
A MULTI-OBJECTIVE ANT COLONY OPTIMIZATION 

ALGORITHM FOR INFRASTRUCTURE ROUTING 

 

A Thesis 

by 

WALTER MILLER McDONALD 

 

Submitted to the Office of Graduate Studies of  
Texas A&M University 

in partial fulfillment of the requirements for the degree of  
 

MASTER OF SCIENCE 

 

 

May 2012 

 

 

 

Major Subject: Civil Engineering 

 

 

 



A MULTI-OBJECTIVE ANT COLONY OPTIMIZATION 

ALGORITHM FOR INFRASTRUCTURE ROUTING 

 

A Thesis 

by 

WALTER MILLER McDONALD 

 

Submitted to the Office of Graduate Studies of  
Texas A&M University 

in partial fulfillment of the requirements for the degree of  
 

MASTER OF SCIENCE 

 

 

Approved By: 

Chair of Committee,  Kelly Brumbelow 
Committee Members,   Francisco Olivera 
    Sergiy Butenko 
Head of Department,              John Niedwecki 

 

 

May 2012 

Major Subject: Civil Engineering 



iii 
 

 

ABSTRACT 
 

A Multi-Objective Ant Colony Optimization Algorithm for Infrastructure Routing.  

(May 2012) 

Walter Miller McDonald, B.S., Texas Tech University 

Chair of Advisory Committee: Dr. Kelly Brumbelow 

 

An algorithm is presented that is capable of producing Pareto-optimal solutions 

for multi-objective infrastructure routing problems: the Multi-Objective Ant Colony 

Optimization (MOACO). This algorithm offers a constructive search technique to 

develop solutions to different types of infrastructure routing problems on an open grid 

framework. The algorithm proposes unique functions such as graph pruning and path 

straightening to enhance both speed and performance. It also possesses features to solve 

issues unique to infrastructure routing not found in existing MOACO algorithms, such as 

problems with multiple end points or multiple possible start points. A literature review 

covering existing MOACO algorithms and the Ant Colony algorithms they are derived 

from is presented. Two case studies are developed to demonstrate the performance of the 

algorithm under different infrastructure routing scenarios. In the first case study the 

algorithm is implemented into the Ice Road Planning module within the North Slope 

Decision Support System (NSDSS). Using this ice road planning module a case study is 

developed of the White Hills Ice road to test the performance of the algorithm versus an 

as-built road. In the second case study, the algorithm is applied to a raw water 

transmission routing problem in the Region C planning zone of Texas. For both case 
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studies the algorithm produces a set of results which are similar to the preliminary 

designs. By successfully applying the algorithm to two separate case studies the 

suitability of the algorithm to different types of infrastructure routing problems is 

demonstrated.  
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1. INTRODUCTION 
 

Often route planning for the construction of new infrastructure is solved on an 

open grid framework. Large open grid problems with no existing networks or junctions 

are combinatorially huge and challenges arise when trying to create a constructive search 

technique to solve them. Infrastructure planners and developers can utilize a multi-

objective algorithm capable of producing desirable routes on an open grid framework. 

Such is the case in design of many types of roads, pipelines, and utilities. This thesis 

proposes a multi-objective ant colony optimization algorithm capable of producing 

solutions to infrastructure routing problems with more than one objective. 

Ant Colony Optimization was first proposed by Marco Dorigo in his PhD work 

to solve the Traveling Salesman Problem (TSP) (Colorni et al. 1992). Since then ant 

colony optimization has been applied to many different discrete optimization problems 

such as the job-shop scheduling problem, the quadratic assignment problem, multiple 

knapsack problem, graph coloring, flow shop scheduling, and classic vehicle routing 

problems (Cordon et al. 2002).  Current ant colony optimization algorithms have been 

successfully applied to a variety of real world problems, but few have been applied to 

infrastructure routing problems on an open grid (Mora et al. 2006).  

Classical optimization methods for infrastructure routing seek to find a solution 

by reducing a multi-objective problem into a single objective.  These classical methods 

have significant shortcomings as they require objective data a priori which may or may 

not be available and are time intensive when producing multiple solutions since multiple  

__________ 
This thesis follows the style of Journal of Water Resource Planning and Management. 
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runs are needed to produce a variety of solutions. Oftentimes the objectives are not 

measurable by the same standard such as cost, speed, and environmental impacts, and 

thus cannot be reduced to a singular metric.  Such infrastructure routing problems 

require multi-objective optimization methods to produce solutions that represent an 

approximation of the Pareto-tradeoff relationships.  

Most path finding ant colony algorithms create solutions over predefined 

networks but many infrastructure planning problems do not have existing networks in 

place and thus must be solved on an open grid. Few multi objective ant colony 

algorithms have been developed to solve such path finding problems on an open grid. To 

my knowledge no multi-objective ant colony optimization algorithms have been 

developed to address issues unique to infrastructure routing such as a desirable route 

between multiple end points or problems with multiple possible start points.  

This thesis seeks to develop a new multi-objective ant colony optimization 

algorithm capable of approximating Pareto-optimal solutions for multi-objective 

infrastructure routing problems. The algorithm contains features derived from traditional 

multi-objective ant colony optimization techniques and others which are unique to 

infrastructure routing problems. It also includes several pre-processing and post-

processing techniques to improve the performance of the algorithm. This algorithm has 

been implemented within NSDSS.net (the North Slope Decision Support System) and a 

case study using this tool to develop optimal ice road routes has been completed. The 

algorithm has also been applied to a second case study involving raw water transmission 

pipeline routing within the Region C planning zone of Texas. 
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The remainder of the thesis is structured as follows. A literature review of current 

multi-objective ant colony optimization problems from which many aspects of this 

algorithm are derived is covered. Then the algorithm is discussed in detail, including the 

ant search as well as pre-processing and post-processing techniques used to improve the 

performance of the algorithm. Following the description of the algorithm the two case 

studies conducted using the algorithm are discussed. The first is the White Hills Ice 

Road case study which was conducted using the ice road planning module within 

NSDSS. The second is a raw water transmission pipeline routing case study from the 

Lower Bois D’Arc Reservoir to Pilot Grove Creek in the Region C planning zone in 

Texas. 
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2. LITERATURE REVIEW 
 

Ant Colony Optimization is a growing field in engineering and there are many 

different ant colony algorithms that have been created in the past two decades. Because 

the algorithm created within this thesis is multi-objective in nature that is the type of ant 

colony algorithm I will focus on.  Most multi-objective ant colony algorithms can be 

described by the single objective ant colony algorithm that they stem from. In this 

section I will introduce ant colony optimization and describe the different multi-

objective ant colony systems that have recently been developed as well as the ant 

systems that they were inspired from. I will discuss the major algorithmic components 

that play a role in the design and performance, and those which make each algorithm 

unique. 

Ant Colony Optimization was first proposed by Marco Dorigo in his PhD work 

to solve the Traveling Salesman Problem (TSP) (Colorni et al. 1992). This algorithm is 

based on of the foraging behavior of ants to find the shortest path between the nest and 

their food source. An ant will deposit pheromone after it finds a food source as it makes 

its way back to the nest. In the absence of any pheromone ants movements are random 

but in the presence of pheromone ants are more likely to follow the pheromone path. 

Many ant species are almost blind and through this indirect form of communication they 

are able to determine where food sources are. Experiments have shown that ants exhibit 

a bias towards following paths with a high pheromone concentration. The higher the 

amount of pheromone the more desirable that path will be to an ant (Goss et al. 1989). 
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Ant colony optimization is derived from this phenomenon in which artificial ants search 

for an endpoint and deposit pheromone on the path of their solutions. 

Initially, three different versions of Ant System (AS) were proposed (Dorigo et 

al., 1991; Colorni et al., 1992; Dorigo, 1992). These were called “ant-density”, “ant-

quantity”, and “ant-cycle”. In the first two versions, ant-density and ant-quantity, the 

ants updated the pheromone trails while they moved from node to node. In the third 

version, ant-cycle, the pheromone update happened after all of the ants finished 

constructing a tour and the amount of pheromone was a function of the quality of their 

solutions. Because the ant cycle version outperformed the other two variants, ant cycle is 

synonymous with AS and the other two variants are no longer used (Dorigo and Stützle 

2004). 

Since then ant colony optimization has been applied to many different discrete 

optimization problems such as the job-shop scheduling problem, the quadratic 

assignment problem, multiple knapsack problem, graph coloring, flow shop scheduling, 

and classic vehicle routing problems (Cordon et al. 2002).  Beyond established 

optimization problems, ant colony optimization has been applied to successfully solve a 

wide array of real world problems (Dorigo and Stützle 2004).  Current ant colony 

optimization algorithms have been successfully applied to a variety of problems but few 

have been applied to open graph problems where no existing network is in place (Mora 

et al. 2006). 

Multi-objective problems can be classified as problems with multiple sometimes 

conflicting objectives that must be optimized. As a result there is usually no single 
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solution to a multi-objective problem. Instead there is a group of alternatives that 

represent solutions that are non-dominated or Pareto dominant. 

Multi-objective ant colony optimization (MOACO) algorithms can be classified 

by specific algorithm components that they have in common. The first is multiple 

colonies, where a set of ants represents a colony that seeks a solution. Each colony 

constructs its own solution using its own pheromone and heuristic information. The 

second is the pheromone and heuristic information that the colonies use to build their 

solution. Ant colonies either use one or multiple pheromone or heuristic matrices to 

build their solutions. The third is the pheromone and heuristic aggregation that the ant 

colonies use in their decision making process. The aggregating procedure is usually 

either an aggregated weighted product, an aggregated weighted sum, or random. The 

weights given to the pheromone and heuristic matrices represent the emphasis given to 

give to each matrix. These weights are either set dynamically, in which different weights 

are used during different times throughout the algorithm to emphasize different matrices 

at different stages, or fixed where the weights are set a priori. The fourth is the 

pheromone update process which is usually updated as an iteration-best or the best-so-

far solution. The fifth is the Pareto-archive which varies depending on how it is stored 

and used throughout the run. 

The Ant System was the first ant colony algorithm developed by Marco Dorigo 

(Colorni et al. 1992).  It introduced a distributed problem solving environment based on 

the ants behavior and used it to solve the traveling salesman problem. The algorithm has 

a pheromone matrix ߬௜௝ for each arc and the pheromone values are initially set to the 
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value ߬଴. There is a heuristic matrix as well ߟ௜௝ ൌ 1/݀௜௝ where ݀௜௝ represents the 

distance between city i and city j. As the ant constructs its solution it uses a probabilistic 

action choice rule, called random proportional rule, to decide which node to move to 

next given by 

௜௝݌ 
௞ ൌ

ሾఛ೔ೕሿ
ഀሾఎ೔ೕሿ

ഁ

∑ ሾఛ೔ೕሿ
ഀሾఎ೔ೕሿ

ഁ
೗∈ಿ೔

ೖ  
, ݂݅ ݆  ∈   ௜ܰ

௞,       (2.1) 

where α and β are two parameters that determine the relative weights given to the 

pheromone and heuristic matrices, respectively, and  ௜ܰ
௞ is the feasible neighborhood of 

ant ݇ in city ݅. After every ant has constructed a tour the pheromone trails are updated, 

first by pheromone evaporation given by : ߬௜௝ ← ሺ1 െ ,ሻ߬௜௝ߩ ∀ሺi, jሻ ∈ L , where ߩ  is the 

evaporation rate 0 ൑ ߩ ൑ 1 . Next, pheromone is deposited by every ant on the path it 

has visited given by: ߬௜௝ ← ߬௜௝ ൅ ∑ ∆߬௜௝
௞ ,௠

௞ୀଵ  ∀ሺi, jሻ ∈ L, where ∆߬௜௝
௞  is the amount of 

pheromone deposited by ant k. The amount of pheromone is given by 

  ∆߬௜௝
௞ ൌ ቊ

ଵ

஼ೖ
,ሺ݅ ܿݎܽ ݂݅      , ݆ሻܾ݈݁݋ݐ ݏ݃݊݋ ܶ௞

                            ;݁ݏ݅ݓݎ݄݁ݐ݋        ,0 
,      (2.2) 

where ܥ௞, the lengths of the tour ܶ௞ built by ant k-th ant, is computed as the sum of the 

lengths of the arcs belonging to ܶ௞. The AS algorithm is characterized by two main 

phases: solution construction and the pheromone update (Dorigo and Stützle 2004).  

The first Ant System with multiple objectives was proposed by Paciello (Paciello 

et al. 2006). It was a multi-objective extension of the Ant System developed by Marco 

Dorigo. It was tested using three bi-objective problems, QAP, TSP, and VRPTW. It has 

one pheromone matrix, uses the pseudo-random proportional rule, and updates 
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pheromone of non-dominated solutions only.  The algorithm has one pheromone matrix 

and two heuristic matrices, one for each objective. The decision rules for the ants is as 

follows: 

௜௝݌ 
௛ ൌ

ఛ೔ೕሾఎ೔ೕ
బ ሿഊഁሾఎ೔ೕ

భ ሿሺభషഊሻഁ

∑ ఛ೔ೕሾఎ೔ೕ
బ ሿഊഁሾఎ೔ೕ

భ ሿሺభషഊሻഁ
೗∈ಿ೔

೓
 ݂݅ ݆  ∈   ௜ܰ

௛, and 0 otherwise.    (2.3) 

In order to force the ants to search in different regions of the objective space,  ߣ is 

calculated for each ant ݄  as ߣ௛ ൌ ሺ݄ െ 1ሻ/ሺ݉ െ 1ሻ . Thus in the most extreme cases the 

first ant m with ߣ ൌ 0 considers only the second objective and the ant with ߣ ൌ 1 

considers only the first objective. The pheromone update is performed only by the ants 

that have found non-dominated solutions and the pheromone update is given as follows: 

߬௜௝ ← ሺ1 െ ሻ߬௜௝ߩ ൅   Δ߬, where Δ߬ is given byߩ

 Δ߬ ൌ  
ଵ

∑ ௙ሺ஼ೖሻೖ
ೖసభ

          (2.4) 

 where ݇ represents the number of objectives. 

Ant Colony System was proposed by Dorigo and Gambardella and is an 

extension of the Ant System (Dorigo and Gambardella 1997a, 1997b).  It differs from 

Ant System in three main aspects. First, the pseudorandom proportional rule provides a 

means to balance between the exploration and exploitation phases of the algorithm. 

When an ant is determining its next step, the step with the maximum weighted average is 

chosen with the probability of ݍ଴ while a random proportional rule is used with 

probability 1-ݍ଴, where 0 ≤ ݍ଴ ≤ 1 usually fixed to 0.9 (Onwubolu 2004). 

 ௜ܲ௝ ൌ ቊ
ߙ௜௝  ൛ൣ߬௜௝൧ݔܽ݉   ݃ݎܽ ൅ ሾߟ௜௝ሿߚൟ      ݂݅ ݍ  ൑   ଴ݍ

ଔ̂                              ݁ݏ݅ݓݎ݄݁ݐ݋
,    (2.5) 



9 
 

 

where ଔ̂ represents the random proportional rule as in AS.  Second, the global updating 

rule is applied only vertices which belong to the best-so-far ant path. The pheromone 

update is give by: ߬௜௝ ← ሺ1 െ ሻ߬௜௝ߩ ൅ ௜௝߬∆ߩ
௕௘௦௧  ∀ሺi, jሻ ∈ Tୠୣୱ୲ where ∆߬௜௝

௕௘௦௧ ൌ  ,௕௘௦௧ܥ/1

where ܥ௕௘௦௧ is the lengths of the iteration-best tour. Finally, each time an ant uses an 

edge (i,j) it uses a local pheromone updating rule which evaporates some of the 

pheromone from the edge to increase the exploration of other paths given by: ߬௜௝ ←

ሺ1 െ ሻ߬௜௝ߦ ൅ ,ߦ ଴, where߬ߦ 0 ൏ ߦ ൏ 1, and ߬଴ are two parameters and ߬଴ is set as equal 

to the initial value of the pheromone trails.  

ACS was the first ACO algorithm to use candidate lists to restrict the number of 

available choices to be considered at each construction step. In general, candidate lists 

contain a number of the best rated choices according to some heuristic criterion (Dorigo 

and Stützle 2004). 

The multi-objective version of Ant Colony Systems was proposed by Baran and 

Shaerer to solve a vehicle routing problem with time windows (Baran and Shaerer 

2003). They tested the algorithm using the Vehicle Routing Problem with Time 

Windows (VRPTW) which “is an extension of the Vehicle Routing Problem, in which 

the aim is to find a set of minimum-cost vehicle routes that originate and terminate at a 

central depot, for a fleet of vehicles that serve a given set of customers with known 

demand.” They used two ant colonies to optimize a bi-objective problem. Both colonies 

have separate pheromone trails but only the global best of the two colonies is allowed to 

update pheromone. The algorithm uses one pheromone trail and two heuristic matrices. 
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It still uses as state transition rule of exploration versus exploitation considering multiple 

objectives as follows 

 ௜ܲ௝ ൌ ቊ
௜௝ߟ௜௝  ൛ൣ߬௜௝൧ሾݔܽ݉   ݃ݎܽ

଴ ሿఒఉሾߟ௜௝
ଵ ሿሺఒିଵሻఉൟ      ݂݅ ݍ  ൑ ଴ݍ 

ଔ̂                              ݁ݏ݅ݓݎ݄݁ݐ݋
,    (2.6) 

where ߣ is computed for each ant ݇ as ߣ ൌ ݇/݉, where ݉ is the total number of ants in 

the colony. The variable ߚ represents the weight of the objectives with respect to the 

pheromone trail and ଔ̂ represents the decision rule, which is determined just as in AS. 

The local update of the pheromone is given by  ߬௜௝ ← ሺ1 െ ሻ߬௜௝ߩ ൅  ଴, and ߬଴ is߬ߩ

initialized using the following for each objective function ݂ଵሺܥ௞ሻ and ݂ଶሺܥ௞ሻ 

 ߬଴ ൌ
ଵ

௡∗௙భሺ஼ೖሻ∗௙
మሺ஼ೖሻ

,         (2.7) 

where n is the number of nodes. The global pheromone update is given by 

 ߬௜௝ ൌ ሺ1 െ ሻ߬௜௝ߩ ൅
ఘ

௙భ൫௦೛൯௙
మሺ௦೛ሻ

.      (2.8) 

An Ant-Q algorithm first proposed by Gabardella and Dorigo is based on a 

distributed reinforcement learning technique and was first applied to the design of 

irrigation networks (Gambardella and Dorigo 1995). The Ant-Q algorithm differs from 

ACS only “in the definition of the term t0  which in Ant-Q is set to ߬଴ ൌ max௝∈ே೔ߛ 
ೖ൛߬௜௝ൟ  

where ߛ is a parameter and the maximum is taken over the set of pheromone trails on the 

arcs connecting the city ݅ on which ant ݇ is positioned to all the cities the ant has not 

visited yet (i.e., those in the neighborhood ௜ܰ
௞)” (Dorigo and Stützle 2004). Eventually 

Ant-Q was abandoned because it was found that if ߬଴ is set to a very small value, the two 

algorithms perform similarly.  
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The multi-objective version of Ant-Q (MOAQ) was proposed by Mariano and 

Morales and implements a colony of agents to perform the optimization of each 

objective (Mariono and Morales 1999). MOAQ uses one pheromone trail and two 

heuristic matrices, one for each objective. One colony optimizes for the first objective 

while the second colony optimizes for the second objective. MOAQ returns a set of 

nondominated solutions and non-dominated solutions fitting all problem constraints are 

assigned a reward while solutions violating constraints are punished. 

Another extension of the ant system developed by Stützle and Hoos is the Max-

Min Ant System (MMAS) (Stützle and Hoos 2000; Stützle 1997). MMAS is 

characterized by a strong exploitation phase of the algorithm because it only allows the 

best-of-iteration solutions to deposit pheromone and imposes limits on the pheromone 

values in order to avoid premature convergence. MMAS introduces four major changes 

to the original AS. First, it has a strong exploitation phase by only allowing the best-of-

iteration or best-so-far ants to deposit pheromones on their trails. Secondly, it introduces 

a limit on the range of pheromone values on each arc ሾ߬௠௜௡, ߬௠௔௫ሿ, by doing this it 

prevents pre-convergence on non-optimal solutions. Third, the pheromone trails are 

initially set to ߬௠௔௫, which, when coupled with at pheromone evaporation rate, greatly 

increases the exploration phase of the algorithm in the beginning of the ant search. 

Finally, each time the ant system reaches a stagnation point, where no new optimal paths 

are being produced, the pheromone trails are reinitialized to  ߬௠௔௫. The pheromone 

matrix is updated by the following: ߬௜௝ ൌ ௜௝߬ߩ  ൅ ∆߬௜௝
௞  where ߩ is the evaporation rate 
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and ∆߬௜௝
௞  is the amount of pheromone that ant k deposits on its path. In MMAS ∆߬௜௝

௞  is 

defined as follows:   

∆߬௜௝
௞ ሺݐሻ ൌ ቊ

ଵ

௅ೖሺ௧ሻ
,ሺ݅ܿݎܽ ݂݅         ݆ሻ݅ݐ ݊݋݅ݐܽݎ݁ݐ݊݅ ݊݅ ݇ ݐ݊ܽ ݕܾ ݀݁ݏݑ ݏ

                                                             ݁ݏ݅ݓݎ݄݁ݐ݋           0
,  (2.9) 

where ܮ௞ሺݐሻ is the tour length of the kth ant. 

The MMAS version for multiple objectives (M3AS) was proposed by Pinto and 

Baran to solve a multicast traffic engineering problem (Pinto and Baran 2005). It uses 

one global pheromone matrix and a separate heuristic matrix for each objective, given by 

௜௝ߟ
௞ ൌ 1/݀௜௝

௞ , where k is the number of objectives and ݀௜௝
௞  the objective score or cost. The 

algorithm uses as pseudo-random rule for the ants decision rules as follows: 

௜௝݌ ൌ
ఛ೔ೕ
ഀ ∑ ሾఎ೔ೕ

ೖ ሿഊ
ೖೖ

ೖసభ

∑ ఛ೔ೕ
ഀ ∑ ሾఎ೔ೕ

ೖ ሿഊ
ೖೖ

ೖసభ೗∈ಿ೔

  if  ݆  ∈ ௜ܰ ,  0 otherwise    (2.10) 

where  ߣ௞ represents the relative influence of each objective among heuristic 

information. The pheromone matrix has an upper bound ߬௠௔௫ which only the non-

dominated solutions can update.  

The Omicron ACO (OA) algorithm proposed by Gomez and Baran (Gomez and 

Baran 2005) is inspired by MMAS. OA is a population based algorithm where a 

population of individuals is maintained which contains the best solution so far. “It is 

based on the hypothesis that it is convenient to search for nearby good solutions. The 

main difference between MMAS and OA is the way the algorithms update the 

pheromone matrix. In OA, a constant pheromone matrix ߬଴ with ߬௜௝
଴ ൌ 1, ∀݅, ݆ is 

defined”(Gomez and Baran 2005). 
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The multiobjective version of the Omicron ACO (MOA) algorithm was proposed 

by Gardel and colleagues (Gardel et al. 2006) under the name Electric Omicron. The 

MOA was first applied to the multi-objective Reactive Power Compensation Problem. 

The initial pheromone trails are set in the same manner as in OA and two heuristic 

matrices, one for each objective are combined by:  ߟ௜௝ ൌ ଵݓ  ∗ ௜௝ߟ
ଵ ൅ ݓଶ ∗ ௜௝ߟ

ଶ  where ݓଵ 

and ݓଶ are weighted factors (ݓଵ+ ݓଶ = 1) that change dynamically with each iteration of 

the algorithm.  

BicriterionAnt is a bi-objective algorithm developed by Iredi and co-workers 

(Iredi et al. 2001) which proposed two ACO methods to solve the Single Machine Total 

Tardiness Problem (SMTTP) with changeover costs. The BicriterionAnt algorithm uses 

two pheromone matrices τ and τ’ and two heuristic matrices η and η’, one for each 

objective. By doing so different ants conduct searches in different regions of the 

objective space along the Pareto Front. To force the ants to search in different regions of 

the Pareto optimal space each of the ants in the colony gives a different importance to 

each of the objective by weighing them differently. Ant ݇, ݇ ∈ ሾ1,݉ሿin the colony uses 

௞ߣ ൌ
௞ିଵ

௠ିଵ
.  Every ant makes its decision using the following probabilities:  

௜௝݌  ൌ
ఛ೔ೕ
ഊഀ∗ఛ′೔ೕ

ሺభషഊሻഀ
∗ఎ೔ೕ

ഊഁ
∗ఎ′

೔ೕ
ሺభషഊሻഁ

∑ ఛ೔ೕ
ഊഀ∗ఛ′೔ೕ

ሺభషഊሻഀ
∗ఎ೔ೕ

ഊഁ
∗ఎ′

೔ೕ
ሺభషഊሻഁ

೓∈ೄ

 .       (2.11) 

Thus in extreme cases the ant m with λ = 1 considers only the first objective and ant 1 

with λ = 0 considers only the second criterion. Two methods are explored to update the 

pheromone, update by origin where an ant only updates in its own colony and update by 
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region in the non-dominated front. A set is maintained of non-dominated solutions and 

only ants that found non-dominated solutions may update the pheromone matrices. 

The multi-objective network ACO (MONACO) was proposed by Cardoso et al. 

(2003) to solve the dynamic problem of message traffic in a network. The algorithm uses 

a single heuristic matrix ߟ௜௝ ൌ ∑ ݀௜௝
௞௄

௞ୀଵ  and multiple pheromone matrices τK for each 

objective, where K is the number of objectives. At the end of each iteration, pheromone 

is laid on the trails given the following equation: ߬௜௝
௞ ൌ ሺ1 െ ௞ሻ߬௜௝ߩ

௞ ൅ ∆߬௜௝
௞  where 

߬௜௝
௞ ൌ  

ொ

௙ೖሺ௦೓ሻ
 with ߩ௞representing the pheromone evaporation rate for objective ݇. ܳ 

represents a constant related to the amount of pheromone laid by the ants, and ݏ௛ is the 

solution build by ant h. The non dominated solutions are then stored in a non-dominated 

archive representing the Pareto set. 

COMPETants was developed by Doerner, Hartl and Reimann (Doerner et al. 

2001) to solve a multi-objective transportation problem. A main feature of COMPETants 

is the uses of two ant populations with different priority rules. In COMPETants rather 

than a fixed population, the population size undergoes adaptation during the algorithm 

execution. More computational power is assigned to the ant colony which finds solutions 

with better objective scores. Some ants called spies not only utilize their own 

information but also the foreign pheromone information. The decision rules for the ants 

is as follows: 

௜௝݌ 
௛ ൌ

ሾఛ೔ೕሿ
ഀሾఎ೔ೕሿ

ഁ

∑ ሾఛ೔ೕሿ
ഀሾఎ೔ೕሿ

ഁ′
಺∈ಿ೔

೓
, if ݆ ∈ ௜ܰ

௛, 0 otherwise     (2.12) 
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where each colony uses its own pheromone and heuristic information. For the spy ants, 

the decision rule is give by 

௜௝݌ 
௛ ൌ

ሾ଴.ହఛ೔ೕ
బ ା଴.ହఛ೔ೕ

భ ሿഀሾఎ೔ೕሿ
ഁ

∑ ሾ଴.ହఛ೔ೕ
బ ା଴.ହఛ೔ೕ

భ ሿഀሾఎ೔ೕሿ
ഁ′

಺∈ಿ೔
೓

 if ݆ ∈ ௜ܰ
௛, 0 otherwise    (2.13) 

where the spies combine the information of both pheromone trails.  

SACO was proposed by T’Kindt (2002) to solve a 2-machine bicriteria flowshop 

scheduling problem. The algorithm uses one pheromone and one heuristic matrix. It was 

developed to solve a lexicographical problem, where only one best solution is returned at 

the end of the algorithm execution. Each ants decision rule is determine by one of two 

modes. The first is an intensification mode where the edge with the highest pheromone 

value τij is chosen. The second is a diversification mode, where an ant uses the random-

proportional rule to select the next job. They use the parameter po to determine the 

probability of being in either mode, which is given by ݌଴ ൌ  
୪୭୥ሺ௡ሻ

୪୭୥ ሺேሻ
 where ݊ is the 

iteration number, with ݊ ∈ ሾ1, ܰሿ. Pheromone evaporation is applied to every edge and 

pheromone update is done only to the best of iteration solutions, as follows: 

 ߬௜௝ ← ൝
߬௜௝ ൅ 

ଵ

௙ሺ௦ሻ
,ሺ݅ܿݎܽ ݂݅      , ݆ሻ ∈ ௕௘௦௧ݏ

ሺ1 െ               ;݁ݏ݅ݓݎ݄݁ݐ݋    ,ሻ߬௜௝ߩ
      (2.14) 

where ݏ௕௘௦௧ is the best objective value found and ߩ is the evaporation rate. 

Pareto Ant Colony Optimization (P-ACO) was proposed by Doerner et al. (2001) 

to solve a multi-objective portfolio selection problem. The algorithm is based on ACS, 

but the pheromone update is performed by both the best and the second-best ant. It uses 

one heuristic matrix and multiple pheromone matrices τk, where k represents the number 
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of objectives. Given the pheromone information and the set of all feasible projects, a 

feasible project i is selected to be added to the current portfolio x according to a pseudo-

random-proportional rule given as follows: 

 ݅ ൌ   ൜ arg݉ܽݔ௜ ∈Ωሺ௫ሻ ൛ሾ∑ ሺ݌௞ ∗ ߬௜
௞ሻሿ௄

௞ୀଵ
ఈ
∗ ሾߟ௜ሺݔሻሿ

ఉൟ            ݂݅ ݍ ൑ ଴ݍ
                                           ଓ̂                                                      ݁ݏ݅ݓݎ݄݁ݐ݋ 

 (2.15) 

where q is a random number and q0 is a parameter to be set by the user representing the 

probability that the portfolio is chosen which gives the highest aggregate value of 

pheromone and attractiveness. The node ଓ̂  is selected according to the decision:  

௜௝݌          
௛ ൌ  

∑ ሾ௣ೖఛ೔ೕ
ೖ ሿഀఎ೔ೕ

ഁ಼
ೖసభ

∑ ሺ
೔∈ಿ೔

೓ ∑ ሾ௣ೖఛ೔ೕ
ೖ ሿഀఎ೔ೕ

ഁ಼
ೖసభ ሻ

 ݂݅ ݆ ∈ ௜ܰ
௛,  and 0 otherwise   (2.16) 

where pk is determined randomly for each ant. Pheromone update is performed after 

each iteration using the following equation: ߬௜௝
௞ ൌ ሺ1 െ ሻ߬௜௝ߩ

௞ ൅  is the ߩ ଴ where߬ߩ

evaporation rate and ߬଴ is the initial pheromone value. Since the pheromone update is 

done only by the best and second best ants, the update rule for each objective k is given 

by: ߬௜௝
௞ ൌ ሺ1 െ ሻ߬௜௝ߩ

௞ ൅ ௜௝߬߂ߩ
௞  where ߬߂௜௝

௞  represents an increasing quantity related to the 

best and second best solutions represented by the following: 

௜௝߬߂  
௞ ൌ ቐ

,ሺ݅ܿݎܽ ݂݅      10 ݆ሻ ∈   ܵ௕௘௦௧              

,ሺ݅ܿݎܽ ݂݅       5 ݆ሻ ∈   ܵ௦௘௖௢௡ௗି௕௘௦௧
                            ;݁ݏ݅ݓݎ݄݁ݐ݋       0

      (2.17) 

The non dominated solutions are then stored in a non-dominated archive representing the 

Pareto set. 

  Multi-objective ant colony system algorithm (MOACSA) was developed by 

Yagmahan and Yenisey to solve a flow shop scheduling problem (Yagmahan and 
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Yenisey 2010). The algorithm is based on ACS and uses one global pheromone matrix 

and one global heuristic matrix. All initial pheromone trails ߬଴ are set to a small value 

and calculated by ߬଴ ൌ ሾ݊ ∗ ሺቀܯሺܵ ′ሻ ൅ ሺܵܨ ′ሻቁሿିଵ, where “n is the number of jobs, 

M(S’) is the makespan of the solution and F(S’) is the flowtime of the solution for 

sequence S’ generated by the NEH heuristic.” While constructing a solution the ants 

apply a local pheromone updating rule ߬௜௝ ൌ ሺ1 െ ሻ߬௜௝݈ߩ ൅  is (1 > ݈ߩ > 0) ݈ߩ ଴ where݈߬ߩ

the local pheromone evaporating parameter and ߬଴ is the initial pheromone level. The 

global updating rule is performed only by the iteration-best solutions and is given by: 

߬௜௝ ൌ ሺ1 െ ሻ߬௜௝ߩ
௞ ൅   .௜௝߬߂ߩ

The preceding material covered the prevalent multi-objective ant colony 

optimization algorithms that have been developed in the past two decades. The field of 

multi-objective ant colony optimization continues to grow both in its structure as well as 

its applications. The following section will discuss the multi-objective ant colony 

algorithm that is inspired by the previous work done to develop multi-objective ant 

colony optimization algorithms. 
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3. MULTIPLE-OBJECTIVE ANT COLONY OPTIMIZATION 
 

3.1 MOTIVATION AND OBJECTIVE 
 

Motivation for this algorithm developed from the North Slope Decision Support 

System (NSDSS) project.  This project was tasked with developing an algorithm which 

would create optimal ice road routes on the North Slope of Alaska considering multiple 

objectives. The North Slope is characterized by vast costal marshes and foothills, where 

ice roads are designed over a vast expanse of tundra with no existing infrastructure 

network or considerable topographic variations. The algorithm created would have to 

utilize and open graph network with no existing networks or junctions in place to 

develop solutions considering multiple objectives such as length, water use, construction 

time, and environmental impacts. Multi-objective ant colony optimization was chosen as 

a constructive search technique that could develop a group of Pareto-optimal solutions 

on an open graph framework. Much in the same way that ants search a vast expanse of 

terrain for food and then develop a shortest path to that food source, our artificial ants 

search an open graph for the shortest path between the start and end point. What we are 

seeking to do is develop a MOACO infrastructure routing algorithm capable of 

producing a Pareto-front of desirable routes. 

3.2 INTRODUCTION 
 

Ant Colony Optimization is a path finding algorithm inspired from the foraging 

behavior of real ants in the natural environment. When an ant finds a food source, it 

deposits pheromone as it makes its way back to the nest. Ants are essentially blind 
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creatures and through this indirect form of communication they are able to determine 

where food sources are. As more ants traverse along a path, the stronger the pheromone 

becomes and the more likely that the ants will chose to take that path. As a colony of 

ants goes back and forth between a food source, the ants begin to converge to the paths 

with the strongest pheromone scent. This collaborative behavior allows ants to develop 

paths in complex and dynamic environments between their nest and a food source.  

Ant Colony Optimization uses artificial ants that explore a graph network in 

order to find an optimal path. The process of constructing solutions involves ants 

exploring a graph by moving along the links between vertices until a solution is found. 

Artificial ants share many of the same path finding characteristics as real ants. Just like 

in nature, artificial ants retrace their path and deposit pheromone after they find a 

solution.  Natural forces cause pheromone which is deposited by real ants to evaporate 

over time. So in order to mimic this pheromone evaporation is applied to the pheromone 

deposited by the artificial. This leaves a preference for new and higher quality solutions 

as the ants continue to find better trails while the algorithm progresses. Artificial ants 

also have features and advantages that natural ants do not have. The ants are able to use 

their memory to store their own path information and then use this information to 

analyze and compare paths between each other. They also are able to employ heuristic 

information to help build their solutions. 

This multi-objective ant colony optimization algorithm was developed to explore 

an open graph network in order to solve common infrastructure routing problems. It 

draws heavily from previous work including MOAQ (Mariono and Morales 1999), 
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MMAS (Stützle 1997), and Bicriterion Ant (Iredi et al. 2001). The algorithm is designed 

to fit the problem of infrastructure routing on an open graph without a previous network 

in place. This algorithm proposes unique functions to enhance the both speed and 

performance. It also possesses features to solve issues unique to infrastructure routing 

that traditional MOACO algorithms lack in nature. 

3.3 THE ALGORITHM 
 

This Multi-Objective Ant Colony Algorithm (MOACO) is used to find desirable 

routes of a minimum cost path problem containing multiple objectives. There are often 

different objectives when designing new infrastructure such as cost, length, time of 

construction, etc. and a MOACO approach to developing infrastructure routes provides 

solutions that can be optimized for different objectives and sets of objectives. By 

allowing a decision maker to analyze the tradeoffs between different paths in the Pareto-

optimal space, he or she can gain a better understanding of the problem. 

3.3.1 Multiple Colonies 
 

This algorithm takes a multiple colony approach to the multiple objective 

problem where each colony uses a different set of objective heuristic information. A 

multiple colony approach allows different sets of ants (colonies) to seek solutions in an 

open graph separately from one another, resulting in solutions found in different areas of 

the objective space. Each colony of ants uses a different set of objective information 

depending on the number of objectives and colonies. The different objective information 

serves as the a priori heuristic information that the ants use to build their solutions. The 
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heuristic information, combined with the pheromone information which the ants deposit 

after they have found a solution, serve to guide each colony of ants to a desirable set of 

solutions. By taking a multiple colony approach, optimal paths for different objectives 

and sets of objectives can be found. Multiple colonies will search different areas of the 

objective space creating a diverse set of Pareto-optimal solutions. This allows a decision 

maker to visually see the tradeoffs between the optimal paths for different objectives. 

3.3.2 Heuristic Information 
 

For each objective On where n = number of objectives, Cn+1 colonies are created. 

Each colony seeks solutions for a single objective except for the n+1 colony which seeks 

an additive solution of all of the objectives. This objective selection approach allows the 

ants to seek solutions across different regions of the objective space and produces a 

diverse set of solutions across the Pareto front. Each corresponding colony has its own 

heuristic information matrix ߟ௜௝
஼

  which represents the objective information of colony C 

on the link connecting node ݅ and ݆. 

3.3.3 Pheromone Information 
 

Each colony in the algorithm also has its own pheromone matrix ߬௜௝
஼  , which 

represents the pheromone information of colony C on the link connecting node node ݅ 

and ݆. It is this matrix that the ants use to store the deposited pheromone information of 

the colony. Pheromone deposits allow the ants to exploit areas of the graph where better 

solutions are likely to be found and guide the ants toward optimal solutions. Pheromone 

acts as a collaborative communication tool between the ants. After an ant has deposited 
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pheromone onto its path, other ants are then able to use that information combined with 

heuristic information to build their own solutions. It is pheromone deposits that trigger 

the transition of the ants from an exploratory phase to an exploitation phase where 

optimal solutions are exploited in the objective space. 

3.3.4 Ant Colony Search 
 

Each colony Cn+1 contains a set of ants ACx (where C represents the colony of 

ants and x is the number of ants in the colony) that seek to find a path from the start 

point to the end point. Each ant uses the pheromone information and the heuristic 

information on each edge between vertices to build their solutions. Each colony has its 

own pheromone matrix ߬௜௝
஼

 which it uses to store the deposited pheromone information 

and its own heuristic information matrix ߟ௜௝
஼ that represents the objective information on 

each vertex for that colony.  

Each ant begins at the starting point and makes a decision as to which available 

node to move to based on the pheromone and heuristic information on the edges between 

the nodes. Each edge is given a weight in proportion to the strength of its aggregated 

pheromone and heuristic information. An ant makes a probabilistic decision of which 

node to move to based on an aggregation of the heuristic and pheromone information of 

the available nodes. After a node is chosen, the ant moves along the edge to the new 

node, records its step and then repeats this process. The probabilistic decision of which 

node to move to next, called the random proportional rule, is given by 

௜ܲ௝ ൌ
ൣఛ೔ೕ൧ఈାሾఎ೔ೕሿఉ

∑ ൣఛ೔ೕ൧ఈାሾఎ೔ೕሿఉೕ ∈ಿ೔
೓

   ݂݅ ݆ ∈ ௜ܰ
௛        (3.1) 
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where ௜ܲ௝ represents the probability of moving from node i to node j and ௜ܰ
௛ represents 

feasible neighborhood of ant h within node i. The variables α and β represent the weights 

given to the pheromone and heuristic matrices respectively.  

An ant’s path is terminated under two conditions. The first is that it has 

successfully found the endpoint. The second is that it has “cornered” itself and no longer 

has any available nodes to move to. An ant cannot move to a node more than once, i.e. 

move backwards or cross its own path. In the case that an ant has cornered itself, it 

terminates its path and starts over from the starting point until it finds a feasible path to 

the endpoint. 

Once an ant has found a solution, the ant’s generated path is saved and the next 

ant in the colony begins finding a solution. If it is the first ant in the colony its objective 

score and path are saved as the best-route-thus-far in the current iteration of the colonies 

search. After the first ant has found a solution, the next ant in the colony goes out and 

finds a new path. This new path is then compared with the best-route-thus-far, if it has a 

better objective score than the current path then the new path replaces the previous 

solution. If it is not, then the current ant’s solution is not saved. This process is repeated 

until every ant in the colony has found a solution. After all of the ants in the colony have 

found a solution, the ant with the path with the best-route-thus-far retraces its path, 

laying pheromone upon the trail. Pheromone evaporation is then applied to all previous 

pheromone within the matrix.  

There exists a parent group of solutions ܳ which represents all non-dominated 

solutions found during the ant colony iterations. Once a colony has found a solution, it is 
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compared against the solutions in the parent group ܳ. If it is a non-dominated solution 

then the path is saved in ܳ, otherwise it is thrown out. After the parent group has been 

updated, a new iteration begins where the ants then attempt to find a new solution using 

the heuristic information coupled with the updated pheromone matrix.  

3.3.5 Exploration Versus Exploitation 
 

There are two phases of the ant search, exploration and exploitation. Both phases 

are characterized by the ants searching behavior as influenced by the pheromone 

deposits. In the beginning of the algorithm, or the exploratory phase, there is little 

pheromone information in the pheromone matrix so the ants’ behavior is influenced 

primarily by the heuristic information. Because there is little pheromone information to 

influence the behavior of the ants, the ants explore a wider area of the graph in an 

attempt to find the best route to the end point. After many iterations, stronger pheromone 

trails begin to build around optimal paths and the pheromone information begins to have 

a stronger effect upon the decision of the ants. During this phase the ants begin to exploit 

the optimal paths with stronger pheromone trails which is called the exploitation phase 

of the algorithm.  

3.3.6 Aggregation 
 

A weighted approach is used for the aggregation of the heuristic and pheromone 

information. An ants’ decision making process from node to node is influenced by the 

heuristic and pheromone information on the links between each node.  Each matrix is 

given a weight to determine the strength of influence of the matrix within the ants’ node 
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to node decision making process. The heuristic matrix η is given the weight α and the 

pheromone matrix τ is given the weight β.   

A = α τ + β η         (3.2) 

3.3.7 Pheromone Update 
 

  After every ant within the colony has found a solution, the ant with the solution 

with the best objective score is allowed to deposit pheromone ρ on its trail. By allowing 

only the ant with the best objective score to deposit pheromone, the ants begin to exploit 

higher quality solutions.  

Pheromone evaporation is a technique used in the algorithm that is inspired by 

what happens in nature during an ant colonies search for food. After an ant deposits 

pheromone on a trail physical forces begin to dilute the strength of the pheromone 

deposits and evaporate the pheromone from the trail. Just like in nature, artificial 

pheromone trails are gradually evaporated over time. With each new iteration a 

pheromone evaporation rate λ (0.7) is applied to the pheromone matrix to reduce the 

strength of the pheromone trails over time. This gradually evaporates the pheromone 

deposited on old paths and favors newer, and likely better paths.  

 τ௜௝ ൌ ሺ1 െ  ሻτ௜௝        (3.3)ߣ 
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3.4 UNIQUE FEATURES 
 

3.4.1 Multiple Start Points 
 

There are often scenarios in infrastructure routing where a single starting point is 

not defined.  Such is the case when developing a spur road from a stretch of highway or 

a water transmission pipeline from a river to a new treatment facility. In these cases 

there is not a defined starting point and multiple feasible locations could produce optimal 

solutions.  In such cases, the ant colony optimization approach used for a single start and 

single endpoint cannot be applied to solve the problem. To address this scenario we have 

created a new starting procedure of each ant which is able to determine the optimal 

location of the starting point by using a pheromone based approach similar to the ants’ 

path construction.  

In this situation the algorithm uses a probabilistic decision influenced by 

pheromone deposition, similar to the route finding process. The multiple starting points, 

whether it be a stretch of highway that is segmented into a group of nodes or multiple 

user defined points, are grouped together into a matrix S୨  where ݆ = the number of 

starting points. The probabilistic decision is similar to equation (1) where node ݅ 

represents the virtual starting point, node ݆ represents the possible starting point, and ௜ܰ
௛ 

represents the feasible neighborhood of ant h within node ݅. In this case the feasible 

neighborhood will be all points within matrix S୨. From the virtual start point the ant 

makes a probabilistic decision of which starting node to move to, and then from that 

starting node the ant begins to build its path. Each ant in the colony begins its procedure 
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from a virtual starting point which exists in an undefined point in space. From here an 

ants’ first decision is to select which start point Sj to begin to build its solution from. 

Because the ants are starting from an undefined point in space, there can be no unique 

heuristic information given to the links between the virtual start point and the starting 

points Sj in the problem. In this case each link is given an equal heuristic value.  

Once an ant has selected a starting point, it begins to build its solution in the 

same procedure as before. After every ant has found a solution, the ant with the solution 

with the best objective score deposits pheromone not only on its path, but also on the 

link between the virtual start point and the starting point Si that it used to build its 

solution. In the next iteration, the ants will use both the heuristic information and the 

pheromone information that was deposited previously on the links between the virtual 

start point and the starting points Sj to build their solutions. By using this technique, the 

ants begin to quickly exploit the most desirable starting points and in the same way that 

they find an optimal path, they are able to find an optimal starting point. The same rules 

of pheromone deposit and evaporation that hold for path building also hold here for 

determining a starting point.  

3.4.2 Multiple End Points 
 

There are often more than two points that need to be connected in infrastructure 

routing problems. In ice road construction there is frequently more than one drill site 

locations that an oil company must build a road to. In water transmission systems a lake 

may provide water to multiple water treatment plants. When such is the case the 
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traditional ant colony optimization technique will fail to produce a solution that 

represents a least cost path between the starting point and all of the endpoints.  We have 

developed new ant colony techniques that are able to find optimal solutions to multiple 

end point problems. 

3.4.2.1 Ant Colony Divisions 
 

A scenario with multiple end points requires a new approach to determine an 

optimal path that will connect all points together. We have developed new ant colony 

techniques that are capable of finding solutions to these problems. One solution involves 

dividing each colony up into smaller divisions of ants, one for every endpoint. Each 

division is assigned a specific end point in which it tries to find an optimal path. When 

each division is isolated to communicating only to itself within its own pheromone 

matrix, the algorithm will create unconnected separate paths to each endpoint. However, 

we allow the ants to share a common pheromone matrix where each division updates the 

pheromone matrix with its best objective score solution. This approach allows the ants 

from different divisions to communicate and collaboratively build their solutions within 

each colony. By doing so, the ants paths from each division will eventually converge 

together following many iterations to create and optimal path between all of the 

endpoints. It is communication between the ants on a common pheromone matrix that 

allows them to exploit paths that connect all of the endpoints together.  

In a multi-objective approach every division contains a set of colonies that are 

directly related to the number of objectives considered. The corresponding colonies from 

each division find solutions separately but aggregate their solutions into one path after 
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each iteration. Each division’s colonies communicate with their respective colonies in 

other divisions using a common pheromone matrix ߬௜௝
஼ . After all of the colonies within 

each division have found a solution, the solutions from the respective colonies within 

each division are combined together. This aggregated solution is then put into a group ܳ 

to be compared with the Pareto archive of non dominated solutions. 

 

 

 

Fig. 3.1. Ant division diagram 
 

 

Figure 3.1 above illustrates a bi-objective problem with two endpoints. The two 

divisions correspond to each endpoint, with each division containing 3 colonies. After all 

of the colonies within the divisions have found a best-of-iteration solution, they are 

paired together with their respective colonies in the other division to form a solutionܳ to 

be compared against the Pareto archive of non dominated solutions. 
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3.4.2.2 Steiner Points 
 

The divisional approach to multiple end point routing can be computationally 

intensive due to the large number of iterations that must take place before the ants paths 

begin to converge. Another approach to solving a multiple end point problem is to 

determine waypoints that act as intersections between two or more branches of the path. 

By determining waypoints, a single start – single endpoint approach can be taken 

between the waypoints and the endpoints, thus reducing the computation time of the 

algorithm.  

The method used to determine these waypoints is the Steiner Point approach. 

Steiner points represent the intersection between nodes of the shortest possible path. The 

problem of finding the networks of the least possible length between a fixed set with a 

finite number of points is named after Jacob Steiner (1796-1863) (Gilbert and Pollak 

1968). For example, in the case of one start point and two end points, the Steiner 

approach will determine the waypoint through which connecting to all other existing 

points will create the shortest possible network. The Steiner approach we use is possible 

for up to 4 total points.  

For a problem with 3 total points, one Steiner point will exist that represents the 

intersection between the shortest possible path connecting all three points. Of the 

triangle connecting all three points together, if there exists an angle that is greater than 

120o then the shortest path linking the 3 points is simply the two shortest sides of the 

triangle. However, if all of the angles within the triangle are less than or equal to 120o 

then there exists a Steiner point between all 3 points. The shortest distance path is found 
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by linking all of the branches from each point to the Steiner point. The Steiner point 

makes a Y junction with each branch intersecting together to create equal 120o angles. 

Figure 3.2 below represents the three point Steiner Tree. 

 

 

Fig. 3.2. Three point Steiner tree (Dreyer 1998). This figure represents the Steiner Point 
S between the 3 points A, B, and C. Every angle of the intersection AB, BC, and AC are 
120 degrees. 

 

 

For a problem with 4 total points, a Steiner tree can be constructed by either 

creating one or two Steiner points depending on the geometry between all 4 points. From 

the rectangle created by all four points, if there exists two angles in the rectangle that are 

120o or larger, then there exists no Steiner points within the rectangle. The shortest path 
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linking the points is then the 3 shortest sides of the rectangle. If there exists only one 

angle in the rectangle that is 120o or larger, then there exists one Steiner point within the 

rectangle that connects 3 of the points.  This Steiner point connects the opposite point of 

the 120o angle with 2 of the 3 other points. Figure 3.3 below illustrates the four point 

Steiner Tree. 

 

 

Fig. 3.3. Four point Steiner tree (Dreyer 1998) 

 

 

Even though the most desirable network may not be the shortest possible route, 

using this approach to solving a multiple end point problem on an open graph gives a 

good approximation of where the optimal networks waypoints are likely to be located 

assuming an overriding objective is the length of the network being constructed. 
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3.4.3 Construction Distance Constraint  
 

The constructability of some types of infrastructure routes are in part a function 

of how far from a specified supply point sections of the path are located. This algorithm 

addresses the problem of supply-distance availability in which constructability concerns 

related to in situ supply constraints are considered. In the example of ice road planning, 

there is a cost function associated with how far away a section of road is from a water 

source (lake) which provides the road material. The algorithm is capable of using this 

construction distance constraint as part of the path construction feasibility during the 

ants’ path finding process.  

As an ant constructs its path, it determines which supply location to draw its 

resources from and calculates the cost associated with using the resources for the 

construction of that link. Each supply location has a defined amount of resources Sxy (x 

represents the supply location and y represents the supply type) which are used by the 

ants in their construction process.  As an ant builds a path from node i to node j, it 

determines the nearest supply location to use as well as the amount of resources required 

to build the link from node i to node j. After an ant has made the decision to move, it 

subtracts the amount of resources taken from Sxy and saves both how much resources it 

has used in its path thus far and from where.  A path is terminated if there are no longer 

enough supplies from a feasible supply location to continue building the path. 
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3.5 PRE-PROCESSING 
 

This ant colony algorithm is designed to be used on an open graph where no 

existing network or junctions are in place.  An open graph framework can create a 

combinatorially huge problem that in turn can cause the exploratory ant search to take an 

extensive amount of time. Without ways to reduce the complexity of the problem, ants 

will get lost within the graph during this phase and seldom obtain an optimal solution. 

The logical step is to somehow reduce the complexity of the graph so that during the 

exploratory phase of the algorithm the ants can quickly explore the graph and find 

solutions. One way to do this is a preprocessing technique called graph pruning. Graph 

pruning eliminates cells within the graph in which optimal solutions are unlikely to be 

found, thus eliminating a large amount of unnecessary searching within the grid during 

the exploratory phase of the algorithm. The process creates topologically unique 

solutions that are dependent on the location of the start and end points as well as the 

locations of exclusion zones. Exclusion zones are user defined and represent areas that 

the user does not want the algorithm to search in. These exclusion zones could represent 

historical sites or environmentally sensitive areas that the infrastructure should not 

disturb. For each grid cell Axy if there exists an adjacent cell Bxy which is also adjacent 

to every adjacent cell of cell Axy, then cell Axy is pruned.  

The following two figures illustrate what a grid looks like before and after 

pruning. This process creates topologically unique paths which allow paths around both 

sides of exclusion zones. In this example there is one starting point within the green cell 
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labeled S and one end point within the red cell labeled E. The grey cells labeled with an 

x represent excluded areas that cannot be used to find a solution. Figure 3.4 represents 

the search area before pruning. 

 

 

Fig. 3.4. Graph before pruning 
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Fig. 3.5. Graph after pruning 

 

 

From Figure 3.5 you can see the exclusion zones which are the dark cells marked 

with an x and the pruned cells which are lighter and marked with a p. The graph pruning 

allows paths to be taken around both sides of the exclusion zone, but eliminates 

unnecessary cells. Graph pruning greatly reduces the complexity in trying to find the 

best path. 
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Fig. 3.6. Pruning without exclusion zones 

 

 

Figure 3.6 illustrates a grid in which there are no exclusion zones present within 

the boundaries of the grid. Depending on which corner the pruning starts in, and which 

direction it moves, a different path will be projected for solutions where more than one 

shortest path exists, such as in the grid above. 

 

3.6 POST-PROCESSING 
 

In order to refine the solutions the algorithm produces, certain post-processing 

techniques are implemented. On occasion the ant colony solutions produce anomalies 

within the path such as kinks or bends that when straightened out produce a more 
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desirable path. In this case we apply a post-processing technique called path 

straightening.  

After an ant has found a solution, it retraces its path and where the ant encounters 

a kink or a bend in the path, the algorithm determines if a straight line would produce a 

more desirable path than the current one. If it does, then the bend is straightened out in 

the ants original solution and the ant continues retracing its path until the endpoint is 

reached. 

Because of the computational complexity of an open graph, the ant colony 

algorithm is limited by the size of the graph it is able to solve. When solving a problem 

over a large area there are often topographic features that cannot be picked up at the 

necessary low resolution. For instance because of the large cell size it might not pick up 

a small pond that the road crosses or another geographic feature that would prevent an 

economically feasible path from traversing over or through it. In this case, a low to high 

resolution algorithm is run which allows the algorithm to modify the path to avoid such 

problem areas. 

After a path is found at a low resolution in which the distance between the nodes 

is large, a buffer is applied around the path. The resolution of the nodes is then increased 

within the buffered region. The original path is retraced using the higher resolution grid 

and a very strong pheromone trail is laid upon the path. This pheromone trail belongs 

within its own matrix ߬௜௝
∗  which is exempt from pheromone evaporation.  The ant colony 

algorithm is then run between the start and end point where the ants use both the 

heuristic matrix ߟ௜௝
஼  as well as the pheromone information from both pheromone matrices 
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߬௜௝
஼  and ߬௜௝

∗  to find their solutions. By using a strong pheromone matrix on the original 

path, the ants are encouraged to stick to the original path, while still avoiding 

undesirable areas that are picked up at a high resolution. 

3.7 CASE STUDY 
 

A case study was conducted on a graph with 400 vertices to assess the 

performance of the algorithm under 3 separate scenarios. Each scenario used the same 

multi-objective information. The first objective represents the length of the path 

constructed, the second objective represents objective information such as slope or 

construction costs which will vary geographically, and the third objective was 

randomized for all 400 vertices. The algorithm was set to minimize all three objectives. 

The three scenarios tested different capabilities of the algorithm. The first scenario was a 

single start – single end point problem, the second was a multiple start point- single end 

point problem, and the third was a single start point- multiple end point problem. All 

three of these scenarios were tested using Visual Basic and Microsoft Excel.  The 

parameters used are listed in Table 3.1. 
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   Table 3.1. Algorithm Parameters 

Parameter Values Considered 
Parameter Value 
Number of Ants 30 
Number of Colonies 5 
α 0.5 
β 0.5 
λ  0.7 
Number of Iterations 100 

Computer Specifications 

Intel Core™2 Duo 
CPU 2.40 GHz with 
4.00 GB RAM 

Operating System 
Windows 7 
Enterprise 

 

 

      

Fig. 3.7. Case study objectives 
  

 

Figure 3.7 represents the heuristic objective information of objectives two and 

three. The figure on the right represents the heuristic information of objective two which 

varies geographically such as an objective of slope or construction cost would. The 
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figure on the left represents the heuristic information for objective three and is 

randomized for every cell. Cells in gray represent excluded areas. 

 

     

Fig. 3.8. Before and after pruning 
 

 

Figure 3.8 represents the single start –single end point scenario. The figure on the 

left represents the problem before graph pruning. The green cell S represents the start 

point and the red cell E represents the end point. Grey cells marked with an x represent 

excluded areas and light grey cells marked with p represent the pruned area. 
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Fig. 3.9. Single start point - single end point data 

 

 

The single start point – single end points scenario was run with 4 colonies of 30 

ants. Figure 3.9 above illustrates the Pareto front between all 3 objectives after 100 runs. 

Objective 2 is on the x-axis, objective 3 on the y-axis and the length of the path is 

represented by the color bar. The run was completed in 200 seconds and was comprised 

of a total of 2,678,148 ant steps. 
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Fig. 3.10. Multiple start points before and after pruning 

 

 

 

Fig. 3.11. Multiple start points - single end point data 
  

 

The multiple start points – single end point scenario was run with 5 colonies of 

30 ants. Figure 3.10 displays the search area for the case study and Figure 3.11 above 
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illustrates the Pareto front between all 3 objectives after 100 runs. Objective 2 is on the 

x-axis, objective 3 on the y-axis and the length of the path is represented by the color 

bar. The run was completed in 1279 seconds and was comprised of a total of 5,310,738 

ant steps. 

 

 

Fig. 3.12. Multiple end points before and after pruning 

 

 

 

Fig. 3.13. Single start point - multiple endpoints data 
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  The single start point – multiple end points scenario was run with 5 colonies of 

30 ants. Figure 3.12 displays the search area for the case study and Figure 3.13 above 

illustrates the Pareto front between all 3 objectives after 100 runs. Objective 2 is on the 

x-axis, objective 3 on the y-axis and the length of the path is represented by the color 

bar. The run was completed in 732 seconds and was comprised of a total of 10,897,532 

ant steps. 

 This case study has demonstrated the ability of the algorithm to find solutions for 

multiple objective routing problems on a grid network. The algorithm is able to find an 

approximation of Pareto optimal solutions for problems with multiple possible start 

points and multiple end points. It is interesting to note that the algorithm took 

approximately two times as many ants within 100 runs to find a set of solutions for the 

problem with multiple start points, as compared to the problem with one start point and 

one end point. This is because it takes more time to transition from the exploration phase 

of the algorithm to the exploitation phase because the ants are searching from multiple 

start points as opposed to just one. It also takes approximately four times as many ants 

within 100 runs to find a set of solutions for the problem with multiple end points, as 

compared to the problem with one start and one end point. This is because in the 

multiple end point problem there are divisions of ants within each colony. In this case 

each colony sent out 90 ants, 30 in each division, to search for a solution. 
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3.8 GRID DOMAIN LIMITATIONS 
 

The algorithm’s performance is restricted by the size of the search domain that it 

can solve in an efficient amount of time. Because the ant colony optimization algorithm 

is a constructive search technique that requires multiple iterations to obtain an optimal 

solution, there is a limit on the size of the search domain that the algorithm can feasibly 

explore. A case study was conducted to analyze the performance of the algorithm versus 

different domain sizes. The case study determined the number of ants that it takes to find 

a path between two corners of a uniformly weighted square domain. Because an ants’ 

path terminates when it has cornered itself and not found a solution, it will usually take 

multiple ants to finally find a solution. This experiment explored the relationship 

between the number of ants necessary to find a path in relation to the size of the domain 

that the ants are exploring. Figure 3.14 illustrates the relationship. From the figure you 

can see that as the size of the search domain increases, the number of ants required to 

find a solution increases exponentially. 
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Fig. 3.14. Ant domain size performance 
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4. WHITE HILLS ICE ROAD CASE STUDY 
 

4.1 INTRODUCTION 
 

The motivation to develop this algorithm came from a project called the North 

Slope Decision Support System (NSDSS), comprised of a team of engineers and 

scientist from the University of Alaska Fairbanks, Texas A&M University, and Atkins 

and funded by the U.S. Department of Energy. The North Slope Decision Support 

System has been developed to create a water resources management solution for ice road 

construction in support of oil and gas exploration on Alaska’s North Slope. NSDSS 

considers multiple objectives and values among various stakeholders including federal, 

state, and local agencies, non-governmental organizations, and private energy 

companies. Part of this solution is to develop an algorithm capable of finding optimal ice 

road routes.  

In April of 2011 the NSDSS team held a workshop in Fairbanks, Alaska with 

various stakeholders in order to showcase the tool in its third stage of development. In 

the final day of the workshop, attendees were invited to give feedback and share ideas of 

possible case studies they thought the NSDDS tool could be applied to. From this 

exercise, the White Hills ice road was recognized as a good candidate for a case study to 

test the ability of the ice road planning tool. In the judgment of Alaska DNR personnel, 

it was both challenging and very well built. This case study would provide an 

opportunity to test the abilities of the tool to develop an ice road by comparing it to an 
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existing ice road that was well designed and built in the opinion of multiple ice road 

experts.  

The White Hills ice road was built for the drilling season of 2007-2008 by Union 

Oil Company of California (UOCC) a wholly-owned indirect subsidiary of Chevron 

Corporation. Initial operations were staged from the Franklin Bluffs gravel pad at 

milepost 39.6 of the Dalton Highway. Ice Roads were constructed from the Franklin 

Bluffs staging area to the first well location, Smilodon 9-4-9; south to the second well 

location, Mastodon 6-3-9; and north to the third well location, Panthera 28-6-9. Using 

data gathered from Chevron reports on the White Hills ice road, a case study was 

developed to replicate the ice road planning scenario within the NSDSS tool. Without 

any knowledge of the prior route of the road, the tool was used to build an ice road to the 

potential oil exploration sites. 

4.2 BACKGROUND 
 

The North Slope of Alaska covers roughly 230,000 km2 on the northern portion 

of Alaska between the Arctic coast and the Brooks Range. The North Slope is home to a 

vast petroleum reserve that is currently being exploited and which provides a large 

amount of income for the state of Alaska and its residents.  The oil fields on the North 

Slope near Prudhoe Bay produce 16 percent of the United States’ domestic oil supply, 

along with 90 percent of Alaska’s state revenues (Bourne 2006). 

The North Slope of Alaska is home to the largest oil reserves in North America. 

The Prudhoe Bay oilfield was discovered in 1968 and by 1977 the Trans-Alaska pipeline 
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was completed which kicked off oil exploration on Alaska’s North Slope. Since then oil 

and gas activity on the North Slope has flourished. 

“The state of Alaska currently receives almost 90% of its general fund revenues 

from petroleum revenues (royalties, production taxes, property taxes, and corporate 

income taxes) and will remain heavily dependent on these revenues for the foreseeable 

future” (Sheets 2009). The State Royalties Returned are annual payments to every 

resident of Alaska, including children, and has grown steadily from a few hundred 

dollars in the early 1980’s to about $1,174 in 2011 (ADR 2011) .There has been recent 

interest to commercialize gas resources on the North Slope by building a pipeline to 

transport gas from the North Slope to major gas markets. This gas pipeline will allow the 

North Slope natural gas resources to be exploited alongside the crude oil that is pumped 

and delivered to Valdez via the Trans-Alaska pipeline. With the construction of a gas 

pipeline, long term exploration on the North Slope seems all but certain. In addition, 

There is huge support for an expansion of drilling activities into new areas on Alaska’s 

North Slope from a majority of Alaskans, including every governor, senator, and house 

representative for the past 25 years (ANWR 2011). 

A major component of oil and gas exploration is the infrastructure which is built 

and maintained to support such activities. The construction of buildings, roads, pipelines, 

power lines, and well pads cause alterations to the North Slope landscape. Some of the 

most common types of infrastructure are ice roads and ice pads which provide a cost 

effective means to support travel and construction activities during the winter season, 

while minimizing the negative impacts to sensitive tundra and North Slope species.  
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Prior to the adoption of ice road construction, the majority of roads on the North 

Slope were constructed from gravel. This type of road construction has damaging effects 

on the tundra as well as the wildlife on the North Slope. Roads have direct impacts over 

the tundra they cover and kill but also can have impacts on the tundra around them. 

Heavy travel on these roads can induce severe, chronic dust deposition to the 

surrounding ecosystems (Auerbach et al. 1997).  

 Ice roads are commonly used in exploration activities because they induce less 

damage and stress to the underlying tundra and melt away during the spring thaw. They 

do however have an effect on the ecosystem as they require a large amount of water for 

construction which could potentially have a negative impact on the water balance and 

water chemistry of the North Slope lakes. Prior to ice road and ice pad construction, to 

support exploration activities temporary roads were carved out of the tundra during the 

summer season. This invasive approach left lasting scars across the tundra that can still 

be seen today and are unlikely to recover in the near future. The tundra of the North 

Slope is extremely sensitive to disturbances and is slow to recover from damage 

(McKendrick 1987). Ice roads and ice pads provide a non-invasive way to build 

temporary roads and support travel for oil exploration activities. During the beginning of 

the winter season when the tundra underneath is frozen over, construction teams pump 

water from the North Slope lakes, mix the water with ice chips and snow slurry, and 

spray it on the road site, creating a layer of ice. This layer of ice supports travel on the 

North Slope during the winter season. In the spring the ice road melts turning into runoff 
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and the underlying tundra is largely unaffected. Ice roads are thus a much better option 

for exploration infrastructure in terms of costs and the effects on underlying tundra. 

Climate change also continues to have a large impact on exploration season of 

the North Slope. “Alaska’s North Slope is especially vulnerable to climatic change 

because higher latitudes are subject to positive snow- and sea ice-atmosphere feedbacks 

under warming conditions and because the dynamics of frozen seascapes and landscapes 

are tightly determined by thermal regime” (Kittel et al. 2011). Because of a multitude of 

factors including management decisions, different measurement techniques, and climate 

change, the winter season for oil exploration and development  was reduced from 200 

days in the 1970s to 100 days by the early 1990s (Campbell 2009). Today the oil 

exploration season has rebounded from its low levels in the 1990s and is open for around 

150 days.   

NSDSS has been developed to create a water resources management solution for 

ice road construction which considers multiple objectives including optimal water use, 

direct and cumulative environmental impacts, and cost reduction. The solution includes 

an information system, and decision support tools to develop and analyze ice road plans. 

4.3 METHODOLOGY 
 

The White Hills ice road case study has been developed within NSDSS.net, a 

Microsoft Silverlight-based web application which serves as the front end of the NSDSS 

system. It is a GIS-based map application with four modules that interact with the map: 
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Data Exploration, Data Publishing, Environmental Analysis, and Ice Road Planning.  It 

is here that users can develop ice roads, upload data, and run environmental analysis.  

The major difference between this case study and Bois D’Arc Reservoir pipeline 

routing study is that the algorithm used within this study is not multi-objective in the 

sense that it uses a traditional approach to multi-objective routing by reducing all the 

objectives into one objective. The algorithm considers objectives such as material costs, 

distance from permitted lakes (supply points), as well as travel time and construction 

duration. A monetization factor is applied to every objective so that the algorithm 

develops a least cost path.  

The White Hills Ice Road was built in 3 sections. One section from the Franklin 

Bluffs staging area to the well location Smilodon has 8 river crossings and is 

approximately 54 km long. The second section from Smilodon north to Panthera has 5 

river crossings and is approximately 16 km long. The third section from Smilodon south 

to Mastodon has 1 river crossing and is approximately 9 km long.  A map of the 

preliminary route developed by Chevron is given below. Each of these three sections 

were modeled separately within the ice road planning module.  
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Fig. 4.1. Preliminary route (Sullivan 2007) 

 

Figure 4.1 illustrates the preliminary route of the White Hills ice road developed 

by Chevron. The map also displays the lakes that were permitted for water withdrawal in 

the area (Sullivan 2007). 

In order to model the route within NSDSS the river crossings were used as 

waypoints between the start and end point. This is because it is assumed that before the 

ice road planning process, desirable river crossings are predetermined. The river 

crossings used are illustrated in Figure 4.2. According to Matthew Whitman, a fisheries 

biologist with the U.S. Bureau of Land Management, stream locations that freeze over 

completely are best for river crossings because of the need to minimize impacts on 

winter fish habitats (Bailey 2010). During the summer, the potential route is walked and 

desirable stream locations are located before the route is planned. Ice bridges which are 
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much thicker than ice roads in order to support the weight of vehicles crossing over are 

built at these stream crossing locations. After the season is over the bridges are broken 

up into chunks and removed before melting occurs to prevent flooding (Campbell 2009). 

 

 

Fig. 4.2. River crossings. The figure above illustrates the preliminary White Hills ice 
road design (Sullivan 2008), the  river crossings are marked by red circles. 

 

 

In all there were 27 lakes permitted for use for the White Hills Ice road. A lake 

study was conducted by Arctic Slope Regional Corporation (ASRC) Energy Services, 

Regulatory and Technical Services (AES-RTS) (Sullivan 2007). This report provided a 

summary of recommended winter water withdrawals supporting onshore exploration 

drilling, lake bathymetry for lakes south of the proposed Mastodon drill site, and 
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information on fish species and water quality for the 28 lakes surveyed. The amount of 

water permitted for withdrawal in each lake differs depending on several different 

factors. One is whether or not sensitive fish species are present. If sensitive fish species 

are present, water withdrawal is limited to 15 % of the volume under 7 feet of ice. The 

water withdrawal permitted for lakes with non-sensitive fish species present is 30% of 

the water volume under 5 feet of ice. This is due the greater tolerance of non-sensitive 

fish species to lower dissolved oxygen and higher concentration of dissolved solids. For 

all non fish bearing lakes as maximum of 20 percent of the total lake volume is available 

for water and ice chips. Table A.1 in the appendix contains the Lakes that were studied 

as well as the permitted amount of water available within each lake. 

Within the NSDSS tool the Ice Road Planning module is used to conduct ice road 

case studies. The Ice Road Planning module allows users to develop their own ice road 

plans and analyze the results over multiple planning objectives. The Ice Road Planning 

module has four input setting categories that the user customizes to build an ice road. 

Within the spatial settings of the Ice Road Planning module the user can select the start 

point and end point using either the mouse or the latitude and longitude coordinates. The 

user is also able to modify the grid cell size to be used – the default is 2000m.  Within 

the map input settings of the module the user is able to select the way points between the 

start and end point, select the lakes used for ice road construction material, and define 

exclusion zones within the search domain. Exclusion zones represent areas of the search 

space that the algorithm will not search in. These exclusion zones must be spatially 

defined within the tool by the user and can represent areas such as sensitive tundra, or 
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polar bear zones that the user wishes to eliminate from the search space.  Within the 

planning inputs settings the user can customize the type of road, earliest construction 

date, tundra opening date, and construction equipment available. The monetization factor 

of all three objectives can also be adjusted which include travel time ($/minute), 

construction cost ($/Dollar), and construction duration ($/day).  

After defining all the previous settings, the first processing step Get GeoSpatial 

Data is run. This function loads in the geospatial input data of each grid cell from the 

server. Finally the Find Optimal Ice Road Routes function is run which determines the 

best ice road routes and gives the results in the pane of the Ice Road Planning module. 

 

 

Fig. 4.3. NSDSS.net screenshot 
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Figure 4.3 is a screen shot of the ice road planning modules within NSDSS.net. 

The panel on the left shows the 4 different input settings categories and the map 

illustrates a search domain created within the tool.  

4.4 RESULTS AND ANALYSIS 
 

The Ice Road Planning module was run for the White Hills ice road scenario. 

Because the ice road had three separate sections and the river crossings were 

predetermined, the ice road was split at the Smilodon junction and the tool was run 

separately for all three sections. The first section was from the Franklin Bluffs staging 

area to the well location Smilodon, the second section from Smilodon north to Panthera, 

and the third section from Smilodon south to Mastodon. Each river crossing was used as 

waypoints between the start and endpoints. The model was run using 500 meter grid 

cells. 

The four objectives tied to the cost of the road are travel time, construction cost, 

construction duration, and distance from supply points. The two routes were compared 

based on the costs associated with the routes length and spatial location. The travel time, 

construction cost, and construction duration are all costs associated with the length of the 

path. The distance from supply points is associated with the spatial location of the path 

in relation to the permitted lakes used for water withdrawal. The results developed from 

the model were compared against what was designed as a preliminary route by Chevron. 

The NSDSS route summary is given in Table 4.1 and a comparison of the results is 

given in Table 4.2. Figure 4.4 illustrates the two separate routes. 
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Fig. 4.4. Preliminary route vs. NSDSS route 
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      Table 4.1. NSDSS Route Summary 

WHIR 
Section 

Length 
(miles) 

Cost 
(Million $) 

Water 
Used (M 
gal) 

Avg. Haul 
Distance 
(miles) 

Start Point to Smilodon       

1  4.53 1.15 10.359 1.63 

2  3.26 0.86 7.454 0.68 

3  1.62 0.35 3.704 5.6 

4  4.57 1.16 10.444 5.2 

5  3.8 1.01 8.698 7.99 

6  1.7 0.41 3.893 0.54 

7  4.88 1.2 11.158 6.67 

8  0.73 0.19 1.668 4.9 

9  0.91 0.2 2.087 0.95 

10  5.22 1.32 11.944 6.39 

∑  31.22 8 71.41 4.61 

Smilodon to Pantera       

11  2.14 0.52 4.889 7.3 

12  2.71 0.68 6.205 11.56 

13  2.05 0.54 4.682 21.09 

14  2.76 0.62 6.307 3.36 

15  0.62 0.2 1.423 3.29 

∑  10.28 3 23.51 9.87 

Smilodon to Mastodon       

16  3.51 0.85 8.026 3.6 

17  2.11 0.55 4.823 18.56 

∑  5.62 1 12.85 9.22 

Total  47.12 12 107.76 6.31 
 

 

 

Within the NSDSS tool the final route had a final cost value of $12,000,000, was 

47.12 miles in length, used an estimated total of 108 million gallons of water and had an 

average haul distance of 6.31 miles. 
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        Table 4.2. Route Length Comparison 

WHIR 
Section 

Preliminary 
Design Route

NSDSS 
Route 

   Length (miles) 

Start Point to Smilodon    

1 4.91 4.88

2 3.78 3.43

3 1.95 1.75

4 4.53 4.84

5 4.24 4.13

6 1.86 1.91

7 5.27 5.19

8 1.02 0.76

9 1.01 0.97

10 5.24 5.24

∑ 33.81 33.09

Smilodon to Pantera    

11 2.22 2.34

12 2.65 2.62

13 1.78 2.11

14 0.93 2.84

15 0.61 0.61

∑ 8.20 10.52

Smilodon to Mastodon    

16 3.53 3.70

17 2.04 2.19

∑ 5.58 5.89

Total  47.58 49.50

 

In order to compare the two routes the map of the White Hills ice road 

preliminary design developed by Chevron, and the routes developed by NSDSS were 

digitized and georeferenced within ArcGIS. After this the routes were analyzed using 

tools within GIS. The preliminary route had a total length of 47.58 miles. The route 
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developed by NSDSS had a total length of 49.50 miles, 2.38 miles more than the length 

calculated by NSDSS. This difference can be attributed to the error in digitizing and 

georeferencing the map within GIS. 

Each run within NSDSS produced the 10 best routes according to the costs. The 

table of results displays the length (miles), cost (million $), water used (million gallons), 

and the average haul distance (miles). The results table for section 12 is shown in Figure 

4.5. The results were then plotted using the length of the path, cost, and the average haul 

distance. The plotted results for section 12 are given in Figure 4.6. 

 

 

Fig. 4.5. NSDSS section 12 results 
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Fig. 4.6. NSDSS section 12 results – plot 

 

 

 

Figure 4.6 illustrates the relationships between the length of the path, the average 

haul distance, and the cost of the path. Plots for each section can be found in the 

appendix. From this figure you can see that the path with the shortest length is not 

necessarily the path with the lowest cost. When factoring in the costs associated with the 

haul distance, the most desirable path is one which minimizes both the length of the path 

as well as the haul distance. 

This case study has proven the effectiveness of using multi-objective ant colony 

optimization to develop least costs paths with a construction distance constraint. The 

case study has demonstrated the ability of the algorithm to be used as an effective means 

of producing approximate Pareto-optimal solutions for ice road routing problems. The 
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ice road planning module within NSDSS can be used as a useful tool in determining 

desirable ice road routes at a planning level. By using a system that produces Pareto-

optimal solutions for different ice road planning scenarios, a decision maker can evaluate 

the tradeoffs between alternatives. 
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5. REGION C CASE STUDY 
 

5.1 INTRODUCTION 
 

This multi-objective algorithm is not confined in applicability to ice road 

planning, there are multiple types of infrastructure planning to which this particular 

multiple objective ant colony optimization algorithm can be used. Many types of 

infrastructure routing problems are relatable in that they share common objectives such 

as construction costs, length, environmental impacts, etc. One type of infrastructure 

routing problem in particular that can be solved using this algorithm is that of raw water 

distribution systems. Raw water transmission routing, like ice road planning, is a multi-

objective routing problem which this algorithm can be easily applied to. A case study 

has been developed to apply the MOACO algorithm to a raw water transmission system 

design. 

In order to test the performance of the algorithm in a real world infrastructure 

planning application outside of ice road planning, a case study was conducted using the 

algorithm to route a raw water transmission pipeline in the Region C water planning 

district. The Region C planning district is comprised of 15 counties in North Texas 

including Dallas and Tarrant counties. Because the population of North Texas is growing 

and is projected to continue to grow substantially in oncoming years (Gooch et al. 2011), 

water managers are looking for new water supplies to meet the growing demand. One 

solution to create a new water supply is the construction of the Lower Bois D’Arc Creek 

Reservoir in Fannin County. The project is being funded by the North Texas Municipal 
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Water district, a government entity that provides potable water to 1.3 million customers 

in parts of Collin, Dallas, Denton, Fannin, Hopkins, Hunt, Kaufman, Rains, and 

Rockwell counties. Bois D’Arc Reservoir is expected to be a 17,000 acre lake with a 

storage capacity of 367,609 million gallons, and a yield of 113 million gallons per day to 

serve the water supply needs of the Dallas-Fort Worth area (Rich 2009). As part of this 

project a water transmission pipeline was designed to carry raw water south of the 

reservoir to a water transmission facility located near Lavon Lake in Collin County.  

The preliminary design calls for a primary 90-inch pipeline running 29 miles 

from Bois D’Arc Reservoir to a 460-million gallon terminal storage reservoir which is 

located near the newly constructed water treatment plant outside of the town of Leonard. 

The discharge from the Leonard storage reservoir is to be comprised of 14.4 miles of 66-

inch pipeline and an outfall structure at Pilot Grove Creek (Rich 2009). This pipeline 

was selected as a case study because it had recently been designed and would allow for a 

comparison between the routes the algorithm produces versus what was actually 

designed to be built. By comparing the results for the algorithm versus the actual 

preliminary design, the quality of the results can be determined using the preliminary 

design as a standard. 
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Fig. 5.1. Preliminary pipeline route 

 

 

Figure 5.1 above represents the preliminary pipeline route developed by Alan 

Plummer & Associates. The pipeline goes from the Bois D’Arc Reservoir south to the 

Leonard Storage Reservoir and from there to the outlet point at Pilot Grove Creek. 

5.2 METHODOLOGY 
 

The purpose of this case study is to demonstrate the applicability of the algorithm 

to a raw water transmission routing problem. This Region C pipeline routing problem 

provides a good case study of a contemporary infrastructure routing problem. A 

preliminary route of the pipeline was developed by Alan Plummer Associates, Inc. “The 

study consisted primarily of desktop analyses using information such as USGS 

topographic maps, aerial photography, NRCS digital soil map data, and National 
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Wetland Inventory (NWI) maps to identify potential wetlands, streams, and other water 

bodies that may be waters of the U.S. and could be affected by the pipeline construction” 

(Manning 2011). This preliminary pipeline route will be used as a comparison against 

what the algorithm develops within the model. 

The design of raw water transmission facilities considers multiple objectives 

such as cost, time of construction, environmental impacts, easements and risk. Within 

this particular case there are two objectives used within the algorithm to determine the 

desirability of each path. The first criterion is the cost of the pipe used to deliver the raw 

water. The second is a level-of-impact scoring system which determines the level-of-

impact from the pipeline route given the land use type. The level-of-impact scoring 

system developed could be used for raw water transmission routing or other pipeline 

infrastructure. This multi-objective approach delivers solutions that both consider the 

construction and material cost as well as non-material impacts and costs such as rights-

of-way, permits, and mitigation. Even though the level-of-impacts can be assumed to be 

a measure of potential costs, there is a substantial amount of ambiguity and uncertainty 

due to the multitude of possible costs, permits, and time constraints that are associated 

with each specific impact. Thus, a level-of-impact scoring system provides a way to 

understand what the potential level of costs and time associated with a path might be. 

This impact score optimized alongside a construction and material cost, allows a planner 

and decision maker to understand the potential tradeoffs associated with a pipeline route. 

Furthermore, a decision maker can weigh specific impacts such as highway crossings or 
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environmental impacts versus cost of pipe to gauge a tradeoff relationship between even 

more specific objectives.  

The cost estimates were calculated using information from Appendix R of the 

Region C 2011 Final Plan. The Region C 2011 Plan was developed by a consultation 

team which includes Freese and Nichols, Alan Plummer Associates, CP&Y, and 

Cooksey Communications. The report is in response to Senate Bill One, passed by the 

75th Texas legislature in 1997 to address Texas water issues. It gives the results of the 

latest round of planning for Region C which addresses the future water needs of Region 

C in Texas. 

 Appendix R contains cost estimate guidelines and specifications designed to be 

used for preliminary overviews and not for detailed feasibility analysis. The costs in the 

table for pipelines “are based on standard unit costs that include contractors’ 

mobilization, overhead and profit. The unit costs do not include engineering, 

contingency, financial and legal services, costs for land and rights-of-way, permits, 

environmental and archeological studies, or mitigation” (Gooch et al. 2011). Table 5.1 

displays the cost per length of pipe which was used to calculate the costs of the pipeline 

routes in the first objective. 
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   Table 5.1. Pipe Costs 

 

 

The level-of-impact scoring system was used as a second objective. The scoring 

system determines the level-of-impact of the route based on the spatial location and land 

use. The impacts considered are construction impacts, right-of-way/easement 

requirements, business impacts, and environmental impacts. Each category has a level of 

impact score associated with the land use type which is rated on a scale of 1-5. Table 5.2 

below represents the level of impact scoring criterion used. 
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Table 5.2. Level-of-Impact Scores 

Level of Impact 

Land Use Const. 
Right of Way 
/Easements Business Environ. Total

Barren Land 1 1 0 0 2 
Cultivated Crops 1 1 0 0 2 
Deciduous Forest 1 1 0 0 2 
Developed, High Intensity 2 5 4 0 11 
Developed, Medium Intensity 2 4 4 0 10 
Developed, Low Intensity 2 3 3 0 8 
Developed, Open Space 2 2 2 0 6 
Emergent Herbaceous Wetlands 2 1 0 3 6 
Evergreen Forest 1 1 0 0 2 
Hay/Pasture 1 1 0 0 2 
Herbaceous 1 1 0 0 2 
Mixed Forest 1 1 0 0 2 
Open Water 1 1 0 3 5 
Shrub/Scrub 1 1 0 0 2 
Woody Wetlands 1 1 0 3 5 
 

The scoring system of the algorithm was slightly modified to account for 

highway and railroad crossings. Where an ant is following a highway right-of-way, the 

level-of-impact score is reduced by 50% to account for the reduced right-of-way cost. 

When an ants’ path crosses over a highway or railroad, there is a level-of-impact score 

of 5 to account for the impacts associated with crossing a major transportation corridor.  

The first step in creating the model was to set up an ArcMap containing the 

necessary data to properly represent the problem. Land use information was obtained 

from USGS NLCD data. Aerial imagery, TxDOT roads, highways and rail lines, as well 

as hydrologic data were obtained through the Texas A&M University Library GIS 

Online Data. After collecting all of the data a rectangular area of interest was created 
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encompassing the pipeline route from Bois D’arc Reservoir to the outlet at Pilot Grove 

Creek.  

 

Fig. 5.2. Study area grid for pipe 1 
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Fig. 5.3. Study area grid for pipe section 2 

 

 

 

Because of the grid domain size limitations, the problem area was divided into 

different size grid cells for each of the pipelines. The study area for the first and largest 

pipeline from Bois D’arc reservoir to the Leonard reservoir was divided into grid cells 

approximately 0.5 square miles, each cell being 3370 feet wide. The study area for the 

second pipeline from Leonard reservoir to the outfall at pilot grove creek was divided 

into square grid cells 2,640 feet in length. Figures 5.2 and 5.3 illustrate the study areas 

for the two separate pipelines. In both cases the level of detail is sufficient to allow for a 

preliminary route study for this case and properly represents land uses, major 

infrastructure, and waterways. It is not a fine enough resolution to properly represent 

parallel utilities or utility crossings such as gravity sewers, water mains, power 

transmission lines, or oil and gas pipelines. It is also not fine enough to properly 
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represent small public infrastructure such as parks, local and collector roads, public 

service facilities, schools, parks, airports, golf courses or cemeteries.  This also does not 

take into consideration construction risk associated with tunneling, shaft construction or 

proximity to objects, it does not take into account specific hydraulic considerations such 

as bends and fittings and it does not account for cultural, archeological or historical 

impacts. Even though it does not represent these pertinent pipeline routing 

considerations, the level of detail used is sufficient for a preliminary route planning 

study which is not intended to take into account that level of detail. 

The pipeline route was modeled in two separate sections. Because the pipe is 

intended enter the storage reservoir outside of the town of Levon, this location was used 

as a waypoint between Bois D’Arc Reservoir and the outlet structure at Pilot Grove 

Creek. A problem area was formulated by creating a buffer between the start point, 

waypoint and endpoint. The buffer distance b is a function of the distance x between the 

two points of interest of each section given by  ܾ ൌ ݔ  4ൗ . This method created two 

separate buffer areas, one between Bois D’arc Reservoir and Levon Reservoir and the 

other between Levon Reservoir and the outlet at Pilot Grove Creek. The distance 

between Bois D’arc Reservoir and Levon Reservoir is 23.7 miles, creating a buffer area 

of 251,253 acres. The distance between Levon Reservoir and the outlet at Pilot Grove 

Creek is 12.8 miles, creating a buffer area of 73,601 acres. The two buffered areas are 

shown in Figure 5.4. 
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Fig. 5.4. Buffer zones 

 

 

 

Once this map was created the pertinent information was exported into Excel and 

maps within Excel were formed. Landuse, highways, railroads, city boundaries and 

hydrologic data were imported and maps representing each were created within Excel. 

Figure 5.5 illustrates the land use values of the area of interest. Land use values were 

calculated as the land use at the center of each grid cell. This method is consistent with 

the method used to calculate the geospatial information using the ice road planning 

module within NSDSS. 
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Fig. 5.5. Land use. This figure represents the different land uses within the Microsoft 
Excel model platform for pipe section 2. The cells with black borders represent major 
highways or railroads. 

 

 

 

According to the U.S. Army Corps of Engineers there are impacts “that should be 

avoided and minimized to the extent practicable during final design by such means as: 

adjusting the pipeline alignment to avoid discrete water bodies such as wetlands and 

open waters, crossing streams at narrow points and at right angles to minimize crossing 

lengths, and reducing the construction easement clearing width to the minimum 

necessary at stream crossings to preserve existing riparian vegetation” (Manning 2011). 

Because of the low level of detail, minimizing final design objectives such as crossing 

lengths and stream crossings to narrow points is not possible. However, avoiding 

discrete water bodies such as wetlands and open waters is possible by making all 
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wetlands and open water bodies exclusion zones. Figure 5.6 and 5.7 below illustrate the 

exclusion zones of both buffered areas within Microsoft Excel. 

 

 

Fig. 5.6. Leonard Reservoir to Pilot Grove Creek - exclusion zones 
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Fig. 5.7. Bois D'arc Reservoir to Leonard Reservoir - exclusion zones 

 

 

The graph pruning algorithm was run for both sections using the water bodies 

and wetlands as exclusion zones. The pruning algorithm reduces the complexity of the 

problem by eliminating searching within the grid in areas that are unlikely to contain 

optimal solutions. Figures 5.8 and 5.9 represent the problem areas after the pruning 

algorithm is run. 
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Fig. 5.8. Bois D'Arc Reservoir to Leonard Reservoir – pruned 

 

 

 

Fig. 5.9. Leonard Reservoir to Pilot Grove Creek – pruned 
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5.3 RESULTS AND ANALYSIS 
 

The algorithm was run for 100 iterations using a multiple colony approach with 3 

colonies representing a bi-objective problem. The first objective is the cost of the pipe, 

and the second objective is a minimization of the level-of-impact score. The input 

settings for the algorithm are represented in Table 5.3 below. 

              

    Table 5.3. Algorithm Parameters 

Parameter Values Considered 
Parameter Value 
Number of Ants 30 
Number of Colonies 3 
α 0.5 
β 0.5 
λ  0.7 
Number of Iterations 100 

Computer Specifications 

Intel Core™2 Duo 
CPU 2.40 GHz with 
4.00 GB RAM 

Operating System 
Windows 7 
Enterprise 

 

 

 

The pipeline was implemented into the grid cell format by using a spatial join in 

ArcGIS. Because the resolution is much higher for a line than a grid cell 2,640 ft in 

length, the path is longer than it was actually designed to be when it is represented by the 

grid cells. Using this method the score and costs of the preexisting pipe line were very 
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high. Section one of the preliminary route had a level of impact score of 509,520 and a 

pipe cost of $79 million.  Section two of the preliminary route had a level of impact 

score of 306,240 and a pipe cost of $31 million. Because of this, redundant cells within 

the preexisting pipeline route were removed to produce a better representation of the 

actual pipeline route and distance. It also improved the consistency between the 

algorithms routes and the preexisting route. With the redundant cells removed the first 

section of the preliminary route had a level of impact score of 353,369 and a cost of 

$58.9 million. The second section of the preliminary route had a level of impact score of 

232,520, and a cost of $23.4 million. Figure 5.10 represents the preliminary route and 

illustrates how the redundant cells were removed. 
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Fig. 5.10. Preliminary pipe design 

 

Figure 5.11 represents the non-dominated solutions for section 1. The individual 

paths are represented by Figures 5.12 - 5.13 and the preliminary route by Figure 5.14. 

This section took 3,442 seconds to run and 183,383 ant steps. Figure 5.15 represents the 

non-dominated solutions for section 2 from Leonard reservoir to the outlet at Pilot Grove 

creek which are also represented in Figures 5.16 - 5.17. The preliminary route is 

represented by Figure 5.18. This section took 7,211 seconds to run and 815,932 ant 

steps.  The vertical axis represents the pipe cost in millions and the horizontal axis 

represents the level of impact score in thousands. The algorithm produced two Pareto-

optimal solutions for section one and two solutions for section two. The preliminary 
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pipeline design route was put into the grid cell network and the length and score of the 

route were determined. 

 

 
 

Fig. 5.11. Region C section 1 
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Fig. 5.12. Region C section 1 non-dominated solution 1. This figure represents a non-
dominated solution for Region C section 1, with a level of impact score of 280,687 and a 
pipe cost of $54.5 million. 
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Fig. 5.13. Region C section 1 non-dominated solution 2. This figure represents a non-
dominated solution for Region C section 1, with a level of impact score of 311,280, and 
a pipe cost of $53.9 million. 
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Fig. 5.14. Region C section 1 preliminary route. This figure represents the preliminary 
route for Region C section 1, with a level of impact score of 353,369 and a cost of $58.9 
million. 

 



87 
 

 

 

Fig. 5.15. Region C section 2 

 

 

 

Fig. 5.16. Region C section 2 non-dominated solution 1. This figure represents a non-
dominated solution for Region C section 2, with a level of impact score of 159,508 and a 
pipe cost of $24.8 million. 
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Fig. 5.17. Region C section 2 non-dominated solution 2. This figure represents a non-
dominated solution for Region C section 2, with a level of impact score of 178,8125 and 
a pipe cost of $23.8 million. 

 

 

 

Fig. 5.18. Region C section 2 preliminary route. This figure represents the preliminary 
route, with a level of impact score of 232,520 and a cost of $23.4 million. 
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The results obtained from the algorithm are similar to the preliminary routes. The 

algorithm delivers solutions with similar costs but much better level of impact scores. 

There could be multiple reasons for this. Almost certainly the preliminary route planners 

did not use the same scoring system that was used in this case study, and they did not use 

it with this coarse level of detail. More than likely they had their own scoring system 

when designing the route, if a scoring system at all. Because the preliminary route 

developed did not take into account this level of impact score as an objective, the 

algorithms routes produced better results for that objective. The costs are similar because 

it can be inferred that cost was a major objective when designing the route. The cost 

functions used in this case study  provided by Appendix R in the Region C final report 

(Gooch et al. 2011) were probably the same ones that were used in the preliminary route. 

What is case study has demonstrated is the ability of the algorithm to produce 

approximate Pareto-optimal solutions for infrastructure routing problems apart from ice 

road planning. This algorithm produced multiple pipeline routes which represent an 

approximation of the Pareto optimal solutions. By looking at the results you can see 

where a path may be shorter, and thus have a lower pipeline cost, but also has a higher 

level of impact score. This information can be used by a decision maker to determine the 

tradeoff relationship between alternative non-dominated solutions.   
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6. CONCLUSIONS 
 

Infrastructure routing in many cases depends on the optimization of multiple 

sometimes conflicting objectives. Objectives such as cost, length, construction time, and 

environmental impacts are all considered when developing new infrastructure routes. 

Traditional route finding algorithms lack the ability to quickly produce multiple Pareto-

optimal solutions representing the tradeoff relationships between different objectives. 

Using a multi-objective search technique such as ant colony optimization provides a 

decision maker with a variety of alternatives from which to choose.   

This thesis has proposed a multi-objective ant colony optimization algorithm 

capable of approximating Pareto-optimal solutions for multi-objective infrastructure 

routing problems. The algorithm is able to develop desirable routes on an open grid 

framework given spatially defined objectives. The algorithm contains features derived 

from existing multi-objective ant colony optimization techniques and others which are 

unique to infrastructure routing problems. It also includes several pre-processing and 

post-processing techniques which improve the performance of the algorithm. This paper 

has demonstrated the capabilities and applicability of the algorithm to two separate 

infrastructure routing problems. The algorithm has been implemented within NSDSS 

and a successful case study of the White Hills Ice Road using the algorithm within the 

ice road planning module has been conducted. The algorithm has also been applied to a 

second case study involving raw water transmission routing in the Region C water 

planning zone of Texas from the Lower Bois D’arc Reservoir to an outlet at Pilot Grove 

Creek. 



91 
 

 

There are limitations to kinds of problems that this algorithm can solve. The 

algorithm is restricted by the size of the problem that it can solve in a reasonable amount 

of time. It is also intended to be used at a planning level of design and not in the detailed 

design phase. Because in many applications the algorithm it is not able to pick up 

detailed information about the route, it is intended to be used at a planning level phase 

where certain route details are not considered. The algorithm is also not guaranteed to 

find the exact set of optimal solutions, but a set of solutions that is close to Pareto-

optimality.  

There are multiple advantages to using this algorithm to solve infrastructure 

routing problems. The algorithm is capable of producing multiple Pareto-optimal 

solutions in one run as opposed to classical route finding algorithms that take multiple 

runs to produce multiple solutions. By providing a decision maker with a group of 

Pareto-optimal solutions, a decision maker is able to weigh the alternatives and 

determine the best solution based on his or her weight of the different objectives. This 

algorithm is also able to handle construction distance constraints where supply-distance 

availability may alter route feasibility. This algorithm can also be applied to other types 

of multi-objective infrastructure routing problems. From power line to highway routing, 

this algorithm can be used to determine Pareto-optimal routes given more than one 

objective.   

Future work involving this algorithm could examine its performance versus other 

algorithms for classical optimization problems that many existing ant colony 

optimization algorithms have been applied to such as the Traveling Salesman Problem 



92 
 

 

(TSP) or the Knapsack problem. Other future work could involve examining the 

applicability of the algorithm to other engineering applications. There are many different 

applications for which multiple objective ant colony optimization algorithms have been 

applied and the performance of this algorithm to problems outside of infrastructure 

routing could be studied.   
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Fig. A.1. Preliminary route vs. NSDSS 
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Fig. A.2. NSDSS route section
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Fig. A.3. White Hills Ice Road plot section 1 

 

 

Fig. A.4. White Hills Ice Road plot section 2 
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Fig. A.5. White Hills Ice Road plot section 3 

 

 

Fig. A.6. White Hills Ice Road plot section 4 
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Fig. A.7. White Hills Ice Road plot section 5 

 

 

Fig. A.8. White Hills Ice Road plot section 6 
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Fig. A.9. White Hills Ice Road plot section 7 

 

 

Fig. A.10. White Hills Ice Road plot section 8 
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Fig. A.11. White Hills Ice Road plot section 9 

 

 

Fig. A.12. White Hills Ice Road plot section 10 
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Fig. A.13. White Hills Ice Road plot section 11 

 

 

Fig. A.14. White Hills Ice Road plot section 12 
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Fig. A.15. White Hill Ice Road plot section 13 

 

 

 

Fig. A.16. White Hills Ice Road plot section 14 
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Fig. A.17. White Hills Ice Road plot section 15 

 

 

Fig. A.18. White Hills Ice Road plot section 16 
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Fig. A.19. White Hills Ice Road plot section 17 

 

 

 

Fig. A.20. NSDSS section 1 map 
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Fig. A.21. NSDSS section 1 profile 

 

Fig. A.22. NSDSS section 2 map 
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Fig. A.23. NSDSS section 2 profile 

 

Fig. A.24. NSDSS section 3 map 
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Fig. A.25. NSDSS section 3 profile 

 

Fig. A.26. NSDSS section 4 map 
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Fig. A.27. NSDSS section 4 map 

 

Fig. A.28. NSDSS section 5 map 
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Fig. A.29. NSDSS section 5 profile 

 

Fig. A.30. NSDSS section 6 map 
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Fig. A.31. NSDSS section 6 profile 

 

Fig. A.32. NSDSS section 7 map 
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Fig. A.33. NSDSS section 7 profile 

 

Fig. A.34. NSDSS section 8 map 
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Fig. A.35. NSDSS section 8 profile 

 

Fig. A.36. NSDSS section 9 map 
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Fig. A.37. NSDSS section 9 profile 

 

Fig. A.38. NSDSS section 10 map 
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Fig. A.39. NSDSS section 10 profile 

 

Fig. A.40. NSDSS section 11 map 
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Fig. A.41. NSDSS section 11 profile 

 

Fig. A.42. NSDSS section 12 map 
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Fig. A.43. NSDSS section 12 profile 

 

Fig. A.44. NSDSS section 13 map 
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Fig. A.45. NSDSS section 13 profile 

 

Fig. A.46. NSDSS section 14 map 
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Fig. A.47. NSDSS section 14 profile 

 

Fig. A.48. NSDSS section 15 map 
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Fig. A.49. NSDSS section 15 profile 

 

Fig. A.50. NSDSS section 16 map 
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Fig. A.51. NSDSS section 16 profile 

 

Fig. A.52. NSDSS section 17 map 
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Fig. A.53. NSDSS section 17 profile



             
 

 

Table A.1. White Hills Ice Road Lakes Data 

Chevron 
Lake 
Number 

NSDSS 
Lake 
Number 

R and RTS 
Lake 
Names  Latitude  Longitude 

Surface 
Area 
(acres) 

Max 
Depth 
(ft.) 

Total 
Volume 
(mil. Gal) 

Recommended 
Max 
Withdrawal 
(mil. Gal.) 

Sensitive 
Fish 
Species 

Resistant 
Fish 
Species 

Permitted 
Amount 
(mil. Gal.) 

W1*  32055 R0616  69.71525 -148.81441 242.792 5.7 244.616 0.166 No  Yes  0.17

W47*  26162 R0644  69.71849 -149.0118 61.899 8.2 57.055 0.927 No  Yes  0.93

W11*  33388 R0619  69.70518 -149.2059 62.084 6.3 85.312 1.701 No  Yes  1.7

W5*  35034 R0620  69.69136 -149.19412 81.49 8.7 147.134 9.522 No  Yes  9.52

W6*  36673 R0622  69.7155 -149.30338 147.379 18 264.645 19.366 No  Yes  19.37

W12*  31711 R0630  69.71954 -149.45123 185.545 7.5 301.811 12.788 No  Yes  12.79

W7*  31346 R0629  69.71679 -149.54281 362.287 5.9 344.567 0.836 No  Yes  0.84

W8*  35042 R0633  69.71688 -149.75425 97.868 13.4 127.976 6.587 No  Yes  6.59

W17*  34856 R0626  69.7022 -149.80878 71.842 10.2 109.629 4.662 No  Yes  4.66

W18* 34855 R0625  69.70143 -149.86223 138.176 7 196.774 0 Yes  Assumed  19.10 (ice only) 

W3*  36105 R0624  69.71143 -149.9393 110.614 8.2 178.889 35.778 No  No  35.78

W25*  32849 R0640  69.68222 -150.15894 59.048 7.1 103.678 20.736 No  No  20.74

W24*  36495 R0641  69.6607 -150.08464 54.032 11 78.764 2.12 No  Yes  2.12

W4*  33047 R0634  69.61899 -150.02983 52.28 5.9 66.523 0.078 No   Yes  0.08

W20*  27647 R0635  69.61208 -150.00548 83.848 11.3 149.851 11.188 No  Yes  11.19

W54**  35222 RTS07145  69.61333 -149.9355 18.44 9 22.33 0.84 No  Yes  0.84

W19*  36308 R0636  69.5892 -150.02213 65.867 14 105.588 6.317 No   Yes  6.32
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Table A.1 Continued 

W58*  Not in Database RTS07149  69.58691 -149.87111 too shallow  0.5 - 0

W55**  Not in Database RTS07146  69.58444 -149.8611 8.15 10 13.74 0.81 No  Yes  0.81

W57**  Not in Database RTS07148  69.56431 -150.02356 21.98 5 21.98 0 No  Yes  2.20 (ice) 

W56**  34306 RTS07147  69.55079 -150.02342 49.29 5.5 41.49 0 No  Yes  4.15 (ice) 

W52*  26531 R0656  69.80352 -149.58639 130.544 14 263.738 6.365 Yes  Yes  6.37

W2*  36107 R0623  69.83994 -149.72224 108.411 6.8 495.203 13.797 No  Yes  13.8

W30*  28552 R0663  69.99486 -150.01745 197.118 6 253.787 1.373 No   Yes  1.37

W31*  34299 R0664  70.01754 -149.97973 66.189 8.1 108.047 3.327 No  Yes  3.33

W32* 35588 R0665  70.02497 -149.9269 136.771 8.3 216.557 5.982 No  Yes  5.98

W33*  36681 R0666  70.01984 -149.8527 77.086 8.2 77.278 0.271 No  Yes   0.27

W34*  30987 R0667  70.0169 -149.82987 181.854 6.5 250.729 2.2 No  Yes  2.2
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