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ABSTRACT 

 

Somatic Sex Determination in D. melanogaster: Insights in the Establishment to 

Maintenance Transition. 

(May 2012) 

Alejandra Noemi González Rojos, B.S., Pontificia Universidad Católica de Chile 

Chair of Advisory Committee: Dr. James W. Erickson 

  

 In Drosophila melanogaster, sex is determined at the pre-blastoderm stage via an 

X-chromosome counting mechanism. During this process embryos that carry two X 

chromosomes begin to develop as females while embryos with one X start the male 

developmental program. The X-linked genes involved in sex determination, also called 

X-signal elements (XSEs), are: sisterlessA (sisA), sisterlessB (sisB), unpaired (upd), and 

runt. These genes are responsible for the transcriptional activation of the master 

regulatory gene Sex-lethal (Sxl). Expression of Sxl is initially accomplished only in 

females through activation of the establishment promoter SxlPe. Later in development, 

Sxl is transcribed in both sexes through a maintenance promoter, SxlPm, but functional 

Sxl protein is only produced in female flies. Since Sxl is at the top of the sex 

determination cascade, understanding its regulation is key to comprehend the process of 

sex determination. The experiments in this dissertation were designed to better 

understand two aspects of the sex determination mechanism: How the protein encoded 
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by XSE element sisA interacts with SxlPe, and how the transition from regulation by 

SxlPe to regulation by SxlPm occurs.  

 The sisA protein (SisA), as part of the b-ZIP protein family, is thought to bind to 

its target as a dimer, but a dimerization partner has not yet been found. This work uses 

knockouts and germ-line clones to examine interaction between sisA and three SisA 

partner candidates, atf4, CG16813, and CG16815. Although the evidence described here 

suggest that none of the three SisA partner candidates genetically interact with Sis, we 

cannot rule out the possibility of redundancy between the different candidate proteins. 

 This research unravels the timing and regulation of SxlPm expression. I have 

shown, contrary to previous thought, that expression of SxlPe and SxlPm overlaps for a 

brief period. Several of the same proteins that are involved in the regulation of SxlPe, 

including the XSE sisB, also regulate SxlPm. This sex specific regulation leads to a 

sexually dimorphic pattern of activation and early expression of SxlPm. A common 

enhancer region was found to regulate SxlPe as well as SxlPm. These results highlight 

the importance of the transition between SxlPe and SxlPm for the proper establishment 

of sex determination and have implications for how the sex determination mechanism 

evolved. 
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CHAPTER I 

INTRODUCTION  

 

Drosophila somatic sex determination and dosage compensation 

 Understanding how cells, genes or organisms can sense or "count" concentrations 

of regulators in their environment is critical to elucidate how choices in development are 

made. Many crucial biological processes (like quorum sensing in bacteria, Drosophila 

body axis development established by morphogen concentration, etc.) rely on counting 

mechanisms. In Drosophila melanogaster, sex determination is the mechanism in which 

X chromosome dose is counted at the promoter region of a master regulatory gene, sex 

lethal (Sxl), establishing the sexual fate of the organism. During this process, XX flies 

produce early SXL and begin a female developmental program. In contrast, XY flies 

lack Sxl, leading to male development by default. Sxl encodes for a protein that has two 

domains homologous to a RNA recognition motif, RMM domain, which is highly 

conserved among the mRNA binding protein family [1,2]. Sxl directs female 

development by binding to the 3’ proximal splicing site in tra pre-mRNA and thus 

inducing female specific pre-mRNA splicing of the gene transformer (tra) (Fig. 1). 

Occupancy of this splicing site by SXL prevents binding of the splicing factor U2AF. As 

a consequence, splicing at the alternative 3’ distal splicing site occurs, leading to the 

formation of functional TRA protein. In males, the absence of SXL allows binding of the  

____________ 

This dissertation follows the style of PLoS Biology. 
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U2AF factor to the 3’ proximal splicing site in the tra pre-mRNA. Splicing at this site 

produced non-functional tra mRNAs resulting in lack of TRA protein in male flies. TRA 

being an RNA binding protein itself regulates splicing of doublesex (dsx) (Fig. 1) [3-8]. 

TRA splices dsx mRNA into a female mRNA form that is translated into a transcription 

factor called DSX
F
. This protein controls female somatic differentiation by inducing 

feminizing genes and by repressing genes which function in male differentiation. DSX
F
 

acts during early development in differentiation of the female secondary sexual 

characters (like differentiation of genital disk, ovaries, etc.). DSX
F
 also acts throughout 

the life of the fly to maintain yolk proteins and the female fat body tissue. In males, on 

the other hand, lack of TRA leads to the formation of a male specific form of DSX 

called DSX
M

. This protein only differs on the C-terminal domain with DSX
F 

(the male 

protein is longer because it possess additional coding sequences at the C-terminal 

domain). DSX
M

 controls male somatic differentiation by activating genes that promote 

male secondary characteristics (like sex combs, male genitalia, etc) and repressing genes 

that activate female characteristics. Remarkably, lack of the dsx gene produced intersex 

flies where genes that control female and male development are de-repressed and the 

flies exhibit both secondary characteristics [2-4,9,10]. TRA also regulates splicing of the 

gene fruitless (fru). In female flies TRA protein binds near the 5’ splicing site closest to 

the 5’ end of the mRNA and promotes the splicing at this site, thus introducing a stop  
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codon near the N-terminus of FRU, preventing functionality [11]. In males, however 

lack of TRA allows the splicing to occur at the default 5’ splicing site and the mRNAs 

produced are translated into functional FRU (Fig. 1). This protein is mainly expressed in 

the male central nervous system and controls important aspects of the male courtship 

behavior [12-17]. 

 

 

 

 

Fig. 1: Somatic sex determination cascade. In the top panel- female flies expressed 

SXL which can maintain itself through an auto-regulatory feedback loop. SXL blocks 

msl2 mRNA translation. At the same time SXL promotes the formation of functional 

TRA protein. Transformer protein splices dsx and fru to the female mode. In the lower 

panel- Male flies do not express SXL. Because SXL is absent TRA is not produced and 

dsx and fru are spliced to the default male mode. At the same time MSL2 protein is 

produced.  
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 Sxl is also the master regulatory gene of dosage compensation (Fig. 1) [18]. In 

many diploid organisms males have one X chromosome while their female counterparts 

have two X chromosomes. Dosage compensation is the mechanism which equalizes 

gene expression from the single male X chromosome with the female XX chromosomes 

(although evolutionary speaking, it probably evolved to compensate the single X 

chromosome expression so that the overall levels of expression were balanced with the 

diploid autosomal expression). In D. melanogaster, dosage compensation is achieved by 

increasing expression of the single male X chromosome. This is accomplished by the 

dosage compensation complex (DCC complex). DCC complex major components are 

MSL1, MSL2, MSL3, MLE (RNA helicase), MOF (histone acetyltransferase) and the 

rox noncoding RNAs [19-22]. Although the mechanisms that underline this process are 

very controversial, it has been shown that the DCC complex is first attracted to the male 

X chromosome by the hyper-transcription of the rox gene locus [22-25]. DCC then 

recognizes entry sites of sequences, sequences proven to be enriched in the male X 

chromosome [26]. It is still a mystery if the complex can then spread over the male X 

chromosome from the rox gene’s locus [24,27], or if there are sequences around the 

main entry sites with lower affinity that attract the complex to assist in covering the 

entire X chromosome. As a result, increase in transcription of the X chromosome is 

achieved [22,26,28]. In females Sxl is at the top of this cascade of events and regulates 

this process by blocking translation of msl2 [3,29,30]. There are binding sites for SXL at 

the 5’ and 3’ UTR of msl2 mRNA. Previous studies demonstrated that the binding of  
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SXL to the 3’ UTR prevented the assemble of the 43S ribosomal pre-initiation complex 

at the 5’ of msl2 mRNA, and that this mechanism was in part responsible for decreasing 

translation of msl2 [8,31]. Activity of the SXL binding sites at the 5’UTR of msl2 

mRNA was only recently uncovered. SXL binding sites are near three upstream open 

reading frames located at the 5’UTR of msl2 mRNA. Jan Medenbach et. al. 

demonstrated that SXL had the ability to increase initiation of ribosome scanning at the 

nearest upstream open reading frame, and as a result, a decrease in ribosomal scanning 

of the major msl2 open reading frame was observed [32]. These two methods of 

hindering translation assure MSL2 absence in female flies. On the contrary, absence of 

SXL in males results in production of MSL-2 and the assembly of the dosage 

compensation complex on the male X chromosome. As a result, the rate of transcription 

of a male’s single X is elevated two-fold, balancing its expression with autosomal genes. 

It is important to note that lack of SXL in females will cause overexpression of X linked 

genes and death of the fly. Equally, presence of SXL in males will prevent dosage 

compensation from occurring and expression from the single X chromosome will not be 

sufficient to equalize autosomal expression leading to death. This phenotype is what 

gave the name to the Sex lethal gene. 

 

Sxl initiation and maintenance: when and how does the fly know its sex 

 Initially D. melanogaster embryos are syncytial. It is in this complicated 

environment, filled with maternally deposited factors and marked rapid nuclear divisions 

where sex determination takes place. Around nuclear division 8, the first zygotic genes 
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start to express, and with them the X-linked signaling elements (XSE) that signal the 

genetic information in response to the number of X chromosomes [3,8,33]. The fly first 

activates Sxl in nuclear division 12. At this time, only XX female flies carrying a double 

dose of the XSEs accumulate enough XSE proteins to trigger expression of a very 

specialized promoter, SxlPe. This step is called “establishment”, and is the decisive step 

by which SXL early protein is formed, initiating the female sexual pathway. In contrast, 

the male fate is established because XY males carry only a single copy of the XSE 

elements and are unable to reach the concentration threshold necessary to activate SxlPe  

(Fig. 2). Lack of SXL early protein will promote the default male development 

[3,33,34]. 

 Remarkably, the female pathway is driven by only a brief pulse of SxlPe 

promoter activity.  SxlPe is activated in cycle 12 but is permanently shut down in the 

beginning of nuclear division 14 when the embryo starts cellularizing. Thereafter, 

continued Sxl expression relies on a process called “maintenance”. The maintenance 

stage is defined by the presence of properly regulated transcripts from the maintenance 

promoter; SxlPm. SxlPm is expressed in both male and female flies. In males, transcripts 

from this promoter include a specific male exon 3. This exon contains a translational 

stop codon that prevents production of functional Sxl protein (Fig. 2) [3]. In females the 

male exon 3 is skipped and functional Sxl protein is made [35]. Skipping the male exon 3 

in females is due to Sxl auto-regulating its own mRNA splicing. This is auto-regulatory 

feedback loop is what maintains proper Sxl expression for the remainder of the fly’s life.  

[1,36,37]. The role of SxlPe, then, is to provide the brief pulse of early SXL that initiates 
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the autoregulatory loop. Once SxlPm transcripts are spliced in the productive, female, 

mode there is no longer a need for the early form of SXL as the properly spliced female 

SxlPm transcripts can provide a self-regulating source of Sxl protein. 

 The mechanism controlling Sxl splicing control has been an object of intense 

study. It was initially thought that SXL binding sites on its pre mRNA overlapped the 

Spliceosome recruitment site around exon 3. It was assumed that SXL binding around 

the male exon precluded binding and formation of the splicing machinery and with that 

inclusion of exon 3 in the mRNA (Fig. 2) [35]. However, it has been recently 

demonstrated that SXL binding sites are located 200 bp upstream and downstream of the 

male exon 3, and SXL binding to its mRNA does not prevent formation of the basic 

splicing machinery. SXL also interact with basic splicing factors like PPS, U1 snRNP 

and SNF. One of the mechanism previously proposed, that SXL could block binding of 

other splicing factors to the splicing recognition site or it could abolish Spliceosome 

catalytic activity [38,39]. 
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Fig. 2: Male and female splicing of Sxl. In males transcripts from SxlPm include the 

male exon 3 which has a stop codon that prevents formation of functional SXL protein. 

In female flies transcripts from SxlPm skip exon 3 and can produced functional SXL 

protein. This transcripts skip exon 3 with the aid of SXL that binds to either side of the 

male specific exon an prevent splicing from happening at this site. In females initial 

source of SXL is produced from the establishment promoter (Pe). Default splicing of the 

transcripts from Pe promoter do not include exon 3. 

 

 

 

SxlPe – the switch that initiates sex determination 

 SxlPe expression is sexually dimorphic – it is active in female, but not in male, 

embryos. SxlPe is one of the earliest developmental targets of the fly. By the end of 

nuclear division 12 SxlPe is homogeneously expressed in all the somatic cells of the 

embryo. This expression increases through cycle 13 and reaches a peak at the beginning 

of cycle 14. Thereafter expression rapidly decays, but accumulated SxlPe-derived 

mRNA products can be detected through gastrulation [33]. Female-specific activation of 
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SxlPe is accomplished by the diplo-X levels of the X-chromosome signal elements or 

XSEs. Among the XSEs are sisA, sisB, upd, and runt (Fig. 3). These X-linked factors, 

once called numerator elements (for more explanation see below) share many genetic 

characteristics: 1) Increasing the copy number of these genes results in male death due to 

inappropriate expression of SxlPe in males. 2) Decreased copy numbers of these genes 

result in female death because SxlPe is less effectively activated. 3) Female lethal effects 

should vanish when combined with a Sxl constitutive allele like Sxl
M1

 that activates the 

Sxl splicing cascade independent of the normal contribution from SxlPe. 4) Likewise, 

male lethal effects of increased XSE dose are fully suppressed by Sxl null allele like 

Sxl
F1

. 5) All XSEs encode positive regulators of SxlPe consistent with their biological 

function of conveying the dose of X chromosomes to Sxl. [3,40]. Among the XSEs sisA 

and sisB are the strongest activators since they have a strong influence over SxlPe 

activity. These two factors are expressed before nuclear division 10 and are absolutely 

required to express SxlPe, characteristics that distinguish them from their XSEs 

counterparts. The two weaker XSEs, runt, and upd, share the same genetic properties but 

have either smaller, later, or more spatially limited effects on SxlPe. For these reasons, 

upd and runt are sometimes referred to as reinforcement factors [41].  

 The strong XSE sisA is located at the X chromosome in the cytological location 

10B2 (Flybase) and it fulfills all the characteristics required to be an XSE [40]. Genetic 

interaction between sisA and SxlPe promoter has been previously shown [42] but the 

molecular basis of this interaction are still a mystery. The sisA gene product is a highly 

divergent member of the b-ZIP family of transcription factors. b-ZIP proteins encode a 
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coiled-coil domain that is involved in dimerization as well as functioning as the DNA 

binding domain [33]. The structure of sisA protein predicts that it cannot form 

homodimers, suggesting that it requires an as yet unknown dimerization partner to 

activate SxlPe. The search for this dimerization partner constitutes Chapter X of this 

dissertation. 

 sisb is located on the X chromosome cytological location 1A8. sisb’s 

involvement in sex determination has been linked to the T4 transcriptional unit from the 

Achaete-Scute complex, also called scute [43,44]. In-situ hybridization showed that sisb 

transcripts start to appear uniformly through the embryo by nuclear division 9. Its 

expression peaks around cycle 12 and suddenly decreases in early cycle 14 [33]. The 

sisb gene product belongs to the basic helix lop helix (bHLH) family of transcription 

factors. These proteins are characterized by having a basic DNA binding domain and a 

helix loop helix dimerization domain. SisB protein forms a hetero-dimer with the 

maternally deposited factor encoded by daughterless (da). This hetero-dimeric protein 

complex has the ability to bind SxlPe and activate its transcription [45]. 

 The XSE gene unp encodes for a ligand of the JAK-STAT pathway. The 

pathway is activated by binding the ligand Ump to its receptor Domeless. Domeless is a 

receptor tyrosine kinase that transduces the signal by phosphorylating Hopscotch, the 

drosophila JAK homolog. Phosphorylated Hopscotch (Hop) produces a conformational 

change in the Dome homolog less receptor, which allows for binding of the maternally 

deposited transcription factor STAT92E. Binding of STAT92E to the Domeless receptor 

promotes STAT92E phosphorylation. Phosphorylated STAT92E has the capability to 
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enter the nuclei and directly activate promoter expression [41,46]. This pathway’s 

involvement in sex determination has been demonstrated genetically. Avila F.W. et al. 

showed that not only ump but also hop and Stat92E genetically interacted with SxlPe. 

Curiously mutations in the JAK- STAT pathway seemed to alter SxlPe expression only 

in nuclear division 14 and it affected only the central part of the embryo. This fact 

agreed with upd expression starting only in nuclear division 13. Because SxlPe can be 

activated, but not fully maintained, in the absence of the JAK-STAT the signaling 

pathway is viewed as functioning to reinforce SxlPe activity [41].  

 The XSE runt was discovered in Drosophila melanogaster because of its 

involvement in segmentation. As a pair rule gene, Runt regulates transcription of a 

number of other segmentation genes [47,48]. Runt belongs to the RUNX family of DNA 

binding proteins. This relatively new family of proteins has a DNA binding domain 

homologous to the murine PEBP2αB protein domain [49]. Runt can directly bind and 

activate the promoter of its target genes [48] or repress target genes. As a repressor, its 

activity depends upon its WRPW domain, which interacts with the co-repressor Groucho 

[50]. Runt has been described as an XSE, consequently it has the ability to activate SxlPe 

[40]. Mutations in runt cause a decrease in SxlPe gene expression beginning in nuclear 

division 13 in the central region of the embryo suggesting that it, like upd, may not be a 

primary activator of SxlPe. Instead it appears, through an unknown mechanism, to 

maintain SxlPe activity once the promoter has been activated. Although there is a 

published paper claiming that Runt can directly bind to SxlPe promoter, the experiments 

published only showed weak binding that is more consistent with non-specific DNA 
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binding [51] (James Erickson unpublished data), thus the mechanism by which Runt 

regulates SxlPe remains unknown. 

 Negative regulation of SxlPe promoter is accomplished through one autosomal 

gene, deadpan (dpn), and at least three maternally deposited factors, extramachrochetae 

(emc), groucho (gro) and hey (Fig. 3) [52-54]. Dpn belongs to the bHLH family of 

transcription factors which binds to SxlPe promoter. Once bounded to SxlPe promoter, 

Dpn recruits the maternally deposited factor Gro. These factors together decrease SxlPe 

expression. Mutations of dpn have only a modest influence in SxlPe expression when 

compare to Dpn binding site mutants or a decrease of the gro maternally supplied 

product. This together with the fact that dpn only began expressing by nuclear division 

12 [53] suggest that another protein is probably binding to Dpn binding sites and 

inhibiting SxlPe expression. One of these proteins is Hey, which also belongs to the 

bHLH family of transcription factors [52]. 

 Emc is an HLH protein that lacks the basic binding domain. Mutation in the emc 

gene produces only a weak reduction in SxlPe activity. This repressor has been thought 

to operate by capturing bHLH activators like SisB [55] 
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Fig. 3: SxlPe regulators. XSEs, together with the maternal factor da, activate SxlPe 

while the maternal factor gro, emc together with the autosomal gene dpn repress SxlPe 

expression. 

 

 

 

SxlPe promoter structure 

 The SxlPe minimal regulatory sequences have been mapped to a 1.4 kb region, 

upstream of the transcription initiation site (+1) in the early exon 1, E1, of Sxl.  

Expression of a lac Z reporter gene driven by the –1.4 kb of the SxlPe promoter (–1.4 

SxlPe promoter) showed that –1.4 kb is the minimal promoter region necessary to 

resemble endogenous SxlPe expression. The –1.4 SxlPe promoter can also be subdivided 

in two functionally different parts: 1) the proximal 400 bp, necessary to regulate sex 

specificity and 2) the distal 1000 bp that defines promoter strength. To study the 

influence of SxlPe’s activators in the expression of the –400 bp region, a transgene 

including a lac Z reporter driven by the –400 bp promoter region (Pe-400 lacZ) was 

introduced in sisB heterozygous mutant flies. lac Z expression was reduced in the sisB 

heterozygous mutant background when compared to the lac Z expression of the same 

construct in a WT organism. These results demonstrated that sisB positively interacted 

with the -400 bp region [42]. Later, six SISB/Da binding sites within the –400 bp region 



 14

and five binding sites in the region between –0.8 kb to –1.1 kb of the promoter were 

found [45]. Surprisingly, only 3 of the binding sites codified for a canonical E-box 

consensus sequence while the other eight binding sites contained functional, yet non-

canonical SisB binding sites sequences [45]. 

 The same transgenic Pe-400 lacZ reporter described above was used to study the 

relationship between the -400 bp region and sisA. The transgene was introduced in flies 

that were heterozygous for a sisA mutant allele. Just like in sisB mutants, lacZ 

expression was reduced in a sisA heterozygous background when compared to the same 

trans-gene in a WT background. This result indicates that sisA is a positive regulator of 

the -400 bp of SxlPe [42]. Although sisA and SxlPe genetically interact, it is unknown 

whether this interaction is direct. 

 There are three predicted STAT92E binding sites in SxlPe -1.4 region, located at 

-253, -393, and -428 bp. Mutation of these sites causes a decreased in SxlPe activity in 

the central region of the embryo [41]. 

 Four functional Dpn binding sites have also been found in SxlPe. Two of these 

binding sites, −110 and −121 bp, were found to be canonical Dpn binding sites, while 

the other two sites −160 and −330 bp were non-canonical Dpn binding sites. One Dpn 

binding site (-110) overlaps with the 3’ most SisB/Da binding site. This arrangement of 

overlapping activator and repressors binding sites suggests that competency between 

these protein complexes could be the mechanism used for repression [52]. 
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Insights into the counting mechanism 

 The idea that in Drosophila melanogaster sex is determined by the X 

chromosome to Autosomal ratio (X/A) was first proposed in 1921 by Bridges [56] and it 

has been the dominate hypothesis until recently. This idea rose from the observation that 

female flies developed from individuals that carried an X/A ratio of 1.0 (ex. 2X/2A, 

3X/3A) and male flies from those with a X/A ratio of 0.5 or less (XY/2A; XY/3A). Most 

importantly, flies carrying 2X and 3A (triploid flies with 2 X chromosomes) with the 

intermediate X/A of 0.67 developed as intersexes. Through the years, our understanding 

of the sex determination process has grown enormously. The molecular identity of the 

sex determining factors (activators and repressor) has been uncovered, and with that the 

speculation about the molecular mechanisms that drive the sex determination process. 

Initially it was proposed that both (feminizing) positive and (masculinizing) negative 

regulators bind directly to SxlPe and that the effects of the different transcription factors 

was interpreted by the promoter, causing an all or none effect in SxlPe activation [42]. 

The second model invokes titration. In this model the negative regulators physically 

interact with the activator proteins. Consequently, when the levels of repressor proteins 

are equal or greater than the levels of activators, as it occurs in males, repressors titrate 

out the activators preventing them from binding to the promoter and rendering SxlPe 

inactive. On the contrary in female flies, activators are in greater numbers than 

repressors (more X chromosomes thus more activators) and some activators remain free 

to bind and activate SxlPe [57]. Although these models seem to explain the basic X/A 

ratio observations, they did not fit with the molecular identity and function of X linked 
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activators and autosomal repressors. The main missing link was the nature of the 

autosomal repressor Dpn. Dpn is a weak repressor that does not have enough strength to 

balance the strength of the XSEs. The other known repressors were maternally deposited 

and consequently in equal amount in female and male flies. In addition these repressors 

bind SxlPe and execute its activity directly rather than by capturing the XSEs. Taking all 

of these factors in to consideration, it was clear that a reassessment of the X/A ratio 

hypothesis was necessary. An X counting mechanism seemed to better fit the modern 

understanding of sex determination, but how could the observed phenotypes of triploid 

and haploid organisms and cells be explained with the X counting mechanism? The 

answer developed from a molecular characterization of haploid and diploid organisms. 

In this analysis it was discovered that haploid organisms expressed Sxl because they 

have an extra nuclear division before the embryo reached cellularization. This resulted in 

a greater time window during which XSEs could accumulate, permitting them to activate 

SxlPe and become females.  Triploids showed the reciprocal effect. Triploid embryos 

cellularize a nuclear division earlier. As a result, the time necessary for the accumulation 

of the XSEs decreases, leaving 2X/3A animals with insufficient SxlPe-mRNA and early 

Sxl protein, to reliably trigger Sxl autoregulation [8,52]. 

 To explain how activators and repressors can lead to an all or none response in 

SxlPe activity a new model rose. This model proposed that changes at the promoter are 

translated as chromatin modifications that amplify male/female differential response to 

XSEs. In female flies, a double dose of XSEs activate SxlPe changing the chromatin 

environment to an active state, which increases the activation potential of XSEs (Fig. 4 
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A). Contrarily in males, the limited amount of XSEs prevents SxlPe activation keeping 

the chromatin in an inactive state and amplifying the repressive potential of repressors 

(Fig. 4 B) [52]. 

 

 

 

 

Fig. 4: Modern model of the molecular sex determination mechanism. A) Female 

flies have a double amount of XSEs which is enough to overcome the repression 

threshold and activate SxlPe. Active chromatin is acetylated, countering repression, and 

further amplifying activation. Also, XSEs like Runt could interact with repressors like 

Gro to further increase the activating response. B) In males, only single amount of XSEs 

is produced and this is not enough to overcome the repression, rendering the SxlPe 

promoter inactive. Inactive chromatin gets methylated which amplifies the repression 

and dampen the activation down.   
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CHAPTER II 

IDENTIFICATION OF SISTERLESS A PARTNER PROTEIN 

 

 SisA is a strong regulator of SxlPe and a key XSE factor in sex determination. 

Mutations in sisA result in SxlPe inactivity and a decrease in female viability. Increase in 

the copy number of sisA ectopically activates SxlPe in males, reducing male viability 

[34]. sisA is known to regulate SxlPe. As explained earlier, when a lacZ reporter driven 

by SxlPe is introduced in a sisA mutant background, the activity of SxlPe decreases 

indicating SxlPe-sisA interaction [42]. Likewise, sisA mutants show female lethal 

interactions with mutations that specifically affect the early functions of Sxl, but not with 

mutations affecting only Sxl late functions [34]. Because its preponderant role in sex 

determination it is crucial to understand the molecular nature and the mechanisms by 

which sisA regulates SxlPe. 

 SisA belongs to the basic leucine zipper (b-ZIP) transcription factor family.  The 

b-ZIP proteins have an α-helical structure, known as the basic leucine zipper composed 

of a short basic DNA binding region followed by a leucine zipper dimerization domain.  

The dimerization domain is characterized by the presence of 4 or 5 repetitive arrays of a 

seven amino acids motif (‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, and ‘g’) (Fig. 5). The amino acids in 

the ‘a’ and ‘d’ positions create an hydrophobic core on one face of the helix which 

stabilizes to the dimer [58]. Although SisA retains the main features of the b-ZIP family, 

it adopts a non-canonical dimerization domain.  This b-ZIP domain has charged amino 

acids in the ‘a’ position. SisA has an arginine at the ‘a’ position in the second heptad and 
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a glutamic acid in the ‘a’ position in the third heptad.  This modification has been 

proposed to prevent homodimerization and eventually distinguishes SisA as a unique 

member of the b-ZIP family [58]. 

 

 

 

 

Fig. 5: b-ZIP protein dimerization topology. The topology adopted by the seven 

amino acids within one loop of the protein’s coil-coiled domain is shown. The main 

interacting amino acids are at the position ‘a’ and ‘d’. 

 

 

 

 Consistent with structural predictions that SisA cannot form homodimers [58], 

our laboratory has been unable to footprint or gel-shift SxlPe with purified SisA protein 

or with in-vitro translated protein (D. Yang and J. Erickson unpublished). In addition, 

both of our experimental results and theoretical predictions ([58], C. Vinson pers. 

communication) suggest SisA most likely has a novel dimerization partner. I attempted 

to identify that partner by analyzing the most plausible candidate proteins derived from 

two-hybrid analysis and by carrying out a search for protein partners using a Drosophila 

cell culture expression system. Most of the remainder of this chapter is organized into a 

detailed description of my genetic analysis of the candidate genes identified in two-

hybrid screens. Because those results were ultimately inconclusive, I conclude this 
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chapter with a description of two additional experimental approaches I used to identify 

SisA partners so as to provide background and advice for future attempts to identify how 

SisA binds to DNA. 

 

Candidates from a two-hybrid screen 

 To find SisA partner proteins, my laboratory first looked for proteins that 

physically interacted with SisA. The technique used for this purpose was the Gal 4-based 

two-hybrid assay [59]. To pull out most of SisA’s interacting proteins, both the SisA 

coiled–coil domain and the full-length sisA proteins were fused to the DNA binding 

domain of yeast Gal4. A collection of cDNA library clones from embryos of 0 to 6 hours 

old was fused to DNA encoding the activation domain of Gal4. Many proteins interacted 

with SisA and its coil-coil domain. To eliminate false positives in the experiment 

described above, proteins with similar characteristics to Drosophila SisA (sisA from D. 

pseudoobscura and D. virilis) were used as positive controls. Different b-ZIP proteins 

(Giant and CNC) were used as negatives controls. The use of these controls helped to 

reduce the number of candidate genes from eighteen to eight. Within the eight 

interacting proteins two were predicted bHLH proteins, two encoded Zn-fingers, three 

were predicted b-ZIP proteins, and the other was a gene with no known function. Since 

the SisA partner is expected to be a b-ZIP transcription factor I selected the interacting 

b-ZIP proteins as the most likely candidates. 
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 The three b-ZIP proteins were Atf-4, a gene and protein previously identified as 

functioning in pupal development [60], and two related, previously unidentified genes, 

CG16815 and CG16813, neither of which have identifiable homologs in other species. 

 It is important to note that both ATF-4 and CG16815 were isolated multiple 

times and strongly interacted with SisA b-ZIP domain and full-length SisA. CG16813, in 

contrast, was isolated only once and the color of the β- Galactosidase reaction was much 

weaker than the binding detected with CG16815, both of which indicate a weaker 

interaction. 

 As explained above, SisA has a non-canonical dimerization domain. It was 

predicted that proteins with a non-canonical dimerization domain structure can easily 

interact with other proteins that share a non-canonical dimerization domain [58]. All 

three of the identified proteins have b-ZIP sequences that are predicted as non-canonical 

dimerization domains making them plausible candidates to interact with SisA ([58] and 

C. Vinson peers communication). 

 An important characteristic to consider while looking for SisA partner was its 

time of action. SxlPe is active between nuclear cycles 12 and early 14. Transcription of 

sisA starts earlier, at nuclear cycle 8, and it is expressed everywhere in the embryo 

during the period when SxlPe is active. Thereafter sisA expression is limited to the yolk 

nuclei, until the yolk nuclei decay late in embryogenesis [33]. Accordingly, SisA’s 

partner needs either to be expressed in the precellular embryo, or be maternally 

deposited in the egg. Expression of atf4 is known to be a maternally [60] consistent with 
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a possible function in sex determination. Since the expression patterns of CG16815 and 

CG16813 were unknown, I determined it by using in-situ hybridization (Fig. 6). 

 

 

 

Fig. 6: In-situ hybridization of Sis A’s candidates genes.  A) CG16813 maternal 

product.  B) CG16815 maternal product.  C) CG16815 zygotic expression attached to 

yolk, 15-20 min in nuclear cycle 14. 

 

 

 

 As shown in Fig. 6, the CG16813 gene is maternally deposited and distributed 

throughout the egg.  CG16815 is also a maternally deposited mRNA, initially distributed 

throughout the embryo, but it is expressed in the yolk nuclei by cycle 14. This later 

expression of CG16815 mRNA is strikingly similar to the later distribution to sisA 

mRNA which is also limited to the yolk nuclei after the beginning of cycle 14. CG16815 

mRNA has a somewhat similar distribution to sisA mRNA which is present 

predominately in the yolk nuclei after the beginning of cycle 14. atf4 expression did not 

need to be examined because it was known to be a maternally deposited mRNA. 

 The maternally contributed dimerization partner of the X-signal element Scute is 

Daughterless (Da). The da gene exhibits a dominant female-specific lethal genetic 

interaction with zygotic scute mutations raising the likelihood that a similar dominant 

genetic interaction might occur between sisA and its maternally-supplied partner. To 

A B C 
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assess genetic interaction between the candidates and sisA I needed deletions or loss of 

function mutations in CG16815, CG16813, and atf4. The only mutation available for 

CG16815 and CG16813 also included 26 other genes [61] and did not show any 

evidence of genetic interaction with sis A. There were many mutants available for atf4. I 

chose atf4R6 which deleted the entire DNA region encodes for the dimerization domain 

of ATF4. The deletion was produced by imprecise excision of a P-element that removed 

all exons of atf4, except for 1 to 4. There were many mutants available for sisA mutant, I 

chose sisA
1 

[3,33,42,62]. sisA
1
 allele changes an amino acid in the binding domain of the 

protein, precluding SisA from activating SxlPe [62]. Since there were only atf4 and sisA 

mutants available I decided to study interaction between these two genes first. The cross 

was performed as follows: sisA
1
/Y male flies were crossed to atf4R6/ CyO female flies. 

Unfortunately, no decrease in sisA
1
/+; atf4R6/ + female viability was found, indicating 

that there was no dominant genetic interaction (Table 1). One possibility is that in 

heterozygous animals sufficient amounts of the products of these genes are produced by 

the embryo or deposited by the mother in the egg, to compensate for the loss of one copy 

of sisA. To elucidate if there was a genetic interaction between SisA and CG16813, 

CG16813 and atf4, I needed to first generate a knockout of CG16813, CG16813 and 

then eliminate the maternal contribution of these three partner genes. This is generally 

accomplished by abolishing the expression of those genes in the maternal germ-line.  

The dominant female-sterile technique [63] can be used to produce fully viable 

heterozygous mothers that carry a germ-line that is homozygous for a deletion of the 

candidate genes. Thus, the maternal contribution of the partner genes is eliminated in the 
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great majority of the embryos. The dominant female-sterile technique is accomplished 

by using the dominant female-sterile allele OvoD1 and FLP- FRT recombination as 

explained in Fig. 7. 

 

 

 

Table 1: atf4 does not show dominant genetic interaction with sisA  

sisA
1
/Y; +/+ X  +/+; atf4R6/CyO 

 

    Second chromosome phenotype 

 

First chromosome 

phenotype 

atf4R6/+ 

Number of progeny 

+/CyO 

Number of progeny 

sisA
1
/+ 88 92 

+/Y 90 89 
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Fig. 7: Dominant female-sterile technique. Female flies carrying the ∆ATF4/ Ovo
D
 

second chromosome are heat shocked to induce FLP expression. FLP enzyme catalyzes 

FRT specific recombination. Germ-line cells containing the Ovo
D
 mutation will die 

while ∆ATF4 homozygous cells will survive. 

 

 

 

 Because of the unique nature and the chromosomal location of the three 

candidate genes I took different approaches to generate the germ-line clones in each 

case. These approaches will be described in the sections below. 

 

atf4 germ-line clones 

 atf4 is also called cryptocephal (crc). Its cytological location is 39C2-4, at the 

base of chromosome 2L.  The crc mRNA is spliced to produce three different proteins: 

CRC-A, CRC-B, and CRC protein. CRC-A and CRC-B represent 85% and 10%, 
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respectively, of the total CRC protein in the adult fly head, and are the only isoforms of 

the protein that have a b-ZIP domain. Mutation or deletion of aft4 altering the expression 

of the CRC-A or CRC-B protein causes defects in larval molting, and metamorphosis in 

the fly [60]. 

 To eliminate the maternal contribution of atf4 using the dominant female-sterile 

technique, the atf4R6 deletion and the FRT genetic element needed to be on the same 

chromosome arm. Unfortunately, atf4 (at 39C) is located immediately adjacent to the 

available FRT (40A), making it nearly impossible to generate the recombinant flies by 

standard recombination. Instead these recombinants were made using P-induced male 

recombination (in Drosophila, recombination does not usually occur in males, but it can 

be induced artificially using an exogenous recombination function). In this technique, a 

recombination event is induced in males at the P-element, by supplying the P-

transposase (brought by the stable ∆2,3 insertion) [64]. A drawback of using P-induced 

male recombination is that processes like chromosome inversion, deletions and 

duplications can also occur. The greatest obstacle to isolating the required recombinants 

was that both the atf4R6 deletion and the FRT (40A) element carry all or part of the 

original P elements that were used to generate the atf4 deletion [60] and 40A insertion 

(see fly base). This means that recombination or associated chromosomal modifications 

could be generated at either the atf4 locus or the 40A insertion site. To maximize my 

chances of recovering the wanted recombinants while avoiding rearranged or deleted 

chromosomes, I selected for the presence of the atf4R6 deletion and its associated P 

element and for the FRT (40A) containing P element. This was done by choosing flies 
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with dominant w+ eye marker contained in the atf-4 P insertion, and for the neomycin 

resistant (neo
R 

) marker encoded by the 40A FRT (40A) insertion. Presence of this the 

neo
R 

gene allows flies to grow in food supplemented with G418 antibiotic (Fig. 8). I also 

selected against the dominant bristles marker Scutoid (Sco) located distally from the 

FRT element on chromosome 2L (cytological location 35B2). This gene has a phenotype 

that can be easily spotted by short or missing scutelar bristles in the flies’ back. 

Consequently flies that can grow in G418 but do not have short or missing scutelar 

bristles must be recombinant. If they also have the red eyes, they might be carrying the 

desired recombinant chromosome (Fig. 8) 

 

 

 

 

Fig. 8: P element male induced recombination. In presence of the transposase (∆2,3) 

recombination will be induced at the P element or its proximity. Top recombinant 

chromosome can be distinguished because of the loss of the Sco marker and resistance to 

G418 antibiotic. 

 

 

 

 Although the crosses and screens were done so as to maximize the chances of 

identifying the proper recombinant, small deletions or rearrangements that damaged but 
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did not remove the FRT(40A) element or the atf-4 locus would have passed the initial 

screen.  It was thus necessary to corroborate the presence of the atf4R6 deletion along 

with the FRT element in the recombinants. The FRT (40A) element was confirmed by 

PCR. The 40A FRT insertion has many repetitive regions which made the task of 

amplifying across the FRT repeats difficult (Fig. 9). To overcame this limitation I 

decided to amplify the 5’ and 3’ regions of the insertion as described in Fig. 9 below. 

 

 

 

 

Fig. 9: 40A FRT insertion. Molecular map shows repetitive sequences given by the 

multiple copies of neo
R 

gene, Hsp70, P elements and the central FRT duplication. 

 

 

 

 The existence of atf4R6 deletion in the recombinants was confirmed through 

complementation as well as single embryo PCR. To asses complementation the 

recombinant lines were crossed to the original atf4R6 fly line, as well as a mutant fly line 

for atf4 called crc
1
. This mutant has a single base change that replaces Q 171 to R [60] 

and it is hypomorphic. Complementation data disclosed by Hewes et. al.[60] showed that 

only 2% of the crc
1
/ crc

1 
flies survive and that there are not crc

1
/ atf4R6 survival. I also 

tested for the presence of ATF4 b-ZIP domain. A single embryo PCR was performed to 

detect the region that encodes for ATF4 b-ZIP domain. In the atf4R6 FRT/CyO stock ¼ 

of the embryos are expected to be atf4R6 FRT/atf4R6 FRT, these embryos lack the b-
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ZIP domain and should result in absence of a PCR band. As a control, a PCR from the 

original atf4R6 line in addition to W1118 (wild type for atf4) embryos were analyzed. 

 In a small scale experiment I analyzed 519 neomycinresistant flies. Among 

them, 27 lines looked like recombinants. They lost Sco and had red eyes that marked the 

atf4R6 deletion. After PCR and genetic analysis described above none of the 27 lines 

had the recombinant chromosome I was looking for and in fact, all seem to have lost the 

atf4R6 deletion, because they complemented the original deletion as well as the crc
1
 

mutant. Single embryo PCR of these stocks showed a positive b-ZIP domain band for 

100% of the tested embryos (around 80 per line and controls) (Table 2). 

 One of the factors that could lower the chances of finding the atf4R6 FRT 

recombinant chromosome is the fact that the atf4R6 deletion carries the original P 

insertion. Thus, recombination at the P element from atf4R6 could be more efficient than 

recombination at the P element from the FRT insertion. We should also consider the 

chromosomal environment where this gene is located. atf4 is located by the centric 

heterochromatin which is has a tightly packed chromatin structure [65]. This packed 

chromatin might make the distal P element (by the FRT element) less accessible to the 

transposase enzyme. 

 To overcome the low efficiency of the atf4R6 FRT recombination I scaled up the 

same experiment described above, and also attempted to recombine the crc
1
 mutation 

with a FRT into the same chromosome. Since both recombination attempts lead to 

different outcomes I will first describe the atf4R6 FRT recombination results. 
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 To recombine atf4R6 with the 40A FRT element I induced the recombination 

described above in Fig. 8. I analyzed 5,309 neomycin resistant flies (which should carry 

the FRT element). Among them only 153 flies presented the genetic characteristics 

supplied by the desired recombinant chromosome, loss of the Sco marker and presence 

of the atf4R6 marked by the w+ gene (in addition to neo
R
). Of the 153 recombinant 

candidates only 143 were fertile. I molecularly tested for the presence of the FRT 

element in the 143 fly lines by using single fly PCR described above (Fig. 9). Results 

from the PCR indicated that only eight lines had the FRT element (they had the 5’and 3’ 

PCR bands described in Fig. 9). This narrowed down the positive recombinants from 

143 to only eight lines. To re-test for the presence of the atf4R6 deletion genetic 

complementation was assayed by crossing to the original atf4R6 and crc
1
. This time 

none of the atf4R6 FRT lines complemented crc
1
or atf4R6. In addition I molecularly 

tested for the atf4R6 deletion by assessing the absence of ATF4’s b-ZIP domain. As I 

explained above a PCR that detects the b-ZIP region (deleted in atf4R6) should be 

negative in ¼ of the embryos (homozygous atf4R6) from the recombinant lines. The 

PCR showed absence of the b-ZIP domain in a quarter of the embryos as expected. As a 

conclusion I had obtained eight potential atf4 FRT recombinant lines based on genetics 

studies and PCR (Table 2). 
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Table 2: atf4R6 FRT recombination test and results summary 

  Attempt 1 Attempt 2 

To detect Test applied Number of flies or 

fly lines positive 

for the test 

Number of flies or 

fly lines positive 

for the test 

Presence of FRT neo
R
 519 5,309 

Loss of Sco Wild type scutelar 

bristles 

27 153 

 Fertility 27 143 

Presence of FRT 3’ and 5’ PCR of 

40A FRT insertion 

4 8 

Presence of atf4R6 Cross to crc
1
and 

look for lack of 

complementation 

0 8 

Presence of atf4R6 Single embryo PCR 

to detect lack of  

b-ZIP domain 

0 8 

 

 

 

 Once the atf4R6 FRT recombinants were made, they were used to eliminate atf4 

from the maternal contribution. This was accomplished by using the dominant female-

sterile technique (Fig. 7). In this technique, the FLP enzyme catalyzes a recombination 

reaction between the FRT elements from homologous chromosomes. This recombination 

allows some of the cells to be atf4R6 FRT homozygous (Fig. 7). Because the OvoD1 

mutation is a dominant female sterile mutation, most of the OvoD1 homozygous cells, as 

well as the heterozygous OvoD1 cells, cannot produce progenitor cells. Consequently, 

most of the germ-line is populated by cells that are homozygous for the deletion. To 

perform the dominant female-sterile technique, I introduced a chromosome that carried 

the gene encoding for the FLP enzyme into the atf4R6 FRT/CyO stock. Next I brought 

the OvoD1 allele by crossing OvoD1 males to hsFLP/hsFLP; atf4R6 FRT/CyO females 
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flies (Fig. 7). Larva from this cross was heat shocked to activate FLP expression at the 

development stage when the germ-line formed. After the heat shock, I collected 

hsFLP/+; atf4R6 FRT/OvoD1 females flies that emerged, and crossed them to wild type
 

males to obtain the germ-line clone embryos. As a control, I collected the CyO siblings 

and crossed them to wild type males (Fig. 7). Among the CyO flies, hsFLP/+; atf4R6 

FRT/CyO flies should be fully viable. All the atf4R6 FRT recombinants were examined 

by this procedure. From the eight lines tested, two of them did not produce either clones 

nor CyO progeny. This could be an indication that the line carrying the recombinant 

chromosome has some extra sensitivity to heat shock. Another line produced almost no 

clones but their CyO siblings were fully viable. The remaining 5 lines behave as 

expected; the CyO flies were fully viable but fewer than expected germ-line clone 

embryos were laid. Female and male progeny of non-virgin germ-line hsFLP/+; atf4R6 

FRT/OvoD1 female were counted. The results are described below in Table 3 

 Female flies accounted for nearly 50% of the progeny, indicating that there is not 

a decrease in female viability in the clones. This survivor rate indicated that maternally 

deposited atf4 is not necessary for sex determination or that SxlPe expression has not 

changed enough to decrease female viability. 

 

 

 

 

 

 

 

 

 

 



 33

Table 3: Maternally deposited ATF4 is not needed for female survival 

atf4R6 FRT 

line number 

Percentage of 

Females flies (#) 

Percentage of 

Males flies (#) 

59 75 (24) 25 (8) 

4 43 (19) 57 (25) 

151 51 (42) 49 (40) 

95 51 (31) 49(30) 

150 49 (67) 51(69) 

Progeny of no-virgin heat shocked hsFLP/+; atf4R6 FRT/OvoD1 females. 100% is 

considered as the total amount of flies that emerged. 

 

 

 

Analysis of the crc
1
 mutation 

 As a complementary experiment and back up, I recombined the hypomorphic 

crc
1
 mutation with the 40A FRT insertion (following the basic outline showed in Fig. 8).  

In this experiment I analyzed 11,227 neomycin resistant flies. Among these flies, only 

198 looked like recombinants (they lost the dominant bristle marker Sco). I then tested 

for the presence of the FRT element in the recombinant flies using the single fly PCR 

described above to amplify the 3’ and the 5’ of the 40A FRT insertion (Fig. 9). The PCR 

results narrow down the positive lines from 198 to only 5 lines that presented a positive 

PCR reaction for both sides of the 40A FRT insertion. To confirm the presence of the 

crc
1
 mutation on the recombinant chromosome I designed primers that could distinguish 

the Wild type crc gene from the crc
1
mutant allele. The crc

1
 mutant has an A to G 

replacement in the wild type gene. I made a primer that complemented the G from the 

mutant at the 3’ end of the primer. After a limited number of amplifications I could 
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clearly differentiate between the wild type and the crc
1
 mutant chromosome. Only one of 

the five recombinants presented a positive crc
1
 PCR band. I tested for complementation 

by crossing the five crc
1 

FRT recombinant lines to the original crc
1
mutation. The same 

recombinant line that was positive for the crc
1
 mutation (on the PCR assay) was the only 

line that did not complement the original crc
1
 mutant. Surprisingly, the 

crc
1
FRT/crc

1
survival rate of this cross was 19% instead of the 2% expected [60]. This 

result could indicate the presence of an unknown suppressor in the recombinant’s 

background. To corroborate the presence of crc
1
 in the recombinant stock, I tested for 

atf4R6 complementation and found a 0% crc
1
FRT/ atf4R6 survival rate as expected [60]. 

In spite of the increased crc
1
FRT/ crc

1
survival, I used this line to carry out the germ-line 

experiment.  

 The crc
1
 FRT recombinants were mated to flies carrying the gene that encodes 

for the FLP enzyme under the regulation of a heat shock promoter. As a control I crossed 

the resultant hsFLP/hsFLP; crc
1
FRT/CyO flies to the original crc

1 
mutant line 

recovering 19% crc
1
FRT/ crc

1 
survival. At the same time hsFLP/hsFLP; crc

1
FRT/CyO 

female flies were made to OvoD1/CyO males. The larva from this cross was heat 

shocked and hsFLP/+; crc
1
FRT/OvoD1 female flies, as well as their CyO sisters, were 

collected. The females were crossed to wild type males to analyze their germ-line. 

Progeny emerged only from the CyO control cross. An occasional egg was laid by the 

hsFLP/+; crc
1
FRT/OvoD1 females but not enough to collect and analyze. 

 The 19% crc
1
FRT/ crc

1 
survival were obtained as a progeny of the cross 

described above provided another means of analyzing crc1 for an effect on sex 
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determination.  Because they are homozygous crc
1
 mutants, they lack zygotic atf4, and 

their progeny are predicted to be deficient in maternally deposited atf4. I counted female 

and male progeny from non-virgin crc
1
FRT/ crc

1
 females. 56% of the progeny were 

females (50% of the flies should be females in a wild type stock) indicating that atf4 is 

not involved in sex determination (Table 4). 

 

 

 

Table 4: Germ-line clones from the crc
1
 mutant do not show decrease of female 

survival 

 

Percentage of 

Females flies(#) 

Percentage of 

Male flies(#) 

56 (185) 44 (147) 

 

 

 

 

 Overall the results crc
1
 strongly suggest that maternally contributed atf4 is not 

necessary for female survival, indicating that atf4 is probably not involved in sex 

determination. It remains a formal possibility that the crc
1
 hypomorph is not sufficiently 

defective in maternal function to directly affect the viability of flies, but could still affect 

the SxlPe switch. 

 In summary, neither atf4R6 nor crc
1
 seem to show any indication that maternally 

contributed atf4 is involved in sex determination. Flies emerging from the apparent 

germ-line clones of the null mutant looked completely normal and viable. These findings 

indicate that atf-4 is not the exclusive SisA dimerization partner; however it remains 

possible that it is one of several redundant dimerization partners. 



 36

CG16815 and CG16 813 

 CG16815 and CG16813 are two annotated genes with sequences similar to the 

bZIP family of transcription factors [60]. Because these genes are located near each 

other in the chromosome I chose to delete both of them together for my analysis. 

 CG16815 and CG16813 are maternally deposited in the egg as described above 

(Fig. 6). Therefore, to assess their genetic interaction with sisA and their effect on SxlPe 

expression I needed to generate germ-line clones. As explained earlier, the technique 

requires a FRT element on the same chromosome arm as the mutations in the genes of 

interest (Fig. 7). The only available deletion that included CG16813 or CG16815 also 

contains 26 other genes [61], which suggests that any germ-line clones carrying it would 

likely be cell lethal and thus useless for analysis. To avoid this problem, I used the ends-

out technique described below to generate a single deletion that eliminates both 

CG16815 and CG16813 genes but no other loci (Fig. 10) [66,67] 

 The ends-out technique requires creating a mutated targeting transgene (the 

donor) that can be excised from the genome as a linear fragment. This linear extra-

chromosomal DNA induces site-specific recombination at the endogenous, targeted 

locus, because the linear DNA induces homologous double-strand break repair. [66,67]. 

Recombination between both ends of the linear fragment and chromosome resulted in 

the replacement of the endogenous loci with the donor fragment. 

 As outlined in Fig. 10, I created a donor construct in which the CG16815 and 

CG16813 coding regions were deleted and replaced with the w+ marker. The donor was 

then introduced on the X chromosome by P-element mediated transformation. To excise 
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the donor fragment, both FLP recombinase and the I-Sci site-specific endonuclease were 

induced via heat shock. The FLP recombinase results in excision of a circular donor 

molecule that is then linearized by the I-SceI enzyme to create the recombinogenic extra-

chromosomal DNA fragment. The fragment is guided to the endogenous locations of the 

CG16815 and CG16813 genes because it carries 5.2 kb of DNA upstream and 5.6 kb of 

DNA downstream, of the deleted segment. 

 

 

 

 

Fig. 10: Ends out gene conversion. 1) Gene conversion construct inserted in the 

chromosome. Note the FRT sites in the same direction will produce a circular extra-

chromosomal excision when exposed to flip recombinase. I-sites will be recognized and 

cut with the I-SceI enzyme generating recombinogenic double stranded breaks. 2) 

Homologous recombination will occur at desire site. 3) Gene replacement has taken 

place introducing the white gene in the desired chromosomal location. 
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 I first attempted to isolate deletions from crosses between 350 female flies that 

carried the donor insertion to males carrying the FLP- I-SceI genes on the third 

chromosome.  This resulted in 15 candidate replacement flies that could be identified by 

their having uniform red eye color (w+) in the presence of the FLP recombinase.  

Unfortunately I found that 11 of the lines retained a modified donor fragment on the X 

chromosome and four lines had mobilized the donor to the 3
rd

 chromosome by a non-

homologous method. 

 I therefore scaled up the experiment by performing 1150 crosses between donor 

females and males carrying the FLP- I-SceI genes. I recovered 36 independent lines with 

solid red eye color, and 24 of these retained their solid eye color when exposed to the 

FLP enzyme. Of the 24 lines, 20 still had an insertion that mapped to the X chromosome, 

3 mapped to the third, but the final line was found to be at second chromosome and was 

thus a candidate for a deletion of the CG16815 and CG16813 loci. 

 To confirm that the single line had the proper deletion, PCR was done using 

primers within the white locus and in the flanking DNA, just beyond what was included 

in the donor transgene. A positive signal from both upstream and downstream primers 

was obtained, indicating a correctly located insertion since neither the endogenous locus 

nor the donor fragment could be amplified by these primers (Fig. 11). Because the 

CG16815 and CG16813 double deletion proved homozygous viable, I confirmed that the 

double mutant lacked any PCR amplifiable material from the coding segments of either 

CG16815 or CG16813. In controls the same primers amplified DNA from both wild 

type controls and deletion heterozygote 
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Fig. 11: Confirmation of the gene replacement. After gene replacement has taken 

place the location of the replacement can be corroborated by PCR through amplification 

of the 5’ and 3’ fragments.  

 

 

 

Genetic analysis of ∆(CG16815, CG16813) 

 Our expectation was that flies defective in SisA’s sex determination partner 

should exhibit a phenotype complementary to that of sisA. Specifically, if the partner is 

exclusively maternal, ∆(CG16815, CG16813) mothers should produce few, if any, 

daughters, and if zygotic (or both maternal and zygotic), then the female ∆(CG16815, 

CG16813) of ∆(CG16815, CG16813) mothers should also be unviable. My finding that 

the homozygous ∆(CG16815, CG16813) flies were viable and fertile and exhibited no 

sex bias among their progeny over multiple generations strongly suggested that neither 

of these two genes is SisA’s sole partner in sex determination. Similar logic applies to 

sisA’s later function in the yolk nuclei. If either or both, CG16815, CG16813 encoded 

SisA’s essential partner(s) for yolk function, we would have expected complete 
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embryonic lethality for ∆(CG16815, CG16813) progeny of ∆(CG16815, CG16813) 

mothers. 

 While neither (CG16815, CG16813) can be the exclusive dimerization partner of 

SisA, it is possible that SisA might have multiple and redundant dimerization partners. If 

that were the case, one would predict that loss of one set of partners, i.e., (CG16815 and 

CG16813) would sensitize the flies to reductions in either SisA or the other partner 

proteins. To test this idea, I asked if decreasing the sisA gene dose by half in the 

homozygous ∆(CG16815, CG16813) knockout decreases female viability. I assessed the 

zygotic contribution of CG16815 and CG16813 by crossing sisA1/FM7; ∆(CG16815, 

CG16813)/CyO females to FM7/Y; ∆ (CG16815, CG16813)/CyO males and counting 

the progeny. The results are shown in the Table 5. Viability of the sisA
1
/FM7; ∆ 

(CG16815, CG16813)/∆ (CG16815, CG16813) females was 95% when compared to 

brothers of the same genotype. This indicates that zygotic CG16815 and CG16813 do 

not interact with sisA to generate female-specific lethality and consequently are not 

involved in sex determination. To assess any possible maternal contribution of CG16815 

and CG16813, I carried out a series of crosses in which the mothers and fathers were 

completely deficient for CG16815 and CG16813, and where the experimental female 

offspring were heterozygous for sisA1. (Table. 6 a, b) In neither series of crosses was 

there any evidence for female-lethality, as sisA1/+; ∆ (CG16815, CG16813) females and 

sisA1/Y; ∆(CG16815, CG16813) males were equally viable. Taken together, the genetic 

analysis of ∆(CG16815, CG16813) demonstrate that neither individual gene, nor both 

together, can function as the exclusive dimerization partner. 
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Table 5: Zygotic CG16815 and CG16813 do not have a genetic interaction with sisA 

 Female 

viability(#) 

Male viability 

(reference #) 

 

 

X genotype 

sisA
1
/FM7 sisA

1
/Y FM7/Y 

2
nd

 chromosome genotype 

∆(CG16815,CG16813)/CyO 

95(80) 100(84) 21(18) 

∆ (CG16815, CG16813)/ 

∆ (CG16815, CG16813) 

95(42) 100(44) 14(6) 

FM7/FM7 females are death as most of the FM7 males. 

 

 

 

Table 6: Maternally deposited CG16815 and CG16813 does not interact with sisA 

a) sisA
1
/FM7 ; ∆ (CG16815, CG16813)/ ∆ (CG16815, CG16813) X  FM7/Y ; ∆ 

(CG16815, CG16813)/CyO 

 

 Female 

viability(#) 

Male viability 

(reference #) 

 

X genotype sisA
1
/FM7 sisA

1
/Y FM7/Y 

2
nd

 chromosome genotype 

∆(CG16815,CG16813)/CyO 

109(38) 100(35) 34(12) 

∆ (CG16815, CG16813)/ 

∆ (CG16815, CG16813) 

105(42) 100(40) 12(5) 

FM7/FM7 females are death as most of the FM7 males. 
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b) sisA
1
/FM7 ; ∆ (CG16815, CG16813)/ CyO X  FM7/Y ; ∆ (CG16815, CG16813)/ 

∆ (CG16815, CG16813) 

 

 Female 

viability(#) 

Male viability 

(reference #) 

 

X genotype sisA
1
/FM7 sisA

1
/Y FM7/Y 

2
nd

 chromosome genotype 

∆(CG16815,CG16813)/CyO 

117(33) 100(28) 36(10) 

∆ (CG16815, CG16813)/ 

∆ (CG16815, CG16813) 

97(30) 100(31) 0(0) 

FM7/FM7 females are death as most of the FM7 males. 

 

 

 

 Unfortunately there were no indications of an interaction between any of the 

candidate genes obtained from the two hybrid experiment and sisA in sex determination 

or in its vital yolk function. It remains formally possible that redundancy between all 

three candidate loci is impairing my ability to distinguish the genetic interaction  

 

Alternative Approaches to identify SisA’s partner 

Co-transformation and co-immune precipitation of SisA and its partner 

 In Drosophila melanogaster, 27 annotated genes encode b-ZIP proteins. The 

experiment that I will describe next was designed as a quick screen to detect among all 

known drosophila b-ZIP proteins the proteins that physically interact with SisA. The 

plan was to co-express tagged forms of SisA and tagged forms of each one of the known 

b-ZIP proteins in Drosophila S2 cells, and determine whether the proteins interacted 

using co-immune precipitation (co-IP). Using this approach, I was successful in 

confirming the 2-hyrid interaction between SisA and CG16815, but technical difficulties 
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with protein expression and protein detection slowed the analysis, and ultimately forced 

a choice between carrying out the genetic analysis of the 2-hybrid interactors and 

continuing the screen in cell culture. Because the cell culture approach was logically 

similar to the completed two-hybrid screen, and because it was subject to artifacts due to 

its reliance on identifying interactions among overexpressed proteins, I terminated the 

cell culture project to focus on the genetic analyses. For completeness, I include a brief 

summary of my experiments and suggestions for anyone wishing to pursue this 

experimental direction. 

 

Cell culture assay method 

 All the proteins were cloned in pMT/V5 His B vector from Invitrogen. This 

vector possesses a metallothionein promoter that can be induced with copper sulfate or 

cadmium chloride added to the media. It also provided a multicloning site that allowed 

me to clone each partner protein in frame with a C-terminal V5 tag fallowed by a 6XHis 

tag. To express sisA it was cloned in frame with an N and C-terminal 3X FLAG tag. To 

assure that sisA expression was induced as much as its partner proteins, sisA constructs 

were introduced into the same inducible pMT/V5 His B vector that was used for the 

partner proteins. Both plasmids (the one containing the partner protein and the one 

containing sisA) were transformed to S2 cells. Expression of sisA and its partner was 

induced with copper sulfate added 24 hours after the cells were seeded. Cells were next 

harvested 24, 48 and 72 hours post induction. To assess the induction, total amount of 

protein was measured using the Bradford assay. Detection of SisA and its partner protein 
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was accomplished using either FLAG, or Anti-V5 antibody respectively on a Western 

blot. To perform the co-IP, I used Anti-V5 agarose affinity gel to pull down the partner 

protein followed by a Western blot using FLAG antibody to detect SisA or Jra in case of 

the control (see below). As a positive control for the co-IP, I used two proteins that were 

known to interact: Jra and Kay, the fly homologues of human FOS and JUN. The 

interaction of these two proteins has been well studied in flies as well as in humans [68-

70]. 

 Although there are 27 previously described b-ZIP proteins in Drosophila 

melanogaster only a few could qualify as SisA partner. I narrow down the proteins to be 

analyzed based on the following criteria: 1) The SisA partner protein must be a 

maternally deposited b-ZIP protein, or express early in development between cycle 8 and 

before cycle 12 (the first burst of SxlPe expression is seen at cycle 12); 2) The SisA 

partner might also have a non-canonical b-ZIP domain. Since Atf4, CG16815 and 

CG16813 fulfill the characteristics described above, and at the time the genetic 

experiments described in the previous section had not yet been concluded, I decided to 

start the screening with these proteins. I also chose CG14014 because it shares the same 

time and pattern of expression with sisA (fly Base). In addition proteins that share SisA’s 

non-canonical b-ZIP domain Jra and CG15479 were selected [58]. 

 In the first experiment I co-transformed and co-expressed CG16815, CG15479 

CG14014 and atf4 b-ZIP domain (atf4 is a large gene so I decided to study the 

interaction with its b-ZIP domain first) with sisA in S2 cells as described above. As 

controls, the complete jra sequence and kay b-ZIP domain were also co-transformed and 
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co-expressed. Expression of CG15479, CG16815, sisA, jra and kay were found to be low 

when cells were harvested at the standard 24 hours after the induction. CG14014 and 

atf4 b-ZIP domain did not show detectable levels of expression. Even though the amount 

of protein expressed was low, I used it to study protein interaction. The result of the 

positive control experiment indicated interaction between Jra and Kay as expected. I 

could also detect a positive interaction between SiasA and CG16815. Although the 

interactions were clear, the bands in the blot were washed-out due to the low initial 

expression of the proteins. In addition, I was using a low sensitivity colorimetric reaction 

to detect the horseradish peroxidase enzyme that was bound to the 3XFlag. As a 

consequence of these complications I could not photograph or scan the interaction (the 

signal to noise ratio was too low). To overcome this complication, I attempted to 

increase the amount of protein produced. This could be accomplished by increased the 

protein expression or increasing the amount of transformed/harvested cells. Because 

some of the proteins had not been expressed in the first experiment, I decided to work 

the induction conditions to obtain higher expression levels as well as expression of all 

the transformed proteins. I transformed all the chosen proteins individually and 

increased the induction time from both, 24 to 48 hours, and from 24 to 72 hours. I 

evaluated induction level in each sample collected. I also changed the detection method 

from the less sensitive colorimetric to a more sensitive chemiluminescence reaction. As 

a result I detected expression of CG16815 at both, 24 and 48 hours after induction; 

however, the 48 hours after induction sample showed a higher amount of protein. 

CG14014 was only expressed 72 hours post induction, and the expression level was low. 
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CG15479 was only detected in the sample taken 48 hours post induction. CG16813 was 

expressed best 48 hours after induction. Atf4 did not show any detectable expression in 

any of the samples. SisA was equally expressed 24 and 48 hours post induction. Finally, 

the control protein Jra and Kay were expressed 24 and 48 hours after induction but the 

expression was higher in the 48 hours post induction samples.  

 

Future experiments: Purification and identification of Sis A partner from 

embryonic extract 

 At the time I began my experiments, I considered attempting to identify the SisA 

partner by affinity purifying it from embryonic extracts and identifying the proteins by 

mass spectrometry. Ultimately, however, I did not actively pursue this strategy because 

the genetic analysis of the two-hybrid candidates proved so timeconsuming. Because 

protein purification is the strategy I recommend for any future attempt to find the SisA 

partner, I will outline my initial steps to develop a purification strategy as a guide to 

others. 

 While purification from embryonic extracts is the most straightforward approach 

to finding the SisA partner, a successful strategy will have to overcome several likely 

difficulties. First, the SisA/partner complex is likely to be present in small amounts, 

based on the relatively low expression of sisA mRNA, and on the limited developmental 

period when the gene is expressed. Second, for the mass spec approach to be useful, the 

number of contaminating proteins in the final preparation should be kept to a minimum. 

It is important to raise the level of SisA and to employ an effective affinity purification 
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strategy. My initial plan was to maximize the relative amount of SisA/partner protein in 

embryo extracts by boosting the levels of SisA by expressing a tagged version of it under 

the control of the hsp70 promoter. Both approaches aided in the purification of the 

Knirps repressor from early embryo extracts as described in Struffi et al. [71]. To enable 

the SisA/partner complex to be purified sufficiently, I designed a triple tag. The 

modified SisA was to carry a 3X FLAG tag followed by a 6X His tag, and then by a 

Strep II tag. My hope was that the first two tags will be sufficient for purification, but I 

wanted also to incorporate the Strep II tag in the event further purification was needed. 

Due to their high ligand-binding specificity, their ability to concentrate proteins and their 

capacity to be eluted under native conditions, the double FLAG /His tag system has been 

demonstrated to be useful in purifying proteins from Drosophila embryos and 

subsequently determining protein identity through mass spectrometry. Previous studies 

have demonstrated that it is equally effective to affinity purify using the FLAG tag 

followed by the His tag, so I planned to prepare both versions for injection into flies in 

the event that one proves more tractable than the other. In brief, the plan is to affinity 

purify the complex using anti-FLAG M2 Mab agarose, and elute using the 3X FLAG 

peptide followed by the capture of 6X His tagged protein on the Talon® resin fallowed 

by Imidazole elution [71,72]. Purified protein complexes will be analyzed by SDS gel 

electrophoresis and the proteins identified using the Mass spectrometer located at the 

Biochemistry building at Texas A&M University. If the protein proves insufficiently 

pure for mass spectrometry analysis, I will employ the additional affinity purification 

step, utilizing Strep Tactin-Sepharose fallowed by Desthiobiotin elution. Even though 
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the Strep II appears to be as good as a FLAG in aiding purification of proteins [72], the 

affinity constant of Strep II tag/ Strep-Tactin is two orders of magnitude lower than 

FLAG/ anti-FLAG M2 Mab [73], making the Strep II purification more suitable to be 

used as the last extraction step when the proteins are already present in a small volume. 

 

Chapter Summary 

 The aim of this chapter was to identify SisA partner protein. The first strategy 

was to pull out SisA partner protein candidates from a two-hybrid assay. Three genes 

seemed to fit all the necessary characteristic to be SisA partner, CG16815,CG16813 and 

atf4. Dominant genetic interaction of these genes was first assessed and none were 

found. Because each gene product is maternally supplied the maternal contribution of 

these genes. atf4 maternal contribution was deleted using dominant female-sterile 

technique. After performing experiments with two different atf4 alleles I reached the 

conclusion that atf4 is not required for sex determination, and it is not the exclusive SisA 

dimerization partner. 

 To eliminate all sources of CG16815, CG16813, I knockout both genes at the 

same time (they are near each other in the chromosome) using the ends-out technique. 

Surprisingly, the knockout animals were viable and fertile and showed no decrease in 

viability of either sex. In addition, decreasing sisA gene copy in these flies also did not 

show any affect in viability demonstrating that neither the individual genes nor both 

genes together were the sole SisA partner. 
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 Unluckily, none of the genes tested interacted with sisA, or showed any 

involvement in sex determination. This does not eliminate the possibility of redundancy 

among these genes. To pursue this idea, the maternal contribution of all three candidate 

genes should be eliminated. This can be done using standard genetic techniques using 

the strains I have created. 
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CHAPTER III 

SXLPM REGULATION AND SXLPE -PM TRANSITION * 

 

 While the transient female-specific activation of SxlPe in response to X 

chromosome dose has been the target of much experimental scrutiny, little is known 

about the control of SxlPm. The standard view is that SxlPm is a “housekeeping” 

promoter active in both sexes from around the time of gastrulation through adulthood. 

Analysis of Sxl RNA by Northern blot or RNase protection assays [74-77] suggested a 

time lag of 1 to 2 hours between the cessation of SxlPe activity in early nuclear cycle 14 

and the onset of SxlPm expression [78] supporting the idea that the two promoters are 

expressed independently. On the other hand, Barbash and Cline [79] detected SxlPm-

derived transcripts during cycle 14, and Keyes [80] noted that SxlPm appeared to be 

expressed earlier in XX than in XY embryos raising the possibility of a direct regulatory 

connection between SxlPm and SxlPe. 

 To define when SxlPm is active, we developed an in situ hybridization assay 

using an intron-derived probe (Fig. 12) that enabled me to identify nascent SxlPm-

derived transcripts as focused dots of staining in embryonic nuclei.  

 

 

____________ 

* Reprinted with permission from “A shared enhancer controls a temporal switch 

between promoters during Drosophila primary sex determination” by Alejandra N. 

González, Hong Lu, and James W. Erickson., 2008. PNAS, 105, 18436–18441, 

Copyright 2008 by The National Academy of Sciences of the USA.  
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Fig. 12: Map of Sxl locus and SxlPm-lacZ fusions. (Top) Structure of Sxl exons L1, 

E1, L2, L3, and 4 in D. pseudoobcura and D. melanogaster. Exons 5-10 are omitted.  

SxlPm and Pe promoters are marked. Female splice patterns are E1 to 4 and L1 to L2 to 

4. Males splice L1-L2-L3-4. Diamonds represent known or predicted Sc/Da binding 

sites. Filled portions of Sxl exons represent coding regions. A chromosomal 

rearrangement exchanged the ancestral upstream su(s) gene for CG4615 after divergence 

of the D. ananassae and the D. erecta, D. yakuba, D. melanogaster, and D. simulans 

lineages. D. virilis diverged from the other species about 40 million years ago. (Bottom) 

SxlPm-lacZ transgenes. Genomic fragments extended 1.8 kb or 0.5 kb upstream of Sxl 

exon L1. Internal deletions from -88 to +85 or -1,452 to +85 bp relative to exon E1, 

removed the SxlPe promoter and regulatory sequences. 

 

 

 

 Because Sxl is located on the X chromosome, we could differentiate between 

male (XY) and female (XX) embryos based on the number of dots visible in the nuclei. 

Progression through cycle 14 was monitored using two different parameters: the ratio 

between the length and width of the surface nuclei and the extent of cell membrane 

invagination during the cellularization process [81,82]. 

 

Sxl maintenance promoter is activated earlier in females than in males 

 Inspection of embryos after hybridization with SxlPm-specific probes revealed 

that SxlPm is expressed in both sexes from early in the cellularization cycle until the 

completion of embryonic development (Fig. 13 and data not shown).  Analysis of early 
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embryos, however, showed that the initial expression of SxlPm was sexually dimorphic.  

Transcripts from SxlPm first appeared in females during nuclear cycle 13 (Fig. 13, Table 

7). Initially, only about 15% of female nuclei expressed SxlPm, and many nuclei 

expressed it from only one of the two X chromosomes, suggesting that activation of 

SxlPm is a stochastic process occurring independently on each X chromosome. During 

the first minutes of cycle 14, the proportion of expressing nuclei, as well as the number 

of nuclei expressing both alleles increased, until by 10-15 min every female nucleus 

expressed both copies of SxlPm. In male embryos, expression from SxlPm was delayed 

by about 10 min relative to females (Fig. 13, Table 7). Nascent transcripts from SxlPm 

were first seen in XY embryos as very faint dots in scattered nuclei in early cycle 14.  As 

cycle 14 progressed, the proportion of XY nuclei expressing SxlPm, and the staining 

intensity of the nuclear dots increased, until by 20-30 min every male nucleus 

transcribed from SxlPm. Once Sxl was fully active, both sexes maintained expression 

from SxlPm throughout embryogenesis (data not shown).  
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Fig. 13: SxlPm activation is sexually dimorphic. Time course of nascent transcripts 

from SxlPm for wild-type, XX and XY embryos. In situ hybridization with a probe 

specific for SxlPm-derived pre-mRNA. Surface views of syncytial nuclei.  
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Table 7: Percentage of expressing nuclei. Percentage of expressing nuclei was 

determined by counting all nuclei in photographs of embryos.  Mean # cycle 13 nuclei 

counted/embryo (+/- s.e.) = 224 (+/- 26); mean # cycle 14 nuclei counted/embryo = 432 

(+/- 38). For samples listed as 0% expressing, number in parentheses indicates 

photographs examined for evidence of expression.  A minimum of 10 additional fixed 

embryos were examined directly for expressing nuclei for all non-expressing stages.  For 

those listed as 100% expressing, at least one photograph and several other embryos were 

examined thoroughly for rare non-expressing nuclei.  

 

   Range % nuclei expressing (# embryos counted) 

genotype  cycle 13 cycle 14 

< 5 min 

cycle 14 

5-10 min 

cycle 14 

10-15 min 

cycle 14 

15-20 min 

Wt XX 12-16 (4) 48-61 (5) 85-91 (5) 100 100 

 XY 0 (10) 6-9 (5) 33-39 (3) 71-85 (3) 100 

sc
sisB3 

XX 0 (2) 12-16 (3) 51-63 (2) 80-90 (2) 100 

 XY 0 (3) 0 (2) 7-9 (2) 53 (1) 77-79 (2) 

da
1 

XX 0 (8) 7-13 (3) 50-57 (3) 83 (2) 100 

 XY 0 (3) 0 (5) 8-9 (2) 54-60 (2) 76-88 (2) 

Dp sc
+
, 

sisA
+ 

XX 71 (1) 89-90 (2) 100 100 100 

 XY 27 (1) 74 (1) 81 (1) 100 100 

sisA
1 

XX 11-13 (2) 45-55 (3) 83-88 (2) 100 100 

 XY 0 (2) 9-11 (3) 21-35 (2) 82-85 (2) 100 

gro
E48 

XX 11-16 (2) 46-57 (2) 81-85 (2) 100 100 

 XY 0 (3) 10 (2) 30-32 (2) 79-85 (2) 100 
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 Our findings demonstrate that SxlPm is active earlier than previously estimated 

from Northern blot and RNase protection analyses [76,77]. They also show that the 

expression periods of SxlPe and SxlPm overlap in females during the first 10-20 minutes 

of cycle 14 (see [41,62,83]). To determine if the sexually dimorphic pattern of SxlPm 

activation is conserved in other Drosophila species, we examined D.virilis, D. yakuba, 

and D. simulans (Fig. 12) using in situ hybridization. We found that all three species 

expressed SxlPm similarly to D. melanogaster (Fig. 14), suggesting that the female-first 

pattern of maintenance promoter activation is, like the female-specific activation of 

SxlPe [62], an ancient response to the number of X chromosomes. 

 

 

 

 

Fig. 14: Time course of nascent SxlPm transcripts in D. virilis determined by in situ 

hybridizations with a probe specific for D. virilis SxlPm-derived pre mRNA. 

(Top) Surface views of syncytial nuclei in wild-type XX and XY embryos during cycles 

13 and 14. (Bottom) Views of elongating nuclei of the XY embryos pictured 

above to monitor progression through the cellularization cycle. Nascent transcripts from 

sister chromatids can be seen in some nuclei. 
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The XSEs scute, runt and maternal daughterless regulate SxlPm 

 SxlPe is activated during nuclear cycle 12 and expressed through the first 10-20 

min of cycle 14 in response to the two X dose of XSEs [41,79,83].  To determine if the 

same X-linked signal elements (XSEs) that control the on-or-off response of SxlPe also 

regulate SxlPm, we analyzed mutations in several XSEs and cofactors to determine if 

they affected transcription from the maintenance promoter.  

 The XSE scute encodes a dose-sensitive bHLH transcription factor that dimerizes 

with maternally-supplied daughterless protein to directly activate SxlPe [45]. We found 

that loss of zygotic scute (sc) or maternal daughterless (da) also affected SxlPm. In 

sc
sisB3

 and the maternal da
1
 mutant, progeny expression of SxlPm was delayed in both 

sexes by about 5 to 10 minutes compared to wild type (Figs. 15A, B). In XX embryos, 

no expression was observed during cycle 13 and only a fraction of nuclei showed 

expression by 5 min in cycle 14.  Thereafter, however, the proportion of expressing 

nuclei increased, until by about 20 min in cycle 14, all female zygotic nuclei expressed 

SxlPm in a manner indistinguishable from wild type. Expression in sc
sisB3

 and da
1
 males 

was similarly delayed.  About one half of XY nuclei expressed SxlPm at 15 min into 

cycle 14 and all had stably activated the maintenance promoter by 30 min into the 

cellularization process.  
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Fig. 15: Time course of nascent SxlPm transcripts in maternal or zygotic sex signal 

mutants. A) Progeny of homozygous da1 mothers. B) sc
sisB3

 mutant XX and XY 

embryos. C) XX and XY embryos with two extra copies of the XSEs sc
+ 

and sisA
+
. 

Embryos in B) were progeny of: y sc
sisB3

/y sc
sisB3

 Sxl
M4

 sn females and y sc
sisB3

/Y males. 

Embryos in C) were progeny of: 
wild type  

 females and y w cm Sxl
f1

 ct6/Y; 2X 

P(mini-w
+
,sisA

+
)and 2X P(mini-w

+
,sc

+
)/CyO males. 

 

 

 

 We observed similar results with the XSE runt which is required to activate 

SxlPe in the central region of the embryo [51]. In homozygous ∆runt
3
 females, the 

number of nuclei expressing SxlPm, and the staining intensity of the individual dots, was 

noticeably decreased between 5 and 30 min in cycle 14 (Fig. 16). This caused a 

diminution of overall embryo staining intensity in central regions relative to the poles 

during early cycle 14. Similar effects were seen in ∆runt
3
 males but the lower contrast 



 58

resulting from the lowered expression level of their single Sxl allele made it more 

difficult to document photographically (Fig. 16). 

 

 

 

 

Fig. 16: The XSE runt controls expression from SxlPm, as determined by in situ 

hybridizations with a SxlPm-specific intron probe. (Top) Wild-type females at the 

indicated times in nuclear cycle 14. (Middle) Homozygous run
3
 mutant XX progeny. 

(Bottom) Hemizygous run3 XY embryos. Mutant XX embryos were progeny of w f 

run
3
/FM7c females and w f run

3
/Yy

+
, mal_ males. One-half of the XX embryos 

exhibited the abnormal staining pattern. The XY embryos were progeny of w f 

run
3
/FM7c females and FM7c/Y males. Wild-type females were from w1118 parents. 

 

 

 

 Our findings demonstrate that Sc/Da and Runt regulate the onset of SxlPm 

expression in both sexes, but also show that none of these three proteins are required for 

maintenance promoter activity during the remainder of embryonic development.   This 

implies that at least two temporally distinct mechanisms control SxlPm activity: one 

regulating the sexually dimorphic onset of transcription in response to X chromosome 

dose, and the second conferring constitutive expression throughout the remainder of the 

life cycle. 
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 To test the notion that XSE dose specifies the timing of SxlPm activation, we 

asked if an increase in XSE copy number can cause earlier activation of the promoter 

[40]. To increase XSE dose, we crossed males heterozygous for a second chromosome 

carrying two transgenic copies each of sc
+
 and sisA

+
 to normal females [33,84].  This 

created a population consisting of XX embryos with 4 copies of sc
+
 and sisA

+
, XY 

embryos with 3 copies of sc
+
 and sisA

+
, and normal XX and XY embryos. We found 

that SxlPm was activated earlier in both sexes when XSE dose was increased (Fig. 15 C , 

Table 7).  In females, the extra XSE genes caused about 70% of nuclei to express SxlPm 

during cycle 13 and all XX nuclei expressed SxlPm from the earliest stages of cycle 14.  

In males, the additional XSE copies caused nearly 30% of XY nuclei to express SxlPm 

ectopically during cycle 13 and nearly all expressed SxlPm by 10 min into cycle 14. 

 Our results demonstrate that the sexually dimorphic activation of SxlPm is 

controlled by some of the same determinants that signal female-specific expression of 

SxlPe. They do not, however, allow us to distinguish whether the XSE proteins directly 

regulate SxlPm or whether their effects on SxlPm reflect indirect effects, due perhaps to 

local chromatin changes associated with the activation of the adjacent SxlPe (Fig. 12). 

As a first step to answering the question of whether activation of SxlPm is linked in cis 

to that of SxlPe, we asked if we could find conditions where we could uncouple the 

activities of the two promoters. 
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SxlPe activity is not needed for proper regulation of SxlPm 

 Duplication of XSE activators leads to strong ectopic expression of SxlPe in male 

embryos. Reciprocally, elimination of the maternal corepressor, Groucho, also causes 

strong ectopic Sxl expression in males by decreasing the threshold XSE concentrations 

needed to activate SxlPe [52]. We reasoned that if the initial female-specific response of 

SxlPm is coupled to the activation of the SxlPe, then loss of groucho should result in 

premature expression from SxlPm. On the other hand, if Sc/Da and Runt activate the two 

promoters directly, then the sex-specific response of SxlPm may well be independent of 

groucho. 

 We found that embryos derived from mothers lacking groucho germline function 

expressed SxlPm in a wild type pattern (Fig. 17 B). Females first activated SxlPm in 

cycle 13 and expressed the promoter fully by 10-15 min into cycle 14.  Males initiated 

expression early in cycle 14 and fully expressed SxlPm some 20-30 min later. Our 

observations are consistent with direct regulation of the two promoters by the XSEs 

scute and runt. This conclusion is further supported by our finding that the XSE sisA 

does not regulate SxlPm. 
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Fig. 17: Time course of nascent SxlPm transcripts in maternal or zygotic sex signal 

mutants. A) sisA
1
 mutant embryos from crosses of y pn cmSxl

M4
 v sisA1/y pn cmSxl

f1
 ct6 

v sisA1 females and y pn cmSxl
f1 

ct6 v sisA1/Y males. B) Progeny of mothers carrying 

gro
E48 

germ-line clones. 

 

 

 

 The X-linked sisA gene encodes a bZIP transcription factor needed for the 

female-specific activation of SxlPe in all somatic cells of the embryo [33,85]. When we 

analyzed the strong loss-of-function allele sisA
1
, we found that neither homozygous 

sisA
1
 females, nor hemizygous sisA

1
 males, exhibited any delay in SxlPm activation or 

diminution of staining of SxlPm-derived nascent transcripts when compared to wild type  

(Fig. 17 A). Taken together, our findings with sisA and groucho show that SxlPe activity 

can be blocked without affecting expression from SxlPm, and also that SxlPe activity can 

be induced ectopically without activating SxlPm. This strongly suggests that some, but 

not all, XSEs regulate the two promoters directly, but leaves open the question of 
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whether the promoters share common enhancers or utilize independent cis regulatory 

elements. 

 

SxlPm and SxlPe share a common regulatory element that responds to X 

chromosome dose 

 Our finding that SxlPm is activated earlier in XX than in XY embryos in 

response to Scute, Da, and Runt suggests that SxlPm, like SxlPe, directly responds to the 

number of X chromosomes present in the embryo. To determine whether the XSEs and 

other proteins regulate the two promoters through independent regulatory elements or 

whether they instead share a common enhancer, we analyzed the structure of SxlPm by 

creating a series of transgenes that fused different portions of the Sxl gene to a lacZ 

reporter. 

 We first assessed the function of the region upstream of the SxlPm transcription 

start site by fusing sequences from -1.8 kb to + 34 bp within exon L1 to lacZ (Fig. 12). 

We found that none of the four reporter lines tested expressed detectable lacZ mRNA in 

embryos, indicating that key regulatory elements needed for SxlPm activity are likely 

located downstream of exon L1 (data not shown). Considering that the sequences 

upstream of Sxl are not conserved in all Drosophila species, having been exchanged by a 

chromosomal rearrangement some 10-15 million years ago, and that the 3’ ends of the 

upstream genes are located within about 200-500 bp of the SxlPm start site, we next 

tested a shorter upstream (-0.8 kb) and large downstream (+ 6.0 kb) segment 

encompassing the SxlPe regulatory elements for SxlPm function (Fig. 12). We found 
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these transgenes expressed lacZ mRNA in a manner consistent with them having both 

normal SxlPe and SxlPm promoter activity.   

 To analyze SxlPm independent of SxlPe activity, we created a modified version 

of the full-length transgene in which we removed a 171 bp segment that included the 

SxlPe basal promoter and part of the E1 exon (Fig. 12). This construct, SxlPm[∆-88Pe]-

lacZ, was expressed in a manner indistinguishable from the endogenous SxlPm promoter 

(Fig 18 A, B, 19 A,B). Weak lacZ expression was detected in cycle 13 nuclei in XX 

embryos and by 10-15 min into cycle 14 every nucleus appeared to express both copies 

of SxlPm[∆-88Pe]-lacZ.  Male embryos first expressed SxlPm[∆-88Pe]-lacZ in cycle 14 

with full activation occurring about 20 min later. Notably, XX embryos expressed 

SxlPm[∆-88Pe]-lacZ mRNA at higher levels than did XY embryos even when the 

transgenes were present in two copies in both sexes (Fig. 18 A). This difference was 

maintained through cycle 14 and then gradually disappeared during gastrulation and 

germ band extension (data not shown). These results establish that all the sequences 

necessary for normal expression of SxlPm lie between -0.8 and +6.0 kb and confirm that 

a functional SxlPe is not required for the early onset of SxlPm activity in females. 
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Fig. 18: A 1.4-kb deletion of SxlPe regulatory DNA equalizes SxlPm activity in the 

sexes. In situ hybridization was used to detect steady-state lacZ mRNA levels. 
A) Embryos carried two copies of an autosomal SxlPm [∆88Pe]-lacZ transgene deleted 

for the SxlPe basal promoter region. B) Embryos with two copies of an 

autosomal SxlPm[∆ 1.4Pe]-lacZ transgene deleted for SxlPe and its regulatory 

sequences to -1.4 kb. Sex was determined by fluorescent detection of endogenous 

SxlPe-derived transcripts. Times after the onset of cycle 14 are indicated. Four 

independent lines of each transgene were examined, with indistinguishable results. 
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Fig. 19: Time course of nascent transcripts from SxlPm-lacZ fusions during cycles 

13 and 14 detected by in situ hybridization with a lacZ probe. Surface views of 

syncytial nuclei. A) Embryos homozygous for an autosomal SxlPm [∆ -88Pe]-lacZ line. 

B) Embryos homozygous for an autosomal SxlPm [∆ -1.4Pe]-lacZ line. Sex was 

determined by fluorescent detection of endogenous SxlPe-derived transcripts. Four 

independent lines of each transgene were examined, with indistinguishable results. 

Nascent transcripts from lacZ transgenes were more difficult to detect than those from 

the endogenous Sxl locus, resulting in patchier lower-intensity staining. 

 

 

 

 Normal sex-specific regulation of SxlPe requires sequences extending to -1.4 kb 

upstream of exon E1 [42]. Within these sequences, two regions spanning from +20 to -

400 bp and from -800 to -1,400 bp have been identified as crucial for full SxlPe activity. 

To determine if these SxlPe regulatory sequences also regulate SxlPm, we created a 

modified SxlPm-lacZ fusion carrying an internal deletion spanning the region from -
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1452 to +85 relative to the start site of exon E1 (Fig. 12). We found that the onset of 

expression from the SxlPm[∆-1.4Pe]-lacZ transgenes was delayed relative to the 

SxlPm[∆-88Pe] lines, and furthermore, that there was no longer any difference in the 

timing or level of expression between the sexes (Figs. 18 and 19). Expression from 

SxlPm[∆-1.4Pe]-lacZ lines was first seen in a few nuclei in both XX and XY embryos 

about 10-15 min into cycle 14 (Fig. 19). The number of expressing nuclei increased 

thereafter, reaching a maximum 15 to 20 min later. Mature transcripts accumulated over 

time, but XX and XY embryos expressed equal lacZ mRNA levels at all times 

examined. We conclude that the 1.4 kb region that controls the female-specific 

expression of SxlPe is also required for the sex differential expression of SxlPm. We also 

note that the effects of the [∆-1.4Pe] mutation on SxlPm appeared stronger than those of 

sc, da, and runt mutations on the endogenous locus, as the mutations in the trans-acting 

regulators did not abolish male/female differences in SxlPm expression. This suggests 

that factors in addition to Sc/Da and Runt interact with the 1.4 kb region to control the 

initial activation of SxlPm. 
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CHAPTER IV 

CONCLUSIONS AND METHODS* 

 

 The Drosophila sex determination pathway elegantly illustrates the use of pre-

mRNA splicing control in development, but the establishment of sex-specific splicing 

depends, ultimately, on the coordinated activities of two promoters for the master 

regulatory gene Sxl. This dissertation explores SxlPe activation by sisA and unravels 

SxlPm expression and regulation, resulting in an innovative view of the transition 

between promoters.  

 

SisA partner protein(s) 

 In this dissertation I studied the interaction between one of the most 

quantitatively important XSEs, sisA, and the promoter that regulates early Sxl 

expression, SxlPe. Although much effort was applied, I was unable to uncover the 

mechanism by which this member of the b-ZIP family of transcription factors activates 

SxlPe. Because SisA is thought to activate SxlPe by binding the promoter as 

heterodimer, three plausible binding partners from two hybrids experiment were studied: 

atf4, CG16815 and CG16813. Although the genes that code for these proteins seem to  

 

____________ 

 

*Some material in this chapter is reprinted with permission “A shared enhancer controls 

a temporal switch between promoters during Drosophila primary sex determination” by 

Alejandra N. González, Hong Lu, and James W. Erickson., 2008. PNAS, 105, 18436–

18441, Copyright 2008 by The National Academy of Sciences of the USA.  
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follow all the necessary requirements to be SisA partners (see chapter II), none of them 

were to be the sole SisA partner. It remains formally possible that the system is 

redundant and a phenotype can only be observed in absence of all three genes. A more 

likely possibility is that SisA partner is a different b-ZIP protein. In chapter II I proposed 

to identify SisA partner by extracting the SisA-Partner hetherodimer from an embryonic 

extract, and identify the proteins through mass spectrometry. Because SisA interacts 

with proteins of many different molecular natures and functionalities in the two hybrid 

experiment (for more explanation see chapter II) it is possible that an attempt to affinity 

purify SisA and its partner from embryo extracts could also result in many false positive 

interactions. This is an important concern as a lesson from my work is how time 

consuming it can be to rigorously prove, or disprove, the functions of candidate proteins. 

One solution to narrowing the focus to authentic interactors would be to consider the 

molecular nature and predicted 3D structure of SisA itself and look for proteins that 

could complement its structure. Many DNA binding proteins have intrinsically 

disordered domains [86]. These domains are regions, or perhaps few amino acids, that 

are predicted to lack stable intramolecular interaction, and usually form loops that can 

provide flexibility to the protein structure. These domains can aid in DNA binding or 

protein-protein interactions by energetically stabilizing the protein-protein, protein-DNA 

dimers [86,87]. To analyze disorder domains within a protein there are multiple different 

programs that base their predictions in different structural details (reviewed in ([87]). 

Intrinsically disordered domains had never been explored within SisA. To determine if 

SisA had such a domains I used two different programs, DisEMBL (http://dis.embl.de/) 
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[88] and ANCHOR (http://iupred.enzim.hu/ ) [89]. The first program search for 

disordered regions within the coils (sections of the protein that do not follow any clear 

secondary structure). In addition it examines disorder regions among the hot loops 

(subgroup of coils that have high mobility) and ultimately it compares the sequence of 

your protein with previously defined disordered sequences [88]. After running the 

DisEMBL program on SisA, the program found 2 regions disorder by loops 

encompassing amino acid from 1-41 and from 73-110. Two regions from 97-151 and 

from 165-175, were found using the hot loops and two regions 25-43 and 94-121 were 

found to have homology to previously define disorder region (look at graph and raw data 

in Apendix A). ANCOR uses IUPred to detect intrinsically disorder regions and then 

search for protein domains that have the property of stabilizing the protein conformation 

when bounded to a globular domain, within the disorder region. In other words this 

programs finds sites on the protein were the amino acid side chain adopt a conformation 

similar to a cavity in the protein surface. These cavities, although unstable on their own, 

can be stabilized by interacting with a globular domain in the surface of a binding 

partner resulting in the stabilization of the dimer structure [89]. After running the 

ANCHOR program with SisA sequence 5 binding regions (cavities in SisA surface) 

were found, 6-21, 47-60, 65-78, 89-95, 128-153 (Appendix A for graph and raw data). 

Though the methods these two programs use to uncover the disorder region are very 

different and the results from each prediction do not have to match disordered region 

between 94 and 110 matches the three different predictions. In the future, we could 

analyze the amino acids contained in each one of the five predicted binding regions and 
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find possible charged or uncharged regions or regions that could suggest the nature of a 

binding partner. After that, the structure of partner proteins could be analyzed and 

searched for domains that carry amino acid side chains complementary to those found in 

SisA [89] 

 

SxlPm regulation and SxlPe-Pm transition 

   In this dissertation I showed that the switch from the initial assessment of X 

chromosome dose at SxlPe to the stable autoregulatory control of Sxl pre-mRNA 

splicing, exploits an unexpected level of transcriptional control of the Sxl maintenance 

promoter.  I demonstrated that, contrary to the prevailing view, SxlPm responds to X 

chromosome dose and that it does so by sharing common X-signal elements and a 

common enhancer with SxlPe.  The switch between Sxl promoters thus serves as a 

tractable model to explore the logical circuitry and molecular mechanisms that control 

the fidelity of developmental switches and that coordinate the uses of multiple promoters 

for a single gene [90]. 

 

Why is SxlPm regulated? 

 A priori, a female embryo must do two things to establish and then remember its 

sex.  It must produce a pulse of SXL protein by transiently activating SxlPe in response 

to the XX signal, and it must activate SxlPm, so that its transcripts can be spliced to 

produce yet more SXL protein.  A male embryo need only keep SxlPe off so that no 

SXL protein is present when SxlPm is active. The system would seem to impose no 
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requirement for sexually dimorphic expression from SxlPm, nor even for a temporal 

overlap in transcription from the two promoters [78], yet both features are conserved 

across the breadth of Drosophila species. We believe the resolution to this paradox lies 

in the recognition that the transition to stable autoregulatory Sxl splicing requires that 

substantial amounts of SXL protein be present [74,78] rather than being driven by trace 

quantities of SXL protein (see [91,92]. Given this, we consider that overlapping 

expression from the two promoters ensures that XX cells rapidly engage autoregulatory 

Sxl splicing, while the delayed activation of SxlPm in XY cells buffers against improper 

Sxl activation due to random variations in regulatory protein concentrations. In effect, 

we believe that robustness is conferred on the system by rapid reinforcement of correct 

decisions. In XX embryos, strong induction of SxlPe, coupled with early activation of 

SxlPm, ensures that high levels of SXL protein and its pre-mRNA substrate are present 

during the transition to splicing control. In XY embryos, chance fluctuations in XSE or 

inhibitor concentrations that caused low-level activation of SxlPe, would not persist to 

activate SxlPm, thus preventing rare mistakes from being amplified into the fully on 

state. We seeing that a logically similar, two-target, control process operates in C. 

elegans primary sex determination. There, four XSE proteins exert primary control of 

the master regulator xol-1 at the level of transcription, while a fifth XSE acts post-

transcriptionally to ensure the fidelity of X chromosome counting [93,94]. Inclusion of 

multiple regulatory steps may prove a general mechanism for conferring robustness on 

dose-sensitive regulatory switches.  
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How is SxlPm regulated? 

 SxlPm appears to be equally active in both sexes after the onset of gastrulation.  

Prior to that, SxlPm is expressed in a graded fashion, becoming active earlier and being 

expressed more strongly in XX than in XY embryos. Sequences governing the early 

sexually dimorphic expression of SxlPm are included in the same 1.4 kb DNA segment 

that controls the on-or-off regulation of SxlPe [95]. Importantly, the 1.4kb region must 

work as an enhancer for SxlPm, rather than exerting an indirect effect in cis, via 

activation of SxlPe, because deletion of the SxlPe core promoter had no effect on SxlPm 

activity. This effect, combined with the involvement of the XSEs scute and runt in 

SxlPm regulation, suggests that SxlPm, like SxlPe, responds directly to the number of X 

chromosomes present in the embryo.  However, the fact that neither loss of the strong 

XSE sisA, nor loss of the potent maternal co-repressor gro affects SxlPm, argues that the 

mechanism of X-counting at SxlPm differs from that at SxlPe, despite their sharing 

common cis- and trans-acting components.  We suspect that additional transcription 

factors contribute to both early SxlPm activation and the female/male differences in 

timing. 

 The existence of a regulatory region shared between SxlPe and SxlPm raises the 

question of how enhancer activity is directed to the correct promoter at the appropriate 

time.  The 1.4 kb region regulates SxlPe from cycle 12 through early 14, yet the 

enhancer does not lead to significant expression from SxlPm until cycle 14.  Expression 

from the two promoters overlaps briefly before SxlPe is silenced and SxlPm fully 

controls Sxl transcription.  We imagine two general mechanisms that might explain how 
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the enhancer could choose between the two promoters [96,97]. First, an insulator 

situated between the enhancer and the upstream promoter might block the 1.4 kb region 

from interacting with SxlPm until the insulating protein was removed from the DNA or 

its activity overcome by additional positive signals.  Second, promoter choice could be 

dictated by differences in the transcription machinery at the two promoters [96], or by a 

temporally-restricted transcription factor that recruits the enhancer to one of the two Sxl 

promoters.  The developmentally regulated competition between the promoters of the 

chicken ε-globin and β-globin genes for their common enhancer provides precedent for 

the latter mechanism [98].  The rapid changeover from SxlPe to SxlPm coincides with 

the Drosophila maternal to zygotic transition, when expression of the zygotic genome 

begins in earnest and numerous early mRNAs and proteins are eliminated from the 

embryo [99].  It would not be surprising if the rapid changes at Sxl were directly 

connected to more general regulatory events occurring during this dynamic period of 

development. 

 

Methods 

P-element vectors and transformation 

Sxl genomic fragments were made using Expand Long Template PCR System (Roche), 

cloned into pCRII-TOPO (Invitrogen), and ligated into P-element transformation vectors 

based on pCaSpeR-AUG-ßgal.  Germline transformations were performed by Genetic 

Services Inc. (Cambridge, MA). Transgenes with internal deletions were cloned as 

upstream and downstream fragments and joined at primer-derived Pac I sites. The 
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construct -1.8kbSxlPm-lacZ was made with primers 1.8Pm5’ and 1.8Pm3’; SxlPm[+Pe]-

lacZ with primers 1’ and 4’; SxlPm[∆-88Pe]-lacZ with primers 1’ and  2’/PacI and 

3’’PacI and 4’; SxlPm[∆-1.4Pe]-lacZ with primers 1’ and 5’/PacI and 3’’PacI and 4’. 

Control transgenes SxlPe[L2]-lacZ and SxlPe[∆-88,L2]-lacZ were similar to 

SxlPm[+Pe]-lacZ  and SxlPm[∆-88Pe]-lacZ except sequences distal to 1.4 kb upstream 

of exon E1 were absent and vector was pPelican.  Two independent lines of SxlP[L2]-

lacZ were expressed similarly to previous 1.4 kb SxlPe-lacZ lines [41,95], but deletion 

of the core SxlPe promoter left both tested lines of SxlPe[∆-88,L2]-lacZ inactive. 

Primer sequences: 1.8Pm5’-ctcacgctagagaacaccgatcattc; 1.8Pm3’-gactttccttcttcggcaaC; 

1’-CCATCCGATCCGCGAGTCCA; 4’-GCACGCTCACTGTGCTTTCCTCTC; 

2’/PacI-CCAttaattaaGGAGGCAAGGTGCGCGT; 3’’/PacI-

CCAttaattaaCGTAACTTTGTGATTATCCC; 5’/PacI-

CCttaattaaATGCGAGCAGCGGAGAAGGG.   

 

In-situ hybridization 

 Non-fluorescent in situ hybridization used digoxygenin or fluoroscene-labeled 

probes [100].  D. melanogaster and D. simulans SxlPm intron probes (1.4 kb) were 

transcribed from templates made using primers: Pm5’-CCCTTCTCCGCTGCTCGCAT 

and T3Pm-aattaaccctcactaaagggCCAGGTAGAAGATCGAAGGA.  Templates for 

corresponding D. yakuba and D. virilis SxlPm probes were made with yakPm5’-

CACCACCCCATTCCACCCG and T3Pm, or virPm5’-

CGAGCCTTTCCGTAACTGTTCG and virT3Pm- 
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aattaaccctcactaaagggTGCGCTACCTGTTGACAGTG.  Probes for lacZ and exon E1 

(SxlPe) have been described [41,83,101].   Fluorescent detection of SxlPe transcripts was 

as detailed: http://superfly.ucsd.edu/~davek/.  Nascent transcripts, visible as dots within 

stained nuclei, were seen with all probes but were more difficult to detect from lacZ 

transgenes.  For X-linked genes the number of nuclear dots indicates chromosomal sex.  

Times within cycle 14 were estimated by nuclear shape and length, and by the extent of 

membrane furrow invagination [82,81].  Specific developmental time estimates were 

based on published literature, but embryos grouped within specified time periods were 

staged as closely as possible to each other. 

 

Genetic analysis 

 Alleles sisA
1
, da

1
, and sc

sisB3 
 are near null for sex determination.  gro

E48
 and run

3
 

are null alleles.  Embryos homozygous or hemizygous for sc
sisB3

 and sisA
1
 were 

generated using the constitutive Sxl
M4

 allele to bypass female-lethal effects [81].  Null 

allele Sxl
f1

 suppressed the male-lethality of the 2X P(mini-w
+
, sisA

+
) & 2X P(mini-w

+
, 

sc
sisB+

) chromosome [81].  Nascent transcripts from Sxl
f1

 and Sxl
M4

 are not detectably 

different from wild type .  Germline clones [63] were generated in larvae of flies with 

the genotype: P[hsFLP]1, y
1
 w

1118
/ w

1118
; P[neoFRT]82B ry

506
 gro

E48
/P[neoFRT]82B 

P[ovoD1-18]3R and P[hsFLP]1, y
1
. Females with recombinant germlines were crossed 

to w
1118

/Y males. Embryos were collected at 25
o
C. Other mutations and chromosomes 

are described: http://flybase.bio.indiana.edu. The sc
sisB3

 allele and transgenic XSE 

duplications were provided by T. Cline (University of California, Berkeley). FRT82B 
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gro
E48

 was from by P. Simpson (University of Cambridge). D. virilis was provided by S. 

Johnson (Texas A&M University). D. simulans, D. yakuba and D. simulans were from 

D. Barbash (Cornell University). Fly stocks for FLP/FRT recombination were from the 

Bloomington Drosophila stock center. 
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APPENDIX A 

 

 SisA intrinsically disorder regions were determined using the DisEMBL 

program. The data obtained from running this program is shown below. 

 

 

 

 

Disordered by Loops/coils definition 

>SisA_LOOPS 1-41, 73-110 

MERSHLYLPT LSYAAMGHVY APYRGSSSPA LSTASSTSSK Peqieelvsq 

qlhhlkmhya deeqryvdqm llENPIVVER RAPPPLKTEL AMDCRGSGSG 

SGSGSGSDVK daqrqraesc rksrynnkik kaklrfrhkf vsgqlkksav mldtmrdvia 

qaerqllerg ypaatlermr atfglemeq 
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Disordered by Hot-loops definition 

>SisA_HOTLOOPS 97-151, 165-175 

mershlylpt lsyaamghvy apyrgssspa lstasstssk peqieelvsq qlhhlkmhya deeqryvdqm 

llenpivver rappplktel amdcrgSGSG SGSGSGSDVK DAQRQRAESC 

RKSRYNNKIK KAKLRFRHKF VSGQLKKSAV Mldtmrdvia qaerQLLERG 

YPAATlermr atfglemeq 

Disordered by Remark-465 definition 

>SisA_REM465 25-43, 94-121 

mershlylpt lsyaamghvy apyrGSSSPA LSTASSTSSK PEQieelvsq qlhhlkmhya 

deeqryvdqm llenpivver rappplktel amdCRGSGSG SGSGSGSDVK 

DAQRQRAESC Rksrynnkik kaklrfrhkf vsgqlkksav mldtmrdvia qaerqllerg 

ypaatlermr atfglemeq 

 

Data collected from ANCHOR 
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Predicted Disordered Binding Regions 

 
From To Length 

1 6         21         16         

2 47         60         14         

3 65         78         14         

4 89         95         7         

5 128         153         26         

 

 

 

Position Specific Score 

Position Residue ANCHOR Probability Output 

1 M 0.2684 0 

2 E 0.2824 0 

3 R 0.3372 0 

4 S 0.3858 0 

5 H 0.4590 0 

6 L 0.6233 1 

7 Y 0.7114 1 

8 L 0.7435 1 

9 P 0.7269 1 

10 T 0.7442 1 

11 L 0.7831 1 

12 S 0.7917 1 

13 Y 0.8088 1 

14 A 0.7676 1 

15 A 0.7305 1 

16 M 0.6978 1 

17 G 0.6736 1 

18 H 0.6810 1 

19 V 0.6765 1 

20 Y 0.6375 1 

21 A 0.5475 1 

22 P 0.4454 0 

23 Y 0.4315 0 

24 R 0.3717 0 
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25 G 0.3303 0 

26 S 0.3064 0 

27 S 0.2832 0 

28 S 0.2594 0 

29 P 0.2481 0 

30 A 0.2761 0 

31 L 0.3001 0 

32 S 0.2694 0 

33 T 0.2513 0 

34 A 0.2280 0 

35 S 0.1945 0 

36 S 0.1781 0 

37 T 0.1597 0 

38 S 0.1413 0 

39 S 0.1308 0 

40 K 0.1319 0 

41 P 0.1447 0 

42 E 0.1706 0 

43 Q 0.2087 0 

44 I 0.2891 0 

45 E 0.3445 0 

46 E 0.4256 0 

47 L 0.5652 1 

48 V 0.6371 1 

49 S 0.6801 1 

50 Q 0.7200 1 

51 Q 0.7790 1 

52 L 0.8342 1 

53 H 0.8353 1 

54 H 0.8450 1 

55 L 0.8383 1 

56 K 0.7764 1 

57 M 0.7282 1 

58 H 0.6958 1 

59 Y 0.6798 1 

60 A 0.5871 1 
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61 D 0.4630 0 

62 E 0.4042 0 

63 E 0.4007 0 

64 Q 0.4558 0 

65 R 0.5428 1 

66 Y 0.6311 1 

67 V 0.6538 1 

68 D 0.6646 1 

69 Q 0.7408 1 

70 M 0.8356 1 

71 L 0.8773 1 

72 L 0.8715 1 

73 E 0.8124 1 

74 N 0.7659 1 

75 P 0.7123 1 

76 I 0.7008 1 

77 V 0.6353 1 

78 V 0.5435 1 

79 E 0.4065 0 

80 R 0.3238 0 

81 R 0.2682 0 

82 A 0.2670 0 

83 P 0.2483 0 

84 P 0.2587 0 

85 P 0.2677 0 

86 L 0.3535 0 

87 K 0.4101 0 

88 T 0.4912 0 

89 E 0.5698 1 

90 L 0.6765 1 

91 A 0.7121 1 

92 M 0.7340 1 

93 D 0.7080 1 

94 C 0.6878 1 

95 R 0.5763 1 

96 G 0.4969 0 
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97 S 0.4235 0 

98 G 0.3484 0 

99 S 0.2760 0 

100 G 0.2266 0 

101 S 0.2030 0 

102 G 0.1930 0 

103 S 0.1752 0 

104 G 0.1819 0 

105 S 0.1856 0 

106 G 0.1871 0 

107 S 0.1880 0 

108 D 0.1856 0 

109 V 0.1986 0 

110 K 0.1835 0 

111 D 0.1668 0 

112 A 0.1797 0 

113 Q 0.1800 0 

114 R 0.1846 0 

115 Q 0.1946 0 

116 R 0.2062 0 

117 A 0.2418 0 

118 E 0.2564 0 

119 S 0.3086 0 

120 C 0.3648 0 

121 R 0.3678 0 

122 K 0.3906 0 

123 S 0.4076 0 

124 R 0.4341 0 

125 Y 0.4617 0 

126 N 0.4585 0 

127 N 0.4715 0 

128 K 0.5205 1 

129 I 0.5663 1 

130 K 0.6014 1 

131 K 0.6252 1 

132 A 0.6893 1 
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133 K 0.7484 1 

134 L 0.7975 1 

135 R 0.8188 1 

136 F 0.8338 1 

137 R 0.8131 1 

138 H 0.7975 1 

139 K 0.7993 1 

140 F 0.7996 1 

141 V 0.7423 1 

142 S 0.6661 1 

143 G 0.6023 1 

144 Q 0.6064 1 

145 L 0.6052 1 

146 K 0.5779 1 

147 K 0.5616 1 

148 S 0.5482 1 

149 A 0.5236 1 

150 V 0.5425 1 

151 M 0.5704 1 

152 L 0.5731 1 

153 D 0.5028 1 

154 T 0.4651 0 

155 M 0.4497 0 

156 R 0.3991 0 

157 D 0.3521 0 

158 V 0.3527 0 

159 I 0.3510 0 

160 A 0.2988 0 

161 Q 0.2517 0 

162 A 0.2338 0 

163 E 0.2168 0 

164 R 0.2135 0 

165 Q 0.2296 0 

166 L 0.2604 0 

167 L 0.2406 0 

168 E 0.2155 0 



 93

169 R 0.2216 0 

170 G 0.2348 0 

171 Y 0.2589 0 

172 P 0.2483 0 

173 A 0.2449 0 

174 A 0.2241 0 

175 T 0.2108 0 

176 L 0.2176 0 

177 E 0.2237 0 

178 R 0.2290 0 

179 M 0.2459 0 

180 R 0.2326 0 

181 A 0.2370 0 

182 T 0.2250 0 

183 F 0.2308 0 

184 G 0.1946 0 

185 L 0.1653 0 

186 E 0.1559 0 

187 M 0.1433 0 

188 E 0.1219 0 

189 Q 0.1134 0 
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