

E-AMOM: AN ENERGY-AWARE MODELING AND

OPTIMIZATION METHODOLOGY FOR SCIENTIFIC

APPLICATIONS ON MULTICORE SYSTEMS

A Dissertation

by

CHARLES WESLEY LIVELY III

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2012

Major Subject: Computer Engineering

E-AMOM: An Energy-Aware Modeling and Optimization Methodology for Scientific

Applications on Multicore Systems

Copyright 2012 Charles Wesley Lively III

E-AMOM: AN ENERGY-AWARE MODELING AND

OPTIMIZATION METHODOLOGY FOR SCIENTIFIC

APPLICATIONS ON MULTICORE SYSTEMS

A Dissertation

by

CHARLES WESLEY LIVELY III

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Valerie Elaine Taylor
Committee Members, Karen Butler-Purry
 Eun Jung Kim
 Tiffani Williams
Head of Department, Duncan Walker

May 2012

Major Subject: Computer Engineering

 iii

ABSTRACT

E-AMOM: An Energy-Aware Modeling and Optimization Methodology for Scientific

Applications on Multicore Systems. (May 2012)

Charles Wesley Lively III,

B.S.E., Mercer University;

M.S., Texas A&M University

 Chair of Advisory Committee: Dr. Valerie Elaine Taylor

Power consumption is an important constraint in achieving efficient execution on

High Performance Computing Multicore Systems. As the number of cores available on

a chip continues to increase, the importance of power consumption will continue to

grow. In order to achieve improved performance on multicore systems scientific

applications must make use of efficient methods for reducing power consumption and

must further be refined to achieve reduced execution time.

In this dissertation, we introduce a performance modeling framework, E-AMOM,

to enable improved execution of scientific applications on parallel multicore systems

with regards to a limited power budget. We develop models for each application based

upon performance hardware counters. Our models utilize different performance

counters for each application and for each performance component (runtime, system

power consumption, CPU power consumption, and memory power consumption) that

are selected via our performance-tuned principal component analysis method. Models

developed through E-AMOM provide insight into the performance characteristics of

 iv

each application that affect performance for each component on a parallel multicore

system. Our models are more than 92% accurate across both Hybrid (MPI/OpenMP)

and MPI implementations for six scientific applications.

E-AMOM includes an optimization component that utilizes our models to

employ run-time Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic

Concurrency Throttling to reduce power consumption of the scientific applications.

Further, we optimize our applications based upon insights provided by the performance

models to reduce runtime of the applications. Our methods and techniques are able to

save up to 18% in energy consumption for Hybrid (MPI/OpenMP) and MPI scientific

applications and reduce the runtime of the applications up to 11% on parallel multicore

systems.

 v

DEDICATION

This dissertation is dedicated to my loving and supportive parents, Charles W.

Lively Jr. and Irene S. Lively.

 vi

ACKNOWLEDGEMENTS

Graduate school has been an enriching journey that has helped to shape my life

and thought process. For this, I would first like to give thanks to my Lord and Savior

Jesus Christ for guiding me through out this journey and in life. My mother, Irene, has

been an endless source of encouragement and support since birth and I could never repay

her for always encouraging my intellectual interests. My family and friends have been a

great support system over the years and so I would like to thank them for always

offering kind words of encouragement and support (Charles Lively Jr., Vidal Lively,

Charles Beverley Jr., Courtney Carey, Jesse Dukes, Jacqueline Hodge, Carla Marsh, and

Antoinette Davis)

I have to thank my academic family for support throughout this time. My

advisor and mentor, Dr. Valerie Taylor, has taught me what it truly takes to be an

excellent researcher through constant encouragement, hard work, and “refinement”. I

would also like to give thanks to my second advisor, Dr. Xingfu Wu, for always

providing encouraging feedback and support. Special thanks are also in order for my

past research group members Dr. Ayodeji Coker and Dr. Sameh Sharkawi.

 vii

NOMENCLATURE

MPI Message Passing Interface

HPC High Performance Computing

DVFC Dynamic Voltage and Frequency Scaling

DCT Dynamic Concurrency Throttling

 viii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION .. v

ACKNOWLEDGEMENTS .. vi

NOMENCLATURE ... vii

TABLE OF CONTENTS .. viii

LIST OF FIGURES .. x

LIST OF TABLES .. xv

1. INTRODUCTION .. 1

 1.1 Research Challenges on Multicore Systems .. 8
 1.2 Modeling Infrastructure ... 11
 1.3 Related Work ... 16

2. PROPOSED PERFORMANCE MODELING SCHEME 27

 2.1 Energy-Aware Modeling and Optimization Methodology (E-AMOM) 27
 2.2 Performance-Tuned Principal Component Analysis Method 30
 2.3 Application Optimization Methods .. 34
 2.4 Modeling Approaches Leveraged .. 37

3. PERFORMANCE-POWER TRADE-OFFS OF MPI AND HYBRID

APPLICATIONS .. 50

 3.1 Parallel Multicore Systems .. 50
 3.2 Experimental Environment .. 52
 3.3 Experimental Results ... 53
 3.4 Summary .. 68

 ix

Page

4. POWER-AWARE PERFORMANCE MODELS OF SCIENTIFIC
APPLICATIONS………………………………………………......…………….. 70

 4.1 Performance-Tuned Principal Component Analysis Methodology 70
 4.2 HPC Applications .. 81
 4.3 Experimental Results ... 85
 4.4 Summary .. 149

5. OPTIMIZATION OF HYBRID AND MPI SCIENTIFIC APPLICATIONS 152

 5.1 Software-Based Power Reduction Methods .. 152
 5.2 Optimization Methodology for Application Kernels 153
 5.3 Loop Optimizations ... 160
 5.4 Experimental Results ... 161
 5.5 Summary .. 184

6. SUMMARY AND FUTURE WORK .. 185

 6.1 Summary .. 185
 6.2 Future Work ... 186

REFERENCES ... 189

VITA ... 199

 x

LIST OF FIGURES

FIGURE Page

 1 Hex-Core AMD Opteron [60] .. 2

 2 Predicted Power Requirements for Exascale Systems [38] 4

 3 Multiple Metrics Modeling Infrastructure [51] .. 12

 4 Prophesy Framework [63] .. 13

 5 PAPI Framework [56] .. 14

 6 PowerPack Framework .. 15

 7 E-AMOM Schema ... 29

 8 E-AMOM Integration into MuMMI .. 30

 9 Initial Hierarchical Multicore Modeling Framework 38

 10 Modeling Assertions Framework ... 41

 11 Matrix-Matrix Multiply MA Profile .. 42

 12 Matrix-Matrix Multiply Model .. 43

 13 Matrix-Matrix Sensitivity Analysis ... 44

 14 Power for MPI BT Executed on 1 Node ... 55

 15 Power for Hybrid BT on 1 Node .. 56

 16 Spearman and Pearson Correlation Comparison 72

 17 PCA Analysis Example .. 78

 18 Average Error of BT-MZ Hybrid .. 87

 19 Scatterplot of BT-MZ Hybrid for Runtime .. 88

 xi

 Page

 20 Scatterplot of BT-MZ Hybrid for System Power Consumption 89

 21 Scatterplot of BT-MZ Hybrid for CPU Power Consumption 90

 22 Scatterplot of BT-MZ Hybrid for Memory Power Consumption 91

 23 Average Error of BT-MZ MPI ... 92

 24 Scatterplot of BT-MZ MPI for Runtime .. 93

 25 Scatterplot of BT-MZ MPI for System Power Consumption 94

 26 Scatterplot of BT-MZ MPI for CPU Power Consumption 95

 27 Scatterplot of BT-MZ MPI for Memory Power Consumption 96

 28 Average Error of SP-MZ Hybrid ... 97

 29 Scatterplot of SP-MZ Hybrid for Runtime .. 99

 30 Scatterplot of SP-MZ Hybrid for System Power Consumption 100

 31 Scatterplot of SP-MZ Hybrid for CPU Power Consumption 101

 32 Scatterplot of SP-MZ Hybrid for Memory Power Consumption 102

 33 Average Error of SP-MZ MPI ... 103

 34 Scatterplot of SP-MZ MPI for Runtime ... 104

 35 Scatterplot of SP-MZ MPI for System Power Consumption 105

 36 Scatterplot of SP-MZ MPI for CPU Power Consumption 106

 37 Scatterplot of SP-MZ MPI for Memory Power Consumption 107

 38 Average Error of LU-MZ Hybrid .. 109

 39 Scatterplot of LU-MZ Hybrid for Runtime ... 110

 40 Scatterplot of LU-MZ Hybrid for System Power Consumption 111

 xii

 Page

 41 Scatterplot of LU-MZ Hybrid for CPU Power Consumption 112

 42 Scatterplot of LU-MZ Hybrid for Memory Power Consumption 113

 43 Average Error of LU-MZ MPI .. 115

 44 Scatterplot of LU-MZ MPI for Runtime .. 116

 45 Scatterplot of LU-MZ MPI for System Power Consumption 117

 46 Scatterplot of LU-MZ MPI for CPU Power Consumption 117

 47 Scatterplot of LU-MZ MPI for Memory Power Consumption 118

 48 Average Error of GTC Hybrid ... 120

 49 Scatterplot of GTC Hybrid for Runtime .. 121

 50 Scatterplot of GTC Hybrid for System Power Consumption 122

 51 Scatterplot of GTC Hybrid for CPU Power Consumption 123

 52 Scatterplot of GTC Hybrid for Memory Power Consumption 124

 53 Average Error of GTC MPI ... 125

 54 Scatterplot of GTC MPI for Runtime .. 126

 55 Scatterplot of GTC MPI for System Power Consumption 127

 56 Scatterplot of GTC Hybrid for CPU Power Consumption 128

 57 Scatterplot of GTC Hybrid for Memory Power Consumption 129

 58 Average Error of PMLB Hybrid .. 130

 59 Scatterplot of PMLB Hybrid for Runtime ... 131

 60 Scatterplot of PMLB Hybrid for System Power Consumption 132

 61 Scatterplot of PMLB Hybrid for CPU Power Consumption 133

 xiii

 Page

 62 Scatterplot of PMLB Hybrid for Memory Power Consumption 134

 63 Average Error of PMLB MPI .. 135

 64 Scatterplot of PMLB MPI for Runtime .. 136

 65 Scatterplot of PMLB MPI for System Power Consumption 137

 66 Scatterplot of PMLB MPI for CPU Power Consumption 138

 67 Scatterplot of PMLB MPI for Memory Power Consumption 139

 68 Average Error of Parallel EqDyna Hybrid ... 140

 69 Scatterplot of EqDyna Hybrid for Runtime ... 141

 70 Scatterplot of EqDyna Hybrid for System Power Consumption 142

 71 Scatterplot of EqDyna Hybrid for CPU Power Consumption 143

 72 Scatterplot of EqDyna Hybrid for Memory Power Consumption 144

 73 Average Error of EqDyna MPI .. 145

 74 Scatterplot of EqDyna MPI for Runtime ... 146

 75 Scatterplot of EqDyna MPI for System Power Consumption 147

 76 Scatterplot of EqDyna MPI for CPU Power Consumption 148

 77 Scatterplot of EqDyna MPI for Memory Power Consumption 149

 78 Average Error of All Hybrid Applications .. 150

 79 Average Error of All MPI Applications ... 151

 80 Overview of Optimization Scheme .. 156

 81 Example Application Control Flow ... 157

 82 Per Kernel Predictions for Applications .. 159

 xiv

 Page

 83 Applying Optimizations to an Application .. 162

 xv

LIST OF TABLES

TABLE Page

 1 Top 500 Supercomputers in the World (Top 500 List) [64] 3

 2 Hardware Performance Counters ... 32

 3 Kernel Coupling Values for M-M Kernel .. 47

 4 System Configuration of Dori .. 53

 5 Overview of HPC Applications ... 54

 6 Runtime and Energy Comparison for OpenMP and MPI BT on 1 Node .. 57

 7 Energy and Runtime Comparison of MPI and Hybrid BT 58

 8 Energy and Runtime Comparison of MPI and Hybrid PMLB Application 60

 9 Energy and Runtime Comparison of MPI and Hybrid GTC Application . 62

 10 MPI and Hybrid BT on 4x4 (16 Cores) Using Frequency Scaling 64

 11 GTC Power Profiling on 4x4 (16 Cores) Using Frequency Scaling 66

 12 Function Comparison of GTC Using Frequency Scaling 67

 13 Reduced Performance Counters and Correlation Value 73

 14 Reduced Performance Counters and Regression Coefficients 75

 15 Reduced Performance Counters and Regression Coefficients-Step 5 76

 16 Final Multivariate Regression Model .. 79

 17 Overview of HPC Applications ... 82

 18 Regression Coefficients for BT-MZ Hybrid .. 86

 19 Regression Coefficients for BT-MZ MPI .. 92

 xvi

 Page

 20 Regression Coefficients for SP-MZ Hybrid .. 97

 21 Regression Coefficients for SP-MZ MPI ... 103

 22 Regression Coefficients for LU-MZ Hybrid .. 108

 23 Regression Coefficients for LU-MZ MPI .. 114

 24 Regression Coefficients for GTC Hybrid .. 119

 25 Regression Coefficients for GTC MPI .. 125

 26 Regression Coefficients for PMLB Hybrid ... 130

 27 Regression Coefficients for PMLB MPI .. 135

 28 Regression Coefficients for Parallel EqDyna Hybrid 140

 29 Regression Coefficients for Parallel EqDyna MPI 145

 30 Performance of Hybrid BT-MZ Application and Optimization (Class C) 163

 31 Performance of Hybrid BT-MZ Application and Optimization (Class D) 164

 32 Performance of MPI BT-MZ Application and Optimization (Class C) 165

 33 Performance of MPI BT-MZ Application and Optimization (Class D) 166

 34 Performance of Hybrid SP-MZ Application and Optimization (Class C) . 167

 35 Performance of Hybrid SP-MZ Application and Optimization (Class D) . 168

 36 Performance of MPI SP-MZ Application and Optimization (Class C) 169

 37 Performance of MPI SP-MZ Application and Optimization (Class D) 170

 38 Performance of Hybrid LU-MZ Application and Optimization (Class C) 171

 39 Performance of Hybrid LU-MZ Application and Optimization (Class D) 172

 40 Performance of Hybrid GTC Application and Optimization (50ppc) 173

 xvii

 Page

 41 Performance of Hybrid GTC Application and Optimization (100ppc) 174

 42 Performance of MPI GTC Application and Optimization (50ppc) 176

 43 Performance of MPI GTC Application and Optimization (100ppc) 177

 44 Performance of Hybrid PMLB Application and Optimization (128) 178

 45 Performance of Hybrid PMLB Application and Optimization (256) 179

 46 Performance of MPI PMLB Application and Optimization (128) 180

 47 Performance of MPI PMLB Application and Optimization (256) 180

 48 Performance of Hybrid EqDyna Application and Optimization (50ppc) .. 182

 49 Performance of MPI EqDyna Application and Optimization (50ppc) 183

1

1. INTRODUCTION

 In high performance computing, the current trend makes use of chip

multiprocessors (multicore processors) for computing systems. The incorporation of

uniprocessors in computing has reached both performance and physical limitations. For

example, the processing speeds for uniprocessors are no longer able to scale with

Moore’s law [34]. Therefore, the use of multicore processors has been sought as an

alternative avenue to maintain the gains in performance that have occurred previously in

the computing field. Recently, interconnect technologies have posed limits on the

capabilities of systems to continue the scaling of Moore’s law.

It is expected that the number of cores available on a chip will continue to

increase and the hierarchical nature of parallel systems will also continue to increase. As

we move toward increased performance of high-performance parallel computing

systems, it is expected that the complexity of the organization will increase as well as the

power consumption [34][37]. In this work, we propose a methodology, called E-

AMOM, to model and analyze the performance characteristics of scientific applications

on high-end parallel systems with multicore processors.

Within the past decade, several chip manufacturers have introduced multicore

processors. Since their introduction, multicore chips have been utilized in parallel

computing environments by scientific laboratories, data centers, and academic chip, was

introduced in 2001 with original clock speeds in the range of 1.1 Ghz to 1.3 Ghz. The

This dissertation follows the style of IEEE Trans. on Parallel and Distributed Systems.

2

first dual-core processor, the IBM POWER4 chip, was introduced in 2001 with original

clock speeds in the range of 1.1 to 1.3 Ghz [33].

Later, Intel deployed its first dual-core chip, the Pentium D, in 2005 with clock

speeds in the range of 3.0 – 3.2 Ghz [17]. In 2007 Intel introduced the world’s first

quad- core processor, Clovertown [18]. Currently, the use of multicores in computing

has become the norm. Hence, there is a greater need to model how large-scale scientific

applications perform and scale efficiently on these systems. Specifically, it remains to be

understood what components of these emerging systems influence the achievable

performance of large-scale scientific applications. Existing multicore compute systems

can be configured hierarchically with multiple multicore chips within a node. These

systems also utilize various levels of sharing for their memory subsystems.

Figure 1. Hex-Core AMD Opteron [60]

3

The configurations of current parallel compute systems provide an arrangement

in hierarchical manner for accessing the memory subsystems. For example, the hex-core

AMD Opteron processor, shown in Figure 1 [60], is used in the Jaguar Cray XT5

system, available at Oak Ridge National Laboratory. Each core on the processor has

both a 128 KB L1 cache and 512KB L2 cache. A 2MB L3 cache is shared amongst all

four cores on the quad-core Opteron. In addition, each node of the XT5 system contains

two hex-core chips providing 12 processors per node.

Table 1. Top 500 Supercomputers in the World (Top 500 List) [64]

Rank Site
Number

of Cores

Rmax

(Tflops)

Rpeak

(Tflops)

Power

(KW)

1

RIKEN Advanced Institute

for Computational Science

(AICS), Japan

705024 10510.00 11280.38 12659.9

2
National Supercomputing

Center in Tianjin, China
186,368 2566.00 4701.00 4040.00

3
DOE/SC/Oak Ridge

National Laboratory, USA
224,162 1759.00 2331.00 6950.60

4

National Supercomputing

Centre in Shenzhen

(NSCS), China

120,640 1271.00 2984.30 2580.00

5
GSIC Center, Tokyo Inst.

of Technology Japan
73,278 1192.00 2287.63 1398.61

4

As parallel computing systems in HPC continue to incorporate more cores onto

the system, the amount of power required to run these systems continues to be a major

performance bottleneck [22]. Table 1 provides an overview of the power requirements

of the top 5 supercomputing systems in the world based on rankings for the Top 500 list

[64]. This table illustrates the power requirements that the top systems in the world

currently required in order to run large-scale scientific applications.

Figure 2. Predicted Power Requirements for Exascale Systems [38]

5

 Figure 2 outlines the predicted power requirements for future systems in high

performance computing [38]. Power will be the leading contributor in energy costs as

systems continue to grow at the exascale HPC level [34]. Costs are already a primary

concern with existing supercomputing centers. For example, the expected upgrade to

Oak Ridge National Laboratory’s flagship machine will cost more than $96 Million as a

multiphase project. Projections indicate that for large-scale systems reducing the power

consumption by 1 megawatt will result in $1 million in savings per year [22].

As high performance computing systems become more complex and hierarchical

in nature it is important that scientific applications are able to effectively make use of

these systems. This dissertation provides a framework for achieving improved execution

of an application on a high performance computing system given a limited power

budget. Researchers and application developers need appropriate methods to understand

how to improve the performance and power consumption of their application. Our

modeling framework is useful to HPC users in the following ways:

• E-AMOM can be used to obtain the necessary application performance

characteristics to determine application bottlenecks on a given system with

regards to execution time and power consumption for the system, CPU, and

memory components.

• E-AMOM can be used to improve the performance of the application with

regards to applying DVFS and DCT to reduce power consumption and

making algorithmic changes to improve power consumption.

• E-AMOM can be used by supercomputer schedulers to provide performance

6

predictions (about execution time and power requirements) for scheduling

methods used with systems with a fixed power budget.

 The contributions of this dissertation to the current literature of evaluating performance-

power tradeoffs can be summarized in the following points:

1. We present a performance-tuned principal component analysis method for

identifying application characteristics that affect performance of the application.

2. We present accurate performance models of Hybrid (MPI/OpenMP) and MPI

implementations of scientific applications. Our models are able to accurately

predict runtime and power consumption of the system, CPU, and memory

components across different number of processors, frequency settings,

concurrency settings, and application inputs.

3. Our models are used to determine appropriate frequency and concurrency

settings for application kernels to reduce power consumption.

4. E-AMOM is used to optimize Hybrid and MPI scientific applications to improve

cache utilization through loop blocking and loop unrolling techniques.

5. Our combined optimization strategy, developed in E-AMOM, is able to reduce

energy consumption of Hybrid and MPI scientific applications by as much as

18% on multicore systems for six applications.

The publications resulting from this work are the following:

• Charles Lively, Xingfu Wu, Valerie Taylor, Shirley Moore, Hung-Ching

7

Chang, Chun-Yi Su and Kirk Cameron, Power-Aware Predictive Models of

Hybrid (MPI/OpenMP) Scientific Applications on Multicore Systems,

International Conference on Energy-Aware High Performance

Computing(EnA-HPC2011), September 2011.

• Charles Lively, Xingfu Wu, Valerie Taylor, Shirley Moore, Hung-Ching

Chang, and Kirk Cameron, Energy and Performance Characteristics of

Different Parallel Implementations of Scientific Applications on Multicore

Systems, International Journal of High Performance Computing Applications

(IJHPCA), Volume 25 Issue 3, August 2011, pp. 342 – 350.

• Charles Lively, Sadaf Alam, Jeffrey Vetter, and Valerie Taylor, A

Methodology for Developing High Fidelity Communications Models for

Large-scale Applications on Multicore Systems, the 20th International

Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD 2008), IEEE Computer Society Press, Oct. 29-Nov. 1, 2008,

Campo Grande, Mato Grosso do Sol, Brazil.

The remainder of this section identifies the different requirements and challenges

with respect to modeling and improving performance of scientific applications for

reducing power consumption and provides a discussion about related work. The

remainder of this dissertation is organized as follows: Section two provides an overview

of E-AMOM and presents some background on the problem. Section three presents

preliminary experimental results, which provide the motivation for our modeling and

optimization framework. Section four presents the performance models of the Hybrid

8

and MPI applications and analysis. Section five discusses optimization techniques and

presents optimization results of Hybrid and MPI scientific applications. The final

section presents the summary and future work that will expand upon this dissertation.

1.1 Research Challenges on Multicore Systems

The importance of the detailed analysis of multicore systems and the applications

that run on them is directly related to the continuous sustainability of improved

performance as dictated by Moore’s law [38]. If computing is to continue making the

performance gains experienced during the 1990s, an explicit parallelism is needed in

applications and architectures. Therefore, as the number of cores on multicore

processors continue to grow there are a number of challenges that affect the performance

of large-scale scientific applications are executed on multicore compute systems. These

challenges include memory utilization, concurrency and locality, and power and energy

utilization.

The issue of performance in scientific computing can be seen as the ability of an

application to efficiently utilize a multicore compute system with respect to execution

time, power and energy, and utilization of the memory subsystem. These challenges are

the driving forces behind discovering new and better technologies [4]. These challenges

present obstacles that must be addressed if multicore systems are able to reach their full

potential for performance. The obstacles that these challenges present are explained in

the following subsections.

9

1.1.1 Energy and Power Challenge

As the utilization of multicore processors continues to increase the power

consumption of these systems becomes a problem in maintaining stability of the system.

Power in a multicore compute system consists of the power utilized by the CPUs, main

memory, interconnects, and storage. Power utilized by main memory includes the total

energy needed to refresh main memory, the number of independent accesses per second,

and the data bandwidth needed to move accessed data. Additionally, the power required

to move computational data through various interconnect levels, such as on-chip,

between chips, within a node, and between nodes, can be in the order of 1-3 pJ [38].

Existing compute systems utilize ten’s of thousands of processing cores that

requires massive amounts of power [27]. Currently, the fastest supercomputing system

in the world requires more than 12MWatts of power in order to achieve 10,510 Tflops,

when such systems utilize such massive amounts of power this increases operating costs,

and decreases the long-term lifecycle of the compute systems. Improving the power

utilization of parallel systems that utilize multicore platforms will reduce overall

maintenance costs, system failures, and increase the active time that the system can be

used by researchers.

In this section, we discuss two topics that are of high importance for meeting the

performance expectations of scientific applications with regards to energy and power

consumption: power prediction and performance-power optimization.

10

1.1.1.1 Power Prediction

Within the field, the ability to predict or accurately estimate the power

consumption of scientific applications has posed a great challenge in multicore systems

and emerging architectures. Determining the most efficient implementation to use for

executing an application can be a cumbersome task that requires comparative analysis of

the application’s implementation for different datasets. In order, to predict and model

the application one needs to understand the application characteristics that will affect

performance of the application on the system.

In this dissertation, we address the power prediction challenge in parallel

multicore systems modeling scientific applications using E-AMOM. We identify the

application characteristics, through performance hardware counters, that affect power

consumption of the application. In addition, we determine the similar and different

characteristics between MPI and Hybrid implementations of an application that affect

performance.

1.1.1.2 Power-Aware Optimization

Within the field, reducing the amount of power and energy consumed by a

scientific application on multicore parallel systems poses a tremendous challenge. The

amount of power required to run each of the fastest supercomputer systems for one year

can exceed the power requirements of a city of 40,000 people [27]. In addition, it is

expected that future exascale systems will be required at least 40 Gigaflops/Watt in order

to maintain expected performance improvements for these systems [38].

11

In order to reduce power consumption novel methods must be utilized by both

hardware vendors and application developers to reduce the power and energy

requirements of scientific applications. Methods to reduce power consumption often

employ using dynamic frequency and voltage scaling (DVFS) to reduce power and

energy consumption [15][19][20][34][40][58]. However, additional methods must also

be incorporated to further reduce the power consumption of an application, such as

optimizing the application to better make use of the memory sub-system to reduce

runtime and power consumption per workload. In this dissertation, will utilize DVFS

and DCT to reduce power consumption on multicore systems and optimize the

application using loop blocking and loop unrolling for further reduction in runtime and

power consumption.

1.2 Modeling Infrastructure

In this work, we use MuMMI (Multiple Metrics Modeling Modeling

Infrastructure) [51], which facilitates systematic measurement, modeling, and prediction

of performance, power consumption and performance-power trade-offs for multicore

systems. This dissertation work will be incorporated into MuMMI for the modeling and

prediction components. Figure 3 provides an overview of the MuMMI framework used

in this work. The MuMMI framework builds upon three existing frameworks: Prophesy

[63], PowerPack [28], and PAPI [56]. We use the SystemG power-aware cluster to

conduct our experiments.

12

Figure 3. Multiple Metrics Modeling Infrastructure [51]

1.2.1 Prophesy

Prophesy is an infrastructure for analyzing and modeling the performance of

parallel and distributed applications. The core component of Prophesy is a relational

database that allows for the recording of performance data, system features and

application details. The overall framework for Prophesy is illustrated in Figure 4 and

consists of three major components that include: data collection, data analysis, and three

central databases.

13

 Figure 4. Prophesy Framework [63]

Prophesy allows for automatic instrumentation of codes at the level of basic

blocks, procedures, or loops. In addition, a user can specify instrumentation at different

granularities as well as instrument the code manually. Data collected using prophesy can

be uploaded to the performance database and used to predict the performance of

scientific applications under different system configurations.

1.2.2 PAPI

The Performance Application Programming Interface (PAPI), shown in Figure 5,

originated at the University of Tennessee’s Innovative Computing Laboratory as a

14

project aimed at providing a portable, standardized API to access hardware performance

counters [56]. The performance counters available on PAPI can be used by application

developers to gain additional insight into the performance of code sections in scientific

applications. PAPI presents a portable API that can be used for accessing performance

counters within an application on different systems through code instrumentation.

Figure 4 provides an overview of the PAPI API and Framework.

Figure 5. PAPI Framework [56]

1.2.3 PowerPack Framework

We used PowerPack 3.0 [28], shown in Figure 6, which provides power profiling

information for advanced execution systems, to measure the power consumption for our

applications running on the SystemG platform. The PowerPack framework shown in

Figure 4 is a collection of software components, including libraries and APIs, which

15

enable system component-level power profiling correlated to application functions.

PowerPack obtains measurements from power meters attached to the hardware of a

system. The framework includes APIs and control daemons that use DVFS (dynamic

voltage and frequency scaling) to enable energy reduction with very little impact on the

performance of the system. As multicore systems evolve, the framework can be used to

indicate the application parameters and the system components that affect the power

consumption on the multicore unit. PowerPack allows the user to obtain direct

measurements of the major system components’ power consumption, including the CPU,

memory, hard disk, and motherboard.

Figure 6. PowerPack Framework

In this work, power consumption is measured on one main node and then

remapped to other nodes on the system. The remapping method is used because of the

16

limited number of power measurement instruments provided across the system. When

executing an application, the PowerPack API and data acquisition measurements are

used to provide for fully automated application profiling of power consumption.

1.3 Related Work

Several techniques have been used for predicting the power consumption of

scientific application on parallel systems and reducing the power consumption. The

most common techniques used for predicting or estimating the power consumption

involve using system-level hardware counters to estimate the power consumption of the

application. These techniques often use the same set of performance hardware counters

for estimating the power consumption of the application. Methods for reducing power

consumption have leveraged the load-imbalance of the applications to reduce frequency

during communication phases within an application.

The use of performance counters to predict power consumption has been

explored in previous work [9][10][17][18][19][48]. In general, this work identifies a set

of common performance counters to be used across all of the applications considered.

These previous methods develop a unified model using a group or class of applications

to estimate power consumption. This approach measures activity on the system and

correlates it to the power consumption being used by the application. The same counters

and correlation coefficients are used for the class or group of applications. This

approach is able to provide an accurate estimate of the power consumption of the class

or group of applications, but it doesn’t capture some of the characteristics unique to each

17

application. In contrast, E-AMOM is focused on developing models for each application

and thereby understanding the unique characteristics of each application that impact

runtime and power consumption. In our work, we are able to identify which counters

could be seen as common across the different applications, such as PAPI_L2_TCH and

PAPI_L2_TCA, in addition to identifying counters that are unique to each application.

For example, for the NAS SP-MZ application we were able to determine that the L1

cache misses and L1 instruction cache misses affected the system power consumption

more that L2 cache activity. Further, E-AMOM uses the performance counters to

identify methods for reducing power consumption.

1.3.1 Performance Modeling

Researchers have used performance modeling to understand the performance of

scientific applications on various systems. Almasi et al. use performance models to study

the computational and communication kernels of a protein folding application [3]. Their

study led to performance predictions for the application on an IBM Blue Gene/C

architecture. Additionally, there has been work to focus on understanding the system and

application parameters that are likely to affect performance[15][61][67]. In [15] Chen et

al. present a performance resource framework to understand the performance

characteristics of applications on chip-multiprocessors and the resources that such

applications would require. In [61] A. Snavely et al. developed a single-processor model

and network model to simplify the approach for performance prediction on several large-

scale HPC systems. The work in [61] focused on decomposing an application’s signature

18

to the constraints of memory usage and communication for scientific applications. The

end result of this work was to achieve a performance prediction of an application on a

targeted system. E-AMOM allows for performance prediction of an application and also

uses loop optimizations to reduce runtime and DVFS and DCT to reduce power

consumption on multicore systems. In addition, E-AMOM develops multivariate

regression models of scientific applications for runtime and component power

consumption, such as the total system, CPU, and memory components. E-AMOM

models are able to determine which application characteristics affect the performance of

the application on a multicore system. Further, the models can be used to determine

appropriate optimization techniques for reducing runtime and power consumption with

regards to each application.

In the work of Alam and Vetter, they developed platform independent

parameterized requirement models for projecting future workloads in large-scale

scientific applications [2]. The requirement models focused on understanding the

floating-point computation, memory operations, and message passing communication

patterns for scientific applications. Our work differs from this work in that we use

multivariate regression to model application runtime and power consumption on

multicore systems. This work did not consider optimizing the performance of the

application, which is the reason for the development of our models using E-AMOM.

In [29] research is conducted to determine the point in an application’s execution

in which energy savings can be achieved with small increases in execution time for

application codes. This work also analyzes the feasibility of saving energy by using

19

more nodes at a reduced frequency. The metrics include misses per operation (MPO)

and slack to determine frequency scaling and gear usage. MPO is determined based on

number of operations retired and L2 cache misses from performance counter

measurements. The work explores performance in terms of single node (and single

processor) as well as multiple node performance. The research identifies characteristics

of the application with regards to speed up being (1) poor speedup, (2)

perfect/superlinear speedup, (3) good speedup. Our work complements this work in that

we are able to develop performance models that are used to determine appropriate

energy savings in an application at both the application-level and kernel-level. In all six

applications, E-AMOM is able to achieve energy savings without increasing the

execution time of the applications.

In [35] kernel coupling values were used to predict parallel application

performance using the NAS Parallel Benchmarks. This work focused on decomposing

the BT, SP, and LU benchmarks into kernels based on the execution time. Our work

provides a modeling methodology to determine what optimization techniques should be

used to improve performance on multicore systems. Our work differs from kernel

coupling in that we focus on understanding how different application factors, such as L2

cache utilization, affect the performance of the application. Kernel coupling measures

the impact of performance of the adjacent kernels within a scientific application. We

develop models for each application based on the total execution of the application and

then use those models to predict performance at the kernel level.

20

The use of simulators is an important area used in evaluating the performance of

scientific applications. Simulators can be used to provide application and system

developers with a better understanding of key design constraints for an unavailable

system or system component. Simulations are often used in better understanding design

changes as they relate to performance and power consumption in high performance

computing. Simulations are useful, but can be very time consuming for large-scale

systems and require a larger order of magnitude in execution time for peta and exascale

systems [5][17][23][39]. Our work does not make use of simulators and we therefore

utilize a fully instrumented power-aware system to validate our experimental models.

1.3.2 Power Prediction

There has been extensive research focusing on understanding the trends exhibited

by scientific applications in terms of performance and energy consumption.

In [50] a metric called critical power slope is introduced to explain the efficiency

in executing an application at a given frequency for various systems.

This work makes use of six micro benchmarks to measure various statistics in system

and application performance, such as: access to register, L1 cache (read), L1 cache

(write), access to memory (read), access to memory (write), and disk read. The work

introduces analytical metrics for determining the energy required to complete work, W,

at various frequencies. The energy efficient critical power slope of a system is

determined based on minimizing the time in active state and maximizing the idle time of

the system. The critical power slope metric focuses on understanding how to reduce the

21

energy consumption of a system that executes different workloads. E-AMOM differs in

that we focus on understanding and optimizing the performance of scientific applications

on a multicore system through DVFS, DCT, loop blocking and loop unrolling. Initially,

we focus our work on identifying techniques that will reduce energy consumption for a

single hybrid or MPI application executing on a multicore system.

In [58] a method is presented to find an energy minimization schedule that is

based on performance modeling, performance prediction, and program execution. This is

applied to the NAS Parallel Benchmarks (BT, CG, EP, FT, IS, LU, MG, and SP). A

schedule is determined based on a combination of techniques to minimize the energy

consumption of the given scientific application. The schedule for executing the

application is determined based on a partial execution of each application. The energy

limit is typically chosen to be 10% of peak energy consumption of the program. The

average error of their work was 2.1% with a worse case scheduling error of 6.1%. The

typical energy minimization schedule was 5-10% in energy consumption.

In [10] performance counters are used to provide models of power measurements

of the complete system based on a method known as the “trickle-down” approach. The

work provided estimation of power consumption for the system including chips,

memory, I/O, and disk. In this work, the average error was less than 9% for the SPEC

CPU 2000 benchmarks. This work provided a system-centered approach to modeling

based on the correlation of performance counter events to applications. The counters

utilized to estimate power consumption for the system included L3 Cache misses, TLB

Misses, DMA Accesses, Memory Bus accesses, and I/O Interrupts. This work utilizes

22

uses a linear model as the first step in predicting power consumption based on the

counters with the best correlation for each component. Our work differs in that we

identify different counters for each application and do not use the same counters across

all applications. We make algorithmic changes to our applications to improve

performance through loop unrolling and loop blocking. In addition, we reduce the

power consumption of the applications through DVFS and DCT.

Lim et al. present a surrogate estimation model using performance counters is

presented on an Intel Core i7 system to estimate for CPU, Memory, and the total system

power for OpenMP benchmarks up to 8 threads [43]. The median error was 5.32% on

the system. In this work various Intel Core i7 specific counters that were representative

of the system features were utilized. For example, this work used counters that

represented the number of unhalted cycles in the CPU and retired instructions for

building the CPU power model. To estimate the power consumption for the applications

a robust regression model was built that was able to apply weights to each data point.

This work used the spearman correlation to reduce 17 performance counters down to 7

counters for predicting power consumption for the system, CPU, and memory

components. Our work makes use of the spearman correlation coefficients for reducing

40 counters initially, but further determines appropriate counters based on regression and

principal component analysis. The combination of spearman correlation, multivariate

regression, and principal component analysis is able to reduce the required number of

performance counters needed for our modeling work.

23

In [22] power estimations using counters are presented with median errors of

5.63%. This work makes uses of performance counters to measure the effects of cache

resource and thermal effects to develop a power-aware thread scheduler. The work

presented by Singh classifies performance counters of the AMD Phenom processor into

four different groups based on FP Units, Memory, Stalls, and Instructions Retired.

Using these counter groups analytical models are derived using micro-benchmarks to

develop an online thread scheduler. The piece-wise linear models developed in this

work were tested on the SPEC2006, SPEC-OMP, and NAS benchmarks. Our work

differs in that we use our performance models to optimize the performance of the

application by using DVFS, DCT, loop blocking, and loop unrolling. This work focuses

on estimating power consumption for thread scheduling. Our work focuses on reducing

power consumption through application optimization. Throughout our work we utilize

15 different performance counters is modeling application performance. Our models

commonly have activity that relates to the L2 cache (PAPI_L2_TCH, PAPI_L2_TCA),

which is why we utilize loop blocking and loop unrolling to reduce runtime and power

consumption.

1.3.3 Power Reduction Strategies

There is extensive research dealing with reducing power consumption in large-

scale HPC applications. In [19] a user-level library framework is introduced that allows

for the online adaptation of multithreaded application codes. This work uses the

Instructions per cycle (IPC) metric and several run-time specific performance metrics to

24

predict application performance. A linear regression is applied to the offline training

model to develop an accurate power-performance model. The performance prediction

model is used to determine concurrency levels on a SMT chip at two levels, focusing on

the (1) number of threads per processor and (2) the number of processors to use. The

counters that this work specifically focuses on include rate of bus accesses, rate of L2

cache misses, % of cycles in which the processor’s trace cache is in deliver mode, rate of

branch instructions, rate of misspredicted branches, and retired instructions per cycle.

The work in [19] is further extended to evaluate the effects of mapping different set of

threads to cores on hierarchical multicore systems in [21]. This work applies prediction

strategies for reducing energy consumption using DVFS and dynamic concurrency

throttling (DVT) based on slack in communication. Our work also applies prediction

strategies for reducing energy consumption; however, we determine which kernels in an

application can be optimized to decrease energy consumption through DVFS, DCT, and

loop optimizations.

A technique aimed at reducing power consumption through task placement is

introduced in [44]. This work measures the affect that different MPI aggregation

strategies have on application’s performance and energy consumption. The NPB 3.2

benchmarks are used to test this methodology, focusing on the FT, LU, CG, and BT

benchmarks. The model introduced accurately determines the effect of distributing tasks

across cores of multiple nodes has on execution time and energy. The performance

during computation phases is predicted using Instructions Per Cycle (IPC). The IPC for

specific MPI tasks is predicted on a targeted system. The IPC is used with 12 training

25

benchmarks from SPEC MPI 2007 benchmarks to determine optimal MPI aggregation.

The focus of this work is on reducing energy consumption through task placement on a

system. Task aggregation is accomplished by using more nodes for executing an

application but fewer processors per node are used. In [44] the average performance

gain was 5%, but energy reduction was over 60%. Our work reduces energy

consumption by reducing the runtime and decreasing power consumption through

DVFS, DCT, loop blocking, and loop unrolling.

In [19] a multi-dimensional, online performance prediction framework that uses

DVFS and DCT on OpenMP applications is presented to reduce power

consumption. The framework used in this work makes use of statistical linear regression

models for predicting application performance. The performance prediction model

evaluates the effects of mapping different set of threads to cores on hierarchical

multicore systems and models the effects of DVFS and DCT. A baseline prediction

model is used to measure useful IPC (µIPC) with dependence functions for a target and

configurations. The results provided in this work show a DVFS model median error of

3.0%, DCT model median error of 7.3%, and a unified model median error of 6.1%.

In [25] multiple energy gears are used in an application in an attempt to achieve

performance and energy savings. This work applied DVFS to HPC application codes

that were divided into application phases based upon the memory pressure (OPM) of the

application. The significant results of this work allowed for savings of 10% energy with

5% time penalty for NAS BT, 11% energy reduction with 4% time penalty for NAS MG,

and a 16% energy saving with a 1% time penalty for NAS IS. In [33] two energy-

26

saving techniques, DVFS and DCT, are applied to Hybrid (MPI+OpenMP) HPC

application codes to improve energy consumption. This work focuses on reducing

energy consumption by identifying the effects that DCT has on other MPI tasks during

execution and identifying slack due to intra and inter-node interaction in hybrid HPC

applications. The methodology is applied to the NPB-MZ suite and ASC Sequoia

benchmarks with energy savings in the range of 4.1% to 13.8% with negligible

performance loss.

Our work extends upon this work by presenting a methodology that is able to

predict performance in application kernels utilizing DVFS and DCT for MPI and hybrid

(MPI/OpenMP) applications. Our scheme makes use of performance models that are

used for predicting the effects that DVFS and DCT strategies have on application

performance by refining the regression model for each application’s characteristics. Our

work differs from previous approaches in that we identify alternative frequency and

concurrency settings for an application’s kernel to reduce power consumption. We also

optimize the kernel for better performance through loop blocking and loop unrolling.

The reduced power consumption and reduced execution time reduces the energy

consumption of the application. Previous methods focus largely on only introducing

software-based power reduction strategies. In our work, we utilize software-based

power reduction strategies with algorithmic changes, such as loop blocking and loop

unrolling, to improve application performance.

27

2. PROPOSED PERFORMANCE MODELING SCHEME

In this section we provide background information about performance issues

related to multicore systems. We also give a brief outline of our performance modeling

methodology, E-AMOM, which is used to predict execution time and power

consumption of MPI and Hybrid scientific applications on multicore systems. The

details of the modeling method are given in Section 4. Throughout the remainder of this

dissertation, Hybrid will refer to an application with communication constructs based

upon MPI and OpenMP. Further performance will refer to runtime and power

consumption.

2.1 Energy-Aware Modeling and Optimization Methodology (E-AMOM)

In this section we present our power-aware performance modeling and

optimization scheme. E-AMOM can be used for predicting the runtime and power

consumption of the application in terms of System, CPU, and Memory components. E-

AMOM is also used to improve the runtime and power consumption of scientific

applications on multicore systems. Figure 7 presents a high level view of E-AMOM,

which consists of the following steps:

1. An application is selected for evaluation on a target multicore system.

28

2. The performance-tuned principle component analysis method identifies

appropriate performance counters that represent each performance

component of the application.

3. Performance-power modeling is used to model the application kernels of the

application to identify appropriate optimization strategies, which include

DVFS, DCT, loop blocking, and loop unrolling.

4. The application implementation is optimized for the target multicore system.

E-AMOM makes use of a performance-tuned principle component analysis

method for modeling application performance on multicore systems. A brief overview

of the analysis method is given below; the details of the method used to develop the

models is given in Section 4. Additionally, we improve the performance of the

application to reduce both performance and power consumption on multicore systems

based on the application assumptions derived from our modeling scheme. Figure 7

provides an overview of the performance modeling and optimization scheme used in this

work.

29

 Figure 7. E-AMOM Schema

E-AMOM provides application developers and users a methodology to model

and optimize the performance of scientific applications on multicore systems. Figure 8

provides an illustration of how E-AMOM is integrated into the MuMMI framework. E-

AMOM is a modeling component that is integrated into Prophesy, which allows for

analytical, parameterized, and kernel coupling models to be developed.

30

Figure 8. E-AMOM Integration into MuMMI

The models developed using E-AMOM utilize Prophesy’s instrumentation

framework, PowerPack for collecting power profiles, and PAPI for collection

performance counter data. This allows for users of MuMMI to model the performance of

scientific applications in regards to runtime and component power consumption. The

models from E-AMOM can then further be used to predict runtime and power

consumption of applications for different input sizes, frequency settings, concurrency

settings, and number of processors.

2.2 Performance-Tuned Principle Component Analysis Method

In this section we introduce the performance-tuned principle component analysis

method, which is the modeling component of E-AMOM. Using this method, we seek to

31

explore the application characteristics (via performance counters) that affect

performance in order to gain a better understanding of how the application can be

modified to improve performance with respect to runtimes and power consumption of

the system, CPU, and memory. We explore the following issues in regards to modeling

the runtime and power consumption of scientific applications on multicore systems:

a) What are the application characteristics that affect runtime and power

consumption in scientific applications?

b) Which combination of performance counters can be used to model the

application in terms of runtime, system power, CPU power, and memory power?

c) What is the accuracy of our models in estimating performance (runtime and

power consumption for system, CPU, and memory components?

d) What characteristics of applications can be optimized to improve performance on

multicore systems?

During each execution we capture 40 performance counter events utilizing the

performance application programming interface (PAPI) [56] and the perfmon

performance library. All performance counter events are normalized using the total

cycles of execution to create performance event rates for each counter. Performance

counter values must be normalized by a common variable (total cycles) so that

underlying characteristics of the performance counter values can be prepared. Table 2

provides an overview of the 40 performance counters are analyzed for each application

using a performance-tuned supervised principal component analysis method. In addition,

32

we make use of non-negative regression coefficients models to ensure that they were

representative of realistic performance scenarios.

Table 2. Hardware Performance Counters

Hardware Counter Description

PAPI_TOT_INS Total instructions completed

PAPI_FP_INS Floating point insturctions

PAPI_LD_INS Load instructions

PAPI_SR_INS Store instructions

PAPI_TLB_DM TLB data misses

PAPI_TLB_IM TLB instruction misses

PAPI_VEC_INS Vector/SIMD instructions

PAPI_L1_TCA L1 cache total accesses

PAPI_L1_ICA L1 instruction cache accesses

PAPI_L1_ICM L1 instruction cache misses

PAPI_L1_TCM L1 total cache misses

PAPI_L1_DCM L1 data cache misses

PAPI_L1_LDM Level 1 load misses

PAPI_L1_STM Level 1 store misses

PAPI_L2_LDM Level 2 load misses

PAPI_L2_STM Level 2 store misses

33

Table 2: Continued

Hardware Counter Description

PAPI_L2_STM Level 2 store misses

PAPI_L2_TCH L2 total cache hits

PAPI_L2_TCA L2 total cache accesses

PAPI_L2_ICM L2 instruction cache misses

PAPI_CA_SHARE Access to shared cache line

PAPI_HW_INT Hardware interrupts

PAPI_CA_ITV Cache line interventions

PAPI_BR_INS Branch instructions completed

PAPI_RES_STL System stalls on any resource

Cache_FLD_per_instruction L1 writes/reads/hits/misses

LD_ST_stall_per_cycle Load/stores stalls per cycle

bytes_out Received bytes transmitted

bytes_in Sent bytes transmitted

IPC0 Instructions Per Cycle Core 0

IPC1 Instructions Per Cycle Core 1

IPC2 Instructions Per Cycle Core 2

IPC3 Instructions Per Cycle Core 3

IPC4 Instructions Per Cycle Core 4

IPC5 Instructions Per Cycle Core 5

34

Table 2: Continued

Hardware Counter Description

IPC6 Instructions Per Cycle Core 6

IPC7 Instructions Per Cycle Core 7

LLC_miss_rate0 Lower Level Cache Miss Rate Core 0

LLC_miss_rate1 Lower Level Cache Miss Rate Core 1

LLC_miss_rate2 Lower Level Cache Miss Rate Core 2

LLC_miss_rate3 Lower Level Cache Miss Rate Core 3

LLC_miss_rate4 Lower Level Cache Miss Rate Core 4

LLC_miss_rate5 Lower Level Cache Miss Rate Core 5

LLC_miss_rate6 Lower Level Cache Miss Rate Core 6

LLC_miss_rate7 Lower Level Cache Miss Rate Core 7

𝑦 = 𝛽! + 𝛽! ∗ 𝑟! +⋯𝛽! ∗ 𝑟! (1)

Each multivariate linear regression model is constructed for each performance

component (execution time, system power, CPU power, and memory power) for each

application.

2.3 Application Optimization Methods

In this section we discuss the methods that are used to improve the performance of

scientific applications based upon our modeling scheme. The methods include scaling

35

the frequency of the application (DVFS), Dynamic Concurrency Throttling (DCT), and

improve application’s utilization of the memory subsystem. Each method is described

below.

2.3.1 Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling is a technique that is used to reduce the

voltage and frequency of a CPU in order reduce power consumption [30][36]. Using

DVFS, we minimize the power consumption of our scientific applications by reducing

the voltage and frequency of the application during performance periods. Applying

DVFS is especially beneficial during period where communication slack time appears

during parallel execution due to load imbalance between task communications. We use

our performance-tuned principle component modeling method to determine execution

time and power consumption during application periods at reduced frequencies. For

simplicity, we assume that all cores that execute during the application phase will run at

the same frequency.

2.3.2 Dynamic Concurrency Throttling

Dynamic Concurrency Throttling is a technique that can be used to reduce the

number of threads used to execute an application [19]. Using DCT, we minimize the

power consumption of our HPC applications by reducing the use of the number of cores

(OpenMP threads) of the application during performance periods. Applying DCT is

36

especially beneficial during OpenMP performance phases that do not benefit from using

the maximum number of OpenMP threads per node. We use our performance-tuned

principle component modeling method to determine execution time and power

consumption during application periods at reduced concurrency settings.

2.3.3 Conventional Techniques: Loop Blocking and Loop Unrolling

In high performance computing, much of the computation involved with parallel

scientific applications such occurs within nested loops in each application function.

Optimizations made to these application loops can leave to improved performance on

multicore systems. In this section, we discuss loop blocking and loop unrolling, which

can be used to improve performance of the scientific applications.

Loop blocking is a well-known loop optimization technique to aid in taking

advantage of memory hierarchy; its main purpose is to eliminate as many cache misses

as possible [47][60]. This technique transforms the memory domain of an application

into smaller chunks, such that computations are executed on the chucks that easily fit

into cache to maximize data reuse. The optimal loop block size varies with different

applications on different systems.

Loop unrolling is a well-known code transformation technique that replicates the

original loop body multiple times, adjusts the loop termination code and eliminates

redundant branch instructions. Outer loop unrolling can increase computational intensity

and minimize load/stores, while inner loop unrolling can reduce data dependency and

eliminate intermediate loads and stores. We combine inner and outer loop unrolling to

37

improve the performance the scientific applications. For examples, we unroll the inner

loops four times for four major double nested loops in GTC code so that we reconfigure

the double nested loops into the single loops, then use compiler directives for further

loop unrolling.

2.4 Modeling Approaches Leveraged

In this section, we discuss the initial modeling approaches considered, why these

approaches were not used, and how these approaches led to the development of our final

power-performance modeling approach. These approaches were based on extending

several existing frameworks with the goal of providing new tools to provide for

modeling methods for scientific applications. Further development led to a modeling

framework, which focused upon analyzing the performance characteristics of scientific

applications via performance counters that could be used for additional improvements to

the application in term of performance-power tradeoffs.

2.4.1 Initial Hierarchical Modeling Approach

An initial hierarchical modeling approach was developed that leveraged existing

frameworks to model the performance of large-scale scientific applications on multicore

systems. This modeling approach provided for a hierarchical decomposition of

applications and quantified the sharing of resources on multicore systems by focusing on

38

the utilization of energy and power consumption on multicore systems. Figure 9

provides an overall depiction of this initial hierarchical modeling framework.

HPC	
 Application

Kernel	
 Coupling 	
 Modeling	

Assertions

Power	
 and	
 Energy	

Modeling

Task	
 Placement	
 Workload	

Models

Processor	
 Partitioning	

Kernel	
 Coupling	
 Strategy

Hierarchical	
 Power	
 and	

Energy	
 Measurements	

Combined	
 with	

Performance	
 Counters

Hierarchical	
 Model	
 for	
 Multicores

Figure 9. Initial Hierarchical Multicore Modeling Scheme

This modeling methodology allowed for detailed models of a scientific application.

The following issues related to analyzing the performance of large-scale scientific

applications and multicore systems were represented by the modeling methodology:

1) Application Decomposition: Determining an efficient decomposition of an

application’s kernels so that it effectively demonstrates the workload distribution

39

onto multicore systems. This was accomplished by utilizing a large-scale

scientific application modeling framework, Modeling Assertions (MA).

a. Modeling Assertions: A framework that provides for detailed

information about the computation and communication workload

characteristics of scientific applications.

2) Quantification of Resource Sharing: Measuring how an application’s kernels

make use of the memory subsystem is an important issue that can provide insight

into which application kernels must be improved. The quantification of

resources on multicore systems makes use of Prophesy infrastructure and the

kernel coupling method.

a. Prophesy: An infrastructure for analyzing and modeling the performance

of parallel and distributed applications. The core component of Prophesy

is a relational database that allows for the recording of performance data,

system features and application details.

b. Kernel coupling: The kernel coupling metric quantifies the interaction of

adjacent kernels in a large-scale scientific application. The prophesy

infrastructure computes kernel coupling values in our large-scale

scientific applications.

3) Performance vs. Power relationship: the tradeoff between application

performance and power on multicore cluster systems is examined. This

relationship focuses on understanding the effects that application decomposition,

data inputs, performance, and power have on each other.

40

a. PowerPack: The framework enables distributed systems to profile,

analyze, and conserve energy in scientific applications using dynamic

voltage scaling.

In the following sections we describe each component of the initial modeling framework

and then discuss lessons learned and how we developed the existing framework.

2.4.1.1 Modeling Assertions

The modeling assertions (MA) framework was introduced by Alam and Vetter to

provide for incremental model construction and validation Error! Reference source not

found.. Modeling assertions combines empirical and analytical modeling techniques

together to encapsulate the workload requirements of an application. There are a

number of steps involved in the model creation process with MA. These step are to:

1) Determine and declare application variables that affect performance.

2) Determine and declare application operations that affect performance.

3) Refine the performance model in incremental steps.

a. Validate performance model empirically at runtime using performance

assertions.

b. Refine model based on these error rates by adding and modifying

variables and operation declarations.

41

c. Terminate modeling process when model is representative and when error

level is acceptable.

Figure 10. Modeling Assertions Framework

Figure 10 shows the scheme for the modeling assertions framework. In this

example, we use a code for a matrix-matrix multiply kernel to illustrate the capabilities

of the modeling assertions framework. We focus on the ability of modeling assertions to

create symbolic models of an application code. Our matrix-matrix multiply example is

written in fortran and uses OpenMP for communication.

First, modeling assertions creates a ma_profile of the matrix-matrix multiply

code, shown in Figure 11. The ma_profile shown in Figure 11 provides an overview of

the matrix-matrix multiplication code and the attributes that modeling assertions

captures. First, modeling assertions defines the input parameters and their values for the

application code. These parameters are then used to represent the number of loops in the

code. Finally, this profile shows a declaration for the ma_flop_start routine to measure

42

the number of application flops for a segment of the code, in this example the number of

flops occur within the “main_loop” of the code are represented.

MA:0:1
MA:----- Modeling Assertions enabled ---------
MA:---
MA:0:ma_init:COMM_WORLD:0
MA:1: ma_subroutine_start:main

MA:1: ma_def_variable_int:L:200
MA:1: ma_def_variable_int:M:200

MA:1: ma_def_variable_int:N:200
MA:2: ma_loop_start:main_loop:L*M*N:8,000,000

MA:3: ma_flop_start:main_loop_fl:L*M*N*2:16,000,000
 *
 *
MA:2: ma_subroutine_end:main
MA:1: ma_finalize:main

Figure 11. Matrix-Matrix Multiply MA Profile

After the modeling assertion profile is validated a control-flow model of the code

can be generated, shown in Figure 12. This is a high-level, octave compatible code that

can be used for a simulator and represents the symbolic variables of the code that affect

performance on a parallel system. The partial control-flow shown in 9 provides key

input parameters, loops, and parameter assignments for the code.

43

 Main(){

L; M; N;
a(L,M), b(M,N), c(L,N)

loop(NAME=loop-1) (COUNT=M)
 loop(NAME=loop-1-2) (COUNT=L)

 loop(NAME=loop-1-3) (COUNT=N)
 loop(NAME=loop-1) (COUNT=L)

 loop(NAME=loop-1-2) (COUNT=N)
 loop(NAME=loop-1-3) (COUNT=M)

 c(i,j) = c(i,j) + a(i,k) * b(k,j)
(remaining code)

Figure 12. Matrix-Matrix Multiply Model

Using modeling assertions, application requirements can be encapsulated with

respect to computation and communication requirements. In Figure 13, we analyze the

sensitivity of the kernels floating-point operations and instructions per cycle to changes

in the matrix size. The variances in these application parameters for floating-point

operations and instructions per cycle for different parameters can be studied.

44

Figure 13. Matrix-Matrix Sensitivity Analysis

2.4.1.2 Kernel Coupling

In previous work, Geisler and Taylor provided the specifications for quantifying

the interaction between adjacent kernels in an application [55]. A kernel is defined as a

unit of computation that denotes a logical entity within the larger context of an

application. In general, a kernel may be a loop, procedure, or file depending on the level

of granularity or detail that is desired from the measurements. Our previous work was

able to measure decompose the GYRO application into eight kernels, six of the kernels

being computational kernels [47]. These kernels represent top-level subroutines that

have been grouped together.

To compute the coupling parameter cij, there are three measurements that must

be taken:

1) pi is the performance of kernel i in isolation,

2) pj is the performance of kernel j in isolation, and

45

3) pij is the performance of kernels i and j together, assuming that kernel i

immediately precedes kernel j in the application.

The value cij represents the interaction between two adjacent kernels in an application.

In general, for an application consisting of N kernels, only N-1 pairwise kernel

interactions need to be measured.

The parameter cij can be grouped into three categories:

• cij = 1 indicates no interaction between the two kernels, yielding no

change in performance.

• cij < 1 results from resource(s) being shared between the kernels,

producing a performance gain.

• cij > 1 occurs when the kernels interfere with each other, resulting in a

performance loss.

The equation for computing cij is presented as equation 1.

ji

ij
ij PP

P
C

+
= (2)

The coupling parameter can be generalized to apply to chains of kernels, as

shown in equation 2. The parameter Cij becomes Cw, assume that W represents an

ordered chain of K kernels. Therefore, Pw represents the execution time of the chain W.

Note that for K=2, equation 1 is equal to equation 2.

∑
∈

=

Wj
j

w
w P

P
C (3)

46

The coupling parameter is used in the estimation of execution time using

equation 3. Ni represents the number of times that kernel i is executed. In the case of

GYRO, the kernels occur in loops and Ni represents the number of times that the loop is

executed. Pi represents the execution time of kernel i, and α i is the weighted average of

the coupling values that are associated with kernel i.

 ∑
=

=
n

i
iii PNT

1

α (4)

The parameter Qi represents the set of all ordered chains of k (2 ≤ k ≤) kernels

that are involved with kernel i. The size of the Set Qi is │Qi │= k. The coefficient αi (i =

1, 2,…, n) is represented in equation 4.

∑

∑

∈

∈=

i

i

QW
w

QW
wW

i P

PC
α (5)

In this work we use kernel coupling to measure the utilization of the memory

subsystem by the application. This work methodically uses a computation and

communication decomposition to determine the application kernels from the modeling

assertions framework. Previous work used performance measurements based on

execution time or cache misses [55].

The kernel coupling metric can be applied to the matrix-matrix multiply kernel

code in the previous section. The example code can be divided into five kernels:

initialization, nested_loop1, nested_loop2, and final. The kernel coupling values

obtained for kernel 1 (nested_loop-1) and kernel 2 (nested_loop-2) when executed on 4

processors on the Jaguar Cray XT4 are presented in Table 3.

47

Table 3. Kernel Coupling Values for M-M Kernel

Kernel Coupling Value

(Loop-1&Loop-2) 0.99337

(Loop-2&Loop-1) 0.99474

Overall, the kernel coupling values show constructive coupling occurring in the

matrix-matrix kernels. However, the kernel coupling values as presented do not provide

enough insight into how the kernel is performing on the multicore system. Additional

insight is needed to understand how the matrix-matrix kernel is utilizing the memory

subsystem of the multicore system.

2.4.1.3 Summary of Leveraged Modeling Methods

Overall, the initial multicore modeling framework led to a more detailed

understanding of how scientific applications performed on multicore systems. Initially,

we utilized the modeling assertions framework to create symbolic models of our

scientific applications. The symbolic models were useful for understanding predicted

application requirements, such as floating-point operations and MPI communication

message size requirements. However, the models that we created using modeling

assertions were system-independent and therefore they did not provide the necessary

insight about how the application performed on a target system. In order to reduce

runtime and power consumption on a given system an understanding of how the

48

application performs on a given system is required. Additionally, the MA framework

was not and currently does not support Hybrid applications.

Kernel coupling provides a metric for analyzing application performance and

understanding how kernels of an application shared resources. However, the kernel

coupling metric focused on one component of performance, such as execution time or

cache misses, in quantifying the sharing of resources. To improve the performance of

the application kernel using kernel coupling could require additional performance data to

be obtained using performance counters, which could be costly in terms of the amount of

time it takes to collect all of the data for kernel coupling. While E-AMOM does not

quantify the interactions between kernels as is done with kernel coupling, E-AMOM

collects detailed data for modeling using only one execution of the application.

The combined initial framework work focused on extending kernel coupling to

incorporate a processor partitioning method to model trends in the kernel coupling

values. We then determined and measured how an application utilizes the memory

subsystem when executed on a multicore parallel system. Once kernel coupling values

were determined for the respective application, the symbolic models developed from

MA were used to determine the components in each kernel that were being shared.

The final framework represents an approach based on utilizing over 40

performance counters to measure various application characteristics not reflected in

kernel coupling and modeling assertions. We use the performance counters to develop

models for predict runtime and component power consumption of the scientific

applications on multicore systems. This allows for us to determine different application

49

characteristics, through performance counters, that affect the runtime and power

consumption of the application on a given system. The models developed using our

work can then be used to determine appropriate methods for refining the application to

reduce runtime and decrease power consumption.

50

3. PERFORMANCE-POWER TRADE-OFFS OF MPI AND

HYBRID APPLICATIONS*

In this section, we discuss the performance characteristics of MPI and Hybrid

scientific applications and how they affect performance-power tradeoffs on parallel

multicore systems. In Section 3.1 the parallel programming paradigms used in high

performance computing for scientific applications are introduced. In Section 3.2 the

execution environment for these experiments is introduced. In Section 3.3 an analysis of

detailed performance characteristics of three scientific applications for Hybrid and MPI

implementations is provided.

3.1 Parallel Multicore Systems

Efficient use of multicores requires that the hierarchical organization of cores be

exploited. One way of exploiting the hierarchical organization is to have parallel

applications designed to match this organization. Currently, the widely used languages

for parallel applications are MPI, OpenMP, or the combination of both languages; this

combination is called hybrid. Multicore processors present significant new opportunities

such as on-chip high inter-core bandwidth and low latency and present new challenges in

*Part of this section is reprinted with permission from “Energy and Performance
Characteristics of Different Parallel Implementations of Scientific Applications on
Multicore Systems” by Charles Lively, Xingfu Wu, Valerie Taylor, Shirley Moore,
Hung-Ching Chang, and Kirk Cameron, in Int. Journal of High Performance Computing
Applications, Volume 25 Issue 3, August 2011 by SAGE Publications, INC.

51

inter-core resource conflict and contention. In [32][43], it is argued that the full benefit

of these architectures will not be harnessed until the software industry and community

fully embrace parallel programming. Hybrid applications make use of shared memory

programming paradigms as well as message passing paradigm, which appear to be a

good fit for multicore systems whereby the nodes utilize a share memory model and

distributed memory model between the nodes.

The Message Passing Interface (MPI) is one of the widely used parallel

programming models in High Performance Computing [40]. MPI was initially

developed as a model for achieving communication across nodes in a parallel system;

however, there has been substantial work in improving the intra-node communication

protocols [13][14]. Additionally, there have been improvements made to collective

communications; one use of collective communication is broadcasting data across the

entire system [53][54]. Currently, there are still improvements or modifications being

made to the MPI standard and mechanisms in order to make it more efficient for

multicores and heterogeneous architectures.

OpenMP is another widely used parallel programming model in High

Performance Computing [48]. OpenMP was first introduced in 1997 as a parallel

programming language for Fortran and was later expanded to C/C++. The core elements

of OpenMP are based upon threads, which are used to parallelize portions of a code that

can be executed on a processor in parallel. OpenMP does not deal with message

passing, currently, and therefore provides a simple API for parallelizing code.

52

Generally, MPI is considered optimal for process-level, coarse parallelism and

OpenMP is optimal for loop-level fine grain parallelism. Combining MPI and OpenMP

parallelization to construct a hybrid program is not only able to achieve multiple levels

of parallelism but also to reduce the communication overhead of MPI within a multicore

node, by taking advantage of the shared address space and on-chip high inter-core

bandwidth and low inter-core latency at the expense of introducing OpenMP overhead

due to thread creation and increased memory bandwidth contention. However, which

parallel programming paradigm (MPI, OpenMP, or hybrid) is the most suitable for

multicore systems depends on the nature of an application, available parallel

programming software, and compiler support on these multicore systems.

3.2 Experimental Environment

The experimental environment used for the experiments to explore the

performance and power tradeoffs for MPI and Hybrid application is the power-aware

multicore cluster, Dori, which is available in the Department of Computer Science at

Virginia Tech. Dori, presented in table 4, is composed of eight compute nodes. Each

node of the system consists of two dual-core AMD Opteron processors (1.8GHz) and

providing 4 CPUs per node. Each CPU in Dori contains L1 and L2 caches with a size of

64KB and 1 MB, respectively, for on-chip memory access. In our experimental results

we make use of the frequency settings available in Dori, which includes five settings

from 1.0 GHz to 1.8 GHz as described in Table 4. The PowerPack infrastructure,

53

introduced in Section 1, is used for collecting the necessary performance and power data

on the Dori System.

Table 4. System Configuration of Dori	

Specifications of Dori System

Number of Compute Nodes 8

CPUs Per Node 4

CPU Type 1.8Ghz Dual-Core AMD Opteron

L1 Cache 64KB

L2 Cache 1 MB

Memory Per Node 6 GB

Interconnect 1GB/sec Ethernet

Frequency Settings 1.8 , 1.6, 1.4, 1.2, 1.0 GHz

3.3 Experimental Results

In this section we present our experimental results based on three applications

described in Table 5: NAS BT [35], GTC [23], and PMLB[69]. We provide the

performance characteristics of the hybrid and MPI implementations. We also explore

frequency scaling of each implementation of the applications. We use PowerPack [24]

to measure the power consumption for our applications. The NAS BT benchmark is an

application benchmark included in the NAS Parallel Benchmark suite. The

54

implementation that we use in this section is a hybrid implementation of the benchmark

code written in Fortran and using MPI + OpenMP for communication. The Gyrokinetic

Toroidal code (GTC) is a 3D particle-in-cell application developed at the Princeton

Plasma Physics Laboratory to study turbulent transport in magnetic fusion. GTC is a

flagship SciDAC fusion microturbulence code written in Fortran90, MPI and OpenMP.

The Lattice Boltzmann method is widely used for simulating fluid dynamics. Because

of the high locality of the collision and streaming operations, domain decomposition is

very effective and widely used for the parallel LBM.

Table 5. Overview of HPC Applications

Application Discipline Problem Size Languages

NAS BT-MZ
Computational

Fluid Dynamics
Class C

Fortran,

MPI/OpenMP

GTC Magnetic Fusion 100 particles ppc
Fortran90,

MPI/OpenMP

PMLB
Computational

Fluid Dynamics
128x128x128 C, MPI/OpenMP

3.3.1 NAS BT Benchmark

We use a hybrid NAS parallel benchmark BT with Class B to compare the

energy and performance of OpenMP and MPI BT on a single multicore node. Figures 14

55

and 15 provide the results from using PowerPack to collect power profiles of the CPU,

memory, hard disk and motherboard components. Figure 14 indicates that there are

slacks where CPUs are waiting for data exchanges among all MPI processes. This causes

rapid oscillations in CPU power for the MPI BT. Figure 15 indicates that CPU power for

the OpenMP BT does not vary as the MPI BT does because the OpenMP threads take

advantage of intra-node communication (shared address space). However, memory

power consumptions for both are similar because of the relatively small problem size.

Figure 14. Power for MPI BT Executed on 1 Node

 From Figures 14 and 15, we observe that, the performance (execution time) for

the OpenMP BT is slightly better than that for its MPI counterpart. The CPU power

�������#&!!�!��"!���!"���'�%��	��"#�$�!"��

�

��

	�

��

�

���

���

�	�

���

� �� 	� �� �	 ��� �	� ��	 �
� ��� ��	 �

 �
�

�� ���$��"!�$ �

�
"'
�#
�
�'
�%
%$
�

��� �� "#(��#����$� �"%��#�"�#�

56

consumption for the OpenMP BT is slightly higher than that for its MPI counterpart. The

execution time for OpenMP BT is 257 seconds and that for MPI BT is 269 seconds. The

total energy consumption for OpenMP BT is 57779J; the energy consumption for MPI

BT is 58643J.

Figure 15. Power for Hybrid BT on 1 Node

Table 6 provides a comparison of the MPI and OpenMP performance of the

application on 4 cores using 1 node in the system. Using the OpenMP implementation

provides for an overall improvement in execution time of 4.46% and energy savings of

1.47%. The amount of energy consumed by a scientific application is represented by the

following equation:

𝐸 = 𝑃!"#$!%#𝑥 𝑇 (6)

�#�!������$'!!�!��"!���!"���(�&��	��"$�%�!"��

�

��

	�

��

�

���

���

�	�

���

� �� 	� �� �	 ��� �	� ��	 �
� ��� ��	 �

 �
�

�� ���%��"!�%�

�
"(
�$
�
�(
�&
&%
�

��� �� "$) ��$����%� �"&��$�"�$�

57

where Paverage is the average power consumption of the application and T is the runtime

of the application. Based on our energy equation we are able to determine that there is a

4.46% performance improvement and higher power consumption for the OpenMP BT

just results in the 1.47% energy saving.

Table 6. Runtime and Energy Comparison for OpenMP and MPI BT on 1 Node

On One Node Performance Total Energy

MPI BT 269 s 58,643 J

OpenMP BT 257 s 57,779 J

% improvement 4.46% 1.47%

We used the hybrid NAS parallel benchmark BT with Class B on Dori to

evaluate its runtime and power consumptions for MPI and hybrid programming models.

Using the hybrid programming achieves better performance and energy. Our results

illustrate that there are slacks where CPUs are waiting for data exchanges across all MPI

processes. This causes CPU power to oscillate. We observe that CPU power

consumption and memory power consumption of the hybrid BT are higher than that for

the MPI BT. Memory power consumption for the hybrid BT oscillates significantly

compared to that for the MPI BT because of the use of shared address space by OpenMP

within a node.

58

Table 7 provides a comparative analysis of the performance trends of the MPI

and hybrid BT as it scales from 4 processors to 32 processors. The results for BT show

that as the number of nodes increase, the performance improvement gained from the

hybrid implementation increases slightly for both execution time and energy

consumption. The results obtained on 16 processors (4x4) illustrate the largest

performance difference between the MPI only and hybrid implementation.

Table 7. Energy and Runtime Comparison of MPI and Hybrid BT

#Cores BT Type Time(s)
Total

Energy (J)

CPU

Energy (J)

Memory

Energy (J)

1x4

Hybrid
257

(-4.46%)

58643

(1.49%)

33410.11

(-5.91%)

5719.43

(-11.41%)

MPI

(Baseline)
269 57779 35508.31 6456.23

2x4

Hybrid
122.671

(-13.1%)

28214.1

(-13.1%)

16069

(-11.73%)

2576.29

(-20.24)

MPI

(Baseline)
141.12 32457.6 18204 3230.29

4x4

Hybrid
71.723

(-5.84%)

15941.091

(-4.56%)

9453.668

(-5.35%)

1580.718

(-10.48%)

MPI

(Baseline)
76.174 16702.200 9986.521 1765.706

8x4

Hybrid
29.9719

(-6.74%)

6728.18

(-5.60%)

3956.29

(-6.25%)

672.84

(-8.55%)

MPI

(Baseline)
31.99 7133.77 4203.53 735.77

59

When we scale down the CPU frequency from 1.8Ghz to 1.0Ghz, we observe

that the hybrid BT has the minimum energy consumption of 14444.036 J with the CPU

frequency of 1.2Ghz. We use the energy consumption as a baseline to calculate other

percentages shown in Table 3. When increasing the CPU frequency from 1.2 Ghz to

1.8Ghz, we obtained runtime improvement but lost energy. So there is a trade-off

between runtime and energy consumption; a decrease in runtime can result in an increase

in energy.

3.3.2 Parallel Multiblock Lattice Boltzman (PMLB)

In this section, we discuss the energy performance of a large-scale scientific

application, the Parallel Lattice Boltzman (PMLB) [69]. The Lattice Boltzmann method

is widely used in simulating fluid dynamics. It is based on kinetic theory that entails a

more fundamental level in studying and analyzing the Navier-Stokes equations. The

application PMLB was implemented by researchers in the Aerospace Engineering

Department at Texas A&M University using MPI for communication. The hybrid

implementation of the code incorporates OpenMP to take advantage of the shared-

memory architecture of multicore chips.

The PMLB code has properties that demonstrate that the MPI-only implementation

provides for a better performance in terms of execution time and energy consumption for

up to 16 cores. As the number of cores increases to 32 the execution time and energy

consumption for the hybrid version becomes better than the MPI-only version.

Specifically, on 32 cores (8x4), the energy consumption for the hybrid implementation is

60

over 17% better than the MPI only and the execution time for this parallel programming

paradigm is 21% better.

Table 8. Energy and Runtime Comparison of MPI and Hybrid PMLB Application

#Cores PMLB Type Runtime(s)
Total Energy

(KJ)

CPU Energy

(KJ)

Memory

Energy (KJ)

1x4

Hybrid
30.022

(33.92%)

6.337

(70.81%)

3.682

(65.55%)

0.818

(94.3%)

MPI

(Baseline)
22.418 3.710 2.224 0.421

2x4

Hybrid
21.045

(18.74%)

8.629

(39.42%)

5.246

(40.61%)

0.916

(37.33%)

MPI

(Baseline)
17.724 6.189 3.731 0.667

4x4

Hybrid
13.248

(5.78%)

10.534

(10.55%)

6.276

(12.17%)

1.229

(4.41%)

MPI

(Baseline)
12.524 9.529 5.595 1.177

8x4

Hybrid
11.929

(-21.32%)

17.903

(-17.26%)

10.723

(-16.13%)

2.088

(-17.34%)

MPI

(Baseline)
15.161 21.637 12.784 2.526

The results presented in Table 8 are interesting in two ways. While energy is the

product of power and execution time, the percentage reduction or increase for energy

was not the same as that for performance. For example, with 4 cores, the execution time

for the hybrid implementation was 33% larger, but the corresponding energy was 79%

61

larger than MPI-only. Second, only when we have 32 cores is the hybrid method better.

Further work is needed to explore if a different hybrid implementation would produce

better results for 16 or fewer cores.

3.3.3 Gyrokinetic Toroidal Code (GTC)

In this section, we discuss the energy performance of the Gyrokinetic Toroidal

Code (GTC). Note that the GTC is weak scaling with 100 particles per cell and 100 time

steps. Table 9 provides the energy and performance comparison of the GTC application

executed on one node to eight nodes of Dori with the default CPU frequency of 1.8Ghz,

where KJ stands for thousand Joules, and NxM means N nodes with M cores per node.

With the increase of the number of nodes from 1 to 8, the performance improvement

percentage for the hybrid GTC over the MPI-only GTC increases from 37.22% on 1

node to 42.12% on 8 nodes. In addition, the hybrid also saves 37.81% of the overall

system energy over the MPI GTC on one node, and 41.86% of the total system energy

on 8 nodes. This also shows that using the hybrid MPI/OpenMP programming reduces

MPI communication overhead and achieves better performance and save energy.

It is interesting to observe that the performance improvement percentage and

energy saving percentage on a given number of nodes (from 1 to 8) are similar mainly

because the energy savings are the result of the performance improvement by the hybrid

GTC. It indicates that power consumption for both the hybrid GTC and the MPI GTC is

similar because the application is weak scaling. This is different from the results of the

BT implementation that is shown in Tables 6, where the NAS BT is strong scaling and

62

the performance improvement percentage for the hybrid BT is much larger than its

energy saving percentage because of the higher power consumptions of the hybrid BT.

Table 9. Energy and Runtime Comparison of MPI and Hybrid GTC Application

#Cores GTC Type Runtime(s)
Total Energy

(KJ)

CPU Energy

(KJ)

Memory

Energy (KJ)

1x4

Hybrid
1302.773

(-37.22%)

270.223

(-37.81%)

162.969

(-38.52%)

27.086

(-33.47%)

MPI

(baseline)
2075.376 434.524 265.071 40.714

2x4

Hybrid
1395.322

(-37.47%)

576.674

(-37.68%)

353.826

(-38.35%)

61.887

(-34.33%)

MPI

(baseline)
2231.652

925.401

574.003

94.238

4x4

Hybrid
1434.491

(-38.29%)

1182.959

(-38.40%)

711.065

(-39.31%)

118.186

(-34.64%)

MPI

(baseline)
2324.707

1920.578

1171.572

180.825

8x4

Hybrid
1463.457

(-42.12%)

2419.985

(-41.86%)

1457.945

(-42.39%)

244.013

(-37.73%)

MPI

(baseline)
2528.556 4162.998 2530.861 391.842

3.3.4 Runtime & Energy Using Frequency Scaling

To perform frequency scaling on Dori, five frequency values are utilized. The

default frequency and voltage for the system is set to 1.8 Ghz and 1.4V and can be

63

adjusted to 1.0Ghz and 1.3V. The CPU frequency on Dori can be adjusted in increments

of 200 hz from 1.8Ghz to 1.0Ghz. The power profiling data of BT and GTC executed on

4 nodes (4x4) is used to further investigate the impact on energy and runtime from

applying frequency scaling to execution of the applications.

Table 10 provides the effects of applying frequency scaling to the NAS BT

benchmark. When we scale down the CPU frequency from 1.8Ghz to 1.0Ghz we

observe that the hybrid BT has the minimum energy consumption of 14444.036 J with

the CPU frequency of 1.2Ghz. We use the runtime and energy consumption at 1.2Ghz as

a baseline to calculate other percentages shown in Table 4. When increasing the CPU

frequency from 1.2 Ghz to 1.8Ghz, we obtained runtime reduction but increased energy.

So there is a trade-off between performance and energy consumption. Achieving a

reduction in runtime may require using more energy.

64

Table 10. MPI and Hybrid BT on 4x4 (16 Cores) Using Frequency Scaling

CPU

Speed
BT Type Runtime(s)

Total Energy

(KJ)

CPU Energy

(KJ)

Memory Energy

(KJ)

1.8Ghz

Hybrid
71.723

(-25.31%)

15941.091

(10.36%)

9453.668

(22.88%)

1580.718

(-26.76%)

MPI
76.174

(-27.82%)

16702.200

(15.63%)

9986.521

(29.8%)

1765.706

(-18.19%)

1.6Ghz

Hybrid

76.139

(-21.80%)

15058.230

(4.25%)

8737.304

(13.57%)

1713.132

(-20.62%)

MPI
81.841

(-15.94%)

15903.052

(10.1%)

9088.220

(18.13%)

1858.386

(-13.9%)

1.4Ghz

Hybrid
84.849

(-12.86%)

14732.076

(1.99%)

8186.828

(6.41%)

1852.877

(-14.15%)

MPI
90.530

(-7.02%)

15624.080

(8.17%)

8577.551

(11.49%)

1992.754

(-7.67%)

1.2Ghz

Hybrid

(BASELINE)
97.366 14444.036 7693.547 2158.369

MPI
101.990

(4.74%)

15088.793

(4.46%)

8101.081

(5.29%)

2330.107

(7.96%)

1.0Ghz

Hybrid
111.947

(14.97%)

17041.246

(17.98%)

9325.778

(21.22%)

2480.800

(14.93%)

MPI
117.394

(20.56%)

17774.750

(23.06%)

9630.939

(25.18%)

2606.256

(20.75%)

65

Table 11 shows the energy and runtime for the hybrid and MPI-only GTC at five

CPU frequency gears from 1.8GHz to 1.0GHz on the Dori system. This shows the effect

that adjusting the frequency of the system has on the energy and performance of the

application. As shown in Table 5, for the default CPU frequency of 1.8 GHz, the

performance improvement percentage for the hybrid GTC over the MPI-only GTC is

38.29% on 4 nodes (with 4 cores per node), and the hybrid also saves 38.40% of the

overall system energy over the MPI GTC on 4 nodes. We use the energy and runtime for

the MPI and hybrid GTC at the CPU frequency of 1.6GHz as baseline to calculate the

percentages of energy and runtime at various frequencies in Table 6. As we seek to

explore the saving in energy we use the lowest energy consumption obtained at 1.6 Ghz

as the baseline.

For the given problem size and number of cores, it is obvious to see the total

application execution times for both the MPI and hybrid GTC increase with decreasing

the CPU frequency from 1.8 GHz to 1.0GHz as shown in Table 5. For instance, the

execution time for the hybrid GTC executed on 4 nodes increases up to 37.87% when

decreasing the CPU frequency to 1.0GHz. Decreasing CPU frequency means that a

lower voltage is utilized. This results in lower power consumption for the application.

From Table 11, we observe that the total energy consumption for the hybrid GTC

decreases 3.78% for the frequency of 1.6GHz, less than 1% for the frequency of 1.4GHz,

increases 1.77% for the frequency of 1.2GHz, but increases 17.81% for the frequency of

1.0GHz. So there is performance-energy trade-off that needs to be seriously considered

when applying frequency scaling to an application.

66

Table 11. GTC Power Profiling on 4x4 (16 Cores) Using Frequency Scaling

CPU

Speed
GTC Type Runtime(s)

Total Energy

(KJ)

CPU Energy

(KJ)

Memory Energy

(KJ)

1.8Ghz

Hybrid
1434.491

(-8.62)

1182.959

(3.72%)

711.065

(-7.1%)

118.186

(-8.09%)

MPI
2324.707

(48.1%)

1920.578

(68.50%)

1171.572

(76.42%)

180.825

(40.62%)

1.6Ghz

Hybrid

(BASELINE)
1569.960 1139.831 664.098 128.594

MPI
2511.532

(59.97%)

2057.516

(80.51%)

1253.041

(88.68%)

196.440

(52.76%)

1.4Ghz

Hybrid
1773.444

(12.96%)

1143.615

(0.03%)

661.161

(-0.04%)

153.450

(19.39)

MPI
2791.607

(77.81%)

1778.682

(56%)

1040.457

(56.67%)

230.353

(79.13%)

1.2Ghz

Hybrid
2094.598

(33.40%)

1162.393

(1.97%)

628.386

(-5.37%)

176.897

(37.56%)

MPI
3126.446

(99.1%)

1724.057

(51.26%)

940.227

(41.57%)

254.275

(97.73%)

1.0Ghz

Hybrid
2445.155

(37.87%)

1393.650

(22.26%)

769.366

(15.85%)

204.96

(4.34%)

MPI
3553.982

(127.37%)

2015.483

(76.82%)

1112.277

(67.49%)

285.326

(121%)

Table 12 illustrates the effect that frequency scaling has on the performance of

GTC at a functional granularity. The runtime for GTC at the default frequency of

1.8GHz are used as baselines to calculate the performance percentages for reduced

frequencies for hybrid and MPI implementations. Therefore, the hybrid percentages are

shown compared to the baseline of 1.8 GHz for the hybrid implementation. Also, the

67

MPI implementation is compared to the baseline of the MPI application at 1.8 Ghz. We

observe that the hybrid GTC outperforms its MPI counterpart because of big

performance improvements for five functions shift, charge, poisson, smooth and field of

the GTC and poor L2 cache behavior for the MPI implementation which increases the

amount of off-chip communications and degrades the performance. This is consistent

across different CPU frequencies. This further shows that using the hybrid MPI/OpenMP

programming can not only reduce MPI communication overhead but also achieve better

performance and save energy. The function-level information for CPU frequency scaling

can help us aid in finding the best combination of CPU frequency adjustments for the

entire GTC to save more energy when applying frequency scaling to the entire

application.

Table 12. Function Comparison of GTC using Frequency Scaling

CPU

Speed

GTC

Type
Time(s) Pusher Shift Charge Poisson

Smooth

1.8Ghz

Hybrid

(Baseline)
1434.49 854.5 36.75 498.1 16.94 10.25

MPI
2324.70

(62.1%)

823.7

(-3.63%)

268.4

(630%)

627.7

(26%)

159.6

(842%)

284.9

(2680%)

1.6Ghz

Hybrid
1569.96

(-9.4%)

940.1

(-10.0%)

39.64

(-7.83%)

542.3

(-8.87%)

20.81

(-22.84%)

8.019

(-21.76)

MPI

2511.53

(75.1%)

850.7

(-0.44%)

348.2

((847%)

692.5

(39%)

160.8

(849%)

292.7

(2756%)

68

Table 12: continued

1.4Ghz

Hybrid
1773.44

(-23.6%)

1067.00

(-24.9%)

38.48

(-4.8%)

617.2

(-23.91%)

21.01

(-24.03%)

8.532

(-16.76%)

MPI

2791.60

(95%)

1053.00

(23.33%)

307.40

(736%)

772.6

(55.1%)

157.8

(832%)

323.7

(3058%)

1.2Ghz

Hybrid
2094.598

(-46.0%)

1255.00

(-46.9%)

46.43

(-26.34%)

734.2

(-47.4%)

24.21

(-42.91%)

9.884

(-3.7%)

MPI
3126.446

(117%)

1218.00

(42.5%)

324.3

(782%

897.9

(80.2%)

162.80

(861%)

335.00

(3168%)

1.0Ghz

Hybrid
2445.16

(-70.5%)

1473.00

(-72.4%)

48.18

(-31.10%)

855.9

(-71.83%)

28.60

(-68.83%)

11.21

(-9.36%)

MPI
3553.982

(148%)

1458.00

(70.62%)

339.0

(822%)

1056.00

(112%)

161.3

(852%)

345.9

(3275%)

3.4 Summary

In this section we investigated energy and performance characteristics of

different parallel implementations of scientific applications on multicore systems, and

explored interactions between power consumption and application performance. We

used the power profiling tool PowerPack to collect power profiling data for four

scientific applications: a hybrid NAS parallel BT benchmark, a hybrid Lattice

Boltzmann application PMLB and a hybrid Gyrokinetic Toroidal Code for our

comparative analysis of energy and performance on multicore clusters. Our experimental

results show that there are various ways to save energy and improve performance of

parallel application codes.

69

First, we found, with respect to the MPI-only versus the hybrid implementation

for a scientific application, the best implementation can be dependent upon the

application executed on 16 or fewer cores. For the case of 32 cores, the results were

consistent that hybrid resulted in less execution time and energy on the Dori platform.

For example, the hybrid PMLB achieved 21% performance improvement and 17%

reduction in energy consumption compared to the MPI only implementation. With the

CPU Frequency Scaling, the best case for energy saving was not the best case for

execution time. For example, the hybrid GTC executed at the CPU frequency 1.6 Ghz

provided the lowest energy consumption but the execution time increased by 8.62%.

The hybrid implementations are based on the existing MPI applications and were

implemented to exploit the shared-memory architectures of multicore systems. The

results from these experiments show that the energy consumption and runtime of

scientific applications can vary at different frequencies. Therefore, these experiments

provide a strong foundation for the development of performance models that can be used

to analyze the runtime and power consumption of hybrid and MPI applications.

Furthermore, accurate power-aware models can be used to better determine appropriate

ways to optimize or refine scientific applications to reduce runtime and reduce power

consumption.

70

4. POWER-AWARE PERFORMANCE MODELS OF SCIENTIFIC

APPLICATIONS

In this section, we present the E-AMOM methodology for developing power-

aware predictive models of Hybrid and MPI scientific applications. This section

provides the detailed predictive models for six scientific applications. The E-AMOM

experimental models identify the characteristics in the applications that affect each

performance component (runtime, system power, CPU power, and memory power).

4.1 Performance-Tuned Principal Component Analysis Methodology

The performance-tuned principal component analysis method included in E-AMOM was

developed in order to determine a subset of predictors (via performance counters) that

could be used in modeling the performance of scientific applications. The performance-

tuned principal component analysis method combines statistically sound concepts into a

schema to determine performance counters that can be associated with an application’s

outcome, such as execution time and component power consumption of the system,

CPU, and memory. The remainder of this section will describe the components of this

method and how it is applied to scientific applications.

71

4.1.1 Modeling via Performance Counters

The most difficult part in predicting application performance via performance

counters is determining the appropriate counters to use for modeling each component.

We develop the performance-tuned principal component analysis method for

modeling the performance components of Hybrid and MPI scientific applications. Using

this method, we identify the application characteristics (via performance counters) that

affect performance of the application. The performance characteristics that are modeled

include runtime, system power consumption, CPU power consumption, and memory

power consumption.

The following algorithm was used to identify the performance counter events

needed to build the predictive models for each application:

1. Compute the Spearman's rank correlation for each performance counter event

rate for each performance component (runtime, system power, CPU power, and

memory power).

Equation (7) defines how the spearman correlation coefficient is computed for

identifying the rank between each performance counter and each performance

component. The relationship between two variables x and y is determined based on this

formula. The xi and yi variables represent the ranks of the performance counter and

performance component (time, system power, CPU power, memory power) that are

being correlated. The variables 𝑥 and ȳ represent the average of the samples for each

variable. The spearman rank correlation will provide a value between -1 and 1 for ρ. If

72

ρ is -1 then the variables are not correlated in any way, if ρ is 1 then the values are

highly correlated and as one increases the other value increases as well.

 𝜌 = !!!! !!!!!

!!!! !! !!!! !!
 (7)

The spearman’s rank correlation coefficient is used because it provides a correlation

value that is not easily influenced by outliers in the dataset. The pearson correlation

coefficient uses the actual values for the correlation and therefore it is more influenced

by outliers in the dataset. Figure 16 illustrates the effects that outliers have on different

correlation values. This figure shows corresponding values collected with X being the

performance counters and Y being runtime. As shown in the figure, the correlation

coefficient for the spearman rank is larger than the pearson correlation because pearson

correlation is affected by the outlier values.

 Figure 16. Spearman and Pearson Correlation Comparison

2. Establish a threshold, βai, to be used to eliminate any counters with Spearman

rank correlation values below the threshold.

73

βai is used to determine an appropriate threshold for eliminating performance

counters with low correlation to the performance event that is to be modeled. For

example, if βai = 0.59 then all performance counters with correlation coefficients below

this value are eliminated from the performance counter group. The value for β ai is

established based on a cluster analysis of the data. When more than half of the values

from the spearman rank correlation analysis are found above a point, the remaining

values are eliminated at the threshold βai. The values in red in Table 13 illustrate values

that have been reduced based on the threshold βai. The βai threshold is used to reduce the

number of performance counters that must be used in developing our regression model.

A reduced number of performance counters improves the time that it takes in developing

the regression model and also simplifies the model for future use.

Table 13. Reduced Performance Counters and Correlation Values

Performance Counter Correlation Value

PAPI_TOT_INS 0.9187018

PAPI_FP_OPS 0.9105984

PAPI_L1_TCA 0.9017512

PAPI_L1_DCM 0.8718455

PAPI_L2_TCH 0.8123510

PAPI_L2_TCA 0.8021892

Cache_FLD 0.7511682

74

Table 13: continued

Performance Counter Correlation Value

PAPI_TLB_DM	
 0.6218268	

PAPI_L1_ICA	
 0.5487321	

Bytes_out	
 0.5187535	

PAPI_L1_ICA 0.4876423

PAPI_L1_ICM 0.4449848

PAPI_L2_ICM 0.4017515

PAPI_CA_SHARE 0.3718456

PAPI_HW_INT 0.3813516

PAPI_CA_ITV 0.3421896

3. Compute a multivariate linear regression model based upon the remaining

performance counter event rates.

Equation (8) outlines the multivariate linear regression model that is used for

creating an initial application model based upon the remaining application performance

counters. The multivariate linear regression model is based upon the performance

75

counters that have not been eliminated thus far in the performance-tuned principal

component analysis process. Table 14 provides the derived regression coefficients that

could be used in modeling the runtime of a sample application code.

𝑦 = 𝛽! + 𝛽! ∗ 𝑟! +⋯𝛽! ∗ 𝑟! (8)

Table 14. Reduced Performance Counters and Regression Coefficients

Performance Counter Regression Coefficients

PAPI_TOT_INS 1.984986

PAPI_FP_OPS 1.498156

PAPI_L1_DCM 0.9017512

PAPI_L1_TCA 0.465165

PAPI_L2_TCA 0.0989485

PAPI_L2_TCH 0.0324981

Cache_FLD 0.026154

PAPI_TLB_DM 0.0000268

PAPI_L1_ICA 0.0000021

Bytes_out 0.000009

76

4. Establish threshold, βbi, and eliminate performance counters and ensure that the

regression coefficients are not greater than βbi in terms of magnitude.

The value β bi serves as the second elimination threshold and serves a similar

purpose as β ai to eliminate performance counters that do not contribute substantially to

modeling in the initial multivariate linear regression model. The determination of βbi is

accomplished by analyzing the coefficients of the multivariate linear regression model.

A visual analysis is used to determine an appropriate threshold that should be used to

eliminate the values that are negligible. An appropriate value for β bi is important

because if the value is not correctly chosen, or is too high, then values needed in the

modeling will be eliminated. Table 15 provides an illustration of applying the β bi

threshold to eliminate counters that are below the elimination value.

Table 15. Reduced Performance Counters and Regression Coefficients-Step 5

Counter Regression Coefficient

PAPI_TOT_INS 1.984986

PAPI_FP_OPS 1.498156

PAPI_L1_DCM 0.9017512

PAPI_L1_TCA 0.465165

PAPI_L2_TCA 0.0989485

PAPI_L2_TCH 0.0324981

Cache_FLD 0.026154

77

5. Compute the principal components of the reduced performance counter event

rates.

Principal component analysis is a statistical method that is used to provide a

linear transformation of data that can be used to reduce the dimensionality of data. The

principal components of data, (Yi), is given by a linear combination of variables Xi, X2,

…..Xp. For example, the first principal components would be represented by equations

(9)

 𝑌! = 𝑎!!𝑋! + 𝑎!"𝑋! +⋯… . .+𝑎!!𝑋! (9)

The values for ai1, ai2, ……aip are calculated with the constraint that the sum of

their squares must equal to 1.

 𝑎!!! + 𝑎!"! +⋯… . .+𝑎!!! = 1 (10)

The second principal component would be calculated in the same manner as the

first principal component following the condition that it must be uncorrelated

(perpendicular) to the first principal component.

 𝑌! = 𝑎!"𝑋! + 𝑎!!𝑋! +⋯… . .+𝑎!!𝑋! (11)

The number of principal components calculated is dependent upon the number of

variables included in the original data. In our work, the number of principal components

would be equal to the number of performance counters reduced for modeling the

performance component of the application. Figure 17 provides an illustration of

determining the points through the data that would compose Principal Component 1 and

Principal Component 2. PCA is used to identify the final performance counters to use

78

because PCA is a statistically proven technique for identifying. We use these values as

guidelines for determining which performance counters to use in our final model.

Figure 17. PCA Analysis Example

6. Use the performance counter event rates with the highest principal component

coefficient vectors to build a multivariate linear regression model to predict the

respective performance metric.

The first two principal components represent the largest amount of variability, or

information, in our data. Therefore, the first two principal components are used for

further reducing the number of variables for creating our multivariate linear regression

model. The variables with the highest coefficients, or weights, contribute the most to

variability of the data and therefore serve as the most accurate predictors for modeling.

Table 16 represents the final multivariate regression model that is developed using the

performance-tuned principal component analysis method in E-AMOM. Our final model

79

reduced the number of performance counters to 4 to represent the execution time of the

application from the original 10 counters in the initial regression (step 3).

Table 16. Final Multivariate Regression Model

Counter Regression Coefficient

PAPI_TOT_INS 2.59653

PAPI_L1_TCA 1.19494

PAPI_L2_TCA 0.92378

PAPI_L2_TCH 1.138384

We explore the following issues in regards to modeling the runtime and power

consumption of MPI and Hybrid scientific applications on multicore systems:

a) What is the accuracy of our models in estimating performance (runtime and

power consumption for system, CPU, and memory components?

b) Which combination of performance counters can be used to model the Hybrid

application in terms of runtime, system power, CPU power, and memory power?

c) What are the application characteristics that affect runtime and power

consumption in Hybrid scientific applications?

d) What characteristics of Hybrid applications can be refined to improve

performance on multicore systems?

80

Our application-models explore the following dimensions in terms of modeling and

predicting application performance:

i. Difference application data sizes

ii. Number of processors

iii. Different frequency settings

iv. Different concurrency settings

4.1.1.1 Modeling Summary

Overall, the modeling component of E-AMOM includes six detailed steps that

are used to construct our performance models. Our performance-tuned principal

component analysis method is applied to each application for each performance

component. In step 1, the correlation coefficients are used to determine which

performance counters are highly correlated with the performance component being

modeled. A high correlation is strong indication that the value will be accurate in

modeling the performance component. In step 2, a threshold is used to reduce the

number of counters that would be used in the final regression step. Step 3 and Step 4

provide additional measures that are used to reduce the number of performance counters

that would be included in our model. Steps 5 applies principal component analysis to

our reduced model set of counters to determine which of the remaining counters capture

the strongest overall structure of our data. The final step builds the model that is used

for the performance component of the application.

81

4.1.2 Training Set Criteria

We develop predictive performance models for the Hybrid and MPI applications

in this work. Our predictive models are developed using various configuration points for

each application and each implementation to constitute a training set for predicting

performance in terms of runtime and power consumption of the system, CPU, and

memory components. A 6 points of the configuration space are used for predicting intra-

node performance and 6 points are used for predicting inter-node performance.

Scaling processor performance for each implementation is represented as (M x

N), where M is the number of nodes used, and N is the number of processors per node.

In the case of MPI-only, M is the number of nodes and N is MPI processes per node;

each MPI process is mapped to a processor. In the case of our hybrid application M is

the number of nodes and N is the number of OpenMP threads utilized per node; each

OpenMP thread is mapped to a processor. For a Hybrid application, a configuration of

11x8 means that 11 MPI processes with 8 OpenMP threads per node were used for a

total of 128 processors. The training set for inter-node performance uses six data points

consisting of configurations for points at 1x8, 3x8, 5x8, 7x8, and 9x8, 10x8. The 12

training points were used to predict performance for up to 16 larger configuration points

to determine how accurate our model was at predictions for larger processor sizes.

4.2 HPC Applications

In this section, we present the scientific applications that are used throughout this

section. These applications include the three NAS Multi-Zone Parallel Benchmarks [35]

82

and three large-scale scientific applications. We model the runtime, system, CPU, and

memory power consumption of Hybrid and MPI implementations of scientific

applications on multicore systems. Table 17 provides an overview of the applications

that are used in this modeling work.

The NPB-MZ suite contains three benchmarks (BT-MZ, SP-MZ, and LU-MZ),

which are used to simulate the performance characteristics of large-scale scientific

applications. Each benchmark in NPB-MZ consists of using a main loop to exchange

values during MPI communication and an OpenMP phase within the loop. Each

benchmark contains a number of performance inputs, which enable the performance of

the application to be tested for different workload sizes.

Table 17. Overview of HPC Applications

Application Discipline Problem Size Languages

NAS BT-MZ
Computational

Fluid Dynamics

Class B

Class C

Class D

Fortran,

MPI/OpenMP

NAS SP-MZ
Computational

Fluid Dynamics

Class B

Class C

Class D

Fortran,

MPI/OpenMP

83

Table 17: continued

Application Discipline Problem Size Languages

NAS LU-MZ
Computational

Fluid Dynamics

Class B

Class C

Fortran,

MPI/OpenMP

GTC Magnetic Fusion

50 particles ppc

75 particles ppc

100 particles ppc

Fortran90,

MPI/OpenMP

PMLB
Computational

Fluid Dynamics

64x64x64

128x128x128

256x256x256

C, MPI/OpenMP

Parallel EQdyna
Earthquake

Simulation
200m

Fortran90,

MPI/OpenMP

The Block Tri-diagonal algorithm (BT-MZ) contains (16x16) x-zones x y-zones

and has uneven mesh tilings. BT-MZ represents realistic performance case for exploring

the discretization meshes in parallel computing. The Scalar Penta-diagonal algorithm

(SP-MZ) contains (16x16) x-zones x y-zones and is representative of a balanced

workload in the suite. The Lower-Upper symmetric Gauss-Seidel algorithm (LU-MZ)

contains (4x4) x-zones x y-zones and the coarse-grain parallelism of LU-MZ is limited

to 16. Therefore, at most 16 MPI processes can be used in executing LU-MZ. The

84

problem sizes for all NPB-MZ benchmarks are strong scaling using class C, utilizing

800MB of memory.

The GTC application was previously introduced in Section 3. There are 7 major

functions: load, field, smooth, poisson, charge, shift and pusher in the code. Charge,

pusher and shift dominate most of the runtime. Note that GTC is executed in weak

scaling to keep a constant workload per processor as the number of processors increase

using 100 particles per cell and 100 time steps.

The PMLB application was previously discussed in Section 3. In this section we will

provide additional details about the application. In the parallel implementation, the

entire computational domain is divided into n1 × n2 × n3 blocks, where n1, n2, n3 are the

number of segments in the x-, y-, and z-dimensions. Each block is assigned to a

processor. The grid sizes in each block can be different. The PMLB application code is

written in C with MPI, and is divided into six kernels:

• Initialization: reads input files and sets up the initial parameter values.

• Collision: computes the effect of the collisions, which occur during the particle

movement.

• Communication: communicates the needed data among neighboring blocks.

• Streaming: moves particles in motion to new locations along their respective

velocities.

• Physical: calculates macroscopic variables such as fluid density, which are used

in the collision and streaming steps.

• Finalization: cleans up the program and outputs the results.

85

In the PMLB application, the Collision, Communication, Streaming, and Physical

kernels are executed in a loop for 200 iterations. The Initialization and Finalization

kernels are executed once for the entire application run.

The Parallel EQdyna application is used to illustrate an element-based partitioning

scheme for explicit finite element methods. The application efficiently uses hybrid

MPI/OpenMP to parallelize the sequential, explicit finite element earthquake rupture

simulation code Parallel EQdyna. This enables the application to achieve multiple levels

of parallelism and also reduce the communication overhead of MPI within a multicore

node. The Hybrid EQdyna application is based on what the OpenMP implementation of

EQdyna.

4.3 Experimental Results

We present the experimental results for our power-aware predictive models of

hybrid and MPI scientific applications. We use our method to predict the runtime,

system power, CPU power, and memory power of scientific applications.

4.3.1 BT-MZ

4.3.1.1 Hybrid

We use our performance-tuned principal component analysis method to develop

accurate models for the Hybrid implementation of the NAS BT-MZ benchmark

application. The components that we utilize to model our application include runtime,

86

system power, CPU power, and memory power. Table 18 shows the regression

coefficients that are needed to accurately model each component. For a detailed

explanation of what each performance counter means, please refer to Table 2 in Section

2. The frequency component is included in our regression table because it is used in

predicting the performance of each application for different frequencies. With regards to

runtime, PAPI_L2_TCM has the largest regression coefficient that is used in modeling

the BT-MZ Hybrid application. Modeling of the system power consumption results in

the PAPI_L2_TCA having the largest regression for the application.

Table 18. Regression Coefficients for BT-MZ Hybrid

Time	
 System	
 Power	
 CPU	
 Power	
 Memory	
 Power	

Frequency	
 0.00476	
 Frequency	
 0.00125	
 Frequency	
 0.00112	
 Frequency	
 0.00012	

PAPI_TOT_INS	
 0.105050	
 PAPI_L2_TCH	
 0.01584	
 PAPI_L1_TCM	
 0.3551	
 PAPI_L1_TCA	
 0.0310818	

PAPI_L2_TCM	
 0.178700	
 PAPI_L2_TCA	
 0.07793	
 PAPI_L2_TCH	
 0.03187	
 PAPI_L2_TCM	
 0.45754	

PAPI_L2_TCA	
 0.097108	
 PAPI_RES_STL	
 0.05803	
 PAPI_RES_STL	
 0.128897	
 PAPI_L2_TCH	
 0.0018475	

	
 	
 	
 	
 	
 	
 PAPI_BR_INS	
 0.0001894	

87

Figure 18. Average Error of BT-MZ Hybrid

With regards to modeling of the CPU power consumption, the PAPI_L1_TCM

counter has the largest regression coefficient in comparison to the other counters and

components. The PAPI_RES_STL counter has the 2nd largest regression coefficient in

modeling the CPU power consumption. The memory power consumption is modeled

using PAPI_L1_TCA, PAPI_L2_TCM, PAPI_L2_TCH, and PAPI_BR_INS.

PAPI_L2_TCM has the largest regression coefficient for modeling memory power.

 Figure 18 shows the average error for predicting the performance and power

consumption of the BT-MZ Hybrid application. The performance components modeled

in the BT-MZ Hybrid application had an average prediction error of less than 5%.

Specifically, the smallest error was found for predicting the runtime for the application

0	

1	

2	

3	

4	

5	

1.97%	

	

2.75%	

	

4.41%	

3.88%	

	

Er
ro
r	
 R

at
e	

BT-­‐MZ	
 	
 Hybrid	
 Average	
 Error	

Time	
 SysPower	
 CPUPower	
 MemPower	

88

across 40 prediction points, less than 2%. The highest error rate occurred in modeling

the CPU power consumption (4.41%).

Figure 19. Scatterplot of BT-MZ Hybrid for Runtime

In Figure 19 we provide an overview of the distribution of the percent error for

the runtime of BT-MZ Hybrid application. The values show that predicting the runtime

the percent error is largely positive for approximately 80% of the points. As the number

of processors increases, the error increases for class D only.

-­‐4	

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

BT-­‐MZ_H	
 RunRme	
 Signed	
 Error	

class	
 B	

class	
 C	

class	
 D	

89

Figure 20. Scatterplot of BT-MZ Hybrid for System Power Consumption

 In Figure 20 we provide an overview of the distribution of the percentage error

for the system power of the BT-MZ Hybrid application. The figure illustrates that a

large number of the points are over-predicted, resulting in positive percent errors, for

class B and class D. When the number of processors is greater than 80, the model

underestimates the power consumption. This could be caused from the modeling not

being able to take into account the scaling of the workload for the class C benchmark at

the larger processor configuration.

-­‐4	

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

BT-­‐MZ_H	
 Sys.	
 Power	
 Signed	
 Error	

class	
 B	

class	
 C	

class	
 D	

90

Figure 21. Scatterplot of BT-MZ Hybrid for CPU Power Consumption

In Figure 21 we provide an overview of the distribution of each prediction point

for the CPU power consumption of the BT-MZ Hybrid application. The figure

illustrates that a large number of the points are over-predicted or have positive percent

errors across all problem sizes. For the case of class C and class D there is a period

between 48 and 96 processes in which our model under-estimates the CPU power

consumption for the application. In the case of class B, it should be noted that the model

provides for all positive estimations of the CPU power consumption.

-­‐4	

-­‐2	

0	

2	

4	

6	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

BT-­‐MZ_H	
 CPU	
 Power	
 Signed	
 Error	

class	
 B	

class	
 C	

class	
 D	

91

Figure 22. Scatterplot of BT-MZ Hybrid for Memory Power Consumption

In Figure 22 we provide an overview of the distribution of each prediction point

for the memory power consumption of BT-MZ Hybrid application. The figure illustrates

that a large number of the points are over-predicted or positive for class B and class D.

For larger number of processes, greater than 80 processes, the system power prediction

underestimates the actual value. This could be caused from the model not being able to

take into account the scaling of the workload for the class C benchmark.

4.3.1.2 MPI

In this section, we use our performance-tuned principal component analysis

method to develop accurate models for the MPI implementation of the NAS BT-MZ

benchmark application. Table 19 shows the regression coefficients that are used to

-­‐8	

-­‐6	

-­‐4	

-­‐2	

0	

2	

4	

6	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

BT-­‐MZ_H	
 Mem	
 Power	
 Signed	
 Error	

class	
 B	

class	
 C	

class	
 D	

92

model each component. With regards to time, PAPI_L2_TCA has the largest regression

coefficient that is used in modeling the BT-MZ Hybrid application. System power

shows that PAPI_TOT_INS has the largest regression coefficient in model.

Table 19. Regression Coefficients for BT-MZ MPI

Time	
 System	
 Power	
 CPU	
 Power	
 Memory	
 Power	

Frequency	
 0.001358	
 Frequency	
 0.00329	
 Frequency	
 0.021876	
 Frequency	
 0.00918984	

PAPI_TOT_INS	
 0.0398942	
 PAPI_TOT_INS	
 0.01694	
 PAPI_TOT_INS	
 0.041895	
 PAPI_L1_TCA	
 0.047188359	

PAPI_L2_TCH	
 0.01584	
 PAPI_L2_TCH	
 0.00157	
 PAPI_L1_TCM	
 0.003182	
 PAPI_L2_TCH	
 0.002761895	

PAPI_L2_TCA	
 0.0431898	
 PAPI_L2_TCA	
 0.00132	
 PAPI_L2_TCH	
 0.171658	
 PAPI_L2_TCA	
 0.0817945	

PAPI_RES_STL	
 0.0098415	
 PAPI_RES_STL	
 0.00182	
 PAPI_L2_TCA	
 0.918457	
 	
 	

Figure 23. Average Error of BT-MZ MPI

With regards to modeling of the CPU power consumption, the PAPI_L2_TCA

counter has the largest regression coefficient in comparison to the other counters and

0	

2	

4	

6	

8	

1.06%	

	

3.17%	

	
 3.98%	

6.79%	

	

Er
ro
r	
 R

at
e	

BT-­‐MZ	
 MPI	
 Average	
 Error	

Time	
 SysPower	
 CPUPower	
 MemPower	

93

components. The PAPI_TOT_INS counter has the 2nd largest regression coefficient in

modeling the CPU power consumption. The memory power consumption is modeled

using PAPI_L1_TCA, PAPI_L2_TCH, and PAPI_L2_TCA. PAPI_L2_TCA has the

largest regression coefficient for modeling memory power.

 Figure 23 shows the average error resulting from the modeling of the BT-MZ

MPI application. The performance components modeled for the BT-MZ MPI

application had an average prediction error of less than 3.8%. The smallest error is for

predicting the runtime for the application across 40 prediction points, less than 1.1%.

The highest error rate occurred in modeling the memory power consumption (6.79%).

Figure 24. Scatterplot of BT-MZ MPI for Runtime

Figure 24 and Figure 25 present a detailed overview of the predictions for the

BT-MZ MPI application when predicting application runtime and system power

-­‐4	

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

BT-­‐MZ_MPI	
 RunRme	
 Signed	
 Error	

class	
 B	

class	
 C	

class	
 D	

94

consumption. Overall, our modeling methodology provided predictions in the range of

+2% to -3% for percent error across three input datasets. The smaller processor

configurations show percent errors of less than 1% across class B and class C. There are

negative percent errors for class C and class D as the number of processors increase.

These under-predictions are likely caused by the training set for this application not

providing the best fit for predicting at those specific processor configurations.

Figure 25. Scatterplot of BT-MZ MPI for System Power Consumption

The majority of the predictions that were made for system power consumption

resulted in positive percent error rates or over-predictions. The performance counters

used in predicting these values could cause variations in predictions if the counter values

fluctuate or do exhibit consistent trends as the number of processors is increased.

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

BT-­‐MZ_MPI	
 Sys.	
 Power	
 Signed	
 Error	

class	
 B	

class	
 C	

class	
 D	

95

However, the modeling methodology provides consistent predictions in the range of

+2% to 0% for most values for the BT-MZ MPI application.

Figure 26. Scatterplot of BT-MZ MPI for CPU Power Consumption

In Figure 26 and Figure 27 we provide an overview of the distribution of each

prediction point for the CPU and memory power consumption of the BT-MZ MPI

application. The figures illustrate that a large number of the points are over-predicted or

positive across all problem sizes. For both CPU and memory power consumption

prediction it is shown that all of the predictive values for class B and class D remain

positive. In predicting the CPU power consumption the values for class C result in

negative values for the larger processor sizes.

-­‐5	

-­‐4	

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

BT-­‐MZ_MPI	
 CPU	
 Power	
 Signed	
 Error	

class	
 B	

class	
 C	

class	
 D	

96

Figure 27. Scatterplot of BT-MZ MPI for Memory Power Consumption

4.3.2 SP-MZ

4.3.2.1 Hybrid

In this section, we use our performance-tuned principal component analysis

method to develop accurate models for the hybrid implementation of the NAS SP-MZ

application benchmark. The components that we utilize to model our application include

runtime, system power, CPU power, and memory power. Table 20 shows the regression

coefficients that are needed to accurately model each component. With regards to time,

PAPI_L2_TCH has the largest regression coefficient that is used in modeling the SP-MZ

hybrid application. System power shows that PAPI_L1_TCM and PAPI_L2_TCH have

the largest regression coefficient in modeling the system power consumption.

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

BT-­‐MZ_MPI	
 Mem	
 Power	
 Signed	
 Error	

class	
 B	

class	
 C	

class	
 D	

97

Table 20. Regression Coefficients for SP-MZ Hybrid

Time	
 System	
 Power	
 CPU	
 Power	
 Memory	
 Power	

Frequency	
 0.0015175	
 Frequency	
 0.001322	
 Frequency	
 0.001333	
 Frequency	
 0.0264156	

PAPI_TOT_INS	
 0.0105484	
 PAPI_L1_ICA	
 0.2287	
 LD_ST_stall	
 0.01897	
 Cache_FLD	
 0.315519	

PAPI_L1_TCA	
 0.002452	
 PAPI_L2_TCH	
 0.2378	
 PAPI_L1_TCM	
 0.175466	
 LD_ST_stall	
 0.0054159	

PAPI_L2_TCH	
 0.63284	
 PAPI_L1_TCM	
 0.99784	
 PAPI_L2_TCH	
 0.401895	
 PAPI_L2_TCH	
 0.0948931	

PAPI_L1_TCM	
 0.12548	
 	
 	
 	
 	
 PAPI_L2_TCA	
 0.07819535	

Figure 28. Average Error of SP-MZ Hybrid

With regards to modeling of the CPU power consumption, the PAPI_L2_TCH

counter has the largest regression coefficient in comparison to the other counters and

components. The PAPI_L1_TCM counter has the 2nd largest regression coefficient in

modeling the CPU power consumption. The memory power consumption is modeled

0	

1	

2	

3	

4	

3.68%	

	

2.54%	

	

1.76%	

	

2.60%	

	

Er
ro
r	
 R

at
e	

SP-­‐MZ	
 Average	
 Error	

Time	
 SysPower	
 CPUPower	
 MemPower	

98

using four performance counters including: Cache_FLD_per_instruction, LD_ST_stall,

PAPI_L2_TCH, and PAPI_L2_TCA. The Cache_FLD_per_instruction has the largest

regression coefficient for modeling memory power.

Figure 28 shows the average error resulting from the modeling of the SP-MZ

hybrid application. The performance components modeled for the SP-MZ hybrid

application had an average prediction error of less than 3%. Specifically, the smallest

error was found for predicting the CPU power consumption for the application across 40

prediction points, less than 2%. On the other hand, the highest error rate occurred in

modeling the runtime (3.78%).

In Figure 29 we provide an overview of the distribution of each prediction point

for the runtime of SP-MZ Hybrid application. The performance counters used for

predicting runtime are able to provide for consistent predictions across the various

application inputs. The values show that the prediction for the runtime is largely

positive for across all datasets.

99

Figure 29. Scatterplot of SP-MZ Hybrid for Runtime

 For predicting the runtime for class B all prediction points are positive and

remain less than 2% as the number of processors are increased. Class C shows slight

fluctuations in predicting the runtime, specifically, as the number of processors increase

pass 104 our runtime model under-predicts. The predictions for the Class D benchmark

show that all points except for 1 are positive which shows that the runtime model

predicts well within the range of 0 to 2%.

100

Figure 30. Scatterplot of SP-MZ Hybrid for System Power Consumption

 Figure 30 outlines the prediction trends of the system power consumption for the

SP-MZ Hybrid application. The prediction values illustrated show the overall trends in

prediction across class B, class C, and class D. For predicting the system power

consumption for class B all prediction points are positive and remain less than 2% as the

number of processes are increased. Class C shows several clusters of trends as the

number of processors increase. Figure 30 shows that for less than 72 processes the

percent error for most predictions is positive. There is a linear decrease in the

prediction accuracy from 72 to 96 processes, however, from 104 processes to 128

processes our model results in positive percent error for the modeling predictions.

101

Figure 31. Scatterplot of SP-MZ Hybrid for CPU Power Consumption

 In Figure 31 we show the values associated with our model of SP-MZ Hybrid for

predicting CPU Power consumption. Largely, for class B the values are positive except

for one negative value at 32 processes. The overall trend in prediction for class C results

in positive prediction values for most processor points.

102

Figure 32. Scatterplot of SP-MZ Hybrid for Memory Power

 In Figure 32 we show the values associated with our model of SP-MZ Hybrid for

predicting memory power consumption. The memory power consumption shows

different patterns that highlight the clustering of prediction values at different processor

sizes. The usage of PAPI_L2_TCH and PAPI_L2_TCA has an effect on the ability of

our model to accurately predict as the number of processors increase. The best fit using

these two performance counters can result in over prediction or under-prediction of

values across class C and class D. The smaller memory requirements by class B makes

it less likely for large variances to occur when predicting memory power consumption.

4.3.2.2 MPI

In this section we present the models for the MPI implementation of the NAS

SP-MZ application. The components that we utilize to model our application include

runtime, system power, CPU power, and memory power. Table 21 shows the regression

103

coefficients that are needed to accurately model each component. With regards to

runtime, PAPI_L1_TCM has the largest regression coefficient that is used in modeling

the SP-MZ MPI application. System power shows that PAPI_TOT_INS has the largest

regression coefficient in modeling the system power consumption of the application.

Table 21. Regression Coefficients for SP-MZ MPI

Time	
 System	
 Power	
 CPU	
 Power	
 Memory	
 Power	

Frequency	
 0.0013182	
 Frequency	
 0.21895	
 Frequency	
 0.001253	
 Frequency	
 0.0264156	

PAPI_TOT_INS	
 0.0475319	
 PAPI_TOT_INS	
 0.50888	
 Cache_FLD_	
 0.01897	
 Cache_FLD_	
 0.315519	

PAPI_L1_TCA	
 0.0380158	
 PAPI_L2_TCH	
 0.41659	
 PAPI_L1_TCA	
 0.175466	
 LD_ST_stall	
 0.0054159	

PAPI_L2_TCH	
 0.0761895	
 PAPI_L1_TCM	
 0.08198	
 PAPI_L2_TCH	
 0.401895	
 PAPI_L2_TCH	
 0.0948931	

PAPI_L1_TCM	
 0.0818185	
 	
 	
 	
 	
 PAPI_L2_TCA	
 0.07819535	

Figure 33. Average Error of SP-MZ MPI

0	

1	

2	

3	

4	

5	

6	

3.33%	

	

1.94%	

	

5.68%	

	
 4.85%	

	

Er
ro
r	
 R

at
e	

SP-­‐MZ	
 MPI	
 Average	
 Error	

Time	
 SysPower	
 CPUPower	
 MemPower	

104

With regards to modeling of the CPU power consumption, the PAPI_L2_TCH

counter has the largest regression coefficient in comparison to the other counters and

components. The memory power consumption is modeled using

Cache_FLD_per_instruction, LS_ST_stall_per_instruction, PAPI_L2_TCH, and

PAPI_L2_TCA. Cache_FLD_per_instruction has the largest regression coefficient.

 Figure 33 shows the average error resulting from the modeling of the SP-MZ

MPI application. The performance components modeled for the SP-MZ MPI application

had an average prediction error of less than 3.6%. Specifically, the smallest error was

found for predicting the runtime for the application, which was 1.94%. On the other

hand, the highest error rate occurred in modeling the CPU power consumption (5.68%).

Figure 34. Scatterplot of SP-MZ MPI for Runtime

-­‐4	

-­‐2	

0	

2	

4	

6	

8	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

SP-­‐MZ	
 MPI	
 RunRme	

class	
 B	

class	
 C	

class	
 D	

105

In Figure 34 we provide an overview of the distribution of each prediction point

for the runtime of SP-MZ MPI application. For predicting the runtime for class B all

prediction points are positive and remain less than 2%. Class C has the largest number

of points used for prediction and these values remain largely clustered between +4% and

0%. The predictions for the Class D benchmark show that all points except for 1 are

positive which shows that the runtime model predicts well within the range of 0 to 2%.

 Figure 35 shows the distribution of prediction points for system power

consumption. There are slight variations in the prediction values as the number of

processors increases past 96. For class C the values increase for the larger processors

sizes. For class D the prediction values result in negative values but then increase to

positive predictive values.

 Figure 35. Scatterplot of SP-MZ MPI for System Power Consumption

-­‐4	

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

6	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

SP-­‐MZ	
 MPI	
 System	
 Power	

class	
 B	

class	
 C	

class	
 D	

106

In Figure 36 we show the values associated with our model of SP-MZ MPI for

predicting CPU power consumption. The modeling of the CPU power consumption for

SP-MZ MPI results in positive-valued predictions for most values in class B and class C.

Class D has a cluster of negative predictive values from 80 to 96 processors which could

indicate a performance trend that occurs for the workload executed on 80 to 96

processors.

Figure 36. Scatterplot of SP-MZ MPI for CPU Power Consumption

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

6	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

SP-­‐MZ	
 MPI	
 CPU	
 Power	

class	
 B	

class	
 C	

class	
 D	

107

Figure 37. Scatterplot of SP-MZ MPI for Memory Power Consumption

In Figure 37 we show the values associated with our model for predicting

memory power consumption of the SP-MZ MPI application. The memory power

consumption shows different patterns that highlight the clustering of prediction values at

different processor sizes. Prediction of the memory power consumption exhibits larger

variability than other components for SP-MZ MPI. This larger variability could be an

indication that different models could provide for more consistent predictions for

prediction power consumption of the memory component.

-­‐4	

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

SP-­‐MZ	
 MPI	
 Memory	
 Power	

class	
 B	

class	
 C	

class	
 D	

108

4.3.3 LU-MZ

4.3.3.1 Hybrid

In this section, we use our performance-tuned principal component analysis

method to develop accurate models for the Hybrid implementation of the NAS LU-MZ

application benchmark. The components that we utilize to model our application include

runtime, system power, CPU power, and memory power. Table 22 shows the regression

coefficients that are needed to accurately model each component. With regards to time,

PAPI_TLB_DM and PAPI_L2_TCH have the largest regression coefficients that are

used in modeling the runtime for the LU-MZ Hybrid application. System power shows

that PAPI_L2_TCA and PAPI_L2_TCH have the largest regression coefficients in

modeling the system power consumption for the hybrid implementation of the

application.

Table 22. Regression Coefficients for LU-MZ Hybrid

Time	
 System	
 Power	
 CPU	
 Power	
 Memory	
 Power	

Frequency	
 0.001322	
 Frequency	
 0.00109	
 Frequency	
 0.00112	
 Frequency	
 0.00178	

Cache_FLD	
 0.005197	
 PAPI_L2_TCH	
 0.11585	
 LD_ST_stall	
 0.06548	
 PAPI_L1_TCA	
 0.01877	

PAPI_TOT_INS	
 0.000518	
 PAPI_L2_TCA	
 0.12254	
 PAPI_L2_TCH	
 0.1894	
 PAPI_L2_TCH	
 0.08431	

PAPI_TLB_DM	
 3.9085	
 PAPI_RES_STL	
 0.0211	
 PAPI_L2_TCA	
 0.7149	
 PAPI_RES_STL	
 0.07451	

PAPI_L2_TCH	
 1.11565	
 	
 	
 	
 	
 	
 	

109

Figure 38. Average Error of LU-MZ Hybrid

With regards to modeling of the CPU power consumption, the PAPI_L2_TCA

counter has the largest regression coefficient in comparison to the other counters and

components. The PAPI_L2_TCA counter has the 2nd largest regression coefficient in

modeling the CPU power consumption. For modeling the memory power consumption

of the LU-MZ hybrid application, the PAPI_L2_TCH and PAPI_RES_STL counters

have the largest regression coefficients.

Figure 38 shows the average error resulting from the modeling of the LU-MZ

Hybrid application. The performance components modeled for the LU-MZ Hybrid

application have an average prediction error of 4.02%. The smallest error was found for

predicting the memory power consumption for the application. On the other hand, the

highest error rate occurred in modeling the CPU power consumption (5.83%).

0	

1	

2	

3	

4	

5	

6	

3.81%	

	

4.21%	

	

5.83%	

	

2.24%	

	
 Er

ro
r	
 R

at
e	

LU-­‐MZ	
 Hybrid	
 Average	
 Error	

Time	
 SysPower	
 CPUPower	
 MemPower	

110

Figure 39. Scatterplot of LU-MZ Hybrid for Runtime

 In Figure 39 we provide an overview of the distribution of each prediction point

for the runtime of LU-MZ Hybrid application. The performance counters used for

predicting runtime are able to provide for consistently positive values for predicting the

runtime across the two application inputs. The values show that the prediction for the

runtime is largely positive for the application datasets.

For predicting the runtime for class B all prediction points except one are

positive and remain less than 5% as the number of processes are increased. In addition,

class C shows all positive points for predicting the runtime, specifically, as the number

of processes increases passes. The scalability of the LU-MZ benchmark is limited so the

maximum number of processors that could be used to obtain results was limited to 48

processors.

111

Figure 40. Scatterplot of LU-MZ Hybrid for System Power

 Figure 40 outlines the prediction values of the system power consumption for the

LU-MZ hybrid application. The prediction values show the general trend towards

positive values for class B and class C. For predicting the system power for class B all

prediction points are positive except for one point. The error is slightly large for

predicting class B system power at certain points for less than 8 processes. This occurs

because the general scalability of the application is limited as the number of threads

increase within one node or less than 8 processors. The large error in prediction also

occurs with class C, but decreases and then shows slight increases as the number of

processors increase.

112

Figure 41. Scatterplot of LU-MZ Hybrid for CPU Power

 In Figure 41 we show the values associated with our model of LU-MZ Hybrid

for predicting CPU Power consumption. The CPU Power consumption shows some

interesting trends for the prediction of the CPU power consumption of LU-MZ hybrid.

Largely, for class B and class C the values are positive except for one negative value at 4

processes for each class. The values for prediction CPU power consumption are largely

consistent based upon the values exhibited from the Cache_FLD_per_instruction and

PAPI_L2_TCA counters for this application.

-­‐6	

-­‐4	

-­‐2	

0	

2	

4	

6	

8	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

LU-­‐MZ	
 Hybrid	
 CPU	
 Power	

Class	
 B	

Class	
 C	

113

Figure 42. Scatterplot of LU-MZ Hybrid for Memory Power Consumption

 Figure 42 outlines the prediction trends of the memory power for the LU-MZ

Hybrid application. For predicting the memory power consumption for class B all

prediction points are positive and remain positive as the number of processes is

increased. Class C shows different trends in predicting memory power consumption as

the number of processors increase. The larger memory required by the class C

application input results in having prediction trends that are not linear as the number of

processes increase.

4.3.3.2 MPI

In this section, we use our performance-tuned principal component analysis

method to develop accurate models for the MPI implementation of the NAS LU-MZ

application benchmark. The components that we utilize to model our application include

-­‐6	

-­‐4	

-­‐2	

0	

2	

4	

6	

8	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

LU-­‐MZ	
 Hybrid	
 Memory	
 Power	

Class	
 B	

Class	
 C	

114

runtime, system power, CPU power, and memory power. Table 23 shows the regression

coefficients that are needed to accurately model each component. With regards to time,

PAPI_TLB_DM and PAPI_L2_TCH have the largest regression coefficients that are

used in modeling the runtime for the LU-MZ MPI application. System power shows that

PAPI_L2_TCA and PAPI_L2_TCH have the largest regression coefficients in modeling

the system power consumption for the MPI implementation of the application.

Table 23. Regression Coefficients for LU-MZ MPI

Time	
 System	
 Power	
 CPU	
 Power	
 Memory	
 Power	

Frequency	
 0.101195	
 Frequency	
 0.03128	
 Frequency	
 0.17488	
 Frequency	
 0.003184	

Cache_FLD_	
 0.0459785	
 PAPI_TOT_INS	
 0.01233	
 PAPI_TOT_INS	
 0.068175	
 PAPI_L2_TCA	
 0.218984	

PAPI_TOT_INS	
 0.3718951	
 PAPI_L1_DCA	
 0.01984	
 Cache_FLD_	
 0.031820	
 PAPI_L2_TCH	
 0.541351	

PAPI_L1_ICA	
 1.5165885	
 PAPI_L2_TCA	
 0.33187	
 PAPI_L2_TCA	
 0.018749	
 Cache_FLD_	
 0.411589	

PAPI_L2_TCA	
 1.23155	
 	
 	
 	
 	
 	
 	

With regards to modeling of the CPU power consumption, the PAPI_TOT_INS

counter has the largest regression coefficient in comparison to the other counters and

components. The Cache_FLD_per_instruction counter has the 2nd largest regression

coefficient in modeling the CPU power consumption. For modeling the memory power

consumption of the LU-MZ MPI application, the PAPI_L2_TCH and

Cache_FLD_per_instruction counters have the largest regression coefficients.

115

Figure 43. Average Error of LU-MZ MPI

Figure 43 shows the average error resulting from the modeling of the LU-MZ

MPI application. The performance components modeled for the LU-MZ MPI

application had an average prediction error of less than 4%. Specifically, the smallest

error was found for predicting the memory power consumption (1.62%) for the

application. The highest error rate occurred in modeling runtime (3.38%).

0	

1	

2	

3	

4	

3.38%	

	
 3.10%	

	

2.01%	

	
 1.62%	

	

Er
ro
r	
 R

at
e	

LU-­‐MZ	
 MPI	
 Average	
 Error	

Time	
 SysPower	
 CPUPower	
 MemPower	

116

Figure 44. Scatterplot of LU-MZ MPI for Runtime

In Figure 44 we provide an overview of the distribution of each prediction point

for the runtime of LU-MZ MPI application. The values show that the prediction for the

runtime is positive across both datasets and for all prediction points. Figure 40 provides

an overview of the distribution for each prediction point for the system power

consumption. Class B shows that for less than 8 processors that there are slightly large

error values that could be a result of the lack of scalability for the LU-MZ application.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

0	
 10	
 20	
 30	
 40	
 50	
 60	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

LU-­‐MZ	
 MPI	
 RunRme	
 Signed	
 Error	

Class	
 B	

Class	
 C	

117

Figure 45. Scatterplot of LU-MZ MPI for System Power Consumption

Figure 46. Scatterplot of LU-MZ MPI for CPU Power Consumption

In Figure 46 we show the values associated with our model of LU-MZ MPI for

predicting CPU Power consumption. Trends for the prediction of the CPU power

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

6	

7	

0	
 10	
 20	
 30	
 40	
 50	
 60	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

LU-­‐MZ	
 MPI	
 Sys	
 Power	
 Signed	
 Error	

Class	
 B	

Class	
 C	

-­‐6	

-­‐4	

-­‐2	

0	

2	

4	

6	

0	
 10	
 20	
 30	
 40	
 50	
 60	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

LU-­‐MZ_MPI	
 CPU	
 Power	
 Signed	
 Error	

Class	
 B	

Class	
 C	

118

consumption of LU-MZ MPI show a general pattern that prediction for the class B

application input remains in the range of +3% to +1%.. Largely, for class B and class C

the values are positive except for one negative for each class.

Figure 47. Scatterplot of LU-MZ MPI for Memory Power Consumption

Figure 47 outlines the prediction trends of the memory power for the LU-MZ

MPI application. For predicting the memory power consumption for class B all

prediction points are positive and remain positive as the number of processes increase.

The prediction errors for class B remain in the range of +6% to +2%.

-­‐4	

-­‐2	

0	

2	

4	

6	

8	

0	
 10	
 20	
 30	
 40	
 50	
 60	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

LU-­‐MZ_MPI	
 Mem	
 Power	
 Signed	
 Error	

Class	
 B	

Class	
 C	

119

4.3.4 GTC

4.3.4.1 Hybrid

In this section, we use our performance-tuned principal component analysis

method to develop accurate models for the Hybrid implementation of the large-scale

GTC application. The components that we utilize to model our application include

runtime, system power, CPU power, and memory power. Table 24 shows the regression

coefficients that are needed to accurately model each component.

With regards to runtime, PAPI_TOT_INS and PAPI_L2_TCA have the largest

regression coefficients that are used in modeling the runtime for the GTC Hybrid

application. System power shows that PAPI_L2_TCH and PAPI_L1_TCA have the

largest regression coefficients in modeling the system power consumption for the hybrid

implementation of the application.

Table 24. Regression Coefficients for GTC Hybrid

Time	
 System	
 Power	
 CPU	
 Power	
 Memory	
 Power	

Frequency	
 0.012382	
 Frequency	
 0.19549	
 Frequency	
 1.1658	
 Frequency	
 1.16585	

PAPI_TOT_INS	
 0.054015	
 PAPI_RES_STL	
 0.41849	
 PAPI_RES_STL	
 0.34649	
 PAPI_TOT_IN	
 0.06716	

PAPI_L2_TCH	
 0.008475	
 PAPI_L2_TCH	
 1.54152	
 PAPI_TOT_IN	
 0.41899	
 PAPI_L2_TCH	
 1.4942	

PAPI_L2_TCA	
 0.031587	
 PAPI_L1_TCA	
 1.32657	
 PAPI_L1_TCA	
 1.32169	
 PAPI_L2_ICM	
 0.78199	

PAPI_BR_INS	
 0.03157	
 	
 	
 PAPI_L2_TCH	
 1.16584	
 	
 	

120

Figure 48. Average Error of GTC Hybrid

With regards to modeling of the CPU power consumption, the PAPI_L1_TCA

and PAPI_L2_TCH counters have the largest regression coefficients. For modeling the

memory power consumption of the GTC Hybrid application, the PAPI_L2_TCH and

PAPI_L2_ICM counters have the largest regression coefficients. Additionally, from

Table 24 it can be seen that the PAPI_L2_TCH counter is used across all components.

 Figure 48 shows the average error resulting from the modeling of the GTC

Hybrid application. The performance components modeled for the GTC Hybrid

application had an average prediction error of 3.89%. Specifically, the smallest error

was found for predicting the CPU power consumption (2.45%) for the application. On

the other hand, the highest error rate occurred in modeling the memory power

consumption (5.91%).

0	

1	

2	

3	

4	

5	

6	

3.13%	

	

4.08%	

	

2.45%	

	

5.91%	

	

Er
ro
r	
 R

at
e	

GTC	
 Hybrid	
 Average	
 Error	

Time	
 SysPower	
 CPUPower	
 MemPower	

121

Figure 49. Scatterplot of GTC Hybrid for Runtime

 In Figure 49 we provide an overview of the distribution of each prediction point

for the runtime of GTC Hybrid application. The performance counters used for

predicting runtime are able to provide for consistent values for predicting the runtime

across three application inputs, which include 50 particles per cell, 75 particles per cell,

and 100 particles per cell. Prediction across all application inputs for GTC remains in

the range of +2.0% to -2.0% across all of the processor predictions. The most notable

trend occurs for 75 PPC as the prediction of this set increases as processors are

increased. This likely is a result of the large communication requirements for GTC,

which is not taken into consideration using the performance-tuned modeling

methodology.

-­‐8	

-­‐6	

-­‐4	

-­‐2	

0	

2	

4	

6	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

GTC	
 Hybrid	
 RunRme	

50	
 PPC	

75	
 PPC	

100	
 PPC	

122

Figure 50. Scatterplot of GTC Hybrid for System Power

 Figure 50 outlines the prediction values of the system power consumption for the

GTC hybrid application. The prediction values show the spread of prediction values for

system power consumption up to 128 processes for the application. For predicting the

system power consumption the prediction values are generally positive for less than 96

processes. For predictions larger than 96 processes there are variations in the values

being predicted being as the values fluctuate between positive or negative. However, the

general trend for the 50 PPC dataset shows that the values predicted stay within the

range of +2.0% to -2.0% from 96 processes to 128 processes.

-­‐4	

-­‐2	

0	

2	

4	

6	

8	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

GTC	
 Hybrid	
 System	
 Power	

50	
 PPC	

75	
 PPC	

100	
 PPC	

123

Figure 51. Scatterplot of GTC Hybrid for CPU Power

 Figure 51 and Figure 52 show the values associated with our model of GTC

hybrid application for predicting CPU and memory power consumption. The values

associated with the prediction for these two performance components show variations in

the trends and there are several points that are under-predicted past 72 processors for

both models. Overall, in modeling both CPU and memory power consumption the

values that are predicted are positive as the number of processors increase.

-­‐4	

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

6	

7	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

GTC	
 Hybrid	
 CPU	
 Power	

50	
 PPC	

75	
 PPC	

100	
 PPC	

124

Figure 52. Scatterplot of GTC Hybrid for Memory Power Consumption

4.3.4.2 MPI

In this section, we use our performance-tuned principal component analysis

method to develop accurate models for the MPI implementation of the large-scale GTC

application. The components that we utilize to model our application include runtime,

system power, CPU power, and memory power. Table 25 shows the regression

coefficients that are needed to accurately model each component.

With regards to runtime, PAPI_TOT_INS and PAPI_L2_TCM have the largest

regression coefficients that are used in modeling the runtime for the GTC MPI

application. System power shows that PAPI_TOT_INS and PAPI_L2_TCA have the

largest regression coefficients in modeling the system power consumption for the hybrid

implementation of the application. It should be noted that the regression coefficient for

-­‐8	

-­‐6	

-­‐4	

-­‐2	

0	

2	

4	

6	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

GTC	
 Hybrid	
 Memory	
 Power	

50	
 PPC	

75	
 PPC	

100	
 PPC	

125

the performance counters for the system power has very close regression coefficients,

which shows a close weighting for providing an accurate fit for system power prediction.

Table 25. Regression Coefficients for GTC MPI

Time	
 System	
 Power	
 CPU	
 Power	
 Memory	
 Power	

Frequency	
 0.0018418	
 Frequency	
 0.01424	
 Frequency	
 0.161554	
 Frequency	
 0.016452	

PAPI_TOT_INS	
 0.0269816	
 PAPI_TOT_INS	
 1.93185	
 PAPI_TOT_INS	
 0.412689	
 PAPI_L1_TCA	
 0.0579185	

PAPI_L1_TCA	
 0.0018485	
 PAPI_L2_TCH	
 1.20056	
 PAPI_L2_TCH	
 0.398485	
 PAPI_L2_TCH	
 0.045198	

PAPI_L2_TCH	
 0.0038482	
 PAPI_L1_TCA	
 1.10245	
 LD_ST_Stall	
 0.984182	
 LD_ST_Stall	
 0.00895	

PAPI_L2_TCM	
 0.0097816	
 	
 	
 	
 	
 	
 	

Figure 53. Average Error of GTC MPI

0	

1	

2	

3	

4	

5	

6	

2.45%	

	

0.94%	

	

2.47%	

	

5.01%	

	

Er
ro
r	
 R

at
e	

GTC	
 MPI	
 Average	
 Error	

Time	
 SysPower	
 CPUPower	
 MemPower	

126

With regards to modeling of the CPU power consumption, the

LD_ST_stall_per_cycle and PAPI_TOT_INS counters have the largest regression

coefficients. The PAPI_L2_TCH counter also contributes to the modeling of the CPU

power consumption as its regression coefficient is less than .04 smaller than the

PAPI_TOT_INS regression coefficient. For modeling the memory power consumption

of the GTC MPI application, the PAPI_L1_TCA and PAPI_L2_TCH counters have the

largest regression coefficients.

 Figure 53 shows the average error resulting from the modeling of the GTC MPI

application. The performance components modeled for the GTC MPI application had an

average prediction error of 2.72%. Specifically, the smallest error was found for

predicting the CPU power consumption (0.94%) for the application. On the other hand,

the highest error rate occurred in modeling the memory power consumption (5.91%).

Figure 54. Scatterplot of GTC MPI for Runtime

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

GTC	
 MPI	
 RunRme	
 Signed	
 Error	

50	
 PPC	

75	
 PPC	

100	
 PPC	

127

In Figure 54 and Figure 55 we provide an overview of the distribution of each

prediction point for the runtime and system power consumption of the GTC MPI

application. The performance counters used for predicting runtime are able to provide

for consistent values for predicting the runtime across three application inputs, which

include 50 particles per cell, 75 particles per cell, and 100 particles per cell. The

majority of the predictions across all application inputs for GTC remain in the range of

+2.0% to 0%.

Figure 55. Scatterplot of GTC MPI for System Power Consumption

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processoors	

GTC	
 MPI	
 Sys	
 Power	
 Signed	
 Error	

50	
 PPC	

75	
 PPC	

100	
 PPC	

128

Figure 56. Scatterplot of GTC MPI for CPU Power Consumption

Figure 56 and Figure 57 show the values associated with our model of GTC MPI

application for predicting CPU and memory power consumption. With regards to CPU

power consumption, the values associated with the prediction for these two performance

components show variations that occur for 75PPC and 100PPC. Overall, the predictions

for 75PPC remain consistent in the range of +2% to +1% as the number of processors

increase. The under predictions that occur from 80 to 96 processors could largely be

accountable to an inefficient decomposition when using those number of processors.

Most Overall, in modeling both CPU and memory power consumption the values that

are predicted are positive as the number of processors increase.

-­‐4	

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

GTC	
 MPI	
 CPU	
 Power	
 Signed	
 Error	

50	
 PPC	

75	
 PPC	

100	
 PPC	

129

Figure 57. Scatterplot of GTC MPI for Memory Power Consumption

4.3.5 PMLB

4.3.5.1 Hybrid

In this section, we use our performance-tuned principal component analysis

method to develop accurate models for the Hybrid implementation of the large-scale

PMLB application. Table 26 shows the regression coefficients that are needed to

accurately model each component. With regards to runtime, PAPI_L2_TCA and

PAPI_RES_STL have the largest regression coefficients that are used in modeling the

runtime for the PMLB hybrid application. System power shows that PAPI_L2_TCA and

PAPI_L2_TCH have the largest regression coefficients in modeling the system power

consumption for the hybrid implementation of the application.

-­‐4	

-­‐2	

0	

2	

4	

6	

8	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

GTC	
 MPI	
 Mem	
 Power	
 Signed	
 Error	

50	
 PPC	

75	
 PPC	

100	
 PPC	

130

Table 26. Regression Coefficients for PMLB Hybrid

Time	
 System	
 Power	
 CPU	
 Power	
 Memory	
 Power	

Frequency	
 0.001655	
 Frequency	
 0.33257	
 Frequency	
 1.40655	
 Frequency	
 1.165849	

PAPI_TOT_INS	
 0.0006702	
 PAPI_TOT_INS	
 0.00519	
 PAPI_TOT_INS	
 0.00519	
 PAPI_TOT_INS	
 0.000352	

PAPI_L1_TCA	
 0.0001899	
 PAPI_L2_TCH	
 0.51562	
 PAPI_L1_TCA	
 0.678485	
 PAPI_L2_TCH	
 0.55189	

PAPI_L2_TCA	
 0.05918	
 PAPI_L2_TCA	
 1.15642	
 PAPI_L2_TCA	
 0.481518	
 PAPI_RES_STL	
 0.11909	

PAPI_RES_STL	
 0.0273006	
 	
 	
 	
 	
 	
 	

Figure 58. Average Error of PMLB Hybrid

With regards to modeling of the CPU power consumption, the PAPI_L1_TCA

and PAPI_L2_TCA counters have the largest regression coefficients. For modeling the

memory power consumption of the PMLB hybrid application, the PAPI_L2_TCH and

PAPI_RES_STL counters have the largest regression coefficients of the hardware

0	

1	

2	

3	

4	

5	

2.27%	

	

0.84%	

	

2.1%	

	

4.74%	

	

Er
ro
r	
 R

at
e	

PMLB	
 Hybrid	
 Average	
 Error	

Time	
 SysPower	
 CPUPower	
 MemPower	

131

counters. It is interesting to note that the PAPI_TOT_INS counter is used in the

modeling of all of the performance components for the PMLB hybrid application.

 Figure 58 shows the average error resulting from the modeling of the PMLB

Hybrid application. The performance components modeled for the PMLB Hybrid

application had an average prediction error of 2.5%. Specifically, the smallest error was

found for predicting the system power consumption (0.84%) for the application. On the

other hand, the highest error rate occurred in modeling the memory power consumption

(4.74%).

Figure 59. Scatterplot of PMLB Hybrid for Runtime

 In Figure 59 we provide an overview of the distribution of each prediction point

for the runtime of PMLB Hybrid application. The performance counters used for

predicting runtime are able to provide for consistent values for predicting the runtime

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

PMLB	
 Hybrid	
 RunRme	

64x64x64	

128x128x128	

256x256x256	

132

across three application inputs, which include the grid sizes of 64x64x64, 128x128x128,

and 256x256x256. Predictions across all application inputs for the PMLB hybrid

application are largely positive.

Figure 60. Scatterplot of PMLB Hybrid for System Time

Figure 60 shows the predicted values for the system power consumption for the

PMLB hybrid application. The values predicted across the three input data sizes remain

in the range of +2.0% to -2.0% error. As the number of processors increases, the

predicted values are more negative in nature for our larger data sizes. This might be an

indication that our model, which makes use of the PAPI_L1_TCA, is not providing the

strongest estimate for the larger data sizes that might not make sure of the L1 cache.

-­‐1.5	

-­‐1	

-­‐0.5	

0	

0.5	

1	

1.5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 e
rr
or
	

Number	
 of	
 Processors	

PMLB	
 Hybrid	
 System	
 Power	

64x64x64	

128x128x128	

256x256x256	

133

Figure 61. Scatterplot of PMLB Hybrid for CPU Power

 Figure 61 and Figure 62 show the values associated with our model of PMLB

hybrid application for predicting CPU and memory power consumption. The values

associated with the prediction for these two performance components show that our

models consistently predict power consumption for CPU and memory components in the

range of +2.0% to -2.0%. There are slight increases in the error rate for both CPU and

memory power consumption for processor sizes smaller than 8 processors. These

similar trends are largely caused by the use of both PAPI_TOT_INS and PAPI_L2_TCH

for both CPU and memory power consumption components.

-­‐1	

0	

1	

2	

3	

4	

5	

6	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

PE
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

PMLB	
 Hybrid	
 CPU	
 Power	

64x64x64	

128x128x128	

256x256x256	

134

Figure 62. Scatterplot of PMLB Hybrid for Memory Power

4.3.5.2 MPI

In this section, we use our performance-tuned principal component analysis

method to develop accurate models for the MPI implementation of the large-scale

PMLB application. Table 27 shows the regression coefficients that are needed to

accurately model each component. With regards to runtime, PAPI_L2_TCA and

PAPI_TOT_INS have the largest regression coefficients that are used in modeling the

runtime for the PMLB MPI application. System power shows that PAPI_RES_STL and

PAPI_L1_TCA have the largest regression coefficients in modeling the system power

consumption for the hybrid implementation of the application.

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

PMLB	
 Hybrid	
 Memory	
 Power	

64x64x64	

128x128x128	

256x256x256	

135

Table 27. Regression Coefficients for PMLB MPI

Time	
 System	
 Power	
 CPU	
 Power	
 Memory	
 Power	

Frequency	
 0.004519	
 Frequency	
 1.30562	
 Frequency	
 0.915316	
 Frequency	
 0.064518	

PAPI_TOT_INS	
 0.0231894	
 PAPI_TOT_INS	
 0.21849	
 PAPI_TOT_INS	
 0.618498	
 PAPI_TOT_INS	
 0.415152	

PAPI_L1_TCA	
 0.0032198	
 PAPI_L1_TCA	
 1.76156	
 PAPI_L2_TCH	
 0.478156	
 PAPI_L2_TCH	
 0.19583	

PAPI_L1_ICA	
 0.0041519	
 PAPI_L2_TCA	
 1.18982	
 LD_ST_Stall	
 1.315619	
 PAPI_RES_STL	
 0.04052	

PAPI_L2_TCA	
 0.0518918	
 PAPI_RES_STL	
 1.91816	
 	
 	
 	
 	

Figure 63. Average Error of PMLB MPI

With regards to modeling of the CPU power consumption, the

LD_ST_stall_per_cycle and PAPI_TOT_INS counters have the largest regression

coefficients. For modeling the memory power consumption of the PMLB

MPIapplication, the PAPI_TOT_INS and PAPI_L2_TCH counters have the largest

0	

1	

2	

3	

4	

5	

2.32%	

	
 1.95%	

	

2.43%	

	

4.43%	

	

Er
ro
r	
 R

at
e	

PMLB	
 MPI	
 Average	
 Error	

Time	
 SysPower	
 CPUPower	
 MemPower	

136

regression coefficients of the hardware counters. It is interesting to note that the

PAPI_TOT_INS counter is used in the modeling of all of the performance components

for the PMLB MPI application.

 Figure 63 shows the average error resulting from the modeling of the PMLB MPI

application. The performance components modeled for the PMLB MPI application had

an average prediction error of 2.78%. Specifically, the smallest error was found for

predicting the system power consumption (1.95%) for the application. On the other

hand, the highest error rate occurred in modeling the memory power consumption

(4.43%).

Figure 64. Scatterplot of PMLB MPI for Runtime

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

PMLB	
 MPI	
 RunRme	
 Signed	
 Error	

64x64x64	

128x128x128	

256x256x256	

137

In Figure 64 we provide an overview of the distribution of each prediction point

for the runtime of PMLB MPI application. The performance counters used for

predicting runtime are able to provide for consistent values for predicting the runtime

across three application inputs. Predictions across all application inputs for the PMLB

MPI application are largely positive except for one prediction point in the case of

128x128x128.

Figure 65. Scatterplot of PMLB MPI for System Power Consumption

Figure 65 shows the predicted values for the system power consumption for the

PMLB MPI application. The percent error for the predictions across the three input data

sizes remain in the range of +2.0% to 0% error, except for two outliers. For the input

size of 128x128x128, there are only two points that are under-predicted. These negative

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

PMLB	
 MPI	
 Sys	
 Power	
 Signed	
 Error	

64x64x64	

128x128x128	

256x256x256	

138

predict error values could be a result of not including a larger number of prediction

points for smaller processors sizes in our application training set.

Figure 66. Scatterplot of PMLB MPI for CPU Power Consumption

Figure 66 and Figure 67 provide the predicted values for the CPU and Memory

power consumption for the PMLB MPI application. The figures for both CPU and

Memory power consumption show that for the smaller number of processors our

modeling methodology under-predicts the power consumption of the application. This

under-prediction is likely a result of the training set not including enough points to more

accurately model the power consumption at these smaller processor configurations.

-­‐1.5	

-­‐1	

-­‐0.5	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

PMLB	
 MPI	
 CPU	
 Power	
 Signed	
 Error	

64x64x64	

128x128x128	

256x256x256	

139

Figure 67. Scatterplot of PMLB MPI for Memory Power Consumption

4.3.6 Parallel EqDyna

4.3.6.1 Hybrid

In this section, we use our performance-tuned principal component analysis

method to develop accurate models for the hybrid implementation of the large-scale

EqDyna application. Table 28 shows the regression coefficients that are needed to

accurately model each component. The PAPI_TOT_INS and PAPI_L2_TCH counters

have the largest regression coefficients that are used in modeling the runtime for the

EqDyna hybrid application. System power shows that PAPI_TOT_INS and

PAPI_L1_TCA have the largest regression coefficients in modeling the system power

consumption for the hybrid implementation of the application.

0	

1	

2	

3	

4	

5	

6	

7	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

PMLB	
 MPI	
 Mem	
 Power	
 Signed	
 Error	

64x64x64	

128x128x128	

256x256x256	

140

Table 28. Regression Coefficients for Parallel EqDyna Hybrid

Time	
 System	
 Power	
 CPU	
 Power	
 Memory	
 Power	

Frequency	
 0.001953	
 Frequency	
 1.09547	
 Frequency	
 1.190092	
 Frequency	
 0.041202	

PAPI_TOT_INS	
 0.038194	
 PAPI_TOT_INS	
 0.08749	
 PAPI_TOT_INS	
 0.158920	
 PAPI_TOT_INS	
 0.189290	

PAPI_L1_TCA	
 0.015018	
 PAPI_L1_TCA	
 0.07938	
 PAPI_L1_TCM	
 0.078036	
 PAPI_L2_TCA	
 1.01223	

PAPI_L2_TCH	
 0.021165	
 PAPI_L2_TCA	
 0.42389	
 PAPI_L2_TCA	
 0.910928	
 PAPI_L2_TCH	
 0.91284	

PAPI_L2_TCA	
 0.041248	
 PAPI_L2_TCH	
 0.59384	
 	
 	
 PAPI_RES_STL	
 0.45298	

Figure 68. Average Error of Parallel EqDyna Hybrid

With regards to modeling of the CPU power consumption, the PAPI_L2_TCA

and PAPI_TOT_INS counters have the largest regression coefficients. For modeling the

memory power consumption of the EqDyna hybrid application, the PAPI_L2_TCA and

PAPI_L2_TCH counters have the largest regression coefficients of the hardware

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

1.90%	

	

2.18%	

	

3.21%	

	

1.73%	

	

Er
ro
r	
 R

at
e	

EqDyna	
 Hybrid	
 Average	
 Error	

Time	
 SysPower	
 CPUPower	
 MemPower	

141

counters. For the EqDyna hybrid application, it is interesting to note that the

PAPI_TOT_INS and PAPI_TOT_TCA counters are used in the modeling of all of the

performance components for the EqDyna hybrid application.

 Figure 68 shows the average error resulting from the modeling of the EqDyna

hybrid application. The performance components modeled for the EqDyna hybrid

application had an average prediction error of 2.26%. Specifically, the smallest error

was found for predicting the memory power consumption (1.73%) for the application.

The highest error rate occurred in modeling the CPU power consumption (3.21%).

Figure 69. Scatterplot of EqDyna Hybrid for Runtime

In Figure 69 we provide an overview of the distribution of each prediction point

for the runtime of EqDyna hybrid application. The performance counters used for

predicting runtime are able to provide for consistent values for predicting the runtime

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

EqDyna	
 Hybrid	
 RunRme	

200m	

142

across this application. Predictions across all application inputs for the EqDyna hybrid

application are largely positive except for one prediction point for this application.

Figure 70. Scatterplot of EqDyna Hybrid for System Power Consumption

Figure 70 shows the predicted values for the system power consumption for the

EqDyna hybrid application. The predictions values across the application show a strong

concentration in the range of +2.0% to 0% error, with a few outliers. The outliers shown

in the scatterplot are likely a result of changes in the trends for the performance counters

based on the workload distribution.

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 e
rr
or
	

Number	
 of	
 Processors	

EqDyna	
 Hybrid	
 System	
 Power	

200m	

143

Figure 71. Scatterplot of EqDyna Hybrid for CPU Power Consumption

Figure 71 and Figure 72 provide the predicted values for the CPU and Memory

power consumption for the EqDyna application. The figures for both CPU and Memory

power consumption show that our modeling methodology predicts the power

consumption of the application within a range of +4% to 0% as the number of processors

increase. There are a few points in which our model slightly over predicts or under-

predicts, however, this error is no larger than 2% of the predicted range for the majority

of the data points.

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

6	

7	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

PE
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

EqDyna	
 Hybrid	
 CPU	
 Power	

200m	

144

Figure 72. Scatterplot of EqDyna Hybrid for Memory Power Consumption

4.3.6.2 MPI

In this section, we use our performance-tuned principal component analysis

method to develop accurate models for the MPI implementation of the large-scale

EqDyna application. Table 29 shows the regression coefficients that are needed to

accurately model each component. The PAPI_L1_TCM and PAPI_L2_TCH counters

have the largest regression coefficients that are used in modeling the runtime for the

EqDyna MPI application. System power shows that PAPI_L2_TCA and PAPI_L2_TCH

have the largest regression coefficients in modeling the system power consumption for

the MPI implementation of the application. With regards to modeling of the CPU

power consumption, the PAPI_TOT_INS and PAPI_L2_TCH counters have the largest

regression coefficients. For modeling the memory power consumption of the EqDyna

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

EqDyna	
 Hybrid	
 Memory	
 Power	

200m	

145

MPI application, the PAPI_L2_TCH counter has the largest regression coefficient of the

hardware counters. For the EqDyna MPI application, it is interesting to note that the

PAPI_TOT_INS and PAPI_L2_TCH counters are used in the modeling of all of the

performance components for the EqDyna MPI application.

Table 29. Regression Coefficients for EqDyna MPI

Time	
 System	
 Power	
 CPU	
 Power	
 Memory	
 Power	

Frequency	
 0.0037213	
 Frequency	
 0.07983	
 Frequency	
 0.843792	
 Frequency	
 0.100675	

PAPI_TOT_INS	
 0.18344	
 PAPI_TOT_INS	
 0.24029	
 PAPI_TOT_INS	
 1.12323	
 PAPI_TOT_INS	
 0.18929	

PAPI_L1_TCA	
 0.06432	
 PAPI_L1_TCM	
 0.17338	
 PAPI_L1_TCM	
 0.243472	
 PAPI_L1_TCA	
 0.23559	

PAPI_L1_TCM	
 0.218925	
 PAPI_L2_TCA	
 0.50729	
 PAPI_L2_TCA	
 0.562903	
 PAPI_L2_TCH	
 0.56545	

PAPI_L2_TCH	
 0.492188	
 PAPI_L2_TCH	
 0.41156	
 PAPI_L2_TCH	
 0.342892	
 PAPI_RES_STL	
 0.218375	

Figure 73. Average Error of EqDyna MPI

0	

1	

2	

3	

4	

5	
 3.32%	

	

1.56%	

	

2.63%	

	

4.18%	

	

Er
ro
r	
 R

at
e	

EqDyna	
 MPI	
 Average	
 Error	

Time	
 SysPower	
 CPUPower	
 MemPower	

146

Figure 73 shows the average error resulting from the modeling of the EqDyna

MPI application. The performance components modeled for the EqDyna MPI

application had an average prediction error of 2.92%. Specifically, the smallest error

was found for predicting the system power consumption (1.56%) for the application. On

the other hand, the highest error rate occurred in modeling the memory power

consumption (4.18%).

Figure 74. Scatterplot of EqDyna MPI for Runtime

Figure 74 and Figure 75 provide an overview of the distribution of each

prediction point for the runtime and system power consumption of the EqDyna MPI

application. The performance counters used for predicting runtime are able to provide

for consistent values for predicting the runtime across the application as the number of

0	

1	

2	

3	

4	

5	

6	

7	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

EqDyna	
 MPI	
 RunRme	
 Signed	
 Error	

200m	

147

processors increase within the range of +4% to +1%. Predictions across all application

inputs for the EqDyna MPI application for system power consumption are largely

positive with a few negative error predictions that occur for the smaller processor

configurations. These negative percent error predictions are no larger than 3% as the

number of processor increases. The cause of the negative percent error predictions is

likely the application training set not predicting well at those processor configurations.

Figure 75. Scatterplot of EqDyna MPI for System Power Consumption

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

EqDyna	
 MPI	
 Sys	
 Power	
 Signed	
 Error	

200m	

148

Figure 76. Scatterplot of EqDyna MPI for CPU Power Consumption

Figure 76 and Figure 77 provide the predicted values for the CPU and Memory

power consumption for the Parallel EqDyna MPI application. The figures for CPU

power consumption show that our modeling methodology predicts the power

consumption of the application within a range of +4% to 0% as the number of processors

increase. In the case of the memory power consumption there are clusters of points that

show positive percent error for the predictions and as the application predicts for larger

than 72 processors there are negative percent error predictions. For the larger number of

processors the negative percent error is no larger than 3%, which shows a good

prediction error.

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

EqDyna	
 MPI	
 CPU	
 Power	
 Signed	
 Error	

200m	

149

Figure 77. Scatterplot of EqDyna MPI for Memory Power Consumption

4.4 Summary

We presented a modeling scheme for developing predictive performance models to

analyze the performance characteristics of Hybrid and MPI scientific applications in

terms of runtime, system power, CPU power, and memory power. The predictive models

are able to determine the performance characteristics that affect each respective

performance component. Most importantly, our method identifies the different

performance counter measurements that are needed to accurately predict application

performance and provide insight to improve performance for each application.

Our models make use of the Multicore Application Modeling Infrastructure,

MuMI, which utilizes Prophesy, PowerPack, and PAPI to provide systematic

measurement, and modeling of power consumption and performance-power tradeoffs on

-­‐4	

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 Pe
rc
en

t	
 E
rr
or
	

Number	
 of	
 Processors	

EqDyna	
 MPI	
 Mem	
 Power	
 Signed	
 Error	

200m	

150

multicore systems. Our predictive models are +92% accurate across six hybrid and MPI

scientific applications for up to 128 processors and can be used to obtain insight into

improving applications for better performance on multicore systems. Using our

predictive models the performance of a scientific application can be predicted across

different frequency configurations and for different application inputs.

Figure 78. Average Error of All Hybrid Applications

151

Figure 79. Average Error of All MPI Applications

Our models also are able to identify the commonalities found across the

applications in regards to using the same performance counters. For example, the BT-

MZ, SP-MZ, LU-MZ, and GTC use the PAPI_TOT_INS and PAPI_L2_TCH counters

for modeling runtime. For modeling the system power consumption the PAPI_L2_TCH

counter is used for BT-MZ, SP-MZ, LU-MZ, GTC, and PMLB. Identifying the

common characteristics of these applications indicates that optimizations made to

utilization of the L2 cache should be taken into consideration for reducing runtime and

improving power consumption. In Section 5, we will utilize the performance models

presented in this section to make optimizations to the application to reduce runtime and

reduce power consumption.

152

5. OPTIMIZATION OF HYBRID AND MPI SCIENTIFIC

APPLICATIONS

In Section 3, we provided the motivation for exploring performance, power, and

energy tradeoffs across different implementations of scientific applications. Section 4

introduced the E-AMOM modeling methodology utilizing the performance-tuned

principle component analysis method and experimental models of scientific applications.

In this section, we present the E-AMOM optimization methodology and results for our

hybrid and MPI scientific applications.

5.1 Software-Based Power Reduction Methods

As large-scale parallel systems continue to evolve and incorporate additional cores

onto chips additional methods must be used to reduce performance and power

consumption. In this section, we incorporate two common software-based approaches

for reducing power consumption in large-scale parallel systems, Dynamic Voltage and

Frequency Scaling (DVFS) [30][36] and Dynamic Concurrency Throttling (DCT)[19].

 DVFS can be used to scale down the frequency of a HPC application’s workload

resulting in lower power consumption. DVFS is most beneficial when applied to regions

within an application where communication does not overlap with computation. When

DVFS is applied to applications that exhibit slack (lack of overlap between

153

communication and computation) it results in reduced power consumption with minimal

increases in application performance.

Additionally, dynamic concurrency throttling (DCT) is used to control the number

of threads assigned to a segment of a parallel code. DCT can be applied to a code region

with a reduced workload that would not benefit from using the maximum number of

cores on a chip. When applying DCT to an application executed on SystemG we look at

the settings of having 1, 2, 4, 6, or 8 threads executing per node. Depending on the

application and workload requirements of the application utilizing fewer threads can

reduce power consumption without impacting performance significantly.

The result of applying DCT effectively results in reduced energy consumption

with minimal increases in application performance for thread-based applications, such as

OpenMP or hybrid applications. In this section, we use our performance-tuned principal

component analysis method to make optimizations to the application kernels of scientific

applications.

5.2 Optimization Methodology for Application Kernels

In our work we adjust the configurations of our HPC application kernels with

regards to the number of OpenMP threads used for the hybrid applications dynamically.

We also lower the frequency of the kernels to reduce power consumption. We define the

configuration for a given application run to include the CPU frequency setting and

concurrency configuration of the application kernel.

154

For estimating the appropriate DCT setting for each application kernel we evaluate

the performance of the kernel given the application model developed in Section 4. The

performance with regards to runtime and system power consumption is predicted using

the performance models for each application presented in Section 4. The performance of

kernel i is predicted using the multivariate linear regression equation:

𝐾!"#!!!!!"# = 𝛽! + 𝛽!" ∗ 𝑟!" + 𝛽! ∗ 𝑟! +⋯+ 𝛽! ∗ 𝑟! (12)

where coefficients to account for the frequency (𝛽!") and each performance counter

(𝛽!) are included.

To predict the expected outcome of a performance counter event rate during a

kernel’s execution the following multivariate regression equation is utilized for each

performance counter needed:

𝐾!"#$%&'_!_!_!"# = 𝛽! + 𝛽!"# ∗ 𝑟!"# + 𝛽!"# ∗ 𝑟!"� (13)

where the terms correspond to coefficients to account for the intercept (𝛽!), number of

nodes (𝛽!"#), number of threads or MPI tasks per node (𝛽!"#), and number of

instructions per cycle (𝛽!"#). The number of instructions per cycle is recorded for each

kernel using the application’s training set.

In predicting the performance of each application component (runtime or system

power consumption), equation (14) represents the relationship for each kernel in the

scientific application:

𝑃!"!#$ = 𝐾!!!!
!!! (14)

155

where P represents the performance of the application and Ki represents the performance

of kernel i. The performance of the application is represented in terms of runtime and

power consumption. The sum of each of these kernels represents the performance for

the application. Figure 73 presents an overview of the methodology that is used to

determine the application configuration that can be used incorporating DCT and DVFS

to improve application power consumption.

Our framework evaluates the performance of the application based on the

following steps:

1. Take as input a given Hybrid or MPI-only HPC application.

2. Develop the performance model of each application kernel in terms of

runtime and system power consumption.

3. Determine the appropriate configuration settings

a. DVFS Setting

i. Compute expected power consumption and execution time

at lower frequency settings.

ii. If frequency setting results in a 10% saving in power

consumption, without increasing runtime more than 3% then

use reduced frequency.

b. DCT Setting

i. Compute expected power consumption and execution time

at concurrency settings using 1, 2, 4, and 6 threads.

156

ii. Identify the concurrency setting that enables the best saving

in power consumption and runtime.

4. Determine the total application runtime and system power consumption

including synchronization overhead costs from changing application

settings using αi.

5. Use new configuration settings for running application.

Figure 80. Overview of Optimization Scheme

157

Figure 80 provides an overview of the optimization scheme utilized in this chapter.

We make use of the modeling methodology presented in section 4 to model the kernel

performance of each application in terms of execution time, and system power

consumption. Figure 81 provides a depiction of an example application’s control flow.

The typical scientific application consists of an initialization and final kernel, with

computational kernels within a timestep loop.

Figure 81. Example Application Control Flow

158

In predicting the performance of each application component considering the

determined configuration from our modeling framework, equation (15) represents the

expected execution time for each kernel and the synchronization overhead costs that

would be incurred from lowering and increasing the frequency of the kernel in the HPC

application:

 𝑃!"!#$_!"#$%$&'(= (𝐾!" + 𝛼!)!!!
!!! (15)

 We utilize our multivariate linear regression equation presented in Section 4 to

determine the appropriate configuration based on frequency and number of threads. The

frequency, number of nodes, and threads per node, are incorporated into the regression

equation with the performance counters to predict the performance of the application

kernel at two frequency settings (2.4 Ghz and 2.8 Ghz) and at concurrency settings of 1,

2, 4, 6, and 8 threads. Figure ** shows how the performance of each kernel within the

application is predicted using the performance counters for each performance

components (runtime and system power). The performance for each kernel is predicted

to determine if a 10% saving in power can be achieved without increasing the runtime

more than 3%. If a kernel is not able to achieve 10% reduction in power with no more

than 3% runtime increase then the original configuration setting for that kernel is used.

A decrease in power consumption greater than 10% provides for a measurable

improvement that cannot be attributed to error or system noise. Also, a runtime increase

less than 3% does not largely affect the runtime of the application, which means that a

reduction in power can be obtained without a large increase in runtime.

159

Figure 82. Per Kernel Predictions for Applications

We utilize the following equation to approximate the expected average power

consumption of the application when applying DVFS and DCT to reduce application

performance:

𝑃!"!_!"#$% =
(!!"!#_!)

!!!
!!!

!!!
 (16)

where Ksysp_i represents the predicted system power consumption of kernel i and n is the

number of kernels in the application. Energy consumption of a HPC application is

modeled based on energy being the product of power and time as presented in Equation

6 in Section 3.

160

We have determined the following scenarios in which it would be appropriate to

apply changes to configuration settings in our applications:

1. DVFS and DCT changes to specific kernels in the application

2. DVFS-only applied to specific kernels in the application

3. DCT-only applied to specific kernels in the application

4. DVFS applied to a limited number of time-steps within an application.

We use E-AMOM models to determine predicted runtime and power consumption for

the application kernels based on equation 1. An application kernel that is able to provide

for a power savings of at least 10% with a limited increase in runtime (less than 4%) will

be executed at the new refined configuration.

5.3 Loop Optimizations

Based upon models developed with E-AMOM, we identify the type of algorithmic

changes that should be applied to our HPC applications to improve utilization of the

memory hierarchy. Much of the computation involved in the kernels of HPC

applications occurs within nested loops. Therefore, loop optimization is fundamentally

important for such applications. In this section, we discuss how loop blocking and loop

unrolling can be used to optimize the performance of HPC applications.

Loop blocking is a well-known loop optimization technique to aid in taking

advantage of memory hierarchy [47][60]; its main purpose is to eliminate as many cache

misses as possible. This technique transforms the memory domain of an application into

smaller chunks, such that computations are executed on the chucks that easily fit into

161

cache to maximize data reuse. The optimal loop block size varies with different

applications on different systems. In this work, we apply the following loop block sizes:

2x2, 4x4, 8x8 and 16x16 to our HPC applications to measure which loop block size is

optimal. To determine the best block size for each application we measure the

performance of the application for each block size using a reduced number of iterations

to approximate the best block size. Previous work [68] has identified these block sizes

as optimal sizes for achieving performance improvements within scientific applications.

Future work will determine how larger block sizes might affect application performance.

Loop unrolling is a well-known code transformation technique that replicates the

original loop body multiple times, adjusts the loop termination code and eliminates

redundant branch instructions. Outer loop unrolling can increase computational intensity

and minimize load/stores, while inner loop unrolling can reduce data dependency and

eliminate intermediate loads and stores.

5.4 Experimental Results

To improve the performance of our hybrid and MPI HPC applications we apply

the methodology outlined in Section 5.2. Our methodology is applied to six HPC

applications: the NAS Multizone benchmarks (BT-MZ, SP-MZ, LU-MZ), GTC, PLMB,

and EqDyna. For each of the applications we present the execution time, energy

consumption per node, and average system, CPU, and memory power consumption. The

results show performance and power reductions across both implementations of the

applications and identify which application provides for the best energy savings. Figure

162

83 provides an overview of how E-AMOM is used to optimize the applications by

determining appropriate configurations for each kernel. This figure illustrates that

initialization, kernel 1, and the final kernel have DVFS and DCT applied to them at

settings of 2.4Ghz and 2 threads. Kernel 1, kernel 2, and kernel 3 have loop

optimizations applied to them to improve performance. For each application different

configurations are used that represent improved performance. In this section the

configurations used are presented before the optimization results.

Figure 83. Applying Optimizations to an Application

5.4.1 BT-MZ

Applying DVFS and DCT to select application kernels to reduce power

consumption and execution time for the application improves the performance of the

163

hybrid NAS BT-MZ. During the initialize solutions kernel and the exchange of

boundary conditions, which contains significant MPI communication, DVFS is applied.

DCT is applied during the BT solver kernel reducing the power consumption during this

phase for an optimal configuration using 4 threads. Loop optimizations are applied to

class C (block size = 4x4) and class D (block size = 4x4). Table 30 and Table 31 present

the performance results for the Hybrid BT-MZ application for Class C and Class D.

Table 30. Performance of Hybrid BT-MZ Application and Optimization (Class C)

#Cores
BT-MZ

Type
Runtime(s)

Total Energy

(KJ)

Total Power

(W)

1x8

Hybrid 231.88 80.921 348.98

Optimized-

Hybrid

217.19

(-6.78%)

68.901

(-17.45%)

317.24

(-10.00%)

2x8

Hybrid 115.83 40.356 348.41

Optimized-

Hybrid

107.19

(-4.49%)

34.559

(-16.77%)

322.41

(-8.1%)

4x8

Hybrid 58.04 20.222 347.91

Optimized-

Hybrid

52.12

(-11.35%)

17.032

(-18.75%)

326.79

(-6.46%)

6x8

Hybrid 38.80 13.507 348.11

Optimized-

Hybrid

35.11

(-10.5%)

11.342

(-19.1%)

323.03

(-7.76)

8x8

Hybrid 29.23 10.172 348.00

Optimized-

Hybrid

26.45

(-4.49%)

8.700

(-16.9%)

328.91

(-5.8%)

10x8

Hybrid 23 7.999 347.80

Optimized-

Hybrid

21

(-9.52%)

6.782

(-17.95%)

322.95

(-7.69%)

164

Table 31. Performance of Hybrid BT-MZ Application and Optimization (Class D)

#Cores
BT-MZ

Type
Runtime(s)

Total Energy

(KJ)

Total Power

(W)

6x8

Hybrid 655 228.401 348.70

Optimized-

Hybrid

632

(-3.64%)

205.027

(-11.4)

324.41

(-7.49%)

8x8

Hybrid 493 171.573 348.73

Optimized-

Hybrid

440

(-12%)

14.1754

(-21.0%)

322.17

(-8.24%)

16x8

Hybrid 339 117.911 347.82

Optimized-

Hybrid

319

(-6.27%)

103.072

(-14.39%)

323.11

(-7.65%)

32x8

Hybrid 201 69.570 346.12

Optimized-

Hybrid

193

(-4.14)

62.902

(-10.60%)

325.92

(-6.2%)

64x8

Hybrid 119 41.325 347.27

Optimized-

Hybrid

112

(-6.25)

36.338

(-13.7%)

324.45

(-7.03%)

During the initialize solutions kernel and the exchange of boundary conditions,

which contains significant MPI communication, DVFS is applied. Additional loop

optimizations are applied to class C (block size = 2x2) and class D (block size = 4x4).

Table 32 and Table 33 present the performance results for the hybrid BT-MZ application

for Class C and Class D.

165

Table 32. Performance of MPI BT-MZ Application and Optimization (Class C)

#Cores
BT-MZ

Type
Runtime(s)

Total Energy

(KJ)

Total Power

(W)

1x8

MPI 245 82861.45 338.21

Optimized-

MPI

232.83

(-12.17)

75481.18

(-9.78%)

324.19

(-4.32%)

2x8

MPI 127 42945.05 338.15

Optimized-

MPI

118

(-7.62%)

38024.32

(-12.94%)

322.24

(-4.93%)

4x8

MPI 65.83 22316.37 339

Optimized-

MPI

57.12

(-15.24)

18460.04

(-20.89%)

323.18

(-4.89%)

6x8

MPI 44.13 14595.11 330.7322

Optimized-

MPI

40.18

(-9.8%)

13010.69

(-12.17%)

323.81

(2.14%)

8x8

MPI 35.23 11520.7 327.014

Optimized-

MPI

32.19

(-9.41%)

10306.27

(-11.78%)

320.17

(2.14%)

10x8

MPI 27.38 9011.31 329.12

Optimized-

MPI

25.21

(-8.61%)

8021.56

(-12.34%)

318.19

(3.44%)

166

Table 33. Performance of MPI BT-MZ Application and Optimization (Class D)

#Cores
BT-MZ

Type
Runtime(s)

Total Energy

(KJ)

Total Power

(W)

6x8

MPI 729 241103.76 330.7322

Optimized-

MPI

700

(-4.14%)

226667.17

(-6.36%)

323.81

(-2.14%)

8x8

MPI 545 178223.13 327.014

Optimized-

MPI

489

(-11.45%)

156563.19

(-13.83%)

320.17

(-2.14%)

16x8

MPI 387 117910.98 329.12

Optimized-

MPI

329

(-14.15%)

104684.51

(-12.63%)

318.19

(-3.44%)

32x8

MPI 233.14 76546.85 328.33

Optimized-

MPI

220.78

(-5.59)

68525.70

(-11.70)

310.38

(-5.72%)

64x8

MPI 138.58 44395.67 327.45

Optimized-

MPI

125.73

(-10.22%)

38703.47

(-14.71%)

307.83

(-6.37%)

The results of applying our methodology across the BT-MZ applications are able

to show that savings in energy consumption can be obtained by reducing the execution

time of the application and reducing power consumption. There is a trade-off between

the savings achievable by the application in terms of reduced runtime and power

consumption. For BT-MZ, the hybrid application provided for the best performance in

terms of runtime and energy consumption across all data inputs.

167

5.4.2 SP-MZ

Applying DVFS and DCT to the application to reduce power consumption and

workload requirements optimizes the hybrid NAS SP-MZ application. SP-MZ

represents a fairly balanced workload. To reduce the frequency of the application during

execution we apply DVFS to the initial solutions kernel and take the approach of

reducing the application frequency for the first 100 time steps of the application kernel

to limit the additional overhead that would be introduced from lowering the frequency.

Table 34. Performance of Hybrid SP-MZ Application and Optimization (Class C)

#Cores
SP-MZ

Type
Runtime(s)

Total Energy

(KJ)

Total Power

(W)

2x8

Hybrid 117.82 37201.32 317.96

Optimized-

Hybrid

104.15

(-13.12)

31577.24

(-17.8%)
303.19

4x8

Hybrid 60 19111.9655 318.53

Optimized-

Hybrid

56

(-7.1%)

17120.32

(-11.63)
305.72

6x8

Hybrid 39.87 12541.8947 313.54

Optimized-

Hybrid
35.27

10644.13

(-17.8%)
301.79

8x8

Hybrid 30.00 9355.17 311.83

Optimized-

Hybrid

29.19

(-2.77%)

8449.62

(-10.7%)
289.47

10x8

Hybrid 25.00 7591.6304 303.66

Optimized-

Hybrid

24.08

(-3.82%)

7120.70

(-6.61%)

295.71

(-2.69%)

168

DCT is applied during the SP solver kernel reducing the power consumption

during this phase. Additional loop optimizations are applied to class C and class D

(block size = 4x4). Table 34 and Table 35 present the performance results for the hybrid

SP-MZ application for Class C and Class D on the SystemG platform.

Table 35. Performance of Hybrid SP-MZ Application and Optimization (Class D)

#Cores
SP-MZ

Type
Runtime(s)

Total Energy

(KJ)

Total Power

(W)

6x8

Hybrid 862 293403.75 340.453

Optimized-

Hybrid

819

(5.25%)

262235.61

(11.89%)

320.19

(6.32%)

8x8

Hybrid 653 222408.29 340.59

Optimized-

Hybrid

607

(7.57%)

196133.84

(13.39%)

323.12

(5.4%)

16x8

Hybrid 389 132703.46 341.14

Optimized-

Hybrid

344

(13%)

110964.08

(19.59%)

322.57

(5.71%)

32x8

Hybrid 225 76524.75 340.11

Optimized-

Hybrid

205

(-9.76%)

64581.15

(-18.49)

315.03

(-7.96%)

64x8

Hybrid 154 52535.56 341.14

Optimized-

Hybrid

142

(-8.45%)

 44995.54

(-16.75%)

316.87

(-7.66%)

169

Table 36. Performance of MPI SP-MZ Application and Optimization (Class C)

#Cores
SP-MZ

Type
Runtime(s)

Total Energy

(KJ)

Total Power

(W)

1x8

MPI 174.89 59646.23 341.05

Optimized-

MPI

168.29

(-3.9%)

54315.60

(-9.81%)

322.75

(-5.67%)

2x8

MPI 95.83 31354.62 327.19

Optimized-

MPI

91.70

(-4.5%)

29260.55

(-7.15%)

319.09

(-2.53%)

4x8

MPI 47 15531.15 330.45

Optimized-

MPI

43

(-9.30%)

13631

(-13.94%)

317

(-4.2%)

6x8

MPI 38.19 12506.46 327.48

Optimized-

MPI

35.73

(-6.88%)

10940.18

(-14.31%)

306.19

(-6.95%)

8x8

MPI 31.63 10422.48 329.51

Optimized-

MPI

29.84

(-6.00%)

9077.04

(-14.82%)

304.19

(-8.32%)

10x8

MPI 25.89 8496.83 328.19

Optimized-

MPI

24.39

(-6.15%)

7350.90

(-15.50%)

301.39

(-8.89)

Table 36 and Table 37 present the performance results for the MPI SP-MZ

application for Class C and Class D. To reduce the power consumption of the application

during execution, we apply DVFS to the initialization kernel and first 150 time steps of

the application to limit the additional overhead that would be introduced from lowering

the frequency throughout different application kernels as the program executes. In

170

addition, loop optimizations are applied to class C (block size = 4x4) and class D (block

size = 8x8) with loop unrolling being applied to the inner loops of the SP solver kernel.

Table 37. Performance of MPI SP-MZ Application and Optimization (Class D)

#Cores
SP-MZ

Type
Runtime(s)

Total Energy

(KJ)

Total Power

(W)

6x8

MPI 881 298782.34 339.14

Optimized-

MPI

807

(-9.18%)

254221.14

(-17.53%)

315.02

(-6.59%)

8x8

MPI 689 233198.94 338.46

Optimized-

MPI

619

(-11.3%)

198742.33

(-17.33%)

321.07

(-5.41%)

16x8

MPI 413 139366.85 337.45

Optimized-

MPI

369

(-11.9%)

118984.05

(-17.13%)

322.45

(-4.65%)

32x8

MPI 241 81491.74 338.14

Optimized-

MPI

229.53

(-5.0%)

72336.38

(-12.66%)

315.15

(-7.30%)

64x8

MPI 173.87 58703.73 337.63

Optimized-

MPI

165.81

(-4.84%)

51780.80

(-13.37%)

312.29

(-8.11%)

5.4.3 LU-MZ

Applying DVFS to the application to reduce power consumption during

execution optimizes the NAS LU-MZ application. LU-MZ represents a fairly balanced

workload that scales well using OpenMP threads; therefore DCT was not applied, as it

would substantially increase execution time. To reduce the frequency of the application

171

during execution we apply DVFS to the initialization and first 50 time steps of the

application during execution to limit the additional overhead that would be introduced

from lowering the frequency throughout the entire application. Additional loop

optimizations are applied to class C (block size = 4x4). Table 38 and Table 39 present

the performance results for the LU-MZ application for Class C for both hybrid and MPI

implementations.

Table 38. Performance of Hybrid LU-MZ Application and Optimization (Class C)

#Cores
LU-MZ

Type
Runtime(s)

Total Energy

(KJ)

Total Power

(W)

1x8

Hybrid 199 64653.51 324.89

Optimized-

Hybrid
175

53222.75

(-21.48%)
304.13

2x8

Hybrid 99 32418.21 327.46

Optimized-

Hybrid
95

29460.45

(-10.04%)
310.11

3x8

Hybrid 241 70563.89 292.80

Optimized-

Hybrid
234

67345.20

(-4.77%)
287.80

4x8

Hybrid 50.01 11031.30 216.30

Optimized-

Hybrid
52.91

10681.99

(-3.27%)
201.89

6x8

Hybrid 127 27810.46 218.98

Optimized-

Hybrid
137

27832.92

(0.001%)
203.16

172

Table 39. Performance of MPI LU-MZ Application and Optimization (Class C)

#Cores
LU-MZ

Type
Runtime(s)

Total Energy

(KJ)

Total Power

(W)

1x8

MPI 574 124156.2000 216.3

Optimized-

MPI

545

(-5.3%)

109534.1

(-13.3%)
200.98

2x8

MPI 292.67 63375.9000 216.30

Optimized-

MPI
281.42

56998.80

(-11.18%)
202.54

5.4.4 GTC

Applying DVFS and DCT to the application to reduce power consumption during

execution optimizes the hybrid GTC application. To reduce the frequency of the

application during execution, we apply DVFS to the initialization kernel and predict that

applying DVFS to the first 25 time steps of the application during execution will provide

the optimal execution setting to limit the additional overhead that would be introduced

from lowering the frequency throughout the entire application. Additional loop

optimizations are applied to 50ppc (block size = 2x2) and 100ppc (block size = 4x4).

The inner-most loops of the pushi and chargei subroutines are the most computationally

intensive kernels of the application and are unrolled four times. Additionally, Table 40

and Table 41 present the performance results for the hybrid GTC application for 50ppc

and 100ppc input sizes.

173

Table 40. Performance of Hybrid GTC Application and Optimization (50ppc)

#Cores
BT-MZ

Type
Runtime(s)

Total Energy

(KJ)

Total Power

(W)

1x8

Hybrid 427 122753.96 287.48

Optimized-

Hybrid

415

(-2.89%)

114602.25

(-7.11%)

276.15

(-4.0%)

2x8

Hybrid 430 124351.7 289.19

Optimized-

Hybrid

408

(-5.39%)

111783.84

(-11.24%)

273.98

(-5.55%)

4x8

Hybrid 432 125448.48 290.39

Optimized-

Hybrid

410

(-5.36)

112307.2

(-11.7)

273.92

(-6.01%)

6x8

Hybrid 437 128836.34 294.82

Optimized-

Hybrid

419

(-4.29%)

114713.82

(-12.31%)

273.78

(-7.68%)

8x8

Hybrid 444 131130.96 295.34

Optimized-

Hybrid

417

(-6.47%)

114779.25

(-14.25%)

275.25

(-7.30%)

16x8

Hybrid 453 132815.07 293.19

Optimized-

Hybrid

421

(-7.6%)

116343.35

(-14.16%)

276.35

(-6.1%)

32x8

Hybrid 455 134033.9 294.58

Optimized-

Hybrid

424

(-7.31%)

118444.4

(-13.16%)

279.35

(-5.45%)

64x8

Hybrid 436 128528.44 294.79

Optimized-

Hybrid

423

(-3.1%)

114717.6

(-12.03%)

271.12

(-8.73%)

174

Table 41. Performance of Hybrid GTC Application and Optimization (100ppc)

#Cores
GTC

 Type
Runtime(s)

Total Energy

(KJ)

Total Power

(W)

1x8

Hybrid 912 295.58 324.11

Optimized-

Hybrid

885

(-3.1%)

270.02

(-9.45%)

305.11

(-6.22%)

2x8

Hybrid 918 304.70 331.92

Optimized-

Hybrid

883

(-3.96%)

270.9

(-23.55)

306.79

(-6.23)

4x8

Hybrid 922 304.08 329.81

Optimized-

Hybrid

891

(-3.48%)

268.00

(-13.46)

300.79

(-9.64%)

6x8

Hybrid 928 306.74 330.54

Optimized-

Hybrid

904

(-2.65%)

272.51

(-12.29%)

301.45

(-9.65)

8x8

Hybrid 934 311.02 333

Optimized-

Hybrid

902

(-3.55%)

274.21

(-13.42)

297

(-12.12%)

16x8

Hybrid 947 316.30 334

Optimized-

Hybrid

906

(-4.53%)

269.99

(-17.15%)

298

(-12.1%)

32x8

Hybrid 954 313.76 328.89

Optimized-

Hybrid

918

(-3.92%)

272.46

(-15.16%)

296.80

(-10.81%)

64x8

Hybrid 958 314.98 328.79

Optimized-

Hybrid

923

(-3.79%)

271.5

(-16.01%)

294.15

(-11.77%)

175

Table 42 and Table 43 present the performance results for the MPI

implementation of the GTC application for 50ppc and 100ppc input sizes. The

application is optimized by applying DVFS to the application to reduce power

consumption during execution. To reduce the frequency of the application during

execution we apply DVFS to all kernels that are executed during the first 30 time steps

of the application to limit the additional overhead that would be introduced from

lowering the frequency throughout the entire application. Loop blocking is applied to

the MPI implementation with an optimal block size of 4x4 for both input sizes of 50 ppc

and 100 ppc. Similar to the hybrid implementation, the inner-most loops of the pushi

and chargei subroutines are unrolled four times. The manual loop optimizations are able

to achieve strong reductions in execution time for 50 ppc, but smaller optimization

benefits are obtained in terms of execution time for 100 ppc input size. It is important to

note that the GTC application benefits greatly for the use of OpenMP threads during

parallelization. Therefore, the hybrid implementation of the code provides significant

savings in power, energy and runtime when compared to the MPI implementation.

176

Table 42. Performance of MPI GTC Application and Optimization (50ppc)

#Cores GTC Type Runtime(s)
Total Energy

(KJ)

Total Power

(W)

1x8

MPI 679.35 213920.52 314.89

Optimized-

MPI

640.42

(-6.10%)

182000.96

(-17.54%)

284.19

(-10.80%)

2x8

MPI 682.19 217857.38 319.35

Optimized-

MPI

622.89

(-9.52%)

178775.66

(-21.86%)

287.01

(-11.27%)

4x8

MPI 689.73 217761.56 315.72

Optimized-

MPI

618.18

(-11.57%)

177547.48

(-22.65%)

287.21

(-9.93%)

6x8

MPI 699.123 222363.06 318.06

Optimized-

MPI

622.92

(-12.23%)

178391.83

(-24.64%)

286.38

(-11.06%)

8x8

MPI 709.54 223639.91 315.19

Optimized-

MPI

655.32

(-8.27%)

185757.01

(-20.39%)

283.46

(-11.19%)

16x8

MPI 731.95 230359.30 314.72

Optimized-

MPI

673.89

(-8.61%)

192307.99

(-19.79)

285.37

(-10.28%)

32x8

MPI 735.72 233164.38 316.92

Optimized-

MPI

679.11

(-8.34%)

192969.11

(-20.83%)

284.15

(-11.53)

64x8

MPI 745.14 237021.58 318.09

Optimized-

MPI

684.29

(-8.89%)

194050.96

(-22.15)

283.58

(-12.17)

177

Table 43. Performance of MPI GTC Application and Optimization (100ppc)

#Cores GTC Type Runtime(s)
Total Energy

(KJ)

Total Power

(W)

1x8

MPI 1387.71 466.14 335.91

Optimized-

MPI

1375.19

(-1.0%)

420.66

(-10.81)

305.89

(-9.81%)

2x8

MPI 1390.54 468.32 336.79

Optimized-

MPI

1376.91

(-1.0%)

419.86

(-11.5%)

304.93

(-10.44%)

4x8

MPI 1397.93 472.51 338.01

Optimized-

MPI

1382.55

(-1.11%)

422.24

(-11.91%)

305.41

(-10.67%)

6x8

MPI 1413.19 477.93 338.19

Optimized-

MPI

1389.38

(-1.71%)

419.76

(-13.86%)

302.12

(-11.94%)

8x8

MPI 1440.02 488.63 339.32

Optimized-

MPI

1401.9

(-2.71%)

429.78

(-13.69%)

306.57

(-10.68%)

16x8

MPI 1456 494.24 339.45

Optimized-

MPI

1413.34

(-3.02%)

432.75

(-14.21%)

306.19

(-10.86%)

32x8

MPI 1483.13 502.96 339.12

Optimized-

MPI

1451.39

(-2.19%)

441.50

(13.92%)

304.19

(-11.48%)

64x8

MPI 1513.39 513.14 339.05

Optimized-

MPI

1459.10

(-3.72%)

439.74

(-16.69%)

301.38

(-12.50%)

178

5.4.5 PMLB

The hybrid PMLB application is optimized by applying DVFS and DCT to

reduce power consumption during execution. We apply DVFS to the initialization and

final kernels of the applications. Additional loop optimizations are applied to execute

the application using a block size of 4x4 and nested loops with in the application are

unrolled four times. The inner-most loops of the pushi and chargei subroutines are the

most computationally intensive kernels of the application and are unrolled four times.

Table 44 and Table 45 present the performance results for the hybrid PMLB application

for 128 and 256 input sizes.

Table 44. Performance of Hybrid PMLB Application and Optimization (128)

#Cores
PMLB

Type
Runtime(s)

Avg Total

Energy (KJ)

Avg Total

Power (W)

1x8

Hybrid 128.79 37.24 289.19

Optimized-

Hybrid

123.49

(-4.29%)

34.12

(-9.1%)

276.29

(-4.71%)

2x8

Hybrid 91.16 26.66 292.45

Optimized-

Hybrid

85.87

(-6.16%)

23.65

(-12.73%)

275.38

(-6.19%)

4x8

Hybrid 52.32 15.36 293.58

Optimized-

Hybrid

46.36

(-12.83%)

12.70

(-20.94%)

273.91

(-7.11%)

8x8

Hybrid 35.19 10.37 294.57

Optimized-

Hybrid

31.27

(-12.53%)

8.64

(-20.02%)

276.19

(-6.65%)

179

Table 45. Performance of Hybrid PMLB Application and Optimization (256)

#Cores
PMLB

Type
Runtime(s)

Avg Total

Energy (KJ)

Avg Total

Power (W)

1x8

Hybrid 1878.15 528.12 281.19

Optimized-

Hybrid

1761.03

(-6.65%)

476.34

(-10.87%)

270.49

(-3.96%)

2x8

Hybrid 935.22 261.35 279.45

Optimized-

Hybrid

901.71

(-3.72%)

241.83

(-8.07%)

268.19

(-4.2%)

4x8

Hybrid 416.83 116.87 280.37

Optimized-

Hybrid

398.17

(-4.69%)

103.74

(-12.65%)

260.53

(-7.61%)

8x8

Hybrid 195.31 55.01 281.67

Optimized-

Hybrid

184.39

(-5.92%)

47.05

 (-16.9%)

255.19

(-10.37%)

16x8

Hybrid 104.18 29.23 280.53

Optimized-

Hybrid

97.13

(-7.26%)

25.75

(-13.51%)

265.14

(-5.80%)

32x8

Hybrid 57.72 15.97 276.71

Optimized-

Hybrid

56.81

(-1.6%)

15.34

(-4.1%)

270.19

(-2.41%)

The MPI PMLB application is optimized by applying DVFS to reduce power

consumption during application execution. To reduce the frequency of the application

during execution we apply DVFS to the initialization, communication, and final kernels

of the applications. Additional loop optimizations are applied to execute the application

using a block size of 4x4 and nested loops with in the application are unrolled four

times. Table 46 and Table 47 present the performance results for the hybrid PMLB

application for 128 and 256 input sizes.

180

Table 46. Performance of MPI PMLB Application and Optimization (128)

#Cores
PMLB

Type
Runtime(s)

Avg Total

Energy (KJ)

Avg Total

Power (W)

1x8

MPI 105 31.31 298.19

Optimized-

MPI

98.76

(-6.31%)

27.77

(-12.48%)

281.23

(-6.03%)

2x8

MPI 58.79 17.54 298.34

Optimized-

MPI

54.39

(-8.08%)

15.19

(-15.47%)

279.19

(-6.84%)

4x8

MPI 41.13 12.33 299.85

Optimized-

MPI

37.89

(-8.55%)

10.65

(-15.77%)

281.12

(-6.66%)

8x8

MPI 25.79 7.72 299.17

Optimized-

MPI

23.44

(-10.03%)

6.57

(-17.5%)

280.54

(-6.64%)

Table 47. Performance of MPI PMLB Application and Optimization (256)

#Cores
PMLB

Type
Runtime(s)

Avg Total

Energy (KJ)

Avg Total

Power (W)

1x8

MPI 1259.87 381.44 302.76

Optimized-

MPI

1247.13

(-1.02%)

355.27

(-7.37%)

284.90

(-6.27%)

2x8

MPI 689.31 208.85 302.98

Optimized-

MPI

664.19

(-3.78%)

187.39

(-11.45)

282.14

(-7.39%)

4x8

MPI 379.12 114.18 301.18

Optimized-

MPI

362.29

(-4.65%)

102.29

(-11.62%)

282.33

(-6.68%)

181

Table 47: Continued

5.4.6 Parallel EqDyna

We reduce the execution time and lower power consumption of the hybrid and

MPI EqDyna applications by applying DVFS (hybrid and MPI) and DCT (hybrid only).

To reduce the power consumption of the application during execution we apply DVFS to

the initialization, hourglass, and final kernels of the applications. Additional loop

optimizations are applied to execute the application using a block size of 8x8 and nested

loops within the application are unrolled four times. For the hybrid application, DCT is

applied to the hourglass and qdct3 kernels so that they are executed using 2 threads per

node to reduce power consumption during execution. Table 48 and Table 49 present the

performance results for the EqDyna application.

#Cores
PMLB

Type
Runtime(s)

Avg Total

Energy (KJ)

Avg Total

Power (W)

8x8

MPI 185.35 55.75 300.79

Optimized-

MPI

180.13

(-2.90%)

50.64

(-10.1%)

281.13

(-6.99%)

16x8

MPI 88.93 26.75 300.84

Optimized-

MPI

89.46

(0.59%)

25.51

(-4.86%)

285.14

(-5.51%)

32x8

MPI 43.12 12.99 301.29

Optimized-

MPI

46.79

(7.84%)

13.42

(3.2%)

286.91

(-5.01)

182

Table 48. Performance of Hybrid EqDyna Application and Optimization (e200m)

#Cores
EqDyna

Type
Runtime(s)

Avg Total

Energy (KJ)

Avg Total

Power (W)

2x8

Hybrid 3156 880.36 278.95

Optimized-

Hybrid

2980

(-5.9%)

784.31

(-12.25%)

263.19

(-5.98%)

3x8

Hybrid 2166 602.49 278.16

Optimized-

Hybrid

2031

(-6.65%)

527.84

 (-14.14%)

259.89

(-7.03%)

4x8

Hybrid 1681 473.91 281.92

Optimized-

Hybrid

1559

(-7.83%)

409.85

(-15.63%)

262.89

(-7.24%)

8x8

Hybrid 839 237.54 283.12

Optimized-

Hybrid

783

(-7.15%)

207.00

(-14.75%)

264.37

(-7.09%)

16x8

Hybrid 458 132.36 289.03

Optimized-

Hybrid

422

(-8.5%)

111.83

 (-18.35%)

265

(-9.1%)

32x8

Hybrid 261 75.37 288.79

Optimized-

Hybrid

246

(-6.1%)

64.23

(-17.34%)

261.11

(-10.6%)

64x8

Hybrid 151 42.08 278.67

Optimized-

Hybrid

145

(-4.14%)

36.23

(-16.15%)

249.89

(-11.52%)

183

Table 49. Performance of MPI Parallel EqDyna Application and Optimization (e200m)

#Cores
EqDyna

Type
Runtime(s)

Avg Total

Energy (KJ)

Avg Total

Power (W)

2x8

MPI 3067 966.66 315.18

Optimized-

MPI

2889

(-6.16%)

870.80

(-11.0%)

301.42

(-4.57%)

3x8

MPI 2013 637.90 316.89

Optimized-

MPI

1963

(-2.54%)

589.47

(-8.22%)

300.29

(-5.52%)

4x8

MPI 1591 510.28 320.73

Optimized-

MPI

1475

(-7.86%)

450.16

(-13.35)

305.19

(-5.09%)

8x8

MPI 788 250.17 317.47

Optimized-

MPI

734

(-7.36%)

220.30

(-13.56%)

300.13

(-5.77%)

16x8

MPI 427 134.86 315.83

Optimized-

MPI

404

(-5.69%)

123.27

(-9.4%)

305.12

(-3.51%)

32x8

MPI 271 85.32 314.83

Optimized-

MPI

249

(-8.83%)

75.45

(-13.1%)

303

(-3.9%)

64x8

MPI 167 52.70 315.56

Optimized-

MPI

154

(-8.44%)

47.26

(-11.51%)

306.89

(-2.83%)

184

5.5 Summary

We presented a methodology to optimize performance of HPC applications on

multicore systems by reducing runtime and power consumption. There are two

software-based approaches for reducing power consumption in HPC application, DVFS

and DCT. Our performance framework is utilized to determine execution configurations

of HPC application kernels with regards to the number of OpenMP threads to utilize to

execute each application kernel in the hybrid applications.

Further, the kernels of hybrid and MPI applications can be adjusted to execute at

lower CPU frequencies to reduce power consumption. Our framework defines a

configuration for a given application run to include the CPU frequency setting and

concurrency configuration of the application kernel to determine appropriate power and

energy savings. If it is possible to obtain power reductions without increasing the

execution time of more than 4% but saving 10% in power consumption then the

frequency can be lowered.

Experimental results obtained for six hybrid and MPI HPC applications show

reductions in execution time and savings in energy consumption based on our modeling

framework. Our work illustrates that runtime and power savings can be obtained which

reduce application energy consumption. Additionally, we are able to identify the trends

exhibited by each application’s implementations to determine which will provide for the

best energy consumption.

185

6. SUMMARY AND FUTURE WORK

6.1 Summary

Using the E-AMOM framework in Figure 7, it is our goal to provide for an

accurate methodology for predicting and improving the performance and power

consumption of HPC applications. In section 3 we provided experimental results, which

provided the motivation for further analysis and investigating the energy and

performance characteristics of different parallel implementations of scientific

applications on multicore systems. This initial experimental work used the power

profiling tool PowerPack to collect power profiling data for four scientific applications:

a hybrid NAS parallel BT benchmark, a hybrid Lattice Boltzmann application PMLB

and a hybrid Gyrokinetic Toroidal Code for our comparative analysis of energy and

performance on multicore clusters. Our experimental results show that there are various

ways to save energy and improve performance of parallel application codes.

In section 4 we present the E-AMOM modeling scheme for developing predictive

performance models to analyze the performance characteristics of hybrid and MPI

scientific applications in terms of runtime, system power, CPU power, and memory

power. Specifically, our predictive models are able to determine the performance

characteristics that affect each respective performance component. The utilization of the

Multicore Application Modeling Infrastructure, MuMMI, enables detailed modeling of

the application’s power consumption and performance-power tradeoffs on multicore

186

systems. Overall, our E-AMOM predictive models are +95% accurate across six hybrid

and MPI scientific applications.

The E-AMOM optimization methodology presented in Figure 80 allows for HPC

applications on multicore systems to be improved in terms of reducing runtime and

power consumption. The E-AMOM optimization methodology includes two software-

based approaches for reducing power consumption in HPC applications, DVFS and

DCT. Specifically, E-AMOM determines efficient execution configurations of HPC

application kernels with regards to the number of OpenMP threads to utilize to execute

each application kernel in the hybrid applications.

Experimental results obtained for six hybrid and MPI scientific applications show

reductions in execution time and savings in energy consumption based are achievable.

Our work illustrates that runtime and power savings can be obtained which reduce

application energy consumption. Additionally, we are able to identify the trends

exhibited by each application’s implementations to determine which will provide for the

best energy consumption. Our work is able to obtain up to 18% in energy savings in

hybrid and MPI HPC applications.

6.2 Future Work

6.2.1 Power-Aware Optimization on Heterogeneous Systems

As shown in Table 1, the use of heterogeneous computing systems is increasing

and currently top systems in the Top 500 contain a combination of multicore chips and

187

GPGPUs. Importing HPC applications onto the heterogeneous systems has been seen as

a problem until the recent incorporation of traditional parallel programming languages

such as OpenMP [33-34]. Being able to execute applications on heterogeneous systems

will allow for increased performance on these systems but will also open up a new

dimension to exploring savings in power and energy consumption. We will focus on

extending the E-AMOM framework to apply towards heterogeneous systems in terms of

reducing runtime and saving energy.

6.2.2 Power-Aware Energy Reduction Techniques

In this work we focused our attention on modeling the performance of HPC

applications with regards to runtime, and power consumption of the System, CPU, and

memory. Additional detailed information can be obtained from MuMMI to model

power consumption of the hard disk and motherboard. For the applications presented in

this work these components were not a large consumer of total power consumption,

however, there are HPC applications that are IO intensive and thus would be affected by

these hardware components. Our new research will focus on obtaining detailed power

and energy profiles to determine the power consumption of the application in terms of

utilization of the system, CPU, memory, motherboard, and hard disk. Furthermore,

future work will focus on identifying appropriate optimization strategies to handle these

alternative classes of applications to include in E-AMOM.

188

6.2.3 Power-Aware Scheduling Strategies

Appropriate scheduling in parallel computing has a large effect on the

performance of the application on the multicore system. Future work will focus on

identifying predictive methods that can be used by schedulers to provide appropriate

information pertaining to application performance in regards to the execution time and

power consumption of the application. Power consumption is an increasing factor

affecting scheduling of jobs on multicore systems. Efficient scheduling algorithms will

have to take into consideration the expected execution time and power consumption of a

target application.

Predictive scheduling methods can be used be used to obtain required

performance statistics that are needed to execute an efficient scheduling algorithm for a

given system and an application. Previously collected data on available systems can be

used to determine the expected behavior of a given application on other systems.

Furthermore, our predictive models can be applied to understanding of various

applications can be scheduled with regards to performance and power consumption in

relation to CPU and memory utilization.

189

REFERENCES

[1] S. R. Alam, J. S. Vetter, "A framework to develop symbolic performance models

of parallel applications," Proc. 20th IEEE Int’l Parallel & Distributed Processing

Symp., pp. 368-377, May 2006.

[2] S. R. Alam, J. S. Vetter. “An Analysis of System Balance Requirements for

Scientific Applications”, Proc. 35th Int’l Conf. on Parallel Processing, pp. 229-

236, Aug. 2006.

[3] G. S. Almasi, C. Cascaval, J. G. Castanos, M. Denneau, W. Donath, et al.,

“Demonstrating the Scalability of a Molecular Dynamics Application on a

Petaflops Computer,” Proc. 15th Int’l Conf. Supercomputing, pp. 393-406, June

2001.

[4] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, et al., “The

Landscape of Parallel Computing Research: A View from Berkeley,” Comm.

ACM, vol. 9, no. 52, pp. 56-67, Oct. 2009.

[5] T. Austin, E. Larson, D. Ernst, “SimpleScalar: An Infrastructure for Computer

System Modeling,” IEEE Computer, vol. 35, no. 2, pp. 59-67, Feb. 2002.

[6] D. H. Bailey and A. Snavely, “Performance Modeling: Understanding the Past

and Predicting the Future,” Proc. 11th Int’l Euro-Par Conf. on Parallel

Processing, pp. 185-195, Aug. 2005.

190

[7] E. Bair, T. Hastle, D. Paul, and R. Tibshirani, “Prediction by Supervised Principal

Components,” J. of the American Statistical Ass., vol. 101, no. 473, pp. 119-137,

2006.

[8] M. Banikazemi, D. Poff, and B. Abali, “PAM: a novel performance/power aware

meta-scheduler for multi-core systems,” Proc. 2008 ACM/IEEE Conf.

Supercomputing (SC ‘08), pp. 39-41, Nov. 2008.

[9] F. Bellosa, “The Benefits of Event-Driven Energy Accounting in Power-Sensitive

Systems,” Proc. 9th Workshop on ACM SIGOPS European Workshop, pp. 37-42,

Sep. 2000.

[10] W. Lloyd Bircher, Lizy K. John, “Complete System Power Estimation: A Trickle-

Down Approach Based on Performance Events, “ Proc. IEEE Int’l Symp. on

Performance Analysis of Systems and Software (ISPASS ’07), pp. 158-168, Apr.

2007.

[11] D. Campbell, M. Hall, W. Harrod, J. Hiller, D. Koester, et al., “ExaScale

Software Study: Software Challenges in Extreme Scale Systems Exascale

Software Study: Software Challenges in Extreme Scale Systems,” Government

PROcurement, vol. 14, pp. 1-159, 2009.

[12] J. Candy and M. Fahey, “GYRO Performance on a Variety of MPP Systems,”

Proc. 47th Cray User Group Conf., pp. 1-10, May 2005.

[13] L. Chai, A. Hartono, and D. K. Panda, “Designing High Performance and

Scalable MPI Intra-node Communication Support for Clusters,” Proc. IEEE Int’l

Conf. on Cluster Computing, pp. 1-10, Sept. 2006.

191

[14] L. Chai, P. Lai, H. Jin, and D. K. Panda, “Designing an Efficient Kernel-Level

and User-Level Hybrid Approach for MPI Intra-Node Communication on Multi-

Core Systems”, Proc. Int’l Conf. on Parallel Processing (ICPP ’08), pp. 222-229,

Sept. 2008.

[15] J. Chen, L. K. John, and D. Kaseridis, “Modeling Program Resource Demand

Using Inherent Program Characteristics,” Proc. Int’l Symp. Measurement and

Modeling of Computer Systems (SIGMETRICS ’11), pp. 1-12, June 2011.

[16] Y. Chen, Z. Shao, Q. Zhuge, C. Xue, B. Xiao, et al., "Minimizing Energy via

Loop Scheduling and DVS for Multi-Core Embedded Systems," Proc. 11th Int’l

Conf. Parallel and Distributed Systems (ICPADS '05), pp. 2-6, July 2005.

[17] B. Cmelik, D. Keppel, “Shade: A Fast Instruction Set Simulator for Execution

Profiling,” Proc. Int’l Symp. Measurement and Modeling of Computer Systems

(SIGMETRICS ’04), pp. 128-137, June 1994.

[18] Cray XT4/XT5 Supercomputer, http://www.cray.com/, 2008.

[19] M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. Nikolopoulos, “Online

Power-Performance Adaptation of Multithreaded Programs using Hardware

Event-Based Prediction,” Proc. Int’l Conf. on Supercomputing (ICS ’06), pp. 157-

166, June 2006.

[20] M. Curtis-Maury et al., “Prediction-Based Power-Performance Adaption of

Multithreaded Scientific Codes,” Proc. IEEE Transactions on Parallel and

Distributed Systems (TPDS ’08), vol. 19, no. 10, pp. 1396-1410, Oct. 2008.

192

[21] M. Curtis-Maury, A. Shah, F. Blagojevic, D. Nikolopoulos, B. R. de Supinski, et

al., “Prediction Models for Multi-dimensional Power-Performance Optimization

of Many Cores,” Proc. 17th Int’l Conf. Parallel Architectures and Compilation

Techniques (PACT ’08), pp. 250-259, Oct. 2008.

[22] J. Dongara, P. Beckman, T. Moore, P. Aerts, G. Aloisio, et al., “The International

Exascale Software Project Roadmap,” Int’l J. of High Performance Computing

Applications, vol. 25, no. 1, pp. 3-60, Feb. 2011.

[23] S. Ethier, “First Experience on BlueGene/L,” BlueGene Applications Workshop,

pp. 1-8, April 2005.

[24] S. Farfeleder, A. Krall, N. Horspool, “Ultra Fast Cycle-Accurate Compiled

Emulation of Inorder Pipelined Architectures,” J. Systems Architecture, vol. 53,

no.8, pp. 501-510, Aug. 2007.

[25] M. R. Fahey and J. Candy, “GYRO: Analyzing New Physics in Record Time on

the Cray X1,” Proc. 46th Cray User Group Conf., pp. 1-10, May 2004.

[26] M. R. Fahey and J. Candy, “GYRO: A 5-D Gyrokinetic-Maxwell Solver,” Proc.

2004 ACM/IEEE Conf. Supercomputing (SC ‘04), pp. 1-26, Nov. 2004.

[27] W.-C. Feng and K. Cameron, "The Green500 List: Encouraging Sustainable

Supercomputing," IEEE Computer, vol. 40, no. 12, pp. 50-55, Dec. 2007.

[28] X. Feng, R. Ge, K. W. Cameron, "Power and Energy Profiling of Scientific

Applications on Distributed Systems," Proc. 19th IEEE International Parallel &

Distributed Processing Symposium, pp. 34-42, May 2005.

193

[29] V. Freeh, D. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. Rountree, and M.

Femal. “Analyzing the Energy-Time Trade-Offs in High-Performance Computing

Applications,” Proc. IEEE Transactions on Parallel and Distributed Systems

(TPDS ’08), pp. 835-848, Oct. 2007.

[30] V. Freeh, Feng Pan, D. Lowenthal, and N. Kappiah. “Using Multiple Energy

Gears in MPI Programs on a Power-Scalable Cluster,” Proc. 10th ACM Symp.

Principles and Practice of Parallel Programming (PPOPP ‘05), pp. 164-173,

June 2005.

[31] C. Hsu and W. Feng, “A Power-Aware Run-Time System for High-Performance

Computing,” Proc. 2005 ACM/IEEE Conf. Supercomputing (SC ‘05), pp. 1-8,

Nov. 2005.

[32] IBM Blue Gene, http://www-

03.ibm.com/systems/deepcomputing/solutions/bluegene/, 2012.

[33] Intel MPI Benchmarks, Users Guide and Methodology Description (Version

3.2.3), http://software.intel.com/en-us/articles/intel-mpi-benchmarks/, 2012.

[34] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose and M. Martonosi, “An Analysis of

Efficient Multi-Core Global Power Management Policies: Maximizing

Performance for a Given Power Budget,” Proc. 39th ACM/IEEE Int’l Symp.

Microarchitecture (MICRO-39), pp. 347-358, Dec. 2006.

[35] H. Jin, R. F. Van der Wijngaart, "Performance Characteristics of the Multi-Zone

NAS Parallel Benchmarks," J. Parallel Distributed Computing, vol. 66, no. 5, pp.

674-685, May 2004.

194

[36] N. Kappiah, V. Freeh, and D. Lowenthal. “Just In Time Dynamic Voltage

Scaling: Exploiting Inter-Node Slack to Save Energy in MPI Programs,” Proc.

2005 ACM/IEEE Conf. Supercomputing (SC ‘05), pp. 33-41, Nov. 2005.

[37] D. J. Kerbysn, A. Hoisie, and H. J. Wasserman, “Modeling the Performance of

Large-Scale Systems,” IEE Proceedings: Software, vol. 150, no. 4, pp. 214-221,

Aug. 2003.

[38] P. M. Kogge (editor), "ExaScale Computing Study: Technology Challenges in

Achieving Exascale Systems," Univ. of Notre Dame, CSE Dept. Tech. Report TR-

2008-13, Sept. 2008,

http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/exascale_f

inal_report_100208.pdf.

[39] B. C. Lee, D. Collins, H. Wang, D. Brooks, “CPR: Composable performance

regression for scalable multiprocessor models,” Proc. 41th ACM/IEEE Int’l Symp.

Microarchitecture (MICRO-41), pp. 270-281, Dec. 2008.

[40] S. Lee and R. Eigenmann. “OpenMPC: Extended OpenMP Programming and

Tuning for GPUs,” Proc. 2010 ACM/IEEE Conf. Supercomputing (SC ‘10), pp. 1-

11, Nov. 2010.

[41] S. Lee, S. Min, and R. Eigenmann. “OpenMP to GPGPU: A Compiler Framework

for Automatic Translation and Optimization,” Proc. 14th ACM Symp. Principles

and Practice of Parallel Programming (PPOPP ‘09), pp. 101-110, Feb. 2009.

195

[42] J. Levesque, J. Larkin, M. Foster, J. Glenski, G. Geissler, et al., “Understanding

and Mitigating Multicore Performance Issues on the AMD Opteron Architecture,”

Tech Report LBNL-62500, March 2007.

[43] D. Li, B. de Supinski, M. Schulz, K. Cameron and D. Nikolopoulos, “Hybrid

MPI/OpenMP Power-Aware Computing,” Proc. 24th IEEE Int’l Parallel &

Distributed Processing Symp., pp. 1-12, May 2010.

[44] D. Li, D. Nikolopoulos, K. Cameron, B. de Supinski, and M. Schulz, “Power-

Aware MPI Task Aggregation Prediction for High-End Computing Systems,”

Proc. 24th IEEE Int’l Parallel & Distributed Processing Symp., pp. 1-12, May

2010.

[45] Y. Li, B. Lee, D. Brooks, H. Zhigang, K. Skadron, "CMP Design Space

Exploration Subject to Physical Constraints," Proc. 12th Int’l Symp. High-

Performance Computer Architecture (HPCA), pp. 17-28, Feb 2006.

[46] M. Lim, A. Porterfield, and R. Fowler, “SoftPower: Fine-Grain Power

Estimations Using Performance Counters,” Proc. 19th Int’l Symp. High

Performance Distributed Computing (HPDC ‘10), pp. 308-311, June 2010.

[47] C. Lively, “Performance Analysis and Modeling of GYRO”, Master’s thesis,

Texas A&M University, 2006.

[48] C. W. Lively, S. R. Alam, J. S. Vetter, and V.E. Taylor, "A Methodology for

Developing High Fidelity Communication Models for Large-Scale Applications

Targeted on Multicore Systems," Proc. 20th Int’l Symp. Computer Architecture

and High Performance Computing, pp.55-62, Oct. 2008.

196

[49] Message Passing Interface (MPI), http://www-unix.mcs.anl.gov/mpi/, 2012.

[50] A. Miyoshi, C. Lefurgy, E. Hensbergen, R. Rajamony, and R. Rajkumar, “Critical

power slope: Understanding the runtime effects of frequency scaling,” Proc. 2005

ACM/IEEE Conf. Supercomputing (SC ‘05), pp. 35–44, Nov. 2002.

[51] Multiple Metrics Modeling Infrastructure, http://www.mummi.org, 2012.

[52] NERSC Bassi, http://www.nersc.gov, 2007.

[53] K. Olukotun, L. Hammond, and J. Laudon, Chip Multiprocessor Architecture:

Techniques to Improve Throughput and Latency. Morgan & Claypool Publishers,

2007.

[54] OpenMP.org. The OpenMP API Specification For Parallel Programming.

http://openmp.org/wp/openmp-specifications, 2011.

[55] D. Poeter, “Cray’s Titan Supercomputer for ORNL Could Be World’s Fastest,”

http://www.pcmag.com/article2/0,2817,2394515,00.asp, 2011.

[56] Performance Application Programming Interface, papi, http://icl.cs.utk.edu/papi/,

2012.

[57] SciDAC-DOE’s Scientific Discovery through Advanced Computing,

http://www.scidac.gov, 2011.

[58] S. Sharma, C.-H. Hsu, and W.-C. Feng, "Making a Case for a Green500 List,"

Proc. 20th IEEE Int’l Parallel & Distributed Processing Symp., pp. 343-351, May

2006.

197

[59] K. Singh, M. Bhadhauria, and S. A. McKee, “Real Time Power Estimation and

Thread Scheduling via Performance Counters,” ACM SIGARCH Computer

Architecture News, vol. 37, no. 2, pp. 46-55, May 2009.

[60] Six-Core AMD Opteron Processor,

http://www.amd.com/us/products/server/processors/six-core-opteron/Pages/six-

core-opteron.aspx, 2010.

[61] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, et al., “A Framework

for Performance Modeling and Prediction,” Proc. 2002 ACM/IEEE Conf.

Supercomputing (SC ’02), pp. 1-17, Nov. 2002.

[62] R. Springer, D. Lowenthal, B. Rountree, and V. Freeh, “Minimizing Execution

Time in MPI Programs on an Energy-Constrained, Power-Scalable Cluster,”

Proc. 11th ACM Symp. Principles and Practice of Parallel Programming

(PPOPP ‘06), pp. 230-238, March 2006.

[63] V. Taylor, X. Wu, and R. Stevens, “Prophesy: An Infrastructure for Performance

Analysis and Modeling of Parallel and Grid Applications,” ACM SIGMETRICS

Performance Evaluation Review, vol. 30, no. 4, pp. 13-18, Mar. 2003.

[64] TOP 500 Supercomputers Sites. TOP 500. http://www.top500.org, 2010.

[65] B. Tu, M. Zou, J. Zhan, X. Zhao, and J. Fan, “Multi-Core Aware Optimization for

MPI Collectives,” Proc. IEEE Int’l Conf. Cluster Computing, pp. 322-325, Sept.

2008.

198

[66] M. Velamati, A. Kumar, N. Jayam, G. Senthikumar, P. K. Baruah, et al.,

“Optimization of Collective Communication in Intra-Cell MPI,” Proc. 14th Int’l

Conf. High Performance Computing (HiPC ‘07), pp. 488-499, Dec. 2007.

[67] X. Wu, V. Taylor, J. Geisler, and R. Stevens, “Isocoupling: Reusing Coupling

Values to Predict Parallel Application Performance,” Proc. 18th IEEE Int’l

Parallel & Distributed Processing Symp., pp. 1-10, Apr. 2004.

[68] X. Wu, V. Taylor, C. Lively, and S. Sharkawi, “Performance Analysis and

Optimization of Parallel Scientific Applications on CMP Clusters,” Scalable

Computing: Practice and Experience, vol. 10, no. 1, pp. 61-74, 2009.

[69] X. Wu, V. Taylor, S. Garrick, D. Yu, and J. Richard, “Performance Analysis,

Modeling and Prediction of a Parallel Multiblock Lattice Boltzmann Application

Using Prophesy System,” Proc. IEEE Int’l Conf. Cluster Computing, pp. 1-8,

Sept. 2006.

199

VITA

Name: Charles Wesley Lively III

Address: 301 Harvey R. Bright Building, College Station, TX 77843-3112

Email Address: clively@cse.tamu.edu

Education: B.S.E., Computer Engineering, Mercer University, 2004

 M.S., Computer Engineering, Texas A&M University, 2006

 Ph.D., Computer Engineering, Texas A&M University, 2012

