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ABSTRACT 

Investigation of Operations of Hawk Pedestrian Treatment. 

 (May 2012) 

Siqi Li, B.E., Southeast University 

Chair of Advisory Committee: Dr. Yunlong Zhang 

High intensity Activated cross WalK (HAWK), as an innovative 

pedestrian-activated beacon, has become a hot topic and was introduced in 2009 Manual 

on Uniform Traffic Control Devices (MUTCD). According to the 2009 MUTCD，

HAWK should be installed at least 100 feet from a stop-controlled intersection. This 

thesis first evaluates the distance between HAWK and stop-controlled intersection 

recommended by 2009 MUTCD. On the basis of the knowledge of HAWK operation, 

this thesis applies the Generalized Linear Model (GLM) to model the pedestrian delay at 

an HAWK location. The HAWK pedestrian delay model includes the major street arrival 

rate, minor street arrival rate, pedestrian arrival rate and the distance between HAWK 

and intersection. Four different functional forms are investigated in order to select an 

appropriate one that could more accurately model pedestrian delay. The minimum green 

time for vehicles, as an important variable in the HAWK pedestrian delay model and a 

peculiar element in HAWK operations, is also evaluated with VISSIM simulation based 
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on different vehicle and pedestrian volume combinations. The impact of the HAWK on 

pedestrian delay is simulated by comparing pedestrian delay in scenarios with and 

without HAWK.  

The results indicate that the minimum distance between HAWK and stop-controlled 

intersection recommended in MUTCD may be inadequate for high demand situations. 

More distance from HAWK to stop-controlled intersection needs to be considered in 

order to avoid vehicle spillback to the upstream intersection. Based upon the results of 

training and validating datasets, it can be indicated that the HAWK pedestrian delay 

model developed in this study is capable of effectively evaluating the pedestrian delay 

with a satisfactory accuracy. The study also identifies that a minimum green time for 

vehicles should be considered in order to reduce the vehicular delay and different 

minimum green times be provide for vehicles based on different pedestrian volume and 

vehicle volume combinations. A model of minimum green time for vehicles is then 

derived from HAWK pedestrian delay model. Finally, the study results indicate that a 

HAWK installation may increase pedestrian delay for the stop-controlled intersection 

scenario when vehicle demand is low. 
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1. INTRODUCTION 

1.1 Background 

As a pedestrian-activated beacon, the High intensity Activated cross WalK (HAWK) 

device, which is consisted of a traffic signal head with a red-yellow-red lens, is primarily 

installed on wide, mid-to high-speed multi-lane roadways with few crossing 

opportunities, mainly at midblock locations. One important purpose of HAWK is to 

reduce the unnecessary delay
1 to vehicles, meanwhile, create gaps in vehicle traffic to let 

pedestrians cross. This is accomplished by using a beacon with yellow and red indicators, 

instead of a traditional green-yellow-red traffic signal. The two red signal indications are 

placed horizontal to one another which are above one centered yellow signal (1). The 

HAWK traffic signal heads are located on both a mast arm over the roadway and on the 

roadside (see Figure 1). Figure 2 shows the HAWK traffic signal head and the HAWK 

pedestrian signal head.  

 
 
 
 
Note: 1The unnecessary delay is measured as: ‘time taken from when all pedestrians reach the other 

curb until the vehicles legally resume’. It is defined as the time for which the vehicles are stopped at a 

signalized mid-block crossing when pedestrians have cleared the crosswalk but drivers need to remain 
stopped for a solid red ball according to law. 
 
____________ 
This thesis follows the style of Transportation Research Record. 
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Figure 1 HAWK Pedestrian Beacon (2) 

 

Figure 2 HAWK Traffic Signal Head (Left) & HAWK Pedestrian  

Signal Head (Right) (3) 

The phase sequence of the HAWK (4) is as follows shown in Figure 3. The HAWK 

operation steps are as follows: 

1. When not activated, the HAWK traffic signal head indications remains dark, 

meanwhile, the HAWK pedestrian signal head displays a solid DON’T WALK 

(raised hand) indication, keeping the pedestrians waiting until HAWK been 

activated. 
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2. When the pedestrians press the button, the traffic signal indication will show a 

flashing yellow for 3-6 seconds to give the drivers a beforehand warning of 

pedestrians crossing. 

3. The main street HAWK traffic signal indication will display a solid yellow for 

about 3-6 seconds to give motorists enough time to stop at the crosswalk. (Both 

the step 2 and 3 are for a clearance interval of vehicles). 

4. After the solid yellow interval, the main street vehicle indications will show two 

solid red indications, and pedestrians will be given a WALK (walking person 

symbol) signal.  

5. After a period of time (5-8 sec) and the pedestrians are into the crosswalk area, 

the WALK signal terminates and the two red indications flash in an alternating 

pattern while the pedestrians who are already in the middle of the street continue 

across the street (flashing DON’T WALK and the countdown timer displays 

become visible for the HAWK pedestrian signal). The pedestrians that have not 

got into the street should stop and wait until the next HAWK activation. The 

motorists may proceed after stopping if the pedestrians have crossed their half of 

the street (Note: This phase is timed for a standard pedestrian crossing time of 

3.5 feet/sec in anticipation of the change to the Manual on Uniform Traffic 

Control Devices (MUTCD)(5)).  
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6. After the countdown time has been exhausted, the Raised Hand indication 

becomes a solid display indicating to the pedestrian that they must wait until the 

next signal cycle before proceeding to cross the roadway, meanwhile, the traffic 

signal indications will go dark once again until the next pedestrian actuation and 

motor vehicles may proceed without stopping. 

 

2

Flashing

3

Steady

What Drivers See What Pedestrains See

1

Dark Push the Button

What Drivers See What Pedestrains See

4

Steady Start Crossing

5

Flashing-Alternating

Stop. Then go if clear.

Flashing (with Countdown)
Do not start crossing. Finish 

crossing if already in the street.

6

Dark
 

Figure 3 HAWK Beacon Phase Sequence 

1.2 Problem Statement 

To improve service for pedestrians, the 2009 Manual on Uniform Traffic Control 

Devices (MUTCD) first allowed HAWK beacon to be installed. According to the 
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MUTCD HAWK (called pedestrian hybrid beacon in 2009 MUTCD) should be installed 

at least 100 feet from a stop-controlled intersection (5). 

As a kind of new pedestrian beacon, the first presentation of HAWK in 2009 

MUTCD certainly provided some interesting recommendations for pedestrians, 

especially for those roadways with few crossing opportunities. However, very little 

research has been done in the area of HAWK operations. This thesis identifies the 

following areas of research related to HAWK operations: 

1.2.1 Distance between HAWK and Stop-Controlled Intersection 

As it recommended in the 2009 MUTCD, HAWK should be installed at least 100ft 

from stop-controlled intersection. However, when a HAWK is very close to the 

upstream intersection, vehicles will back up towards the upstream intersection when the 

HAWK is on. This could potentially lead to vehicle queue spillback into the intersection 

area and cause adverse impact on the operation of the upstream intersection. To avoid 

frequent occurrences of such spillback, an adequate distance between the HAWK and 

the upstream intersection should be provided. In this case, the 100 ft minimum distance 

between HAWK and stop-controlled intersection recommended in 2009 MUTCD should 

be evaluated and some new recommendations should be made if it is not adequate.  
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1.2.2 Pedestrian Delay Model with HAWK 

As an important criterion to evaluate HAWK operations, a pedestrian delay model 

needs to be investigated to describe the pedestrian delay situation and estimate 

pedestrian delay value when a HAWK is installed. Many kinds of pedestrian delay 

models have been addressed in the previous studies. However, as HAWK is a 

newly-applied pedestrian beacon, previous studies rarely focused on pedestrian delay 

models when HAWK is applied. In this case, a model for pedestrian delay with HAWK 

should be investigated so that estimated pedestrian delay values could be provided when 

a HAWK is installed away from the stop-controlled intersection. 

1.2.3 Minimum Green Time for Vehicles 

As a type of pedestrian beacon, HAWK was designed to reduce the pedestrian 

delay in order to ensure the pedestrians crossing the street where there are not enough 

gaps due to high vehicle volume. However at the same time it may increase the vehicle 

delay when creating gaps for pedestrians to cross the street. Particularly, at high 

pedestrian demand situations vehicular delay may increase significantly. Considering the 

trade-off between the pedestrian demand and vehicle demand, there is a need to 

recommend a minimum green time for vehicles, or a minimum time between two 

consecutive HAWK activations.  A minimum green time for vehicles can ensure the 
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vehicle level of service under a high pedestrian demand when HAWK applied and to 

balance the pedestrian level of service and vehicle level of service in order to minimize 

the whole network delay.   

1.2.4 Impact of HAWK on Pedestrian Delay  

HAWK aims at insuring the pedestrian to cross the street, meanwhile avoiding too 

much vehicle delay under high pedestrian demand. HAWK is a new kind of pedestrian 

beacon and previous research rarely investigated its effect on pedestrian delay and the 

whole network delay after its installation. A comprehensive study on the impact of 

HAWK on pedestrian delay is needed. This thesis will investigate the effect of HAWK 

on pedestrian delay by comparing a stop-controlled intersection with HAWK at 100ft 

away and a stop-controlled intersection with traditional crosswalk at the intersection. 

1.3 Research Objectives 

The goal of the research is to provide guidance on setting HAWK operational 

parameters. The research objectives are: 

 To evaluate the recommended minimum distance between HAWK and 

stop-controlled intersection in 2009 MUTCD. 

 To provide a recommendation of distance between HAWK and stop-controlled 
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intersection. 

 To find out a practical pedestrian delay model when HAWK installed away 

from the stop-controlled intersection. 

 To investigate the minimum time between two consecutive HAWK activations 

(minimum green time for vehicles). 

 To investigate the impact on pedestrian delay with HAWK implementation.  

1.4 Research Benefits 

Based on the primary guideline of pedestrian hybrid beacon included in the 2009 

MUTCD, this research plans to provide a comprehensive recommendation on HAWK 

operational parameters. The results of this research provide new recommendations if 

needed, which may be beneficial to the new versions of MUTCD. This research will also 

provide guidance on setting HAWK operational parameters, which was rarely mentioned 

in the previous research. A statistical model of pedestrian delay will be provided with 

HAWK installed and it is a good beginning in the modeling of HAWK pedestrian delay, 

which could be helpful for further HAWK study. As HAWK is a new kind of pedestrian 

beacon, the effect of HAWK on pedestrian delay and network delay will be investigated 

to fully evaluate the operational benefits of HAWK. 
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2. LITERATURE REVIEW 

2.1 Introduction 

This chapter of the thesis provides basic information of High intensity Activated 

cross WalK (HAWK) and background information about pedestrian delay models and 

VISSIM. The first section provides an introduction to the previous research on High 

Intensity Activated cross Walk. Section 2.2 introduces the previous studies on 

HAWK and Section 2.3 reviews pedestrian delay models. To have a better 

understanding of the HAWK pedestrian delay model, section 2.3 describes the 

generalized linear model. Section 2.5 provides the basic knowledge of the 

VISSIM simulation software.  

2.2 Previous Research on High Intensity Activated Cross WalK (HAWK) 

In the late 1990s, HAWK was first developed and applied in the city of Tucson, 

Arizona in 60 locations to assist pedestrians crossing. After HAWK installation, its 

effect on safety was investigated by researchers.  

Nassi and Barton (6) reported that although there may be some potential driver 

confusion, crashes involving pedestrians reduced from the year 2002 to 2006 by an 

average of 1.8 crashes per year at each HAWK location. With such success of HAWK 
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application, more governments began to consider HAWK installation in other areas and 

more researchers began to investigate the HAWK effect on pedestrian safety. It is 

concluded that pedestrian safety was improved after HAWK installation.  

In 2006 Turner, Fitzpatrick, Brewer and Park (7) conducted a study on motorist yielding 

to pedestrians at unsignalized intersections. The study aims at evaluating different 

pedestrian devices at pedestrian crossings. With the selected 42 sites, which were all 

with different pedestrian control devices, the effective use of the pedestrian treatment 

were measured by motorist yielding. It was concluded that for all the study sites, HAWK 

makes the motorist yielding rates greater than 94% and the average compliance rate is 

greater than 95% which were both much higher compared with the average motorist 

compliance rate before HAWK application.  

In the same year Fitzpatrick and Turner (8) did research on improving pedestrian 

safety at unsignalized crossings and had a similar conclusion that HAWK achieved a 

high driver compliance rate. Their research was conducted for Transit Cooperative 

Research Program (TCRP) and the National Cooperative Highway Research Program 

(NCHRP) in order to improve pedestrian safety at unsignalized crossings. Their 

conclusion showed that HAWK had a high driver compliance rate of 97% and the 

compliance rate was not affected by the number of lanes.  
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In the year 2010 Arhin and Noel (9) wrote a paper on evaluation of HAWK signal at 

Georgia Avenue and Hemlock Street NW in Washington D.C. The result of this study 

was consistent with the previous study in the motorist compliance part with a 

compliance rate up to 97.1% with the HAWK signal. However, the pedestrian HAWK 

was found potentially to cause some confusions and the pedestrian compliance was at a 

low rate of 50%-66%. Low vehicle volume might be another reason to explain this 

phenomenon. In this case, it was recommended HAWK should be used at unsignalized 

intersection to insure pedestrian crossing, especially for those intersections on a 

high-volume major arterials with moderate-to-high pedestrian volume. However, as the 

observations in this paper only lasted for three days which could not prove the 

conclusion sufficiently, more observations should be added in the future together with 

more observation sites. 

Besides of the motorist compliance rate, number of crashes is another criterion to 

evaluate the HAWK effect on safety. In the year 2009 Fitzpatrick and Park (2) 

conducted a study on safety effectiveness of the HAWK pedestrian treatment. With the 

objective of evaluating safety effect of HAWK, the paper analyzed crash data using 

before and after study. In their study, two un-signalized intersections were selected and 

two signalized intersections were treated as reference sites for each HAWK. It was 

shown that HAWK beacon may improve pedestrian safety when installed as a 28% 
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reduction in all crashes and 58% reduction in pedestrian crashes were observed after 

HAWK installation. 

Compared with the safety effect of HAWK, the previous research work rarely 

evaluated the operations aspect of HAWK. Compared with the traditional pedestrian 

signals (eg: pedestrian-actuated signal, pedestrian light-controlled signal, etc.), HAWK 

may reduce the unnecessary delay, which is the delay pedestrians cause to drivers due to 

the time difference between the pedestrian signal and the vehicle signal. In the year 2007 

Schroeder, Rouphail and Hughes (10) studied pedestrian signalization treatments at one- 

and two-lane roundabouts using microsimulation with VISSIM. The result indicated that 

HAWK signal could significantly reduce the vehicle delay compared with a 

conventional pedestrian-actuated signal. 

In 2009, Lu and Noyce (11) did a more comprehensive study on pedestrian 

crosswalks at midblock locations to find out fuzzy logic solution to existing signal 

operations. This study found that HAWK improved vehicle operations with whatever 

phase timing, performed better than PA (pedestrian-actuated) and PELICAN (pedestrian 

light-controlled) in many aspects, such as average vehicle delay, average queue length 

and average number of stops. 

A more specific conclusion was drawn in 2010 by Godavarthy and Russell (12). By 

comparing with the signalized mid-block pedestrian signal in the same city, this paper 
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conducted a study to find out the effectiveness of HAWK in decreasing the unnecessary 

delay to drivers. The result showed that according to statistical analysis, when HAWK 

was used the unnecessary delay was reduced significantly from 50.9% to 4.3% compared 

with the signalized mid-block pedestrian signal as long as the drivers understood the 

HAWK signal. 

Besides of the HAWK effect on vehicle delay, researchers also concerned about the 

HAWK effect on pedestrian delay. In the year 2006 Fitzpatrick and Turner (7) did a 

study on improving pedestrian safety at unsignalized crossings. They concluded that 

with the advantage of high compliance rate, HAWK might also cause extra pedestrian 

delay as shown in the following Table 1 from which it could be concluded that HAWK 

made a great pedestrian delay compared with most other signals (the number is 1.83 bold 

in Table 1). 
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Table 1 Pedestrian Delay by Treatment (7) 

Treatment 
Initial Delay (s) Median Delay (s) Total Delay (s) 

Count 
Avg StdDev Avg StdDev Avg StdDev 

Flag 2.67 3.37 0.10 0.37 2.72 3.39 350 
Half 16.88 19.78 0.69 3.04 17.06 19.70 342 

Hawk 7.80 7.86 1.83 6.21 9.63 9.60 224 
HiVi 1.86 4.08 0.53 2.35 2.39 4.88 606 
InSt 2.09 3.67 0.09 0.86 2.15 3.78 310 
Msig 26.35 27.67 0.00 0.00 26.35 27.67 393 
OfPa 5.54 9.47 0.10 1.12 5.62 9.59 164 
OfPb 5.44 6.61 - - 5.44 6.61 254 
Refu 5.36 10.20 3.86 11.47 9.22 16.21 512 

Grand 
Total 

8.12 15.46 1.36 6.41 9.01 16.29 3155 

*Note: 

Abbreviations: Avg=average; StdDev=slandered deviation; Msig=midblock signal; Half=half signal; 

Hawk=HAWK signal beacon; InSt=instreet crossing signs; Flag=pedestrian crossing flags; 

OfPb=overhead flashing beacons (pushbutton activation); Refu=median refuge island; 

HiVi=high-visibility signs and markings; OfPa=overhead flashing beacons (passive activation) 

2.3 Pedestrian Delay Models 

In previous research work, researchers have developed many kinds of models in 

predicting pedestrian delay, mainly for signalized intersection pedestrian delay models. 

In the year 1978, Braun and Roddin (13) developed the most frequently used model 

to estimate pedestrian delay at signalized intersections as follows in the equation 1: 
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where:  

d - Average pedestrian delay,  

C - Cycle length, 

G - Green time, 

R – Red time, 

A - Clearance duration, 

The model was developed under the following assumptions:  

 Uniform pedestrian arrival rate; 

 Complete signal compliance; 

 Fixed cycle length; 

 No pedestrian actuation 

Later as considering that some pedestrians may violate traffic signals, another model was 

suggested by them in equation 2: 

   
      

  
                                                                    

where F is the fraction of pedestrians who arrive during non-green phases and comply 

with traffic signals. This equation assumes that pedestrians receive no delay if they 

violate traffic signals. 
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On the basis of this model, in the year 1998 Virkler (14) conducted a study in 

Australia and it was noted that pedestrians who entered crosswalks during clearance 

phases caused most delay reductions. The following model was proposed then: 

  
              

  
                                                        

where A is the clearance time. 

Based on all the previous research result, the Highway Capacity Manual (HCM) 

2000 (15) concluded that the average delay per pedestrian for a crosswalk at signalized 

intersection was:  

   
         

 
                                                                  

where:  

  = average pedestrian delay (s), 

g = effective green time (for pedestrians) (s), and 

C = cycle length (s). 

Besides of the pedestrian delay at signalized intersection, the HCM 2000 also 

provided the pedestrian delay at unsignalized intersection. Most unsignalized 

intersections are two-way stop-controlled (TWSC) intersections and the average delay 

per pedestrian for a crosswalkat TWSC intersection was given in equation 5:  
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where: 

  = average pedestrian delay (s), 

v = vehicular flow rate (veh/s), and 

  = group critical gap, 

                                                                          

where: 

  = group critical gap (s), 

  = critical gap for a single pedestrian (s), and 

  = spatial distribution of pedestrians (p). 

The critical gap for a single pedestrian    was given in equation 7: 

   
 

  
                                                                          

where: 

  = critical gap for a single pedestrian (s), 

  = average pedestrian walking speed (ft/s), 

 = crosswalk length (ft), and 

  = pedestrian start-up time and end clearance time (s). 

       
         

  
                                                    

where: 
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  = spatial distribution of pedestrians (p), 

  = total number of pedestrians in the crossing platoon (p), 

  = effective crosswalk width (ft), and 

8.0 = default clear effective width used by a single pedestrian to avoid interference. 

when passing other pedestrians, 

   
   

           

               
                                                       

where: 

  = size of a typical pedestrian crossing platoon (p), 

  = pedestrian flow rate (p/s), 

 = vehicular flow rate (veh/s), and 

  = single pedestrian critical gap (s). 

2.4 Generalized Linear Model  

The generalized linear model (GLM), as a flexible generalization of linear 

regression, was introduced by Nelder and Wedderburn (16). The generalized linear 

model unifies various other statistic models such as linear regression, logic regression 

and Poisson regression. Its core procedure is to generalize linear regression via a link 

function which is used to connect the linear model and the response variable. The 
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generalized linear model provides a crucial advantage which eliminates the assumption 

of a normal distribution for response variable and allows users to use any member of the 

exponential family of distributions comparing with the multiple regression. Therefore, it 

attracted more and more people’s attentions, and has been widely and successfully 

applied in many fields (17, 18, 19, 20) today. Transpiration is a good platform to 

implement the generalized linear model as well.   

 In 1990, Said (21) applied the generalized linear model to model work trip 

generation rates of households for Kuwait. Finally, the relations between the dependence 

variable of average household work trip and factors of interest including household size, 

household income, the number of cars owned, nationality, etc. has been successfully 

established under GLM framework.  

 Harnen et al. (22) developed a predictive model for motorcycle crash in 

non-signalized intersections by the generalized linear modeling approach in 2003. After 

employing the motorcycle crash data collected from four districts of the state of Selangor, 

Malaysia, the final model demonstrated that the motorcycle crash could increase as an 

increase in motorcycle and non-motorcycle flows entering an non-signalized intersection 

occurred. Additionally, by using GLM approach, authors also found that factors such as 

speed, lane width, number of lanes, shoulder width significantly affect the occurrence of 

motorcycle crashes.   
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 In order to explore the connection between winter maintenance and winter road safety, 

Usman et al. (23) developed a generalized linear model using data over three winter seasons 

from four maintenance routes in the province of Ontario, Canada in 2010. It was found that 

road surface condition is a significant factor for winter road safety. Additionally, the authors 

also suggested that the model could potentially be applied for evaluating the effect of 

alternative maintenance standards. 

 It should be noted that the generalized linear model has not been widely applied to the 

analysis of traffic and pedestrian delay yet. The potential of using GLM in the delay 

investigation is explored in this work.  

2.5 Introduction of VISSIM Simulation Software 

VISSIM is popular traffic simulation software, and is able to simulate complex 

nonlinear dynamic systems in Figure 4. VISSIM simulation system consists of two 

separate programs, which are the traffic flow model and the signal control model. Figure 

4 is a block diagram of VISSIM. 
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Figure 4 Block Diagram of VISSIM  

In the past, VISSIM has been widely used in many traffic simulation scenarios. In 

the year 1994 Fellendorf (24) used VISSIM to evaluate actuated signal control including 

bus priority. They believed that the standardized systems can be tested by using VISSIM 

simulation software, which could help to assess various vehicle actuated control 

strategies. Besides the traffic models in the VISSIM could reflect the real world traffic 

situation. 

Although VISSIM has many advantages in simulating the traffic, researchers 

conducted studies on improving the models in VISSIM for a more accurate result, which 

may reflect the real world traffic situation better. In the year 2001 Fellendorf and 
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Vortisch (25) conducted a study on validation of microscopic traffic flow model 

VISSIM in different real-world situations. The paper explained the car following model 

and investigated its ability of adapting to different driving behaviors. Two calibration 

efforts of the model for German and US freeway traffic were validated by comparing 

measured field data with simulation results. In the year 2004 Gomes and Horowitz (26) 

simulated the congested freeway using the microsimulation model in VISSIM. Based on 

the observation data, a successful calibration of the VISSIM model was carried out. It 

was showed that the VISSIM simulation environment suited well with the freeway 

conditions together with the complex interactions. 

In this study, as a simulation tool VISSIM is used to simulate the operation of 

HAWK under different scenarios in order to estimate the pedestrian delay. With the 

HAWK simulation model built in VISSIM, the data such as traffic volume, vehicle 

speed, pedestrian volume, and pedestrian delay can be collected. All data applied to train 

and validate the statistical model of pedestrian delay are also conducted in VISSIM.   
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3. METHODOLOGY 

3.1 Study Design 

The study is conducted using VISSIM microscopic simulation in the scenario of a 

HAWK with a two-way stop-controlled intersection. It is assumed the EB and WB 

four-lane street as the major street and the SB and NB four-lane street as the minor one 

shown in Figure 5.  

 

Figure 5 HAWK Simulation Model 

Multiple simulation scenarios are developed considering a wide range of pedestrian 

and vehicle flow conditions in order to produce data for pedestrian model development. 

The speed of the vehicles and pedestrians is set as 40km/h and 3.5km/h, respectively. To 

HAWK 

Stop-controlled 
Intersection 
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develop a HAWK pedestrian delay model, for the major street, the percentages of the 

left-turn, through, right-turn are set as 10%, 80%, 10%, respectively; meanwhile, for the 

SB and NB street the percentages are 25%, 50%, 25%, respectively. The pedestrian 

volume is defined as 20 pph, 50 pph, 100 pph, 200 pph, 300 pph and 400 pph in both NB 

and SB directions. As for the vehicle volume, the major street volume is defined as 750 

vph, 1000 vph, 1250vph and 1500vph and minor street volume is 225 vph, 300 vph and 

375 vph, 450 vph. The Travel Time Measurement function in VISSIM was used to 

assess the pedestrian delay (s) and the detection points provide pedestrian arrival rate 

(pps), major street vehicle arrival rate (vps) and minor street vehicle arrival rate (vps). 

The simulation time is 7200 seconds with 60 seconds as the interval, which means 

collecting data in every 60 seconds. For each simulation scenario, the simulation results 

are from the averages of five runs.  

To investigate the proper minimum green time for vehicles, the minimum vehicle 

go-time is evaluated from 10 seconds to 60 seconds at 10 second intervals. The distance 

from HAWK to the stop-controlled intersection is set as 100 feet. for the major street, 

the percentages of the left-turn, through, right-turn are set as 10%, 80%, 10%, 

respectively; meanwhile, for the SB and NB street the percentages are 25%, 50%, 25%, 

respectively. The pedestrian volume is defined as 50 pph, 100 pph, 200 pph, 300 pph and 

400 pph in both NB and SB directions. As for the vehicle volume, the major street 
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volume is defined as 1000 vph, 1500vph and 2000vph and minor street volume is 300 

vph, 450 vph and 600 vph. The Travel Time Measurement function in VISSIM was used 

to assess the pedestrian delay (s) and vehicle delay (s). The simulation time is 7200 

seconds with 60 seconds as the interval. For each simulation scenario, the simulation 

results are from the averages of five runs. 

The dataset for pedestrian delay model in this study was collected in VISSIM, which 

has a total sample size of 5670. The dataset, which was divided into two sub-datasets, 

includes 3780 training data points and 1890 validation data points. The data collected in 

VISSIM included the pedestrian delay(sec), the vehicle delay(sec), the minimum green 

time for vehicles(sec), the pedestrian arrival rate(pps), the distance from HAWK to 

intersection(ft), the major street vehicle arrival rate(vps) and the minor street vehicle 

arrival rate(vps). Three distances from HAWK to intersection data were randomly 

selected from the normal distribution N (200, 50) within the range from 100 to 300. The 

length of minimum green time for vehicles, which means the minimum HAWK’s “off” 

duration between two activations, impacts the pedestrian delay and the vehicle delay 

significantly (27). Five minimum green time for vehicles data were randomly selected 

from the normal distribution N (40, 10) within the range from 10 to 70. It is assumed that 

the pedestrian delay at HAWK is affected by minimum green time for vehicles and 

pedestrian arrival rate.  
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3.2 Investigation of the Recommended Distance in 2009 MUTCD 

When a HAWK is very close to the upstream intersection, vehicles will back up 

towards the upstream direction. This could potentially lead to spillback into the 

intersection area and cause adverse impact on the operation of the upstream intersection. 

To avoid frequent occurrences of such spillback, an adequate distance between the 

HAWK and the upstream intersection should be provided. According to the 2009 

MUTCD, HAWK should be installed at least 100 feet from a stop-controlled intersection. 

To evaluate this distance, some calculations need to be made.  

Based on the HAWK operations mentioned in the previous section, the “on” period 

of HAWK is composed of the clearance interval of vehicles (step 2 and 3 in previous 

section) and the pedestrian-walking period (step 4 and 5 in the previous section). 

Normally, the clearance interval of vehicles is at least set as 8 seconds. To calculate the 

pedestrian-walking period, we have the following assumptions:  

 Lane width=12 ft, 

 Four-lane street,  

 Pedestrian walking speed=3 ft/s (3.0 fps total walking speed is adopted 

considering the elder people). 
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Based on the above assumptions, the “on” period of HAWK is calculated to be 

12ft*4lanes/3+8sce=24sec. Assuming there is an arriving vehicle platoon during the “on” 

period of the HAWK, the waiting vehicles at the HAWK will accumulate to 12 per lane 

assuming a 2 second headway between vehicles in the arriving platoon. Assuming a 25 ft 

spacing between two consecutive vehicles in the queue, the queue behind the HAWK 

can grow to a length of 300ft if there is enough upstream vehicular demand. Considering 

the fact that it takes some time to clear the queue once the HAWK activation is over, 

more distance should be provided if the vehicular demand is high. Based on this 

assumption, for a stop-controlled intersection 100 feet is certainly not enough for 

accommodating the queue if there are platoon arrivals and may cause adverse impact on 

the operation of the upstream stop-controlled intersection. It also should be noticed that 

obviously arrivals in a dense platoon are unlikely from a stop-controlled intersection. 

However, a 100 ft distance can only accommodate 4 vehicles in the queue, with an 

arrival rate of 600vphpl, spillback will likely to occur with uniform/random arrivals.  
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3.3 Pedestrian Delay Model with HAWK 

3.3.1 Preliminary Data Analysis 

It is necessary to explore the distribution of simulated HAWK pedestrian delays as a 

preliminary analysis before modeling in order to determine the pedestrian delay model. 

Distributions including Normal, Log-normal, Weibull, Gamma and Beta were 

investigated and summarized as shown in Figure 6.  

 

Figure 6 Fitting Distributions for Simulated HAWK Pedestrian Delays 

Based on the visual inspection, all distributions performed similarly and it is very 

difficult to determine which distribution the HAWK pedestrian delay possesses. In order 
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to determine the best fitted distribution, the goodness of fit by the Chi-square test was 

conducted and the results are summarized in Table 2. 

Table 2 Goodness of Fit for Tested Distributions 

Distribution Probability Density Function 
Estimated 

Parameters 
P-value 

Normal      
 

     
 

 
      

    

 =26.89 

 =6.63 
0.1312 

Log-Normal          
 

     
 

 
        

    
 =3.26 

 =0.27 
<0.01 

Weibull           
 

 
 
 

 
 
   

   
 
 
 
 
     

                                 

  
 =29.44 

 =4.4 
<0.01 

Gamma 
             

  
 
 

      
           

   

 =15.17 

 =1.77 
<0.01 

Beta          
      

        
           

 =4.89 

 =5.03 
<0.01 

According to Table 2, it is obvious that normal distribution has the highest p-value 

over 0.05, which means the hypothesis that the pedestrian delay is derived from the 
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normal distribution cannot be rejected. Besides of that, all the other p-values are less 

than 0.05 and their corresponding hypothesis are rejected. Based on the preliminary 

result, the pedestrian delay is derived from the normal distribution. Basically speaking, 

the linear regression model can be used to model the HAWK pedestrian delay. However, 

the linear regression model can only deal with the response variable which has a linear 

relation with factors but the generalized linear model (GLM) is capable to deal with the 

response variable which has a non-linear relation with factors. The 

linear regression model is included in the GLM as a specific example when specifying 

the identity link function under a normal distribution. In this study we assume the 

pedestrian delay is non-linear with factors. Therefore the normal generalized linear 

model is finally selected to model the HAWK pedestrian delay.  

3.3.2 Generalized Linear Model 

 The generalized linear model (GLM) introduced by Nelder and Wedderburn (13) is 

a statistical regression model integrating linear regression, logistic regression and 

Poisson regression. Generalized linear model conducts linear regression by connecting 

the linear model with the related response variable through a link function as a flexible 

generalization of ordinary least squares regression. Maximum-likelihood estimation, a 
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widely used method to produce the estimation, is usually adopted to estimate parameters 

in the generalized linear model.  

 In the generalized linear model, the dependent variable   denoted by observations 

             as the outcome is assumed to be derived from a particular distribution in 

the exponential family including the normal, exponential, gamma, chi-square, beta, 

binomial, Bernoulli, Poisson and many others. The mean of the dependent variable   

can be expressed by the independent variables                 . The general 

framework of GLM can be demonstrated as follows: 

                           

 

   

                                 

                                                                          

where      is the expected value (mean) of the outcome  ,   is the linear predictor, 

   is a linear combination parameter, and   is the link function. The link function 

provides the relationship between the expected value of the dependent variable   and 

the systematic component of the model. There are a lot of link functions commonly used 

in the modeling. According to the preliminary data analysis above, the HAWK 

pedestrian delay is assumed to have a normal distribution with mean   and variance    

denoted by           . The probability density function is defined as: 

     
 

     
 

 
      

                                                               



32 
 

The combination parameters    are typically estimated by the maximum likelihood 

estimation using an iteratively reweighted least squares in this study. When determining 

parameters by maximum likelihood estimation, it is usually easier to work with the log 

likelihood function. Based on quantities such as  ,  ,  , and   introduced above, the 

working dependent variable can be calculated: 

            
  

  
                                                           

where    is the estimated linear predictor using a trial estimate of parameters   , and    

is the fitted value equal to        . Therefore, according to the work conducted by 

Chartrand and Yin (14), the iterative weight is calculated by: 

  
 

 
  

 
 
  
  

 
 

 

                                                                   

where   is one of the parameters of the distribution for observations named as the 

proportionality factor. This weight is inversely proportional to the variance of the 

working dependent variable with the proportionality factor. Finally, the estimated 

parameters     can be determined by the following equation: 

                                                                          

where   is a diagonal matrix of weights with entries  , and   is a response vector 

with entries  . This process is repeated until the difference between two successive 

estimated parameters is lower than a specific threshold value.  
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For demonstration purposes, four functional forms were selected for linking the 

HAWK pedestrian delay with affected factors. These functional forms are very 

frequently used and are described as follows: 

1) Classical Linear:  

                                                             

2) Multiplicative: 

      
    

     
                                                                  

3) Reciprocal: 

        
 

  
     

 

  
       

 

  
                                   

4) Semi-log: 

                                                                   

where: 

   the mean of HAWK pedestrian delays 

            factors affecting the HAWK pedestrian delay;  

            estimated coefficients. 

3.3.3 HAWK Pedestrian Delay Model 

 As mentioned in the simulation study design, the minimum green time for vehicles 

as an important and special factor significantly affected both of pedestrian delay and 
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vehicle delay. Before the modeling, it should be emphasized that the HAWK pedestrian 

delay has nothing to do with the volumes of traffic since the minimum green time for 

vehicles would be operated after activation of HAWK by pedestrians every time, even 

when there is no vehicles. According to statements in terms of the generalized linear 

model, the HAWK pedestrian delay model can be defined as: 

                                                                      

where    is the pedestrian delay,      is the minimum green time for vehicles, and 

           are other factors affecting the delay. 

As the same concept, the vehicle delay can be proved that is derived from the normal 

distribution and can be generalized by GLM as well based upon the same assumption 

stated previously, which can be described as: 

                                                                    

where    is the vehicle delay, and            are factors affecting the vehicle delay, 

which could be different from the factors in the HAWK pedestrian delay.  

The network delay can be demonstrated by the equation as follows: 

   
             

       
                                    

 
                                         

       
       

where    is the weighted network delay,    is the mean arrival rate of pedestrian,    

is the mean arrival rate of vehicles, and   is the weighting coefficient of pedestrian 
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since one pedestrian cannot be considered as the same as a vehicle in the network delay 

calculation.  

Based on the study conducted by Li and Zhang (12), the optimized minimum green 

time for vehicles is the one which could minimize the network delay with certain volume 

combination of vehicles and pedestrians. Hence, let the derivative of the network delay 

with respect to the minimum green time for vehicles equal to zero, which is illustrated as 

the following equation: 

   

     
 

    
                     

                  

       
            

Based on the equation above, we have: 

                                                                             

After substituting the minimum green time for vehicles into Equation 20, the final form 

of the HAWK pedestrian delay model can be re-expressed as follows: 

                                                                        

This pedestrian delay corresponds to the Tmin value that minimizes the total network 

delay.  
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3.3.4 Performance Measure 

 All models with different functional forms were estimated by the following 

methods for the model selection and the goodness of fit (GOF) of the models. The 

methods used in this study are summarized as follows:  

Akaike Information Criterion (AIC) 

AIC is the Akaike information criterion grounded in the concept of information 

theory as a measure of the relative goodness of fit of a statistical model. It is widely 

adopted in the model selection dependent upon the AIC values. Generally, AIC is 

defined as: 

                                                                   

where   is the number of parameters of the model and   is the maximized value of the 

likelihood function for the estimated model. The preferred model is the one with the 

minimum AIC value comparing with those of others.  

Mean Absolute Deviance (MAD) 

MAD is the mean absolute deviation from the mean used to commonly measure the 

average mis-prediction of the model. It is determined by the following equation: 
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where     is the predictive value,    is the observation value, and   is the number of 

samples. 

Mean Squared Predictive Error (MSPE) 

MSPE is the mean square predictive error typically used to quantify the difference 

between the predictive values and corresponding true values with a validation or external 

dataset. It can be expressed as following: 

     
 

 
         

 

 

   

                                                   

3.4 Minimum Green Time for Vehicles 

To determine a minimum green time for vehicles, neither of pedestrian delay nor 

vehicle delay is a proper criterion as small minimum vehicle go-time can reduce 

pedestrian delay while increasing vehicle delay, and vice versa. Considering the 

trade-off between pedestrian delay and vehicle delay, the “minimum weighted network 

delay” is proposed to define the minimum vehicle go-time. In this case, we define the 

weighted network delay as follows in equation 1. It should be noticed that the weighting 

coefficient of pedestrian   is multiplied by the pedestrian delay as 1 second of 

pedestrian delay is of greater concern than 1 second of vehicle delay. The reason is that 

the vehicle number is much larger than the pedestrian number in the whole network, and 
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more importantly, a HAWK is a pedestrian treatment giving pedestrians higher priority. 

If the weightings of the vehicle and the pedestrian are treated equally, the result of the 

network delay will be affected much more by the vehicle delay which is not reasonable. 

   
             

       
                                              

where: 

   = weighted network delay, 

   = pedestrian delay, 

   = pedestrian volume, 

   = vehicle volume,  

k = weighting coefficient of pedestrian, assumed to be 2 in the subsequent analysis, 

   = vehicle delay. 

By comparing the weighted network delay of different minimum vehicle go-time with 

the same volume combination, an optimized minimum vehicle go-time can be found for 

each particular volume combination. 

3.5 Impact of HAWK on Pedestrian Delay and Network Delay 

The pedestrian delay impact from a HAWK is assessed by comparing the pedestrian 

delay in two scenarios (see Figure 8). 
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a) Pedestrians cross the street at the HAWK location 

b) Pedestrians cross at the marked crosswalk at the intersection without a HAWK  

Without HAWK

With HAWK

Figure 7 Simulation Model with HAWK and without HAWK 

Since HAWK is a new type of pedestrian signal in recent years, assessing its impact on 

pedestrian delay can be meaningful for its future application. With different minimum 

vehicle go-times set from 10 sec to 60 sec with a 10 sec interval and different pedestrian 

volume and vehicle volume combinations, HAWK’s impact on pedestrian delay is 
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investigated by comparing pedestrian delay in two scenarios, with HAWK and without 

HAWK. The distance to the stop-controlled intersection is set as 100ft following the 

recommendation in 2009 MUTCD. 
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4. RESULTS AND ANALYSIS 

4.1 Pedestrian Delay under HAWK 

As it clarified in the previous chapter, the dataset for pedestrian delay model in this 

study was collected in VISSIM, which has a total sample size of 5670. The dataset, 

which was divided into two sub-datasets, includes 3780 training data points and 1890 

validation data points. The minimum green time for vehicles and the mean of pedestrian 

arrival rate as the independent variables     and    would be firstly used to model the 

HAWK pedestrian delay by the generalized linear model. The parameter estimation of 

selected function forms for pedestrian delay is demonstrated in the Table 3. Based on the 

result of the significant test shown in Table 3, the minimum green time for vehicles 

(    ) and the pedestrian arrival rate (  ) are significant for pedestrian delay (  ). Table 

4 summarizes the statistical output of four functional forms. Based on the goodness of fit 

statistics, this table demonstrates that the multiplicative function form performs better 

than others. This result was expected since the fact that the multiplicative function could 

capture more variance in the datasets. Therefore, the HAWK pedestrian delay can be 

conducted as: 
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Table 3 Parameter Estimation of Selected Functional Forms for 
Pedestrian Delay 

Functional Form 

Coefficients Standard Errors Prob>Chi-Square 

                           

Classical Linear 6.185 0.4969 7.170 0.9228 0.0208 3.1312 <0.0001 <0.0001 0.0222 

Multiplicative 38.983 0.2384 0.5818 2.0372 0.0079 0.2237 <0.0001 <0.0001 0.0193 

Reciprocal 46.91 -732.6 -0.0772 2.8680 30.9073 0.0235 <0.0001 <0.0001 0.0011 

Semi-log 2.447 0.0188 0.5012 0.0386 0.0008 0.1308 <0.0001 <0.0001 0.0010 

 

Table 4 Statistical Output of Selected Functional Forms for  
Pedestrian Delay 

Functional Form 

Coefficients Pearson Chi-Square 

MAD MSPE AIC 

         DF  Value Value/DF 

Classical Linear 6.185 0.4969 7.170 3777 9740.26 2.579 8.254 102.3 4812.67 

Multiplicative 38.983 0.2384 0.5818 3777 3044.50 0.8061 7.349 80.59 1351.23 

Reciprocal 46.91 -732.6 -0.0772 3777 15802.89 4.184 12.548 133.5 5814.96 

Semi-log 2.447 0.0188 0.5012 3777 4944.92 1.309 7.954 90.55 1895.48 

 

As the same concept stated previously, the vehicle delay was modeled with the 

factors which are the minimum green time for vehicles, denoted as    , the mean of 

vehicle arrival rate for the major approach   , the mean of vehicle arrival rate for the 
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minor approach   , and the distance between HAWK and the intersection   . The same 

four function forms were evaluated in order to select the best one for the generalized 

linear model. Based on the result of the significant test shown in Table 5, the minimum 

green time for vehicles (    ), the major street vehicle arrival rate (    ), the minor 

street vehicle arrival rate (    ) and the distance from HAWK to stop-controlled 

intersection ( ) are significant for vehicle delay (  ). The estimated coefficients, the 

Pearson Chi-Square values, the MAD, MSPE and AIC are summarized in Table 6. It is 

obvious that the multiplicative functional form has better performance than other forms. 

Therefore, the HAWK vehicle delay can be modeled as: 

             
            

          
                              

where      is the vehicle arrival rate for the major approach,      is the vehicle arrival 

rate for the minor approach, and d is the distance between the HAWK and the 

intersection. 
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Table 5 Parameter Estimation of Selected Functional Forms for 
Vehicle Delay 

Functional Form Classical Linear Multiplicative Reciprocal Semi-log 
C

o
ef

fi
ci

en
ts

 

   19.24 119.1 118.7 -0.0481 

   -0.0394 -0.0958 63.46 -0.0024 

   134.8 3.514 -60.84 5.139 

   -41.68 -0.2185 0.7219 -1.458 

   -0.0081 -0.0659 248.3 -0.0035 

S
ta

n
d

a
rd

 E
rr

o
rs

    1.2924 2.311 3.5896 0.0174 

   0.0068 0.0076 10.859 0.0001 

   2.8409 0.0582 1.2526 0.0861 

   8.4348 0.0308 0.2216 0.0346 

   0.0048 0.0263 89.61 0.0001 

P
ro

b
>

C
h

i-
S

q
u

a
re

    <0.0001 <0.0001 <0.0001 0.4795 

   0.0723 0.033 0.1021 0.0673 

   <0.0001 <0.0001 <0.0001 <0.0001 

   <0.0001 <0.0001 <0.0001 <0.0001 

   0.1191 0.0193 0.3084 0.0259 
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Table 6 Statistical Output of Selected Functional Forms for Vehicle Delay 

Functional Form 
Classical 
Linear 

Multiplicative Reciprocal Semi-log 
C

oe
ff

ic
ie

nt
s 

   19.24 119.1 118.7 -0.0481 

   -0.0394 -0.0958 63.46 -0.0024 

   134.8 3.514 -60.84 5.139 

   -41.68 -0.2185 0.7219 -1.458 

   -0.0081 -0.0659 248.3 -0.0035 

Pe
ar

so
n 

C
hi

-S
qu

ar
e DF 3775 3775 3775 3775 

Value 17186 8513 16932 9542 

Val. /DF 4.55 2.25 4.48 2.53 

MAD <0.0001 20.66 11.22 17.35 

MSPE 0.0723 863.2 236.8 758.1 

AIC <0.0001 18501.64 6613.276 12417.23 

 

Given a minimum green time for vehicles, pedestrian and vehicle delay can be 

determined by Equation 30 and 31.  As mentioned in the methodology, based on the 

results above, the network delay can be determined as following: 
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And then, after taking the derivative of the network delay with respect to the minimum 

green time for vehicles, as shown in Equation 32, the minimum green time for vehicles, 

which minimizes the network delay, can be calculated as following: 

     
          

          
                            

    
      

                  

After substitute Equation (33) into Equation (31), the final form of the HAWK 

pedestrian delay corresponding to the optimal network delay is produced as following: 

         
     

          
            

           
          

      

         
  

        
     

          
           

          
      

              
                           

Based on the HAWK pedestrian delay model, it is obvious that the HAWK pedestrian 

delay model is an increasingly monotonic function with respect to the major street 

vehicle arrival rate, the minor street vehicle arrival rate and the pedestrian arrival rate. 

Meanwhile the HAWK pedestrian delay model is a decreasingly monotonic function 

with respect to the distance from HAWK to the stop-controlled intersection and the 

weighting coefficient of pedestrian  . It should be noted that the weighting coefficient 

of pedestrian   is supposed to be determined by agencies based upon their different 

emphasis for pedestrian safety.  

A total of 1890 samples were applied to validate the performance of the developed 

HAWK pedestrian delay model. Table 7 summarized the statistical results for the 
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validation. It can be seen that the developed HAWK pedestrian delay model performed 

well with a low MAD of 6.79 and a MSPE of 65.8 considering the VISSIM simulation 

HAWK pedestrian delay as the ground truth value. 

Table 7 Performance of the Developed Model in the Validation 

HAWK Pedestrian Delay Min. Max. Average Std. MAD MSPE 

Simulation 8.3 40.67 27.06 4.81 - - 

Developed Model 6.7 41.51 30.54 5.22 6.79 65.8 

4.2 Minimum Green Time for Vehicles 

The minimum vehicle go-time is evaluated from 10 seconds to 60 seconds at 10 

second intervals. The distance from HAWK to the stop-controlled intersection is set as 

100 feet. The minimum vehicle go-time is determined by weighted network delay 

calculated with equation 24. Table 6 summarizes minimum vehicle go-time for all 

vehicle/pedestrian combinations. The delay components and the weighted network delay 

are also presented in the table. The results show that when the vehicle volume is fixed, 

higher pedestrian volume favors smaller minimum go-time; when pedestrian volume is 

fixed, higher vehicle volume favors larger minimum go-time.  

The results show that there is no “perfect” vehicle go-time suitable for all cases. 

Different minimum vehicle go-time should be used based on different volume 
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combinations. Figure 7, developed from the results of Table 8, shows that when a 

minimum vehicle go-time decreases from 20 sec, the weighted network delay goes 

higher sharply; when the minimum vehicle go-time increases from 20 sec, the weighted 

network delay tends to go up slightly smoothly. This phenomenon indicates that 20 sec 

is likely a reasonable practical minimum for the vehicle/pedestrian volume combinations 

evaluated in this study.  

The weighted network delay largely depends on the weighting coefficient of 

pedestrian k. With the increase of k, the minimum weighted network delay decreases and 

the minimum vehicle go-time decreases as pedestrians will have more effect on the 

whole network. It should also be noted that we only provide a theoretical way to 

determine the best value for minimum vehicle go-time. In practice, a likely procedure is 

to set a value to avoid overly long queue in front of the queue or spillback towards 

upstream intersection. This value can be determined rather quickly in a simple approach 

based on arriving vehicle flow rate.  
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Figure 8 Weighted Network Delay for Stop-Controlled Intersection 
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Table 8 Optimization Result of Stop-Controlled Intersection Based on Weighted 
Network Delay 

Minimum Weighted Network Delay (sec/unit), Corresponding Pedestrian Delay 

(sec/person), Corresponding Vehicle Delay (sec/veh) 

Minimum Vehicle Go-Time (sec) 

   M/N 

P 

1000/300 1500/450 2000/600 M/N 

P 

1000/

300 

1500/

450 

2000 

/600                            

50 23.4 7.8 8.9 33.4 40.4 40.0 45.3 79.6 77.7 50 40 60 60 

100 21.1 9.1 10.7 37.4 36.3 36.5 45.3 77.7 74.5 100 30 60 60 

200 17.2 10.6 12.2 26.1 40.7 38.0 36.5 82.8 74.3 200 20 40 40 

300 17.3 10.9 13.1 26.8 43.8 39.4 34.7 84.5 71.6 300 20 40 40 

400 16.5 11.8 13.6 31.2 41.9 38.5 33.0 82.8 67.8 400 20 50 40 

 
 
Note:  

M - One Direction Total Volume (two lanes) of the Major Street (vph);  

N - One Direction Total Volume (two lanes) of the Minor Street (vph);  

P - One Direction Total Volume of Pedestrian (pph); 

   – Pedestrian Delay (sec/person); 

   – Vehicle Delay (sec/veh); 

   – Minimum Weighted Network Delay (sec/unit); 

The previous study provided a general idea of the minimum green time for vehicles 

by comparing the weighted network delay with a different combination of pedestrian 
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volume and vehicle volume. It was assumed that with the proper minimum green time 

for vehicles the whole network delay should be minimized which may provide the most 

benefit to the whole network operations. However, this assumption may have some 

limitations at the same time. Firstly as HAWK is a newly-applied pedestrian beacon, its 

effect on the pedestrian delay needs to be paid more attention so that the vehicle delay 

and the pedestrian delay should not be considered at the same level. In this case, the 

weighting coefficient of pedestrian k needs to be discussed according to different 

situations. For example when the vehicle volume is much larger than the pedestrian 

volume, the weighting coefficient of pedestrian k should be set larger. On the contrary 

when the vehicle volume is not too much larger than the pedestrian volume, the 

weighting coefficient of pedestrian k should be set smaller. Based on this consideration, 

it is difficult to set the weighting coefficient of pedestrian k as generally it is based on 

the experience as there is no specific criterion of k. However without a value of k, the 

minimum green time for vehicles cannot be determined. Secondly although the previous 

study selected and listed several typical scenarios of different vehicle volume and 

pedestrian volume combinations, it is difficult to include all the real world scenarios and 

has some limitations. Also the minimum green time for vehicles selected are from 10 

seconds to 60 seconds at 10 second intervals, which are only some rough estimations and 

cannot describe all the real world situations.    
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Due to all these considerations, a model of the minimum green time for vehicles 

needs to be developed in order to describe the real world situations and provide a more 

specific value of the minimum green time for vehicles. Based on the previous data and 

process of developing the pedestrian delay model, it can be found that the model of the 

minimum green time for vehicles can be developed in the process of developing the 

pedestrian delay model as the minimum green time for vehicles      is an important 

variable in the pedestrian delay model. According to the previous study of the pedestrian 

delay model, the model of minimum green time for vehicles can be developed as 

follows: 

     
          

          
                            

    
      

                  

where      is the minimum green time for vehicles,    is the mean arrival rate of 

pedestrian,      is the vehicle arrival rate for the major approach,      is the vehicle 

arrival rate for the minor approach, d is the distance between the HAWK and the 

intersection, and   is the weighting coefficient of pedestrian. It should be noted that the 

weighting coefficient of pedestrian   is supposed to be determined based on the 

specific real world situation by agencies upon their different emphasis for pedestrian 

safety. 
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4.3 Impact of HAWK on Delay 

Figure 9 shows the pedestrian delay with HAWK under different volume 

combinations and different minimum vehicle go-times. The key findings are: 

  With the increasing of the minimum vehicle go-time, the pedestrian delay 

increases accordingly.   

  Vehicle volume does not appear to affect pedestrian delay with a given 

minimum vehicle go-time. 

 With a certain vehicle volume, when the minimum vehicle go-time is higher than 

50 sec, no matter how the pedestrian volume changes, the pedestrian delay tends 

to be flat. 
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Figure 9 Pedestrian Delays for Stop-Controlled Intersection with Different 

Minimum Vehicle Go-Time 

Figure 10 demonstrates the percent change of the pedestrian delay between with 

HAWK and without HAWK scenarios under different volume combinations as the 

minimum vehicle go-time increases. The change of the pedestrian delay     is given in 

equation 36. 

    
     

  
                                                           

where     is the change percentage of the pedestrian delay,    is the pedestrian delay 

with HAWK.    is the pedestrian delay without HAWK. The key findings are: 

 At high vehicle demand, HAWK reduces pedestrian delay significantly. This 

reduction can be as high as 50% with a small minimum vehicle go-time. 
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 With a low vehicle volume, it appears no matter how the pedestrian volume 

changes, pedestrian delay increases with a HAWK. This phenomenon appears as 

when the vehicle volume is low, pedestrians are likely to cross the street without 

much waiting at marked crosswalk at a stop-controlled intersection while HAWK 

may cause extra delay when there is no vehicle as long as a minimum vehicle 

go-time is adopted. 

 With a high vehicle volume, as the pedestrian volume decreases, the minimum 

green time for vehicles should increases to ensure that HAWK does not cause 

additional vehicle delay. 

 
Figure 10 Percent Change of Pedestrian Delay between With HAWK and Without 

HAWK for Stop-Controlled Intersection 
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5. CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

As a new kind of pedestrian beacon, HAWK was first mentioned in the 2009 

MUTCD. HAWK aims at creating gaps in vehicle traffic to let pedestrians cross 

meanwhile reducing the unnecessary delay of vehicles. The application of HAWK 

aroused curiosity of researchers and was proved that HAWK may increase the pedestrian 

safety. This study focused on investigating the operations of HAWK pedestrian beacon.  

Based on the knowledge of HAWK pedestrian beacon phase sequence, it was 

revealed that the minimum distances from HAWK to a stop-controlled intersection 

recommended by the MUTCD which was 100 feet may not be adequate. This was 

estimated by calculating the length of the vehicles accumulation when there was a traffic 

platoon during “on” time of HAWK. By comparing the vehicles accumulation length 

and the minimum distance from HAWK to stop-controlled intersection, it was obviously 

that with a traffic platoon 100 feet may not be adequate for vehicles accumulation and 

may cause spillback toward the upstream intersection. Besides of that, considering the 

fact that it takes some time to clear the queue once the HAWK activation is over, more 

distance should be provided if the vehicular demand is high.        
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Besides of evaluating the existing recommendations in 2009 MUTCD, as an 

important part of this thesis this study also developed the HAWK pedestrian delay 

models to describe the pedestrian delay with HAWK pedestrian beacon. The generalized 

liner model was applied to analyze the pedestrian delay at a HAWK location. The 

vehicle arrival rate at the major approach, the vehicle arrival rate at the minor approach, 

the pedestrian arrival rate, and the distance between HAWK and the intersection were 

investigated as input factors affecting the pedestrian delay. The dataset was generated in 

simulation scenarios produced by VISSIM and was divided into two parts for training 

and validation. After evaluating four different functional forms, based on the results of 

the goodness of fit test, the multiplicative functional performed better than others with 

lower AIC, MAD, and MSPE in the HAWK pedestrian delay model. Finally by using 

the validation dataset, the results showed that the HAWK pedestrian delay model 

developed in this study was capable of describing the variance of the pedestrian delay 

with satisfactory MAD and MSPE.  

Based on knowledge of HAWK pedestrian beacon operations, as a particular 

element and an important variable of the HAWK pedestrian delay model, the minimum 

green time for vehicles was studied in this thesis. Based on the assumption that the delay 

of the whole network can be minimized with the minimum green time for vehicles, a 

recommendation of the minimum green time for vehicles was given with different 
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pedestrian volume and vehicle volume combinations. It was found that the minimum 

green time for vehicles may vary with different volume combinations. Typically, the 

minimum green time for vehicles of 20 sec is considered to be a practical minimum and 

this value goes up as the vehicle demand increases. To give a better description of the 

minimum green time for vehicles, the model describing the minimum green time for 

vehicles that minimize combined vehicle and pedestrian delay is derived based on the 

developed pedestrian delay models. 

Finally the impact of HAWK on pedestrian delay was investigated by comparing the 

pedestrian delay with HAWK installed at 100 feet from the upstream stop-controlled 

intersection and without HAWK but with the pedestrians cross at the marked crosswalk 

at the stop-controlled intersection. Different volume combinations and minimum green 

time for vehicles were considered in the compilation. It showed that at high vehicle 

demand, HAWK reduces pedestrian delay significantly. However HAWK may cause 

pedestrian delay increase when vehicle demand is low for the stop controlled 

intersection. 

5.2 Future Work 

Although this study provided an effective model for the pedestrian delay at a 

HAWK location, additional studies are needed to add more factors, such as different 
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turning movement combinations or lane configurations, into this model to make it more 

accurate and comprehensive. Additionally, data from the real world are desirable for the 

validation of the developed model. Also needs noting is the fact that we did not consider 

ODs of pedestrians when evaluating the pedestrian delay impact by HAWK. 
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