragmentation. If it

fails, we move to PATH1(s, d) with tsd’ which is the rest of tsd after assigning to

PATH0(s, d). Closed first fit and closed next fit with fragmentation are repeated

in PATH1(s, d). If PATH1(s, d) fails, closed first fit and closed next fit with frag-

mentation in PATH2(s, d) are repeated. The pseudo code is presented in Algorithm

6.

E. Simulation

To evaluate the effect of the proposed techniques, various scenarios are examined

on several n-by-n grid topologies (4-by4 grid topology has 16 core nodes, 16 edge

nodes, and 64 links. 5-by-5 grid topology has 25 core nodes, 20 edge nodes, and 92

links. 6-by-6 grid topology has 36 core nodes, 24 edge nodes, and 124 links.) and

a random topology. It begins with a simple scenario where all link capacities are

identical and the traffic demands of all od-pairs are one in sections 1 and 2. The

scenario where the link capacities are different and traffic demands of all od-pairs are

also randomly generated with a mean value of one is considered in sections 2 and 3.

These scenarios are examined with different utilizations in the network. Link capacity

is calculated corresponding to the desired average network utilization. The set of od-

pairs is all the possible combinations of nodes in the highest tier (i.e., edge nodes on

75

Table II. Power consumption of various energy models in watts

EM1 EM2 EM3

PN 151 133 76

PL 11 10.5 6.5

grid topologies and aggregation nodes on a random topology). The proposed topology

control with shortest path routing is denoted by ST-S. The proposed topology control

with multipath routing is denoted by ST-M. In each scenario, the number of active

nodes (NR) and links (LR) are measured, then the ratio of active nodes to total

number of node (NR/N) and the ratio of active links to total number of link (LR/L)

are calculated. Also, the energy consumption is measured on the topology (ER) based

on three different energy consumption models of nodes and links, shown in TABLE

II [65].

Then energy saving is computed as

1− ER
E

= 1−

∑
(i,j)∈E

xijP
x
L +

∑
i∈V

yiP
x
N

LP x
L +NP x

N

, (4.7)

where x is the energy model index.

The average path length and the average link utilization after removing nodes

and links for saving energy is also measured. These metrics give an idea of the cost

of the energy savings. Higher path lengths and higher link utilizations can lead to

longer delays for delivering traffic.

1. Comparison between optimum solution and the heuristics

In this section, we evaluate the performance of ST-S and ST-M and compare the

results to the optimal solution. We use CPLEX to find the optimal solution. The

optimal solution is denoted as ‘CPLEX’. The results of ST-S and ST-M are from the

76

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
n

e
rg

y
 s

a
v

in
g

ST-S ST-M CPLEX

0

0.05

0.1

Network Utilization (Energy Model)

(a) Energy saving on a 4-
by-4 grid topology

4.4

4.6

4.8

5

5.2

A
v

e
ra

g
e

 p
a

th
 l

e
n

g
th

ST-S ST-M CPLEX

3.8

4

4.2

0.2 0.33

A
v

e
ra

g
e

 p
a

th
 l

e
n

g
th

Network Utilization

(b) Average path length on
a 4-by-4 grid topology

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v

e
ra

g
e

 l
in

k
 u

ti
li

za
ti

o
n

ST-S ST-M CPLEX

0

0.1

0.2

0.3

0.4

0.2 0.33

A
v

e
ra

g
e

 l
in

k
 u

ti
li

za
ti

o
n

Network Utilization

(c) Average link utilization
on a 4-by-4 grid topology

Fig. 26. Comparison between optimum solution and the hueristics

simulation. A 4-by-4 grid topology is used for this comparison.

Fig. 26 and TABLE III show simulation results with traffic load on the original

topology with 0.2 and 0.33 average network utilization.

The energy saving of ST-S is the same as the energy saving of CPLEX at 0.2

average network utilization, because NR/N and LR/L of both schemes are the same.

Even though ST-S has the same energy saving as CPLEX, ST-S has higher path

length and higher link utilization than CPLEX. The higher path length and link

utilization are the result of different selection of active nodes and links between ST-S

and CPLEX. However, the energy saving of ST-S is worse than the energy saving of

CPLEX at 0.33 average network utilization, because NR/N and LR/L of ST-S are

higher than those of CPLEX. ST-S could be expected less path length and less link

utilization than CPLEX, because ST-S has more nodes and links than CPLEX. The

link utilization of ST-S is less than the link utilization of CPLEX, but the path length

of ST-S is higher than the path length of CPLEX. ST-S’s higher path length is caused

by the selection of different active nodes and links. In this simulation, ST-S has less

energy saving than CPLEX (at 0.33 utilization), or ST-S has the same energy saving

as CPLEX with higher path length and higher utilization (at 0.2 utilization).

At 0.2 average link utilization, ST-M has the same energy saving, path length,

77

Table III. NR/N and LR/L of ST-S, ST-M, and CPLEX on a 4-by-4 topology

Network ST-S ST-M CPLEX

utilization

0.2 NR/N 0.75 0.75 0.75

LR/L 0.48 0.48 0.48

0.3 NR/N 0.94 0.81 0.81

LR/L 0.53 0.52 0.52

and link utilization as ST-S, because both schemes have the same topology, and ST-

M uses only shortest paths with enough capacities to sustain shortest path routing.

ST-M improves energy saving at 0.33 average network utilization. The energy saving

of ST-M is the same as CPLEX. However, ST-M shows higher path length and higher

link utilization than CPLEX. In this simulation, ST-M improves energy saving and

reaches the same energy saving of CPLEX when ST-S has lower energy saving than

CPLEX. However, the different selection of active nodes and links between ST-M and

CPLEX makes ST-M have higher path length and higher link utilization.

The simulation results of CPLEX is shown only on a 4-by-4 topology, because

CPLEX is hard to compute. For these experiments, CPLEX took 10 hours. For

larger topologies, the running time of CPLEX may exceed the dynamics of timescales

of traffic fluctuations and hence it is not practical.

2. Simulation on grid topologies

In this section, the performance of ST-S and ST-M are evaluated in other grid topolo-

gies with more nodes and links. A 5-by-5 topology and a 6-by-6 topology are used in

this section. First, link capacities and traffic demands of od-pairs are identical.

The results of both schemes are shown in Fig. 27(a) and 27(d). ST-M improves

78

0.2

0.25

0.3

0.35

0.4

E
n

e
rg

y
 s

a
v

in
g

ST-S

ST-M

0

0.05

0.1

0.15

0.2 (EM1) 0.2(EM2) 0.2(EM3) 0.3(EM1) 0.3(EM2) 0.3(EM3)

E
n

e
rg

y
 s

a
v

in
g

Network utilization (Energy Model)

(a) Energy saving on a 5-by-
5 grid topology (ST-S and
ST-M)

0.1

0.15

0.2

0.25

E
n

e
rg

y
 s

a
v

in
g

ST-S ST-M ST-M(LL) ST-M(LL-chunk) ST-M(SPL)

0

0.05

0.1

0.3(EM1) 0.3(EM2) 0.3(EM3)

E
n

e
rg

y
 s

a
v

in
g

Network Utilization (Energy Model)

(b) Energy saving on a 5-by-
5 grid topology (ST-M(LL),
ST-M(LL-chunk), and ST-
M(SPL))

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v

e
ra

g
e

 l
in

k
 u

ti
li

za
ti

o
n

ST-S ST-M ST-M(LL) ST-M(LL-chunk) ST-M(SPL)

0

0.1

0.2

0.3

0.4

0.3

A
v

e
ra

g
e

 l
in

k
 u

ti
li

za
ti

o
n

Network Utilization

(c) Average link utilization
on a 5-by-5 grid topology

0.3

0.4

0.5

0.6

E
n

e
rg

y
 s

a
v

in
g

ST-S

ST-M

0

0.1

0.2

0.2 (EM1) 0.2(EM2) 0.2(EM3) 0.3(EM1) 0.3(EM2) 0.3(EM3)

E
n

e
rg

y
 s

a
v

in
g

Network Utilization (Energy Model)

(d) Energy saving on a 6-by-
6 grid topology (ST-S and
ST-M)

0.15

0.2

0.25

0.3

0.35

E
n

e
rg

y
 s

a
v

in
g

ST-S ST-M ST-M(LL) ST-M(LL-chunk) ST-M(SPL)

0

0.05

0.1

0.15

0.3(EM1) 0.3(EM2) 0.3(EM3)

E
n

e
rg

y
 s

a
v

in
g

Network Utilization (Energy Model)

(e) Energy saving on a 6-by-
6 grid topology (ST-M(LL),
ST-M(LL-chunk), and ST-
M(SPL))

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v

e
ra

g
e

 l
in

k
 u

ti
li

za
ti

o
n

ST-S ST-M ST-M(LL) ST-M(LL-chunk) ST-M(SPL)

0

0.1

0.2

0.3

0.4

0.3

A
v

e
ra

g
e

 l
in

k
 u

ti
li

za
ti

o
n

Network Utilization

(f) Average link utilization
on a 6-by-6 grid topology

Fig. 27. Comparison between ST-S, ST-M, ST-M(LL), ST-M(LL-chunk), and

ST-M(SPL) with identical traffic demand and link capacity on grid topologies

79

energy savings by 4% to 6% on a 5-by-5 topology and from 5% to 14% on a 6-by-6

topology, compared to ST-S. (The percentages are relative to the network without any

energy controls, and relative to the energy consumed in ST-S, the improvements are

higher). These results show that multipath routing contributed to improved energy

savings in these scenarios. ST-M achieves higher energy savings by employing fewer

nodes and links in the network than ST-S, as seen by the NR and LR numbers, while

meeting the traffic demands of all the od-pairs.

Three more schemes to enhance multipath routing are considered. For ST-

M(LL), the utilization of the K-shortest paths is measured, and then the traffic to

the path that shows the minimum utilization is assigned. To enhance ST-M(LL),

the traffic of od-pair is divided into chunks, and then is assigned chunk traffic to the

path that shows minimum utilization (This scheme is called as ST-M(LL-chunk)).

In this simulation, the traffic demand of an od-pair is divied into 10 chunks, and

then each chunk of traffic is assigned to the path that has the minimum utilization

among the K-shortest paths. For ST-M(SPL), the traffic based on path utilization

and path length is split. Splitting ratio is set proportional to the path utilization

multiplied by exponential penalty for extra hops on the alternate paths [34].

If the traffic demand cannot be assigned by the ST-M(LL) and ST-M(SPL), the

remaining traffic is assigned by ST-M.

ST-M(LL), ST-M(LL-chunk), and ST-M(SPL) are evaluated with 0.3 average

network utilization on a 5-by-5 grid topology and a 6-by-6 grid topology.

Fig. 27(b) and 27(e) show the results of ST-M(LL), ST-LL(LL-chunk), and

ST-LL(SPL) along with ST-S and ST-M.

The energy saving of ST-M(LL) is 4-5% better than that of ST-M. These energy

saving comes from the employment of smaller number of nodes and links, as seen by

NR/N shown in TABLE IV.

80

Table IV. NR/N of ST-M, ST-M(LL), ST-M(LL-chunk), and ST-M(SPL) on a 5-by-5

and a 6-by-6 topologies

Topology Network ST-M ST-M(LL) ST-M(LL- ST-M(SPL)

utilization chunk)

5by5 0.3 0.84 0.80 0.80 0.80

6by6 0.3 0.73 0.69 0.69 0.69

There is no difference in energy savings among ST-M(LL),ST-M(LL-chunk), and

ST-M(SPL). The difference among ST-M(LL), ST-M(LL-chunk), and ST-M(SPL) is

observed in the average link utilization shown in Fig. 27(c) and 27(f). ST-M(SPL)

uses more alternative paths than ST-M(LL) and ST-M(LL-chunk) and ST-M(LL-

chunk) uses more alternative paths than ST-M(LL). As a result, the average path

length of ST-M(SPL) is the highest, and that of ST-M(LL-chunk) is next, and that of

ST-M(LL) is the lowest. The link utilization follows the same order with ST-M(SPL)

being the highest, ST-M(LL-chunk) in the middle and ST-M(LL) being the lowest.

All of them have higher utilization than ST-M.

The complexities of ST-M, ST-M(LL), and ST-M(SPL) are the same as the

complexity of finding K-shortest paths. However, the complexity of ST-M(LL-chunk)

is higher than the complexity of ST-M by a factor of the chunk size.

The results in this section show that multipath routing improves energy savings.

It is possible to improve the energy savings further with proposed modifications to

choice of paths in multipath routing. However, these differences in path choices within

multipath routing may result in slightly higher path lengths.

Previously, the network links have identical capacities and each od-pair traffic

demand is the same even though od-pairs are chosen randomly. From now on, different

link capacities and traffic demands is considered, which represents a more realistic

81

0.20

0.25

0.30

0.35

0.40

0.45

0.50

E
n

e
rg

y
 s

a
v

in
g

LF-S ST-S ST-S(BTW) ST-M ST-M(BTW)

0.00

0.05

0.10

0.15

Network Utilization (Energy Model)

(a) Energy saving on a 5-by-5 grid
topology

0.20

0.30

0.40

0.50

0.60

E
n

e
rg

y
 s

a
v

in
g

LF-S ST-S ST-S(BTW) ST-M ST-M(BTW)

0.00

0.10

0.20

Network Utilization (Energy Model)

(b) Energy saving on a 6-by-6 grid
topology

Fig. 28. Comparison between ST-S and ST-M with different traffic demand and link

capacity on grid topologies

scenario. Link capacity is set proportional to the routing density of the primary paths

of od-pairs. Traffic demand is modeled to have pareto distribution whose mean is 1.

Fig. 28 shows that multipath routing (ST-M) can contribute to higher energy

savings than single path routing (ST-S). Multipath routing provides an improvement

of 0% to 11% on a 5-by-5 topology, and from 0% to 9% on a 6-by-6 topology (the

improvements are again measured relative to the base energy consumption and these

numbers would be higher relative to ST-S energy consumption). The higher energy

saving is a direct result of employing lower number of nodes and links in the network

to meet the same traffic demands.

We compare the proposed approaches ST-S and ST-M to earlier work in [28]. We

denote the earlier scheme as LF-S. LF-S tries to delete nodes and links from the entire

network topology, but the proposed topology control for nodes starts with a minimum

number of nodes and links, and then adds nodes until the topology can support traffic

demands. Our scheme has low complexity due to less number of iterations. Both LF-S

and ST-S uses single shortest path routing. On both topologies, energy saving of ST-

82

S is the same or slightly better than LF-S. On grid topologies, the proposed topology

control achieves more energy savings, when single path routing is used. Multipath

routing further improves the energy savings beyond what is achieved with better

topology control.

As mentioned in section D, betweenness centrality could be used for topology

control. We denote topology control that sorts adding nodes on minimum topology

by betweenness centraliy as ST-S(BTW) (single path routing) and ST-M(BTW) (mul-

tipath routing). On a 5-by-5 topology, energy saving of ST-S(BTW) is the same or

slightly worse than ST-S. Energy saving of ST-M(BTW) is the same or slightly worse

than ST-M. Using multipath routing shows more energy saving than using single path

routing. On a 6-by-6 topology, energy saving of ST-S(BTW) is slightly better than

ST-S. Energy saving of ST-M(BTW) is the same or slightly better than ST-M. Using

multipath routing shows more energy saving than using single path routing. On the

grid topology, routing density metric and betweenness centrality metrics provided

similar energy savings and did not differ significantly in finding efficient topologies

for energy.

Multipath routing achieves better energy savings at the cost of higher path length

and link utilization than ST-S. To reduce average link utilization with smaller incre-

ment of path length, different techniques for finding alternate paths are considered.

Od-pairs are sorted based on the path length differences between their shortest paths

and alternate paths. Preference is given to od-pairs with higher path length differ-

ences such that they can be mostly assigned to their shortest paths. This scheme is

called as ST-M(R).

Path length of the proposed schemes are shown in TABLE V. The numbers in

brackets present ST-M(R) fails to assign all the traffic on the topology, and requires

us to fall back to ST-M. On a 5-by-5 topology, ST-M(R) has the same average path

83

Table V. Average path length of the proposed schemes on a 5-by-5 topology

Network ST-S ST-M ST-M(R)

Utiliization

0.1 5.48 5.48 5.48

0.2 5.17 6.94 (6.94)

0.3 5.79 6.31 5.94

length as ST-M at 0.1 average network utilization. At lower network utilizations,

the traffic is not routed on alternate paths many times and hence we do not observe

much difference. ST-M(R) does not reduce the path length at 0.2 average network

utilization, because assigning traffic demand of the newly sorted od-pairs on the

topology does not have enough capacity. ST-M(R) reduces path length at 0.3 average

network utilization. Similar results are observed on a 6-by-6 topology. Even though

ST-M(R) reduces the path length, the reduction in path length is small as well as

ST-M(R) fails to route traffic in a few cases where ST-M succeeds. ST-M is a better

option.

3. Simulation on a random topology

In this section, randomly generated topologies [28] is considered. In particular,10 core

nodes, 30 edge nodes, and 120 aggregation nodes are considered. Nodes are assumed

to be placed on a plane. Core nodes are randomly connected to other core nodes

with a probability p = 0.5. Each edge node is then connected to the two closest core

nodes and to another randomly selected edge node. Finally, aggregation nodes are

connected to the two closest edge nodes. Only aggregation nodes are traffic sources

and sinks, and the traffic volume is uniformly distributed from 0.5 to 1.5.

Fig. 29 and Fig. 30 show simulation results of LF-S, ST-S, ST-S(BTW), ST-M,

84

0.20

0.30

0.40

0.50

0.60

E
m

e
rg

y
 s

a
v

in
g

LF-S ST-S ST-S(BTW) ST-M ST-M(BTW)

0.00

0.10

0.20

E
m

e
rg

y
 s

a
v

in
g

Network Utilization (Energy Model)

Fig. 29. Energy savings on a random topology

0.4

0.5

0.6

0.7

0.8

0.9

1

N
R

/N

LF-S ST-S ST-S(BTW) ST-M ST-M(BTW)

0

0.1

0.2

0.3

0.4

0.10 0.20 0.30 0.40 0.50

Network Utilization

(a) The ratio active node to total node
on a random topology

0.3

0.4

0.5

0.6

LR
/L

LF-S ST-S ST-S(BTW) ST-M ST-M(BTW)

0

0.1

0.2

0.1 0.2 0.3 0.4 0.5

Network Utilization

(b) The ratio active link to total link on
a random topology

Fig. 30. NR/N and LR/L on a random topology

85

and ST-M(BTW) at 0.1-0.5 network utilization.

In Fig. 29, energy saving of LF-S, ST-S, ST-S(BTW), ST-M, and ST-M(BTW)

are shown. At low average network utilization, energy saving gap between ST-S and

ST-M is small. At 0.3 and higher average network utilization, multipath routing

substantially improves energy consumption, ranging from 8 to 17% of base energy

consumption. Multipath routing achieves significant energy savings by using fewer

nodes in the network.

The results of NR/N and LR/L are shown Fig. 30. The gap of NR/N between

ST-S and ST-M is 0 - 0.35. The gap of LR/L between ST-S and ST-M is 0 - 0.04

smaller than the gap of NR/N between ST-S and ST-M. The dominant factor of the

energy savings is the reduced number of nodes.

At low utilization (0.1 average network utilization), the number of nodes em-

ployed (NR) by both single-path and multipath routing schemes was the same. How-

ever, NR/N of ST-S increases from 0.58 to 0.85 when average network utilization

changes from 0.2 to 0.3, but NR/N of ST-M increases by only 0.03. This result

shows that multipath routing uses the increased network capacity more effectively

than single path routing.

LF-S is compared with ST-S and ST-M. On a random topology, the energy saving

of ST-S is better than LF-S when the average network utilization is 0.1, 0.2, and 0.5.

However, LF-S shows better energy saving than ST-S, when the average network

utilization is 0.3 and 0.4. As mentioned before, NR/N for ST-S increases when the

traffic demand increases. In order to meet the traffic demand of an od-pair, a number

of internal nodes may have to be added and as a result the network capacity grows

in bursts. During this capacity growth bursts, the proposed topology control may

require more tuning.

To improve energy saving, topology control runs again over the topology com-

86

0.20

0.30

0.40

0.50

0.60

E
n

e
rg

y
 S

a
v

in
g

LF-S(2) ST-S(2) ST-S(BTW)(2) ST-M(2) ST-M(BTW)(2)

0.00

0.10

0.20

Network Utilization (Energy Model)

Fig. 31. Energy savings after second run of topology control on a random topology

0.4

0.5

0.6

0.7

0.8

0.9

1

N
R

/N

LF-S(2) ST-S(2) ST-S(BTW)(2) ST-M(2) ST-M(BTW)(2)

0

0.1

0.2

0.3

0.4

0.10 0.20 0.30 0.40 0.50

Network Utilization

(a) The ratio active node to total node
with second run of topology control on
a random topology

0.3

0.4

0.5

0.6

LR
/L

LF-S(2) ST-S(2) ST-S(BTW)(2) ST-M(2) ST-M(BTW)(2)

0

0.1

0.2

0.1 0.2 0.3 0.4 0.5

Network Utilization

(b) The ratio active link to total link
with second run of topology control on
a random topology

Fig. 32. NR/N and LR/L after second run of topology control on a random topology

87

puted by the first run of topology control. For example, ST-S re-runs on the topology

computed by ST-S. We denote the second run of various schemes as LF-S(2), ST-

S(2), ST-S(BTW)(2), ST-M(2), and ST-M(BTW)(2). The order of adding a node

uses routing density or betweenness centrality on the original topology. While the

topology control is running iteratively, nodes and links are turned off, and the topol-

ogy becomes a subset of original topology. Even if the routing density or betweeenness

centrality on a subset of topology could be changed, the order of adding a node does

not consider these changes. In the second run, routing density or betweenness central-

ity on the topology computed by the first run of topology control is more similar to

those of topology that topology control currently uses, because the change of topology

in the second run is expected to be less than the change of topology in the first run.

Adding a highly utilized node on the currently-used topology is expected to turn off

more nodes in the topology control than adding a highly utilized node on the original

topology.

The simulation results of the second run are shown in Fig. 31 and Fig. 32. With

the second run of topology control, ST-S(2) shows better energy saving than LF-S(2)

at 0.3 and 0.4 avearge utiliztion (shown in Fig. 31). We can see NR/N of ST-S(2) is

reduced at at 0.3 and 0.4 avearge utiliztion, compared to ST-S (shown in Fig. 32).

ST-M shows better energy saving than LF-S at all levels of network utilization.

In some cases, ST-M(2) improve energy saving compared to ST-M. This shows that

a combination of the proposed proposed topology control and multipath routing im-

proves energy savings substantially.

The most of average network utilization, ST-M(BTW) shows worse energy saving

than ST-M.

88

F. Related work

The problem of energy saving in the wired networks is discussed in a position paper

by Gupta et al. [62].

Traffic engineering approach allows to power off unnecessary nodes/links while

the remaining network capacity meets traffic demand [27], [28], [63]. Furthermore, the

approach in [64] shuts down individual links in a bundled link in a similar manner. The

approach in [65] also optimizes the energy consumption of data centers by powering

down unneeded links and nodes in a similar manner. These approaches propose

heuristic algorithms based on underlying optimization problems. All of these schemes

use single shortest path routing on the topology where unnecessary nodes and links

are removed. However, these schemes do not result in reducing a big fraction of the

number of nodes in the network.

We consider the potential for reducing energy consumption through multi-path

routing. While multi-path routing increases the routing possibilities and hence the

chances of consolidating the traffic into fewer links, longer alternate paths can result

in higher resource consumption. Also, traffic splitting on multiple paths could cause

TCP performance loss due to the reordered packets at the destination [65]. Reordering

problem can be solved by employing a flow-based routing scheme or through reorder-

resistant versions of TCP [66].

We selectively power off nodes and links of the topology. As mentioned, power

consumption of node is much higher than that of links. So, we minimize the number

of powered-on nodes first, and then reduce the number of powered-on links. Similar

strategies have been employed in [28] and [65]. Some earlier schemes focus only on

link removal [27], [63], and [64].

89

CHAPTER V

REDUCING ENERGY CONSUMPTION USING MULTIPATH ROUTING II -

HARDWARE APPROACH

In this chapter, techniques for reducing energy, which operate at finer time scales,

are proposed. The proposed scheme employs multipath routing on a multi sleep state

router.

A. Multi-state power mode and alternative forwarding

We consider communication links supporting three power states. The most current

links support at least two power states. Here, we allow possibilities of more than

two link power state, because multiple power state is are quite common and found in

CPUs and memory systems [67].

• ACTIVE: A link is in active state. The power is highest among link states

(power(ACTIVE)=1). The energy consumption is a little dependent on the link

usage [57].

• SLEEP0: A link is in sleeping state. The power is less than ACTIVE (power(SL

EEP0)=0.5). The exit latency to ACTIVE is 10’s and 100’s ns.

• SLEEP1: A link is in deeper sleeping state than SLEEP0. The power is less

than SLEEP0, and much less than ACTIVE (power(SLEEP1)=0.1). The exit

latency to ACTIVE is several milliseconds.

A simple way of energy saving is to put idle links to SLEEP1 directly. However,

this sleeping scheme causes high entry/exit latencies due to frequent changes of power

modes. The proposed sleeping scheme uses multiple power modes of links. It enters

90

SLEEP0 state when a link becomes idle and then enters SLEEP1 state if a link is still

idle after waiting for a given time. A link in SLEEP0 or SLEEP1 changes its state

to ACTIVE whenever a new packet is sent or received. Waiting time before going

to SLEEP1 from SLEEP0 is important to reduce exit latency of SLEEP1 and energy

saving. Network traffic is hard to predict, and the estimation scheme should be simple

because hardware scheme should operate at finer granularities of time. In a situation

of successive bursts on a link, the inter arrival time is quite similar to random [69].

Inter arrival time is estimated by exponential moving average. This sleeping scheme

has less latency, but more energy consumption than a sleeping scheme which enters

into SLEEP1 directly. The proposed scheme tries to balance the forwarding latency

and energy savings by aggressively entering into SLEEP0 state and careful transition

into SLEEP1 state.

Alternate path routing is employed to forward packets on paths with links in

ACTIVE or SLEEP0 state and thus enabling links in SLEEP1 state to stay longer

in their sleeping states, thus improving energy savings. In the power management

of links with a static single-path routing (i.g., SPF), exit latency is caused whenever

the primary next-hop is in either sleeping state. However, if the alternative next-hop

is in ACTIVE (no latency) or SLEEP0 (10’s or 100’s ns latency), a packet could be

forwarded to the alternative next-hop, instead of forwarding to the primary next-hop

in SLEEP1 with high exit latency (several miliseconds). Alternative forwarding is to

keep using ACTIVE or SLEEP0 links as much as possible, instead of changing power

state of SLEEP1 link.

Alternative forwarding uses only local information because it works with the

hardware scheme operating at finer granularities of time. However, alternative for-

warding can cause routing loops, increased path lengths, and more latencies.

91

p1 p2

s d

a1 a2 a3

ACTIVE SLEEP1

Fig. 33. Example of alternative forwarding for energy saving

In Fig. 33, s-p1 (primary next-hop of node s) is in SLEEP1 and s-a1 (alternative

next-hop of node s) is in ACTIVE state. Alternative forwarding forwards a packet to

a1. In this case, a1 could forward the packet to s again. To prevent a routing loop,

alternative forwarding should be limited by the number of alternative forwarding

attempts. This policy bounds routing loops. In this chapter, the allowable number

of alternative forwarding attempts is set to 2.

Even with limited alternative forwarding attempts, alternative forwarding in-

creases path length, which can increase delivery latencies. The higher path length

can also increase path latency due to more power state changes of the remaining

links. In Fig. 33, a packet is forwarded through path s-a1-a2-a3-d with one alterna-

tive forwarding. In this case, the path length is 4, which is greater than the shortest

path length, 3. Even worse, path s-a1-a2-a3-d has 3 exit latencies, when the primary

path has 1 exit latency. To solve this problem, alternative forwarding is allowed

only on ECMP paths. It can limit the increment of path length and exit latencies.

92

The comparisons of energy consumption and end-to-end delay are shown in table VI.

When we allow two more extra hops for alternative forwarding, alternative forwarding

has 40% more energy consumption and 13% more end-to-end delay than alternative

forwarding to ECMP.

Table VI. The performance of alternative forwarding corresponding to the length of

alternative path

Two extra hops ECMP

Path length (hops) 4.10 2.71

Energy consumption 14.71 11.28

End-to-end delay (µsec) 30.45 27.00

B. Simulation

To evaluate the proposed scheme, energy consumption and end-to-end delay are mea-

sured with various combinations of sleeping schedules, routing schemes and topology

controls shown in table VII. The performance is evaluated on a 4-by-4 grid topology

and NSF topology [33]. Each link capacity is set to 1Gbps, and packet size is set to

1000 Bytes. Entry and exit latency between SLEEP1 to ACTIVE is set to 10 µsec

Table VII. Simulation setup for alternative forwarding for energy saving

Sleep Alternative Topology

Index schedule forwarding control

Normal No No No

TE [28] No No Yes

S0 Yes No No

S0-AF Yes Yes No

93

10.00

15.00

20.00

25.00

0.00

5.00

10.00

Normal TE S0 S0-AF

(a) Energy consumption on a 4-by-4
grid topology

20.00

25.00

30.00

35.00

40.00

0.00

5.00

10.00

15.00

Normal TE S0 S0-AF

(b) End-to-end delay on a 4-by-4 grid
topology(µsec)

Fig. 34. Energy consumption and end-to-end delay on a 4-by-4 grid topology

and that between SLEEP0 and ACTIVE is set to 10 ns. Traffic demand is modeled as

follows. Inter flow arrival time follows exponential distribution and flow size follows

pareto distribution. The average flow size is 75MBytes with shape parameter 2. Inter

flow arrival rate of s-d pairs is controlled in order to meet the desired average network

utilization, 0.15. In each simulation, 500 flows are generated. Fig. 34(a) shows the

energy consumption with different schemes. S0 consumes less energy than Normal by

forcing links to sleep. Also, S0 consumes less energy than TE. The primary reason

for this is the increased path lengths due to reduced number of links from topology

control in TE. The average number of hops without topology control is 2.71, but the

average number of hops with topology control is 3.90. Alternative forwarding reduces

the energy consumption further. In Fig. 34(a), S0-AF has 10% energy saving gain

compared to S0, because it does not increase path length, but decreases the number

of power mode changes.

Figure. 34(b) shows the end-to-end delay. Compared to TE, S0 has lower end-

to-end delay due to less path length and less link utilization. Also, S0-AF has lower

end-to-end delay than S0 in Fig. 34(b). This shows that alternative forwarding

94

30

40

50

60

70

0

10

20

30

Normal TE S0 S0-AF

(a) Energy consumption on NSF topol-
ogy

90

95

100

105

75

80

85

Normal TE S0 S0-AF

(b) End-to-end delay on NSF
topology(µsec)

Fig. 35. Energy consumption and end-to-end delay on NSF topology

reduces end-to-end delay through decreased number of power state changes.

Simulation results in realistic topology are shown in Fig. 35. Similar to the

results in grid topology, TE consumes less energy than Normal routing, but S0 and

S0-AF provide higher energy savings than TE. S0 and S0-AF acheive this energy

savings at a lower end-to-end latency penalty than TE.

In the NSF topology, there are fewer equal-cost multipaths than in a grid topol-

ogy. As a result, the energy saving gains are smaller in the NSF topology than in

the grid topology. However, S0 still show less energy consumption and end-to-end

delay than TE. Alternative forwarding (S0-AF) reduces energy and end-to-end de-

lay further. S0-AF reduces energy consumption by 5% and end-to-end delay by 4%

compared to S0.

In summary, hardware sleeping schemes, operating at finer granularities of time,

consume less energy and offer better end-to-end delivery times than the traffic en-

gineering approach. Alternative forwarding enhances energy savings and end-to-end

delay gain compared to no alternative routing.

95

C. Related work

Traffic engineering approach allows to power off unnecessary nodes/links while the

remaining network capacity meets traffic demand, as discussed in the previous chap-

ter. In these schemes, to save more energy, more nodes/links enter the sleeping mode,

and network may operate with a lower capacity margin. Hardware schemes operate

in finer-time granularities. There are two kinds of hardware schemes: sleeping and

rate-control. Rate control scheme is proposed in [61] and [67], but hardware could

support slow-speed mode with low power consumption. Opportunistic sleeping is

also examined in [68] and [61]. In [68], they evaluate the application of opportunistic

sleeping in a campus LAN environment. Techniques for more opportunistic sleeping

are proposed in [61] by shaping network traffic to be more bursty. In [67], various

sleeping schedules with multiple sleep states are discussed. Hardware schemes can

have performance degradation due to latencies in waking up sleeping links along the

primary path. Extra latency and energy consumption for changing from sleeping

mode to active mode are unavoidable when only primary path is considered.

96

CHAPTER VI

CONCLUSION

In this dissertation, we have studied methods of improving efficiency and effectiveness

of multipath routing in computer networks.

First, we investigated the potential for providing disjoint paths utilizing the same

infrastructure that might be provided for proactive failure recovery. We proposed D-

MRC and D-NotVia to provide backup paths with small path stretch and disjointness

close to 1. Our work showed that it is possible to provide nearly disjoint backup paths

utilizing the fast failure recovery mechanisms MRC and NotVia. We also showed that

the disjoint backup paths could be used for multipath path routing to enhance load

balancing and QoS. D-NotVia is slightly better than D-MRC in terms of stretch

and disjointness. As a result, D-NotVia showed better performance in QoS and load

balancing than D-MRC. However, overhead of D-NotVia is higher than D-MRC.

Next, we considered the problem of reducing the cost of updating link state for

dynamic routing algorithms. We proposed threshold based link state updates that

could limit the errors on paths in network to known bounds to enable reaching approx-

imate equilibria of dynamic routing. In particular, the threshold based scheme was

shown to enable reaching approximate Wardrop equilibria with quantifiable bounds

in the differences of different path latencies. The simulation results showed that

threshold-based updates could reduce the cost of link updates significantly compared

to a model of fixed-interval updates. The number of link updates could be reduced by

up to 50% to 90%. These results are encouraging and may point to making dynamic

routing more viable.

Last, we studied energy savings through multipath routing in networks. The

first approach employed topology control and multipath routing. We proposed a

97

topology control algorithm that built the necessary network connecting all the traffic

sources and sinks based on a Steiner tree approach. We proposed a multipath routing

algorithm based on bin packing to meet the traffic demands with minimal network

resources. We simulated the proposed algorithms in different networks with different

load and capacity constraints. We showed that the proposed topology control resulted

in better energy savings in more scenarios than a previous topology control algorithm

with single path routing. Also, our topology control had slightly less compleixy than

the existing scheme when single shortest path routing was used. When combined

with multipath routing, our approach resulted in significantly better energy savings,

by up to 17% of the base energy consumption, than previous approaches.

The second approach employed alternative forwarding to allow hardware sleeping

mechanisms to keep links in sleeping mode longer. This proposed technique worked

in concert with hardware schemes for putting idle links into low-power modes. The

simulation results showed that while, in general, alternative forwarding might not be

beneficial due to increased path lengths and link utilization, alternative forwarding

to equal cost paths could reduce energy consumption and end-to-end delay. The

alternative forwarding showed 5-10% energy savings and 4-10% end-to-end delay gain

compared to no alternative routing. The proposed technique combined hardware

layer schemes with Layer 3 information to improve both energy consumption and

performance.

98

REFERENCES

[1] J. He and J. Rexfored, “Towards Internet-wide multipath routing,” IEEE Net-

work, vol. 22, pp. 16–21, March 2008.

[2] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyyam, and C. Diot, “Anal-

ysis of link failures in an IP backbone,” in Proc. the Internet Measurement

Workshop, Marseille, France, Nov 2002.

[3] A. Kvalbein, F. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Multiple routing

configurations for fast IP network recovery,” IEEE/ACM Trans. Networking,

vol. 17, pp. 473-486, April 2009.

[4] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using notvia addresses,”

Internet draft, http://tools.ietf.org/html/draft-ietf-rtgwg-ipfrr-notvia-addresses-

00.txt, December 2006.

[5] S. Bryant and M. Shand, “A framework for loop-free convergence,” Internet

draft, http://tools.ietf.org/html/draft-bryant-shand-lf-conv-frmwk-03.txt, Octo-

ber 2006.

[6] B. Fortz, J. Rexford, and M. Thorup, “Internet traffic engineering by optimizing

OSPF weights,” Proc. INFOCOM 2000, Tel-Aviv, Israel, March 2000.

[7] L. Buriol, M. Resende, C. Ribeiro, and M. Thorup, “A memetic algorithm for

OSPF routing,” in Proc. the 6th INFORMS Telecomunication conference, Boca

Raton, FL, 2002

[8] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic engineer-

ing solutions for current OSPF/IS-IS networks,” IEEE/ACM Trans. Network,

vol. 13, pp. 234–247, April 2005.

99

[9] S. Fischer, N. Kammenhuber, and A. Feldmann, “REPLEX: dynamic traffic

engineering based on wardrop routing policies,” Proc. Conference on emerging

Networking EXperiments and Technologies (CoNext), Lisboa, Portugal, Decem-

ber 2006.

[10] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive traffic

engineering,” Proc. IEEE INFOCOM, Anchorage, AK, April 2001.

[11] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope: re-

sponsive yet stable traffic engineering,” Proc. ACM SIGCOMM, Philadelphia,

PA, PAugust 2005.

[12] C.Zhanga, J. Kurose, D. Towsley, Z. Ge, and Y. Liu, “Optimal routing with

multiple traffic matrices: tradeoff between average and worst case performance,”

Proc. IEEE International Conference on Network Protocols (ICNP), Boston,

MA, November 2005.

[13] Y. Zhang, M. Roughan, C. Lund, and D. Donoho, “An information-theoretic

approach to traffic matrix estimation, ” Proc. ACM SIGCOMM, Karlsruhe, Ger-

many, August 2003.

[14] M. Jain and C. Dovrolis, “End-to-end available bandwidth: measurement

methodology, dynamics, and relation with TCP throughput,” Proc. ACM SIG-

COMM, Pittsburgh, PA, August 2002.

[15] V. Raghunathan and P. R. Kumar, “Wardrop routing in wireless networks,”

IEEE Trans. Mobile Computing, vol. 8, pp. 636–652, November 2009.

[16] E. Crawley, R. NAir, B. Rajagopalan, and H. Sandick, “A framework for QoS-

based routing in the internet,” Internet draft, http://tools.ietf.org/html/RFC

100

2386, August 1998.

[17] I. Matta and U. Shankar, “Type-of-service routing in datagram delivery sys-

tems,” IEEE Jour. on Selec. Areas in Commun., vol. 13, pp. 1411–1425, August

2002.

[18] Q. Ma and P. Steenkiste, “Supporting dynamic inter-class resource sharing: A

multi-class QoS routing algorithm,” Proc. IEEE INFOCOM, New York, NY,

March 1999.

[19] S. Kweon and K. Shin, “A new distributed QOS routing algorithm based on

Fano’ s method,” Computer Networks Journal, vol. 48, pp. 155-174, December

2004.

[20] A. Shaikh, J. Rexford, and K. G. Shin, “Evaluating the impact of stale link state

on quality-of-service routing,” IEEE/ACM Trans. Networking, vol. 9, pp. 162–

176, April 2001.

[21] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman, “A measurement-

based analysis of multihoming,” Proc. ACM SIGCOMM, Karlsruhe, Germany,

August 2003.

[22] A. Lambert, M.-O. Buob, and S. Uhlig, “Improving internet-wide routing proto-

cols convergence with MRPC timers,” Proc. CoNEXT, Rome, Italy, December

2009

[23] A. Basu, C.-H. L. Ong, A. Rasala, F. B. Shepherd, and G. Wilfong, “Route os-

cillations in I-BGP with route reflection, ” Proc. ACM SIGCOMM, , Pittsburgh,

PA, August 2002

101

[24] V. Borkar and P. Kumar, “Dynamic Cesaro-Wardrop equilibration in networks,”

IEEE Tran. Automatic Control, vol. 48, pp. 382–396, March 2003.

[25] K.W. Roth, F. Goldstein, and J. Kleinman “Office and telecommunications

equipment in commercial buildings - volume I: Energy consumption baseline,”

Technical Report 72895-00, Authur D. Little, Inc., 2002.

[26] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely,

and C. Diot, “Packet-level traffic measurements from the Sprint IP backbone,”

IEEE Network, vol. 17, pp. 6–16, November 2003.

[27] M. Gupta and S. Singh, “Dynamic ethernet link shutdown for power conservation

on ethernet links,” Proc. IEEE Conference on Communication (ICC), Glasgow,

Scotland, June 2007.

[28] L. Chiaraviglio, M. Mellia, and F. Neri “Reducing power consumption in back-

bone networks,” Proc. ICC, June 2009.

[29] J. W. Suurballe, “A quick method for finding shortest pairs of disjoint paths,”

Networks, vol. 14, pp. 325 - 336, 1984.

[30] M. Medard, S. Finn, R. Barry, and R. Gallagher, “Redundant trees for pre-

planned recovery in arbitrary vertex-redundant or edge-redundant graphs,”

IEEE/ACM Trans. Networking, vol. 7, pp. 641–652, October 1999.

[31] M. Motiwala, N. Feamster, and S. Vempala, “Path splicing: reliable connectivity

with rapid recovery,” Proc. ACM SIGCOMM, SEATTLE, WA, August 2008.

[32] P. Key,L. Massouli, and Don Towsley, “Combining multipath routing and con-

gestion control for robustness,” Proc. CISS, Princeton, NJ, March 2006.

102

[33] Rocketfuel topology mapping. WWW http://www.cs.washington.edu.

[34] D. Xu , M. Chiang , and J. Rexford, “DEFT: Distributed exponentially-weighted

flow splitting,” Proc. IEEE INFOCOM, Anchorage , AK, May 2007.

[35] Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth guaran-

tees,” Proc. IEEE ICNP, Atlanta, GA, October 1997.

[36] P. Psenak, S. Mirtorabi, A. Roy, L.Nguyen, and P. Pillay-Esnault,

“Mt-ospf: Multi topology MT routing in ospf,” Internet draft,

http://tools.ietf.org/html/draft-ietf-ospf-mt-04.txt, April 2005.

[37] K. W. Kwong, R. Guerin, A. Shaikh, and S. Tao, “Improving service differentia-

tion in IP networks through dual topology routing,” Proc. ACM CoNEXT, New

York, NY, December 2007

[38] A. Kvalbein, T. Cicic, and S. Gjessing, “Post-failure routing performance with

multiple routing configurations,” Proc. IEEE INFOCOM, Anchorage, AK, May

2007.

[39] G. Apostolopolous, “Using multiple topologies for IP-only protection against

network failures: A routing performance perspective,” Tech. Report 377, ICS-

FORTH, April 2006.

[40] T. Cicic, A. F. Hansen, A. Kvalbein, M. Hartman, R. Martin, and M. Menth,

“Relaxed multiple routing configurations for IP fast reroute,” IEEE Network

Operation and Management Symposium, Salvador, Brazil, April 2008.

[41] Y. Lee and A.L.N Reddy, “Disjoint multi-path routing and failure recovery,”

Tech. Report TAMU-ECE-2009-06, Texas A& M University, June 2009.

103

[42] S. Ramasubramanian, H. Krishnamoorthy, and M. Krunz, “Disjoint multipath

routing using colored trees,” Computer Networks, vol. 51, pp.2163 – 2180, June

2007.

[43] G. Jayavelu, S. Ramasubramanian, and O. Younis, “Maintaining colored trees

for disjoint multipath routing under node failures,” in IEEE/ACM Trans. Net-

working, vol. 17, pp.346–359, Feburuary 2009.

[44] S. Kini, S. Ramasubramanian, A. Kvalbein, and A. F. Hansen, “Fast recovery

from dual link failures in IP networks,” Proc. IEEE INFOCOM, Rio de Janeiro,

Brazil, April 2009.

[45] P. Francois and O. Bonaventure, “An evaluation of IP-based fast reroute tech-

niques,” Proc. ACM CoNEXT, Toulouse, France, October 2005.

[46] N. Taft-Plotkin, B. Bellur, and R. Ogier, “Quality-of-Service routing using

maximally disjoint paths,” Proc. International Workshop of Quality of Service,

Charleston, SC, June 1999.

[47] S. Fischer, H. Racke, and B. Vocking, “Fast convergence to Wardrop equilibria

by adaptive sampling methods,” Proc. 38th Ann. ACM. Symp. on Theory of

Comput. (STOC), Seattle, WA, May 2006.

[48] C. Vollmert, “A Web workload generator for the SSFNet network simulator,”

Bachelors thesis, Technische Universitat Munchen, 2004.

[49] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic engineer-

ing solutions for current OSPF/IS-IS networks,” IEEE/ACM Trans. Networking,

vol. 13, pp. 234-247, April 2002.

104

[50] R. Gao, C. Dovrolis, and E. Zegura, “Avoiding oscillations due to Intelligent

Route Control Systems,” Proc. IEEE INFOCOM, Barcelona, Spain, April 2006.

[51] Y. Liu and A. L. Narasimha Reddy, “Multihoming route control among a Group

of Multihomed Stub Networks,” Journal on Computer Communication, vol. 30,

pp. 3335-3345, November, 2007.

[52] A. Kvalbein, C. Dovrolis, and C. Muthu, “Multi-path load-adaptive routing:

Putting on the emphasis on robustness and simplicity,” Proc. of IEEE ICNP,

Princeton, NJ, October 2009.

[53] G. Apostolopoulos, R. Guerin, S. Kamat, and S. Tripathi, “Quality of service

based routing: a performance perspective,” Proc. ACM SIGCOMM, Vancouver,

BC, August 1998.

[54] K. Levchenko, G. M. Voelker, R. Paturi, and S. Savage, “XL: An efficient network

routing algorithm,” Proc. ACM SIGCOMM, SEATTLE, WA, August 2008.

[55] S. Fischer and B. Vocking, “Adaptive routing with stale information,” Proc. 24th

Ann. ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing

(PODC), Las Vegas , NV, July 2005.

[56] S. Even, A. Itai, and A. Shamir, “On the complexity of time table and multi-

commodity flow problem,” 16th Annual Symposium on Foundations of computer

science, page 184-193, October 1975

[57] J. Chabarek, J. Sommers, and P. Barford, “Power awareness in network design

and routing,” in Proc. IEEE INFOCOM, Phoenix, AZ, April 2008.

[58] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for Steiner trees,” in

Acta Inform., vol. 12, pp. 141–151, 1981

105

[59] M. E. J. Mark, “Networks: an introduction,” Oxford University Press, 2010

[60] U. Brandes, “A faster algorithms for betweenness centrality,” Journal of Math-

ematical Sociology, vol. 25, pp. 163–177, 2001

[61] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall, “Reduc-

ing network energy consumption via sleeping and rate-Adaptation,” Proc. the

5th USENIX NSDI, San Francisco, CA, August 2008.

[62] M. Gupta and S. Singh, “Greening of the Internet,” Proc. ACM SIGCOMM,

Karlsruhe, Germany, August 2003.

[63] N. Vasic and D. Kostic, “Energy-aware traffic engineering,” EPFL Technical

report, 2008

[64] W. Fisher, M. Suchara, and J. Rexford, “Greening backbone networks: reducing

energy consumption by shutting off cables in bundled links,” Green Networking

Workshop in SIGCOMM, New Delhi, India, August 2010.

[65] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee,

and N. MacKeown, “ElasticTrees: saving energy in data center networks,” Proc.

USENIX NSDI, San Francisco, CA, September 2010.

[66] N. M. Piratla and A.P. Jayasumana, “Reordering of packets due to multipath

forwarding - an analysis,” Proc. ICC, Instanbul, Turkey, June 2006

[67] K. Kant, “Multi-state power management of communication links,” Proc. COM-

SNETS, Bangalore, India, January 2011.

[68] M. Gupta and S. Singh, “A Feasible Study for Power mangement in LAN

Switches,” in Proc. ICNP, October 2004

106

[69] P. J. Brockwell and R.A. Davis, “Introduction to time series and forecasting,”

in Springer-Verlag, 1996

107

VITA

Yong Oh Lee received the B.S. and M.S. degrees in electrical engineering from

Yonsei Univeristy, Seoul, Korea in 2005 and 2007, respectively. He received Ph.D.

degree in computer engineering form Texas A&M University in 2012. His research

interests are in routing protocols in wireless and wired networks as well as analysis

and modeling of network traffic. You can contact to me by following mailing address

or e-mail address.

- Mailing address: 332G Wisenbaker, Texas A&M University, College Station, TX

77840

- E-mail: yongoh.lee@tamu.edu

