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ABSTRACT  

 

Specialty Coffee in Costa Rica: Effect of Environmental Factors and Management 

Options on Soil Chemistry and Microbial Composition. (May 2012) 

Linda Susan Sturm-Flores, B.S., The College of William and Mary;  

M.S., North Carolina State University 

Co-Chairs of Advisory Committee: Dr. William A. Payne   
Dr. Jacqueline Aitkenhead-Peterson 

 

In the Central Valley of Costa Rica in the Department of Heredia, I investigated 

the soil chemical properties and microbial communities under four native shade tree 

species in a coffee agroforestry system.  In the second year of the study, Effective 

Microorganisms®, a microbial inoculant, was applied to examine its effect on soil 

chemistry.  The shade tree species included in this study were Anonna muricata L., 

Diphysa americana Mill., Persea americana Mill., and Quercus spp. L. 

Plots measured 20 by 30 meters and were replicated three times for each shade 

tree species except for Quercus spp., which only had two replications.  Twelve 

composite soil samples were collected from each plot in 2008 and again in 2009, and 

twelve composite foliar samples were taken from the coffee plants in each plot in 2008.  

The results of this study indicated that the species of native shade tree had a significant 

effect on soil ammonium-N, nitrate-N, total dissolved nitrogen and magnesium.  Sun or 

shade position had a significant effect on dissolved organic nitrogen and dissolved 
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organic carbon. The species of native shade tree also had a significant effect on the 

composition of soil microbial communities.  PLFA analysis revealed a significant 

difference in soil fungi abundance in soil samples from Annona plots relative to those 

from Persea plots.   Effective microorganisms in combination with the tree species, as 

well as in combination with species and sun or shade position, had a significant 

interaction effect on soil ammonium-N, with the EM-treated plots showing higher 

concentrations of soil ammonium-N. There was a significant positive correlation 

between soil pH and foliar calcium, as well as soil dissolved organic nitrogen and foliar 

%N, at p< 0.01. 

This study suggests that Quercus spp. is a tree species that may help to regulate 

the cycling of nitrogen in the coffee agroecosystem.  Annona muricata appears to inhibit 

the action of some fungal species and may reduce the occurrence of fungal pathogens in 

the soil, although the present study did not explore this issue.  Although Diphysa 

americana is a legume, it does not appear to increase the amount of soil nitrogen in the 

vicinity of the coffee plants themselves.  All four tree species in this study improve 

coffee soils by increasing soil concentrations of dissolved organic nitrogen and dissolved 

organic carbon.   Coffee yield data and long term observations on the health of the coffee 

plants would clarify whether one of these species is particularly beneficial, from an 

agronomic perspective, for the productivity of this coffee agroecosystem. 
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CHAPTER I 

INTRODUCTION 

I.1 Factors affecting coffee production 

 Coffea arabica L., an evergreen shrub whose native habitat is the forest 

understory of the high plateau regions of Ethiopia, is the world's second largest dollar 

value commodity traded following petroleum.  It is estimated that 25 million small-scale 

coffee farmers and their families from tropical, developing countries worldwide produce 

about 70% of the world's coffee (ICO, 2002; Wintgens, 2004). 

 Although the genus Coffea includes approximately 70 species, there are two 

main species cultivated for commercial purposes: Coffea arabica L., grown between 

1200 and 2000 m above sea level in Africa, Asia, and the Tropical Americas, and Coffea 

canephora Pierre ex A. Froehner, grown in tropical Africa below 1000 meters 

(Wintgens, 2004). Approximately 90% of the coffee beverage consumed worldwide 

comes from Coffea arabica L.  When this species is grown with the correct suite of 

environmental conditions, the coffee bush can produce a beverage with an outstanding 

flavor (Wintgens, 2009).  The manner in which coffee is grown is critically important 

from an environmental standpoint since coffee thrives in some of the most biologically 

diverse regions on the planet. 

 The majority of coffee is produced by farmers in tropical, developing countries 

with holdings of 20 or fewer hectares of land.  Traditionally, farmers have grown their  
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coffee  in combination with leguminous and fruit producing shade trees. In addition to 

providing fruit, firewood, and mulch, the shade from their canopies benefits coffee 

bushes by reducing diurnal fluctuations in air temperature, protecting coffee plants from 

intense wind and rain, and minimizing soil erosion. In the Mérida State in the 

Venezuelan Andes, Ataroff and Monasterio (1997) reported that over a two-year period, 

soil  loss in the <4 mm soil fraction on 31% slopes was doubled for an established full 

sun plantation when compared to a  shade plantation.  Shaded coffee plantations also 

provide habitat for a variety of insectivorous birds and wildlife (Gallina et al., 1996; 

Mogul and Toledo, 1999; Perfecto et al., 1996; Raghuramulu, 2005).  Coffee plantations 

with a cover of diverse, native shade trees conserve biodiversity by serving as biological 

corridors between forested and protected areas (Estrada et al., 2006).   

 Shade trees play a vital role in maintaining water availability for the coffee crop 

as well.  In Chiapas, Southern Mexico, Lin (2010) compared four sites, one with high 

shade cover (60-80%), two sites with medium shade cover (30-65% and 45-65%), and 

one site with low shade cover (10-30%). She found that with a shade cover of 30% or 

more, there was a significant 32% reduction in evaporative transpiration demand when 

compared to the low shade cover site.  During both the wet and dry seasons, soil sensor 

measurements showed that the soil moisture in the medium and high shade cover sites 

was significantly higher than in the low shade cover site (Lin, 2010).  Coffee 

transpiration demand was also significantly higher in the low shade site relative to the 

two medium shade sites and the high shade site and this pattern was especially 

pronounced during the dry season (Lin, 2010).The benefit of water availability to coffee 
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bushes can be expected to become even more important as climate change reduces the 

area suitable for coffee cultivation, in large part to due to issues relating to water 

availability (Laderach et al., 2010).  Shade trees also promote nitrogen availability in 

coffee agroecosystems.  Babbar and Zak (1994) investigated nitrogen cycling in the 

Central Valley of Costa Rica and found an average net mineralization rate of 14.8 g N m-

3 yr-1 in shaded plantations, relative  to 11.1 g N m-1 yr-1 in full sun plantations.    

 In the late 1970’s, highly productive coffee varieties that thrived in full sun 

began to replace traditional coffee plantations.  These new varieties of coffee were 

promoted for two reasons: a) there was an increasing demand for coffee beans 

worldwide and b)  both industry experts and rural farmers alike believed that full sun 

coffee would be less likely to contract coffee leaf rust (Hemileia vastatrix), a fungal 

disease that had been accidentally introduced to Latin America (Perfecto et al., 1996).  

Researchers in Chiapas, Mexico, however found that the incidence of leaf rust was 

negatively correlated with the number of strata in coffee agroforestry systems (Soto et 

al., 2002), suggesting that inclusion of shade trees in the canopy layer would confer 

protection against coffee leaf rust.  While full sun plantations produce higher yields of 

coffee beans than shaded plantations, full sun coffee has proven to be ecologically 

unsustainable. For example, full sun plantations experience more soil erosion and require 

higher inputs of agrochemicals (Perfecto et al., 1996).  Pesticide use in full sun 

plantations has led to livestock deaths, contaminated aquifers, and illness and death 

among Central American coffee farmers (Boyce, 1994).  Full sun plantations have 

proven to be economically unsustainable as well.  During the 1980’s, overproduction 
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contributed to a sharp decline in coffee prices.  This decline was accompanied by an 

increase in the cost of agrochemicals used for coffee production, and coffee farmers 

suffered a dramatic decrease in their incomes (Boyce, 1994).  In addition, full sun 

plantations remain productive for only half as long relative to shaded plantations, which 

increases replacement costs for individual coffee bushes (Perfecto et al., 1996).    

 The human health problems and associated degradation of the environment, 

combined with expanding markets for shade grown organic and specialty coffees, have 

resulted in a great deal of interest in organic methods for coffee production.  A persistent 

obstacle to “going organic”, however, is that organically grown coffee has not been as 

productive as conventionally grown full sun coffee. For example, Lyngbaek et al. (2001) 

found that as a group, the ten multistrata organic farms they studied were 22% less 

productive than ten comparable conventional coffee farms, defined as having full sun 

coffee or coffee shaded by only a single species of shade tree.   When farmers transition 

from conventional farming to organic farming, there is a drop in total and plant available 

soil nutrients during the first two years, likely due to the time it takes for leaf litter and 

other forms of mulch to fully decompose (Afrifa et al., 2003).  Likewise, in a six-year 

study conducted at sites in Nicaragua and Costa Rica contrasting four management 

regimes: 1) moderate organic, 2) intensive organic with chicken manure, 3) moderate 

conventional, and 4) intensive conventional, in Costa Rica, it took the organic 

experiments (1 and 2) two years longer to develop levels of productivity similar to that 

of the conventionally managed plots (Haggar et al., 2011).  In Nicaragua the organic 

plots that were intensively managed produced a harvest equal to that of the 
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conventionally managed coffee from the first harvest (Haggar et al. 2011).  The 

discrepancies in the results from the pairs of sites in Costa Rica and Nicaragua may be 

explained by the initial differences in soil fertility, as the Nicaraguan site was used for 

shade coffee or young secondary forest  prior to establishing the experiment, while the 

Costa Rican site was previously used for sugarcane production.  

 Nitrogen has been found to be one of the key factors limiting productivity in 

organically grown coffee.  Although it is possible to supply organic matter by means of 

mulch, crop residues, and organic fertilizers, optimum available nitrogen levels are 

seldom achieved in practice, and the timing of crop demand and nutrient availability is 

often not synchronized.  In addition, a significant amount of nitrogen is lost during the 

process of composting of manures and plant residues due to volatilization as N2, N2O, or 

NH3, or by transformation into stable organic compounds (Berry et al., 2002). 

 Organic farming does not necessarily reduce the occurrence of diseases and pests 

below economically harmful thresholds (Van Der Vossen, 2005).  Furthermore, Van der 

Vossen (2005) found that to sustain economically viable yields of 1 Mg ha-1 yr-1 green 

coffee additional composted organic matter would have to be brought in from external 

sources, a requirement that most smallholder farmers cannot meet using current organic 

farming methods. 

I.2 Effective Microorganisms® 

 Dr. Teruro Higa of the University of Ryukyus, Okinawa, Japan coined the term 

“Effective Microorganisms®” (EM) to describe a group of microorganisms which work 

synergistically to promote and maintain healthy plant growth (Higa and Parr, 1994). The 
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use of EM may have the potential to increase the productivity of organic farming 

systems (Subadiyasa, 2003).  Although it has been reported that most of the organically 

certified coffee farmers in Costa Rica and Guatemala use EM (Lotter, 2005), there are 

no published studies concerning the use of EM and its effect on soil chemistry in coffee 

plantations.   

 Originally, EM was cultivated from 80 species of bacteria belonging to 10 genera 

(Higa, 1993).  Previous efforts to change the microflora of soils by introducing single 

cultures of microorganisms have, for the most part, been unsuccessful.  EM works 

differently in that it combines microorganisms which are ecologically compatible and 

work in a synergistic manner (Higa and Parr, 1994). EM technology has been modified 

over time to include large populations of lactic acid bacteria (Lactobacillus plantarum, 

L. casei, and Streptococcus lactis, among others), and yeasts (Saccharomyces spp.), with 

smaller numbers of photosynthetic bacteria (Rhodopseudomonas palustris and 

Rhodobacter sphaeroides), Actinomycetes (Streptomyces spp.) as well as other types of 

microorganisms (Javaid, 2010).   

 In an EM culture, both photosynthetic bacteria and aztobacters coexist 

symbiotically by an exchange of food sources between them.  The aerobic azotobacters 

consume organic matter and produce waste products which are the ideal food source for 

photosynthetic bacteria (Higa, 1993).  When there is an over proliferation of 

azotobacters, anaerobic conditions are created.  In the absence of photosynthetic 

bacteria, putrefaction, the phenomenon of organic substance decomposition into 

inorganic substances, would begin to occur.  Putrefaction produces unstable, often 
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harmful intermediate products and a large amount of heat (Higa, 1989; Higa and Parr, 

1994).  In the presence of photosynthetic bacteria, however, the intermediate waste 

products produced by the azotobacters and other microorganisms are used by the 

photosynthetic bacteria.  Higa and Parr (1994) claim that these microbes use heat as an 

energy source to produce useful organic compounds from these intermediate waste 

products that can be absorbed directly by plants, although there is an absence of 

scientific consensus supporting this theory.  

 Proponents of EM state that it benefits plants  producing antioxidants (Higa, 

1993).  These investigators theorize that antioxidants in the soil prevent the harmful 

reactions brought about by oxidation.  As a result, plant roots become stronger and more 

capable of carrying on functions essential to their growth and health, such as absorbing 

nutrients from the soil.  Higa postulates (Higa 1993) that the synergistic activity of the 

microorganisms in EM promote an antioxidized soil condition in which beneficial plant 

hormones persist for a longer period of time.   

 Amino acids and organic acids are also affected by the oxidative state of the soil.  

When the predominant condition is oxidative, amino and organic acids are changed into 

molecules that are useless or harmful to plants.  Amide, an intermediary produced by the 

breakdown of amino acids, is highly toxic and can cause inertia in plant cells (Higa, 

1993).  In addition, amino acids in oxidized soils may be broken down and absorbed by 

plants in the form of ammonium in wet soils or nitric acid in dry soils.  In order for the 

plant to synthesize an amino acid from these sources of inorganic nitrogen, the plant 

needs to attach a sugar molecule to it.  This places a burden on the process of 
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photosynthesis, using up sugar molecules to reform amino acids rather than using them 

for other plant functions. Proponents of EM theorize that when antioxidants are present 

in the soil, the oxidation of amino acids by soil bacteria is retarded, allowing the amino 

acids to persist in the soil for a longer period of time, making them more  available to  

plant roots where they can be absorbed and converted into vegetable protein.   

Furthermore, under antioxidative conditions, organic acids are converted into sugars in 

the soil (Higa, 1993), becoming an energy source for the soil food web.  Again, there is a 

lack of scientific consensus in support of the theories developed by Higa (1993). 

 The major objectives of my study were to: a) to examine the effect of shade trees 

on soil chemistry and microbial community diversity, b) to examine relationships 

between soil and foliar chemistry and c) to investigate the effect of adding Effective 

Microorganisms® on soil chemistry in the vicinity of different shade tree species and in 

sun and shade positions. 
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CHAPTER II 

THE EFFECT OF SHADE TREE SPECIES AND POSITION ON SOIL  

CHEMICAL PROPERTIES AND MICROBIAL COMMUNITY COMPOSITION 

II.1. Introduction  

 Beginning in 1840, coffee was Costa Rica’s first export product and the 

backbone of its socioeconomic development.  In recent decades coffee’s role in the 

Costa Rican economy has declined due to microprocessor production replacing coffee 

and bananas as the country’s leading source of export revenue (Nelson, 2008). However, 

coffee still generates essential income for approximately 5% of the nation’s work force, 

most of which are small farmers with five or fewer hectares of land (Ronchi, 2002).  

 The volcanic soils and ideal altitudes of the Central Valley of Costa Rica produce 

exceptionally high quality coffee.  Coffea arabica L. is the only species cultivated in 

Costa Rica, with Caturra Vermelho being the predominant cultivar used. It is a relatively 

small variety with dark green leaves and abundant secondary branches, with fragrant 

white flowers approximately 3 cm in diameter, and fruits and seeds slightly larger than 

the Bourbon variety (Krug et al., 1947). The coffee beverage produced by Caturra 

Vermelho is characterized by a good body with a light, acidic flavor.  Caturra Vermelho 

was discovered in Brazil in 1937 as a mutant of the Bourbon variety and has been used 

to develop high-density coffee-growing practices (Wintgens, 2004).  

 The manner in which coffee is grown in Costa Rica and elsewhere is critically 

important from an environmental standpoint since the zones appropriate for coffee 

cultivation are potentially among the most biologically diverse regions on the planet.  
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Traditionally, farmers have grown their coffee in combination with leguminous and fruit 

producing shade trees, although with the introduction of more highly productive full sun 

varieties, many coffee farmers converted to full sun coffee monocultures in the 1980’s. 

About 30% of Costa Rican coffee grown today is considered full sun coffee, although 

the percent of shade cover is quite low on many so-called shaded coffee farms (Znajda, 

2000).  In addition to providing fruit, firewood, and mulch, shade benefits coffee plants 

by reducing diurnal fluctuations in air temperature, protecting coffee plants from intense 

wind and rain, minimizing soil erosion, and providing habitat for a variety of 

insectivorous birds and wildlife (Gallina et al., 1996; Mogul and Toledo, 1999; Perfecto 

et al., 1996; Raghuramulu, 2005).  Shade has been found to promote the production of 

larger coffee beans, especially when coffee is grown at lower altitudes, perhaps by 

lowering the temperature of the microclimate in which coffee grows (Muschler, 2001).  

Vaast et al. (2006) also found shade to increase the size and improve the chemical 

composition of coffee beans grown in the Central Valley of Costa Rica, considered an 

ideal coffee growing region, by delaying bean maturation by up to one month.  An 

additional incentive for farmers to grow native shade trees within their coffee plantations 

is that doing so qualifies the coffee for Rainforest Alliance Certification, which increases 

coffee’s appeal to socially and environmentally conscious consumers and allows the 

product to command a higher price in the marketplace (www.rainforest-

alliance.org/agriculture/certification).  Coffee plantations with a cover of diverse, native 

shade trees conserve biodiversity by serving as biological corridors between forested and 

protected areas (Estrada et al., 2006). 
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 It has long been recognized that not only must a soil be suitable for a tree species 

to flourish, but the tree itself affects the formation of the soil in which it is growing 

(Remezov and Pogrebayak, 1969). Studies in North America have shown that the 

chemical characteristics of forest floors differ with the dominant tree species present, in 

part due to differences in the chemical composition of the leaf litter produced (Binkley 

and Menyailo, 2005b).   However, in a natural setting, it is often difficult to determine 

whether soil chemistry is the result of site characteristics such as soil parent material, 

local topography and aspect, local climate or the age of the soil, which may confer a 

competitive advantage on certain species as opposed to others, or whether the soil 

properties observed are the product of the changes that followed as a result of the 

establishment of the tree species themselves (Binkley and Menyailo, 2005a).  For 

example, cedar forest floors tend to have higher concentrations of calcium, relatively 

alkaline pH, and inorganic nitrogen predominantly in the form of nitrate. In contrast, 

forest floors of western hemlock-dominated forests tend to have a more acidic pH, lower 

concentrations of calcium, and a higher proportion of inorganic nitrogen in the form of 

ammonia (Binkley and Menyailo, 2005a).   

 Some effects of tree species on soil chemistry have been well documented as due 

to the influence of the tree species themselves.  For example, there is moderately strong 

evidence that the amount of nitrogen mineralized per year in a hectare of forest surface 

soil is inversely related to the lignin:N ratio of the litterfall of the dominant tree species 

(Binkley and Giardina, 1998). At least 10 separate studies suggested that nitrogen-fixing 

trees increase the concentration of carbon in the soil and enhance the cycling of other 
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soil nutrients as well (Binkley and Giardina, 1998).   The bulk of the literature on the 

interactions between tree species and soils has been conducted in temperate forested or 

boreal ecosystems (e.g. Menyailo et al., 2002; Vesterdal et al., 2008; Smolander and 

Kitunen, 2011).   

 Results from studies on temperate forests cannot be necessarily be extrapolated 

to tropical forests, which are distinctive in climate and rainfall patterns and house a 

greater diversity of plant and animal species. For example there are typically 4 tree 

species per acre on average in a temperate forest versus 20-86 per acre in a tropical 

forest which supports a variety of vines, lianas, and epiphytic plants (Lowman and 

Bouricius, 2003). Powers et al. (2004) conducted a study in the rain forest of Costa Rica 

at the La Selva Biological Station to examine the effects of four trees from four different 

families on the forest floor material.  The investigators contrasted the forest floor soil 

chemistry under mature Pentaclethra macroloba Kuntze (Mimosaceae), which they 

considered to be the background or baseline trees for the study, with  forest floor soil 

chemistry beneath the canopy of four target species: Hyeronima alchorneoides Allemão 

(Euphorbiaceae), Lecythis ampla Miers (Lecythidaceae), Depteryx panamensis Record 

& Mell (Fabaceae), and Balizia elegans Ducke (Mimosaceae).  They found no 

significant differences in soil concentrations of calcium, potassium, magnesium, 

phosphorus, carbon, nitrogen, or pH suggesting that tree species had no effect on soil 

chemistry. Payán et al. (2009) compared ten paired conventional and organic coffee 

fields shaded by the commonly used legume shade tree Erythrina poeppigiana. The 

researchers found that soil carbon and nitrogen concentrations declined significantly 
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with increasing distance from the tree’s stem. Samples taken within one meter of the 

shade trees contained significantly higher soil carbon and nitrogen concentrations than 

did samples taken from the same depth two or more meters from the trees. It is likely 

that the active root zone, as well as the litterfall from the trees contributed the carbon and 

nitrogen. This was not the case with the organic farms, where carbon and nitrogen soil 

concentrations remained relatively constant throughout the farm, presumably due to the 

use of organic inputs and the purposeful mulching and distribution of the trees’ pruning 

residues.  The work of Pavan et al. (2009) supported the findings of Beer (1988) who 

reported that leguminous shade trees in coffee fields can contribute between 5000 and 

10,000 kg ha-1 yr-1of organic material to the soil in the form of leaf litter and pruning 

residues.  Corroborating the idea that leaf litter and pruning residues may supply organic 

C and N to soil beneath shade tree canopies, Palm and Sanchez (1990) reported that the 

polyphenolic compounds in three different species of tropical legumes in an alley 

cropping experiment in the Peruvian Amazon influenced the rates of decomposition of 

the leaf litter more than the percent nitrogen or lignin in the leaflets.  They concluded 

that nitrogen release by legumes with high polyphenolic concentrations will be slower 

than that by legumes with low polyphenolic concentrations.   

 Polyphenolic compounds are typically present in leaf litter, whereas the C 

produced by roots as exudates or sloughing of dead cells tends to have no polyphenols 

and therefore a greater biodegradability.  In a later study by Palm and Sanchez (1990) 

the decomposition and nitrogen release patterns from the leaves of 10 tropical legume 

trees commonly used in agroforestry systems were investigated in a laboratory 
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experiment and compared to the lignin, nitrogen, and phenolic content of the leaflets.  

Rice straw was used as a control. Palm and Sanchez (1990) concluded that net 

mineralization was not correlated to % N or % lignin in the leaf material but was found 

to be negatively correlated to the polyphenolic concentration or the polyphenolic-to-N 

ratio.  The researchers concluded that mineralization in excess of the control soil only 

occurred when the materials had a polyphenolic:N ratio of less than 0.5.  Costa Rican 

farmers are interested in learning about these and other effects of shade trees on soils in 

their coffee fields, as such information may facilitate their choice of shade trees for their 

coffee agroforestry systems (Albertin and Nair, 2004; Alpizar Vargas, personal 

communication, 2008).    

 Because the quantity and chemical composition of leaf litter varies among tree 

species, it follows that different tree species provide different substrates upon which 

microorganisms can act (Pastor and Post, 1986).   When released from the leaf litter, 

phenolic substances, which serve to protect plants against herbivory and parasitism, 

influence the rates at which mineralization and nitrification occur by affecting the soil 

microbes responsible for these processes (Kuiters, 1990). Polyphenols can also complex 

with proteinacious substances, making the nitrogen unavailable to the system.  

Polyphenols produced by different tree species have different protein-complexing 

capabilities.  This may allow the plant to regulate the form that nitrogen may take and 

give the plant a competitive advantage for the uptake of nitrogen in organic form 

(Hättenschwiler and Vitousek, 2000).  In an experiment using purified tannins from oak 

leaf litter in an artificial aqueous medium, fourteen of nineteen fungal species tested 
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were inhibited, four of which were considered important decomposer species (Harrison, 

1971). 

 Plants often have associated bacteria in their rhizospheres that promote the 

healthy growth of the host plant by providing nutrients or other growth factors, or by 

producing antibiotics and other substances which hinder the growth and survival of 

harmful microbes (Burr et al., 1984; Davidson, 1988).  Ushio and colleagues (2008) 

investigated the composition of microbial communities in the top 5 cm of soil under the 

crowns of two conifers and three broadleaved trees in the tropical montane forest of Mt. 

Kinabalu, in Malaysian Borneo.  They found that the abundance of specific microbial 

biomarker lipids corresponded with soil pH, total carbon and total nitrogen.  Thus, tree 

species may affect the soil microbial community indirectly through their effects on these 

soil factors.   

 The objectives of this study included examining the effects of native tree species 

and sun or shade positions of the soil sample on soil chemistry and microbial community 

composition as well as determining if specific groups of soil microbes have a significant 

relationship to soil chemistry.   

II. 2. Materials and methods  

II.2.1. Site description 

 The study was carried out in the Central Valley of Costa Rica in the Department 

of Heredia at Finca La Hilda, a Rainforest Alliance Certified coffee farm owned by the 

Doka Estate Coffee Company. The study site is at an altitude ranging from 1300 and 

1400 m above sea level.  Rainfall in the region varies between 2400 and 3600 mm yr-1 
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with approximately 90% of the rainfall occurring during the months of June through 

November followed by a dry season December through May (Meteorological Station, 

Finca la Hilda, 2007-2010).  The soils at the study site were classified as Udands, which 

are Andisols with an udic moisture regime.    

II.2.2. Experimental design 

 A three factorial arrangement in a split-split plot design (Figure 2.1) was used to 

study the effects of tree species and sun or shade position on soil chemistry and soil 

microbial community composition. Within this experimental design, experimental plots 

were selected based on the presence of native shade tree species, which included a) 

Annona muricata L. (Annonaceae), b) Diphysa americana Mill. (Fabaceae),  c) Quercus 

spp.L. (Fagaceae), and d) Persea americana Mill. (Lauraceae).  These species were of 

interest due to either their nutritional value for wildlife and humans (Persea spp. and 

Annona spp.) or their value as a fine wood (Quercus spp. and Diphysa americana).  The 

shade tree species were not pruned. The plots measured 20 x 30 m.  A two factorial 

arrangement was used to study effect of tree species and sun/shade position with three 

completely randomized replications for Anonna muricata, Diphysa americana, and 

Persea americana, and two replications for Quercus spp., in a split-split plot design 

(Figure 2.1).  The eleven experimental plots were delineated and soil samples were 

collected from the plots influenced by the shade of Persea on May 17, 2008, one week 

after the onset of the rainy season and before the application of any fertilizers.  Two 

weeks later, soil samples were taken from the Quercus, Diphysa and the Annona plots.  
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These samples were taken after the first round of fertilizer applications for the growing 

season and three weeks into the rainy season.    

 

 

Figure 2.1. Experimental design showing two factorial and split-split plot 

arrangement.  

 

 

II.2.3. Sample collection and processing  

 Four composite soil samples were taken from each plot (Figure 2.1). For the soil 

samples collected, one soil sample was the product of five 2.5 cm diameter soil cores 

extracted with an auger 40 cm from the base of individual coffee bushes.  Soil cores 
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were taken to a depth of 20 cm and mixed together in a plastic three gallon bucket.  A 

composite sample was scooped with a metal hand spade into a quart-sized zip lock bag.  

Before the next soil core was taken, both the soil auger and the mixing bucket were 

disinfected with iodine and then carefully rinsed to prevent transfer of microorganisms 

from one area into another.  A total of 44 composite soil samples were collected and 

frozen within four hours of sampling at -20° Celsius in a freezer located at the study site 

and shipped to Texas A&M on dry ice for analyses.   

 For each tree species foliar samples were taken from five representative coffee 

bushes in the shade, and from 5 representative coffee bushes in the sun.  Four leaves 

were sampled per coffee bush from the third fully opened leaf pair (Gitimu, 1998).  Two 

shade and two sun samples were taken per plot, resulting in a total of 44 foliar samples.  

Foliar samples were collected from each plot on the same days that the soil samples were 

collected and were place in brown lunch-size, labeled paper bags.  The bagged leaf 

samples were then taken to the CAFESA lab in Heredia, Costa Rica for chemical 

analyses.     

II.2.4. Chemical analyses of soil samples 

 Water extractions were performed on each of the 44 soil samples.  Aliquots of 

3.5 g of air-dried, sieved (2mm) soil were placed in 50 mL high density polyethelene 

(HDPE) centrifuge tubes and combined with 35 mL of ultra-pure water to achieve a 

soil:water ratio of 1:10.  The centrifuge tubes were shaken for 90 minutes at 70 rpm.  

The soil:water units were then centrifuged at 19,600 g-force for 20 min (Sorval RC6 

with SS34 rotor) at 4°C prior to removal of the supernatant using a canula and syringe.  
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pH and electrical conductivity were recorded on the supernatant prior to its filtration 

through ashed (500° C at 4 h)Whatman GF/F filters (nominal pore size 0.7 µm) and 

transfer to acid-washed, ultra-pure water rinsed, 50 mL HDPE bottles and frozen until 

chemical analyses.   

 Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were 

measured using high temperature Platinum-catalyzed combustion with a Shimadzu 

TOC-VCSH and Shimadzu total measuring unit TNM-1 (Shimadzu Corp. Houston, TX, 

USA). Dissolved organic carbon was measured as non-purgeable carbon using USEPA 

method 415.1 which entails acidifying (1N HCl) the sample and sparging for 4 min with 

C-free air. Ammonium-N was analyzed using the phenate hypochlorite method with 

sodium nitroprusside enhancement (USEPA method 350.1) and nitrate-N analyzed using 

Cd–Cu reduction (USEPA method 353.3). Alkalinity was quantified using methyl 

orange (USEPA method 310.2). All colorimetric methods were performed with a Westco 

Scientific Smartchem Discrete Analyzer (Westco Scientific Instruments Inc. Brookfield, 

CT, USA).  Dissolved organic nitrogen (DON) is the product of TDN—(NH4-N + NO3-

N).   

 For analysis of base cations and anions, aliquots of extracts were filtered through 

0.2 µm Pall filters. Calcium, magnesium potassium and sodium were quantified by ion 

chromatography using an Ionpac CS16 analytical and Ionpac CG16 guard column for 

separation and 20 mM Methanosulfonic acid as effluent at a flow rate of 1 mL min-1 and 

injection volume of 10 mL using a DIONEX ICS 1000 (DIONEX Corp. Sunnyvale, CA, 

USA).  Fluoride, chloride, bromide and sulfate were quantified on a Dionex ICS 2000 
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using an Ionpak AS20 and Ionpak AG20 analytical and guard columns for separation 

with 35 mM KOH as effluent at a flow rate of 1 mL min-1 and an injection volume of 25 

μL (Dionex Corp, Bannockburn, IL).  For all analyses a NIST traceable standard, check 

standard, replicate sample and blank were run every 10th or 12th sample for quality 

control purposes. 

II.2.5. Chemical analyses of foliar samples 

 The chemical analyses of the foliar samples were carried out in the CAFESA 

laboratory located in Heredia, Costa Rica under the supervision of Ing.Marco Corrales.  

Total nitrogen was determined the Micro-Kjeldahl method (Emmert, 1935).  Boron 

concentrations were analyzed using dry digestion and spectrophotometry with 

Azomethine-H (Zaijun et al., 2006).  Sulfur and phosphorus were investigated using dry 

digestion with spectrophotometric analysis of turbidity with BaCl2 and ammonium  

molybdate, respectively.  Potassium, calcium, magnesium, copper, zinc, and manganese 

concentrations were determined by dry digestion with spectrophotometric analysis of 

atomic absorption. 

II.2.6. Analyses for microbial community composition 

 Phospholipid fatty acid (PLFA) analysis was used to assess the composition of 

the microbial communities inhabiting the collected soil samples. Microbial cells have 

membranes comprised of a bi-layer of phospholipids. The fatty acid composition of this 

bilayer, that is the types of phospholipid fatty acids present, can serve as biomarkers for 

different microbial functional groups. PLFA analysis can be used to analyze both 

bacterial and fungal biomass (Frostegard and Baath, 1996).  Since phospholipids are 
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rapidly degraded following cell death, PLFA analysis is a good way to assess living 

biomass in a soil sample.  PLFA analysis is often the method of choice for microbial 

analyses, since one of the limitations of traditional dilution plating and culturing 

methods is that it is estimated that only a small fraction (less than 1%) of the soil 

microbial community is culturable by known techniques (Hill et al., 2000). It is assumed 

that all PLFA’s are equally accessible to the extracting agent and that the PLFA profile 

of the extract is representative of the in situ soil system (Tate, 2000).  The specific 

method employed for this study is described by Ushio et al. (2010). 

 Twenty-two composite soil samples were prepared for PLFA analysis by 

thoroughly mixing and then removing approximately 10 g of  soil using a small metal 

spatula from each of the 44 air-dried composite soil samples from the twelve 

experimental plots.   The two sun position samples and the two shade position samples 

from each plot were then combined, mixed together, and approximately 5 grams of this 

composite sample were put into a glass test tubes for freeze-drying.  These 22 composite 

samples were freeze-dried using liquid nitrogen and then shipped on frozen gel packs to 

the University of Wisconsin in Madison, Wisconsin.   

 Briefly, PLFA analysis involves fractionating the lipids into neutral lipids, 

glycolipids, and phospholipids.  The first two classes of lipids are discarded, while the 

phospholipids are methylated to give fatty acid methyl esters (FAME’s).  The FAME’s 

are analyzed by a gas chromatograph coupled with a mass spectrometer, which generates 

peaks whose area corresponds to the amount of a particular FAME present (Tate, 2000). 

Upon receiving the lipid data from the University of Wisconsin, a conversion factor of 
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2.87 E -06, which was derived from the internal standards on the gas chromatograph, 

was used to convert from peak area to µgrams lipid g soil ⁻¹.  I then divided by the unit 

weight of the soil and converted to µmol lipid g soil⁻1 by dividing by the molecular 

weight of the lipid, to arrive at the absolute abundance of the lipid biomarker. Finally, I 

divided the absolute abundance by the total mol g -1 of lipid extracted and multiplied by 

100 to get mol%.  This final step normalized the data and indicated the relative 

abundance of any given lipid (Balser, 2007).   

 I reduced my dataset by excluding any FAMEs that were present in the blanks or 

in the standards, FAMEs that appeared in less than 0.5% of the dataset, unknown 

FAMEs, and any lipids containing more than 20 carbons.  The result was a complete 

lipid biomarker dataset consisting of over 100 FAMEs.  Although a plethora of lipid 

biomarkers have been cited (Table 2.1), I included just 21 of these biomarkers because 

they were well-supported in the literature in the analysis of shade tree species versus 

abundance of microbial groups.  Lipid biomarkers representing Gram+ bacteria were the 

following iso-branched lipids: i14:0, 15:0, i15:0, a15:0, i16:0, 17:0, i17:0, and a17:0.  

19:0 10 Me represented Actinomycetes.  Mono-unsaturated, alcohols, and cyclopropyl 

lipids indicated Gram ⁻ bacteria and included 16:1ω7c, 12: X OH, 16: X OH, cy17:0, 

cy19:0 c11-12, SF 8 (18:1ω7c/18:1ω9t).  Biomarkers for fungi included 18:3ω6c, SF19 

(18:2ω6c/T:18:0), 18:1ω9c, and 16:1ω5c  (Frostegard and Baath, 1996; Sinsabaugh et 

al., 1999; Ushio et al., 2010; Zelles et al., 1992). 
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II.2.7. Statistical analyses 

 Means and standard deviations for each soil chemical constituent were calculated 

for each shade tree species and under sun or shade position. Univariate analysis of 

variance with two factors (tree species and sun or shade position) was performed to test 

the hypothesis that shade tree species and sun or shade position have no effect on soil 

chemistry.  Univariate analysis of variance with two factors (tree species and sun or 

shade position) was also used to test the hypothesis that shade tree species have no effect 

on the composition of soil microbial communities.  Pearson bivariate correlation analysis 

was used to examine correlations between soil chemistry and individual microbiological 

groups using the 21 lipid biomarkers listed above.  Cluster analysis with Euclidean 

distance was used to examine similarity or dissimilarity among microbial community 

compositions among shade tree species. The complete dataset of over 100 lipid 

biomarkers was used to perform the cluster analysis and to generate diversity indices 

using the software program SPSS v. 16.  
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Table 2.1. PLFA biomarkers, microbial group to which they belong, and source of 

information. 

PLFA 

Biomarker 

Microbial Group Reference 

14:0 Common Bacterial Signature Gonzalez-Chavez et al., (2010) 

i14:0 Gram + bacteria O'Leary and Wilkinson, (1988) 

15:0 Common Bacterial Signature Tunlid and White, (1992) 

i15:0 Gram + bacteria Zak et al., (1996); Zogg et al., 
(1997); Ringelberg et al., (1997); 
Bardgett et al., (1996); Frostegård 
and Bååth, (1996) 

a15:0 Gram + bacteria Zak et al., (1996); Ringelberg et al., 
(1997);  
Bardgett et al., (1996); Frostegård 
and Bååth, (1996) 

i15:1G Gram + bacteria  Gonzalez-Chavez et al., (2010) 

15:0 3OH Gram - bacteria Gonzalez-Chavez et al., (2010) 

Br 2OH-

15:0 

Flavobacterium balustinum Tunlid and White, (1992) 

16 : 0 Gram + bacteria Gonzalez-Chavez et al., (2010) 

i16:0 Gram + bacteria Zak et al., (1996); Zogg et al., 
(1997); Bardgett et al., (1996); 
Frostegård and Bååth, (1996) 

16:1 ω  9  Common Bacterial signature Hill and al., (2000) 

10Me 16:0 Sulfate reducer (Gram +; 
actinomycetes) 

Tunlid and White, (1992)  

16 : 1 ω 5 Arbuscular mycorrhizal fungi; 
Common Bacterial signature; 
Eucaryotes? 

Nordby et al., (1981); Tunlid      
and  White, (1992) 

16 : 0 10 Nocardioform fungi Frostegard et al., (1993b) 
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Table 2.1. Continued. 

PLFA 

Biomarker 

Microbial Group Reference 

16:3 ω 3  Microalgae Hill and al., (2000) 

17:0 Common Bacterial Signature Tunlid and White, (1992) 

i17:0 Gram + bacteria Zak et al., (1996); Ringelberg et al., 
(1997); Bardgett et al., (1996); 
Frostegård and Bååth, (1996) 

a17:0 Gram + bacteria Zak et al., (1996); Ringelberg et al., 
(1997); Frostegård and Bååth, 
(1996) 

cy17:0 
 

Gram – bacteria (Anaerobe) Zak et al., (1996); Zogg et al., 
(1997); Ringelberg et al., (1997); 
Bardgett et al., (1996); Frostegård 
and Bååth, (1996) 

i17:1G Gram + bacteria Gonzalez-Chavez et al., (2010) 

Br17:1 Sulfate reducer Tunlid and White, (1992) 

17:1 ω 6 Sulfate reducer Tunlid and White, (1992) 

17:1 ω 8c Common Bacterial Signature Gonzalez-Chavez et al., (2010) 

i17:1 7 ω c Desulfovibrio White et al., (1977); Ringelberg et 
al., (1997); Pinkart et al., (2002) 

i17:1 ω 7 Flavobacterium balustinum 
(sulfate reducer) 

Tunlid and White, (1992) 

18:0 Common Bacterial signature Gonzalez-Chavez et al., (2010) 

18:1 ω 5c Gram - bacteria Zak et al., (1996) 

18:1 ω 5 Common Bacterial signature Hill and al., (2000) 

18:1 ω 7 Common Bacterial Signature Tunlid and White, (1992) 

18:1 ω7t Common Bacterial signature; 
aerobe 

Zogg et al., (1997); Hill et al., 
(2000) 
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Table 2.1. Continued. 

PLFA 

Biomarker 

Microbial Group Reference 

18:1 ω  8c Methane-oxidizing bacteria, 

Type 2 

Tunlid and White, (1992) 

18:1 ω  8t Methane-oxidizing bacteria, 

Type 2 

Tunlid and White, (1992) 

18:1 ω 6c Methane-oxidizing bacteria, 

Type 2 

Tunlid and White, (1992) 

18:1 ω 7c Gram - bacteria Zak et al., (1996); Zogg et al., 
(1997); Ringelberg et al., (1997); 
Bardgett et al., (1996); Frostegård 
and Bååth, (1996) 

18:1 ω  7 Gram – bacteria Wilkinson, (1988) 

18 : 2 6 ω c Fungi Guckert et al., (1985) 

18:2 ω 6 Fungi; Cyanobacteria; Plants? Tunlid and White (1992);  Zak et 
al. (1996); Zogg et al., (1997); 
Ringelberg et al. (1997); Pinkart et 
al. (2002); Madan et al. (2002) 

18:3 ω 6 Fungi Tunlid and White (1992); Hill and 
al., (2000) 

18:3 ω  3 Fungi, Plants Pinkart et al., (2002) 

18:3 ω  6 Fungi Tunlid and White, (1992) 

br18:0 Gram + bacteria O'Leary and Wilkinson, (1988) 

10Me18:0 Actinomycetes Kroppenstedt (1985), White et al. 
(1977), Ringelberg et al., (1997) 
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Table 2.1. Continued. 

PLFA 

Biomarker 

Microbial Group Reference 

i19:0 Common Bacterial signature Hill and al., (2000) 

cy19:0 Gram – bacteria (Anaerobe) Wilkinson, (1988); Zak et al. 
(1996); Zogg et al., (1997); 
Ringelberg et al., (1997); Bardgett 
et al., (1996); Frostegård and Bååth, 
(1996) 

cy19c11-12 Gram - bacteria Gonzalez-Chavez et al., (2010) 

19:11 ω 1 c Gram + bacteria Gonzalez-Chavez et al., (2010) 

20:5 Barophilic/psychrophilic 

bacteria 

Hill and al., (2000) 

20:1 ω 11c Francisella tularensis Tunlid and White, (1992) 

20:5 ω 3 Fungi; Plants  Madan et al., (2002); Ringelberg et 
al., (1997) 

20:3 ω 6 Protozoa Hill and al., (2000) 

20:4 ω 6c Protozoa Gonzalez-Chavez. et al., (2010) 

20:4 ω 6 Protozoa White et al. (1977); Ringelberg et 
al., (1997); Pindart et al., (2002)  

22:1 ω 13c Francisella tularensis Tunlid and White, (1992) 

22:6 Barophilic/psychrophilic 

bacteria 

 Hill and al., (2000) 

24:1 ω 5c Francisella tularensis Tunlid and White, (1992) 
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II. 3. Results  

II.3.1. Soil chemistry under sun and shade positions  

 Sun or shade position had no significant effect on any soil chemical constituent, 

with the exception of dissolved organic carbon (DOC) and dissolved organic nitrogen 

(DON).  Shade positions contained higher soil concentrations of both water extractable 

DOC and DON than did sun positions.  Mean water extractable DOC under sun and 

shade positions were 95.0 ± 35.7 µg g-1 soil  and 119.5 ± 38.5 µg g-1 soil  respectively. 

Mean water extractable soil DON under sun was 4.0 ± 3.2 µg g-1soil and under shade 

positions was 6.3 ± 3.6 µg g-1 soil.  Of the other N-species, nitrate-N was higher than 

ammonium-N, with an average 40.2 ± 17.8 µg g-1 soil under sun and 43.0 ± 22.6µg g-1 

soil under shade.  Ammonium-N had an average of 5.8 ± 6.6 µg g-1 soil under sun and 

4.5 ± 2.6 µg g-1 soil under shade. Orthophosphate-P had an average of 0.88 ± .85 µg g-1 

soil under sun positions and 0.89 ± .98 µg g-1 soil under shade positions.  Potassium was 

the dominant base cation with 97.8 ± 51.6 µg g-1 soil compared to calcium, magnesium 

and sodium which had mean values of 74.6 ± 70.2, 18.4 ± 5.04, and 57.4 ± 68.8 µg 

g-1 soil respectively under sun positions.  Under shade conditions, potassium had a mean 

value of 114.6 ± 78.2 µg g-1 soil and calcium, magnesium and sodium had mean values 

of 58.7 ± 17.8, 19.2 ± 5.4, and 54.5 ± 68.9 µg g-1 soil respectively.  Bicarbonate was the 

dominant anion followed by chloride.  Mean bicarbonate was 139.1 ± 73.4 under sun 

and 167.6 ± 150.6 µg g-1 soil under shade and alkalinity was 6.14 ± .34 under sun and 

6.12 ± .25 under shade. Fluoride was the least dominant anion with an average mass of 
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2.71 ± 10.7 under sun and 0.46 ± 0.59 µg g-1 soil under shade positions. There was no 

significant difference in soil pH among soils taken from sun or shade positions.  

II.3.2 Effects of Native Shade Trees on Soil Chemical Constituents under Coffee 

 No significant treatment effects were observed for species for PO4
3-

, HCO3
-, Na+, 

Ca2+, F-, Cl-, SO4
2-, or K+ (Table 2.2).  However, there was a significant species effect 

for NO3-N and NH4-N.  Nitrate-N concentrations in soils in the vicinity of Quercus 

averaged 63.63 ± 20.33 µg g-1 soil, significantly higher than in soils from plots 

influenced by the other three shade tree species.  Soils near Quercus also showed 

significantly higher NH4-N, on average 10.84 ± 9.45 µg g-1 soil. Mean total dissolved 

nitrogen (TDN) concentrations were 77.66 ± 21.35 µg g-1 soil in Quercus soils which 

was also significantly higher than in soils influenced by the other three shade tree 

species (Figure 2.2).  Soil pH was also affected by the shade tree species present; soils 

beneath Quercus had an average pH of 5.95 ± 0.18 and were significantly more acidic 

than soils beneath Persea (pH 6.27 ± 0.14).  The pH values for soils under Annona and 

Diphysa soils averaged 6.21 ± 0.20 and 6.02 ± 0.19, respectively.   
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Figure 2.2. Mean soil chemistry under combined tree species in sun and shade 

positions in a Costa Rican coffee agroforestry system.  Error bars are standard 

error.  Sample size is n=22 for sun and n=22 for shade. 
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Table 2.2. Statistical significance of univariate analysis of variance performed on water extractable soil chemistry of  

soils beneath coffee plants growing in a Costa Rican coffee agroforestry system. Significance is α < 0.05.  Significant 

effects are in bold.  Tree species were Persea americana (Aguacatillo),  Annona muricata (Anona), Diphysa americana 

(Guachipelin), and Quercus spp.  (Roble). 

 
Effects NO3-N NH4-N DOC TDN DON PO4-P

 
HCO

3- 
Na

+ 
K

+ 
Mg

2+ 
Ca

2+ 
F

- 
Cl

- 
SO4

2- 

Species (S)  0.00 0.00 0.62 0.00 0.66 0.79 1.00 0.45 0.10 0.03 0.32 0.50 0.15 0.10 

Sun/Shade (SS) 0.40 0.20 0.03 0.35 0.02 0.85 0.35 0.98 0.35 0.34 0.39 0.39 0.94 0.26 

S*SS 0.09 0.21 0.27 0.18 0.15 0.13 0.08 0.12 0.52 0.18 0.31 0.49 0.90 0.09 
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Figure 2.3.  Mean water-extractable soil chemical constituents under coffee plants growing near four native tree species in a 

Costa Rican coffee agroforestry system. Error bars are standard error.  Sample size is n =12 for Persea americana, Annona 

muricata, and Diphysa americana; n = 8 for Quercus spp. 
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 There was a significant species effect on water extractable soil magnesium , with 

Diphysa americana having significantly lower soil concentrations than Annona 

muricata, with an average of 15.88 µg ± 4.19 and 21.98 ± 5.26 µg g-1 soil , respectively 

(Figure 2.3).  

II.3.3. Relationship between soil chemistry and coffee foliage chemistry 

 Samples of coffee beans for chemical analysis were unavailable but chemical 

analysis of coffee bush foliage was available from CAFESA, which I used on the 

assumption that foliar and fruit chemistry may be similar.  Sun or shade position had no 

effect on any foliar chemistry with the exception of percentage nitrogen (Table 2.3).  

Foliar N was significantly higher in coffee foliage under Diphysa in a full sun position 

relative to a shade position (Table 2.3).  Species of shade tree had a significant effect on 

all coffee foliar chemistry with the exception of potassium, zinc and percentage carbon 

(Table 2.3).  Phosphorus was significantly greater in coffee foliage adjacent to Diphysa 

relative to that under Annona and Quercus (Table 2.3). Calcium was significantly higher 

in coffee foliage adjacent to Annona in a full sun position relative to foliage adjacent to 

Quercus (Table 2.3).  Iron content of coffee foliage adjacent to Annona was significantly 

greater than that adjacent to Diphysa and Quercus (Table 2.3) and copper and 

manganese content were significantly higher in foliage adjacent to Diphysa than the 

other shade tree species (Table 2.3). Using univariate analysis of variance with shade 

tree species and sun or shade position as factors, I examined their effects on coffee 

foliage chemistry.  Shade tree species had a significant effect on coffee foliage total 

phosphorus (p < 001), calcium (p < 0.001), magnesium (p < 0.01), sulfate (p < 0.01), 
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iron (p < 0.001), copper (p < 0.001), manganese (p < 0.001), boron (p < 0.01) and 

percentage nitrogen (p < 0.01).  Sun or shade position had a significant effect on foliar 

carbon (p < 0.05) and foliar nitrogen (p < 0.001) but not on any other coffee foliar 

chemistry.  There was an interaction effect of shade tree species and sun or shade 

position on percent N in coffee foliage. 

 Because of the interest in the effect of tree species on soil chemistry I examined 

correlations between coffee foliar chemistry adjacent to shade tree species and soil 

chemistry obtained below the relevant coffee plant.  Soil pH had a significant positive 

correlation with foliar calcium and magnesium (Table 2.4).  Soil nitrate-N had a 

significant negative correlation with foliar manganese (Table 2.4). Soil ammonium-N 

content had a negative correlation with foliar potassium, calcium and iron. Soil DOC and 

DON were negatively correlated with foliar zinc and nitrogen content (Table 2.4).  Soil 

magnesium content was positively correlated with foliar magnesium content and 

negatively correlated with foliar manganese content (Table 2.4).  Soil fluoride was 

positively correlated with foliar potassium, calcium and magnesium (Table 2.4). 
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Table 2.3. Chemistry of coffee foliage determined by shade tree species and sun or shade position.  Values in 

parenthesis are standard deviation. Differences in superscript letters indicate a significant difference in foliar 

chemistry for each chemical constituent. 

 
P K+ Ca2+ Mg SO4 Fe Cu Zn Mn B N C 

 
 

mg kg-1 µg kg-1 % 
 Annona 

             Sun 0.11a 2.2 1.4c 0.42b 0.41a 85.5b 14.8ab 10.5 100.0a 57.5b 3.1a 48.4 
 

 
(0.01) (0.2) (0.1) (0.06) (0.06) (4.5) (2.0) (1.8) (25.7) (10.1) (0.1) (0.2) 

 
Shade 0.12ab 2.0 1.3bc 0.39ab 0.38a 85.5b 

 
13.8a 9.7 108.2a 50.3ab 3.1ab 48.1 

 
 

(0.02) (0.1) (0.1) (0.04) (0.05) (12.5) (1.2) (1.4) (25.2) (3.4) (0.1) (0.2) 
 Diphysa 

             Sun 0.15c 2.1 1.1abc 0.35ab 0.45ab 67.2a 17.5b 12.0 189.8b 42.0a 3.3c 48.2 
 

 
(0.01) (0.1) (0.1) (0.03) (0.05) (4.5) (1.0) (5.4) (26.7) (5.7) (0.0) (0.3) 

 Shade 0.14c 2.2 1.1ab 0.32a 0.42a 70.5a 17.5b 9.7 198.5b 46.0ab 3.0a 48.0 
 

 

(0.01) (0.2) (0.2) (0.06) (0.02) (5.6) (1.8) (3.1) (23.4) (5.1) (0.1) (0.2) 
 Quercus 

             Sun 0.12ab 2.0 1.1ab 0.36ab 0.56b 67.8a 14.3a 9.8 110.8a 55.3b 3.2bc 48.2 
 

 
(0.01) (0.3) (0.1) (0.04) (0.10) (10.6) (1.5) (1.0) (16.5) (5.5) (0.1) (0.6) 

 Shade 0.12ab 2.0 1.0a 0.38ab 0.49ab 73.8ab 13.8a 9.8 103.8a 52.8ab 3.1ab 48.1 
 

 
(0.02) (0.2) (0.2) (0.01) (0.09) (4.5) (2.1) (1.0) (3.1) (6.3) (0.1) (0.2) 
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Table 2.4. Correlations between coffee foliage chemistry and underlying soil chemistry. N = 32. *significant at p < 0.05  and ** 

significant at p < 0.01. Data is combined sun and shade positions for Quercus, Annona and Diphysa. 

 
  Coffee Foliar Chemistry (mg kg-1) 

  
P K+ Ca2+ Mg2+ SO4

2- Fe Cu Zn Mn B %N %C 

So
il 

C
he

m
is

try
 (m

g 
kg

-1 ) 

pH -0.23 0.02 **0.44 *0.39 -0.06 0.25 -0.05 -0.20 -0.16 0.16 -0.34 0.17 
NO3-N 0.01 -0.18 0.00 0.34 0.10 -0.06 -0.41 -0.09 *-0.43 0.06 0.22 -0.07 
NH4-N 0.11 *-0.37 *-0.36 -0.19 0.16 *-0.39 0.02 -0.11 0.01 0.00 *0.45 0.26 
DOC -0.13 0.00 0.07 0.13 -0.15 0.04 -0.21 *-0.41 -0.17 -0.07 *-0.43 -0.20 
PO4-P 0.01 -0.08 -0.05 -0.16 -0.09 -0.10 0.06 -0.28 0.11 0.16 -0.10 0.30 
HCO3

- -0.22 0.13 0.11 0.05 -0.28 -0.01 -0.11 -0.32 -0.11 0.03 *-0.36 -0.19 
DON -0.03 0.16 0.07 0.08 -0.05 0.10 -0.04 *-0.38 -0.04 -0.09 **-0.54 -0.18 
Na+ -0.23 0.33 0.34 0.17 -0.23 0.17 -0.04 -0.30 -0.17 0.16 -0.27 0.14 
K+ -0.03 -0.12 0.25 0.23 -0.17 -0.06 -0.20 -0.14 -0.33 -0.01 -0.04 -0.24 
Mg2+ -0.15 0.09 0.16 *0.37 -0.23 0.34 -0.17 -0.07 *-0.43 0.13 -0.17 -0.15 
Ca2+ -0.29 -0.04 0.20 0.32 -0.19 0.13 0.05 -0.11 -0.28 0.09 -0.20 -0.09 
F- 0.04 *0.37 *0.37 *0.37 -0.14 0.12 -0.03 -0.09 -0.18 -0.09 0.01 0.06 
Cl- -0.18 0.01 0.24 0.25 -0.19 0.02 -0.04 -0.14 -0.34 0.03 -0.13 -0.14 
SO4

2- -0.28 0.23 0.09 -0.06 -0.15 0.29 0.20 0.16 0.05 0.11 -0.35 0.03 
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II.3.4. Effect of tree species on microbial community composition  

Examination of soil microbial community composition using PLFA analysis 

revealed that soils in Quercus spp. plots were the most distinctive in terms of microbial 

community when the complete dataset of microbial PLFA’s, consisting of over 100 

PLFA biomarkers, was used for the analysis (Figure 2.4).  

 

  

Figure 2.4. Dendrogram showing dissimilarities of soil lipid profiles among four 

species of native shade trees.  Increasing distance represents increasing 

dissimilarity. Ward linkages used for the Euclidean distance analysis which is 

based on the complete dataset of 100+ lipid biomarkers. 
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 Annona muricata appeared to inhibit the action of some fungal species.  The 

microbial community composition of Annona soils, based on the complete reduced set of 

over 100 PLFA biomarkers, was dissimilar to the microbial community composition in 

soils influenced by the other tree species.  Soils from Quercus spp. also exhibited a set of 

PLFA biomarkers that were quite distinct from the other three species. The soils whose 

PLFA profiles were most similar to one another were those from plots with Diphysa 

americana and Persea americana trees present.  

 

 

Table 2.5. Diversity indices of soil microbial communities from samples in the 

vicinity of four native shade trees from a sunny or shaded position in a Costa Rican 

coffee agroforestry system.  S=Species richness; D=Simpson's index. 

 

Species/Position S D 

Persea Shade  35 0.914 
Persea Sun 34 0.899 
   
 Diphysa Sun 47 0.917 
 Diphysa Shade 46 0.900 
   
Annona Shade  46 0.9086 
Annona Sun  51 0.912 
   
 Quercus Shade 50 0.9276 
 Quercus Sun 52 0.9219 

 

 

 Species richness indicates how many different species on average were present in 

the sample.   Samples from sun positions in plots with Persea americana trees had the 

lowest number of microbial species, while samples from sun locations with Quercus spp. 
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had the highest number of microbial species.  The Simpson index, an index of 

dominance, indicates the probability that individuals picked at random will belong to the 

same species (Colinvaux, 1986).  Although the Simpson index shows that the number of 

organisms per individual species is unevenly distributed in the soils of all four tree 

species, Quercus spp. had the microbial community whose members were the least 

evenly distributed among the species present, while Persea americana had species 

numbers that were the most evenly distributed.  Additional analyses were performed 

using only the 21 PLFA biomarkers in my dataset where there is strong agreement from 

previous studies that the biomarker represents a particular microbial functional group 

(Table 2.6).  Using the complete 100+ biomarkers dataset, diversity indices based on the 

PLFA profiles of the soils from each of the plots were also calculated (Table 2.7). 

 The species of shade tree present had a significant effect on the microbial 

community composition of the soils (Table 2.8). Quercus spp. had the highest mean mol 

percentage of Gram positive bacteria (18.15 ± 1.74). Soils under Annona and Persea had 

an average of 17.72 ± 1.30 and 17.15 ± 0.87 mol percent Gram positive bacteria, 

respectively.  Soil under Disphysa had the lowest mole percentage of Gram positive 

bacteria with 16.70 ± 2.30.  Soil under Diphysa also had the lowest mol percentage of 

Gram negative bacteria with 13.85 ± 1.91.  Soil under Annona and Persea had 14.26 ± 

1.03 and 14.50 ± 0.77 mole percent Gram negative bacteria. Quercus spp. also had the 

highest mol percentage of Gram negative bacteria, with 15.28 ± 0.90.  There was no 

significant difference among the four tree species with regard to the mol percentages of  
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Gram positive or Gram negative bacteria nor the ratios of Gram +:Gram - bacteria, or 

Fungi:Bacteria.  There was a significant tree species effect with regard to the abundance 

of fungi in the soils sampled from plots influenced by the four different native shade tree 

species.  Persea soils were significantly higher in mol percentage of fungi, with a mean 

value of 18.44 ± 1.13, relative to Annona soils, which had a mean mol percentage of 

14.47 ± 2.42 fungi.  Quercus spp. and Diphysa soils, with mean mol percentage of fungi 

of 15.80 ± 1.05 and 17.46 ± 1.45 respectively were neither significantly different from 

one another nor from the soils of the other two shade tree species in this study.  Sun 

versus shade position had no significant effect on any of the above-mentioned 

parameters.  Total bacterial biomass per species and sun/shade condition is shown in 

Table 2.8.   

 There was a significant negative correlation between the abundance of Gram 

negative bacteria and soil HCO3
- (R2=0.20; Figure 2.5; Table 2.10).  Yet a similar 

relationship was not apparent between Gram positive bacteria or fungi and HCO3
-.  

There was also a significant negative correlation between Gram negative bacteria and 

soil concentrations of Na+ (R2 = 0.29; Table 2.10; Figure 2.6). Finally, there was a strong 

positive correlation between the abundance of Gram negative and Gram positive bacteria 

in the soil samples (R2 = 0.74; Figure 2.7).  
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Table 2.6. Average abundance of lipid biomarkers from soil sampled from plots 

influenced by each tree species. Only lipid biomarkers firmly established as 

representing a particular microbial group were included in this table; therefore, 

actual abundances of each microbial group can be expected to be greater than 

shown here.  

 

Lipid abundance (mol %) Persea Annona Diphysa Quercus 

Total lipid 100% 100% 100% 100% 
Iso-branched lipids (Gram + bacteria) 17.15 17.72 16.7 18.15 

i14:0 0.64 0.78 0.78 0.66 
15:0 1.10 1.09 0.99 1.02 
i15:0 6.18 6.15 6.06 6.92 
a15:0 2.66 2.57 2.80 2.84 
i16:0 2.52 3.06 2.42 2.60 
17:0 0.76 0.67 0.69 0.69 
i17:0 2.15 2.25 1.86 2.26 
a17:0 1.15 1.15 1.10 1.16 
Methyl branched lipids 
(Actinomycetes) 

    

19:0 10 Me 0.58 0.61 0.76 0.65 
Mono-unsaturated, alchohols, and 

cyclopropyl lipids (Gram-) 

14.50 14.53 13.85 15.28 

16:1ω7c 3.41 3.42 3.37 3.25 
12: X OH 0.0 0.66 0.38 0.44 
16: X OH 1.64 1.27 1.64 1.37 
cy17:0 2.17 2.08 1.88 2.17 
cy19:0 c11-12 2.90 3.71 2.63 4.27 
SF 8 (18:1ω7c/18:1ω9t) 4.40 3.12 3.96 3.79 
Fungi, non-specific 5.02 3.6 3.92 3.41 

18:3ω6c 1.36 1.01 1.05 0.88 
SF19 (18:2ω6c/T:18:0) 3.66 2.59 2.87 2.53 
Ectomycorrhizae/Saprophytic fungi     
18:1ω9c 10.30 7.84 10.60 8.98 
Arbuscular Mycorrhizae     
16:1ω5c 3.12 3.04 2.94 3.40 
Total Fungi 18.44 14.48 17.46 15.79 

   Fungi/bacteria ratio 0.58 0.46 0.59 0.47 
   Gm+/Gm- ratio 1.19 1.24 1.21 1.19 
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Table 2.7. Average total microbial biomass per species and sun/shade condition. 

Table based on complete reduced dataset of 100+ biomarkers. 

Species Sun/Shade 

Position 

Average Total Biomass Standard Deviation 

(nmol lipid g⁻¹ soil) 

Persea americana Sun 193 59.45 
Persea americana Shade 206.6 21.72 
Diphysa americana  Sun 292 28.06 
Diphysa Americana Shade 262.8 56.4 
Annona muricata Sun 260.8 13.68 
Annona muricata Shade 235 27.24 
Quercus spp. Sun 287 10.8 
Quercus spp. Shade 258.8 126 

 
 

 

Table 2.8. Results of analysis of variance for microbial groups in soils from plots 

influenced by one of four native shade tree species in a Costa Rican coffee agroforestry 

system.  Significance indicated in bold; alpha=0.05. 

Tree species and sun or shade position 

Microbial Group Species Sun/shade Species * Sun/shade 

Gram + bacteria 0.55 0.77 0.43 

Gram – bacteria 0.42 1.00 0.43 

Fungi 0.01* 0.20 0.98 

Gram +/Gram - 0.31 0.56 0.41 

Fungi/bacteria 0.07 0.42 0.63 
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Figure 2.5. Relationship between abundance of Gram negative bacteria and concentration 

of soil HCO3
-
 in soil samples from a Costa Rican coffee agroforestry system influenced by 

four different species of native shade trees.  Alpha = 0.04. 
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Figure 2.6. Relationship between Gram negative bacteria and soil concentrations of 

sodium in soil samples from a Costa Rican coffee agroforestry system influenced by 

four different species of native shade trees.  Alpha = 0.01. 
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Figure 2.7. Relationship between abundance of Gram negative bacteria and Gram 

positive bacteria in soil samples from a Costa Rican coffee agroforestry system 

influenced by four different species of native shade trees.  Alpha = 0.00. 
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Table 2.9. Correlations between soil chemistry and abundance of microbial groups. Pearson Correlation Coefficient is 

shaded; level of significance is in clear area. Based on data set of 19 well-referenced lipid biomarkers and averages for 

Persea, Annona, Diphysa and Quercus spp.  Significant correlations in bold. * indicates significant correlation at p < 

0.05. 

Soil Chemical Constituents  
Microbial Group 

pH NO3
- NH4-N DOC TDN PO4

2- HCO3
- DON Na+ K+ Mg++ Ca++ Fl- Cl_ SO4

2- 

Gram+ .09 -.08 -.10 -.13 -.11 -.20 -.45* -.07 -.41 .13 .17 -.03 -.22 .01 .00 

               

Fungi .03 -.11 -.19 -.03 -.11 .14 -.02 .25 -.20 -.12 -.32 -.30 -.06 -.22 .04 

               

Gram- -.08 .14 .09 -.15 .11 -.15 -.38 -.27 -.53* .01 .18 -.11 -.32 -.18 -.13 

               

Gm+/Gm-Ratio .34 -.41 -.38 .06 -.41 -.09 -.15 .39 .20 .24 .01 .17 .20 .35 .25 

               

Fungi/Bact 

Ratio 

 

-.07 -.06 -.14 .07 -.06 -.06 .26 .24 .15 -.13 -.28 -.19 .15 -.12 .05 
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II.4. Discussion  

II.4.1. Effect of tree species and sun and shade position on soil chemistry 

 Sampling of soil for comparative purposes should be taken under similar climatic 

and management conditions.  Soils from positions under Quercus, Diphysa and Annona 

were taken three weeks into the rainy season and after the first round of fertilization.  

Soils from under Persea were taken two weeks earlier which was one week into the 

rainy season and prior to fertilizer application.  The difference in timing for soil 

collection may have had an effect on soil chemistry, particularly nitrogen and 

phosphorus, although this was not apparent when comparing soil chemistry among those 

collected prior to and after fertilization and any effect of fertilization may well have been 

disguised by the strong effect of shade tree species on soil chemistry. 

 Soils retrieved under shade positions contained higher water extractable DOC 

and DON content than did soils under sun positions.  Microbial processes slow down 

with cooler soil temperatures (Hoorman and Islam, 2010), resulting in slower 

mineralization of organic carbon and nitrogen.  In addition, the rate of soil organic 

matter (SOM) decomposition is faster in soil exposed to continuous wetting and drying 

cycles relative to soils consistently dry or consistently wet (Hoorman and Islam, 2010). 

During the rainy season, shaded soils would remain saturated longer than soil in sunny 

areas, maintaining anaerobic conditions for a longer period of time, slowing down the 

decomposition process.  However, anaerobic conditions under shade positions did not 

appear to lower nitrate-N through denitrification or increase ammonium-N through 
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dissimilatory nitrate reduction and nitrite ammonification which would be expected if 

soils were saturated for long periods of time. 

 Pedologists and ecologists have long recognized that tree species have an effect 

on the development of soil properties (Jenny, 1942; Zinke, 1962).  More recent research 

has shown that tree species and plants can change soil properties relatively rapidly 

(Wedin and Tilman, 1990; Pastor et al., 1993; Binkley and Giardina, 1998).  There is 

however no real consensus on the mechanisms controlling a tree’s effect on soil 

chemistry (Reich et al., 2005).  Incomplete knowledge on these mechanisms is 

confounded because vegetation distribution tends to respond to landscape-scale soil 

variability that arises from other state factors such as climate, parent material and 

topography (Van Breemen et al., 1997; Binkley and Giardina, 1998; Finzi et al., 1998).  

While tree species have been shown to have an effect on soil chemistry in humid 

temperate forest ecosystems (Finzi et al., 1998; Ayres et al., 2009), evidence of effects 

have been conflicting in tropical forest ecosystems (e.g. Power et al., 2004; Russell et 

al., 2007: Dinesh et al., 2010). Powers et al. (2004) found no effect of tree species on soil 

chemistry to a depth of 15 cm under four different tropical tree species when each was 

compared to Pentaclethra; they concluded that the lack of significant statistical 

difference in the soils was due to a small sample size which may have confounded their 

statistical power.  Dinesh et al. (2010) examined soil chemistry under four tree species 

used as live stake support for growing black pepper in India.  They reported significant 

differences in soil DOC, DON, potassium, calcium and magnesium under the four tree 

species. 



49 
 

 

 The difference between the two climatic regimes may be that of the state factor 

of time.  For example, most of the studies examining tree species and soil chemistry in 

temperate ecosystems have examined landscapes that have undergone glaciation and as a 

result the age of the soil is quite young relative to the deeply weathered, un-glaciated 

soils of tropical ecosystems. In my study, the chemistry of the soils influenced by four 

different species of native shade trees was significantly different in that soils under 

Quercus had significantly higher concentrations of NO3-N, NH4-N, and TDN, and soils 

under Diphysa had significantly lower soil concentrations of Mg 2+ than did soils under 

Annona.  Soil pH was also affected by the tree species present, with soils under Quercus 

spp significantly more acidic than soils under Persea.  Reich et al. (2005) in a study 

examining fourteen tree species in Poland found that the calcium content of leaf litter 

was most responsible for changes in soil properties particularly soil C:N ratio.  For 

example, as leaf litter calcium increased, soil pH significantly increased and soil C:N 

ratio significantly decreased in the organic horizon and mineral soil to 40 cm depth.  The 

proportion of cellulose in leaf litter had a significant and positive correlation with soil 

C:N ratio (Reich et al., 2005); this would make sense in that cellulose is relatively 

recalcitrant and not easily broken down by soil macro and micro invertebrates and 

microbiology.  A further study in a temperate spruce forest in the Czech Republic 

reported that both foliar N and the foliar lignin:nitrogen ratio had a strong and significant 

relationships with soil DOC (Aitkenhead-Peterson et al., 2006).   

 While I did not examine the foliage of specific shade trees, I did examine the 

data of coffee bush foliar chemistry that related to soil samples taken.  Unfortunately 
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only foliar data for coffee plants beneath Annona, Quercus and Diphysa was available 

and the assumption was made that foliar and bean chemistry would be similar. 

 Higher total dissolved nitrogen in soil under Quercus may be partially explained by the 

presence of higher tannins and phenolic compounds in the foliage of Quercus which may 

inhibit the breakdown of proteins by forming complexes with casein and protecting the 

protein from the action of the protein-cleaving enzyme, trypsin (Feeny, 1969).  The 

condensed tannins and hydrolysable tannins in leaves of Quercus spp also inhibit the 

activities of the nitrifying bacteria Nitrosomonas and Nitrobacter, even at small 

concentrations (Rice and Pancholy, 1973).  However, because nitrate-N was the 

dominant N species under all shade tree species it is unlikely that nitrifying bacteria was 

inhibited.   

 It is possible that polyphenolic substances produced by Quercus spp. form 

complexes with proteinaceous organic matter, prolonging the availability of organic 

nitrogen in the soil and possibly giving the shade tree a competitive advantage for the 

uptake of organic nitrogen.  Indeed, the roots of some plants have been found to contain 

a range of amino acid transporters (Jones et al., 2005), although it is not known whether 

the roots of Quercus spp. or Coffea arabica contain such machinery.  

 The presence of elevated soil NO3-N under Quercus perhaps is due to substances 

in the oak litterfall, root exudates or root decomposition products that promotes oxidized 

soil conditions.  Soil nitrate content and its mobilization under oak relative to spruce in 

temperate forests was suggested to be due to slower growing rates, and thus N uptake of 

oak is slower relative to spruce.  Furthermore, the decomposability of oak litter is faster 
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than spruce resulting in a store on N that is not immediately used by the tree (Rosenqvist 

et al., 2007).  The species effect on soil magnesium, with Diphysa having significantly 

lower soil concentrations than Annona, may be simply due to the differences in chemical 

composition of the litterfall produced by these two species. Data on foliar chemistry also 

showed significantly higher magnesium content in the coffee leaves from Annona plots 

relative to Diphysa plots.   

 It would be reasonable to expect that Diphysa americana, a leguminous tree, 

would benefit the coffee plants by converting atmospheric nitrogen (N2) to ammonium 

(NH4) through a symbiotic relationship with Rhizobium bacteria. The observation that 

soils influenced by Diphysa Americana did not show higher nitrogen levels than did soil 

samples from plots influenced by the other three species of shade tree is reasonable, 

since samples were taken between coffee plants, more than two meters from the base of 

the shade tree.   This result supports the findings of Payán et al. (2009) who concluded 

that there were significantly greater concentrations of soil carbon and nitrogen within 

one meter as compared to two or more meters from legume shade trees.   

II.4.2. Effect of  position and tree species on microbial community composition 
 
 Quercus spp. are ectomycorrhizal trees which Morris et al. (2008) found to host 

multiple species of fungi on their root tips in a tropical montane forest.   These fungi 

increase the soil volume that can be exploited by the host plant, and they aid in the 

uptake of relatively immobile ions such a phosphate, zinc, copper, molybdenum, 

potassium, and ammonium (Bowen, 1980; Javaid, 2009).  The multiple species of 

ectomycorrhizal fungi may help to explain the distinctive microbial composition of soil 
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samples in the vicinity of Quercus.  Although the mol percent of fungal PLFA 

biomarkers was not the highest for this species, the microbial community composition 

diversity index was.  The fact that soil under Quercus had the second lowest abundance 

of fungi of the four shade tree species supports the findings of Harrison (1971) who 

suggested that oak tannins inhibit the growth of many fungal species.  It is interesting to 

note that soils beneath Annona were found to have the lowest abundance of total fungal 

biomarkers and had a significantly lower mol percentage of fungi than soil under Persea.   

This finding lends support to the conclusions of Vieira et al. (2010) who reported that 

water-based extracts from the Annona fruit, when tested in-vitro, acted as a bactericide 

toward both Gram positive (S. aureus) and Gram negative (V. cholera and E. coli) 

bacteria.  It is suggested that these substances limited the abundance of fungi in soils 

influenced by Annona trees in this Costa Rican coffee agroforestry system. Indeed, 

extracts from the pericarp of the Annona fruit are used in rural communities for their 

antileishmanial (a Leishmania parasite) activity, and a study by Jaramillo et al. (2000) 

showed the extracts to be more effective than the commercial antiprotozoal drug 

Glucantime®. It is likely that these anti-protozoal substances in the pericarp of Annona 

muricata, as well as the relatively high sodium, fluoride, and chloride content of the 

Annona muricata soils (Figure 2.2) selected for a unique array of soil microbes.   

 The soils whose PLFA profiles were most similar to one another were those from 

plots with Diphysa americana and Persea americana trees present (Table 7 and Figure 

4).  Persea americana has been found to host an endophyte forming endomycorrhizae of 

the vesicular-arbuscular type (Ginsburg and Avizohar-Hershenson,1965), while Diphysa 
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americana is a legume.  Legumes often form symbiotic relationships with bacteria of the 

genus Rhizobium, which are housed in nodules on the plants’ roots, enabling them to 

convert atmospheric nitrogen to plant-available inorganic forms.  In addition to this 

nitrogen fixing symbiosis, legumes often form mycorrhizal relationships as well. 

 PLFA analysis is often the method of choice for microbial analyses, since one of 

the limitations of traditional dilution plating and culturing methods is that it is estimated 

that only a small fraction, (less than 1%) of the soil microbial community is culturable 

by known techniques (Hill et al., 2000). Even so, bacterial counts have given an estimate 

of 3.4 times higher that the recovery measured by PLFA (Frostegard and Baath, 1996).  

Therefore, it is likely that the estimates of microbial functional groups given in this study 

were substantially lower than the numbers that actually exist in the coffee 

agroecosystem. In order to be conservative, only 21 PLFA markers which were the most 

well established in the literature were used to indicate the composition of the microbial 

communities groups in the soil samples.  It is possible that the magnitude of these 

functional groups could have changed had I used my complete reduced data set of 100+ 

biomarkers for this analysis. 

II.5. Conclusions 

 The study was carried out at a farm with shade trees and was not the typical full 

sun coffee plantation.  Nevertheless, position of coffee bushes in sun or shade 

positions resulted in some significant differences in soil DOC and DON. 

 Species of shade tree was generally more important for soil chemistry and 

microbial community composition than sun or shade position. 
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 Stronger conclusions could be reached as to the effects of the shade trees on the 

coffee plants themselves by acquiring coffee yield data and information on the 

flavor and quality of the coffee produced in soils influenced by the four different 

species of shade trees studied.  
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CHAPTER III 

THE EFFECT OF EFFECTIVE MICROORGANISMS ON SOIL CHEMISTRY 

 IN A COSTA RICAN COFFEE AGROFORESTRY SYSTEM 

III.1. Introduction  

 Dr. Teruro Higa of the University of Ryukyus, Okinawa, Japan coined the term 

“Effective Microorganisms®” (EM) to describe a group of microorganisms which work 

synergistically to promote and maintain healthy plant growth (Higa and Parr, 1994). The 

use of EM may have the potential to increase the productivity of organic farming 

systems (Subadiyasa, 2003) or to reduce the amount of inorganic nitrogen fertilizer 

needed in conventional or low-input farming systems  (Khaliq et al., 2006) .  Although it 

is reported that most of the organically certified coffee farmers in Costa Rica and 

Guatemala use EM (Lotter, 2005), there are no published studies concerning the use of 

effective microorganisms with coffee.    

 Originally, EM was cultivated from 80 species of bacteria belonging to 10 genera 

(Higa, 1993).  Previous efforts to change the microflora of soils by introducing single 

cultures of microorganisms have, for the most part, been unsuccessful.  EM works 

differently in that it combines microorganisms which are ecologically compatible and 

work in a synergistic manner (Higa and Parr, 1994). EM technology has been modified 

over time to include large populations of lactic acid bacteria (Lactobacillus plantarum, 

L. casei, and Streptococcus lactis, among others), and yeasts (Saccharomyces spp.), with 

smaller numbers of photosynthetic bacteria (Rhodopseudomonas palustris and 
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Rhodobacter sphaeroides), Actinomycetes (Streptomyces spp.) as well as other types of 

microorganisms (Javaid, 2010).   

 Results of studies on the benefits of using EM as a soil amendment in order to 

increase the productivity of organic farming systems or to decrease the amounts of 

chemical fertilizers needed in conventional farming systems have been inconclusive.  

Some have documented the positive results on the growth and productivity of crops 

when EM has been used in combination with organic matter.   For example, Hussain et 

al. (1993) reported that in extensive field trials, EM increased crop yields while allowing 

farmers to reduce their dependence on chemical fertilizers. In a another field experiment 

investigating the effects of integrated use of organic and inorganic nutrient sources with 

effective microorganisms, researchers found that using organic matter and EM together 

resulted in a 44% increase in the growth and yield of seed cotton over the control.  

Furthermore, they found that the integrated use of OM + EM with ½ the recommended 

mineral NPK could substitute for 85 kg N per ha, reducing the mineral fertilizer 

requirements by 50% (Khaliq et al., 2006).  In a field experiment at the Mhasrakham 

University in Thailand, Vetayasuporn (2006) reported that biological fertilizer 

containing EM was just as effective as chemical fertilizer at improving the growth and 

yield of shallots (Allium cepa var. ascolonicum).  Bhatti and Qureshi (2005) found that 

with the application of EM, the soil’s porosity and water holding capacity increased, 

although no statistical analyses were done to determine if water holding capacity 

increases were statistically significant.   On organic farms in Canterbury, New Zealand, 

EM increased onion yields by 29% and the proportion of highest grade onions by 76%.  



57 
 

 

Pea yields were increased by 31% and sweetcorn cob weights by 23%. Under laboratory 

conditions, the use of EM increased the mineralization of carbon by 8% (Daly and 

Stewart, 1999).  In a study of rice and wheat production in Pakistan, Hussain and 

colleagues (1999) found that significantly higher grain and straw yields were obtained 

when fertilizer and organic amendments were combined with EM. The highest yields 

resulted from NPK + EM, followed by green manure + EM, and farm yard manure + 

EM.  The green manure + EM treatment resulted in grain and straw yields for both the 

rice and wheat crops that approached those for the NPK treatment alone.  A comparative 

economic analysis of the treatments showed a significantly higher net return when using 

EM relative to using the other treatments alone.  

 Pei-Sheng and Hui-Lian (2002) investigated the effects of EM bokashi organic 

fertilizer on the nodulation and yield of peanut plants at the International Nature Farming 

Research Center in Nagano, Japan. Compared to chemical fertilizer, EM bokashi 

fertilizer significantly increased both the nodule numbers per plant and fresh weight per 

nodule.  The EM bokashi treated plants also showed higher rates of photosynthesis, 

transpiration, and mesophyll conductance.  In addition, their total pod number and pod 

dry weight were significantly higher than those receiving the chemical fertilizer 

treatment.  

 Not all studies show positive results from using EM, however.  Van Vliet and 

colleagues (2006) from the Netherlands used DNA fingerprinting to investigate whether 

bacteria present in EM could remain dominant after being added to slurry manure.  They 

found that the addition of EM had no measurable effects on the bacterial diversity or the 
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chemical composition of the slurry manure.  They also found that EM had no effect on 

nitrogen uptake or grass biomass production in a greenhouse experiment.  The authors 

did note, however, that different EM stocks prepared by different users showed large 

variation in microbial make-up and demonstrated low reproducibility (van Vliet et al., 

2006).  In a four-year field experiment conducted in Zurich, Switzerland, EM did not 

improve yields or soil quality; furthermore, treatments with living EM compared with its 

sterilized control treatments showed no significant differences in crop yields,  soil 

respiration, microbial biomass, dehydrogenase activity or microbial community structure 

(Lyngbaek et al., 2010).   In Germany, researchers conducted experiments to evaluate 

the impact of EM when combined with organic amendments on soil microbial-biomass 

content and activity, net N mineralization in soil, and the growth of Lolium perenne.  

They reported none or only marginal effects of EM on organic C, total N, and mineral N 

in the soil.  When EM was used alone, it slightly enhanced microbial activity quantified 

by CO2 evolution.  However, when combined with easily degradable plant residues, EM 

actually had a suppressive effect on microbial biomass (Schweinsberg-Mickan and 

Muller, 2009). 

 A three-year field experiment was carried out beween 2005 and 2007 to study the 

influence of EM on the yield and quality of organic Arlet apple production in Graz in 

Styria, Austria.  In 2006, the EM-treated apples trees showed a significantly lower 

incidence of apple scab infection.  At the end of three years, the EM treated trees showed 

a significantly higher growth rate and yielded larger fruit, although EM treatment did not 

seem to affect yield per tree.  There was no effect on fruit quality or fruit longevity in 
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storage; however the EM treated trees yielded significantly more seeds per apple (Flipp, 

2009). 

The objectives of my study were: 

i. To investigate if the application of Effective Microorganisms has a significant 

effect on soil chemistry; 

ii. To examine if there are any interactions between shade tree species, sun or shade 

position and presence or absence of EM on soil chemistry; 

III.2. Materials and methods 

III.2.1. Study site 

 Finca la Hilda is located in the Central Valley of Costa Rica, at an altitude 

ranging from 1300 and 1400 meters above sea level.  Rainfall in the region varies 

between 2400 and 3600 mm per year (Meteorological Station, Finca la Hilda, 2007-

2010). Approximately 90% of the rainfall occurs during the months of June through 

November, followed by a dry season December through May.  In all plots, soils were 

classified as Udands.   

III.2.2. Experimental design 

 Experimental plots were chosen based on the presence of four native shade tree 

species, which included a) Annona muricata L. (Annonaceae), b) Diphysa americana 

Mill. (Fabaceae), c) Quercus spp.L. (Fagaceae), and d) Persea americana 

Mill.(Lauraceae).  These species were of interest due to their nutritional value for 

wildlife and humans (Persea spp. and Annona spp.), or their value as a fine wood 

(Quercus spp. and Diphysa americana).  The shade tree species were not pruned.   
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 Experimental plots measured 20 x 30 m.  A three factorial arrangement was used, 

the three factors being the shade tree species, whether the sample was taken from a 

sunny patch or a shady patch, and whether EM was present or absent.  There were three 

completely randomized replications for Annona muricata, Diphysa americana, and 

Persea americana, and two replications for Quercus spp., in a split plot design (Figure 

3.1).   Soil data were compared in two ways a) samples collected in 2008 were compared 

with samples collected in 2009 after EM had been applied and b) control samples were 

compared to EM samples for year 2009 only. The eleven experimental plots were 

delineated and soil samples collected from the plots influenced by the shade of Persea 

on May 17, 2008, one week after the onset of the rainy season and before the application 

of any fertilizers.  Two weeks later, soil samples were taken from the Quercus, Diphysa 

and the Annona plots.  These samples were taken after the first round of fertilizer 

applications for the growing season and three weeks into the rainy season.  All soil 

samples were collected before EM was applied. 
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Figure 3.1 Experimental design showing pre-treatment arrangement for EM study.  

 

 Effective microorganisms were activated, diluted, and applied, according to the 

manufacturer’s directions, to half of the subplots (Figure 3.2) as follows. EM-1 was 

donated by EARTH University in Costa Rica, a licensed manufacturer of the product.  

EM-1 contains microbes that have been multiplied in 5% molasses and water.  EM-1 is 

activated by combining one part EM-1 with one part molasses and 20 parts water.  This 

mixture is left in a sealed, clean plastic container to ferment at room temperature for one 

week.  Before applying the EM to the plants, it was diluted in the field by combining 50 

ml of the activated EM in five liters of water in a clean, plastic five gallon bucket.  100 
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ml of this mixture was scooped out with a clean plastic cup and applied approximately 

10 cm from the base of each coffee plant. As recommended, EM was applied three times 

during the growing season.  Post-treatment soil samples were then collected in June 

2009.  Both pre- and post-treatment samples were collected using the procedures 

described below.   

III.2.3. Sample collection and processing  

 One soil sample was the product of five soil cores extracted with a 2.5 cm 

diameter auger 40 cm from the base of individual coffee bushes.  Soil cores were taken 

to a depth of 20 cm and were  mixed together in a plastic three gallon bucket.  A 

composite sample was scooped with a metal hand spade into a quart-sized zip lock bag.  

Before the next soil core was taken, both the soil auger and the mixing bucket were 

carefully rinsed and disinfected with iodine to prevent carrying microorganisms from 

one area into another. The bucket was then rinsed a second time with water.  With 4 

composite samples taken from each plot, I collected a total of 44 composite soil samples.  

The composite soil samples were frozen within four hours of sampling at -20° Celsius in 

a freezer located at the study site and shipped to Texas A&M on dry ice for analyses.   

III.2.4. Chemical analyses of soil samples  

 Water extractions were performed on each of the 44 samples collected during pre 

and post treatment (n=44 pre-treatment and n=44 post treatment).  Aliquots of 3.5 g of 

sieved (2mm) soil were placed in 50 mL plastic centrifuge tubes and combined with 35 

mL of ultra-pure water to achieve a soil:water ratio of 1:10.  The centrifuge tubes were 

shaken for 90 minutes at 70 rpm.  The soil:water units were then centrifuged at 19,600 g-
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force for 20 min (Sorval RC6 with SS34 rotor) at 4°C prior to removal of the supernatant 

using a canula and syringe.  pH and electrical conductivity were recorded on the 

supernatant prior to its filtration through ashed (500° C at 4 h) Whatman GF/F filters 

 
Figure 3.2. Experimental design showing post-treatment arrangement for EM 

study. 
 

C at 4 h) Whatman GF/F filters and transfer to acid-washed, ultra-pure water rinsed, 50 

mL high density polyethelene (HDPE) bottles and frozen until chemical analyses.   
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 Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were 

measured using high temperature Pt-catalyzed combustion with a Shimadzu TOC-VCSH 

and Shimadzu total measuring unit TNM-1 (Shimadzu Corp. Houston, TX, USA). 

Dissolved organic carbon was measured as non-purgeable carbon using USEPA method 

415.1 which entails acidifying (1N HCl) the sample and sparging for 4 min with C-free 

air. Ammonium-N was analyzed using the phenate hypochlorite method with sodium 

nitroprusside enhancement (USEPA method 350.1) and nitrate-N analyzed using Cd–Cu 

reduction (USEPA method 353.3). Alkalinity was quantified using methyl orange 

(USEPA method 310.2). All colorimetric methods were performed with a Westco 

Scientific Smartchem Discrete Analyzer (Westco Scientific Instruments Inc. Brookfield, 

CT, USA).  Dissolved organic nitrogen (DON) is the product of TDN—(NH4-N + NO3-

N).   

 In order to quantify base cations and anions using ion chromatography, aliquots 

of sample were filtered through 0.2 µm Pall filters. Calcium, magnesium potassium and 

sodium were quantified by ion chromatography using an Ionpac CS16 analytical and 

Ionpac CG16 guard column for separation and 20 mM Methanosulfonic acid as effluent 

at a flow rate of 1 mL min-1 and injection volume of 10 mL using a DIONEX ICS 1000 

(DIONEX Corp. Sunnyvale, CA, USA).  Fluoride, chloride, bromide and sulfate were 

quantified on a Dionex ICS 2000 using an Ionpak AS20 and Ionpak AG20 analytical and 

guard columns for separation with 35 mM KOH as effluent at a flow rate of 1 mL min-1 

and an injection volume of 25 μL (Dionex Corp, Bannockburn, IL).  For all analyses a 
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NIST traceable standard, check standard, replicate sample and blank were run every 10th 

or 12th sample for quality control purposes. 

III.3. Results  

 Because there was a significant effect of the years the samples were taken on the 

soil chemical constituents, my results only include a comparison of the EM treated plots 

and the control plots for the second year soil samples.  Consequently, my samples sizes 

were smaller than originally planned.  The average concentrations of chemical 

constituents for soil samples taken from treatment and control plots for each tree species 

is shown in Table 3.1.  It is interesting to note that although there were some differences 

between the treatment and control groups (Figures 3.3 and 3.4), most of these 

differences were not significant at alpha<0.05 (Table 3.2).  Effective microorganisms did 

not have a significant effect on any soil chemical constituent with the exception of NH4-

N, for which there was a significant EM*species*sun/shade interaction effect as well as 

a significant EM*species interaction effect, and for  Cl-, for which the interaction effect 

between EM and sun/shade was significant (Table 3.2). Figure 3.5 provides a closer look 

at the interaction effect of species*EM*sun/shade position on average soil ammonium 

concentrations.  In a sun position with EM, Annona soils had lower and less variable 

concentrations of NH4-N than did Annona soils in a sun position without EM.  
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Table 3.1. Average soil concentrations with standard deviations (italics) of water extracted chemical constituents  from 

coffee soils in a Costa Rican agroforestry system.  Sample sizes for Persea, Annona, and Diphysa = 6; sample size for 

Quercus = 4.  Includes data from Year 2 only. 

 

 Trees pH NO3-N NH4-N DOC TDN PO4-P HCO3
- DON Na+ K+ Mg2+ Ca2+ F- Cl- SO4

2- 

   Soil Concentrations  (µg g-1 soil) 

W
ith

 E
M

 

Persea 6.15 53.2 4.9 119.0 66.0 0.8 73.4 29.6 50.5 82.9 24.2 84.7 0.4 305.7 34.9 
 0.33 13.0 1.7 32.6 19.8 1.0 67.0 4.2 71.7 12.2 8.4 30.4 0.6 98.7 8.5 

Annona 6.05 92.6 15.7 143.4 115.5 0.4 91.6 42.1 22.5 83.8 26.1 132.8 0.2 333.0 26.1 

 0.24 16.0 3.8 46.5 20.3 0.3 104.7 3.6 10.3 16.6 3.5 36.7 0.4 104.6 10.4 

Diphysa 6.26 88.9 8.6 260.0 113.2 2.4 60.2 18.2 19.7 88.4 33.6 128.7 0.4 215.9 24.4 

 0.36 42.1 2.1 88.3 41.2 2.7 56.3 3.2 3.3 23.0 14.0 23.6 0.6 78.3 8.8 

Quercus 6.07 51.6 10.0 134.2 67.1 0.3 68.3 9.2 45.5 100.2 19.0 96.9 0.5 520.5 40.2 

 0.3 48.0 9.3 55.4 55.6 0.1 79.0 2.6 40.2 33.5 4.6 35.2 0.7 324.6 26.8 

W
ith

ou
t E

M
 

Persea 5.98 48.5 4.4 130.6 58.8 0.5 122.6 29.9 14.4 77.9 22.5 89.0 0.2 228.5 35.9 

 0.38 9.5 1.0 32.9 9.4 0.4 61.3 3.3 2.6 17.5 3.2 39.7 0.3 104.8 7.5 

Annona 6.06 125.9 26.7 156.4 160.7 0.4 60.3 41.4 16.5 101.1 31.3 149.1 0.0 403.8 18.6 

 0.22 51.0 17.1 22.4 62.3 0.2 68.6 3.9 5.3 22.4 8.1 43.5 0.0 171.5 7.1 

Diphysa 6.27 97.8 11.4 215.9 123.9 1.5 139.4 19.2 14.8 98.4 33.5 131.2 0.3 259.2 25.8 

 0.21 51.5 3.6 41.1 54.7 0.9 120.0 3.2 2.2 26.7 14.8 56.1 0.4 79.0 8.3 

Quercus 5.72 68.4 9.4 174.7 86.5 0.3 42.5 10.2 30.0 82.1 29.0 94.1 0.5 469.5 36.7 

 0.57 35.2 2.9 58.7 34.3 0.2 59.8 2.6 29.6 17.0 5.7 12.9 0.3 242.4 25.9 
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Table 3.2. Statistical significance for effects of EM, EM*sun/shade position, and interaction of  

EM*species*sun/shade position on concentrations of soil chemical constituents.  Significant EM interaction effects  

are indicated in bold.  Includes data for Year 2 only. 

 

Effects NO3-N NH4-N DOC DON PO4-P HCO
3-

 Na
+
 K

+
 Mg

2+
 Ca

2+
 F

-
 Cl

-
 SO4

2-
 

EM  0.25 0.08 0.88 0.73 0.31 0.34 0.13 0.99 0.27 0.66 0.45 0.89 0.62 

EM*Species  0.67 0.05* 0.17 0.95 0.62 0.15 0.61 0.33 0.51 0.95 0.88 0.64 0.88 

EM*Sun/Shade 0.92 0.29 0.96 0.95 0.72 0.18 1 0.12 0.33 0.74 0.78 0.03* 0.79 

EM*Species *Sun/Shade 0.74 0.02* 0.11 1 0.44 0.1 0.16 0.59 0.84 0.92 0.25 0.54 0.48 

 

 



 

 

68 

0

100

200

300

400

500

600

700

800

900

C
o

n
ce

n
tr

a
ti

o
n

s 
(µ

g
 g

-1
 s

o
il

 )

Chemical Constituents

EMPersea

EMAnnona

EMDiphysa

EMQuercus

 
Figure 3.3. EM treated plots: average concentrations of water extractable chemical constituents from soils  

influenced by one of four native tree species and treated with Effective Microorganisms in a Costa Rican  

coffee agroforestry system. Persea americana and Annona muricata, N=6;  for Diphysa americana, N=5;  

for Quercus spp., N=4. Error bars are standard error. 
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Figure 3.4.Control plots: average concentrations of water extractable chemical constituents from soils 

influenced by one of four native tree species in a Costa Rican coffee agroforestry system.  For Persea 

Americana and Annona muricata, N=6; for Diphysa americana, N=5; for Quercus spp., N=4. Error bars are 

standard error. 
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Figure 3.5. Species, sun/shade position and with or without EM in relation to concentration of soil ammonium.  

For Persea americana N=3; for Annona muricata N=3; for Diphysa americana N=3, 2, 3, 2 respectively, and for  

Quercus spp. N=2. 
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III.4. Discussion and conclusions 
 

 There was a significant interaction effect between EM and shade tree species, as 

well as between EM, shade tree species and sun or shade position, on soil ammonium.  It 

is possible that the microorganisms in EM were able to overcome the bacterial-inhibiting 

substances in the Anonna litterfall, thus facilitating the process of nitrification, 

decreasing the amount of NH4-N in the soil samples from treated plots relative to the soil 

samples from the Anonna control plots. Another possibility is that the antioxidants 

produced by EM (Higa 1993) promoted an antioxidized soil state, allowing the oxidative 

process of nitrification to proceed unhindered by an otherwise rate-limiting equilibrium 

of high concentrations of oxidative products.  

 Because of the significant effect of the year the soil samples were taken, each 

year’s samples were analyzed separately reducing the sample size. This decreased the 

power of my statistical tests and increased the probability of making a Type II error; that 

is, failing to reject the null hypothesis when it really is false.  Consequently, Effective 

Microorganisms may have had a greater effect on soil chemistry than was detected by 

my statistical tests. 

 I was not able to discern what caused the changes in the soils between the two 

years. The fertilization regime was the same for both years, and no unusual weather 

events occurred (Meterological Station data, Finca la Hilda, 2007-2009).  One possibility 

is that given the steeply sloping terrain and torrential rains at the study site, the EM may 

have flowed into all of the plots, effectively eliminating the control plots.  It would be 

worthwhile to repeat this investigation in a more controlled environment and with coffee 
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yield data included in order to more conclusively determine the effects of Effective 

Microorganisms on soil chemistry and coffee production. 
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CHAPTER IV 

SUMMARY 

In the Central Valley of Costa Rica in the Department of Heredia, I investigated 

the soil chemical properties and microbial communities under four native shade tree 

species in a coffee agroforestry system.  In the second year of the study, Effective 

Microorganisms®, a microbial inoculant, was applied to examine its effect on soil 

chemistry.  The shade tree species included in this study were Anonna muricata L., 

Diphysa americana Mill., Persea americana Mill., and Quercus spp. L. 

The study was carried out at a farm with shade trees and was not the typical full 

sun coffee plantation.  Nevertheless, position of coffee bushes in sun or shade positions 

resulted in some significant differences in soil DOC and DON.  Species of shade tree 

was generally more important for soil chemistry and microbial community composition 

than sun or shade position.  Stronger conclusions could be reached as to the effects of the 

shade trees on the coffee plants themselves by acquiring coffee yield data and 

information on the flavor and quality of the coffee produced in soils influenced by the 

four different species of shade trees studied. 

 There was a significant interaction effect between EM and shade tree species, as 

well as between EM, shade tree species and sun or shade position, on soil ammonium.  It 

is possible that the microorganisms in EM were able to overcome the bacterial-inhibiting 

substances in the Anonna litterfall, thus facilitating the process of nitrification, 

decreasing the amount of NH4-N in the soil samples from treated plots relative to the 

soil samples from the Anonna control plots. Another possibility is that the antioxidants 
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produced by EM (Higa 1993) promoted an antioxidized soil state, allowing the oxidative 

process of nitrification to proceed unhindered by an otherwise rate-limiting equilibrium 

of high concentrations of oxidative products.  

 Because of the significant effect of the year the soil samples were taken, each 

year’s samples were analyzed separately reducing the sample size. This decreased the 

power of my statistical tests and increased the probability of making a Type II error; that 

is, failing to reject the null hypothesis when it really is false.  Consequently, Effective 

Microorganisms may have had a greater effect on soil chemistry than was detected by 

my statistical tests. 

 I was not able to discern what caused the changes in the soils between the two 

years. The fertilization regime was the same for both years, and no unusual weather 

events occurred (Meterological Station data, Finca la Hilda, 2007-2009).  One possibility 

is that given the steeply sloping terrain and torrential rains at the study site, the EM may 

have flowed into all of the plots, effectively eliminating the control plots.  It would be 

worthwhile to repeat this investigation in a more controlled environment and with coffee 

yield data included in order to more conclusively determine the effects of Effective 

Microorganisms on soil chemistry and coffee production. 
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APPENDIX I 

PH, ELECTRICAL CONDUCTIVITY AND EXTRACTABLE NUTRIENTS 

Table A.1. Ph, Electrical Conductivity and Extractable Nutrients from Soils under Different Shade Tree Species and 

Sun or Shade Positions. Species 1 = Persea americana, Species 2 = Annona muricata, Species 3 = Diphysa americana 

and Species 4 = Quercus spp.   Is Shade Position and 1 = Sun Position 

 

  
pH EC NO3-N NH4-N DOC TDN PO4-P HCO3

- DON 

Species 
Sun 

Shade 
 

µS cm-1 µg g-1 soil 
1 0 6.59 180 27.5 3.7 124.5 38.9 0.8 275.3 7.7 
1 0 6.42 90 17.8 1.9 61.6 21.3 0.6 94.8 1.6 
1 0 5.9 110 34.6 2.7 77.1 39.6 0.2 80.1 2.4 
1 0 6.31 100 30.4 2.3 88.1 37.3 0.5 60.1 4.6 
1 0 6.32 180 24.5 2.5 122.2 40.3 0.8 45.7 13.4 
1 0 6.19 100 42.4 3.1 139.5 51.0 0.6 102.2 5.6 
1 1 6.34 130 32.3 1.9 98.0 39.6 1.3 193.7 5.4 
1 1 6.6 150 67.4 5.6 129.9 77.8 0.9 207.7 4.9 
1 1 6.25 120 39.2 2.8 100.4 46.9 1.0 105.8 4.9 
1 1 6.04 130 32.2 5.7 75.4 40.1 0.4 258.1 2.2 
1 1 6.07 140 47.2 4.9 95.7 56.3 1.0 204.9 4.3 
1 1 6.26 130 45.0 2.3 107.3 53.9 0.7 162.8 6.6 
2 0 6.28 130 25.9 2.2 91.8 32.3 0.8 287.1 4.3 
2 0 6.02 140 53.0 3.5 142.2 63.0 0.8 182.2 6.6 
2 0 5.84 250 65.0 3.1 138.4 74.4 0.7 151.5 6.2 
2 0 5.73 110 29.2 3.8 73.7 34.4 0.1 18.3 1.4 
2 0 6.49 100 51.6 2.7 117.9 60.3 1.2 76.0 6.0 
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2 0 6.28 170 53.6 7.2 172.8 68.9 0.5 103.7 8.1 
2 1 6.25 100 12.7 2.1 60.2 18.1 0.2 78.8 3.3 
2 1 5.91 110 15.2 2.2 55.1 19.1 0.2 118.7 1.6 
2 1 6.21 120 36.0 3.2 116.9 44.4 0.4 89.1 5.2 
2 1 6.49 150 82.1 3.6 178.5 98.7 1.5 320.3 13.0 
2 1 6.67 240 32.9 2.6 159.1 43.4 2.3 265.1 8.0 
2 1 6.36 110 35.9 2.4 125.5 43.5 1.0 136.5 5.2 
3 0 6.1 100 23.2 7.6 206.4 45.3 3.4 421.0 14.4 
3 0 5.97 80 25.9 7.4 82.3 36.8 0.4 88.0 3.6 
3 0 5.75 150 60.9 3.4 99.9 69.3 0.4 520.8 5.0 
3 0 6.08 100 36.6 3.9 115.3 47.2 0.6 48.2 6.6 
3 0 6.35 110 15.5 4.2 114.8 28.0 0.8 114.8 8.3 
3 0 6.21 130 23.0 4.8 164.2 37.5 4.1 200.6 9.7 
3 1 5.52 100 18.2 3.0 62.8 24.6 0.2 115.8 3.4 
3 1 5.93 100 39.4 3.6 47.6 40.8 0.3 46.2 0.0 
3 1 5.71 180 66.1 4.6 71.9 70.4 1.1 93.7 0.0 
3 1 6.58 110 24.9 10.4 94.1 37.9 0.3 98.9 2.6 
3 1 5.87 90 25.8 4.3 77.3 34.1 0.4 69.3 3.9 
3 1 6.22 90 23.9 4.7 115.0 34.3 1.0 48.9 5.7 
4 0 5.98 120 56.5 11.5 100.8 76.5 0.2 97.0 8.5 
4 0 5.72 140 73.2 9.8 69.4 79.6 0.2 78.1 0.0 
4 0 6.1 140 63.5 4.6 160.4 74.0 0.5 542.2 5.9 
4 0 6.09 160 109.0 3.8 164.9 121.8 1.3 98.8 9.1 
4 1 5.9 110 54.0 28.5 44.1 81.7 3.9 87.9 0.0 
4 1 5.61 140 59.7 21.5 93.5 80.1 0.2 126.4 0.0 
4 1 5.92 110 45.1 3.1 55.6 48.4 0.2 126.2 0.1 
4 1 6.28 120 48.1 3.8 125.2 59.2 0.7 105.7 7.3 
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1 0 6.19 100 51.5 4.7 112.8 58.9 0.3 33.0 25.2 
1 0 5.74 180 60.5 4.0 84.3 70.2 0.4 169.0 29.2 
1 0 5.77 130 34.4 3.9 123.8 43.8 0.3 99.6 32.2 
1 0 6.58 70 34.0 3.4 85.6 39.0 0.1 108.3 24.2 
1 0 5.86 130 44.8 3.8 85.6 51.6 0.2 68.9 28.2 
1 0 5.69 180 68.7 3.9 119.9 92.8 0.3 88.6 33.2 
1 1 6.48 170 52.2 3.0 172.7 63.6 1.2 211.1 27.2 
1 1 5.47 90 52.0 5.9 125.8 63.7 0.2 110.7 31.2 
1 1 6.23 120 40.3 4.5 164.1 52.7 0.4 112.3 34.2 
1 1 6.19 110 59.1 7.7 127.6 74.3 0.5 0.0 26.2 
1 1 6.43 110 63.6 6.3 173.7 79.3 0.7 0.0 30.2 
1 1 6.14 160 49.2 4.3 121.7 59.1 2.8 174.5 35.2 
2 0 6.17 150 96.3 14.7 176.0 122.7 0.4 0.0 36.2 
2 0 5.93 230 156.5 17.1 164.3 181.5 0.3 135.8 42.2 
2 0 6.34 130 50.1 8.8 175.0 71.4 0.3 73.4 45.2 
2 0 5.83 150 78.1 10.4 79.3 90.1 0.2 112.8 37.2 
2 0 5.99 180 104.4 15.5 179.5 134.9 0.4 284.9 43.2 
2 0 5.98 130 88.4 15.9 127.8 107.0 0.1 89.1 44.2 
2 1 6.22 200 102.1 25.3 124.4 134.3 0.9 146.6 38.2 
2 1 5.8 220 171.0 52.9 166.4 224.3 0.3 5.9 40.2 
2 1 5.88 250 179.4 41.4 132.0 229.9 0.3 0.0 46.2 
2 1 6.44 200 94.5 22.2 169.0 127.2 1.0 57.7 39.2 
2 1 6.22 160 116.2 14.7 198.7 137.3 0.4 5.0 41.2 
2 1 5.84 140 73.9 15.2 105.8 96.5 0.2 0.0 47.2 
3 0 6.23 80 35.3 8.1 183.2 54.1 1.1 317.2 17.2 
3 0 6.57 240 165.0 15.0 191.0 195.3 1.2 177.7 21.2 
3 0 6.39 170 101.8 10.8 361.8 132.9 6.4 130.9 16.2 
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3 0 6.47 130 58.5 8.2 247.1 78.4 0.5 41.4 20.2 
3 1 5.97 190 132.4 12.9 184.1 155.8 0.3 0.0 15.2 
3 1 6.29 140 67.9 7.0 255.1 92.5 2.3 133.7 19.2 
3 1 6.28 160 88.1 13.8 266.0 121.5 2.5 68.2 23.2 
3 1 5.69 180 155.2 10.7 144.0 175.4 0.2 107.1 14.2 
3 1 6.16 130 78.7 7.0 215.1 99.9 1.2 21.4 18.2 
3 1 6.61 110 50.4 6.3 332.0 79.2 4.0 0.0 22.2 
4 0 5.86 120 53.8 10.2 183.3 74.2 0.1 42.9 7.2 
4 0 5.58 100 50.8 7.5 250.6 75.3 0.5 0.0 11.2 
4 0 6.1 110 38.9 7.0 73.9 47.5 0.2 142.3 6.2 
4 0 6.49 60 24.5 4.5 207.2 41.5 0.3 130.7 10.2 
4 1 5.04 160 121.0 13.1 111.0 136.8 0.1 0.0 9.2 
4 1 6.4 90 47.8 6.8 153.9 59.8 0.3 126.9 13.2 
4 1 5.89 180 122.5 23.9 119.1 149.8 0.3 0.0 8.2 
4 1 5.81 90 20.3 4.7 136.5 29.8 0.4 0.0 12.2 
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APPENDIX II 

CATIONS AND ANIONS IN SOIL EXTRACTS 

Table A.2. Cations and anions in soil extracts from soils under different shade tree species and  

sun or shade positions. species 1 = Persea americana, species 2 = Annona muricata, species  

3 = Diphysa americana and species 4 = Quercus spp.  0 is shade position and 1 = sun position 

 

  
Na+ K+ Mg2+ Ca2+ F- Cl- SO4

2- 

Species 
Sun 

Shade µg g-1 soil 

1 0 34.3 91.6 24.1 106.1 0.0 156.2 36.5 
1 0 66.6 53.1 13.2 60.0 1.5 135.3 60.2 
1 0 10.8 82.2 23.8 52.1 0.8 139.4 39.5 
1 0 17.6 37.4 16.6 67.1 0.0 27.4 29.9 
1 0 40.1 228.0 13.4 53.6 1.5 621.6 16.5 
1 0 26.9 74.1 17.7 50.6 1.9 81.3 32.5 
1 1 45.6 55.1 17.0 85.8 0.3 197.5 32.1 
1 1 48.8 82.9 23.1 98.7 0.0 67.5 26.6 
1 1 22.4 84.3 18.7 57.1 0.0 82.5 33.3 
1 1 108.4 61.1 17.3 55.6 0.5 148.9 34.9 
1 1 45.4 63.8 18.8 95.7 0.8 108.8 42.8 
1 1 16.6 86.2 19.0 67.3 0.0 83.4 29.1 
2 0 129.7 148.1 12.7 45.7 0.7 320.0 24.6 
2 0 17.2 104.2 26.5 68.7 0.0 90.3 32.4 
2 0 18.8 386.7 28.8 73.0 1.0 1273.3 21.9 
2 0 23.1 91.8 22.5 46.2 0.1 196.2 36.8 
2 0 52.3 92.6 17.2 58.0 0.0 89.0 19.5 
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2 0 34.4 180.8 19.7 43.5 0.8 333.6 18.7 
2 1 186.5 56.4 17.2 41.8 0.0 173.0 42.8 
2 1 15.4 78.9 25.3 44.8 0.0 106.1 50.5 
2 1 20.0 80.5 18.8 73.3 0.0 118.8 44.1 
2 1 277.6 156.3 27.4 106.7 50.6 553.3 24.9 
2 1 166.3 281.4 28.5 373.5 0.0 1847.4 44.8 
2 1 21.3 85.1 19.2 63.1 1.0 134.0 34.1 
3 0 196.3 71.4 11.1 42.0 0.0 306.1 33.7 
3 0 16.4 57.6 13.1 37.6 0.0 39.7 33.2 
3 0 225.7 116.1 20.1 48.8 0.5 466.3 25.5 
3 0 11.1 65.4 16.2 55.8 0.6 64.0 34.9 
3 0 29.3 86.9 16.4 61.7 0.0 99.6 35.2 
3 0 16.9 65.1 19.5 80.5 0.0 57.8 30.0 
3 1 14.3 77.1 17.0 53.4 0.0 138.0 53.2 
3 1 9.1 82.5 14.6 46.7 0.0 131.4 27.9 
3 1 32.4 160.7 25.0 69.8 0.5 323.8 18.3 
3 1 39.7 158.2 9.6 26.0 0.7 252.9 13.9 
3 1 43.1 80.3 14.1 48.6 4.2 101.3 33.1 
3 1 26.2 80.0 14.0 43.6 0.4 146.3 32.1 
4 0 24.9 61.0 20.4 38.5 0.0 110.2 22.4 
4 0 19.4 79.7 26.8 53.6 0.0 178.2 26.3 
4 0 164.3 180.9 14.4 51.5 0.6 370.3 22.8 
4 0 23.1 165.9 28.2 97.5 0.0 288.9 19.2 
4 1 79.4 52.5 9.7 26.5 0.7 151.9 23.2 
4 1 19.2 77.9 19.6 48.1 0.0 118.3 27.0 
4 1 12.0 102.5 14.3 45.6 0.0 187.8 27.5 
4 1 13.8 107.5 16.1 69.2 0.0 215.1 25.7 
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1 0 17.5 64.1 23.2 77.0 0.0 127.9 29.6 
1 0 16.3 54.9 21.4 105.5 0.6 146.5 25.8 
1 0 15.2 77.4 17.7 63.9 0.0 209.0 39.2 
1 0 17.2 78.2 19.9 44.2 0.6 262.6 45.2 
1 0 30.6 89.0 25.9 68.5 1.4 327.2 39.7 
1 0 11.0 102.9 40.5 131.9 0.0 311.6 42.3 
1 1 10.7 76.0 26.5 162.3 0.0 258.0 46.6 
1 1 15.2 92.6 20.7 57.9 0.7 210.3 39.6 
1 1 11.8 102.2 25.2 67.1 0.0 419.4 34.3 
1 1 195.7 66.9 18.2 70.6 0.0 451.8 29.9 
1 1 33.1 82.4 22.1 93.5 0.0 149.6 25.7 
1 1 15.2 77.7 18.9 99.6 0.6 331.3 26.6 
2 0 11.8 70.8 22.8 130.0 0.0 155.2 19.2 
2 0 17.2 138.2 40.0 176.4 0.0 464.7 23.4 
2 0 13.7 109.4 22.7 71.3 0.0 408.2 14.4 
2 0 12.7 61.5 27.0 123.6 0.5 169.2 33.6 
2 0 21.9 101.7 32.5 135.1 0.0 414.8 18.6 
2 0 23.0 101.1 25.2 80.8 0.0 451.4 20.3 
2 1 12.5 89.1 29.0 185.8 0.0 249.1 29.7 
2 1 26.1 97.8 31.8 150.9 0.0 558.0 9.7 
2 1 17.8 101.3 41.2 180.0 0.0 587.7 15.2 
2 1 14.2 79.5 23.8 195.0 0.0 287.8 37.7 
2 1 41.6 89.7 25.2 125.4 1.0 387.9 12.0 
2 1 21.5 69.6 22.7 137.0 0.0 287.0 34.0 
3 0 17.6 79.6 17.1 66.1 0.0 245.7 32.4 
3 0 16.1 99.2 42.1 214.9 0.8 271.7 21.6 
3 0 23.7 122.8 33.5 155.4 0.0 340.8 18.9 
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3 0 17.6 83.7 28.1 106.8 0.0 231.5 39.7 
3 1 13.8 138.0 54.0 134.9 0.0 223.4 35.1 
3 1 11.9 106.3 23.1 97.1 0.7 384.1 14.6 
3 1 14.6 69.1 31.3 143.1 0.0 171.3 25.3 
3 1 18.7 98.6 57.6 153.2 1.3 205.9 18.8 
3 1 22.5 65.3 26.0 114.2 0.0 145.6 23.6 
3 1 15.9 71.7 22.7 113.8 0.6 155.8 20.9 
4 0 19.5 80.5 32.5 80.2 0.7 327.3 50.0 
4 0 13.1 59.7 20.4 86.1 0.0 202.9 24.9 
4 0 27.3 61.4 16.3 82.4 1.5 196.9 24.1 
4 0 105.6 125.4 16.0 53.8 0.0 921.7 42.2 
4 1 13.3 100.0 30.7 106.2 0.7 700.4 6.7 
4 1 74.1 88.0 32.3 104.0 0.6 647.3 65.1 
4 1 29.2 130.9 25.8 126.3 0.5 635.5 17.2 
4 1 20.0 83.2 17.9 125.1 0.0 327.8 77.2 
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APPENDIX III 

CHEMISTRY OF COFFEE BUSH FOLIAGE 

Table A.3. Chemistry of coffee bush foliage under different shade tree species and sun or  

shade position  

 

  
Foliar Chemistry (µg g-1 dry foliage) 

Species Position P K+ Ca2+ Mg2+ SO4
2- Fe Cu 

Persea Shade nd nd nd nd nd nd nd 
Persea Shade nd nd nd nd nd nd nd 
Persea Shade nd nd nd nd nd nd nd 
Persea Shade nd nd nd nd nd nd nd 
Persea Shade nd nd nd nd nd nd nd 
Persea Shade nd nd nd nd nd nd nd 
Persea Sun nd nd nd nd nd nd nd 
Persea Sun nd nd nd nd nd nd nd 
Persea Sun nd nd nd nd nd nd nd 
Persea Sun nd nd nd nd nd nd nd 
Persea Sun nd nd nd nd nd nd nd 
Persea Sun nd nd nd nd nd nd nd 
Anonna Shade 0.12 2.04 1.34 0.35 0.35 80 12 
Anonna Shade 0.12 1.93 1.13 0.40 0.35 105 15 
Anonna Shade 0.14 2.10 1.20 0.35 0.41 70 14 
Anonna Shade 0.10 2.04 1.38 0.36 0.39 93 13 
Anonna Shade 0.12 2.07 1.44 0.44 0.34 88 14 
Anonna Shade 0.14 2.08 1.26 0.43 0.46 77 15 
Anonna Sun 0.11 2.33 1.24 0.34 0.54 93 16 
Anonna Sun 0.11 2.28 1.35 0.37 0.38 84 15 
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Anonna Sun 0.10 2.21 1.51 0.43 0.41 83 11 
Anonna Sun 0.13 2.50 1.55 0.48 0.39 83 15 
Anonna Sun 0.10 2.04 1.31 0.44 0.37 81 17 
Anonna Sun 0.11 2.13 1.41 0.47 0.39 89 15 
Diphysa Shade 0.12 2.38 0.96 0.24 0.44 64 15 
Diphysa Shade 0.15 2.18 0.88 0.27 0.42 68 16 
Diphysa Shade 0.14 2.47 1.39 0.42 0.38 80 18 
Diphysa Shade 0.15 2.24 1.11 0.34 0.42 73 18 
Diphysa Shade 0.15 1.90 1.04 0.31 0.44 67 20 
Diphysa Shade 0.14 2.20 0.98 0.31 0.43 71 18 
Diphysa Sun 0.15 2.21 1.09 0.37 0.47 69 19 
Diphysa Sun 0.13 2.02 1.13 0.37 0.45 67 18 
Diphysa Sun 0.16 2.13 1.12 0.31 0.41 61 16 
Diphysa Sun 0.15 2.21 1.31 0.38 0.48 63 18 
Diphysa Sun 0.15 2.11 1.07 0.33 0.38 70 17 
Diphysa Sun 0.14 2.02 1.11 0.34 0.50 73 17 
Quercus Shade 0.13 2.03 0.86 0.38 0.56 74 16 
Quercus Shade 0.13 2.23 0.84 0.39 0.42 80 15 
Quercus Shade 0.10 1.69 1.07 0.36 0.40 71 12 
Quercus Shade 0.13 1.89 1.15 0.37 0.56 70 12 
Quercus Sun 0.13 1.75 1.20 0.37 0.47 73 15 
Quercus Sun 0.12 1.94 0.88 0.31 0.46 52 15 
Quercus Sun 0.12 2.35 1.15 0.37 0.66 71 15 
Quercus Sun 0.11 2.13 1.11 0.40 0.63 75 12 
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APPENDIX IV 

FAME ANALYSIS 

Table A.4. Fame analysis: fames used as biomarkers for gram + bacteria, in mol % 

Species Shade/Sun 15:0 

ISO 

15:0 

ANTE 

15:0 16:0 

ISO 

17:0 

ISO 

17:0 17:0 

ANTE 

14:0 

ISO 

Total 

Gram+ 

Persea shade 6.412 2.807 1.049 2.791 2.383 0.755 1.291 0.607 18.09 
Persea shade 6.512 2.706 1.252 2.957 2.178 0.772 1.147 0.816 18.34 
Persea shade 6.096 2.470 1.052 2.338 2.275 0.711 1.126 0.597 16.67 
Persea sun 5.828 2.565 1.161 2.229 1.826 0.832 1.111 0.597 16.15 
Persea sun 6.115 2.736 1.002 2.424 2.113 0.730 1.142 0.567 16.83 
Persea sun 6.109 2.651 1.102 2.369 2.096 0.747 1.076 0.658 16.81 

Diphysa sun 7.627 3.118 0.998 2.492 1.808 0.600 1.060 0.789 18.49 
Diphysa sun 6.766 3.027 0.963 2.696 1.976 0.755 1.268 0.713 18.16 
Diphysa sun 5.506 2.796 0.829 2.316 1.903 0.678 1.129 0.864 16.02 
Diphysa shade 6.424 3.022 1.110 2.606 1.819 0.706 1.093 0.739 17.52 
Diphysa shade 3.686 1.760 1.020 1.901 1.711 0.528 0.860 0.887 12.35 
Diphysa shade 6.353 3.069 1.014 2.485 1.928 0.876 1.213 0.713 17.65 
Annona sun 6.696 2.580 1.006 4.084 2.586 0.610 1.246 0.900 19.71 
Annona sun 5.764 2.332 0.929 2.739 1.942 0.654 0.970 0.714 16.04 
Annona sun 5.687 2.641 1.305 2.848 2.159 0.747 1.229 0.750 17.37 
Annona shade 5.886 2.553 1.071 2.619 2.065 0.739 1.078 0.746 16.76 
Annona shade 6.235 2.799 1.132 3.082 2.425 0.637 1.262 0.819 18.39 
Annona shade 6.659 2.545 1.099 2.966 2.297 0.661 1.098 0.745 18.07 
Quercus shade 7.529 3.638 1.035 2.765 2.027 0.692 1.300 0.866 19.85 
Quercus shade 6.741 2.606 0.919 2.694 2.517 0.681 1.153 0.596 17.91 
Quercus sun 6.114 2.010 1.078 2.210 2.350 0.645 0.964 0.466 15.84 
Quercus sun 7.301 3.092 1.057 2.743 2.159 0.732 1.211 0.716 19.01 
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APPENDIX V 

FAME ANALYSIS 

Table A.5. Fame analysis: fames used as biomarkers for gram – bacteria, in mol % 

Species Shade/Sun 16:1ω7c 12:0 

2OH 

12:0 

3OH 

16:0 

2OH 

16:0 

3OH 

17:0 

CYCLO 

19:0cy  

c11-12 

Sum In  

Feature 8 

Total 

Gram- 

Persea shade 3.360 0 0 1.536 0.617 1.535 3.271 3.956 14.27 
Persea shade 3.602 0 0 1.190 0.000 2.174 2.983 4.060 14.01 
Persea shade 3.977 0 0 1.303 0.602 2.462 2.811 4.141 15.30 
Persea sun 2.907 0 0 1.331 0.505 2.057 2.351 4.533 13.69 
Persea sun 3.399 0 0 1.003 0.000 2.268 3.166 5.767 15.60 
Persea sun 3.203 0 0 1.268 0.511 2.531 2.633 3.969 14.11 
Diphysa sun 3.978 0 0.263 1.022 0.526 2.162 3.005 4.461 15.42 
Diphysa sun 3.756 0 0.248 1.215 0.466 2.418 3.049 4.248 15.40 
Diphysa sun 2.964 0.266 0.586 1.108 0.524 2.181 2.246 3.201 13.08 
Diphysa shade 3.630 0 0.262 1.134 0.490 2.278 2.750 3.953 14.50 
Diphysa shade 2.666 0.129 0.507 1.292 0.562 0.000 1.767 3.436 10.36 
Diphysa shade 3.235 0 0 1.031 0.477 2.221 2.953 4.434 14.35 
Annona sun 3.682 0.288 0.507 1.106 0.000 2.580 4.239 3.079 15.48 
Annona sun 3.481 0.175 0.353 0.888 0.000 1.476 3.449 2.930 12.75 
Annona sun 3.559 0.132 0.359 1.149 0.462 2.216 3.254 2.641 13.77 
Annona shade 3.031 0.276 0.335 0.953 0.428 1.924 3.421 3.350 13.72 
Annona shade 3.820 0.249 0.416 0.914 0.314 2.243 3.908 3.318 15.18 
Annona shade 2.945 0.302 0.560 0.860 0.540 2.060 3.976 3.387 14.63 
Quercus shade 3.765 0.255 0.261 0.970 0.434 2.211 3.645 4.737 16.28 
Quercus shade 2.982 0.329 0 0.984 0.000 2.073 5.343 3.589 15.30 
Quercus sun 2.779 0.217 0.423 1.040 0.258 1.801 4.434 3.156 14.11 
Quercus sun 3.454 0 0.274 1.219 0.573 2.588 3.662 3.667 15.44 
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APPENDIX VI 

FAME ANALYSIS FUNGI 

   Table A.6. Fame analysis: fames used as biomarkers for fungi, in mol % 

 
Species Shade/Sun 18:3 ω 6c SF19 18:1 ω 9c 16:1 ω 5c Total 

Fungi 

Persea shade 1.233 2.455 10.326 3.164 17.178 
Persea shade 1.423 3.802 10.832 4.051 20.107 
Persea shade 1.330 4.838 9.942 3.294 19.404 
Persea sun 1.257 4.274 9.580 2.596 17.708 
Persea sun 1.534 3.765 9.695 2.692 17.686 
Persea sun 1.367 2.809 11.422 2.929 18.528 

Diphysa sun 1.109 2.445 9.952 3.490 16.996 
Diphysa sun 0.841 2.371 9.152 2.964 15.329 
Diphysa sun 1.243 3.392 10.840 2.373 17.847 
Diphysa shade 0.895 2.601 10.454 2.746 16.696 
Diphysa shade 1.376 3.766 11.154 3.202 19.497 
Diphysa shade 0.853 2.646 12.023 2.874 18.397 
Annona sun 1.385 2.377 6.144 2.623 12.529 
Annona sun 1.202 2.787 9.875 2.891 16.755 
Annona sun 0.851 2.240 6.295 3.104 12.490 
Annona shade 0.865 3.314 7.718 3.857 15.754 
Annona shade 0.906 2.117 6.213 2.718 11.954 
Annona shade 0.861 2.682 10.794 3.025 17.362 
Quercus shade 0.779 2.517 9.282 3.946 16.525 
Quercus shade 0.730 2.671 9.478 2.784 15.662 
Quercus sun 0.808 2.526 7.533 3.478 14.347 
Quercus sun 1.188 2.402 9.628 3.373 16.590 
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