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ABSTRACT 

E-AMOM: An Energy-Aware Modeling and Optimization Methodology for Scientific 

Applications on Multicore Systems. (May 2012)  

Charles Wesley Lively III,  

B.S.E., Mercer University;  

M.S., Texas A&M University 

 Chair of Advisory Committee: Dr. Valerie Elaine Taylor 

 

Power consumption is an important constraint in achieving efficient execution on 

High Performance Computing Multicore Systems.  As the number of cores available on 

a chip continues to increase, the importance of power consumption will continue to 

grow. In order to achieve improved performance on multicore systems scientific 

applications must make use of efficient methods for reducing power consumption and 

must further be refined to achieve reduced execution time. 

In this dissertation, we introduce a performance modeling framework, E-AMOM, 

to enable improved execution of scientific applications on parallel multicore systems 

with regards to a limited power budget.  We develop models for each application based 

upon performance hardware counters.  Our models utilize different performance 

counters for each application and for each performance component (runtime, system 

power consumption, CPU power consumption, and memory power consumption) that 

are selected via our performance-tuned principal component analysis method.  Models 

developed through E-AMOM provide insight into the performance characteristics of 



 iv 

each application that affect performance for each component on a parallel multicore 

system.  Our models are more than 92% accurate across both Hybrid (MPI/OpenMP) 

and MPI implementations for six scientific applications. 

E-AMOM includes an optimization component that utilizes our models to 

employ run-time Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic 

Concurrency Throttling to reduce power consumption of the scientific applications.  

Further, we optimize our applications based upon insights provided by the performance 

models to reduce runtime of the applications.  Our methods and techniques are able to 

save up to 18% in energy consumption for Hybrid (MPI/OpenMP) and MPI scientific 

applications and reduce the runtime of the applications up to 11% on parallel multicore 

systems. 
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1 

1. INTRODUCTION 

 

 In high performance computing, the current trend makes use of chip 

multiprocessors (multicore processors) for computing systems. The incorporation of 

uniprocessors in computing has reached both performance and physical limitations. For 

example, the processing speeds for uniprocessors are no longer able to scale with 

Moore’s law [34]. Therefore, the use of multicore processors has been sought as an 

alternative avenue to maintain the gains in performance that have occurred previously in 

the computing field.  Recently, interconnect technologies have posed limits on the 

capabilities of systems to continue the scaling of Moore’s law.  

It is expected that the number of cores available on a chip will continue to 

increase and the hierarchical nature of parallel systems will also continue to increase.  As 

we move toward increased performance of high-performance parallel computing 

systems, it is expected that the complexity of the organization will increase as well as the 

power consumption [34][37].  In this work, we propose a methodology, called E-

AMOM, to model and analyze the performance characteristics of scientific applications 

on high-end parallel systems with multicore processors. 

Within the past decade, several chip manufacturers have introduced multicore 

processors. Since their introduction, multicore chips have been utilized in parallel 

computing environments by scientific laboratories, data centers, and academic chip, was 

introduced in 2001 with original clock speeds in the range of 1.1 Ghz to 1.3 Ghz.   The 

____________ 
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first dual-core processor, the IBM POWER4 chip, was introduced in 2001 with original 

clock speeds in the range of 1.1 to 1.3 Ghz [33]. 

Later, Intel deployed its first dual-core chip, the Pentium D, in 2005 with clock 

speeds in the range of 3.0 – 3.2 Ghz [17].  In 2007 Intel introduced the world’s first 

quad- core processor, Clovertown [18].  Currently, the use of multicores in computing 

has become the norm. Hence, there is a greater need to model how large-scale scientific 

applications perform and scale efficiently on these systems. Specifically, it remains to be 

understood what components of these emerging systems influence the achievable 

performance of large-scale scientific applications. Existing multicore compute systems 

can be configured hierarchically with multiple multicore chips within a node. These 

systems also utilize various levels of sharing for their memory subsystems. 

 

 

Figure 1. Hex-Core AMD Opteron [60] 
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The configurations of current parallel compute systems provide an arrangement 

in hierarchical manner for accessing the memory subsystems. For example, the hex-core 

AMD Opteron processor, shown in Figure 1 [60], is used in the Jaguar Cray XT5 

system, available at Oak Ridge National Laboratory.  Each core on the processor has 

both a 128 KB L1 cache and 512KB L2 cache. A 2MB L3 cache is shared amongst all 

four cores on the quad-core Opteron. In addition, each node of the XT5 system contains 

two hex-core chips providing 12 processors per node.   

 

Table 1. Top 500 Supercomputers in the World (Top 500 List) [64] 

Rank Site 
Number 

of Cores 

Rmax 

(Tflops) 

Rpeak 

(Tflops) 

Power 

(KW) 

1 

RIKEN Advanced Institute 

for Computational Science 

(AICS), Japan 

705024 10510.00 11280.38 12659.9 

2 
National Supercomputing 

Center in Tianjin, China 
186,368 2566.00 4701.00 4040.00 

3 
DOE/SC/Oak Ridge 

National Laboratory, USA 
224,162 1759.00 2331.00 6950.60 

4 

National Supercomputing 

Centre in Shenzhen 

(NSCS), China 

120,640 1271.00 2984.30 2580.00 

5 
GSIC Center, Tokyo Inst. 

of Technology Japan 
73,278 1192.00 2287.63 1398.61 
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As parallel computing systems in HPC continue to incorporate more cores onto 

the system, the amount of power required to run these systems continues to be a major 

performance bottleneck [22].  Table 1 provides an overview of the power requirements 

of the top 5 supercomputing systems in the world based on rankings for the Top 500 list 

[64].  This table illustrates the power requirements that the top systems in the world 

currently required in order to run large-scale scientific applications. 

 

 

Figure 2.  Predicted Power Requirements for Exascale Systems [38] 
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 Figure 2 outlines the predicted power requirements for future systems in high 

performance computing [38].  Power will be the leading contributor in energy costs as 

systems continue to grow at the exascale HPC level [34].  Costs are already a primary 

concern with existing supercomputing centers.  For example, the expected upgrade to 

Oak Ridge National Laboratory’s flagship machine will cost more than $96 Million as a 

multiphase project.  Projections indicate that for large-scale systems reducing the power 

consumption by 1 megawatt will result in $1 million in savings per year [22]. 

As high performance computing systems become more complex and hierarchical 

in nature it is important that scientific applications are able to effectively make use of 

these systems.  This dissertation provides a framework for achieving improved execution 

of an application on a high performance computing system given a limited power 

budget.  Researchers and application developers need appropriate methods to understand 

how to improve the performance and power consumption of their application.   Our 

modeling framework is useful to HPC users in the following ways: 

• E-AMOM can be used to obtain the necessary application performance 

characteristics to determine application bottlenecks on a given system with 

regards to execution time and power consumption for the system, CPU, and 

memory components. 

• E-AMOM can be used to improve the performance of the application with 

regards to applying DVFS and DCT to reduce power consumption and 

making algorithmic changes to improve power consumption. 

• E-AMOM can be used by supercomputer schedulers to provide performance 
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predictions (about execution time and power requirements) for scheduling 

methods used with systems with a fixed power budget.   

 The contributions of this dissertation to the current literature of evaluating performance-

power tradeoffs can be summarized in the following points: 

1. We present a performance-tuned principal component analysis method for 

identifying application characteristics that affect performance of the application. 

2. We present accurate performance models of Hybrid (MPI/OpenMP) and MPI 

implementations of scientific applications.  Our models are able to accurately 

predict runtime and power consumption of the system, CPU, and memory 

components across different number of processors, frequency settings, 

concurrency settings, and application inputs. 

3. Our models are used to determine appropriate frequency and concurrency 

settings for application kernels to reduce power consumption. 

4. E-AMOM is used to optimize Hybrid and MPI scientific applications to improve 

cache utilization through loop blocking and loop unrolling techniques. 

5. Our combined optimization strategy, developed in E-AMOM, is able to reduce 

energy consumption of Hybrid and MPI scientific applications by as much as 

18% on multicore systems for six applications.  

The publications resulting from this work are the following: 

• Charles Lively, Xingfu Wu, Valerie Taylor, Shirley Moore, Hung-Ching 
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Chang, Chun-Yi Su and Kirk Cameron, Power-Aware Predictive Models of 

Hybrid (MPI/OpenMP) Scientific Applications on Multicore Systems, 

International Conference on Energy-Aware High Performance 

Computing(EnA-HPC2011),  September 2011.  

• Charles Lively, Xingfu Wu, Valerie Taylor, Shirley Moore, Hung-Ching 

Chang, and Kirk Cameron, Energy and Performance Characteristics of 

Different Parallel Implementations of Scientific Applications on Multicore 

Systems, International Journal of High Performance Computing Applications 

(IJHPCA), Volume 25 Issue 3, August 2011, pp. 342 – 350. 

• Charles Lively, Sadaf Alam, Jeffrey Vetter, and Valerie Taylor, A 

Methodology for Developing High Fidelity Communications Models for 

Large-scale Applications on Multicore Systems, the 20th International 

Symposium on Computer Architecture and High Performance Computing 

(SBAC-PAD 2008), IEEE Computer Society Press, Oct. 29-Nov. 1, 2008, 

Campo Grande, Mato Grosso do Sol, Brazil. 

The remainder of this section identifies the different requirements and challenges 

with respect to modeling and improving performance of scientific applications for 

reducing power consumption and provides a discussion about related work.  The 

remainder of this dissertation is organized as follows: Section two provides an overview 

of E-AMOM and presents some background on the problem.  Section three presents 

preliminary experimental results, which provide the motivation for our modeling and 

optimization framework.  Section four presents the performance models of the Hybrid 
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and MPI applications and analysis.  Section five discusses optimization techniques and 

presents optimization results of Hybrid and MPI scientific applications.  The final 

section presents the summary and future work that will expand upon this dissertation. 

 

1.1 Research Challenges on Multicore Systems 

The importance of the detailed analysis of multicore systems and the applications 

that run on them is directly related to the continuous sustainability of improved 

performance as dictated by Moore’s law [38].  If computing is to continue making the 

performance gains experienced during the 1990s, an explicit parallelism is needed in 

applications and architectures.  Therefore, as the number of cores on multicore 

processors continue to grow there are a number of challenges that affect the performance 

of large-scale scientific applications are executed on multicore compute systems.  These 

challenges include memory utilization, concurrency and locality, and power and energy 

utilization.   

The issue of performance in scientific computing can be seen as the ability of an 

application to efficiently utilize a multicore compute system with respect to execution 

time, power and energy, and utilization of the memory subsystem. These challenges are 

the driving forces behind discovering new and better technologies [4]. These challenges 

present obstacles that must be addressed if multicore systems are able to reach their full 

potential for performance. The obstacles that these challenges present are explained in 

the following subsections. 
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1.1.1 Energy and Power Challenge 

As the utilization of multicore processors continues to increase the power 

consumption of these systems becomes a problem in maintaining stability of the system. 

Power in a multicore compute system consists of the power utilized by the CPUs, main 

memory, interconnects, and storage.  Power utilized by main memory includes the total 

energy needed to refresh main memory, the number of independent accesses per second, 

and the data bandwidth needed to move accessed data.  Additionally, the power required 

to move computational data through various interconnect levels, such as on-chip, 

between chips, within a node, and between nodes, can be in the order of 1-3 pJ [38].  

Existing compute systems utilize ten’s of thousands of processing cores that 

requires massive amounts of power [27].  Currently, the fastest supercomputing system 

in the world requires more than 12MWatts of power in order to achieve 10,510 Tflops, 

when such systems utilize such massive amounts of power this increases operating costs, 

and decreases the long-term lifecycle of the compute systems.  Improving the power 

utilization of parallel systems that utilize multicore platforms will reduce overall 

maintenance costs, system failures, and increase the active time that the system can be 

used by researchers. 

In this section, we discuss two topics that are of high importance for meeting the 

performance expectations of scientific applications with regards to energy and power 

consumption: power prediction and performance-power optimization. 
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1.1.1.1 Power Prediction  

Within the field, the ability to predict or accurately estimate the power 

consumption of scientific applications has posed a great challenge in multicore systems 

and emerging architectures. Determining the most efficient implementation to use for 

executing an application can be a cumbersome task that requires comparative analysis of 

the application’s implementation for different datasets.  In order, to predict and model 

the application one needs to understand the application characteristics that will affect 

performance of the application on the system. 

In this dissertation, we address the power prediction challenge in parallel 

multicore systems modeling scientific applications using E-AMOM.  We identify the 

application characteristics, through performance hardware counters, that affect power 

consumption of the application.  In addition, we determine the similar and different 

characteristics between MPI and Hybrid implementations of an application that affect 

performance. 

 

1.1.1.2 Power-Aware Optimization 

Within the field, reducing the amount of power and energy consumed by a 

scientific application on multicore parallel systems poses a tremendous challenge.  The 

amount of power required to run each of the fastest supercomputer systems for one year 

can exceed the power requirements of a city of 40,000 people [27].  In addition, it is 

expected that future exascale systems will be required at least 40 Gigaflops/Watt in order 

to maintain expected performance improvements for these systems [38].   
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In order to reduce power consumption novel methods must be utilized by both 

hardware vendors and application developers to reduce the power and energy 

requirements of scientific applications.  Methods to reduce power consumption often 

employ using dynamic frequency and voltage scaling (DVFS) to reduce power and 

energy consumption [15][19][20][34][40][58].  However, additional methods must also 

be incorporated to further reduce the power consumption of an application, such as 

optimizing the application to better make use of the memory sub-system to reduce 

runtime and power consumption per workload.  In this dissertation, will utilize DVFS 

and DCT to reduce power consumption on multicore systems and optimize the 

application using loop blocking and loop unrolling for further reduction in runtime and 

power consumption.  

 

1.2 Modeling Infrastructure 

In this work, we use MuMMI (Multiple Metrics Modeling Modeling 

Infrastructure) [51], which facilitates systematic measurement, modeling, and prediction 

of performance, power consumption and performance-power trade-offs for multicore 

systems.  This dissertation work will be incorporated into MuMMI for the modeling and 

prediction components.  Figure 3 provides an overview of the MuMMI framework used 

in this work. The MuMMI framework builds upon three existing frameworks: Prophesy 

[63], PowerPack [28], and PAPI [56]. We use the SystemG power-aware cluster to 

conduct our experiments.  
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Figure 3. Multiple Metrics Modeling Infrastructure [51] 

 

1.2.1 Prophesy 

Prophesy is an infrastructure for analyzing and modeling the performance of 

parallel and distributed applications. The core component of Prophesy is a relational 

database that allows for the recording of performance data, system features and 

application details.  The overall framework for Prophesy is illustrated in Figure 4 and 

consists of three major components that include: data collection, data analysis, and three 

central databases.  
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 Figure 4. Prophesy Framework [63] 

 

Prophesy allows for automatic instrumentation of codes at the level of basic 

blocks, procedures, or loops.  In addition, a user can specify instrumentation at different 

granularities as well as instrument the code manually. Data collected using prophesy can 

be uploaded to the performance database and used to predict the performance of 

scientific applications under different system configurations. 

1.2.2 PAPI 

The Performance Application Programming Interface (PAPI), shown in Figure 5, 

originated at the University of Tennessee’s Innovative Computing Laboratory as a 
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project aimed at providing a portable, standardized API to access hardware performance 

counters [56].  The performance counters available on PAPI can be used by application 

developers to gain additional insight into the performance of code sections in scientific 

applications.  PAPI presents a portable API that can be used for accessing performance 

counters within an application on different systems through code instrumentation.  

Figure 4 provides an overview of the PAPI API and Framework. 

 

 

Figure 5. PAPI Framework [56] 

 

1.2.3 PowerPack Framework 

We used PowerPack 3.0 [28], shown in Figure 6, which provides power profiling 

information for advanced execution systems, to measure the power consumption for our 

applications running on the SystemG platform. The PowerPack framework shown in 

Figure 4 is a collection of software components, including libraries and APIs, which 
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enable system component-level power profiling correlated to application functions. 

PowerPack obtains measurements from power meters attached to the hardware of a 

system. The framework includes APIs and control daemons that use DVFS (dynamic 

voltage and frequency scaling) to enable energy reduction with very little impact on the 

performance of the system. As multicore systems evolve, the framework can be used to 

indicate the application parameters and the system components that affect the power 

consumption on the multicore unit. PowerPack allows the user to obtain direct 

measurements of the major system components’ power consumption, including the CPU, 

memory, hard disk, and motherboard.  

 

 

Figure 6. PowerPack Framework 

 

In this work, power consumption is measured on one main node and then 

remapped to other nodes on the system.  The remapping method is used because of the 
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limited number of power measurement instruments provided across the system. When 

executing an application, the PowerPack API and data acquisition measurements are 

used to provide for fully automated application profiling of power consumption. 

 

1.3 Related Work 

Several techniques have been used for predicting the power consumption of 

scientific application on parallel systems and reducing the power consumption.  The 

most common techniques used for predicting or estimating the power consumption 

involve using system-level hardware counters to estimate the power consumption of the 

application.  These techniques often use the same set of performance hardware counters 

for estimating the power consumption of the application.  Methods for reducing power 

consumption have leveraged the load-imbalance of the applications to reduce frequency 

during communication phases within an application. 

The use of performance counters to predict power consumption has been 

explored in previous work [9][10][17][18][19][48]. In general, this work identifies a set 

of common performance counters to be used across all of the applications considered.  

These previous methods develop a unified model using a group or class of applications 

to estimate power consumption.  This approach measures activity on the system and 

correlates it to the power consumption being used by the application.  The same counters 

and correlation coefficients are used for the class or group of applications.  This 

approach is able to provide an accurate estimate of the power consumption of the class 

or group of applications, but it doesn’t capture some of the characteristics unique to each 
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application.  In contrast, E-AMOM is focused on developing models for each application 

and thereby understanding the unique characteristics of each application that impact 

runtime and power consumption. In our work, we are able to identify which counters 

could be seen as common across the different applications, such as PAPI_L2_TCH and 

PAPI_L2_TCA, in addition to identifying counters that are unique to each application.  

For example, for the NAS SP-MZ application we were able to determine that the L1 

cache misses and L1 instruction cache misses affected the system power consumption 

more that L2 cache activity.  Further, E-AMOM uses the performance counters to 

identify methods for reducing power consumption.  

 

1.3.1 Performance Modeling 

Researchers have used performance modeling to understand the performance of 

scientific applications on various systems. Almasi et al. use performance models to study 

the computational and communication kernels of a protein folding application [3]. Their 

study led to performance predictions for the application on an IBM Blue Gene/C 

architecture. Additionally, there has been work to focus on understanding the system and 

application parameters that are likely to affect performance[15][61][67]. In [15] Chen et 

al. present a performance resource framework to understand the performance 

characteristics of applications on chip-multiprocessors and the resources that such 

applications would require. In [61] A. Snavely et al. developed a single-processor model 

and network model to simplify the approach for performance prediction on several large-

scale HPC systems. The work in [61] focused on decomposing an application’s signature 
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to the constraints of memory usage and communication for scientific applications. The 

end result of this work was to achieve a performance prediction of an application on a 

targeted system. E-AMOM allows for performance prediction of an application and also 

uses loop optimizations to reduce runtime and DVFS and DCT to reduce power 

consumption on multicore systems.  In addition, E-AMOM develops multivariate 

regression models of scientific applications for runtime and component power 

consumption, such as the total system, CPU, and memory components.  E-AMOM 

models are able to determine which application characteristics affect the performance of 

the application on a multicore system.  Further, the models can be used to determine 

appropriate optimization techniques for reducing runtime and power consumption with 

regards to each application. 

In the work of Alam and Vetter, they developed platform independent 

parameterized requirement models for projecting future workloads in large-scale 

scientific applications [2]. The requirement models focused on understanding the 

floating-point computation, memory operations, and message passing communication 

patterns for scientific applications.  Our work differs from this work in that we use 

multivariate regression to model application runtime and power consumption on 

multicore systems. This work did not consider optimizing the performance of the 

application, which is the reason for the development of our models using E-AMOM. 

In [29] research is conducted to determine the point in an application’s execution 

in which energy savings can be achieved with small increases in execution time for 

application codes. This work also analyzes the feasibility of saving energy by using 
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more nodes at a reduced frequency.  The metrics include misses per operation (MPO) 

and slack to determine frequency scaling and gear usage. MPO is determined based on 

number of operations retired and L2 cache misses from performance counter 

measurements. The work explores performance in terms of single node (and single 

processor) as well as multiple node performance. The research identifies characteristics 

of the application with regards to speed up being (1) poor speedup, (2) 

perfect/superlinear speedup, (3) good speedup.  Our work complements this work in that 

we are able to develop performance models that are used to determine appropriate 

energy savings in an application at both the application-level and kernel-level.  In all six 

applications, E-AMOM is able to achieve energy savings without increasing the 

execution time of the applications. 

In [35] kernel coupling values were used to predict parallel application 

performance using the NAS Parallel Benchmarks. This work focused on decomposing 

the BT, SP, and LU benchmarks into kernels based on the execution time. Our work 

provides a modeling methodology to determine what optimization techniques should be 

used to improve performance on multicore systems.  Our work differs from kernel 

coupling in that we focus on understanding how different application factors, such as L2 

cache utilization, affect the performance of the application.  Kernel coupling measures 

the impact of performance of the adjacent kernels within a scientific application. We 

develop models for each application based on the total execution of the application and 

then use those models to predict performance at the kernel level. 



 

 

20 

The use of simulators is an important area used in evaluating the performance of 

scientific applications.  Simulators can be used to provide application and system 

developers with a better understanding of key design constraints for an unavailable 

system or system component.  Simulations are often used in better understanding design 

changes as they relate to performance and power consumption in high performance 

computing. Simulations are useful, but can be very time consuming for large-scale 

systems and require a larger order of magnitude in execution time for peta and exascale 

systems [5][17][23][39].  Our work does not make use of simulators and we therefore 

utilize a fully instrumented power-aware system to validate our experimental models. 

 

1.3.2 Power Prediction  

There has been extensive research focusing on understanding the trends exhibited 

by scientific applications in terms of performance and energy consumption.   

In [50] a metric called critical power slope is introduced to explain the efficiency 

in executing an application at a given frequency for various systems. 

This work makes use of six micro benchmarks to measure various statistics in system 

and application performance, such as: access to register, L1 cache (read), L1 cache 

(write), access to memory (read), access to memory (write), and disk read.  The work 

introduces analytical metrics for determining the energy required to complete work, W, 

at various frequencies.  The energy efficient critical power slope of a system is 

determined based on minimizing the time in active state and maximizing the idle time of 

the system.  The critical power slope metric focuses on understanding how to reduce the 
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energy consumption of a system that executes different workloads.  E-AMOM differs in 

that we focus on understanding and optimizing the performance of scientific applications 

on a multicore system through DVFS, DCT, loop blocking and loop unrolling.  Initially, 

we focus our work on identifying techniques that will reduce energy consumption for a 

single hybrid or MPI application executing on a multicore system. 

In [58] a method is presented to find an energy minimization schedule that is 

based on performance modeling, performance prediction, and program execution. This is 

applied to the NAS Parallel Benchmarks (BT, CG, EP, FT, IS, LU, MG, and SP).  A 

schedule is determined based on a combination of techniques to minimize the energy 

consumption of the given scientific application.  The schedule for executing the 

application is determined based on a partial execution of each application.  The energy 

limit is typically chosen to be 10% of peak energy consumption of the program.  The 

average error of their work was 2.1% with a worse case scheduling error of 6.1%.  The 

typical energy minimization schedule was 5-10% in energy consumption. 

In [10] performance counters are used to provide models of power measurements 

of the complete system based on a method known as the “trickle-down” approach.  The 

work provided estimation of power consumption for the system including chips, 

memory, I/O, and disk.  In this work, the average error was less than 9% for the SPEC 

CPU 2000 benchmarks. This work provided a system-centered approach to modeling 

based on the correlation of performance counter events to applications.  The counters 

utilized to estimate power consumption for the system included L3 Cache misses, TLB 

Misses, DMA Accesses, Memory Bus accesses, and I/O Interrupts.  This work utilizes 
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uses a linear model as the first step in predicting power consumption based on the 

counters with the best correlation for each component.  Our work differs in that we 

identify different counters for each application and do not use the same counters across 

all applications. We make algorithmic changes to our applications to improve 

performance through loop unrolling and loop blocking.  In addition, we reduce the 

power consumption of the applications through DVFS and DCT. 

Lim et al. present a surrogate estimation model using performance counters is 

presented on an Intel Core i7 system to estimate for CPU, Memory, and the total system 

power for OpenMP benchmarks up to 8 threads [43]. The median error was 5.32% on 

the system. In this work various Intel Core i7 specific counters that were representative 

of the system features were utilized. For example, this work used counters that 

represented the number of unhalted cycles in the CPU and retired instructions for 

building the CPU power model. To estimate the power consumption for the applications 

a robust regression model was built that was able to apply weights to each data point.  

This work used the spearman correlation to reduce 17 performance counters down to 7 

counters for predicting power consumption for the system, CPU, and memory 

components.  Our work makes use of the spearman correlation coefficients for reducing 

40 counters initially, but further determines appropriate counters based on regression and 

principal component analysis.  The combination of spearman correlation, multivariate 

regression, and principal component analysis is able to reduce the required number of 

performance counters needed for our modeling work. 
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In [22] power estimations using counters are presented with median errors of 

5.63%.  This work makes uses of performance counters to measure the effects of cache 

resource and thermal effects to develop a power-aware thread scheduler.  The work 

presented by Singh classifies performance counters of the AMD Phenom processor into 

four different groups based on FP Units, Memory, Stalls, and Instructions Retired.  

Using these counter groups analytical models are derived using micro-benchmarks to 

develop an online thread scheduler.  The piece-wise linear models developed in this 

work were tested on the SPEC2006, SPEC-OMP, and NAS benchmarks.  Our work 

differs in that we use our performance models to optimize the performance of the 

application by using DVFS, DCT, loop blocking, and loop unrolling.  This work focuses 

on estimating power consumption for thread scheduling.   Our work focuses on reducing 

power consumption through application optimization.  Throughout our work we utilize 

15 different performance counters is modeling application performance.  Our models 

commonly have activity that relates to the L2 cache (PAPI_L2_TCH, PAPI_L2_TCA), 

which is why we utilize loop blocking and loop unrolling to reduce runtime and power 

consumption. 

 

1.3.3 Power Reduction Strategies 

There is extensive research dealing with reducing power consumption in large-

scale HPC applications.  In [19] a user-level library framework is introduced that allows 

for the online adaptation of multithreaded application codes.    This work uses the 

Instructions per cycle (IPC) metric and several run-time specific performance metrics to 
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predict application performance.  A linear regression is applied to the offline training 

model to develop an accurate power-performance model.    The performance prediction 

model is used to determine concurrency levels on a SMT chip at two levels, focusing on 

the (1) number of threads per processor and (2) the number of processors to use.  The 

counters that this work specifically focuses on include rate of bus accesses, rate of L2 

cache misses, % of cycles in which the processor’s trace cache is in deliver mode, rate of 

branch instructions, rate of misspredicted branches, and retired instructions per cycle.  

The work in [19] is further extended to evaluate the effects of mapping different set of 

threads to cores on hierarchical multicore systems in [21].  This work applies prediction 

strategies for reducing energy consumption using DVFS and dynamic concurrency 

throttling (DVT) based on slack in communication.  Our work also applies prediction 

strategies for reducing energy consumption; however, we determine which kernels in an 

application can be optimized to decrease energy consumption through DVFS, DCT, and 

loop optimizations. 

A technique aimed at reducing power consumption through task placement is 

introduced in [44].  This work measures the affect that different MPI aggregation 

strategies have on application’s performance and energy consumption.  The NPB 3.2 

benchmarks are used to test this methodology, focusing on the FT, LU, CG, and BT 

benchmarks.  The model introduced accurately determines the effect of distributing tasks 

across cores of multiple nodes has on execution time and energy.  The performance 

during computation phases is predicted using Instructions Per Cycle (IPC).  The IPC for 

specific MPI tasks is predicted on a targeted system.  The IPC is used with 12 training 
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benchmarks from SPEC MPI 2007 benchmarks to determine optimal MPI aggregation.  

The focus of this work is on reducing energy consumption through task placement on a 

system.  Task aggregation is accomplished by using more nodes for executing an 

application but fewer processors per node are used.  In [44] the average performance 

gain was 5%, but energy reduction was over 60%.  Our work reduces energy 

consumption by reducing the runtime and decreasing power consumption through 

DVFS, DCT, loop blocking, and loop unrolling. 

In [19] a multi-dimensional, online performance prediction framework that uses 

DVFS and DCT on OpenMP applications is presented to reduce power 

consumption.  The framework used in this work makes use of statistical linear regression 

models for predicting application performance.  The performance prediction model 

evaluates the effects of mapping different set of threads to cores on hierarchical 

multicore systems and models the effects of DVFS and DCT.  A baseline prediction 

model is used to measure useful IPC (µIPC) with dependence functions for a target and 

configurations. The results provided in this work show a DVFS model median error of 

3.0%, DCT model median error of 7.3%, and a unified model median error of 6.1%.   

In [25] multiple energy gears are used in an application in an attempt to achieve 

performance and energy savings.  This work applied DVFS to HPC application codes 

that were divided into application phases based upon the memory pressure (OPM) of the 

application.  The significant results of this work allowed for savings of 10% energy with 

5% time penalty for NAS BT, 11% energy reduction with 4% time penalty for NAS MG, 

and a 16% energy saving with a 1% time penalty for NAS IS.   In [33] two energy-
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saving techniques, DVFS and DCT, are applied to Hybrid (MPI+OpenMP) HPC 

application codes to improve energy consumption.  This work focuses on reducing 

energy consumption by identifying the effects that DCT has on other MPI tasks during 

execution and identifying slack due to intra and inter-node interaction in hybrid HPC 

applications.  The methodology is applied to the NPB-MZ suite and ASC Sequoia 

benchmarks with energy savings in the range of 4.1% to 13.8% with negligible 

performance loss. 

Our work extends upon this work by presenting a methodology that is able to 

predict performance in application kernels utilizing DVFS and DCT for MPI and hybrid 

(MPI/OpenMP) applications.  Our scheme makes use of performance models that are 

used for predicting the effects that DVFS and DCT strategies have on application 

performance by refining the regression model for each application’s characteristics.  Our 

work differs from previous approaches in that we identify alternative frequency and 

concurrency settings for an application’s kernel to reduce power consumption.  We also 

optimize the kernel for better performance through loop blocking and loop unrolling.  

The reduced power consumption and reduced execution time reduces the energy 

consumption of the application.  Previous methods focus largely on only introducing 

software-based power reduction strategies.  In our work, we utilize software-based 

power reduction strategies with algorithmic changes, such as loop blocking and loop 

unrolling, to improve application performance. 
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2. PROPOSED PERFORMANCE MODELING SCHEME  

 

In this section we provide background information about performance issues 

related to multicore systems.  We also give a brief outline of our performance modeling 

methodology, E-AMOM, which is used to predict execution time and power 

consumption of MPI and Hybrid scientific applications on multicore systems.  The 

details of the modeling method are given in Section 4.  Throughout the remainder of this 

dissertation, Hybrid will refer to an application with communication constructs based 

upon MPI and OpenMP.  Further performance will refer to runtime and power 

consumption.  

 

2.1 Energy-Aware Modeling and Optimization Methodology (E-AMOM) 

In this section we present our power-aware performance modeling and 

optimization scheme.  E-AMOM can be used for predicting the runtime and power 

consumption of the application in terms of System, CPU, and Memory components. E-

AMOM is also used to improve the runtime and power consumption of scientific 

applications on multicore systems. Figure 7 presents a high level view of E-AMOM, 

which consists of the following steps: 

1. An application is selected for evaluation on a target multicore system. 
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2. The performance-tuned principle component analysis method identifies 

appropriate performance counters that represent each performance 

component of the application. 

3. Performance-power modeling is used to model the application kernels of the 

application to identify appropriate optimization strategies, which include 

DVFS, DCT, loop blocking, and loop unrolling.  

4. The application implementation is optimized for the target multicore system. 

E-AMOM makes use of a performance-tuned principle component analysis 

method for modeling application performance on multicore systems.  A brief overview 

of the analysis method is given below; the details of the method used to develop the 

models is given in Section 4.  Additionally, we improve the performance of the 

application to reduce both performance and power consumption on multicore systems 

based on the application assumptions derived from our modeling scheme.  Figure 7 

provides an overview of the performance modeling and optimization scheme used in this 

work. 
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                                             Figure 7.  E-AMOM Schema 
 

E-AMOM provides application developers and users a methodology to model 

and optimize the performance of scientific applications on multicore systems. Figure 8 

provides an illustration of how E-AMOM is integrated into the MuMMI framework.  E-

AMOM is a modeling component that is integrated into Prophesy, which allows for 

analytical, parameterized, and kernel coupling models to be developed.   
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Figure 8.  E-AMOM Integration into MuMMI 
 

The models developed using E-AMOM utilize Prophesy’s instrumentation 

framework, PowerPack for collecting power profiles, and PAPI for collection 

performance counter data. This allows for users of MuMMI to model the performance of 

scientific applications in regards to runtime and component power consumption.  The 

models from E-AMOM can then further be used to predict runtime and power 

consumption of applications for different input sizes, frequency settings, concurrency 

settings, and number of processors. 

 

2.2 Performance-Tuned Principle Component Analysis Method 

In this section we introduce the performance-tuned principle component analysis 

method, which is the modeling component of E-AMOM.  Using this method, we seek to 
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explore the application characteristics (via performance counters) that affect 

performance in order to gain a better understanding of how the application can be 

modified to improve performance with respect to runtimes and power consumption of 

the system, CPU, and memory.  We explore the following issues in regards to modeling 

the runtime and power consumption of scientific applications on multicore systems: 

a) What are the application characteristics that affect runtime and power 

consumption in scientific applications? 

b) Which combination of performance counters can be used to model the 

application in terms of runtime, system power, CPU power, and memory power? 

c) What is the accuracy of our models in estimating performance (runtime and 

power consumption for system, CPU, and memory components? 

d) What characteristics of applications can be optimized to improve performance on 

multicore systems? 

During each execution we capture 40 performance counter events utilizing the 

performance application programming interface (PAPI) [56] and the perfmon 

performance library.  All performance counter events are normalized using the total 

cycles of execution to create performance event rates for each counter.  Performance 

counter values must be normalized by a common variable (total cycles) so that 

underlying characteristics of the performance counter values can be prepared.  Table 2 

provides an overview of the 40 performance counters are analyzed for each application 

using a performance-tuned supervised principal component analysis method. In addition, 
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we make use of non-negative regression coefficients models to ensure that they were 

representative of realistic performance scenarios.  

 

Table 2. Hardware Performance Counters 

Hardware Counter Description 

PAPI_TOT_INS Total instructions completed 

PAPI_FP_INS Floating point insturctions 

PAPI_LD_INS Load instructions 

PAPI_SR_INS Store instructions 

PAPI_TLB_DM TLB data misses 

PAPI_TLB_IM TLB instruction misses 

PAPI_VEC_INS Vector/SIMD instructions 

PAPI_L1_TCA L1 cache total accesses 

PAPI_L1_ICA L1 instruction cache accesses 

PAPI_L1_ICM L1 instruction cache misses 

PAPI_L1_TCM L1 total cache misses 

PAPI_L1_DCM L1 data cache misses 

PAPI_L1_LDM Level 1 load misses 

PAPI_L1_STM Level 1 store misses 

PAPI_L2_LDM Level 2 load misses 

PAPI_L2_STM Level 2 store misses 
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Table 2:  Continued 

Hardware Counter Description 

PAPI_L2_STM Level 2 store misses 

PAPI_L2_TCH L2 total cache hits 

PAPI_L2_TCA L2 total cache accesses 

PAPI_L2_ICM L2 instruction cache misses 

PAPI_CA_SHARE Access to shared cache line 

PAPI_HW_INT Hardware interrupts 

PAPI_CA_ITV Cache line interventions 

PAPI_BR_INS Branch instructions completed 

PAPI_RES_STL System stalls on any resource 

Cache_FLD_per_instruction L1 writes/reads/hits/misses 

LD_ST_stall_per_cycle Load/stores stalls per cycle 

bytes_out Received bytes transmitted 

bytes_in Sent bytes transmitted 

IPC0 Instructions Per Cycle Core 0 

IPC1 Instructions Per Cycle Core 1 

IPC2 Instructions Per Cycle Core 2 

IPC3 Instructions Per Cycle Core 3 

IPC4 Instructions Per Cycle Core 4 

IPC5 Instructions Per Cycle Core 5 
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Table 2:  Continued 

Hardware Counter Description 

IPC6 Instructions Per Cycle Core 6 

IPC7 Instructions Per Cycle Core 7 

LLC_miss_rate0 Lower Level Cache Miss Rate Core 0 

LLC_miss_rate1 Lower Level Cache Miss Rate Core 1 

LLC_miss_rate2 Lower Level Cache Miss Rate Core 2 

LLC_miss_rate3 Lower Level Cache Miss Rate Core 3 

LLC_miss_rate4 Lower Level Cache Miss Rate Core 4 

LLC_miss_rate5 Lower Level Cache Miss Rate Core 5 

LLC_miss_rate6 Lower Level Cache Miss Rate Core 6 

LLC_miss_rate7 Lower Level Cache Miss Rate Core 7 

 

𝑦 =   𝛽! + 𝛽! ∗ 𝑟! +⋯𝛽! ∗ 𝑟!       (1) 

Each multivariate linear regression model is constructed for each performance 

component (execution time, system power, CPU power, and memory power) for each 

application. 

  

2.3 Application Optimization Methods 

In this section we discuss the methods that are used to improve the performance of 

scientific applications based upon our modeling scheme.  The methods include scaling 



 

 

35 

the frequency of the application (DVFS), Dynamic Concurrency Throttling (DCT), and 

improve application’s utilization of the memory subsystem.  Each method is described 

below. 

 

2.3.1 Dynamic Voltage and Frequency Scaling 

Dynamic Voltage and Frequency Scaling is a technique that is used to reduce the 

voltage and frequency of a CPU in order reduce power consumption [30][36].  Using 

DVFS, we minimize the power consumption of our scientific applications by reducing 

the voltage and frequency of the application during performance periods. Applying 

DVFS is especially beneficial during period where communication slack time appears 

during parallel execution due to load imbalance between task communications. We use 

our performance-tuned principle component modeling method to determine execution 

time and power consumption during application periods at reduced frequencies.  For 

simplicity, we assume that all cores that execute during the application phase will run at 

the same frequency. 

 

2.3.2 Dynamic Concurrency Throttling 

Dynamic Concurrency Throttling is a technique that can be used to reduce the 

number of threads used to execute an application [19].  Using DCT, we minimize the 

power consumption of our HPC applications by reducing the use of the number of cores 

(OpenMP threads) of the application during performance periods. Applying DCT is 
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especially beneficial during OpenMP performance phases that do not benefit from using 

the maximum number of OpenMP threads per node.  We use our performance-tuned 

principle component modeling method to determine execution time and power 

consumption during application periods at reduced concurrency settings.   

 

2.3.3 Conventional Techniques: Loop Blocking and Loop Unrolling 

In high performance computing, much of the computation involved with parallel 

scientific applications such occurs within nested loops in each application function. 

Optimizations made to these application loops can leave to improved performance on 

multicore systems. In this section, we discuss loop blocking and loop unrolling, which 

can be used to improve performance of the scientific applications. 

Loop blocking is a well-known loop optimization technique to aid in taking 

advantage of memory hierarchy; its main purpose is to eliminate as many cache misses 

as possible [47][60]. This technique transforms the memory domain of an application 

into smaller chunks, such that computations are executed on the chucks that easily fit 

into cache to maximize data reuse. The optimal loop block size varies with different 

applications on different systems.  

Loop unrolling is a well-known code transformation technique that replicates the 

original loop body multiple times, adjusts the loop termination code and eliminates 

redundant branch instructions. Outer loop unrolling can increase computational intensity 

and minimize load/stores, while inner loop unrolling can reduce data dependency and 

eliminate intermediate loads and stores. We combine inner and outer loop unrolling to 
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improve the performance the scientific applications. For examples, we unroll the inner 

loops four times for four major double nested loops in GTC code so that we reconfigure 

the double nested loops into the single loops, then use compiler directives for further 

loop unrolling. 

 

2.4 Modeling Approaches Leveraged  

In this section, we discuss the initial modeling approaches considered, why these 

approaches were not used, and how these approaches led to the development of our final 

power-performance modeling approach. These approaches were based on extending 

several existing frameworks with the goal of providing new tools to provide for 

modeling methods for scientific applications.  Further development led to a modeling 

framework, which focused upon analyzing the performance characteristics of scientific 

applications via performance counters that could be used for additional improvements to 

the application in term of performance-power tradeoffs. 

 

2.4.1 Initial Hierarchical Modeling Approach 

An initial hierarchical modeling approach was developed that leveraged existing 

frameworks to model the performance of large-scale scientific applications on multicore 

systems.  This modeling approach provided for a hierarchical decomposition of 

applications and quantified the sharing of resources on multicore systems by focusing on 
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the utilization of energy and power consumption on multicore systems.  Figure 9 

provides an overall depiction of this initial hierarchical modeling framework. 
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Figure 9.  Initial Hierarchical Multicore Modeling Scheme 

 

This modeling methodology allowed for detailed models of a scientific application.  

The following issues related to analyzing the performance of large-scale scientific 

applications and multicore systems were represented by the modeling methodology: 

1) Application Decomposition:  Determining an efficient decomposition of an 

application’s kernels so that it effectively demonstrates the workload distribution 
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onto multicore systems.  This was accomplished by utilizing a large-scale 

scientific application modeling framework, Modeling Assertions (MA). 

a. Modeling Assertions:  A framework that provides for detailed 

information about the computation and communication workload 

characteristics of scientific applications. 

2) Quantification of Resource Sharing:  Measuring how an application’s kernels 

make use of the memory subsystem is an important issue that can provide insight 

into which application kernels must be improved.  The quantification of 

resources on multicore systems makes use of Prophesy infrastructure and the 

kernel coupling method. 

a. Prophesy: An infrastructure for analyzing and modeling the performance 

of parallel and distributed applications. The core component of Prophesy 

is a relational database that allows for the recording of performance data, 

system features and application details. 

b. Kernel coupling:  The kernel coupling metric quantifies the interaction of 

adjacent kernels in a large-scale scientific application.  The prophesy 

infrastructure computes kernel coupling values in our large-scale 

scientific applications. 

3) Performance vs. Power relationship:  the tradeoff between application 

performance and power on multicore cluster systems is examined.  This 

relationship focuses on understanding the effects that application decomposition, 

data inputs, performance, and power have on each other.   
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a. PowerPack: The framework enables distributed systems to profile, 

analyze, and conserve energy in scientific applications using dynamic 

voltage scaling. 

 
In the following sections we describe each component of the initial modeling framework 

and then discuss lessons learned and how we developed the existing framework. 

 

2.4.1.1 Modeling Assertions 

The modeling assertions (MA) framework was introduced by Alam and Vetter to 

provide for incremental model construction and validation Error! Reference source not 

found..  Modeling assertions combines empirical and analytical modeling techniques 

together to encapsulate the workload requirements of an application.  There are a 

number of steps involved in the model creation process with MA.  These step are to: 

1) Determine and declare application variables that affect performance. 

2) Determine and declare application operations that affect performance. 

3) Refine the performance model in incremental steps. 

a. Validate performance model empirically at runtime using performance 

assertions. 

b. Refine model based on these error rates by adding and modifying 

variables and operation declarations. 
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c. Terminate modeling process when model is representative and when error 

level is acceptable. 

 

 

Figure 10.  Modeling Assertions Framework 

 

Figure 10 shows the scheme for the modeling assertions framework.  In this 

example, we use a code for a matrix-matrix multiply kernel to illustrate the capabilities 

of the modeling assertions framework.  We focus on the ability of modeling assertions to 

create symbolic models of an application code.  Our matrix-matrix multiply example is 

written in fortran and uses OpenMP for communication.   

First, modeling assertions creates a ma_profile of the matrix-matrix multiply 

code, shown in Figure 11.  The ma_profile shown in Figure 11 provides an overview of 

the matrix-matrix multiplication code and the attributes that modeling assertions 

captures.  First, modeling assertions defines the input parameters and their values for the 

application code.  These parameters are then used to represent the number of loops in the 

code.  Finally, this profile shows a declaration for the ma_flop_start routine to measure 
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the number of application flops for a segment of the code, in this example the number of 

flops occur within the “main_loop” of the code are represented. 

 

MA:0:1 
MA:----- Modeling Assertions enabled --------- 
MA:------------------------------------------- 
MA:0:ma_init:COMM_WORLD:0 
MA:1: ma_subroutine_start:main 

MA:1: ma_def_variable_int:L:200 
MA:1: ma_def_variable_int:M:200 

MA:1: ma_def_variable_int:N:200 
MA:2:  ma_loop_start:main_loop:L*M*N:8,000,000 

MA:3:  ma_flop_start:main_loop_fl:L*M*N*2:16,000,000 
                 * 
                 *         
MA:2:  ma_subroutine_end:main 
MA:1: ma_finalize:main 

Figure 11. Matrix-Matrix Multiply MA Profile 

 

After the modeling assertion profile is validated a control-flow model of the code 

can be generated, shown in Figure 12.  This is a high-level, octave compatible code that 

can be used for a simulator and represents the symbolic variables of the code that affect 

performance on a parallel system.  The partial control-flow shown in 9 provides key 

input parameters, loops, and parameter assignments for the code. 
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 Main(){ 

L; M; N;  
a(L,M), b(M,N), c(L,N) 

loop(NAME=loop-1) (COUNT=M)  
      loop(NAME=loop-1-2) (COUNT=L) 

      loop(NAME=loop-1-3) (COUNT=N)  
 loop(NAME=loop-1) (COUNT=L)  

      loop(NAME=loop-1-2) (COUNT=N) 
      loop(NAME=loop-1-3) (COUNT=M)  

     c(i,j) = c(i,j) + a(i,k) * b(k,j)                         
(remaining code) 

Figure 12. Matrix-Matrix Multiply Model 

 

Using modeling assertions, application requirements can be encapsulated with 

respect to computation and communication requirements.  In Figure 13, we analyze the 

sensitivity of the kernels floating-point operations and instructions per cycle to changes 

in the matrix size.  The variances in these application parameters for floating-point 

operations and instructions per cycle for different parameters can be studied.   
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Figure 13.  Matrix-Matrix Sensitivity Analysis 

 

2.4.1.2 Kernel Coupling 

In previous work, Geisler and Taylor provided the specifications for quantifying 

the interaction between adjacent kernels in an application [55].  A kernel is defined as a 

unit of computation that denotes a logical entity within the larger context of an 

application.  In general, a kernel may be a loop, procedure, or file depending on the level 

of granularity or detail that is desired from the measurements.  Our previous work was 

able to measure decompose the GYRO application into eight kernels, six of the kernels 

being computational kernels [47].  These kernels represent top-level subroutines that 

have been grouped together. 

To compute the coupling parameter cij, there are three measurements that must 

be taken: 

1) pi is the performance of kernel i in isolation, 

2) pj is the performance of kernel j in isolation, and 
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3) pij is the performance of kernels i and j together, assuming that kernel i 

immediately precedes kernel j in the application. 

The value cij represents the interaction between two adjacent kernels in an application.  

In general, for an application consisting of N kernels, only N-1 pairwise kernel 

interactions need to be measured. 

The parameter cij can be grouped into three categories: 

• cij = 1 indicates no interaction between the two kernels, yielding no 

change in performance. 

• cij < 1 results from resource(s) being shared between the kernels, 

producing a performance gain. 

• cij > 1 occurs when the kernels interfere with each other, resulting in a 

performance loss. 

The equation for computing cij is presented as equation 1. 

 

                                                  
ji

ij
ij PP

P
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+
=                                                                  (2) 

 
The coupling parameter can be generalized to apply to chains of kernels, as 

shown in equation 2.  The parameter Cij   becomes Cw, assume that W represents an 

ordered chain of K kernels.  Therefore, Pw represents the execution time of the chain W.  

Note that for K=2, equation 1 is equal to equation 2. 
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The coupling parameter is used in the estimation of execution time using 

equation 3.  Ni represents the number of times that kernel i is executed.  In the case of 

GYRO, the kernels occur in loops and Ni represents the number of times that the loop is 

executed.  Pi represents the execution time of kernel i, and α i is the weighted average of 

the coupling values that are associated with kernel i. 

                                                  ∑
=

=
n

i
iii PNT

1

α                                                                (4) 

The parameter Qi represents the set of all ordered chains of k (2 ≤ k ≤) kernels 

that are involved with kernel i.  The size of the Set Qi is │Qi │= k.  The coefficient αi (i = 

1, 2,…, n) is represented in equation 4. 
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In this work we use kernel coupling to measure the utilization of the memory 

subsystem by the application.  This work methodically uses a computation and 

communication decomposition to determine the application kernels from the modeling 

assertions framework.  Previous work used performance measurements based on 

execution time or cache misses [55]. 

The kernel coupling metric can be applied to the matrix-matrix multiply kernel 

code in the previous section.  The example code can be divided into five kernels: 

initialization, nested_loop1, nested_loop2, and final.  The kernel coupling values 

obtained for kernel 1 (nested_loop-1) and kernel 2 (nested_loop-2) when executed on 4 

processors on the Jaguar Cray XT4 are presented in Table 3. 
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Table 3.  Kernel Coupling Values for M-M Kernel 

Kernel Coupling Value 

(Loop-1&Loop-2) 0.99337 

(Loop-2&Loop-1) 0.99474 

  

Overall, the kernel coupling values show constructive coupling occurring in the 

matrix-matrix kernels.  However, the kernel coupling values as presented do not provide 

enough insight into how the kernel is performing on the multicore system.  Additional 

insight is needed to understand how the matrix-matrix kernel is utilizing the memory 

subsystem of the multicore system. 

  

2.4.1.3 Summary of Leveraged Modeling Methods 

Overall, the initial multicore modeling framework led to a more detailed 

understanding of how scientific applications performed on multicore systems.  Initially, 

we utilized the modeling assertions framework to create symbolic models of our 

scientific applications.  The symbolic models were useful for understanding predicted 

application requirements, such as floating-point operations and MPI communication 

message size requirements.  However, the models that we created using modeling 

assertions were system-independent and therefore they did not provide the necessary 

insight about how the application performed on a target system.  In order to reduce 

runtime and power consumption on a given system an understanding of how the 
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application performs on a given system is required. Additionally, the MA framework 

was not and currently does not support Hybrid applications. 

Kernel coupling provides a metric for analyzing application performance and 

understanding how kernels of an application shared resources.  However, the kernel 

coupling metric focused on one component of performance, such as execution time or 

cache misses, in quantifying the sharing of resources.  To improve the performance of 

the application kernel using kernel coupling could require additional performance data to 

be obtained using performance counters, which could be costly in terms of the amount of 

time it takes to collect all of the data for kernel coupling.    While E-AMOM does not 

quantify the interactions between kernels as is done with kernel coupling, E-AMOM 

collects detailed data for modeling using only one execution of the application.   

The combined initial framework work focused on extending kernel coupling to 

incorporate a processor partitioning method to model trends in the kernel coupling 

values.  We then determined and measured how an application utilizes the memory 

subsystem when executed on a multicore parallel system.  Once kernel coupling values 

were determined for the respective application, the symbolic models developed from 

MA were used to determine the components in each kernel that were being shared.   

The final framework represents an approach based on utilizing over 40 

performance counters to measure various application characteristics not reflected in 

kernel coupling and modeling assertions. We use the performance counters to develop 

models for predict runtime and component power consumption of the scientific 

applications on multicore systems.  This allows for us to determine different application 
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characteristics, through performance counters, that affect the runtime and power 

consumption of the application on a given system.   The models developed using our 

work can then be used to determine appropriate methods for refining the application to 

reduce runtime and decrease power consumption. 
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3. PERFORMANCE-POWER TRADE-OFFS OF MPI AND 

HYBRID APPLICATIONS* 

 

In this section, we discuss the performance characteristics of MPI and Hybrid 

scientific applications and how they affect performance-power tradeoffs on parallel 

multicore systems. In Section 3.1 the parallel programming paradigms used in high 

performance computing for scientific applications are introduced. In Section 3.2 the 

execution environment for these experiments is introduced.  In Section 3.3 an analysis of 

detailed performance characteristics of three scientific applications for Hybrid and MPI 

implementations is provided. 

 

3.1 Parallel Multicore Systems 

Efficient use of multicores requires that the hierarchical organization of cores be 

exploited.  One way of exploiting the hierarchical organization is to have parallel 

applications designed to match this organization.  Currently, the widely used languages 

for parallel applications are MPI, OpenMP, or the combination of both languages; this 

combination is called hybrid. Multicore processors present significant new opportunities 

such as on-chip high inter-core bandwidth and low latency and present new challenges in 

____________ 
*Part of this section is reprinted with permission from “Energy and Performance 
Characteristics of Different Parallel Implementations of Scientific Applications on 
Multicore Systems” by Charles Lively, Xingfu Wu, Valerie Taylor, Shirley Moore, 
Hung-Ching Chang, and Kirk Cameron, in Int. Journal of High Performance Computing 
Applications, Volume 25 Issue 3, August 2011 by SAGE Publications, INC. 
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inter-core resource conflict and contention.  In [32][43], it is argued that the full benefit 

of these architectures will not be harnessed until the software industry and community 

fully embrace parallel programming. Hybrid applications make use of shared memory 

programming paradigms as well as message passing paradigm, which appear to be a 

good fit for multicore systems whereby the nodes utilize a share memory model and 

distributed memory model between the nodes.  

The Message Passing Interface (MPI) is one of the widely used parallel 

programming models in High Performance Computing [40].  MPI was initially 

developed as a model for achieving communication across nodes in a parallel system; 

however, there has been substantial work in improving the intra-node communication 

protocols [13][14].  Additionally, there have been improvements made to collective 

communications; one use of collective communication is broadcasting data across the 

entire system [53][54]. Currently, there are still improvements or modifications being 

made to the MPI standard and mechanisms in order to make it more efficient for 

multicores and heterogeneous architectures. 

OpenMP is another widely used parallel programming model in High 

Performance Computing [48].  OpenMP was first introduced in 1997 as a parallel 

programming language for Fortran and was later expanded to C/C++.  The core elements 

of OpenMP are based upon threads, which are used to parallelize portions of a code that 

can be executed on a processor in parallel.  OpenMP does not deal with message 

passing, currently, and therefore provides a simple API for parallelizing code. 
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Generally, MPI is considered optimal for process-level, coarse parallelism and 

OpenMP is optimal for loop-level fine grain parallelism. Combining MPI and OpenMP 

parallelization to construct a hybrid program is not only able to achieve multiple levels 

of parallelism but also to reduce the communication overhead of MPI within a multicore 

node, by taking advantage of the shared address space and on-chip high inter-core 

bandwidth and low inter-core latency at the expense of introducing OpenMP overhead 

due to thread creation and increased memory bandwidth contention. However, which 

parallel programming paradigm (MPI, OpenMP, or hybrid) is the most suitable for 

multicore systems depends on the nature of an application, available parallel 

programming software, and compiler support on these multicore systems.  

 

3.2 Experimental Environment 

The experimental environment used for the experiments to explore the 

performance and power tradeoffs for MPI and Hybrid application is the power-aware 

multicore cluster, Dori, which is available in the Department of Computer Science at 

Virginia Tech. Dori, presented in table 4, is composed of eight compute nodes. Each 

node of the system consists of two dual-core AMD Opteron processors (1.8GHz) and 

providing 4 CPUs per node.  Each CPU in Dori contains L1 and L2 caches with a size of 

64KB and 1 MB, respectively, for on-chip memory access. In our experimental results 

we make use of the frequency settings available in Dori, which includes five settings 

from 1.0 GHz to 1.8 GHz as described in Table 4.  The PowerPack infrastructure, 
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introduced in Section 1, is used for collecting the necessary performance and power data 

on the Dori System.   

 

Table 4.  System Configuration of Dori	
  

Specifications of Dori System 

Number of Compute Nodes 8 

CPUs Per Node 4 

CPU Type 1.8Ghz Dual-Core AMD Opteron  

L1 Cache 64KB 

L2 Cache 1 MB 

Memory Per Node 6 GB 

Interconnect 1GB/sec Ethernet 

Frequency Settings 1.8 , 1.6, 1.4, 1.2, 1.0 GHz 

 

3.3 Experimental Results 

In this section we present our experimental results based on three applications 

described in Table 5: NAS BT [35], GTC [23], and PMLB[69].  We provide the 

performance characteristics of the hybrid and MPI implementations.  We also explore 

frequency scaling of each implementation of the applications.   We use PowerPack [24] 

to measure the power consumption for our applications.  The NAS BT benchmark is an 

application benchmark included in the NAS Parallel Benchmark suite.  The 
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implementation that we use in this section is a hybrid implementation of the benchmark 

code written in Fortran and using MPI + OpenMP for communication.  The Gyrokinetic 

Toroidal code (GTC) is a 3D particle-in-cell application developed at the Princeton 

Plasma Physics Laboratory to study turbulent transport in magnetic fusion. GTC is a 

flagship SciDAC fusion microturbulence code written in Fortran90, MPI and OpenMP.  

The Lattice Boltzmann method is widely used for simulating fluid dynamics.  Because 

of the high locality of the collision and streaming operations, domain decomposition is 

very effective and widely used for the parallel LBM. 

 

Table 5.  Overview of HPC Applications 

Application Discipline Problem Size Languages 

NAS BT-MZ 
Computational 

Fluid Dynamics 
Class C 

Fortran, 

MPI/OpenMP 

GTC Magnetic Fusion 100 particles ppc 
Fortran90, 

MPI/OpenMP 

PMLB 
Computational 

Fluid Dynamics 
128x128x128 C, MPI/OpenMP 

 

3.3.1 NAS BT Benchmark 

We use a hybrid NAS parallel benchmark BT with Class B to compare the 

energy and performance of OpenMP and MPI BT on a single multicore node. Figures 14 
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and 15 provide the results from using PowerPack to collect power profiles of the CPU, 

memory, hard disk and motherboard components.  Figure 14 indicates that there are 

slacks where CPUs are waiting for data exchanges among all MPI processes. This causes 

rapid oscillations in CPU power for the MPI BT. Figure 15 indicates that CPU power for 

the OpenMP BT does not vary as the MPI BT does because the OpenMP threads take 

advantage of intra-node communication (shared address space). However, memory 

power consumptions for both are similar because of the relatively small problem size.  

 

 

Figure 14. Power for MPI BT Executed on 1 Node  

         

 From Figures 14 and 15, we observe that, the performance (execution time) for 

the OpenMP BT is slightly better than that for its MPI counterpart. The CPU power 
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consumption for the OpenMP BT is slightly higher than that for its MPI counterpart. The 

execution time for OpenMP BT is 257 seconds and that for MPI BT is 269 seconds. The 

total energy consumption for OpenMP BT is 57779J; the energy consumption for MPI 

BT is 58643J.  

 

 

Figure 15. Power for Hybrid BT on 1 Node 

 

Table 6 provides a comparison of the MPI and OpenMP performance of the 

application on 4 cores using 1 node in the system. Using the OpenMP implementation 

provides for an overall improvement in execution time of 4.46% and energy savings of 

1.47%.  The amount of energy consumed by a scientific application is represented by the 

following equation: 

𝐸 = 𝑃!"#$!%#𝑥  𝑇                                                          (6) 
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where Paverage is the average power consumption of the application and T is the runtime 

of the application.  Based on our energy equation we are able to determine that there is a 

4.46% performance improvement and higher power consumption for the OpenMP BT 

just results in the 1.47% energy saving. 

 

Table 6. Runtime and Energy Comparison for OpenMP and MPI BT on 1 Node 

On One Node Performance Total Energy 

MPI BT 269 s 58,643 J 

OpenMP BT 257 s 57,779 J 

% improvement 4.46% 1.47% 

 

We used the hybrid NAS parallel benchmark BT with Class B on Dori to 

evaluate its runtime and power consumptions for MPI and hybrid programming models. 

Using the hybrid programming achieves better performance and energy.  Our results 

illustrate that there are slacks where CPUs are waiting for data exchanges across all MPI 

processes. This causes CPU power to oscillate. We observe that CPU power 

consumption and memory power consumption of the hybrid BT are higher than that for 

the MPI BT.  Memory power consumption for the hybrid BT oscillates significantly 

compared to that for the MPI BT because of the use of shared address space by OpenMP 

within a node. 
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Table 7 provides a comparative analysis of the performance trends of the MPI 

and hybrid BT as it scales from 4 processors to 32 processors. The results for BT show 

that as the number of nodes increase, the performance improvement gained from the 

hybrid implementation increases slightly for both execution time and energy 

consumption.  The results obtained on 16 processors (4x4) illustrate the largest 

performance difference between the MPI only and hybrid implementation.   

 

Table 7. Energy and Runtime Comparison of MPI and Hybrid BT  

#Cores BT Type Time(s) 
Total 

Energy (J) 

CPU 

Energy (J) 

Memory 

Energy (J) 

1x4 

Hybrid 
257 

(-4.46%) 

58643 

(1.49%) 

33410.11 

(-5.91%) 

5719.43 

(-11.41%) 

MPI 

(Baseline) 
269 57779 35508.31 6456.23 

2x4 

Hybrid 
122.671 

(-13.1%) 

28214.1 

(-13.1%) 

16069 

(-11.73%) 

2576.29 

(-20.24) 

MPI 

(Baseline) 
141.12 32457.6 18204 3230.29 

4x4 

Hybrid 
71.723 

(-5.84%)  

15941.091 

(-4.56%) 

9453.668 

(-5.35%) 

1580.718 

(-10.48%) 

MPI 

(Baseline) 
76.174 16702.200 9986.521 1765.706 

8x4 

Hybrid 
29.9719 

(-6.74%) 

6728.18 

(-5.60%) 

3956.29 

(-6.25%) 

672.84 

(-8.55%) 

MPI 

(Baseline) 
31.99 7133.77 4203.53 735.77 
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When we scale down the CPU frequency from 1.8Ghz to 1.0Ghz, we observe 

that the hybrid BT has the minimum energy consumption of 14444.036 J with the CPU 

frequency of 1.2Ghz. We use the energy consumption as a baseline to calculate other 

percentages shown in Table 3.  When increasing the CPU frequency from 1.2 Ghz to 

1.8Ghz, we obtained runtime improvement but lost energy. So there is a trade-off 

between runtime and energy consumption; a decrease in runtime can result in an increase 

in energy. 

 

3.3.2 Parallel Multiblock Lattice Boltzman (PMLB) 
 

In this section, we discuss the energy performance of a large-scale scientific 

application, the Parallel Lattice Boltzman (PMLB) [69]. The Lattice Boltzmann method 

is widely used in simulating fluid dynamics. It is based on kinetic theory that entails a 

more fundamental level in studying and analyzing the Navier-Stokes equations.  The 

application PMLB was implemented by researchers in the Aerospace Engineering 

Department at Texas A&M University using MPI for communication. The hybrid 

implementation of the code incorporates OpenMP to take advantage of the shared-

memory architecture of multicore chips. 

The PMLB code has properties that demonstrate that the MPI-only implementation 

provides for a better performance in terms of execution time and energy consumption for 

up to 16 cores. As the number of cores increases to 32 the execution time and energy 

consumption for the hybrid version becomes better than the MPI-only version. 

Specifically, on 32 cores (8x4), the energy consumption for the hybrid implementation is 
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over 17% better than the MPI only and the execution time for this parallel programming 

paradigm is 21% better.   

 

Table 8. Energy and Runtime Comparison of MPI and Hybrid PMLB Application 

#Cores PMLB Type Runtime(s) 
Total Energy 

(KJ) 

CPU Energy 

(KJ) 

Memory 

Energy (KJ) 

1x4 

Hybrid 
30.022 

(33.92%) 

6.337 

(70.81%) 

3.682 

(65.55%) 

0.818 

(94.3%) 

MPI 

(Baseline) 
22.418 3.710 2.224 0.421 

2x4 

Hybrid 
21.045 

(18.74%) 

8.629 

(39.42%) 

5.246 

(40.61%) 

0.916 

(37.33%) 

MPI 

(Baseline) 
17.724 6.189 3.731 0.667 

4x4 

Hybrid 
13.248 

(5.78%) 

10.534 

(10.55%) 

6.276 

(12.17%) 

1.229 

(4.41%) 

MPI 

(Baseline) 
12.524 9.529 5.595 1.177 

8x4 

Hybrid 
11.929 

(-21.32%) 

17.903 

(-17.26%) 

10.723 

(-16.13%) 

2.088 

(-17.34%) 

MPI 

(Baseline) 
15.161 21.637 12.784 2.526 

 

The results presented in Table 8 are interesting in two ways. While energy is the 

product of power and execution time, the percentage reduction or increase for energy 

was not the same as that for performance. For example, with 4 cores, the execution time 

for the hybrid implementation was 33% larger, but the corresponding energy was 79% 
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larger than MPI-only. Second, only when we have 32 cores is the hybrid method better. 

Further work is needed to explore if a different hybrid implementation would produce 

better results for 16 or fewer cores. 

 

3.3.3 Gyrokinetic Toroidal Code (GTC) 

In this section, we discuss the energy performance of the Gyrokinetic Toroidal 

Code (GTC). Note that the GTC is weak scaling with 100 particles per cell and 100 time 

steps.  Table 9 provides the energy and performance comparison of the GTC application 

executed on one node to eight nodes of Dori with the default CPU frequency of 1.8Ghz, 

where KJ stands for thousand Joules, and NxM means N nodes with M cores per node. 

With the increase of the number of nodes from 1 to 8, the performance improvement 

percentage for the hybrid GTC over the MPI-only GTC increases from 37.22% on 1 

node to 42.12% on 8 nodes. In addition, the hybrid also saves 37.81% of the overall 

system energy over the MPI GTC on one node, and 41.86% of the total system energy 

on 8 nodes. This also shows that using the hybrid MPI/OpenMP programming reduces 

MPI communication overhead and achieves better performance and save energy. 

It is interesting to observe that the performance improvement percentage and 

energy saving percentage on a given number of nodes (from 1 to 8) are similar mainly 

because the energy savings are the result of the performance improvement by the hybrid 

GTC. It indicates that power consumption for both the hybrid GTC and the MPI GTC is 

similar because the application is weak scaling. This is different from the results of the 

BT implementation that is shown in Tables 6, where the NAS BT is strong scaling and 
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the performance improvement percentage for the hybrid BT is much larger than its 

energy saving percentage because of the higher power consumptions of the hybrid BT. 

 

Table 9. Energy and Runtime Comparison of MPI and Hybrid GTC Application 

#Cores GTC Type Runtime(s) 
Total Energy 

(KJ) 

CPU Energy 

(KJ) 

Memory 

Energy (KJ) 

1x4 

Hybrid 
1302.773 

(-37.22%) 

270.223 

(-37.81%) 

162.969 

(-38.52%) 

27.086 

(-33.47%) 

MPI 

(baseline) 
2075.376 434.524 265.071 40.714 

2x4 

Hybrid 
1395.322 

(-37.47%) 

576.674 

(-37.68%) 

353.826 

(-38.35%) 

61.887 

(-34.33%) 

MPI 

(baseline) 
2231.652 

 

925.401 

 

 

574.003 

 

 

94.238 

 

4x4 

Hybrid 
1434.491 

(-38.29%) 

1182.959 

(-38.40%) 

711.065 

(-39.31%) 

118.186 

(-34.64%) 

MPI 

(baseline) 
2324.707 

 

1920.578 

 

 

1171.572 

 

 

180.825 

 

8x4 

Hybrid 
1463.457 

(-42.12%) 

2419.985 

(-41.86%) 

1457.945 

(-42.39%) 

244.013 

(-37.73%) 

MPI 

(baseline) 
2528.556 4162.998 2530.861 391.842 

 

3.3.4 Runtime & Energy Using Frequency Scaling 

To perform frequency scaling on Dori, five frequency values are utilized. The 

default frequency and voltage for the system is set to 1.8 Ghz and 1.4V and can be 



 

 

63 

adjusted to 1.0Ghz and 1.3V. The CPU frequency on Dori can be adjusted in increments 

of 200 hz from 1.8Ghz to 1.0Ghz. The power profiling data of BT and GTC executed on 

4 nodes (4x4) is used to further investigate the impact on energy and runtime from 

applying frequency scaling to execution of the applications. 

Table 10 provides the effects of applying frequency scaling to the NAS BT 

benchmark. When we scale down the CPU frequency from 1.8Ghz to 1.0Ghz we 

observe that the hybrid BT has the minimum energy consumption of 14444.036 J with 

the CPU frequency of 1.2Ghz. We use the runtime and energy consumption at 1.2Ghz as 

a baseline to calculate other percentages shown in Table 4. When increasing the CPU 

frequency from 1.2 Ghz to 1.8Ghz, we obtained runtime reduction but increased energy. 

So there is a trade-off between performance and energy consumption. Achieving a 

reduction in runtime may require using more energy. 

 

 

 

 

 

 

 

 

 

 



 

 

64 

Table 10. MPI and Hybrid BT on 4x4 (16 Cores) Using Frequency Scaling 

CPU 

Speed 
BT Type Runtime(s) 

Total  Energy 

(KJ) 

CPU Energy 

(KJ) 

Memory Energy 

(KJ) 

1.8Ghz 

Hybrid 
71.723 

(-25.31%) 

15941.091 

(10.36%) 

9453.668 

(22.88%) 

1580.718 

(-26.76%) 

MPI 
76.174 

(-27.82%) 

16702.200 

(15.63%) 

9986.521 

(29.8%) 

1765.706 

(-18.19%) 

1.6Ghz 

Hybrid 

 

76.139 

(-21.80%) 

15058.230 

(4.25%) 

8737.304 

(13.57%) 

1713.132 

(-20.62%) 

MPI 
81.841 

(-15.94%) 

15903.052 

(10.1%) 

9088.220 

(18.13%) 

1858.386 

(-13.9%) 

1.4Ghz 

Hybrid 
84.849 

(-12.86%) 

14732.076 

(1.99%) 

8186.828 

(6.41%) 

1852.877 

(-14.15%) 

MPI 
90.530 

(-7.02%) 

15624.080 

(8.17%) 

8577.551 

(11.49%) 

1992.754 

(-7.67%) 

1.2Ghz 

Hybrid 

(BASELINE) 
97.366 14444.036 7693.547 2158.369 

MPI 
101.990 

(4.74%) 

15088.793 

(4.46%) 

8101.081 

(5.29%) 

2330.107 

(7.96%) 

1.0Ghz 

Hybrid 
111.947 

(14.97%) 

17041.246 

(17.98%) 

9325.778 

(21.22%) 

2480.800 

(14.93%) 

MPI 
117.394 

(20.56%) 

17774.750 

(23.06%) 

9630.939 

(25.18%) 

2606.256 

(20.75%) 
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Table 11 shows the energy and runtime for the hybrid and MPI-only GTC at five 

CPU frequency gears from 1.8GHz to 1.0GHz on the Dori system. This shows the effect 

that adjusting the frequency of the system has on the energy and performance of the 

application. As shown in Table 5, for the default CPU frequency of 1.8 GHz, the 

performance improvement percentage for the hybrid GTC over the MPI-only GTC is 

38.29% on 4 nodes (with 4 cores per node), and the hybrid also saves 38.40% of the 

overall system energy over the MPI GTC on 4 nodes. We use the energy and runtime for 

the MPI and hybrid GTC at the CPU frequency of 1.6GHz as baseline to calculate the 

percentages of energy and runtime at various frequencies in Table 6. As we seek to 

explore the saving in energy we use the lowest energy consumption obtained at 1.6 Ghz 

as the baseline. 

For the given problem size and number of cores, it is obvious to see the total 

application execution times for both the MPI and hybrid GTC increase with decreasing 

the CPU frequency from 1.8 GHz to 1.0GHz as shown in Table 5. For instance, the 

execution time for the hybrid GTC executed on 4 nodes increases up to 37.87% when 

decreasing the CPU frequency to 1.0GHz. Decreasing CPU frequency means that a 

lower voltage is utilized. This results in lower power consumption for the application. 

From Table 11, we observe that the total energy consumption for the hybrid GTC 

decreases 3.78% for the frequency of 1.6GHz, less than 1% for the frequency of 1.4GHz, 

increases 1.77% for the frequency of 1.2GHz, but increases 17.81% for the frequency of 

1.0GHz.  So there is performance-energy trade-off that needs to be seriously considered 

when applying frequency scaling to an application. 
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Table 11. GTC Power Profiling on 4x4 (16 Cores) Using Frequency Scaling 

CPU 

Speed 
GTC Type Runtime(s) 

Total  Energy 

(KJ) 

CPU Energy 

(KJ) 

Memory Energy 

(KJ) 

1.8Ghz 

Hybrid 
1434.491 

(-8.62) 

1182.959 

(3.72%) 

711.065 

(-7.1%) 

118.186 

(-8.09%) 

MPI 
2324.707 

(48.1%) 

1920.578 

(68.50%) 

1171.572 

(76.42%) 

180.825 

(40.62%) 

1.6Ghz 

Hybrid 

(BASELINE) 
1569.960 1139.831 664.098 128.594 

MPI 
2511.532 

(59.97%) 

2057.516 

(80.51%) 

1253.041 

(88.68%) 

196.440 

(52.76%) 

1.4Ghz 

Hybrid 
1773.444 

(12.96%) 

1143.615 

(0.03%) 

661.161 

(-0.04%) 

153.450 

(19.39) 

MPI 
2791.607 

(77.81%) 

1778.682 

(56%) 

1040.457 

(56.67%) 

230.353 

(79.13%) 

1.2Ghz 

Hybrid 
2094.598 

(33.40%) 

1162.393 

(1.97%) 

628.386 

(-5.37%) 

176.897 

(37.56%) 

MPI 
3126.446 

(99.1%) 

1724.057 

(51.26%) 

940.227 

(41.57%) 

254.275 

(97.73%) 

1.0Ghz 

Hybrid 
2445.155 

(37.87%) 

1393.650 

(22.26%) 

769.366 

(15.85%) 

204.96 

(4.34%) 

MPI 
3553.982 

(127.37%) 

2015.483 

(76.82%) 

1112.277 

(67.49%) 

285.326 

(121%) 

 

Table 12 illustrates the effect that frequency scaling has on the performance of 

GTC at a functional granularity. The runtime for GTC at the default frequency of 

1.8GHz are used as baselines to calculate the performance percentages for reduced 

frequencies for hybrid and MPI implementations.  Therefore, the hybrid percentages are 

shown compared to the baseline of 1.8 GHz for the hybrid implementation.  Also, the 
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MPI implementation is compared to the baseline of the MPI application at 1.8 Ghz.  We 

observe that the hybrid GTC outperforms its MPI counterpart because of big 

performance improvements for five functions shift, charge, poisson, smooth and field of 

the GTC and poor L2 cache behavior for the MPI implementation which increases the 

amount of off-chip communications and degrades the performance. This is consistent 

across different CPU frequencies. This further shows that using the hybrid MPI/OpenMP 

programming can not only reduce MPI communication overhead but also achieve better 

performance and save energy. The function-level information for CPU frequency scaling 

can help us aid in finding the best combination of CPU frequency adjustments for the 

entire GTC to save more energy when applying frequency scaling to the entire 

application. 

 

Table 12. Function Comparison of GTC using Frequency Scaling 

CPU 

Speed 

GTC 

Type 
Time(s) Pusher Shift Charge Poisson 

 

Smooth 

 

1.8Ghz 

 

Hybrid 

(Baseline) 
1434.49 854.5 36.75 498.1 16.94 10.25 

MPI 
2324.70 

(62.1%) 

823.7 

(-3.63%) 

268.4 

(630%) 

627.7 

(26%) 

159.6 

(842%) 

284.9 

(2680%) 

1.6Ghz 

Hybrid 
1569.96 

(-9.4%) 

940.1 

(-10.0%) 

39.64 

(-7.83%) 

542.3 

(-8.87%) 

20.81 

(-22.84%) 

8.019 

(-21.76) 

MPI 

2511.53 

(75.1%) 

 

850.7 

(-0.44%) 

 

348.2 

((847%) 

692.5 

(39%) 

 

160.8 

(849%) 

292.7 

(2756%) 
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Table 12: continued 
 

1.4Ghz 

Hybrid 
1773.44 

(-23.6%) 

1067.00 

(-24.9%) 

38.48 

(-4.8%) 

617.2 

(-23.91%) 

21.01 

(-24.03%) 

8.532 

(-16.76%) 

MPI 

2791.60 

(95%) 

 

1053.00 

(23.33%) 

 

307.40 

(736%) 

772.6 

(55.1%) 

 

157.8 

(832%) 

323.7 

(3058%) 

1.2Ghz 

Hybrid 
2094.598 

(-46.0%) 

1255.00 

(-46.9%) 

46.43 

(-26.34%) 

734.2 

(-47.4%) 

24.21 

(-42.91%) 

9.884 

(-3.7%) 

MPI  
3126.446 

(117%) 

1218.00 

(42.5%) 

324.3 

(782% 

897.9 

(80.2%) 

 

162.80 

(861%) 

335.00 

(3168%) 

1.0Ghz 

Hybrid 
2445.16 

(-70.5%) 

1473.00 

(-72.4%) 

48.18 

(-31.10%) 

855.9 

(-71.83%) 

28.60 

(-68.83%) 

11.21 

(-9.36%) 

MPI 
3553.982 

(148%) 

1458.00 

(70.62%) 

339.0 

(822%) 

1056.00 

(112%) 

161.3 

(852%) 

345.9 

(3275%) 

 
 

3.4 Summary 

In this section we investigated energy and performance characteristics of 

different parallel implementations of scientific applications on multicore systems, and 

explored interactions between power consumption and application performance. We 

used the power profiling tool PowerPack to collect power profiling data for four 

scientific applications: a hybrid NAS parallel BT benchmark, a hybrid Lattice 

Boltzmann application PMLB and a hybrid Gyrokinetic Toroidal Code for our 

comparative analysis of energy and performance on multicore clusters. Our experimental 

results show that there are various ways to save energy and improve performance of 

parallel application codes.  
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First, we found, with respect to the MPI-only versus the hybrid implementation 

for a scientific application, the best implementation can be dependent upon the 

application executed on 16 or fewer cores. For the case of 32 cores, the results were 

consistent that hybrid resulted in less execution time and energy on the Dori platform. 

For example, the hybrid PMLB achieved 21% performance improvement and 17% 

reduction in energy consumption compared to the MPI only implementation. With the 

CPU Frequency Scaling, the best case for energy saving was not the best case for 

execution time. For example, the hybrid GTC executed at the CPU frequency 1.6 Ghz 

provided the lowest energy consumption but the execution time increased by 8.62%. 

The hybrid implementations are based on the existing MPI applications and were 

implemented to exploit the shared-memory architectures of multicore systems. The 

results from these experiments show that the energy consumption and runtime of 

scientific applications can vary at different frequencies.  Therefore, these experiments 

provide a strong foundation for the development of performance models that can be used 

to analyze the runtime and power consumption of hybrid and MPI applications. 

Furthermore, accurate power-aware models can be used to better determine appropriate 

ways to optimize or refine scientific applications to reduce runtime and reduce power 

consumption. 
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4. POWER-AWARE PERFORMANCE MODELS OF SCIENTIFIC 

APPLICATIONS 

 

In this section, we present the E-AMOM methodology for developing power-

aware predictive models of Hybrid and MPI scientific applications. This section 

provides the detailed predictive models for six scientific applications.  The E-AMOM 

experimental models identify the characteristics in the applications that affect each 

performance component (runtime, system power, CPU power, and memory power).  

 

4.1 Performance-Tuned Principal Component Analysis Methodology 

The performance-tuned principal component analysis method included in E-AMOM was 

developed in order to determine a subset of predictors (via performance counters) that 

could be used in modeling the performance of scientific applications.  The performance-

tuned principal component analysis method combines statistically sound concepts into a 

schema to determine performance counters that can be associated with an application’s 

outcome, such as execution time and component power consumption of the system, 

CPU, and memory.  The remainder of this section will describe the components of this 

method and how it is applied to scientific applications.  
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4.1.1 Modeling via Performance Counters 

The most difficult part in predicting application performance via performance 

counters is determining the appropriate counters to use for modeling each component.   

We develop the performance-tuned principal component analysis method for 

modeling the performance components of Hybrid and MPI scientific applications. Using 

this method, we identify the application characteristics (via performance counters) that 

affect performance of the application.  The performance characteristics that are modeled 

include runtime, system power consumption, CPU power consumption, and memory 

power consumption.  

The following algorithm was used to identify the performance counter events 

needed to build the predictive models for each application: 

1. Compute the Spearman's rank correlation for each performance counter event 

rate for each performance component (runtime, system power, CPU power, and 

memory power). 

Equation (7) defines how the spearman correlation coefficient is computed for 

identifying the rank between each performance counter and each performance 

component.  The relationship between two variables x and y is determined based on this 

formula. The xi and yi variables represent the ranks of the performance counter and 

performance component (time, system power, CPU power, memory power) that are 

being correlated.  The variables 𝑥 and ȳ  represent the average of the samples for each 

variable.  The spearman rank correlation will provide a value between -1 and 1 for ρ.  If 



 

 

72 

ρ is -1 then the variables are not correlated in any way, if ρ  is 1 then the values are 

highly correlated and as one increases the other value increases as well. 

    𝜌 =    !!!! !!!!!

!!!! !! !!!! !!
                                                 (7) 

The spearman’s rank correlation coefficient is used because it provides a correlation 

value that is not easily influenced by outliers in the dataset.  The pearson correlation 

coefficient uses the actual values for the correlation and therefore it is more influenced 

by outliers in the dataset.  Figure 16 illustrates the effects that outliers have on different 

correlation values.  This figure shows corresponding values collected with X being the 

performance counters and Y being runtime. As shown in the figure, the correlation 

coefficient for the spearman rank is larger than the pearson correlation because pearson 

correlation is affected by the outlier values. 

 

 

 Figure 16.  Spearman and Pearson Correlation Comparison 
 

2. Establish a threshold, βai, to be used to eliminate any counters with Spearman 

rank correlation values below the threshold. 
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βai is used to determine an appropriate threshold for eliminating performance 

counters with low correlation to the performance event that is to be modeled.  For 

example, if βai = 0.59 then all performance counters with correlation coefficients below 

this value are eliminated from the performance counter group.  The value for β ai is 

established based on a cluster analysis of the data.  When more than half of the values 

from the spearman rank correlation analysis are found above a point, the remaining 

values are eliminated at the threshold βai.  The values in red in Table 13 illustrate values 

that have been reduced based on the threshold βai.  The βai threshold is used to reduce the 

number of performance counters that must be used in developing our regression model.  

A reduced number of performance counters improves the time that it takes in developing 

the regression model and also simplifies the model for future use. 

 

Table 13. Reduced Performance Counters and Correlation Values 

Performance Counter Correlation Value 

PAPI_TOT_INS 0.9187018 

PAPI_FP_OPS 0.9105984 

PAPI_L1_TCA 0.9017512 

PAPI_L1_DCM 0.8718455 

PAPI_L2_TCH 0.8123510 

PAPI_L2_TCA 0.8021892 

Cache_FLD 0.7511682 
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Table 13: continued 

Performance Counter Correlation Value 

PAPI_TLB_DM	
   0.6218268	
  

PAPI_L1_ICA	
   0.5487321	
  

Bytes_out	
   0.5187535	
  

PAPI_L1_ICA 0.4876423 

PAPI_L1_ICM 0.4449848 

PAPI_L2_ICM 0.4017515 

PAPI_CA_SHARE 0.3718456 

PAPI_HW_INT 0.3813516 

PAPI_CA_ITV 0.3421896 

 

 
 
3. Compute a multivariate linear regression model based upon the remaining 

performance counter event rates. 

Equation (8) outlines the multivariate linear regression model that is used for 

creating an initial application model based upon the remaining application performance 

counters.  The multivariate linear regression model is based upon the performance 
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counters that have not been eliminated thus far in the performance-tuned principal 

component analysis process.  Table 14 provides the derived regression coefficients that 

could be used in modeling the runtime of a sample application code.   

 

𝑦 =   𝛽! + 𝛽! ∗ 𝑟! +⋯𝛽! ∗ 𝑟!                                           (8) 

 

Table 14. Reduced Performance Counters and Regression Coefficients 

Performance Counter Regression Coefficients 

PAPI_TOT_INS 1.984986 

PAPI_FP_OPS 1.498156 

PAPI_L1_DCM 0.9017512 

PAPI_L1_TCA 0.465165 

PAPI_L2_TCA 0.0989485 

PAPI_L2_TCH 0.0324981 

Cache_FLD 0.026154 

PAPI_TLB_DM 0.0000268 

PAPI_L1_ICA 0.0000021 

Bytes_out 0.000009 
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4. Establish threshold, βbi, and eliminate performance counters and ensure that the 

regression coefficients are not greater than βbi in terms of magnitude. 

The value β bi serves as the second elimination threshold and serves a similar 

purpose as β ai to eliminate performance counters that do not contribute substantially to 

modeling in the initial multivariate linear regression model.  The determination of βbi is 

accomplished by analyzing the coefficients of the multivariate linear regression model.  

A visual analysis is used to determine an appropriate threshold that should be used to 

eliminate the values that are negligible.  An appropriate value for β bi is important 

because if the value is not correctly chosen, or is too high, then values needed in the 

modeling will be eliminated.  Table 15 provides an illustration of applying the β bi 

threshold to eliminate counters that are below the elimination value. 

 

Table 15. Reduced Performance Counters and Regression Coefficients-Step 5 

Counter Regression Coefficient 

PAPI_TOT_INS 1.984986 

PAPI_FP_OPS 1.498156 

PAPI_L1_DCM 0.9017512 

PAPI_L1_TCA 0.465165 

PAPI_L2_TCA 0.0989485 

PAPI_L2_TCH 0.0324981 

Cache_FLD 0.026154 
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5. Compute the principal components of the reduced performance counter event 

rates. 

Principal component analysis is a statistical method that is used to provide a 

linear transformation of data that can be used to reduce the dimensionality of data.  The 

principal components of data, (Yi), is given by a linear combination of variables Xi, X2, 

…..Xp.  For example, the first principal components would be represented by equations 

(9) 

                                𝑌! = 𝑎!!𝑋! + 𝑎!"𝑋! +⋯… . .+𝑎!!𝑋!                                  (9) 

The values for ai1, ai2, ……aip are calculated with the constraint that the sum of 

their squares must equal to 1. 

                                 𝑎!!! + 𝑎!"! +⋯… . .+𝑎!!! = 1                                           (10) 

The second principal component would be calculated in the same manner as the 

first principal component following the condition that it must be uncorrelated 

(perpendicular) to the first principal component. 

                        𝑌! = 𝑎!"𝑋! + 𝑎!!𝑋! +⋯… . .+𝑎!!𝑋!                                     (11) 

The number of principal components calculated is dependent upon the number of 

variables included in the original data.  In our work, the number of principal components 

would be equal to the number of performance counters reduced for modeling the 

performance component of the application.  Figure 17 provides an illustration of 

determining the points through the data that would compose Principal Component 1 and 

Principal Component 2.   PCA is used to identify the final performance counters to use 
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because PCA is a statistically proven technique for identifying. We use these values as 

guidelines for determining which performance counters to use in our final model. 

 

 

Figure 17.  PCA Analysis Example 

 

6. Use the performance counter event rates with the highest principal component 

coefficient vectors to build a multivariate linear regression model to predict the 

respective performance metric. 

The first two principal components represent the largest amount of variability, or 

information, in our data.  Therefore, the first two principal components are used for 

further reducing the number of variables for creating our multivariate linear regression 

model.  The variables with the highest coefficients, or weights, contribute the most to 

variability of the data and therefore serve as the most accurate predictors for modeling.  

Table 16 represents the final multivariate regression model that is developed using the 

performance-tuned principal component analysis method in E-AMOM.  Our final model 
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reduced the number of performance counters to 4 to represent the execution time of the 

application from the original 10 counters in the initial regression (step 3). 

 

Table 16. Final Multivariate Regression Model 

Counter Regression Coefficient 

PAPI_TOT_INS 2.59653 

PAPI_L1_TCA 1.19494 

PAPI_L2_TCA 0.92378 

PAPI_L2_TCH 1.138384 

 

We explore the following issues in regards to modeling the runtime and power 

consumption of MPI and Hybrid scientific applications on multicore systems: 

a) What is the accuracy of our models in estimating performance (runtime and 

power consumption for system, CPU, and memory components? 

b) Which combination of performance counters can be used to model the Hybrid 

application in terms of runtime, system power, CPU power, and memory power? 

c) What are the application characteristics that affect runtime and power 

consumption in Hybrid scientific applications? 

d) What characteristics of Hybrid applications can be refined to improve 

performance on multicore systems? 



 

 

80 

Our application-models explore the following dimensions in terms of modeling and 

predicting application performance: 

i. Difference application data sizes 

ii. Number of processors 

iii. Different frequency settings 

iv. Different concurrency settings 

 

4.1.1.1 Modeling Summary 

Overall, the modeling component of E-AMOM includes six detailed steps that 

are used to construct our performance models.  Our performance-tuned principal 

component analysis method is applied to each application for each performance 

component.  In step 1, the correlation coefficients are used to determine which 

performance counters are highly correlated with the performance component being 

modeled.  A high correlation is strong indication that the value will be accurate in 

modeling the performance component.  In step 2, a threshold is used to reduce the 

number of counters that would be used in the final regression step.  Step 3 and Step 4 

provide additional measures that are used to reduce the number of performance counters 

that would be included in our model.  Steps 5 applies principal component analysis to 

our reduced model set of counters to determine which of the remaining counters capture 

the strongest overall structure of our data.  The final step builds the model that is used 

for the performance component of the application. 
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4.1.2 Training Set Criteria 

We develop predictive performance models for the Hybrid and MPI applications 

in this work.  Our predictive models are developed using various configuration points for 

each application and each implementation to constitute a training set for predicting 

performance in terms of runtime and power consumption of the system, CPU, and 

memory components.  A 6 points of the configuration space are used for predicting intra-

node performance and 6 points are used for predicting inter-node performance.  

Scaling processor performance for each implementation is represented as (M x 

N), where M is the number of nodes used, and N is the number of processors per node.  

In the case of MPI-only, M is the number of nodes and N is MPI processes per node; 

each MPI process is mapped to a processor.  In the case of our hybrid application M is 

the number of nodes and N is the number of OpenMP threads utilized per node; each 

OpenMP thread is mapped to a processor.  For a Hybrid application, a configuration of 

11x8 means that 11 MPI processes with 8 OpenMP threads per node were used for a 

total of 128 processors. The training set for inter-node performance uses six data points 

consisting of configurations for points at 1x8, 3x8, 5x8, 7x8, and 9x8, 10x8. The 12 

training points were used to predict performance for up to 16 larger configuration points 

to determine how accurate our model was at predictions for larger processor sizes.  

 

4.2 HPC Applications 

In this section, we present the scientific applications that are used throughout this 

section.  These applications include the three NAS Multi-Zone Parallel Benchmarks [35] 
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and three large-scale scientific applications.  We model the runtime, system, CPU, and 

memory power consumption of Hybrid and MPI implementations of scientific 

applications on multicore systems.  Table 17 provides an overview of the applications 

that are used in this modeling work. 

The NPB-MZ suite contains three benchmarks (BT-MZ, SP-MZ, and LU-MZ), 

which are used to simulate the performance characteristics of large-scale scientific 

applications.  Each benchmark in NPB-MZ consists of using a main loop to exchange 

values during MPI communication and an OpenMP phase within the loop.  Each 

benchmark contains a number of performance inputs, which enable the performance of 

the application to be tested for different workload sizes. 

 

Table 17. Overview of HPC Applications 

Application Discipline Problem Size Languages 

NAS BT-MZ 
Computational 

Fluid Dynamics 

Class B 

Class C 

Class D 

Fortran, 

MPI/OpenMP 

NAS SP-MZ 
Computational 

Fluid Dynamics 

Class B 

Class C 

Class D 

Fortran, 

MPI/OpenMP 
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Table 17: continued 

Application Discipline Problem Size Languages 

NAS LU-MZ 
Computational 

Fluid Dynamics 

Class B 

Class C 

Fortran, 

MPI/OpenMP 

GTC Magnetic Fusion 

50 particles ppc 

75 particles ppc 

100 particles ppc 

Fortran90, 

MPI/OpenMP 

PMLB 
Computational 

Fluid Dynamics 

64x64x64 

128x128x128 

256x256x256 

C, MPI/OpenMP 

Parallel EQdyna 
Earthquake 

Simulation 
200m 

Fortran90, 

MPI/OpenMP 

 

 

The Block Tri-diagonal algorithm (BT-MZ) contains (16x16) x-zones x y-zones 

and has uneven mesh tilings.  BT-MZ represents realistic performance case for exploring 

the discretization meshes in parallel computing.  The Scalar Penta-diagonal algorithm 

(SP-MZ) contains (16x16) x-zones x y-zones and is representative of a balanced 

workload in the suite. The Lower-Upper symmetric Gauss-Seidel algorithm (LU-MZ) 

contains (4x4) x-zones x y-zones and the coarse-grain parallelism of LU-MZ is limited 

to 16. Therefore, at most 16 MPI processes can be used in executing LU-MZ. The 
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problem sizes for all NPB-MZ benchmarks are strong scaling using class C, utilizing 

800MB of memory. 

The GTC application was previously introduced in Section 3.  There are 7 major 

functions: load, field, smooth, poisson, charge, shift and pusher in the code. Charge, 

pusher and shift dominate most of the runtime. Note that GTC is executed in weak 

scaling to keep a constant workload per processor as the number of processors increase 

using 100 particles per cell and 100 time steps. 

The PMLB application was previously discussed in Section 3.  In this section we will 

provide additional details about the application.  In the parallel implementation, the 

entire computational domain is divided into n1 × n2 × n3 blocks, where n1, n2, n3 are the 

number of segments in the x-, y-, and z-dimensions. Each block is assigned to a 

processor. The grid sizes in each block can be different. The PMLB application code is 

written in C with MPI, and is divided into six kernels: 

• Initialization: reads input files and sets up the initial parameter values. 

• Collision: computes the effect of the collisions, which occur during the particle 

movement. 

• Communication: communicates the needed data among neighboring blocks. 

• Streaming: moves particles in motion to new locations along their respective 

velocities. 

• Physical: calculates macroscopic variables such as fluid density, which are used 

in the collision and streaming steps. 

• Finalization: cleans up the program and outputs the results. 
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In the PMLB application, the Collision, Communication, Streaming, and Physical 

kernels are executed in a loop for 200 iterations. The Initialization and Finalization 

kernels are executed once for the entire application run. 

The Parallel EQdyna application is used to illustrate an element-based partitioning 

scheme for explicit finite element methods.  The application efficiently uses hybrid 

MPI/OpenMP to parallelize the sequential, explicit finite element earthquake rupture 

simulation code Parallel EQdyna.  This enables the application to achieve multiple levels 

of parallelism and also reduce the communication overhead of MPI within a multicore 

node.  The Hybrid EQdyna application is based on what the OpenMP implementation of 

EQdyna.  

 

4.3 Experimental Results 

We present the experimental results for our power-aware predictive models of 

hybrid and MPI scientific applications.  We use our method to predict the runtime, 

system power, CPU power, and memory power of scientific applications.   

 

4.3.1 BT-MZ  

 

4.3.1.1 Hybrid 

We use our performance-tuned principal component analysis method to develop 

accurate models for the Hybrid implementation of the NAS BT-MZ benchmark 

application.  The components that we utilize to model our application include runtime, 
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system power, CPU power, and memory power.  Table 18 shows the regression 

coefficients that are needed to accurately model each component.  For a detailed 

explanation of what each performance counter means, please refer to Table 2 in Section 

2.  The frequency component is included in our regression table because it is used in 

predicting the performance of each application for different frequencies.  With regards to 

runtime, PAPI_L2_TCM has the largest regression coefficient that is used in modeling 

the BT-MZ Hybrid application.  Modeling of the system power consumption results in 

the PAPI_L2_TCA having the largest regression for the application.  

 

Table 18. Regression Coefficients for BT-MZ Hybrid 

Time	
   System	
  Power	
   CPU	
  Power	
   Memory	
  Power	
  

Frequency	
   0.00476	
   Frequency	
   0.00125	
   Frequency	
   0.00112	
   Frequency	
   0.00012	
  

PAPI_TOT_INS	
   0.105050	
   PAPI_L2_TCH	
   0.01584	
   PAPI_L1_TCM	
   0.3551	
   PAPI_L1_TCA	
   0.0310818	
  

PAPI_L2_TCM	
   0.178700	
   PAPI_L2_TCA	
   0.07793	
   PAPI_L2_TCH	
   0.03187	
   PAPI_L2_TCM	
   0.45754	
  

PAPI_L2_TCA	
   0.097108	
   PAPI_RES_STL	
   0.05803	
   PAPI_RES_STL	
   0.128897	
   PAPI_L2_TCH	
   0.0018475	
  

	
   	
   	
   	
   	
   	
   PAPI_BR_INS	
   0.0001894	
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Figure 18.  Average Error of BT-MZ Hybrid 

 

With regards to modeling of the CPU power consumption, the PAPI_L1_TCM 

counter has the largest regression coefficient in comparison to the other counters and 

components.  The PAPI_RES_STL counter has the 2nd largest regression coefficient in 

modeling the CPU power consumption.  The memory power consumption is modeled 

using PAPI_L1_TCA, PAPI_L2_TCM, PAPI_L2_TCH, and PAPI_BR_INS.  

PAPI_L2_TCM has the largest regression coefficient for modeling memory power. 

 Figure 18 shows the average error for predicting the performance and power 

consumption of the BT-MZ Hybrid application.  The performance components modeled 

in the BT-MZ Hybrid application had an average prediction error of less than 5%.  

Specifically, the smallest error was found for predicting the runtime for the application 
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across 40 prediction points, less than 2%.  The highest error rate occurred in modeling 

the CPU power consumption (4.41%).  

 

 
 

Figure 19.  Scatterplot of BT-MZ Hybrid for Runtime 

 

In Figure 19 we provide an overview of the distribution of the percent error for 

the runtime of BT-MZ Hybrid application.  The values show that predicting the runtime 

the percent error is largely positive for approximately 80% of the points.  As the number 

of processors increases, the error increases for class D only.   
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Figure 20.  Scatterplot of BT-MZ Hybrid for System Power Consumption 

 

 In Figure 20 we provide an overview of the distribution of the percentage error 

for the system power of the BT-MZ Hybrid application.  The figure illustrates that a 

large number of the points are over-predicted, resulting in positive percent errors, for 

class B and class D.  When the number of processors is greater than 80, the model 

underestimates the power consumption.  This could be caused from the modeling not 

being able to take into account the scaling of the workload for the class C benchmark at 

the larger processor configuration. 
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Figure 21.  Scatterplot of BT-MZ Hybrid for CPU Power Consumption 

 

In Figure 21 we provide an overview of the distribution of each prediction point 

for the CPU power consumption of the BT-MZ Hybrid application.  The figure 

illustrates that a large number of the points are over-predicted or have positive percent 

errors across all problem sizes.  For the case of class C and class D there is a period 

between 48 and 96 processes in which our model under-estimates the CPU power 

consumption for the application.  In the case of class B, it should be noted that the model 

provides for all positive estimations of the CPU power consumption. 
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Figure 22.  Scatterplot of BT-MZ Hybrid for Memory Power Consumption 

 

In Figure 22 we provide an overview of the distribution of each prediction point 

for the memory power consumption of BT-MZ Hybrid application.  The figure illustrates 

that a large number of the points are over-predicted or positive for class B and class D.  

For larger number of processes, greater than 80 processes, the system power prediction 

underestimates the actual value.  This could be caused from the model not being able to 

take into account the scaling of the workload for the class C benchmark. 

 

4.3.1.2 MPI 

In this section, we use our performance-tuned principal component analysis 

method to develop accurate models for the MPI implementation of the NAS BT-MZ 

benchmark application.  Table 19 shows the regression coefficients that are used to 

-­‐8	
  

-­‐6	
  

-­‐4	
  

-­‐2	
  

0	
  

2	
  

4	
  

6	
  

0	
   20	
   40	
   60	
   80	
   100	
   120	
   140	
  

Pe
rc
en

t	
  E
rr
or
	
  

Number	
  of	
  Processors	
  

BT-­‐MZ_H	
  Mem	
  Power	
  Signed	
  Error	
  

class	
  B	
  

class	
  C	
  

class	
  D	
  



 

 

92 

model each component.  With regards to time, PAPI_L2_TCA has the largest regression 

coefficient that is used in modeling the BT-MZ Hybrid application.  System power 

shows that PAPI_TOT_INS has the largest regression coefficient in model. 

 

Table 19. Regression Coefficients for BT-MZ MPI 

Time	
   System	
  Power	
   CPU	
  Power	
   Memory	
  Power	
  

Frequency	
   0.001358	
   Frequency	
   0.00329	
   Frequency	
   0.021876	
   Frequency	
   0.00918984	
  

PAPI_TOT_INS	
   0.0398942	
   PAPI_TOT_INS	
   0.01694	
   PAPI_TOT_INS	
   0.041895	
   PAPI_L1_TCA	
   0.047188359	
  

PAPI_L2_TCH	
   0.01584	
   PAPI_L2_TCH	
   0.00157	
   PAPI_L1_TCM	
   0.003182	
   PAPI_L2_TCH	
   0.002761895	
  

PAPI_L2_TCA	
   0.0431898	
   PAPI_L2_TCA	
   0.00132	
   PAPI_L2_TCH	
   0.171658	
   PAPI_L2_TCA	
   0.0817945	
  

PAPI_RES_STL	
   0.0098415	
   PAPI_RES_STL	
   0.00182	
   PAPI_L2_TCA	
   0.918457	
   	
   	
  

 

 

 

Figure 23.  Average Error of BT-MZ MPI 

 

With regards to modeling of the CPU power consumption, the PAPI_L2_TCA 

counter has the largest regression coefficient in comparison to the other counters and 
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components.  The PAPI_TOT_INS counter has the 2nd largest regression coefficient in 

modeling the CPU power consumption.  The memory power consumption is modeled 

using PAPI_L1_TCA, PAPI_L2_TCH, and PAPI_L2_TCA.  PAPI_L2_TCA has the 

largest regression coefficient for modeling memory power. 

 Figure 23 shows the average error resulting from the modeling of the BT-MZ 

MPI application.  The performance components modeled for the BT-MZ MPI 

application had an average prediction error of less than 3.8%.  The smallest error is for 

predicting the runtime for the application across 40 prediction points, less than 1.1%.  

The highest error rate occurred in modeling the memory power consumption (6.79%).  

 

 

Figure 24.  Scatterplot of BT-MZ MPI for Runtime 
 

Figure 24 and Figure 25 present a detailed overview of the predictions for the 

BT-MZ MPI application when predicting application runtime and system power 
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consumption.  Overall, our modeling methodology provided predictions in the range of 

+2% to -3% for percent error across three input datasets.  The smaller processor 

configurations show percent errors of less than 1% across class B and class C.  There are 

negative percent errors for class C and class D as the number of processors increase.  

These under-predictions are likely caused by the training set for this application not 

providing the best fit for predicting at those specific processor configurations. 

 

 

Figure 25.  Scatterplot of BT-MZ MPI for System Power Consumption 

 

The majority of the predictions that were made for system power consumption 

resulted in positive percent error rates or over-predictions.  The performance counters 

used in predicting these values could cause variations in predictions if the counter values 

fluctuate or do exhibit consistent trends as the number of processors is increased.  
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However, the modeling methodology provides consistent predictions in the range of 

+2% to 0% for most values for the BT-MZ MPI application. 

 

 

Figure 26.  Scatterplot of BT-MZ MPI for CPU Power Consumption 

 

In Figure 26 and Figure 27 we provide an overview of the distribution of each 

prediction point for the CPU and memory power consumption of the BT-MZ MPI 

application.  The figures illustrate that a large number of the points are over-predicted or 

positive across all problem sizes.  For both CPU and memory power consumption 

prediction it is shown that all of the predictive values for class B and class D remain 

positive.  In predicting the CPU power consumption the values for class C result in 

negative values for the larger processor sizes. 
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Figure 27.  Scatterplot of BT-MZ MPI for Memory Power Consumption 

 

4.3.2 SP-MZ 

 

4.3.2.1 Hybrid 

In this section, we use our performance-tuned principal component analysis 

method to develop accurate models for the hybrid implementation of the NAS SP-MZ 

application benchmark.  The components that we utilize to model our application include 

runtime, system power, CPU power, and memory power.  Table 20 shows the regression 

coefficients that are needed to accurately model each component.  With regards to time, 

PAPI_L2_TCH has the largest regression coefficient that is used in modeling the SP-MZ 

hybrid application.  System power shows that PAPI_L1_TCM and PAPI_L2_TCH have 

the largest regression coefficient in modeling the system power consumption. 
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Table 20. Regression Coefficients for SP-MZ Hybrid 

Time	
   System	
  Power	
   CPU	
  Power	
   Memory	
  Power	
  

Frequency	
   0.0015175	
   Frequency	
   0.001322	
   Frequency	
   0.001333	
   Frequency	
   0.0264156	
  

PAPI_TOT_INS	
   0.0105484	
   PAPI_L1_ICA	
   0.2287	
   LD_ST_stall	
   0.01897	
   Cache_FLD	
   0.315519	
  

PAPI_L1_TCA	
   0.002452	
   PAPI_L2_TCH	
   0.2378	
   PAPI_L1_TCM	
   0.175466	
   LD_ST_stall	
   0.0054159	
  

PAPI_L2_TCH	
   0.63284	
   PAPI_L1_TCM	
   0.99784	
   PAPI_L2_TCH	
   0.401895	
   PAPI_L2_TCH	
   0.0948931	
  

PAPI_L1_TCM	
   0.12548	
   	
   	
   	
   	
   PAPI_L2_TCA	
   0.07819535	
  

 

 

 

Figure 28.  Average Error of SP-MZ Hybrid 
 

With regards to modeling of the CPU power consumption, the PAPI_L2_TCH 

counter has the largest regression coefficient in comparison to the other counters and 

components.  The PAPI_L1_TCM counter has the 2nd largest regression coefficient in 

modeling the CPU power consumption.  The memory power consumption is modeled 
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using four performance counters including: Cache_FLD_per_instruction, LD_ST_stall, 

PAPI_L2_TCH, and PAPI_L2_TCA.  The Cache_FLD_per_instruction has the largest 

regression coefficient for modeling memory power. 

Figure 28 shows the average error resulting from the modeling of the SP-MZ 

hybrid application.  The performance components modeled for the SP-MZ hybrid 

application had an average prediction error of less than 3%.  Specifically, the smallest 

error was found for predicting the CPU power consumption for the application across 40 

prediction points, less than 2%.  On the other hand, the highest error rate occurred in 

modeling the runtime (3.78%).  

In Figure 29 we provide an overview of the distribution of each prediction point 

for the runtime of SP-MZ Hybrid application.  The performance counters used for 

predicting runtime are able to provide for consistent predictions across the various 

application inputs.  The values show that the prediction for the runtime is largely 

positive for across all datasets.   
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Figure 29.  Scatterplot of SP-MZ Hybrid for Runtime 

 
  
  For predicting the runtime for class B all prediction points are positive and 

remain less than 2% as the number of processors are increased.  Class C shows slight 

fluctuations in predicting the runtime, specifically, as the number of processors increase 

pass 104 our runtime model under-predicts.  The predictions for the Class D benchmark 

show that all points except for 1 are positive which shows that the runtime model 

predicts well within the range of 0 to 2%. 
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Figure 30.  Scatterplot of SP-MZ Hybrid for System Power Consumption 

 

 Figure 30 outlines the prediction trends of the system power consumption for the 

SP-MZ Hybrid application.  The prediction values illustrated show the overall trends in 

prediction across class B, class C, and class D.  For predicting the system power 

consumption for class B all prediction points are positive and remain less than 2% as the 

number of processes are increased.  Class C shows several clusters of trends as the 

number of processors increase. Figure 30 shows that for less than 72 processes the 

percent error for most predictions is positive.   There is a linear decrease in the 

prediction accuracy from 72 to 96 processes, however, from 104 processes to 128 

processes our model results in positive percent error for the modeling predictions. 
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Figure 31.  Scatterplot of SP-MZ Hybrid for CPU Power Consumption 

 

 In Figure 31 we show the values associated with our model of SP-MZ Hybrid for 

predicting CPU Power consumption.  Largely, for class B the values are positive except 

for one negative value at 32 processes.  The overall trend in prediction for class C results 

in positive prediction values for most processor points.   
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Figure 32.  Scatterplot of SP-MZ Hybrid for Memory Power 

 

 In Figure 32 we show the values associated with our model of SP-MZ Hybrid for 

predicting memory power consumption.  The memory power consumption shows 

different patterns that highlight the clustering of prediction values at different processor 

sizes.  The usage of PAPI_L2_TCH and PAPI_L2_TCA has an effect on the ability of 

our model to accurately predict as the number of processors increase.  The best fit using 

these two performance counters can result in over prediction or under-prediction of 

values across class C and class D.  The smaller memory requirements by class B makes 

it less likely for large variances to occur when predicting memory power consumption.  

 

4.3.2.2 MPI 

In this section we present the models for the MPI implementation of the NAS 

SP-MZ application.  The components that we utilize to model our application include 

runtime, system power, CPU power, and memory power.  Table 21 shows the regression 
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coefficients that are needed to accurately model each component.  With regards to 

runtime, PAPI_L1_TCM has the largest regression coefficient that is used in modeling 

the SP-MZ MPI application.  System power shows that PAPI_TOT_INS has the largest 

regression coefficient in modeling the system power consumption of the application.  

 
Table 21. Regression Coefficients for SP-MZ MPI 

Time	
   System	
  Power	
   CPU	
  Power	
   Memory	
  Power	
  

Frequency	
   0.0013182	
   Frequency	
   0.21895	
   Frequency	
   0.001253	
   Frequency	
   0.0264156	
  

PAPI_TOT_INS	
   0.0475319	
   PAPI_TOT_INS	
   0.50888	
   Cache_FLD_	
   0.01897	
   Cache_FLD_	
   0.315519	
  

PAPI_L1_TCA	
   0.0380158	
   PAPI_L2_TCH	
   0.41659	
   PAPI_L1_TCA	
   0.175466	
   LD_ST_stall	
   0.0054159	
  

PAPI_L2_TCH	
   0.0761895	
   PAPI_L1_TCM	
   0.08198	
   PAPI_L2_TCH	
   0.401895	
   PAPI_L2_TCH	
   0.0948931	
  

PAPI_L1_TCM	
   0.0818185	
   	
   	
   	
   	
   PAPI_L2_TCA	
   0.07819535	
  

 

 

 
 

Figure 33.  Average Error of SP-MZ MPI 
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With regards to modeling of the CPU power consumption, the PAPI_L2_TCH 

counter has the largest regression coefficient in comparison to the other counters and 

components.  The memory power consumption is modeled using 

Cache_FLD_per_instruction, LS_ST_stall_per_instruction, PAPI_L2_TCH, and 

PAPI_L2_TCA. Cache_FLD_per_instruction has the largest regression coefficient. 

 Figure 33 shows the average error resulting from the modeling of the SP-MZ 

MPI application.  The performance components modeled for the SP-MZ MPI application 

had an average prediction error of less than 3.6%.  Specifically, the smallest error was 

found for predicting the runtime for the application, which was 1.94%.  On the other 

hand, the highest error rate occurred in modeling the CPU power consumption (5.68%).  

 

 

Figure 34.  Scatterplot of SP-MZ MPI for Runtime 
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In Figure 34 we provide an overview of the distribution of each prediction point 

for the runtime of SP-MZ MPI application.  For predicting the runtime for class B all 

prediction points are positive and remain less than 2%.  Class C has the largest number 

of points used for prediction and these values remain largely clustered between +4% and 

0%.  The predictions for the Class D benchmark show that all points except for 1 are 

positive which shows that the runtime model predicts well within the range of 0 to 2%. 

 Figure 35 shows the distribution of prediction points for system power 

consumption.  There are slight variations in the prediction values as the number of 

processors increases past 96.  For class C the values increase for the larger processors 

sizes.  For class D the prediction values result in negative values but then increase to 

positive predictive values. 

 

 

 Figure 35.  Scatterplot of SP-MZ MPI for System Power Consumption 
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In Figure 36 we show the values associated with our model of SP-MZ MPI for 

predicting CPU power consumption.  The modeling of the CPU power consumption for 

SP-MZ MPI results in positive-valued predictions for most values in class B and class C.  

Class D has a cluster of negative predictive values from 80 to 96 processors which could 

indicate a performance trend that occurs for the workload executed on 80 to 96 

processors. 

 

 

Figure 36.  Scatterplot of SP-MZ MPI for CPU Power Consumption 
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Figure 37.  Scatterplot of SP-MZ MPI for Memory Power Consumption 

 
 

In Figure 37 we show the values associated with our model for predicting 

memory power consumption of the SP-MZ MPI application.  The memory power 

consumption shows different patterns that highlight the clustering of prediction values at 

different processor sizes.  Prediction of the memory power consumption exhibits larger 

variability than other components for SP-MZ MPI.  This larger variability could be an 

indication that different models could provide for more consistent predictions for 

prediction power consumption of the memory component. 
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4.3.3 LU-MZ 

 

4.3.3.1 Hybrid 

 

In this section, we use our performance-tuned principal component analysis 

method to develop accurate models for the Hybrid implementation of the NAS LU-MZ 

application benchmark.  The components that we utilize to model our application include 

runtime, system power, CPU power, and memory power.  Table 22 shows the regression 

coefficients that are needed to accurately model each component.  With regards to time, 

PAPI_TLB_DM and PAPI_L2_TCH have the largest regression coefficients that are 

used in modeling the runtime for the LU-MZ Hybrid application.  System power shows 

that PAPI_L2_TCA and PAPI_L2_TCH have the largest regression coefficients in 

modeling the system power consumption for the hybrid implementation of the 

application.  

 

Table 22. Regression Coefficients for LU-MZ Hybrid 

Time	
   System	
  Power	
   CPU	
  Power	
   Memory	
  Power	
  

Frequency	
   0.001322	
   Frequency	
   0.00109	
   Frequency	
   0.00112	
   Frequency	
   0.00178	
  

Cache_FLD	
   0.005197	
   PAPI_L2_TCH	
   0.11585	
   LD_ST_stall	
   0.06548	
   PAPI_L1_TCA	
   0.01877	
  

PAPI_TOT_INS	
   0.000518	
   PAPI_L2_TCA	
   0.12254	
   PAPI_L2_TCH	
   0.1894	
   PAPI_L2_TCH	
   0.08431	
  

PAPI_TLB_DM	
   3.9085	
   PAPI_RES_STL	
   0.0211	
   PAPI_L2_TCA	
   0.7149	
   PAPI_RES_STL	
   0.07451	
  

PAPI_L2_TCH	
   1.11565	
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Figure 38.  Average Error of LU-MZ Hybrid 

 

With regards to modeling of the CPU power consumption, the PAPI_L2_TCA 

counter has the largest regression coefficient in comparison to the other counters and 

components.  The PAPI_L2_TCA counter has the 2nd largest regression coefficient in 

modeling the CPU power consumption.  For modeling the memory power consumption 

of the LU-MZ hybrid application, the PAPI_L2_TCH and PAPI_RES_STL counters 

have the largest regression coefficients.   

Figure 38 shows the average error resulting from the modeling of the LU-MZ 

Hybrid application.  The performance components modeled for the LU-MZ Hybrid 

application have an average prediction error of 4.02%.  The smallest error was found for 

predicting the memory power consumption for the application.  On the other hand, the 

highest error rate occurred in modeling the CPU power consumption (5.83%).  
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Figure 39.  Scatterplot of LU-MZ Hybrid for Runtime 

 
 
 In Figure 39 we provide an overview of the distribution of each prediction point 

for the runtime of LU-MZ Hybrid application.  The performance counters used for 

predicting runtime are able to provide for consistently positive values for predicting the 

runtime across the two application inputs.  The values show that the prediction for the 

runtime is largely positive for the application datasets.   

For predicting the runtime for class B all prediction points except one are 

positive and remain less than 5% as the number of processes are increased.  In addition, 

class C shows all positive points for predicting the runtime, specifically, as the number 

of processes increases passes.  The scalability of the LU-MZ benchmark is limited so the 

maximum number of processors that could be used to obtain results was limited to 48 

processors. 
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Figure 40.  Scatterplot of LU-MZ Hybrid for System Power 

 

 Figure 40 outlines the prediction values of the system power consumption for the 

LU-MZ hybrid application.  The prediction values show the general trend towards 

positive values for class B and class C.  For predicting the system power for class B all 

prediction points are positive except for one point.  The error is slightly large for 

predicting class B system power at certain points for less than 8 processes.  This occurs 

because the general scalability of the application is limited as the number of threads 

increase within one node or less than 8 processors.   The large error in prediction also 

occurs with class C, but decreases and then shows slight increases as the number of 

processors increase. 
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Figure 41.  Scatterplot of LU-MZ Hybrid for CPU Power 

 

 In Figure 41 we show the values associated with our model of LU-MZ Hybrid 

for predicting CPU Power consumption.  The CPU Power consumption shows some 

interesting trends for the prediction of the CPU power consumption of LU-MZ hybrid.  

Largely, for class B and class C the values are positive except for one negative value at 4 

processes for each class.  The values for prediction CPU power consumption are largely 

consistent based upon the values exhibited from the Cache_FLD_per_instruction and 

PAPI_L2_TCA counters for this application. 
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Figure 42.  Scatterplot of LU-MZ Hybrid for Memory Power Consumption 

 

 Figure 42 outlines the prediction trends of the memory power for the LU-MZ 

Hybrid application.  For predicting the memory power consumption for class B all 

prediction points are positive and remain positive as the number of processes is 

increased.  Class C shows different trends in predicting memory power consumption as 

the number of processors increase.  The larger memory required by the class C 

application input results in having prediction trends that are not linear as the number of 

processes increase. 
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runtime, system power, CPU power, and memory power.  Table 23 shows the regression 

coefficients that are needed to accurately model each component.  With regards to time, 

PAPI_TLB_DM and PAPI_L2_TCH have the largest regression coefficients that are 

used in modeling the runtime for the LU-MZ MPI application.  System power shows that 

PAPI_L2_TCA and PAPI_L2_TCH have the largest regression coefficients in modeling 

the system power consumption for the MPI implementation of the application.  

 

Table 23. Regression Coefficients for LU-MZ MPI 

Time	
   System	
  Power	
   CPU	
  Power	
   Memory	
  Power	
  

Frequency	
   0.101195	
   Frequency	
   0.03128	
   Frequency	
   0.17488	
   Frequency	
   0.003184	
  

Cache_FLD_	
   0.0459785	
   PAPI_TOT_INS	
   0.01233	
   PAPI_TOT_INS	
   0.068175	
   PAPI_L2_TCA	
   0.218984	
  

PAPI_TOT_INS	
   0.3718951	
   PAPI_L1_DCA	
   0.01984	
   Cache_FLD_	
   0.031820	
   PAPI_L2_TCH	
   0.541351	
  

PAPI_L1_ICA	
   1.5165885	
   PAPI_L2_TCA	
   0.33187	
   PAPI_L2_TCA	
   0.018749	
   Cache_FLD_	
   0.411589	
  

PAPI_L2_TCA	
   1.23155	
   	
   	
   	
   	
   	
   	
  

 

With regards to modeling of the CPU power consumption, the PAPI_TOT_INS 

counter has the largest regression coefficient in comparison to the other counters and 

components.  The Cache_FLD_per_instruction counter has the 2nd largest regression 

coefficient in modeling the CPU power consumption.  For modeling the memory power 

consumption of the LU-MZ MPI application, the PAPI_L2_TCH and 

Cache_FLD_per_instruction counters have the largest regression coefficients.   
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Figure 43.  Average Error of LU-MZ MPI 

 

Figure 43 shows the average error resulting from the modeling of the LU-MZ 

MPI application.  The performance components modeled for the LU-MZ MPI 

application had an average prediction error of less than 4%.  Specifically, the smallest 

error was found for predicting the memory power consumption (1.62%) for the 

application.  The highest error rate occurred in modeling runtime (3.38%).  
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Figure 44.  Scatterplot of LU-MZ MPI for Runtime 

 
In Figure 44 we provide an overview of the distribution of each prediction point 

for the runtime of LU-MZ MPI application.  The values show that the prediction for the 

runtime is positive across both datasets and for all prediction points.  Figure 40 provides 

an overview of the distribution for each prediction point for the system power 

consumption.  Class B shows that for less than 8 processors that there are slightly large 

error values that could be a result of the lack of scalability for the LU-MZ application. 
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Figure 45.  Scatterplot of LU-MZ MPI for System Power Consumption 

 

 

Figure 46.  Scatterplot of LU-MZ MPI for CPU Power Consumption 
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consumption of LU-MZ MPI show a general pattern that prediction for the class B 

application input remains in the range of +3% to +1%..  Largely, for class B and class C 

the values are positive except for one negative for each class. 

 

 

Figure 47.  Scatterplot of LU-MZ MPI for Memory Power Consumption 

 

Figure 47 outlines the prediction trends of the memory power for the LU-MZ 

MPI application.  For predicting the memory power consumption for class B all 

prediction points are positive and remain positive as the number of processes increase.  

The prediction errors for class B remain in the range of +6% to +2%. 
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4.3.4 GTC 

 

4.3.4.1 Hybrid 

 
In this section, we use our performance-tuned principal component analysis 

method to develop accurate models for the Hybrid implementation of the large-scale 

GTC application.  The components that we utilize to model our application include 

runtime, system power, CPU power, and memory power.  Table 24 shows the regression 

coefficients that are needed to accurately model each component.   

With regards to runtime, PAPI_TOT_INS and PAPI_L2_TCA have the largest 

regression coefficients that are used in modeling the runtime for the GTC Hybrid 

application.  System power shows that PAPI_L2_TCH and PAPI_L1_TCA have the 

largest regression coefficients in modeling the system power consumption for the hybrid 

implementation of the application.  

 

Table 24. Regression Coefficients for GTC Hybrid 

Time	
   System	
  Power	
   CPU	
  Power	
   Memory	
  Power	
  

Frequency	
   0.012382	
   Frequency	
   0.19549	
   Frequency	
   1.1658	
   Frequency	
   1.16585	
  

PAPI_TOT_INS	
   0.054015	
   PAPI_RES_STL	
   0.41849	
   PAPI_RES_STL	
   0.34649	
   PAPI_TOT_IN	
   0.06716	
  

PAPI_L2_TCH	
   0.008475	
   PAPI_L2_TCH	
   1.54152	
   PAPI_TOT_IN	
   0.41899	
   PAPI_L2_TCH	
   1.4942	
  

PAPI_L2_TCA	
   0.031587	
   PAPI_L1_TCA	
   1.32657	
   PAPI_L1_TCA	
   1.32169	
   PAPI_L2_ICM	
   0.78199	
  

PAPI_BR_INS	
   0.03157	
   	
   	
   PAPI_L2_TCH	
   1.16584	
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Figure 48.  Average Error of GTC Hybrid 

  

With regards to modeling of the CPU power consumption, the PAPI_L1_TCA 

and PAPI_L2_TCH counters have the largest regression coefficients.  For modeling the 

memory power consumption of the GTC Hybrid application, the PAPI_L2_TCH and 

PAPI_L2_ICM counters have the largest regression coefficients.  Additionally, from 

Table 24 it can be seen that the PAPI_L2_TCH counter is used across all components. 

 Figure 48 shows the average error resulting from the modeling of the GTC 

Hybrid application.  The performance components modeled for the GTC Hybrid 

application had an average prediction error of 3.89%.  Specifically, the smallest error 

was found for predicting the CPU power consumption (2.45%) for the application.  On 

the other hand, the highest error rate occurred in modeling the memory power 

consumption (5.91%).  

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

3.13%	
  
	
  

4.08%	
  
	
  

2.45%	
  
	
  

5.91%	
  
	
  

Er
ro
r	
  R

at
e	
  

GTC	
  Hybrid	
  Average	
  Error	
  

Time	
   SysPower	
   CPUPower	
   MemPower	
  



 

 

121 

 

Figure 49.  Scatterplot of GTC Hybrid for Runtime 

 

 In Figure 49 we provide an overview of the distribution of each prediction point 

for the runtime of GTC Hybrid application.  The performance counters used for 

predicting runtime are able to provide for consistent values for predicting the runtime 

across three application inputs, which include 50 particles per cell, 75 particles per cell, 

and 100 particles per cell.  Prediction across all application inputs for GTC remains in 

the range of +2.0% to -2.0% across all of the processor predictions.  The most notable 

trend occurs for 75 PPC as the prediction of this set increases as processors are 

increased.  This likely is a result of the large communication requirements for GTC, 

which is not taken into consideration using the performance-tuned modeling 

methodology. 
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Figure 50.  Scatterplot of GTC Hybrid for System Power 

 

 Figure 50 outlines the prediction values of the system power consumption for the 

GTC hybrid application.  The prediction values show the spread of prediction values for 

system power consumption up to 128 processes for the application.  For predicting the 

system power consumption the prediction values are generally positive for less than 96 

processes.  For predictions larger than 96 processes there are variations in the values 

being predicted being as the values fluctuate between positive or negative.  However, the 

general trend for the 50 PPC dataset shows that the values predicted stay within the 

range of +2.0% to -2.0% from 96 processes to 128 processes. 
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Figure 51.  Scatterplot of GTC Hybrid for CPU Power 

 

 Figure 51 and Figure 52 show the values associated with our model of GTC 

hybrid application for predicting CPU and memory power consumption.  The values 

associated with the prediction for these two performance components show variations in 

the trends and there are several points that are under-predicted past 72 processors for 

both models.   Overall, in modeling both CPU and memory power consumption the 

values that are predicted are positive as the number of processors increase. 
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Figure 52.  Scatterplot of GTC Hybrid for Memory Power Consumption 

 

4.3.4.2 MPI 

In this section, we use our performance-tuned principal component analysis 

method to develop accurate models for the MPI implementation of the large-scale GTC 
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system power, CPU power, and memory power.  Table 25 shows the regression 

coefficients that are needed to accurately model each component.   

With regards to runtime, PAPI_TOT_INS and PAPI_L2_TCM have the largest 

regression coefficients that are used in modeling the runtime for the GTC MPI 

application.  System power shows that PAPI_TOT_INS and PAPI_L2_TCA have the 

largest regression coefficients in modeling the system power consumption for the hybrid 

implementation of the application. It should be noted that the regression coefficient for 
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the performance counters for the system power has very close regression coefficients, 

which shows a close weighting for providing an accurate fit for system power prediction. 

 

Table 25. Regression Coefficients for GTC MPI 

Time	
   System	
  Power	
   CPU	
  Power	
   Memory	
  Power	
  

Frequency	
   0.0018418	
   Frequency	
   0.01424	
   Frequency	
   0.161554	
   Frequency	
   0.016452	
  

PAPI_TOT_INS	
   0.0269816	
   PAPI_TOT_INS	
   1.93185	
   PAPI_TOT_INS	
   0.412689	
   PAPI_L1_TCA	
   0.0579185	
  

PAPI_L1_TCA	
   0.0018485	
   PAPI_L2_TCH	
   1.20056	
   PAPI_L2_TCH	
   0.398485	
   PAPI_L2_TCH	
   0.045198	
  

PAPI_L2_TCH	
   0.0038482	
   PAPI_L1_TCA	
   1.10245	
   LD_ST_Stall	
   0.984182	
   LD_ST_Stall	
   0.00895	
  

PAPI_L2_TCM	
   0.0097816	
   	
   	
   	
   	
   	
   	
  

 

 

 

Figure 53.  Average Error of GTC MPI 
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With regards to modeling of the CPU power consumption, the 

LD_ST_stall_per_cycle and PAPI_TOT_INS counters have the largest regression 

coefficients.  The PAPI_L2_TCH counter also contributes to the modeling of the CPU 

power consumption as its regression coefficient is less than .04 smaller than the 

PAPI_TOT_INS regression coefficient.  For modeling the memory power consumption 

of the GTC MPI application, the PAPI_L1_TCA and PAPI_L2_TCH counters have the 

largest regression coefficients.   

 Figure 53 shows the average error resulting from the modeling of the GTC MPI 

application.  The performance components modeled for the GTC MPI application had an 

average prediction error of 2.72%.  Specifically, the smallest error was found for 

predicting the CPU power consumption (0.94%) for the application.  On the other hand, 

the highest error rate occurred in modeling the memory power consumption (5.91%).  

 

 

Figure 54.  Scatterplot of GTC MPI for Runtime 
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In Figure 54 and Figure 55 we provide an overview of the distribution of each 

prediction point for the runtime and system power consumption of the GTC MPI 

application.  The performance counters used for predicting runtime are able to provide 

for consistent values for predicting the runtime across three application inputs, which 

include 50 particles per cell, 75 particles per cell, and 100 particles per cell.  The 

majority of the predictions across all application inputs for GTC remain in the range of 

+2.0% to 0%.  

 

 

Figure 55.  Scatterplot of GTC MPI for System Power Consumption 
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Figure 56.  Scatterplot of GTC MPI for CPU Power Consumption 

 

Figure 56 and Figure 57 show the values associated with our model of GTC MPI 

application for predicting CPU and memory power consumption.  With regards to CPU 

power consumption, the values associated with the prediction for these two performance 

components show variations that occur for 75PPC and 100PPC.  Overall, the predictions 

for 75PPC remain consistent in the range of +2% to +1% as the number of processors 

increase.  The under predictions that occur from 80 to 96 processors could largely be 

accountable to an inefficient decomposition when using those number of processors.   

Most   Overall, in modeling both CPU and memory power consumption the values that 

are predicted are positive as the number of processors increase. 
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Figure 57.  Scatterplot of GTC MPI for Memory Power Consumption 
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PAPI_RES_STL have the largest regression coefficients that are used in modeling the 

runtime for the PMLB hybrid application.  System power shows that PAPI_L2_TCA and 

PAPI_L2_TCH have the largest regression coefficients in modeling the system power 
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Table 26. Regression Coefficients for PMLB Hybrid 

Time	
   System	
  Power	
   CPU	
  Power	
   Memory	
  Power	
  

Frequency	
   0.001655	
   Frequency	
   0.33257	
   Frequency	
   1.40655	
   Frequency	
   1.165849	
  

PAPI_TOT_INS	
   0.0006702	
   PAPI_TOT_INS	
   0.00519	
   PAPI_TOT_INS	
   0.00519	
   PAPI_TOT_INS	
   0.000352	
  

PAPI_L1_TCA	
   0.0001899	
   PAPI_L2_TCH	
   0.51562	
   PAPI_L1_TCA	
   0.678485	
   PAPI_L2_TCH	
   0.55189	
  

PAPI_L2_TCA	
   0.05918	
   PAPI_L2_TCA	
   1.15642	
   PAPI_L2_TCA	
   0.481518	
   PAPI_RES_STL	
   0.11909	
  

PAPI_RES_STL	
   0.0273006	
   	
   	
   	
   	
   	
   	
  

 

 

 

Figure 58.  Average Error of PMLB Hybrid 

 

With regards to modeling of the CPU power consumption, the PAPI_L1_TCA 

and PAPI_L2_TCA counters have the largest regression coefficients.  For modeling the 

memory power consumption of the PMLB hybrid application, the PAPI_L2_TCH and 

PAPI_RES_STL counters have the largest regression coefficients of the hardware 
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counters.  It is interesting to note that the PAPI_TOT_INS counter is used in the 

modeling of all of the performance components for the PMLB hybrid application. 

 Figure 58 shows the average error resulting from the modeling of the PMLB 

Hybrid application.  The performance components modeled for the PMLB Hybrid 

application had an average prediction error of 2.5%.  Specifically, the smallest error was 

found for predicting the system power consumption (0.84%) for the application.  On the 

other hand, the highest error rate occurred in modeling the memory power consumption 

(4.74%).  

 

  

Figure 59.  Scatterplot of PMLB Hybrid for Runtime 

 

 In Figure 59 we provide an overview of the distribution of each prediction point 

for the runtime of PMLB Hybrid application.  The performance counters used for 

predicting runtime are able to provide for consistent values for predicting the runtime 
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across three application inputs, which include the grid sizes of 64x64x64, 128x128x128, 

and 256x256x256.  Predictions across all application inputs for the PMLB hybrid 

application are largely positive.   

 

 

Figure 60.  Scatterplot of PMLB Hybrid for System Time 

 

Figure 60 shows the predicted values for the system power consumption for the 

PMLB hybrid application.  The values predicted across the three input data sizes remain 

in the range of +2.0% to -2.0% error.  As the number of processors increases, the 

predicted values are more negative in nature for our larger data sizes.  This might be an 

indication that our model, which makes use of the PAPI_L1_TCA, is not providing the 

strongest estimate for the larger data sizes that might not make sure of the L1 cache. 
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Figure 61.  Scatterplot of PMLB Hybrid for CPU Power 

 

 Figure 61 and Figure 62 show the values associated with our model of PMLB 

hybrid application for predicting CPU and memory power consumption.  The values 

associated with the prediction for these two performance components show that our 

models consistently predict power consumption for CPU and memory components in the 

range of +2.0% to -2.0%.   There are slight increases in the error rate for both CPU and 

memory power consumption for processor sizes smaller than 8 processors.  These 

similar trends are largely caused by the use of both PAPI_TOT_INS and PAPI_L2_TCH 

for both CPU and memory power consumption components. 
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Figure 62.  Scatterplot of PMLB Hybrid for Memory Power 

 

4.3.5.2 MPI 

In this section, we use our performance-tuned principal component analysis 

method to develop accurate models for the MPI implementation of the large-scale 

PMLB application.  Table 27 shows the regression coefficients that are needed to 

accurately model each component.  With regards to runtime, PAPI_L2_TCA and 

PAPI_TOT_INS have the largest regression coefficients that are used in modeling the 

runtime for the PMLB MPI application.  System power shows that PAPI_RES_STL and 

PAPI_L1_TCA have the largest regression coefficients in modeling the system power 

consumption for the hybrid implementation of the application.  
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Table 27. Regression Coefficients for PMLB MPI 

Time	
   System	
  Power	
   CPU	
  Power	
   Memory	
  Power	
  

Frequency	
   0.004519	
   Frequency	
   1.30562	
   Frequency	
   0.915316	
   Frequency	
   0.064518	
  

PAPI_TOT_INS	
   0.0231894	
   PAPI_TOT_INS	
   0.21849	
   PAPI_TOT_INS	
   0.618498	
   PAPI_TOT_INS	
   0.415152	
  

PAPI_L1_TCA	
   0.0032198	
   PAPI_L1_TCA	
   1.76156	
   PAPI_L2_TCH	
   0.478156	
   PAPI_L2_TCH	
   0.19583	
  

PAPI_L1_ICA	
   0.0041519	
   PAPI_L2_TCA	
   1.18982	
   LD_ST_Stall	
   1.315619	
   PAPI_RES_STL	
   0.04052	
  

PAPI_L2_TCA	
   0.0518918	
   PAPI_RES_STL	
   1.91816	
   	
   	
   	
   	
  

 

 

 

Figure 63.  Average Error of PMLB MPI 

 

With regards to modeling of the CPU power consumption, the 
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regression coefficients of the hardware counters.  It is interesting to note that the 

PAPI_TOT_INS counter is used in the modeling of all of the performance components 

for the PMLB MPI application. 

 Figure 63 shows the average error resulting from the modeling of the PMLB MPI 

application.  The performance components modeled for the PMLB MPI application had 

an average prediction error of 2.78%.  Specifically, the smallest error was found for 

predicting the system power consumption (1.95%) for the application.  On the other 

hand, the highest error rate occurred in modeling the memory power consumption 

(4.43%).  

 

 

Figure 64.  Scatterplot of PMLB MPI for Runtime 
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In Figure 64 we provide an overview of the distribution of each prediction point 

for the runtime of PMLB MPI application.  The performance counters used for 

predicting runtime are able to provide for consistent values for predicting the runtime 

across three application inputs.  Predictions across all application inputs for the PMLB 

MPI application are largely positive except for one prediction point in the case of 

128x128x128. 

 

 

Figure 65.  Scatterplot of PMLB MPI for System Power Consumption 

 

Figure 65 shows the predicted values for the system power consumption for the 

PMLB MPI application.  The percent error for the predictions across the three input data 

sizes remain in the range of +2.0% to 0% error, except for two outliers.  For the input 

size of 128x128x128, there are only two points that are under-predicted.  These negative 
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predict error values could be a result of not including a larger number of prediction 

points for smaller processors sizes in our application training set. 

 

 

Figure 66.  Scatterplot of PMLB MPI for CPU Power Consumption 

 

Figure 66 and Figure 67 provide the predicted values for the CPU and Memory 

power consumption for the PMLB MPI application.  The figures for both CPU and 

Memory power consumption show that for the smaller number of processors our 

modeling methodology under-predicts the power consumption of the application.  This 

under-prediction is likely a result of the training set not including enough points to more 

accurately model the power consumption at these smaller processor configurations. 
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Figure 67.  Scatterplot of PMLB MPI for Memory Power Consumption 

 

4.3.6 Parallel EqDyna 
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EqDyna application.  Table 28 shows the regression coefficients that are needed to 

accurately model each component.  The PAPI_TOT_INS and PAPI_L2_TCH counters 

have the largest regression coefficients that are used in modeling the runtime for the 

EqDyna hybrid application.  System power shows that PAPI_TOT_INS and 

PAPI_L1_TCA have the largest regression coefficients in modeling the system power 

consumption for the hybrid implementation of the application.  
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Table 28. Regression Coefficients for Parallel EqDyna Hybrid 

Time	
   System	
  Power	
   CPU	
  Power	
   Memory	
  Power	
  

Frequency	
   0.001953	
   Frequency	
   1.09547	
   Frequency	
   1.190092	
   Frequency	
   0.041202	
  

PAPI_TOT_INS	
   0.038194	
   PAPI_TOT_INS	
   0.08749	
   PAPI_TOT_INS	
   0.158920	
   PAPI_TOT_INS	
   0.189290	
  

PAPI_L1_TCA	
   0.015018	
   PAPI_L1_TCA	
   0.07938	
   PAPI_L1_TCM	
   0.078036	
   PAPI_L2_TCA	
   1.01223	
  

PAPI_L2_TCH	
   0.021165	
   PAPI_L2_TCA	
   0.42389	
   PAPI_L2_TCA	
   0.910928	
   PAPI_L2_TCH	
   0.91284	
  

PAPI_L2_TCA	
   0.041248	
   PAPI_L2_TCH	
   0.59384	
   	
   	
   PAPI_RES_STL	
   0.45298	
  

 

 

 

Figure 68.  Average Error of Parallel EqDyna Hybrid 

 

With regards to modeling of the CPU power consumption, the PAPI_L2_TCA 

and PAPI_TOT_INS counters have the largest regression coefficients.  For modeling the 

memory power consumption of the EqDyna hybrid application, the PAPI_L2_TCA and 

PAPI_L2_TCH counters have the largest regression coefficients of the hardware 
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counters.  For the EqDyna hybrid application, it is interesting to note that the 

PAPI_TOT_INS and PAPI_TOT_TCA counters are used in the modeling of all of the 

performance components for the EqDyna hybrid application. 

 Figure 68 shows the average error resulting from the modeling of the EqDyna 

hybrid application.  The performance components modeled for the EqDyna hybrid 

application had an average prediction error of 2.26%.  Specifically, the smallest error 

was found for predicting the memory power consumption (1.73%) for the application.  

The highest error rate occurred in modeling the CPU power consumption (3.21%).  

 

 

Figure 69.  Scatterplot of EqDyna Hybrid for Runtime 

 

In Figure 69 we provide an overview of the distribution of each prediction point 

for the runtime of EqDyna hybrid application.  The performance counters used for 

predicting runtime are able to provide for consistent values for predicting the runtime 
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across this application.  Predictions across all application inputs for the EqDyna hybrid 

application are largely positive except for one prediction point for this application. 

 

 

Figure 70.  Scatterplot of EqDyna Hybrid for System Power Consumption 

 

Figure 70 shows the predicted values for the system power consumption for the 

EqDyna hybrid application.  The predictions values across the application show a strong 

concentration in the range of +2.0% to 0% error, with a few outliers.  The outliers shown 

in the scatterplot are likely a result of changes in the trends for the performance counters 

based on the workload distribution.  
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Figure 71.  Scatterplot of EqDyna Hybrid for CPU Power Consumption 

 

Figure 71 and Figure 72 provide the predicted values for the CPU and Memory 

power consumption for the EqDyna application.  The figures for both CPU and Memory 

power consumption show that our modeling methodology predicts the power 

consumption of the application within a range of +4% to 0% as the number of processors 

increase.  There are a few points in which our model slightly over predicts or under-

predicts, however, this error is no larger than 2% of the predicted range for the majority 

of the data points. 
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Figure 72.  Scatterplot of EqDyna Hybrid for Memory Power Consumption 
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have the largest regression coefficients that are used in modeling the runtime for the 

EqDyna MPI application.  System power shows that PAPI_L2_TCA and PAPI_L2_TCH 

have the largest regression coefficients in modeling the system power consumption for 

the MPI implementation of the application.   With regards to modeling of the CPU 

power consumption, the PAPI_TOT_INS and PAPI_L2_TCH counters have the largest 

regression coefficients.  For modeling the memory power consumption of the EqDyna 
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MPI application, the PAPI_L2_TCH counter has the largest regression coefficient of the 

hardware counters.  For the EqDyna MPI application, it is interesting to note that the 

PAPI_TOT_INS and PAPI_L2_TCH counters are used in the modeling of all of the 

performance components for the EqDyna MPI application. 

 

Table 29. Regression Coefficients for EqDyna MPI 

Time	
   System	
  Power	
   CPU	
  Power	
   Memory	
  Power	
  

Frequency	
   0.0037213	
   Frequency	
   0.07983	
   Frequency	
   0.843792	
   Frequency	
   0.100675	
  

PAPI_TOT_INS	
   0.18344	
   PAPI_TOT_INS	
   0.24029	
   PAPI_TOT_INS	
   1.12323	
   PAPI_TOT_INS	
   0.18929	
  

PAPI_L1_TCA	
   0.06432	
   PAPI_L1_TCM	
   0.17338	
   PAPI_L1_TCM	
   0.243472	
   PAPI_L1_TCA	
   0.23559	
  

PAPI_L1_TCM	
   0.218925	
   PAPI_L2_TCA	
   0.50729	
   PAPI_L2_TCA	
   0.562903	
   PAPI_L2_TCH	
   0.56545	
  

PAPI_L2_TCH	
   0.492188	
   PAPI_L2_TCH	
   0.41156	
   PAPI_L2_TCH	
   0.342892	
   PAPI_RES_STL	
   0.218375	
  

 

 

 

Figure 73.  Average Error of EqDyna MPI 
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Figure 73 shows the average error resulting from the modeling of the EqDyna 

MPI application.  The performance components modeled for the EqDyna MPI 

application had an average prediction error of 2.92%.  Specifically, the smallest error 

was found for predicting the system power consumption (1.56%) for the application.  On 

the other hand, the highest error rate occurred in modeling the memory power 

consumption (4.18%).  

 

 

Figure 74.  Scatterplot of EqDyna MPI for Runtime 

 

Figure 74 and Figure 75 provide an overview of the distribution of each 

prediction point for the runtime and system power consumption of the EqDyna MPI 

application.  The performance counters used for predicting runtime are able to provide 
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processors increase within the range of +4% to +1%.  Predictions across all application 

inputs for the EqDyna MPI application for system power consumption are largely 

positive with a few negative error predictions that occur for the smaller processor 

configurations.  These negative percent error predictions are no larger than 3% as the 

number of processor increases.  The cause of the negative percent error predictions is 

likely the application training set not predicting well at those processor configurations. 

 

  

Figure 75.  Scatterplot of EqDyna MPI for System Power Consumption 
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Figure 76.  Scatterplot of EqDyna MPI for CPU Power Consumption 

 

Figure 76 and Figure 77 provide the predicted values for the CPU and Memory 

power consumption for the Parallel EqDyna MPI application.  The figures for CPU 

power consumption show that our modeling methodology predicts the power 

consumption of the application within a range of +4% to 0% as the number of processors 

increase.  In the case of the memory power consumption there are clusters of points that 

show positive percent error for the predictions and as the application predicts for larger 

than 72 processors there are negative percent error predictions.  For the larger number of 

processors the negative percent error is no larger than 3%, which shows a good 

prediction error. 
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Figure 77.  Scatterplot of EqDyna MPI for Memory Power Consumption 

 

4.4 Summary 

We presented a modeling scheme for developing predictive performance models to 

analyze the performance characteristics of Hybrid and MPI scientific applications in 

terms of runtime, system power, CPU power, and memory power. The predictive models 

are able to determine the performance characteristics that affect each respective 

performance component. Most importantly, our method identifies the different 

performance counter measurements that are needed to accurately predict application 

performance and provide insight to improve performance for each application.  

Our models make use of the Multicore Application Modeling Infrastructure, 

MuMI, which utilizes Prophesy, PowerPack, and PAPI to provide systematic 

measurement, and modeling of power consumption and performance-power tradeoffs on 

-­‐4	
  

-­‐3	
  

-­‐2	
  

-­‐1	
  

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

0	
   20	
   40	
   60	
   80	
   100	
   120	
   140	
  Pe
rc
en

t	
  E
rr
or
	
  

Number	
  of	
  Processors	
  

EqDyna	
  MPI	
  Mem	
  Power	
  Signed	
  Error	
  

200m	
  



 

 

150 

multicore systems. Our predictive models are +92% accurate across six hybrid and MPI 

scientific applications for up to 128 processors and can be used to obtain insight into 

improving applications for better performance on multicore systems.  Using our 

predictive models the performance of a scientific application can be predicted across 

different frequency configurations and for different application inputs. 

 

 

Figure 78.  Average Error of All Hybrid Applications 
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Figure 79.  Average Error of All MPI Applications 

 

Our models also are able to identify the commonalities found across the 

applications in regards to using the same performance counters.  For example, the BT-

MZ, SP-MZ, LU-MZ, and GTC use the PAPI_TOT_INS and PAPI_L2_TCH counters 

for modeling runtime.  For modeling the system power consumption the PAPI_L2_TCH 

counter is used for BT-MZ, SP-MZ, LU-MZ, GTC, and PMLB.  Identifying the 

common characteristics of these applications indicates that optimizations made to 

utilization of the L2 cache should be taken into consideration for reducing runtime and 

improving power consumption.  In Section 5, we will utilize the performance models 

presented in this section to make optimizations to the application to reduce runtime and 

reduce power consumption.  
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5. OPTIMIZATION OF HYBRID AND MPI SCIENTIFIC 

APPLICATIONS 

 

In Section 3, we provided the motivation for exploring performance, power, and 

energy tradeoffs across different implementations of scientific applications.  Section 4 

introduced the E-AMOM modeling methodology utilizing the performance-tuned 

principle component analysis method and experimental models of scientific applications.  

In this section, we present the E-AMOM optimization methodology and results for our 

hybrid and MPI scientific applications.  

 

5.1 Software-Based Power Reduction Methods 

As large-scale parallel systems continue to evolve and incorporate additional cores 

onto chips additional methods must be used to reduce performance and power 

consumption.  In this section, we incorporate two common software-based approaches 

for reducing power consumption in large-scale parallel systems, Dynamic Voltage and 

Frequency Scaling (DVFS) [30][36] and Dynamic Concurrency Throttling (DCT)[19].  

 DVFS can be used to scale down the frequency of a HPC application’s workload 

resulting in lower power consumption.  DVFS is most beneficial when applied to regions 

within an application where communication does not overlap with computation.  When 

DVFS is applied to applications that exhibit slack (lack of overlap between 



 

 

153 

communication and computation) it results in reduced power consumption with minimal 

increases in application performance. 

Additionally, dynamic concurrency throttling (DCT) is used to control the number 

of threads assigned to a segment of a parallel code.  DCT can be applied to a code region 

with a reduced workload that would not benefit from using the maximum number of 

cores on a chip.  When applying DCT to an application executed on SystemG we look at 

the settings of having 1, 2, 4, 6, or 8 threads executing per node.  Depending on the 

application and workload requirements of the application utilizing fewer threads can 

reduce power consumption without impacting performance significantly. 

The result of applying DCT effectively results in reduced energy consumption 

with minimal increases in application performance for thread-based applications, such as 

OpenMP or hybrid applications.  In this section, we use our performance-tuned principal 

component analysis method to make optimizations to the application kernels of scientific 

applications.   

 

5.2 Optimization Methodology for Application Kernels 

In our work we adjust the configurations of our HPC application kernels with 

regards to the number of OpenMP threads used for the hybrid applications dynamically. 

We also lower the frequency of the kernels to reduce power consumption. We define the 

configuration for a given application run to include the CPU frequency setting and 

concurrency configuration of the application kernel. 
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For estimating the appropriate DCT setting for each application kernel we evaluate 

the performance of the kernel given the application model developed in Section 4.  The 

performance with regards to runtime and system power consumption is predicted using 

the performance models for each application presented in Section 4.  The performance of 

kernel i is predicted using the multivariate linear regression equation: 

𝐾!"#!!!!!"# =   𝛽! + 𝛽!" ∗ 𝑟!" + 𝛽! ∗ 𝑟! +⋯+ 𝛽! ∗ 𝑟!                      (12) 

where coefficients to account for the frequency (𝛽!")  and each performance counter 

(𝛽!)  are included. 

To predict the expected outcome of a performance counter event rate during a 

kernel’s execution the following multivariate regression equation is utilized for each 

performance counter needed: 

𝐾!"#$%&'_!_!_!"# =   𝛽! + 𝛽!"# ∗ 𝑟!"# + 𝛽!"# ∗ 𝑟!"�                      (13) 

where the terms correspond to coefficients to account for the intercept (𝛽!), number of 

nodes (𝛽!"#),  number of threads or MPI tasks per node (𝛽!"#), and number of 

instructions per cycle (𝛽!"#).  The number of instructions per cycle is recorded for each 

kernel using the application’s training set. 

In predicting the performance of each application component (runtime or system 

power consumption), equation (14) represents the relationship for each kernel in the 

scientific application: 

𝑃!"!#$ = 𝐾!!!!
!!!      (14) 
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where P represents the performance of the application and Ki represents the performance 

of kernel i.  The performance of the application is represented in terms of runtime and 

power consumption.  The sum of each of these kernels represents the performance for 

the application.  Figure 73 presents an overview of the methodology that is used to 

determine the application configuration that can be used incorporating DCT and DVFS 

to improve application power consumption. 

Our framework evaluates the performance of the application based on the 

following steps: 

1. Take as input a given Hybrid or MPI-only HPC application. 

2. Develop the performance model of each application kernel in terms of 

runtime and system power consumption. 

3. Determine the appropriate configuration settings 

a. DVFS Setting 

i. Compute expected power consumption and execution time 

at lower frequency settings. 

ii. If frequency setting results in a 10% saving in power 

consumption, without increasing runtime more than 3% then 

use reduced frequency. 

b. DCT Setting 

i. Compute expected power consumption and execution time 

at concurrency settings using 1, 2, 4, and 6 threads. 
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ii. Identify the concurrency setting that enables the best saving 

in power consumption and runtime. 

4. Determine the total application runtime and system power consumption 

including synchronization overhead costs from changing application 

settings using αi.   

5. Use new configuration settings for running application. 

 

 

 

Figure 80.  Overview of Optimization Scheme 
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Figure 80 provides an overview of the optimization scheme utilized in this chapter.  

We make use of the modeling methodology presented in section 4 to model the kernel 

performance of each application in terms of execution time, and system power 

consumption.  Figure 81 provides a depiction of an example application’s control flow.  

The typical scientific application consists of an initialization and final kernel, with 

computational kernels within a timestep loop. 

 

 

Figure 81.  Example Application Control Flow  
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In predicting the performance of each application component considering the 

determined configuration from our modeling framework, equation (15) represents the 

expected execution time for each kernel and the synchronization overhead costs that 

would be incurred from lowering and increasing the frequency of the kernel in the HPC 

application: 

                                  𝑃!"!#$_!"#$%$&'( = (𝐾!" + 𝛼!)!!!
!!!       (15) 

 We utilize our multivariate linear regression equation presented in Section 4 to 

determine the appropriate configuration based on frequency and number of threads.  The 

frequency, number of nodes, and threads per node, are incorporated into the regression 

equation with the performance counters to predict the performance of the application 

kernel at two frequency settings (2.4 Ghz and 2.8 Ghz) and at concurrency settings of 1, 

2, 4, 6, and 8 threads.  Figure ** shows how the performance of each kernel within the 

application is predicted using the performance counters for each performance 

components (runtime and system power).  The performance for each kernel is predicted 

to determine if a 10% saving in power can be achieved without increasing the runtime 

more than 3%.  If a kernel is not able to achieve 10% reduction in power with no more 

than 3% runtime increase then the original configuration setting for that kernel is used.  

A decrease in power consumption greater than 10% provides for a measurable 

improvement that cannot be attributed to error or system noise.  Also, a runtime increase 

less than 3% does not largely affect the runtime of the application, which means that a 

reduction in power can be obtained without a large increase in runtime. 
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Figure 82.  Per Kernel Predictions for Applications  

 

We utilize the following equation to approximate the expected average power 

consumption of the application when applying DVFS and DCT to reduce application 

performance: 

𝑃!"!_!"#$% =
(!!"!#_!)

!!!
!!!

!!!
    (16) 

where Ksysp_i represents the predicted system power consumption of kernel i and n is the 

number of kernels in the application.  Energy consumption of a HPC application is 

modeled based on energy being the product of power and time as presented in Equation 

6 in Section 3. 
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We have determined the following scenarios in which it would be appropriate to 

apply changes to configuration settings in our applications: 

1. DVFS and DCT changes to specific kernels in the application 

2. DVFS-only applied to specific kernels in the application 

3. DCT-only applied to specific kernels in the application 

4. DVFS applied to a limited number of time-steps within an application. 

We use E-AMOM models to determine predicted runtime and power consumption for 

the application kernels based on equation 1.  An application kernel that is able to provide 

for a power savings of at least 10% with a limited increase in runtime (less than 4%) will 

be executed at the new refined configuration. 

 

5.3 Loop Optimizations 

Based upon models developed with E-AMOM, we identify the type of algorithmic 

changes that should be applied to our HPC applications to improve utilization of the 

memory hierarchy.  Much of the computation involved in the kernels of HPC 

applications occurs within nested loops. Therefore, loop optimization is fundamentally 

important for such applications. In this section, we discuss how loop blocking and loop 

unrolling can be used to optimize the performance of HPC applications. 

Loop blocking is a well-known loop optimization technique to aid in taking 

advantage of memory hierarchy [47][60]; its main purpose is to eliminate as many cache 

misses as possible. This technique transforms the memory domain of an application into 

smaller chunks, such that computations are executed on the chucks that easily fit into 
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cache to maximize data reuse. The optimal loop block size varies with different 

applications on different systems. In this work, we apply the following loop block sizes: 

2x2, 4x4, 8x8 and 16x16 to our HPC applications to measure which loop block size is 

optimal.  To determine the best block size for each application we measure the 

performance of the application for each block size using a reduced number of iterations 

to approximate the best block size.  Previous work [68] has identified these block sizes 

as optimal sizes for achieving performance improvements within scientific applications.  

Future work will determine how larger block sizes might affect application performance. 

Loop unrolling is a well-known code transformation technique that replicates the 

original loop body multiple times, adjusts the loop termination code and eliminates 

redundant branch instructions. Outer loop unrolling can increase computational intensity 

and minimize load/stores, while inner loop unrolling can reduce data dependency and 

eliminate intermediate loads and stores.  

 

5.4 Experimental Results 

To improve the performance of our hybrid and MPI HPC applications we apply 

the methodology outlined in Section 5.2.  Our methodology is applied to six HPC 

applications: the NAS Multizone benchmarks (BT-MZ, SP-MZ, LU-MZ), GTC, PLMB, 

and EqDyna.  For each of the applications we present the execution time, energy 

consumption per node, and average system, CPU, and memory power consumption. The 

results show performance and power reductions across both implementations of the 

applications and identify which application provides for the best energy savings.  Figure 
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83 provides an overview of how E-AMOM is used to optimize the applications by 

determining appropriate configurations for each kernel.  This figure illustrates that 

initialization, kernel 1, and the final kernel have DVFS and DCT applied to them at 

settings of 2.4Ghz and 2 threads.  Kernel 1, kernel 2, and kernel 3 have loop 

optimizations applied to them to improve performance.  For each application different 

configurations are used that represent improved performance.  In this section the 

configurations used are presented before the optimization results. 

 

 

Figure 83.  Applying Optimizations to an Application 

 

5.4.1 BT-MZ  

Applying DVFS and DCT to select application kernels to reduce power 

consumption and execution time for the application improves the performance of the 
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hybrid NAS BT-MZ.  During the initialize solutions kernel and the exchange of 

boundary conditions, which contains significant MPI communication, DVFS is applied.  

DCT is applied during the BT solver kernel reducing the power consumption during this 

phase for an optimal configuration using 4 threads. Loop optimizations are applied to 

class C (block size = 4x4) and class D (block size = 4x4).  Table 30 and Table 31 present 

the performance results for the Hybrid BT-MZ application for Class C and Class D.  

 

Table 30.  Performance of Hybrid BT-MZ Application and Optimization (Class C) 

#Cores 
BT-MZ 

Type 
Runtime(s) 

Total Energy 

(KJ) 

Total Power 

(W) 

1x8 

Hybrid 231.88 80.921 348.98 

Optimized-

Hybrid 

217.19 

(-6.78%) 

68.901 

(-17.45%) 

317.24 

(-10.00%) 

2x8 

Hybrid 115.83 40.356 348.41 

Optimized-

Hybrid 

107.19 

(-4.49%) 

34.559 

(-16.77%) 

322.41 

(-8.1%) 

4x8 

Hybrid 58.04 20.222 347.91 

Optimized-

Hybrid 

52.12 

(-11.35%) 

17.032 

(-18.75%) 

326.79 

(-6.46%) 

6x8 

Hybrid 38.80 13.507 348.11 

Optimized-

Hybrid 

35.11 

(-10.5%) 

11.342 

(-19.1%) 

323.03 

(-7.76) 

8x8 

Hybrid 29.23 10.172 348.00 

Optimized-

Hybrid 

26.45 

(-4.49%) 

8.700 

(-16.9%) 

328.91 

(-5.8%) 

10x8 

Hybrid 23 7.999 347.80 

Optimized-

Hybrid 

21 

(-9.52%) 

6.782 

(-17.95%) 

322.95 

(-7.69%) 
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Table 31. Performance of Hybrid BT-MZ Application and Optimization (Class D) 

#Cores 
BT-MZ 

Type 
Runtime(s) 

Total Energy 

(KJ) 

Total Power 

(W) 

6x8 

Hybrid 655 228.401 348.70 

Optimized-

Hybrid 

632 

(-3.64%) 

205.027 

(-11.4) 

324.41 

(-7.49%) 

8x8 

Hybrid 493 171.573 348.73 

Optimized-

Hybrid 

440 

(-12%) 

14.1754 

(-21.0%) 

322.17 

(-8.24%) 

16x8 

Hybrid 339 117.911 347.82 

Optimized-

Hybrid 

319 

(-6.27%) 

103.072 

(-14.39%) 

323.11 

(-7.65%) 

32x8 

Hybrid 201 69.570 346.12 

Optimized-

Hybrid 

193 

(-4.14) 

62.902 

(-10.60%) 

325.92 

(-6.2%) 

64x8 

Hybrid 119 41.325 347.27 

Optimized-

Hybrid 

112 

(-6.25) 

36.338 

(-13.7%) 

324.45 

(-7.03%) 

 
 
  

During the initialize solutions kernel and the exchange of boundary conditions, 

which contains significant MPI communication, DVFS is applied.  Additional loop 

optimizations are applied to class C (block size = 2x2) and class D (block size = 4x4).  

Table 32 and Table 33 present the performance results for the hybrid BT-MZ application 

for Class C and Class D.   
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Table 32. Performance of MPI BT-MZ Application and Optimization (Class C) 

#Cores 
BT-MZ 

Type 
Runtime(s) 

Total Energy 

(KJ) 

Total Power 

(W) 

1x8 

MPI 245 82861.45 338.21 

Optimized-

MPI 

232.83 

(-12.17) 

75481.18 

(-9.78%) 

324.19 

(-4.32%) 

2x8 

MPI 127 42945.05 338.15 

Optimized-

MPI 

118 

(-7.62%) 

38024.32 

(-12.94%) 

322.24 

(-4.93%) 

4x8 

MPI 65.83 22316.37 339 

Optimized-

MPI 

57.12 

(-15.24) 

18460.04 

(-20.89%) 

323.18 

(-4.89%) 

6x8 

MPI 44.13 14595.11 330.7322 

Optimized-

MPI 

40.18 

(-9.8%) 

13010.69 

(-12.17%) 

323.81 

(2.14%) 

8x8 

MPI 35.23 11520.7 327.014 

Optimized-

MPI 

32.19 

(-9.41%) 

10306.27 

(-11.78%) 

320.17 

(2.14%) 

10x8 

MPI 27.38 9011.31 329.12 

Optimized-

MPI 

25.21 

(-8.61%) 

8021.56 

(-12.34%) 

318.19 

(3.44%) 
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Table 33. Performance of MPI BT-MZ Application and Optimization (Class D) 

#Cores 
BT-MZ 

Type 
Runtime(s) 

Total Energy 

(KJ) 

Total Power 

(W) 

6x8 

MPI 729 241103.76 330.7322 

Optimized-

MPI 

700 

(-4.14%) 

226667.17 

(-6.36%) 

323.81 

(-2.14%) 

8x8 

MPI 545 178223.13 327.014 

Optimized-

MPI 

489 

(-11.45%) 

156563.19 

(-13.83%) 

320.17 

(-2.14%) 

16x8 

MPI 387 117910.98 329.12 

Optimized-

MPI 

329 

(-14.15%) 

104684.51 

(-12.63%) 

318.19 

(-3.44%) 

32x8 

MPI 233.14 76546.85 328.33 

Optimized-

MPI 

220.78 

(-5.59) 

68525.70 

(-11.70) 

310.38 

(-5.72%) 

64x8 

MPI 138.58 44395.67 327.45 

Optimized-

MPI 

125.73 

(-10.22%) 

38703.47 

(-14.71%) 

307.83 

(-6.37%) 

 

 

The results of applying our methodology across the BT-MZ applications are able 

to show that savings in energy consumption can be obtained by reducing the execution 

time of the application and reducing power consumption.  There is a trade-off between 

the savings achievable by the application in terms of reduced runtime and power 

consumption.  For BT-MZ, the hybrid application provided for the best performance in 

terms of runtime and energy consumption across all data inputs. 
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5.4.2 SP-MZ 
 

Applying DVFS and DCT to the application to reduce power consumption and 

workload requirements optimizes the hybrid NAS SP-MZ application.  SP-MZ 

represents a fairly balanced workload.  To reduce the frequency of the application during 

execution we apply DVFS to the initial solutions kernel and take the approach of 

reducing the application frequency for the first 100 time steps of the application kernel 

to limit the additional overhead that would be introduced from lowering the frequency.  

 

Table 34. Performance of Hybrid SP-MZ Application and Optimization (Class C) 

#Cores 
SP-MZ 

Type 
Runtime(s) 

Total Energy 

(KJ) 

Total Power 

(W) 

2x8 

Hybrid 117.82 37201.32 317.96 

Optimized-

Hybrid 

104.15 

(-13.12) 

31577.24 

(-17.8%) 
303.19 

4x8 

Hybrid 60 19111.9655 318.53 

Optimized-

Hybrid 

56 

(-7.1%) 

17120.32 

(-11.63) 
305.72 

6x8 

Hybrid 39.87 12541.8947 313.54 

Optimized-

Hybrid 
35.27 

10644.13 

(-17.8%) 
301.79 

8x8 

Hybrid 30.00 9355.17 311.83 

Optimized-

Hybrid 

29.19 

(-2.77%) 

8449.62 

(-10.7%) 
289.47 

10x8 

Hybrid 25.00 7591.6304 303.66 

Optimized-

Hybrid 

24.08 

(-3.82%) 

7120.70 

(-6.61%) 

295.71 

(-2.69%) 
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DCT is applied during the SP solver kernel reducing the power consumption 

during this phase. Additional loop optimizations are applied to class C and class D 

(block size = 4x4).  Table 34 and Table 35 present the performance results for the hybrid 

SP-MZ application for Class C and Class D on the SystemG platform. 

 

Table 35. Performance of Hybrid SP-MZ Application and Optimization (Class D) 

#Cores 
SP-MZ 

Type 
Runtime(s) 

Total Energy 

(KJ) 

Total Power 

(W) 

6x8 

Hybrid 862 293403.75 340.453 

Optimized-

Hybrid 

819 

(5.25%) 

262235.61 

(11.89%) 

320.19 

(6.32%) 

8x8 

Hybrid 653 222408.29 340.59 

Optimized-

Hybrid 

607 

(7.57%) 

196133.84 

(13.39%) 

323.12 

(5.4%) 

16x8 

Hybrid 389 132703.46 341.14 

Optimized-

Hybrid 

344 

(13%) 

110964.08 

(19.59%) 

322.57 

(5.71%) 

32x8 

Hybrid 225 76524.75 340.11 

Optimized-

Hybrid 

205 

(-9.76%) 

64581.15 

(-18.49) 

315.03 

(-7.96%) 

64x8 

Hybrid 154 52535.56 341.14 

Optimized-

Hybrid 

142 

(-8.45%) 

 44995.54 

(-16.75%) 

316.87 

(-7.66%) 
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Table 36. Performance of MPI SP-MZ Application and Optimization (Class C) 

#Cores 
SP-MZ 

Type 
Runtime(s) 

Total Energy 

(KJ) 

Total Power 

(W) 

1x8 

MPI 174.89 59646.23 341.05 

Optimized-

MPI 

168.29 

(-3.9%) 

54315.60 

(-9.81%) 

322.75 

(-5.67%) 

2x8 

MPI 95.83 31354.62 327.19 

Optimized-

MPI 

91.70 

(-4.5%) 

29260.55 

(-7.15%) 

319.09 

(-2.53%) 

4x8 

MPI 47 15531.15 330.45 

Optimized-

MPI 

43 

(-9.30%) 

13631 

(-13.94%) 

317 

(-4.2%) 

6x8 

MPI 38.19 12506.46 327.48 

Optimized-

MPI 

35.73 

(-6.88%) 

10940.18 

(-14.31%) 

306.19 

(-6.95%) 

8x8 

MPI 31.63 10422.48 329.51 

Optimized-

MPI 

29.84 

(-6.00%) 

9077.04 

(-14.82%) 

304.19 

(-8.32%) 

10x8 

MPI 25.89 8496.83 328.19 

Optimized-

MPI 

24.39 

(-6.15%) 

7350.90 

(-15.50%) 

301.39 

(-8.89) 

  

Table 36 and Table 37 present the performance results for the MPI SP-MZ 

application for Class C and Class D. To reduce the power consumption of the application 

during execution, we apply DVFS to the initialization kernel and first 150 time steps of 

the application to limit the additional overhead that would be introduced from lowering 

the frequency throughout different application kernels as the program executes.  In 
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addition, loop optimizations are applied to class C (block size = 4x4) and class D (block 

size = 8x8) with loop unrolling being applied to the inner loops of the SP solver kernel. 

 

Table 37. Performance of MPI SP-MZ Application and Optimization (Class D) 

#Cores 
SP-MZ 

Type 
Runtime(s) 

Total Energy 

(KJ) 

Total Power 

(W) 

6x8 

MPI 881 298782.34 339.14 

Optimized-

MPI 

807 

(-9.18%) 

254221.14 

(-17.53%) 

315.02 

(-6.59%) 

8x8 

MPI 689 233198.94 338.46 

Optimized-

MPI 

619 

(-11.3%) 

198742.33 

(-17.33%) 

321.07 

(-5.41%) 

16x8 

MPI 413 139366.85 337.45 

Optimized-

MPI 

369 

(-11.9%) 

118984.05 

(-17.13%) 

322.45 

(-4.65%) 

32x8 

MPI 241 81491.74 338.14 

Optimized-

MPI 

229.53 

(-5.0%) 

72336.38 

(-12.66%) 

315.15 

(-7.30%) 

64x8 

MPI 173.87 58703.73 337.63 

Optimized-

MPI 

165.81 

(-4.84%) 

51780.80 

(-13.37%) 

312.29 

(-8.11%) 

 

5.4.3 LU-MZ 

Applying DVFS to the application to reduce power consumption during 

execution optimizes the NAS LU-MZ application.  LU-MZ represents a fairly balanced 

workload that scales well using OpenMP threads; therefore DCT was not applied, as it 

would substantially increase execution time.  To reduce the frequency of the application 
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during execution we apply DVFS to the initialization and first 50 time steps of the 

application during execution to limit the additional overhead that would be introduced 

from lowering the frequency throughout the entire application.  Additional loop 

optimizations are applied to class C (block size = 4x4).  Table 38 and Table 39 present 

the performance results for the LU-MZ application for Class C for both hybrid and MPI 

implementations. 

 

Table 38. Performance of Hybrid LU-MZ Application and Optimization (Class C) 

#Cores 
LU-MZ 

Type 
Runtime(s) 

Total Energy 

(KJ) 

Total Power 

(W) 

1x8 

Hybrid 199 64653.51 324.89 

Optimized-

Hybrid 
175 

53222.75 

(-21.48%) 
304.13 

2x8 

Hybrid 99 32418.21 327.46 

Optimized-

Hybrid 
95 

29460.45 

(-10.04%) 
310.11 

3x8 

Hybrid 241 70563.89 292.80 

Optimized-

Hybrid 
234 

67345.20 

(-4.77%) 
287.80 

4x8 

Hybrid 50.01 11031.30 216.30 

Optimized-

Hybrid 
52.91 

10681.99 

(-3.27%) 
201.89 

6x8 

Hybrid 127 27810.46 218.98 

Optimized-

Hybrid 
137 

27832.92 

(0.001%) 
203.16 
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Table 39. Performance of MPI LU-MZ Application and Optimization (Class C) 

#Cores 
LU-MZ 

Type 
Runtime(s) 

Total Energy 

(KJ) 

Total Power 

(W) 

1x8 

MPI 574 124156.2000 216.3 

Optimized-

MPI 

545 

(-5.3%) 

109534.1 

(-13.3%) 
200.98 

2x8 

MPI 292.67 63375.9000 216.30 

Optimized-

MPI 
281.42 

56998.80 

(-11.18%) 
202.54 

 

5.4.4 GTC 
 

Applying DVFS and DCT to the application to reduce power consumption during 

execution optimizes the hybrid GTC application.  To reduce the frequency of the 

application during execution, we apply DVFS to the initialization kernel and predict that 

applying DVFS to the first 25 time steps of the application during execution will provide 

the optimal execution setting to limit the additional overhead that would be introduced 

from lowering the frequency throughout the entire application.  Additional loop 

optimizations are applied to 50ppc (block size = 2x2) and 100ppc (block size = 4x4).  

The inner-most loops of the pushi and chargei subroutines are the most computationally 

intensive kernels of the application and are unrolled four times. Additionally, Table 40 

and Table 41 present the performance results for the hybrid GTC application for 50ppc 

and 100ppc input sizes. 
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Table 40. Performance of Hybrid GTC Application and Optimization (50ppc) 

#Cores 
BT-MZ 

Type 
Runtime(s) 

Total Energy 

(KJ) 

Total Power 

(W) 

1x8 

Hybrid 427 122753.96 287.48 

Optimized-

Hybrid 

415 

(-2.89%) 

114602.25 

(-7.11%) 

276.15 

(-4.0%) 

2x8 

Hybrid 430 124351.7 289.19 

Optimized-

Hybrid 

408 

(-5.39%) 

111783.84 

(-11.24%) 

273.98 

(-5.55%) 

4x8 

Hybrid 432 125448.48 290.39 

Optimized-

Hybrid 

410 

(-5.36) 

112307.2 

(-11.7) 

273.92 

(-6.01%) 

6x8 

Hybrid 437 128836.34 294.82 

Optimized-

Hybrid 

419 

(-4.29%) 

114713.82 

(-12.31%) 

273.78 

(-7.68%) 

8x8 

Hybrid 444 131130.96 295.34 

Optimized-

Hybrid 

417 

(-6.47%) 

114779.25 

(-14.25%) 

275.25 

(-7.30%) 

16x8 

Hybrid 453 132815.07 293.19 

Optimized-

Hybrid 

421 

(-7.6%) 

116343.35 

(-14.16%) 

276.35 

(-6.1%) 

32x8 

Hybrid 455 134033.9 294.58 

Optimized-

Hybrid 

424 

(-7.31%) 

118444.4 

(-13.16%) 

279.35 

(-5.45%) 

64x8 

Hybrid 436 128528.44 294.79 

Optimized-

Hybrid 

423 

(-3.1%) 

114717.6 

(-12.03%) 

271.12 

(-8.73%) 
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Table 41. Performance of Hybrid GTC Application and Optimization (100ppc) 

#Cores 
GTC 

 Type 
Runtime(s) 

Total Energy 

(KJ) 

Total Power 

(W) 

1x8 

Hybrid 912 295.58 324.11 

Optimized-

Hybrid 

885 

(-3.1%) 

270.02 

(-9.45%) 

305.11 

(-6.22%) 

2x8 

Hybrid 918 304.70 331.92 

Optimized-

Hybrid 

883 

(-3.96%) 

270.9 

(-23.55) 

306.79 

(-6.23) 

4x8 

Hybrid 922 304.08 329.81 

Optimized-

Hybrid 

891 

(-3.48%) 

268.00 

(-13.46) 

300.79 

(-9.64%) 

6x8 

Hybrid 928 306.74 330.54 

Optimized-

Hybrid 

904 

(-2.65%) 

272.51 

(-12.29%) 

301.45 

(-9.65) 

8x8 

Hybrid 934 311.02 333 

Optimized-

Hybrid 

902 

(-3.55%) 

274.21 

(-13.42) 

297 

(-12.12%) 

16x8 

Hybrid 947 316.30 334 

Optimized-

Hybrid 

906 

(-4.53%) 

269.99 

(-17.15%) 

298 

(-12.1%) 

32x8 

Hybrid 954 313.76 328.89 

Optimized-

Hybrid 

918 

(-3.92%) 

272.46 

(-15.16%) 

296.80 

(-10.81%) 

64x8 

Hybrid 958 314.98 328.79 

Optimized-

Hybrid 

923 

(-3.79%) 

271.5 

(-16.01%) 

294.15 

(-11.77%) 

 
 

 

 

 



 

 

175 

Table 42 and Table 43 present the performance results for the MPI 

implementation of the GTC application for 50ppc and 100ppc input sizes.  The 

application is optimized by applying DVFS to the application to reduce power 

consumption during execution.  To reduce the frequency of the application during 

execution we apply DVFS to all kernels that are executed during the first 30 time steps 

of the application to limit the additional overhead that would be introduced from 

lowering the frequency throughout the entire application.  Loop blocking is applied to 

the MPI implementation with an optimal block size of 4x4 for both input sizes of 50 ppc 

and 100 ppc.  Similar to the hybrid implementation, the inner-most loops of the pushi 

and chargei subroutines are unrolled four times.  The manual loop optimizations are able 

to achieve strong reductions in execution time for 50 ppc, but smaller optimization 

benefits are obtained in terms of execution time for 100 ppc input size.  It is important to 

note that the GTC application benefits greatly for the use of OpenMP threads during 

parallelization.  Therefore, the hybrid implementation of the code provides significant 

savings in power, energy and runtime when compared to the MPI implementation. 
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Table 42. Performance of MPI GTC Application and Optimization (50ppc) 

#Cores GTC Type Runtime(s) 
Total Energy 

(KJ) 

Total Power 

(W) 

1x8 

MPI 679.35 213920.52 314.89 

Optimized-

MPI 

640.42 

(-6.10%) 

182000.96 

(-17.54%) 

284.19 

(-10.80%) 

2x8 

MPI 682.19 217857.38 319.35 

Optimized-

MPI 

622.89 

(-9.52%) 

178775.66 

(-21.86%) 

287.01 

(-11.27%) 

4x8 

MPI 689.73 217761.56 315.72 

Optimized-

MPI 

618.18 

(-11.57%) 

177547.48 

(-22.65%) 

287.21 

(-9.93%) 

6x8 

MPI 699.123 222363.06 318.06 

Optimized-

MPI 

622.92 

(-12.23%) 

178391.83 

(-24.64%) 

286.38 

(-11.06%) 

8x8 

MPI 709.54 223639.91 315.19 

Optimized-

MPI 

655.32 

(-8.27%) 

185757.01 

(-20.39%) 

283.46 

(-11.19%) 

16x8 

MPI 731.95 230359.30 314.72 

Optimized-

MPI 

673.89 

(-8.61%) 

192307.99 

(-19.79) 

285.37 

(-10.28%) 

32x8 

MPI 735.72 233164.38 316.92 

Optimized-

MPI 

679.11 

(-8.34%) 

192969.11 

(-20.83%) 

284.15 

(-11.53) 

64x8 

MPI 745.14 237021.58 318.09 

Optimized-

MPI 

684.29 

(-8.89%) 

194050.96 

(-22.15) 

283.58 

(-12.17) 
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Table 43. Performance of MPI GTC Application and Optimization (100ppc) 

#Cores GTC Type Runtime(s) 
Total Energy 

(KJ) 

Total Power 

(W) 

1x8 

MPI 1387.71 466.14 335.91 

Optimized-

MPI 

1375.19 

(-1.0%) 

420.66 

(-10.81) 

305.89 

(-9.81%) 

2x8 

MPI 1390.54 468.32 336.79 

Optimized-

MPI 

1376.91 

(-1.0%) 

419.86 

(-11.5%) 

304.93 

(-10.44%) 

4x8 

MPI 1397.93 472.51 338.01 

Optimized-

MPI 

1382.55 

(-1.11%) 

422.24 

(-11.91%) 

305.41 

(-10.67%) 

6x8 

MPI 1413.19 477.93 338.19 

Optimized-

MPI 

1389.38 

(-1.71%) 

419.76 

(-13.86%) 

302.12 

(-11.94%) 

8x8 

MPI 1440.02 488.63 339.32 

Optimized-

MPI 

1401.9 

(-2.71%) 

429.78 

(-13.69%) 

306.57 

(-10.68%) 

16x8 

MPI 1456 494.24 339.45 

Optimized-

MPI 

1413.34 

(-3.02%) 

432.75 

(-14.21%) 

306.19 

(-10.86%) 

32x8 

MPI 1483.13 502.96 339.12 

Optimized-

MPI 

1451.39 

(-2.19%) 

441.50 

(13.92%) 

304.19 

(-11.48%) 

64x8 

MPI 1513.39 513.14 339.05 

Optimized-

MPI 

1459.10 

(-3.72%) 

439.74 

(-16.69%) 

301.38 

(-12.50%) 
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5.4.5 PMLB 
 

The hybrid PMLB application is optimized by applying DVFS and DCT to 

reduce power consumption during execution.  We apply DVFS to the initialization and 

final kernels of the applications.  Additional loop optimizations are applied to execute 

the application using a block size of 4x4 and nested loops with in the application are 

unrolled four times.  The inner-most loops of the pushi and chargei subroutines are the 

most computationally intensive kernels of the application and are unrolled four times. 

Table 44 and Table 45 present the performance results for the hybrid PMLB application 

for 128 and 256 input sizes. 

 
Table 44. Performance of Hybrid PMLB Application and Optimization (128) 

#Cores 
PMLB 

Type 
Runtime(s) 

Avg Total 

Energy (KJ) 

Avg Total 

Power (W) 

1x8 

Hybrid 128.79 37.24 289.19 

Optimized-

Hybrid 

123.49 

(-4.29%) 

34.12 

(-9.1%) 

276.29 

(-4.71%) 

2x8 

Hybrid 91.16 26.66 292.45 

Optimized-

Hybrid 

85.87 

(-6.16%) 

23.65 

(-12.73%) 

275.38 

(-6.19%) 

4x8 

Hybrid 52.32 15.36 293.58 

Optimized-

Hybrid 

46.36 

(-12.83%) 

12.70 

(-20.94%) 

273.91 

(-7.11%) 

8x8 

Hybrid 35.19 10.37 294.57 

Optimized-

Hybrid 

31.27 

(-12.53%) 

8.64 

(-20.02%) 

276.19 

(-6.65%) 
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Table 45. Performance of Hybrid PMLB Application and Optimization (256) 

#Cores 
PMLB 

Type 
Runtime(s) 

Avg Total 

Energy (KJ) 

Avg Total 

Power (W) 

1x8 

Hybrid 1878.15 528.12 281.19 

Optimized-

Hybrid 

1761.03 

(-6.65%) 

476.34 

(-10.87%) 

270.49 

(-3.96%) 

2x8 

Hybrid 935.22 261.35 279.45 

Optimized-

Hybrid 

901.71 

(-3.72%) 

241.83 

(-8.07%) 

268.19 

(-4.2%) 

4x8 

Hybrid 416.83 116.87 280.37 

Optimized-

Hybrid 

398.17 

(-4.69%) 

103.74 

(-12.65%) 

260.53 

(-7.61%) 

8x8 

Hybrid 195.31 55.01 281.67 

Optimized-

Hybrid 

184.39 

(-5.92%) 

47.05 

 (-16.9%) 

255.19 

(-10.37%) 

16x8 

Hybrid 104.18 29.23 280.53 

Optimized-

Hybrid 

97.13 

(-7.26%) 

25.75 

(-13.51%) 

265.14 

(-5.80%) 

32x8 

Hybrid 57.72 15.97 276.71 

Optimized-

Hybrid 

56.81 

(-1.6%) 

15.34 

(-4.1%) 

270.19 

(-2.41%) 

 
 

The MPI PMLB application is optimized by applying DVFS to reduce power 

consumption during application execution.  To reduce the frequency of the application 

during execution we apply DVFS to the initialization, communication, and final kernels 

of the applications.  Additional loop optimizations are applied to execute the application 

using a block size of 4x4 and nested loops with in the application are unrolled four 

times.   Table 46 and Table 47 present the performance results for the hybrid PMLB 

application for 128 and 256 input sizes. 
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Table 46. Performance of MPI PMLB Application and Optimization (128) 

#Cores 
PMLB 

Type 
Runtime(s) 

Avg Total 

Energy (KJ) 

Avg Total 

Power (W) 

1x8 

MPI 105 31.31 298.19 

Optimized-

MPI 

98.76 

(-6.31%) 

27.77 

(-12.48%) 

281.23 

(-6.03%) 

2x8 

MPI 58.79 17.54 298.34 

Optimized-

MPI 

54.39 

(-8.08%) 

15.19 

(-15.47%) 

279.19 

(-6.84%) 

4x8 

MPI 41.13 12.33 299.85 

Optimized-

MPI 

37.89 

(-8.55%) 

10.65 

(-15.77%) 

281.12 

(-6.66%) 

8x8 

MPI 25.79 7.72 299.17 

Optimized-

MPI 

23.44 

(-10.03%) 

6.57 

(-17.5%) 

280.54 

(-6.64%) 

 

 

Table 47. Performance of MPI PMLB Application and Optimization (256) 

 

 
 

#Cores 
PMLB 

Type 
Runtime(s) 

Avg Total 

Energy (KJ) 

Avg Total 

Power (W) 

1x8 

MPI 1259.87 381.44 302.76 

Optimized-

MPI 

1247.13 

(-1.02%) 

355.27 

(-7.37%) 

284.90 

(-6.27%) 

2x8 

MPI 689.31 208.85 302.98 

Optimized-

MPI 

664.19 

(-3.78%) 

187.39 

(-11.45) 

282.14 

(-7.39%) 

4x8 

MPI 379.12 114.18 301.18 

Optimized-

MPI 

362.29 

(-4.65%) 

102.29 

(-11.62%) 

282.33 

(-6.68%) 
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Table 47: Continued 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

5.4.6 Parallel EqDyna 

 

We reduce the execution time and lower power consumption of the hybrid and 

MPI EqDyna applications by applying DVFS (hybrid and MPI) and DCT (hybrid only).  

To reduce the power consumption of the application during execution we apply DVFS to 

the initialization, hourglass, and final kernels of the applications.  Additional loop 

optimizations are applied to execute the application using a block size of 8x8 and nested 

loops within the application are unrolled four times.  For the hybrid application, DCT is 

applied to the hourglass and qdct3 kernels so that they are executed using 2 threads per 

node to reduce power consumption during execution.   Table 48 and Table 49 present the 

performance results for the EqDyna application. 

 
  

#Cores 
PMLB 

Type 
Runtime(s) 

Avg Total 

Energy (KJ) 

Avg Total 

Power (W) 

8x8 

MPI 185.35 55.75 300.79 

Optimized-

MPI 

180.13 

(-2.90%) 

50.64 

(-10.1%) 

281.13 

(-6.99%) 

16x8 

MPI 88.93 26.75 300.84 

Optimized-

MPI 

89.46 

(0.59%) 

25.51 

(-4.86%) 

285.14 

(-5.51%) 

32x8 

MPI 43.12 12.99 301.29 

Optimized-

MPI 

46.79 

(7.84%) 

13.42 

(3.2%) 

286.91 

(-5.01) 
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Table 48. Performance of Hybrid EqDyna Application and Optimization (e200m) 

#Cores 
EqDyna 

Type 
Runtime(s) 

Avg Total 

Energy (KJ) 

Avg Total 

Power (W) 

2x8 

Hybrid 3156 880.36 278.95 

Optimized-

Hybrid 

2980 

(-5.9%) 

784.31 

(-12.25%) 

263.19 

(-5.98%) 

3x8 

Hybrid 2166 602.49 278.16 

Optimized-

Hybrid 

2031 

(-6.65%) 

527.84 

 (-14.14%) 

259.89 

(-7.03%) 

4x8 

Hybrid 1681 473.91 281.92 

Optimized-

Hybrid 

1559 

(-7.83%) 

409.85 

(-15.63%) 

262.89 

(-7.24%) 

8x8 

Hybrid 839 237.54 283.12 

Optimized-

Hybrid 

783 

(-7.15%) 

207.00 

(-14.75%) 

264.37 

(-7.09%) 

16x8 

Hybrid 458 132.36 289.03 

Optimized-

Hybrid 

422 

(-8.5%) 

111.83 

 (-18.35%) 

265 

(-9.1%) 

32x8 

Hybrid 261 75.37 288.79 

Optimized-

Hybrid 

246 

(-6.1%) 

64.23 

(-17.34%) 

261.11 

(-10.6%) 

64x8 

Hybrid 151 42.08 278.67 

Optimized-

Hybrid 

145 

(-4.14%) 

36.23 

(-16.15%) 

249.89 

(-11.52%) 
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Table 49. Performance of MPI Parallel EqDyna Application and Optimization (e200m) 

#Cores 
EqDyna 

Type 
Runtime(s) 

Avg Total 

Energy (KJ) 

Avg Total 

Power (W) 

2x8 

MPI 3067 966.66 315.18 

Optimized-

MPI 

2889 

(-6.16%) 

870.80 

(-11.0%) 

301.42 

(-4.57%) 

3x8 

MPI 2013 637.90 316.89 

Optimized-

MPI 

1963 

(-2.54%) 

589.47 

(-8.22%) 

300.29 

(-5.52%) 

4x8 

MPI 1591 510.28 320.73 

Optimized-

MPI 

1475 

(-7.86%) 

450.16 

(-13.35) 

305.19 

(-5.09%) 

8x8 

MPI 788 250.17 317.47 

Optimized-

MPI 

734 

(-7.36%) 

220.30 

(-13.56%) 

300.13 

(-5.77%) 

16x8 

MPI 427 134.86 315.83 

Optimized-

MPI 

404 

(-5.69%) 

123.27 

(-9.4%) 

305.12 

(-3.51%) 

32x8 

MPI 271 85.32 314.83 

Optimized-

MPI 

249 

(-8.83%) 

75.45 

(-13.1%) 

303 

(-3.9%) 

64x8 

MPI 167 52.70 315.56 

Optimized-

MPI 

154 

(-8.44%) 

47.26 

(-11.51%) 

306.89 

(-2.83%) 
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5.5 Summary 

We presented a methodology to optimize performance of HPC applications on 

multicore systems by reducing runtime and power consumption.  There are two 

software-based approaches for reducing power consumption in HPC application, DVFS 

and DCT.  Our performance framework is utilized to determine execution configurations 

of HPC application kernels with regards to the number of OpenMP threads to utilize to 

execute each application kernel in the hybrid applications.  

Further, the kernels of hybrid and MPI applications can be adjusted to execute at 

lower CPU frequencies to reduce power consumption. Our framework defines a 

configuration for a given application run to include the CPU frequency setting and 

concurrency configuration of the application kernel to determine appropriate power and 

energy savings.  If it is possible to obtain power reductions without increasing the 

execution time of more than 4% but saving 10% in power consumption then the 

frequency can be lowered. 

Experimental results obtained for six hybrid and MPI HPC applications show 

reductions in execution time and savings in energy consumption based on our modeling 

framework.   Our work illustrates that runtime and power savings can be obtained which 

reduce application energy consumption.   Additionally, we are able to identify the trends 

exhibited by each application’s implementations to determine which will provide for the 

best energy consumption.   
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6. SUMMARY AND FUTURE WORK 

 

6.1 Summary 

Using the E-AMOM framework in Figure 7, it is our goal to provide for an 

accurate methodology for predicting and improving the performance and power 

consumption of HPC applications.  In section 3 we provided experimental results, which 

provided the motivation for further analysis and investigating the energy and 

performance characteristics of different parallel implementations of scientific 

applications on multicore systems.  This initial experimental work used the power 

profiling tool PowerPack to collect power profiling data for four scientific applications: 

a hybrid NAS parallel BT benchmark, a hybrid Lattice Boltzmann application PMLB 

and a hybrid Gyrokinetic Toroidal Code for our comparative analysis of energy and 

performance on multicore clusters. Our experimental results show that there are various 

ways to save energy and improve performance of parallel application codes.  

In section 4 we present the E-AMOM modeling scheme for developing predictive 

performance models to analyze the performance characteristics of hybrid and MPI 

scientific applications in terms of runtime, system power, CPU power, and memory 

power.  Specifically, our predictive models are able to determine the performance 

characteristics that affect each respective performance component.  The utilization of the 

Multicore Application Modeling Infrastructure, MuMMI, enables detailed modeling of 

the application’s power consumption and performance-power tradeoffs on multicore 
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systems. Overall, our E-AMOM predictive models are +95% accurate across six hybrid 

and MPI scientific applications.   

The E-AMOM optimization methodology presented in Figure 80 allows for HPC 

applications on multicore systems to be improved in terms of reducing runtime and 

power consumption.  The E-AMOM optimization methodology includes two software-

based approaches for reducing power consumption in HPC applications, DVFS and 

DCT.  Specifically, E-AMOM determines efficient execution configurations of HPC 

application kernels with regards to the number of OpenMP threads to utilize to execute 

each application kernel in the hybrid applications.  

Experimental results obtained for six hybrid and MPI scientific applications show 

reductions in execution time and savings in energy consumption based are achievable.   

Our work illustrates that runtime and power savings can be obtained which reduce 

application energy consumption.  Additionally, we are able to identify the trends 

exhibited by each application’s implementations to determine which will provide for the 

best energy consumption.   Our work is able to obtain up to 18% in energy savings in 

hybrid and MPI HPC applications. 

 

6.2 Future Work 

 

6.2.1 Power-Aware Optimization on Heterogeneous Systems 

As shown in Table 1, the use of heterogeneous computing systems is increasing 

and currently top systems in the Top 500 contain a combination of multicore chips and 
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GPGPUs.  Importing HPC applications onto the heterogeneous systems has been seen as 

a problem until the recent incorporation of traditional parallel programming languages 

such as OpenMP [33-34].  Being able to execute applications on heterogeneous systems 

will allow for increased performance on these systems but will also open up a new 

dimension to exploring savings in power and energy consumption.  We will focus on 

extending the E-AMOM framework to apply towards heterogeneous systems in terms of 

reducing runtime and saving energy. 

 

6.2.2 Power-Aware Energy Reduction Techniques 

In this work we focused our attention on modeling the performance of HPC 

applications with regards to runtime, and power consumption of the System, CPU, and 

memory.  Additional detailed information can be obtained from MuMMI to model 

power consumption of the hard disk and motherboard.  For the applications presented in 

this work these components were not a large consumer of total power consumption, 

however, there are HPC applications that are IO intensive and thus would be affected by 

these hardware components.   Our new research will focus on obtaining detailed power 

and energy profiles to determine the power consumption of the application in terms of 

utilization of the system, CPU, memory, motherboard, and hard disk.  Furthermore, 

future work will focus on identifying appropriate optimization strategies to handle these 

alternative classes of applications to include in E-AMOM. 
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6.2.3 Power-Aware Scheduling Strategies 

Appropriate scheduling in parallel computing has a large effect on the 

performance of the application on the multicore system.  Future work will focus on 

identifying predictive methods that can be used by schedulers to provide appropriate 

information pertaining to application performance in regards to the execution time and 

power consumption of the application.  Power consumption is an increasing factor 

affecting scheduling of jobs on multicore systems.  Efficient scheduling algorithms will 

have to take into consideration the expected execution time and power consumption of a 

target application.   

Predictive scheduling methods can be used be used to obtain required 

performance statistics that are needed to execute an efficient scheduling algorithm for a 

given system and an application.  Previously collected data on available systems can be 

used to determine the expected behavior of a given application on other systems.  

Furthermore, our predictive models can be applied to understanding of various 

applications can be scheduled with regards to performance and power consumption in 

relation to CPU and memory utilization. 
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