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ABSTRACT 

 

High-speed Link Modeling: Analog/Digital Equalization and Modulation Techniques. 

(May 2012) 

Keytaek Lee, B.E., State University of New York at Stony Brook 

Chair of Advisory Committee: Dr. Samuel Palermo 

 

 High-speed serial input-output (I/O) link has required advanced equalization and 

modulation techniques to mitigate inter-symbol interference (ISI) caused by multi-Gb/s 

signaling over band-limited channels. Increasing demands for transceiver power and area 

complexity has leveraged on-going interest in analog-to-digital converter (ADC) based 

link, which allows for robust equalization and flexible adaptation to advanced signaling. 

With diverse options in ISI control techniques, link performance analysis for 

complicated transceiver architectures is very important. This work presents advanced 

statistical modeling for ADC-based link, performance comparison of existing 

modulation and equalization techniques, and proposed hybrid ADC-based receiver that 

achieves further power saving in digital equalization. 

 Statistical analysis precisely estimates high-speed link margins at given 

implementation constrains and low target bit-error-rate (BER), typically ranges from 1e-

12 to 1e-15, by applying proper statistical bound of noise and distortion. The proposed 

statistical ADC-based link modeling utilizes bounded probability density function (PDF) 

of limited quantization distortion (4-6 bits) through digital feed-forward and decision 
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feedback equalizers (FFE-DFE) to improve low target BER estimation. Based on 

statistical modeling, this work surveys the impact of insufficient equalization, jitter and 

crosstalk on modulation selection among two and four level pulse amplitude modulation 

(PAM-2 and PAM-4, respectively) and duobinary, and ADC resolution reduction 

performance by partial analog equalizer (PAE). 

 While the information of channel loss at effective Nyquist frequency and 

signaling constellation loss initially guides modulation selection, the statistical analysis 

results show that PAM-4 best tolerates jitter and crosstalk, and duobinary requires the 

least equalization complexity. Meanwhile, despite robust digital equalization, high-speed 

ADC complexity and power consumption is still a critical bottleneck, so that PAE is 

necessitated to reduce ADC resolution requirement. Statistical analysis presents up to 8-

bit resolution is required in 12.5Gb/s data communications at 46dB of channel loss 

without PAE, while 5-bit ADC is enough with 3-tap FFE PAE. For optimal ADC 

resolution reduction by PAE, digital equalizer complexity also increases to provide 

enough margin tolerating significant quantization distortion. The proposed hybrid 

receiver defines unreliable signal thresholds by statistical analysis and selectively takes 

additional digital equalization to save potentially increasing dynamic power 

consumption in digital. Simulation results report that the hybrid receiver saves at least 64% 

of digital equalization power with 3-tap FFE PAE in 12.5Gb/s data rate and up to 46dB 

loss channels. Finally, this work shows the use of embedded-DFE ADC in the hybrid 

receiver is limited by error propagation. 
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CHAPTER  I  

INTRODUCTION 

 

As the data rate of high-speed input/output (I/O) links exceeds multi-Gb/s, 

undesirable interferences from neighbor transmitting symbols and adjacent signal paths 

in electrical channel significantly hinder successful wired communications [1]. With 

rapidly enhancing transceiver capability with CMOS scaling, equalization techniques are 

required to mitigate inter-symbol interference (ISI) arising from signaling over band-

limited channels. Meanwhile, high-density I/O applications have area and power 

restrictions, which limits complexity of transceiver architectures. This restriction 

obscures fully analog equalization due to resolution limitation [2] and difficulties to 

implement integrated analog delay cells [3]. Although a conventional binary receiver 

with multi-tap decision-feedback equalizer (DFE) helps further increasing achievable 

data rate (Fig. 1(a)) [4]-[6], analog blocks face harsher challenges due to process, 

voltage and temperature (PVT) variation. Besides, DFE itself is restricted to cancel post 

cursor ISI and less efficient for long tail ISI. 

Increasing demands for advanced equalization and modulation techniques have 

led on-going interest in ADC-based high-speed links (Fig.1(b)) that leverage digital 

signal processing (DSP), which provides 1) robustness and adaptability in equalization, 2) 

flexibility for potential modulation schemes, 3) endurableness for PVT variations, and 4) 

scalability with CMOS technology improvement [7]-[11]. Despite the advantages of 

____________ 
This thesis follows the style of IEEE Transactions on Circuits and Systems. 



 2 

 
(a) 

 

 
(b) 

 
Fig. 1 (a) Binary link with multi-tap DFE and (b) ADC-based link 

 

DSP, the most critical bottleneck in ADC-based receivers is high-speed ADC’s power 

and area consumption, which limits typical ADC resolution to 4-6 bits. With limited 

resolution of ADC, quantization distortion is significantly issued in digital equalization. 

To relax ADC resolution requirement, a partial analog equalizer (PAE) and full-scale 

range (FSR) adjustment are necessitated [7], [12]. 

Rising complexity of ADC-based receivers with various equalization and 

modulation techniques motivates elaborate link modeling to quickly and trustfully 

survey the optimal combinations in diverse options. Statistical link modeling has been 

considered as one of the best approaches in link performance analysis because of its 

acceptable computational complexity and reliability. While statistical modeling for fully 

analog high-speed links has grown mature [13]-[15], link modeling approaches for 

ADC-based receivers and digital equalizers, often use ADC performance metrics based 



 3 

on mean-square error (MSE), such as signal-to-noise and distortion ratio (SNDR) or 

effective number of bits (ENOB) [9], [10], [12], [16]. To simplify analysis, ADC 

quantization distortion is often approximated as a normal distribution, and the total error 

variance is assumed to be the sum of the random noise and quantization distortion 

variance. While this is valid when random noise dominates over quantization distortion, 

this is not the case for low-resolution high-speed link systems. 

The objectives of this thesis are to build statistical model for ADC-based link 

with limited quantization levels, explore performances and tradeoffs of existing solutions 

in modulation and equalization techniques for high-speed transceivers by statistical 

analysis, and propose a hybrid receiver which improves power efficiency of ADC-based 

links. 

 

1.1 Organization of Thesis 

 Chapter 2 presents an overview of statistical binary link modeling including 

band-limited channel, analog equalization, controlled signaling and non-ideal TX/RX 

timing. To extend previous statistical analysis for ADC-based link, statistical modeling 

for significant amount of quantization distortion by limited resolution ADC with 

following digital FFE-DFE is proposed. 

 Chapter 3 introduces an initial guidance in modulation selection among binary 

signaling (PAM-2), four-level pulse-amplitude-modulation (PAM-4) and duobinary in 

previous work and reviews the impacts of non-sufficient equalization, crosstalk and jitter 

on advance modulation selection by statistical analysis. 
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 In Chapter 4, ADC resolution requirement reduction performed by PAE is 

reexamined by statistical modeling. Then, the new hybrid architecture which allows for 

additional saving of digital equalization power by the selective equalization technique is 

proposed. In addition, potential uses and drawbacks of embedded-DFE ADC is 

discussed. 

 Finally, Chapter 5 concludes the thesis with performance comparison for 

different modulation and equalization techniques and presents expected research 

extensions beyond this work. 
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CHAPTER  II  

STATISTICAL LINK MODELING 

 

Statistical link modeling captures statistical natures of disturbances such as ISI, 

crosstalk, jitter and random noise, and estimates bit-error-rate (BER) in probability 

density function (PDF) domain. This better performs for fast and accurate link 

performance estimation with extremely low target BER, typically ranging from 1e-12 to 

1e-15, than the other approaches; transient simulation requires demanding tasks; worst 

case analysis is highly pessimistic [13]; mean-square-error (MSE) based analysis is 

based on Gaussian approximation for overall noise and distortion which is often invalid 

BER estimation for low target BER due to unbounded tail probability of a normal 

distribution [14]. This chapter summarizes statistical binary link modeling techniques in 

previous works and extends it for ADC-based link modeling. 

 

2.1 Binary Link Modeling 

Binary link consists of a channel, transmitter (TX), receiver (RX), analog 

equalizer, and timing circuits such as TX phase locked loop (PLL) and RX clock data 

recovery (CDR). This section presents an overview of statistical binary link modeling 

including the listed link components. 
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2.1.1 Channel Modeling 

 
 

Fig. 2 Electrical backplane channel 

 

 Over a multi-Gb/s wired communications through electrical channels face three 

main disturbances causing signal interferences, which are dispersion, reflection and 

crosstalk [1]. Fig. 2 describes an electrical backplane channel components and sources of 

interferences. At first, dispersion occurs by limited high frequency current density at 

conductor surfaces (skin effect) and signal energy absorption into quickly rotating 

dielectric atoms along with alternating electric field due to high frequency signal 

(dielectric absorption). Secondly, discontinuity at vias and mismatch at on-chip 

termination reflect a part of transmitting signal, which affects on following signals. 

Thirdly, high frequency signal is leaked into neighbor channels through parasitics 

between densely placed and coupled wires. As a result, a high-speed data 

communication over an electrical channel suffers from band limitation due to dispersion, 

undesirable high frequency boosting due to reflections, and interferers from neighbor 

channels called crosstalk. A physical channel is often assumed as linear and time-
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invariant (LTI) system and measured as a form of s-parameter, which stands for a ratio 

between input and output signals at different ports [17]. For instance, S21 in a two-port 

network presents the amount of output signal versus the input through the channel, while 

S11 shows the input reflection coefficient at given frequency components. Fig. 3 shows 

examples of the observed channel frequency responses of a communicating and crosstalk 

channels [18]. In addition to ISI and crosstalk, there exists another source increasing a 

chance of error, random noise. This is mainly caused by PVT variation and potential 

mismatches both in channel and TX/RX driver. Random noise is typically considered as 

an additive white Gaussian noise (AWGN) with zero mean and receiver’s input referred 

sigma (standard deviation). 

 

 
 

Fig. 3 Channel and crosstalk frequency responses [18] 

 

 Based on LTI assumption, a received pulse passed through a channel is obtained 

by convolving a unit pulse with channel impulse response which is inverse Fourier 

transform of the channel frequency response [19]. Channel pulse response in Fig. 4(a) 
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clearly shows how adjacent symbols interfere with each other. Given ‘101’ of the 

transmitting data pattern, parts of pre and post ‘1’ symbols appears at ‘0’ symbol 

reception and causes an error as shown in Fig. 4(b). Moreover, sampled values from 

adjacent crosstalk channel (Fig. 5) and random noise disturb transmitted symbol 

detection. 

 

 
(a)                                                       (b) 

 
Fig. 4 (a) Channel pulse response and its sampled response and (b) {101} pattern pulse 

response and its sampled response at 10Gb/s in the thru channel in Fig. 3. 
 

 
 

Fig. 5 Crosstalk channel pulse response and its sampled response at 10Gb/s in the thru 
channel in Fig. 3. 
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 PDF of overall ISI, crosstalk and random noise is generated by convolving each 

independent interfering symbol’s PDF [15]. A received and sampled signal is described 

as, 

𝑦𝑘 = ℎ0𝐼𝑘 + �ℎ𝑛−𝑘𝐼𝑘
𝑛≠𝑘

+ �𝑔𝑚−𝑘𝐼𝑚 + 𝑍𝑘
∀𝑚

, (2.1) 

where k is cursor indicator, h and g are sampled pulse responses of through and crosstalk 

channels, I and 𝐼  are transmitted symbols through corresponding channels, and Z is 

AWGN. A transmitting symbol probability mass function (PMF) is known, for example, 

PAM-2 signaling has two equiprobable symbols, {-1, 1}. If transmitting symbols are 

independent (not coded), the total ISI and crosstalk is sum of the independent symbols 

scaled by channels. Since a PDF of the sum of the independent random variables is same 

as convolution of all individual independent PDFs, total noise and distortion PDF and its 

cumulative distribution function (CDF) are obtained by convolving all ISI PMFs and 

random noise PDF. A voltage margin referred to a certain target BER (statistical eye 

opening) is typically presented by bathtub curve, which constructed by two flipped 

CDFs whose means are the corresponding cursor amplitudes. Fig. 6 shows the procedure 

to create a bathtub curve with statistical modeling. 

 Statistical modeling requires more computational complexity than MSE-based 

analysis, but is valued in accurate low BER estimation. To simplify BER estimation, 

overall noise and distortion distribution is assumed as a normal distribution and error 

probability is evaluated based on signal-to-noise-and-distortion ratio (SNDR) [19]. 
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Fig. 6 Procedure to create ISI + random noise CDF and estimate statistical eye opening 

with PAM-2 signaling and 1e-12 of the target BER 
 

 

𝑆𝑁𝐷𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒 + 𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛
, and (2.2) 

𝑃𝑒 ≈ 𝑄 ��
𝑑𝑚𝑖𝑛
2 /4

𝜎𝑛𝑜𝑖𝑠𝑒2 + 𝜎𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛2 � = 𝑄�√𝑆𝑁𝐷𝑅 − 1� (2.3) 

For instance, in case of (1) with PAM-2 signaling, 

𝑃𝑒,𝑃𝐴𝑀2 ≈ 𝑄��
ℎ02

∑ ℎ𝑛2𝑛≠0 + ∑ 𝑔𝑚2∀𝑚 + 𝜎𝑍2
� (2.4) 

where Q is the complementary function defined as 
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𝑄(𝑥) =
1
√2𝜋

� 𝑒𝑥𝑝�−
𝑢2

2 �𝑑𝑢,
∞

𝑥
 (2.5) 

which is based on CDF of the standard normal distribution. Fig. 7 presents comparison 

between the CDFs of ISI and random noise by statistical modeling, and approximated 

normal distribution whose variance is same as the former. This shows that the MSE 

based analysis is extremely pessimistic at low BER range which potentially results in 

over-design, and invalid for qualified BER estimation with low target BER due to bound 

of ISI and crosstalk distribution [14]. A statistical BER estimator improves estimated 

BER accuracy by replacing the complementary function to bounded CDF relying on the 

statistical modeling. 

 

 
 

Fig. 7.  Comparison between CDFs by statistical modeling and approximated normal 
distribution 
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2.1.2 Equalization and Modulation Modeling 

 Feed-forward equalizer (FFE), continuous-time linear equalizer (CTLE) and DFE 

are the most common in binary high-speed link [4]-[6], [20]-[21]. To avoid 

implementing analog delay cell, FFE is typically implemented at transmitter, so called 

pre-emphasis. CTLE compensates high frequency loss by controlled in-band zero and 

poles. DFE subtracts the exact amount post cursor ISI induced by post symbols based on 

previous decisions. Recently, a RX DFE with infinite impulse response (IIR) filter for 

second and further post cursor ISI has been studied to cancel long tail pulse response 

other than DFE taps [22]-[23]. 

 

 
 

Fig. 8 Equalized pulse response by 3-tap FFE and 1-tap DFE 

 

LTI assumption allows for applying any type of linear equalizer, such as FFE, 

CTLE, either in frequency domain by multiplying equalizer frequency response to 

channel frequency response or in time domain by convolving equalizer impulse response 
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with channel pulse response. Although DFE is non-linear, ideal functionality without 

error propagation due to potential wrong pre-decisions is assumed when achieving low 

target BER. Ideal DFE always subtracts the exact amplitude of corresponding post 

cursor ISIs for one unit interval (UI) per each DFE tap. Fig. 8 presents the pulse 

responses before and after equalization with FFE-DFE. Statistical modeling of residual 

ISI after equalization follows the same procedures discussed in previous section with the 

equalized pulse response. 

Given channel information, FFE coefficients are typically optimized based on 

minimum-mean-square-error (MMSE) criteria [19]. Zero forcing FFE has MMSE of ISI 

when its coefficients are 

𝐶𝑍𝐹−𝐹𝐹𝐸 = (𝐻𝑇𝐻)−1𝐻𝑇𝑌𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , where 

𝐻 =

⎣
⎢
⎢
⎢
⎡
ℎ(0) 0 0 0 0
ℎ(1) ℎ(0) 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ℎ(𝑘 − 1) ℎ(𝑘 − 2)
0 0 0 0 ℎ(𝑘 − 1)⎦

⎥
⎥
⎥
⎤

, 𝐶𝑍𝐹−𝐹𝐹𝐸 = �

𝑐(0)
𝑐(1)
⋮

𝑐(𝑙 − 1)

�, 

(2.6) 

 

 

 

h is k-taps sampled channel pulse response, c is FFE coefficients with l-taps and 𝑌𝑑𝑒𝑠𝑖𝑟𝑒𝑑  

is the desired output, such as the vector having 1 for the cursor tap and 0 for all the 

others (for PAM modulation). Since FFE scales AWGN either, considerable random 

noise should be taken into account. With AWGN, MMSE-FFE coefficients are 

optimized when 

𝐶𝑀𝑀𝑆𝐸−𝐹𝐹𝐸 = (𝐻𝑇𝐻 + 𝑁)−1𝐻𝑇𝑌𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , (2.7) 
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where N is l by l identical matrix multiplied by variance of independent noise. 

Furthermore, with ideal DFE assumption, MMSE-DFE coefficients [24] are optimized 

when 

𝑊𝑀𝑀𝑆𝐸−𝐷𝐹𝐸 = �𝐻�𝑇𝐻� + 𝑁��
−1
𝐻�𝑇𝑌𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , where 

𝐻� = [𝐻|𝐼𝐷𝐹𝐸], 𝑊𝑀𝑀𝑆𝐸−𝐷𝐹𝐸 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑐(0)
𝑐(1)
⋮

𝑐(𝑙 − 1)
𝑏(0)
⋮

𝑏(𝑚 − 1)⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑁� = �𝑁 0
0 0� 

(2.8) 

 

 

 

 

c and b are l-taps FFE and m-taps DFE coefficients, respectively, and 𝐼𝐷𝐹𝐸  is the matrix 

whose components are 

𝐼𝐷𝐹𝐸(𝑘, 𝑗) = � 1,   if   𝑘 =  𝑘𝑐𝑢𝑟𝑠𝑜𝑟 + 𝑗                          
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                  

� 

Note that MMSE does not necessarily results in optimal BER when ISI is not controlled 

enough, since the ISI PDF differs from a normal distribution PDF as mentioned. 

However, it offers useful initial guess for finding optimal equalizer coefficients, and 

further optimization can be done by coefficient sweeping in statistical analysis. 

Pulse amplitude modulation (PAM) is easily modeled by different transmitting 

symbol PDF. For instance, PAM-4 has four symbols, {-1 -1/3 1/3 1} and each ISI tap 

has four equiprobable values. Thus, an independent transmitting symbol has four-value 

PMF instead of two-value PMF in PAM-2. Equalizer coefficient optimization procedure 

is exactly same for any types of PAM. There exist M-1 thresholds for PAM-M and pairs 

of thresholds from outer two to inner two excepting zero are symmetric. Ideal thresholds 
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places exactly at the middle of two adjacent constellations, statistical eye opening are the 

same for all M-1 thresholds. In practice, thresholds cannot be adapted to non-ideal 

sampling point, BER at outer threshold is typically worse than inner one with given 

fixed thresholds. 

Since duobinary modulator includes a channel [25], MMSE equalizer 

coefficients are obtained by simply changing the desired vector to have two cursors 

whose values are 0.5 and 0.5 instead of 1 for PAM. Transmitted data is same as PAM-2 

but the received signal is 

𝑦𝑘 = ℎ0𝐼𝑘 + ℎ1𝐼𝑘+1 + � ℎ𝑛−𝑘𝐼𝑘
𝑛≠𝑘,𝑘+1

+ �𝑔𝑚−𝑘𝐼𝑚 + 𝑍𝑘
∀𝑚

, (2.9) 

where k and k+1 are cursor and the first post cursor, h and g are sampled pulse responses 

of through and crosstalk channels, I and 𝐼 are transmitted binary symbols, {1, -1} , and Z 

is AWGN. Although duobinary has three possible received symbol, {±(h0 + h1), 0}, 

mismatch between cursor and the first post cursor separates zero symbol into two and 

the distance between constellations is degraded by |h0 − h1|. 

 

2.1.3 Jitter Modeling 

 While statistical modeling discussed in section 2.1.1-2 is sample-based, 

transmitting and sampling timing is not ideal because of jitter at PLL and CDR. Jitter 

analysis has been mature with linear modeling of PLL and CDR [14], [26]-[29]. 

Although phase error of the TX/RX clocks from diverse sources causing jitter in PLL 

and CDR is analyzable by jitter transfer function, linearized jitter model often provides 
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too much details with extreme complexity because of various sources of jitter in 

clocking circuits that are not necessarily Gaussian distribution [14], and correlation 

between TX jitter and RX jitter which is also disturbed by channel ISI, crosstalk and 

even DFE subtraction [13]. To simplify statistical analysis, RX jitter is often modeled by 

dual-Dirac jitter that approximates jitter distribution as combination of deterministic 

jitter (DJ) and random jitter (RJ) [30], and TX jitter is modeled by combination of 

periodic and random jitter [14], [31]. 

 

 
     (a)                                                    (b) 

 
Fig. 9 (a) Thru and crosstalk channel frequency responses [18] and (b) statistical eye 

degradation by 2%UI DJ and 2%UIrms RJ of RX jitter 
 
 

 RX jitter distribution in time is transferred to PDF in voltage domain by a family 

of PDFs obtained at different sampling timing. Since 

𝑃𝑉,𝑇(𝑣, 𝑡) =  𝑃𝑉|𝑇(𝑣|𝑡)𝑃𝑇(𝑡), (2.10) 

sum of conditional PDF at the given sampling time multiplied by probability to have that 

sampling time is the PDF with RX jitter. Fig. 9(b) presents statistical eye degradation by 
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2%UI of DJ and 2%UI of RJ sigma, which is simulated with the through channel with 

two crosstalk channels in Fig. 9(a). The simulation setting are 10Gb/s of data rate, 3-tap 

FFE with PAM-2 signaling and 1mVrms random jitter. In Fig. 10, the procedure of 

statistical RX jitter modeling and the result is compared to 1k-bit transient simulation 

with through channel. 

 

 
 

Fig. 10 Procedure of RX jitter modeling and comparison between statistical eye contour 
referred to 1e-12 of BER and 1k-bit transient simulation eye diagram 

 
 

TX jitter causes varying TX pulse widths that results in changes of the channel 

pulse response. As a result, this does not only affects on RX jitter but also generates 

received signal amplitude variation. If TX jitter is totally random and limited to small 

variance, random TX jitter is modeled by jitter transfer function from jitter impulse 

response. Independent random TX jitter occurs at both of rising and falling edges and 

RX signal voltage varies linearly if the TX timing variance is small enough. Thus, 

impulse TX timing variance is transferred to jitter sensitivity function (JSF) [14] in 
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voltage as described in Fig. 11. Those two JSF at rising and falling edges are highly 

correlated such that increasing pulse width of current symbol directly results in 

decreasing pulse width of next symbol, so that 

𝜎𝑣,𝑅𝑋
2 = ��𝐽𝑆𝐹𝑓𝑎𝑙𝑙𝑖𝑛𝑔(𝑛) + 𝐽𝑆𝐹𝑟𝑖𝑠𝑖𝑛𝑔(𝑛)�2𝜎𝑡,𝑇𝑋

2

∀𝑛

. (2.11) 

where 𝜎𝑡,𝑇𝑋
2  is the variance of a normal TX timing distribution and 𝜎𝑣,𝑅𝑋

2  is the 

corresponding voltage variance of the normal distribution in voltage. 

 

        
(a)                                                         (b) 

 
Fig. 11 (a) TX impulse jitter model and (b) jitter sensitivity function (JSF) at the channel 

output 
 
 

 Periodic TX jitter should be considered in a sequence of varying pulse widths 

[31]. For instance, duty cycle jitter, the simplest periodic jitter, is modeled by combining 

two pulse responses originated from longer pulse width and shorter one which are 

transmitted one-by-one in a sequence. Both cases, whether cursor is generated by longer 

or shorter pulses, are equiprobable, so that two statistical PDF from each case are 
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generated and averaged as shown in Fig. 12. This method, however, still requires 

demanding tasks as increasing complexity of periodic sequences [13]. Nevertheless, 

considering the purpose of statistical analysis, that is providing the qualified guidance 

for system-level transceiver design, this modeling is useful by applying proper marginal 

conditions with simplified jitter models. 

 

 
 

Fig. 12 Procedure for duty cycle TX jitter modeling 
 

 

2.2 Analog-to-Digital Converter (ADC) Based Link Modeling 

 Quantization distortion of a uniform ADC is typically modeled as an additive 

white uniform distribution whose variance is 

𝜎𝑞𝑧2 = 𝐸[(𝑋 − 𝜇)2] = �
1
𝛥𝑞𝑧

𝑥2𝑑𝑥 =
𝛥𝑞𝑧2

12  

𝛥𝑞𝑧
2

−
𝛥𝑞𝑧
2

, (2.12) 

where ∆𝑞𝑧 is the distance between quantization levels. To simplify analysis, quantization 

distortion is often approximated as a normal distribution [9], [10], [12], and BER is 

estimated as follows. 

𝑆𝑁𝐷𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒 + 𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 + 𝑃𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛
, and (2.13) 
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𝑃𝑒,𝑃𝐴𝑀2 ≈ 𝑄��
𝑑𝑚𝑖𝑛
2 /4

𝜎𝑛𝑜𝑖𝑠𝑒2 + 𝜎𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛2 + 𝜎𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛2 �

= 𝑄 ��
ℎ02

∑ ℎ𝑛2𝑛≠0 + ∑ 𝑔𝑚2∀𝑚 + 𝜎𝑍2 + ∆𝑞𝑧2 /12
�

= 𝑄�√𝑆𝑁𝐷𝑅 − 1�. 

(2.14) 

Also, ADC resolution requirements at a given target BER is analyzed relying on the 

definition of effective number of bits (ENOB) [16], that is 

𝐸𝑁𝑂𝐵 =
𝑆𝑁𝐷𝑅 − 1.76

6.02 . (2.15) 

Although this is valid when random noise is dominant so that overall noise and 

quantization distortion distributes as the closed form of the normal distribution, typical 

ADC-based link with limited ADC resolutions to 4-6 bits is not the case. 

 Previously, in order to improve accuracy for systems with limited quantization 

levels, normal and uniform distributions were combined to derive BER for M-PAM with 

fading [32]. However, this approach is restricted to analyze the output of the ADC. 

When the quantized received signal passes through a following digital FFE, the 

quantization error is scaled by FFE coefficients and scaled error distributions at different 

sampling times are added up. Since a sum of non-identical uniform distributions has 

discontinuous points on its PDF, analytical BER estimation is difficult. This issue is also 

discussed in [7], in which it is argued that required noise sigma to achieve BER < 1e-17 

is 15~25% of ADC LSB for 3.5bit ADC based on empirical observations, while this is 

not a general solution. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 13 (a) Quantization distortion in digital FFE-DFE, (b) proposed statistical modeling 
for ADC-based receiver with digital FFE-DFE, and (c) comparing statistical modeling 

with Gaussian-approximated quantization distortion 
 

 

In the specific case of digital equalization, digital FFE-DFE (Fig. 13(a)) which is 

a common equalizer for low-complexity and power efficient applications, statistical 

modeling allows for link performance evaluation without Gaussian approximation. The 



 22 

proposed statistical analysis utilizes the uniformly distributed quantization noise PDFs 

scaled by the FFE coefficients for improved BER estimation accuracy with the low ADC 

resolutions common in high-speed link systems. A PDF of the sum of the independent 

and uniformly distributed random variables is obtained by convolving all the individual 

PDFs. This allows for the channel and analog front-end modeling discussed in Section 

2.1 to be expanded to the modeling of ADC-based links, as shown in Fig. 13(b). Note 

that DFE, which mitigates residual ISI by eliminating corresponding post cursor ISI taps, 

does not affect quantization distortion. 

The improved BER estimation accuracy by the proposed technique of scaling 

quantization error with the FFE coefficients is shown in the bathtub curves at different 

ADC resolution settings and FFE tap numbers in Fig. 15-16. For the fair comparison of 

the improvement by the proposed method, comparing bathtub curve is generated with 

statistical modeling for ISI and Gaussian approximation for quantization distortion (Fig. 

13(c)), and digital FFE coefficients are normalized not to scale a normal distribution. 

Here, the two quantization distortion modeling techniques of Fig. 13 and also transient 

simulation results are compared for a 10Gb/s data rate on two different backplane 

channels in Fig. 14. 4/1-tap and 9/1-tap digital FFE/DFEs are used for the channel 1 and 

2, respectively. Other simulation settings include the use of PAM-2 signaling, 1mVrms 

AWGN, 1Vpp input dynamic range, and 8-bit digital equalizer resolution. To observe the 

statistical bound, 1E9 bits are simulated in transient. For this, all three cases are sample-

based simulation, which means the jitter is not considered. However, since jitter in 

statistical analysis is applied by combining PDFs built with different transmitting pulse 
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width and sampling time, the verified accuracy in sample-based simulation confirms the 

accuracy with jitter. While the interest is the results with 4-6 bits of ADC resolution, 8-

bit ADC is also simulated for sanity check, in which all the three compared cases expect 

to be matched. 

 

 
 

Fig. 14 Channel frequency responses [18] 
 

 

As shown in Fig. 15(b)-(d) and Fig. 16(b)-(d), utilizing the proposed quantization 

distortion modeling technique allows for improved tracking of transient simulation 

results for the typical 4-6 bit ADC resolution settings for high-speed link applications. 

Note that when quantization distortion is small, as in Fig. 15(a) and Fig. 16(a) with 8-bit 

ADC resolution, both techniques track transient simulation results well. Significance is 

Gaussian approximation is often pessimistic and fails to detect large eye opening in Fig. 

15(d) that potentially results in over-design. Interestingly, Fig. 16(d) shows possibility of 

system fail due to optimistic BER estimation in Gaussian approximation. This is due to 



 24 

the bounded convolution of uniform distributions widening by the absolute sum of the 

FFE coefficients, while the variance of the quantization distortion depends on the square 

sum of the coefficients. Thus, as the number of FFE taps increases, the magnitude of the 

FFE cursor tap increasingly spreads into pre- and post-cursor taps and widens the 

quantization distortion bounds. 

 

 
   (a)                                                     (b) 

 
    (c)                                                     (d) 

 
Fig. 15 Bathtub curve comparison at channel 1 in Fig. 14 (a) with 8-bit ADC, (b) 6-bit 

ADC, (c) 5-bit ADC, and (d) 4-bit ADC 
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   (a)                                                     (b) 

 
   (c)                                                     (d) 

 
Fig. 16 Bathtub curve comparison at channel 2 in Fig. 14 (a) with 8-bit ADC, (b) 6-bit 

ADC, (c) 5-bit ADC, and (d) 4-bit ADC 
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CHAPTER  III  

MODULATION TECHNIQUES AND ANALYSIS 

 

In addition to equalization, modulated signaling allows for controlling ISI over 

band-limited channel. Besides, an ADC-based receiver is flexible for different types of 

signaling that encourages uses of optimal combinations of equalization and modulation 

techniques. Due to limited transceiver complexity by power and area restriction of 

compact high-speed I/O applications, a couple of modulation techniques, PAM-4 and 

duobinary, have been used in wired communications [25], [29], [33]. In this chapter, 

PAM-2, PAM-4 and duobinary are compared by statistical analysis and anticipate the 

possible solutions for future ADC-based links. 

 

3.1 Initial Guidance for Modulation Selection 

 Modulation selection is the critical issue because finding the best performer 

among different modulation schemes depends on not only channel loss but also the 

distance between signal constellations. While each of PAM-4 and duobinary 

performances is compared to PAM-2 in [29], [33], the comparison among three of them 

is proposed in [25] with a simple and initial guidance based on effective Nyquist 

frequency channel loss. Due to peak power limitation of transmitting signal, maximum 

boosting at Nyquist frequency is restricted to 0dB, that is, channel loss at Nyquist 

frequency cannot be overcome. Given data rate, PAM-4 has half of symbol rate or half 

effective Nyquist frequency compared to PAM-2. Thus, even though ISI is equalized 
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enough for both of cases, PAM-2 suffers from higher channel loss. Controlled ISI by 

duobinary provides two third of effective Nyquist frequency reduction. 

 

 
      (a)                                                     (b) 

 
Fig. 17 Through and crosstalk channels [18] for (a) case 2 and (b) case 3 

 
 

However, since PAM-4 and duobinary have four levels and three levels of signal 

constellation within given input dynamic, the minimum distances between constellations 

are limited by one third and half, respectively. With the assumption of enough 

equalization, modulation gain is calculated by subtracting constellation loss from the 

gain obtained by relaxed channel loss. For instance, three cases at different channels and 

data rates are carefully selected such that each of the cases results in different 

modulation selection; case 1 is 10Gb/s at channel in Fig. 9(a); case 2 is 10Gb/s at 

channel in Fig. 17(a); case 3 is 8Gb/s at channel in fig. 17(b). Channel losses at effective 

Nyquist frequencies and constellation losses are profiled in Table I. Based on the loss 

profiles, modulation gain is summarized in Table II. For example, when PAM-4 is used 

instead of PAM-2 in case 1, 3.1dB of loss reduction is achieved while the distance 
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between constellations is reduced by 9.54dB. As a result, total 6.44dB loss is expected 

with PAM-4 selection versus PAM-2. Finally, the initial guidance informs that PAM2 

performs the best for case 1, PAM4 for case 2, and duobinary for case 3. 

 

Table I Channel loss profiles 
 

Loss @ effective Nyquist freq PAM-2 Duobinary PAM-4 

Case 1 8.9dB 6.0dB 5.8dB 

Case 2 18.2dB 12.6dB 7.9dB 

Case 3 21.3dB 11.4dB 8.2dB 

Constellation loss 0dB 6dB 9.54dB 

 

Table II Modulation gain 
 

Modulation gain Duobinary vs. PAM-2 PAM-4 vs. PAM-2 Selection 

Case 1 -3.10dB -6.44dB PAM-2 

Case 2 -0.40dB 0.76dB PAM-4 

Case 3 3.90dB 0.36dB Duobinary 
 

 

3.2 Advanced Modulation Selection 

The simple principle for modulation selection discussed in previous section does 

not consider insufficient equalization and effect of crosstalk and jitter. In [29], effects of 

non-ideal transition of TX pulse, jitter and different equalization complexity on PAM-2 

and duobinary performance are compared by statistical modeling, but crosstalk is not 

considered. Moreover, improved performance comparison between PAM-4 and 
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duobinary versus PAM-2 is very important to predict future trends in high-speed link 

design. From the initial guidance, we know that channel loss range for selecting 

duobinary places between those for PAM-2 and PAM-4. In this work, the three 

modulation techniques are compared by statistical analysis. 

 

Table III Simulation setting for the three cases in Table I 
 

Input dynamic  1Vppk  

Random noise  1mVrms  

RX DJ  1%UI  

RX RJ  1%UIrms  

Target BER  1E-12  

Crosstalk  FEXT, NEXT  

Equalizer  3-tap FFE  

Equalizer resolution Ideal  
 

 

Here, the three cases selected in Table I are reexamined by statistical analysis. 

Simulation settings are summarized in Table III and the results are presented in Table 

IV-VI, as well as the optimized coefficients of 3-tap FFE by MMSE criteria. Also, from 

the statistical eye opening, modulation gain is recalculated and compared in table VII. 

As expected, the selected modulation scheme for each case has the largest eye opening. 

However, performance differences are not well matched to the estimated modulation 

gain by the simple principle presented in Section 3.1. For example, the initial guidance 

shows that the expected eye openings for the three modulation schemes in case 3 are 
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similar, but PAM-4 shows remarkable improvement while duobinary has worse 

performance than expected. This means, there exists possibility that the selected 

modulation scheme is changed by non-ideality of channel and equalizer capability. 

 

Table IV Case 1: FFE coefficients and statistical eye opening 
 

 𝑎−1 𝑎0 𝑎1 
1e-12 stat. 

eye 
H(mV) 

1e-12 stat. 
eye 

W(ps) 

PAM2 -0.0492 0.7177 -0.2331 220.4 56 
PAM4 -0.0179 0.8824 -0.0997 117.8 80 
DUO 0.4951 0.3273 -0.1776 154.7 57 

 

 

Table V Case 2: FFE coefficients and statistical eye opening 
 

 𝑎−1 𝑎0 𝑎1 
1e-12 stat. 

eye 
H(mV) 

1e-12 stat. 
eye 

W(ps) 
PAM2 -0.1669 0.5994 -0.2337 14.2 13 
PAM4 -0.0470 0.7972 -0.1559 44.4 36 
DUO 0.7246 -0.2669 0.0086 8.3 7 

 

 

Table VI Case 3: FFE coefficients and statistical eye opening 
 

 

𝑎−1 𝑎0 𝑎1 
12-12 stat. 

eye 
H(mV) 

1e-12 stat. 
eye 

W(ps) 

PAM2 -0.1685 0.5917 -0.2398 54.2 41.25 
PAM4 -0.0459 0.7767 -0.1774 58.4 65 

DUO 0.7302 -0.2297 -0.0401 62 47.5 
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Table VII Modulation gain by statistical analysis 
 

Modulation gain Duobinary vs. PAM-2 PAM-4 vs. PAM-2 Selection 

Case 1 -3.07dB -5.44dB PAM-2 

Case 2 -4.66dB 9.90dB PAM-4 

Case 3 1.17dB 0.65dB Duobinary 
 

 

Since equalized frequency response by ideal duobinary has a null at Nyquist 

frequency (1/2Tb) as shown in Fig. 18, a band-limited channel is typically included into 

the duobinary modulator, which relaxes equalization requirement [25]. Fig. 19 presents 

maximum achievable data rate with different complexity of FFE at channel in case 3. As 

the number of FFE taps increases, the available data rate also increases in PAM-2 and 

PAM-4. However, this trend is not shown in duobinary. Duobinary achieves the highest 

data rate with 2-tap FFE due to relaxed equalization requirement, while there is not 

notable improvement with increasing FFE taps more than two. 

 

 
 

Fig. 18 Pre and post equalized channel frequency responses by 3-tap FFE with PAM-2, 
PAM-4 and duobinary 
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Fig. 19 Maximum achievable data rate with different number of FFE taps 
 

 

In addition to limited duobinary transition to the adjacent level, prohibited 

patterns in duobinary, {101} and {-10-1}, provide larger voltage margin around ideal 

sampling point. However, the duobinary cursor, a combination of two cursors, suffers 

from mismatches due to non-ideal sampling timing. Thus, duobinary eye opening is 

more quickly degraded than PAM-2 as jitter increases. Clearly, PAM-4 has two times 

larger UI than the others, so that it has the best jitter tolerance. Fig. 20 presents the eye 

degradation due to increasing random jitter sigma in case 3. As a result, increasing jitter 

reduces the duobinary selection range versus PAM-2 and PAM-4. 

Finally, crosstalk tolerances in different modulation techniques are analyzed by 

statistical modeling. In [33], it is argued that limited transitions to adjacent levels in 

duobinary improve immunity to crosstalk and reflection comparing to PAM-2 and PAM-

4. This fact is shown in crosstalk frequency response filtered by FFE in duobinary (Fig. 
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21). However, PAM-4 has diminished average transmitting bit energy by factor of 5/9 

since 

𝐸𝑏,𝑎𝑣𝑔,𝑃𝐴𝑀4 =
1
4 �

(𝐼)2 + �
1
3 𝐼�

2

+ �−
1
3 𝐼�

2

+ (−𝐼)2� =
5
9𝐸𝑏,𝑎𝑣𝑔,𝑃𝐴𝑀2. (3.1) 

 

 

 
 

Fig. 20 Eye degradation by increasing RX random jitter sigma in case 3 
 
 
 

 
 

Fig. 21 Crosstalk channel frequency responses filtered by 3-tap FFE in case 3 
 

 



 34 

Consequently, the variance of ISI and crosstalk in PAM-4 is 

σPAM42 =
5
9� hi,PAM42

N

i≠k

+
5
9�� gij,PAM42

M

j

N

i

 (3.2) 

where N is the channel length, M is the number of crosstalk channels, ℎ𝑖,𝑃𝐴𝑀4 are the 

equalized and sampled thru channel pulse response and 𝑔𝑖𝑗,𝑃𝐴𝑀4 are the j-th channel’s 

sampled crosstalk pulse responses filtered by an equalizer, while those of PAM-2 and 

duobinary are 

σPAM22 = � hi,PAM22
N

i≠k

+ �� gij,PAM22
M

j

N

i

, and (3.3) 

σDUO2 = ��hk,DUO� − �hk−1,DUO��
2

+ � hi,DUO2
N

i≠k,k−1

+ �� gij,DUO2
M

j

N

i

, (3.4) 

where the first term in duobinary presents the cursor mismatch. Thus, crosstalk tolerance 

capability depends not only on the amount of tolerated crosstalk and reflection but also 

the reduced bit energy passing through a crosstalk channel. The impact of crosstalk on 

performances of different modulation schemes is presented in Fig. 22. In addition to the 

previous simulation result in case 3, two more cases without crosstalk and with 6dB 

boosted crosstalk are compared. The result shows that selected signaling is reversed to 

PAM-4 with boosted crosstalk, while eye opening further increases without crosstalk. 

In summary, based on the initial guidance, PAM-2 is selected for low loss 

channel, duobinary for mid loss channel, and PAM-4 for high loss channel. However, 

duobinary selection range is widened as equalization capability is limited, while 

increasing jitter and crosstalk get narrow that range as shown in Fig. 23. Considering 
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that ADC-based link targets high low channel requiring larger number of FFE to control 

significant amount of pre-cursor ISI, jitter and crosstalk become severe as increasing 

data rate while enough equalization is applied in DSP. Therefore, PAM-4 is more 

promising to use in ADC-based link than duobinary. 

 

 
 

Fig. 22 Eye degradation by increasing crosstalk in case 3 
 
 
 

 
 

Fig. 23 Modulation selection range changes due to limited equalization, jitter and 
crosstalk 
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CHAPTER  IV  

EQUALIZATION TECHNIQUES AND ANALYSIS 

 

High-speed ADC power consumption is the most critical bottleneck in ADC-

based receivers to rival binary receivers. ADC resolution requirement as well as its 

power dissipation is alleviated either by partially equalizing the signal before 

quantization, or by enhancing digital equalizer capability that offers larger margin to 

tolerate quantization distortion. This chapter starts with introducing for linear PAE 

architectures and evaluating PAE performances on ADC resolution requirement 

reduction by statistical analysis. Then, the advanced power efficient ADC-based receiver 

architecture is proposed for further saving digital dynamic power consumption. In 

addition, a potential use of DFE embedded in ADC as a PAE and its drawbacks are 

discussed. 

 

4.1 Linear Partial Analog Equalizer (PAE) 

 Cascaded analog and digital equalization is initially motivated to use of 

additional DFE following analog FFE due to insufficient equalization with limited 

analog equalization complexity [34]. As increasing data rate requires more robust 

equalization in high-speed wired communications, the idea of partial analog equalizer 

(PAE) is extended for general digital equalization, in which main equalization is 

performed in digital domain while PAE reduces ADC resolution requirement [12]. Fig. 

24 presents signal passed through two cascaded linear equalizers, 2-tap FFE and 6-tap 
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FFE. Although 2-tap FFE is insufficient to have open eye, dynamic range is impressively 

limited (Fig. 24(b)) and FSR adjustment allows for relaxing quantization distortion with 

reduced ADC input dynamic. 

 

 
  (a)                                (b)                               (c) 

 
Fig. 24 1k-bits 10Gb/s PAM-2 eye diagram with (a) channel only, (b) channel + 2-tap 
FFE, and (c) channel + cascaded 2-tap and 6-tap FFE at a channel with -35.1dB loss 

@5GHz 
 

 

In this work, 3-tap TX FFE (pre-emphasis) [4] and 2-tap sampled-FFE (SFFE) 

[35] are considered as linear PAE architectures among different types of existing analog 

equalization solutions, considering implementation complexity and power overhead. 

Even though continuous-time linear equalizer (CTLE) is also able to serve as a PAE, 

CTLE typically has some drawbacks comparing to FFEs. Passive RC CTLE is limited 

by impedance discontinuity which potentially causes significant reflection. To relief the 

reflection issue, passive LC CTLE is possibly implemented, but inductive network is not 

a preferred option for integrated applications [36]. Active CTLE in [20] generates in-

band zero and poles controlled by RC source degeneration for high frequency boosting. 

To obtain sufficient Nyquist frequency gain, transconductance and load impedance 
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needs to be increased, while large load impedance significantly limits the bandwidth of 

CTLE itself. As a result, active CTLE requires large biasing current or power 

consumption. Besides, multiple cascaded stages of CTLE are needed for rapidly 

attenuating channel, which also increase further power consumption. 

 

    
 

Fig. 25 2-tap TX CML FFE 
 

 

TX FFE [4] generates controlled transmitting pulses by shared current in multiple 

TX drivers. Fig. 25 presents an example of 2-tap TX current-mode logic (CML) FFE. 

Since TX signal peak limits maximum total current of drivers, TX FFE coefficients are 

normalized by their absolute sum. This means that Nyquist frequency boosting gain to 

0dB and corresponding DC loss is unavoidable. Nevertheless, TX drivers sharing total 

current do not require additional power consumption and there exists a little power 

overhead for latches and coefficient resolution controls. Another important issue is 
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limited coefficient resolutions, which restricts typical effective TX FFE complexity to 3-

4 taps [2]. 

 

 
 

Fig. 26 Simplified 2-tap RX SFFE with time-interleaved ADC 
 

 

RX-SFFE is also power efficient because it utilizes charge sharing between 

fractional capacitors used to hold the sampled voltage (Fig. 26) [36]. These charges are 

sampled by sample-and-hold amplifiers clocked at different phases in time-interleaved 

ADC. The sampled ADC input voltage with SFFE is 

𝑣𝐴𝐷𝐶,𝑖𝑛[𝑛] =
𝐶

1 + 𝐶 𝑣
[𝑛 − 1] +

1
1 + 𝐶 𝑣

[𝑛]. (4.1) 

As shown in (19), the coefficients are normalized by absolute sum of two coefficients, 

which is the same restriction as TX FFE. Since shared charge is not reusable, SFFE is 

limited to 2-taps. However, it does not require latches and a digital-to-analog converter 

(DAC) in time-interleaved pipelined ADC or successive-approximation (SAR) ADC is 

possibly reused for coefficient control, so that SFFE has potentially more power 

efficiency comparing to TX FFE. 
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 In previous work [7], ADC resolution requirement reduction with PAE is 

analyzed. This previous work compares required ADC resolutions with sampled FFE 

and digital DFE to those with digital FFE and digital DFE. However, there is no reason 

to limit the use of digital FFE with partial analog FFE. One of the most competitive 

advantages of ADC-based receivers is extensibility of equalizer complexity with large 

number of FFE taps, which allows for effectively canceling both of pre and post cursor 

ISI over high channel attenuation. Moreover, the simulated channel losses range from 

15.2dB to 34.5dB at 5GHz of Nyquist frequency. Although these results provides a 

guidance how ADC-based receivers rival to binary receivers in terms of power and area 

complexity, more interest is higher data rate and channel attenuation, in which ISI 

control by analog FFE and multi-tap DFE is extremely challenging. This motivates our 

work to explore PAE performance at 12.5Gb/s data communications over higher loss 

channels up to 46.4 dB at Nyquist frequency. 

 

    
 

Fig. 27 Channel group 1: channel frequency responses without reflection [18] 
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Fig. 28 Channel group 2: channel frequency responses with reflection [18] 
 

 

Here, the minimum ADC resolution requirements without PAE and with 2-tap 

RX-SFEE and 3-tap TX-FFE are evaluated by statistical analysis referred to 1e-12 of the 

target BER. Fig. 27 and 28 present two groups of channels used in statistical analysis; 

group 1 includes smoothly attenuating channels; group 2 contains three different 

channels with significant reflection. ADC resolution requirement estimation starts with 

10Gb/s data rate and then 12.5Gb/s data rate at the same channels with 2-3 taps of FFE 

PAE and enough digital equalizer complexity is simulated to observe performances 

under high channel loss. Statistical analysis settings are summarized in Table IX. 
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Table IX Simulation settings for ADC resolution requirement 
 

Signaling PAM-2  

Data rate 10Gb/s and 12.5Gb/s 

Input dynamic 1Vppk  

Random noise 1mVrms 

RX DJ  2%UI  

RX RJ  2%UIrms  

Target BER  1E-12  

ADC res. 3-8 bits 

PAE No / 2-tap FFE / 3-tap FFE 

PAE res. 5 bits 

Digital equalizer 
4/1-tap FFE/DFE 
6/1-tap FFE/DFE 

12/2-tap FFE/DFE (reflective channels) 

Digital equalizer res. 1 bit greater than ADC res. 
 

 

 

Fig. 29 10Gb/s minimum ADC resolution requirement without PAE 
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Fig. 30 10Gb/s minimum ADC resolution requirement with 2-tap FFE PAE 
 

 

 

Fig. 31 10Gb/s minimum ADC resolution requirement with 3-tap PAE 
 

 

Fig. 29 to 31 shows the results of required ADC resolution reduction by PAE at 

10Gb/s. Connected data points are from the smoothly attenuating channel group 1 in Fig. 

27 and separated points are from reflective channel group 2 in Fig. 28. ADC-based 

receivers without PAE require high ADC resolutions as shown in Fig. 29, which 
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discourages to choose ADC-based receivers against binary receivers. Although all the 

simulated channels can be equalized enough by 3-tap analog FFE and 3-tap DFE, an 

ADC based receiver with 4-tap digital FFE and 1-tap DFE limitedly tolerates up to 

28.5dB of channel loss within 8-bit ADC resolution. To overcome 37.2dB of channel 

loss, 7-bit ADC and 6/1-tap digital FFE/DFE is required. Besides, channel reflection 

requires further increasing equalization complexity. 4/1 tap and 6/1 tap digital FFE/DFE 

are not sufficient for equalizing the three reflection channels and need 1-2 bits more of 

ADC resolution comparing to gently attenuating channels having similar channel loss.  

With PAE, however, ADC resolution requirements are impressively mitigated at 

smoothly attenuating channels. Without reflection, up to 4 bits of resolution requirement 

reduction is achieved by 2-tap RX SFFE (Fig. 30) and 3-tap TX FFE accomplishes 

maximum 5 bits of ADC resolutions saving at over 35dB of channel loss (Fig. 31). An 

importance observation is that significant reflection causing resonant null at lower 

frequency than Nyquist frequency (channel 1 in group 2) deadly degrades PAE 

performance. In this case, increasing digital equalizer complexity improve ADC 

resolution requirement more efficiently than PAE. Overall, with maximum complexity 

for both digital equalizer and PAE, only 4-bit ADC resolution is needed for all the 

channels. 
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Fig. 32 12.5Gb/s minimum ADC resolution requirement with 6/1-tap digital FFE/DFE 
and No/2/3-tap PAE at channel 6-11 in group 1 

 
 

 
 
Fig. 33 12.5Gb/s minimum ADC resolution requirement with 12/2-tap digital FFE/DFE 

and No/2/3-tap PAE at channel 1-3 in group 2 
 

 

Simulation results with 12.5Gb/s data rate at channel 6-11 in channel group 1 and 

at channel 1-3 in channel group 2 are presented in Fig. 32 and Fig. 33. In these cases, 

channel attenuations range from 34.4dB to 46.4dB. Digital equalizer complexities are 

selected to 6/1-tap FFE/DFE for channel group 1 and 12/2-tap FFE/DFE for channel 
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group 2 for enough digital equalization to achieve optimal ADC resolution reduction by 

PAE. The other simulation settings are the same as the previous 10Gb/s cases in Table 

IX. Note that as channel loss exceeds over 40dB, 12.5Gb/s data suffers from extreme 

pre-cursor ISI which is uncontrollable by only 3-tap analog FFE. If limited-tap FFE 

aggressively forces to cancel the pre-cursor ISI, cursor amplitude is significantly reduced 

and post-cursor ISI gets even worse. ADC-based receiver with 3-tap FFE PAE, 

meanwhile, requires only 5-bit ADC resolution over all the channels. Considering 

growing requirement for large number of FFE taps for pre-cursor ISI and reasonable 

ADC complexity with PAE, it is expected that ADC-based high-speed link will become 

the main stream in future wired communication with continuously increasing data rate as 

long as electrical channel is used. 

 

4.2 Hybrid Architecture 

 Although PAE improves ADC power consumption by alleviate resolution 

requirement, it also limits SNDR due to attenuated cursor amplitude in addition to 

channel loss and quantization distortion. This leads potential increasing digital equalizer 

complexity to overcome degraded SNDR. Consequently, power consumption of heavy 

digital equalizer is going to become as considerable as high-speed ADC power 

dissipation. Meanwhile at the input of the ADC, a signal does not include quantization 

distortion even though it is not sufficiently equalized by PAE. This means that signal 

integrity with PAE at the input of the ADC may not excessively differ from that after 

fully equalized by digital equalizer. 



 47 

 
       (a)                                                         (b) 

 
Fig. 34 Statistical bathtub curves (a) with open-eye and (b) with closed-eye 

 

 

 The proposed hybrid architecture is motivated to make the utmost use of the 

information from the ADC output signal. Fig. 34 presents two statistical bathtub curves 

with PAM-2 signaling, one has an open eye (Fig. 34(a)) and the other has a closed eye 

(Fig. 34(b)) referring 1E-12 of the target BER. The later may fail to achieve the target 

BER if decisions are made relying on the zero-threshold; however, there still exists 

reliable region. For instance, if a received signal is low enough than a certain negative 

threshold, the probability that is originated from ‘1’ transmitting symbol is lower than 

the target BER. Likewise, high enough signal most probably comes from ‘1’ symbol 

without any additional equalization. Therefore, the proposed hybrid receiver defines the 

region between certain threshold voltages as the unreliable region and selectively 

equalizes only unreliable signals in digital in order to save dynamic digital power 

consumption. 
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 There are two possible types of selective equalization, channel-by-channel 

selection and symbol-by-symbol selection. The former is the case having open eye with 

PAE in some channels when a transceiver communicates through multiple channels. In 

this case, a majority of ADC power is saved by limiting ADC to generate only MSB. 

Although this provides better programmability for multi-channel communications, 

channel properties are typically known and fixed in wired communications. This more 

motivates symbol-by-symbol selection. 

 

 
 

Fig. 35 Proposed hybrid architecture 
 

 

The proposed hybrid architecture targets high attenuation channels in which PAE 

does not sufficiently equalizes ISI but enhances ADC resolution requirement. Fig. 35 

describes the hybrid receiver. Threshold detector takes the output of ADC and outputs 

‘high’ if the received signal is between thresholds. Then, latches passes received signal 

in pipelined registers through a digital equalizer and select multiplexer to take the 

decision from the digital equalizer. Otherwise, digital equalizer input is fixed, so that 
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there is no dynamic power consumption in digital equalizer. In this case, decision is 

made by MSB of the ADC outputs in memory. Power overheads are from threshold 

detector, multiplexer and latches and delay cells to synchronize threshold detector with 

digital equalizer. 

Fig. 36 presents hybrid receiver power efficiency at 10Gb/s with channels in Fig. 

27 and 28, in terms of the ratio of disabled digital equalizer versus enabled. Thresholds 

are obtained by statistical analysis with the same simulation settings in Table IX. Power 

efficiency is estimated by 1M bits of transient simulation because statistical analysis is 

not accurate for highly probable events due to correlations between unequalized symbols. 

Without PAE, power efficiency is rapidly degraded as channel loss increases because of 

large variance of ISI but PAE dramatically improves power efficiency of hybrid 

architecture. 

 

 
 

Fig. 36 10Gb/s digital equalization power saving efficiency with No/2/3-tap FFE PAE 
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Fig. 37 12.5Gb/s digital equalization power saving efficiency with 2/3-tap FFE PAE 
 

 

Despite impressive achievement in digital equalization power saving, ADC is 

always working so that overall power consumption may be much larger than a simple 

binary receiver with a few taps of additional DFE in 10Gb/s cases. More interestingly, 

power efficiency in Fig. 37 obtained with 12.5Gb/s data rate still shows impressive 

power efficiency, even with considerable complexity of required digital equalizer 

complexity. As mentioned in previous section, in these channels requires 6/1-tap digital 

FFE/DFE for smoothly attenuating channel and 12/2-tap digital FFE/DFE for channels 

with significant reflection. In all the ranges up to 46.4dB of channel loss, at least 64% of 

power efficiency is achieved. Another important finding is that the simulation result at 

reflective channel 1 implies MMSE does not necessarily results in optimal power saving. 

It is because PAE FFE coefficients are simply optimized by MMSE algorithm, and 

insufficient equalization by PAE causes significant residual ISI whose PDF does not 
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fallow a normal distribution. This requires custom optimization to achieve optimal 

power efficiency, such as parametric sweep by statistical analysis. 

 

4.3 Decision Feedback Equalizer (DFE) for Partial Equalization 

 A couple of previous works propose embedded DFE into pipelined ADC [37], 

and SAR ADC [35]. These applications are time-interleaved ADC and utilize MSB of 

the previously sampled symbol at neighbor time-interleaved ADC as the reference for 

DFE subtraction. While the embedded-DFE approaches allow DFE to be efficiently 

implemented with a little power overhead, the use of those ADC output has to be 

carefully considered. Although the full resolution ADC outputs can potentially be used 

for FSR or digital CDR, the interest in this work is their possibility to serve as PAE. 

 Simple calculation of error probability with embedded-DFE and following digital 

equalizer predicts that these architectures are not efficient for PAE, because DFE 

subtraction relies on pre-decision at the output of ADC, not the final decision after 

digital equalization. Assuming that p is the probability of previous wrong decision at 

embedded-DFE, q is final error probability after digital equalization with previous 

correct decision, and r is that with previous wrong decision, then the total error 

probability is, 

𝑃𝑒 = (1− 𝑝)𝑞 + 𝑝𝑟. (4.2) 

Here exists contradiction. Since a wrong decision doubles corresponding post-cursor ISI, 

both of q and r cannot be reduced by fixed digital equalization. Also, p less than the 
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target BER means no need of additional equalization. Thus, the overall error probability 

is significantly limited. 

 

 
 

Fig. 38 Modified hybrid architecture for embedded-DFE 
 

 

 There is another possible use of embedded DFE with the modified hybrid 

architecture in Fig. 38. In this architecture DFE subtraction is recovered based on MSBs 

of the ADC output symbols in memory and digital equalization is performed. Although 

the advantage of DFE is not taken for additional digital equalization, reduced unreliable 

region at the output of ADC allows for increasing chances not to take digital 

equalization. The key issue for reducing unreliable region is DFE error propagation. If 

the probability of wrong decision of embedded DFE based on previous correct decision 

is not sufficient for the target BER but low enough to prevent error propagation, ideal 

DFE can be assumed and the reduced thresholds can be obtained by statistical analysis. 

Based on the assumption of ideal DFE without error propagation, power efficiency of 

hybrid architecture with additional 1-tap embedded DFE in Fig. 37 is recalculated by 
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statistical analysis. Fig. 39 shows that additional 1-tap DFE achieves maximum 27% of 

power efficiency improvement comparing to the case without DFE. 

 

 
 

Fig. 39 12.5Gb/s digital equalization power saving efficiency with 2/3-tap FFE and 1-tap 
ideal DFE PAE 

 

 

 Now, the important two issues are how much pre-decision quality is required for 

assumption of ideal DFE without error propagation and how the threshold voltage 

changes if error propagation is not negligible. The most common approach for 

evaluating error propagation is Markov chain analysis [38]. However, it is not applicable 

for this case because of exponentially increasing computational complexity with 

significant amount of residual ISI after PAE. In this work, symbol-based transient 

simulation with 1Gbits of data is performed and compared to the statistical analysis with 

ideal DFE assumption to determine minimum requirement of the pre-decision BER at 
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the output of embedded-DFE ADC for neglecting error propagation. From the transient 

simulations, no error propagation is observed at all the smooth channels, while critical 

error propagation degrades power efficiency at all the reflective channels. Fig. 40 

presents the transient CDF at the marginal case of propagated error among observations. 

The result shows that even 1e-6 of error rate is not enough for ideal DFE assumption. 

Again, with the quality signal integrity after PAE, an ADC-based receiver is not 

competitive versus a binary receiver. 

 

 
 

Fig. 40 12.5Gb/s 1G-bit transient CDF at reflective channel 3 with and without 1-tap 
DFE. 

 

 

 Here is an interesting observation, in which hybrid power saving is 

enhanced by 1-tap DFE despite error propagation. The simulation is performed with 

10Gb/s data rate and 1-tap embedded DFE at the channel 3 in Fig. 27 whose Nyquist 

frequency loss is 20.1dB. As shown in the transient PDF in Fig. 41, error propagation is 
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observed and tail probability is extrapolated by polynomial curve fitting to estimate 

modified threshold with error propagation. Extended tail provides a new threshold to 

define unreliable region referred to 1e-12 of probability. Based on the new threshold 

with 1-tap DFE, Fig. 41 shows the power efficiency improvement comparing to the case 

without DFE in Fig. 36. Interestingly, 1-tap DFE reduces the threshold from 0.32V to 

0.02V and 27.93% of efficiency improvement is achieved even though error propagation 

happens. Note that this improvement only shows that the percentage of dynamic power 

saving by fixing digital equalizer input. Due to additional power overhead for DFE 

subtraction recovery, the actual power saving will be degraded. The observed power 

efficiency improvement is because error propagation limits some worst case data 

patterns for residual ISI. Since a propagated error from the same polarity of previous 

symbol rather helps the current decision, errors propagate only with limited data 

sequences. 

 

 
     (a)                                                          (b) 

 
Fig. 41 (a) Transient simulation PDF and (b) its CDF and tail extrapolation with 10Gb/s 

data rate and 1-tap DFE at channel 3 in Fig. 27. 
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Fig. 42 Power efficiency improvement by 1-tap DFE 
 

 

In summary, embedded-DFE ADC is not very promising solutions for further 

digital equalization unless error propagation is well controlled somehow. Although 

embedded-DFE with error propagation can improve power efficiency in some specific 

cases, error propagation analysis with insufficiently equalized channels is very 

challenging and still remains as a future work. 
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CHAPTER  V  

CONCLUSION AND FUTURE WORK 

 

In conclusion, this work presents a statistical modeling for ADC-based links with 

digital FFE-DFE equalizers. Three cases of digital equalization with 4-6 bit ADC are 

simulated and compared with Gaussian approximation based analysis and transient 

simulation results. The results show that Gaussian approximation is often pessimistic 

due to unbounded tail probability, but it is also possibly optimistic with large variance of 

quantization distortion and large number of FFE taps. Proposed modeling better tracks 

the actual observations in transient simulation and helps avoid potential over-design or 

system fail to satisfy the low target BER. 

ISI control and mitigation can be achieved either by using advanced signaling or 

by equalization. Since PAM-4 and duobinary worsen eye opening for low-loss channels, 

modulation scheme should be carefully selected. From the simple profiling of channel 

attenuation profiling, the best performing signaling can be selected. However, 

insufficient equalization complexity, jitter and crosstalk possibly change the initial 

modulation selection. Specifically, limited equalization encourages duobinary selection, 

while jitter and crosstalk increases the chance to select PAM-4. 

Power and area consumption of high-speed ADC is the most critical bottle neck 

for ADC-based links. However, in future high-speed link with further increasing data 

rate, extremely increasing demands for equalization more motivates to take the 

advantages of DSP. PAE is a very promising solution to alleviate ADC resolution 
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requirement so as to reduce high-speed ADC power and area consumption. This work 

presents that 12.5Gb/s data communication in channels having up to 46dB of loss 

requires only 5-bit ADC with 3-tap FFE PAE and 6/1-tap digital FFE/DFE. Even with 

significant channel reflection, 5-bit ADC with 3-tap FFE PAE and 12/2-tap digital 

FFE/DFE can endure up to 43dB of channel loss at 12.5Gb/s data rate. Moreover, PAE 

also improves additional power digital saving with hybrid architecture. With 3-tap PAE, 

at least 64% of dynamic power saving is achievable in all the cases simulated in this 

work. Meanwhile, DFE cannot serve as a PAE, but can be used in hybrid architecture 

with DFE recovery. However, the power saving performance with DFE is significantly 

limited by error propagation. 

Overall, ADC-based link will become a main stream of high-speed transceiver in 

future wired communication as long as electrical channel is used. Considering ADC-

based receivers target high attenuating channel with large data rate and provide robust 

equalization capability, a combination of PAM-4 and ADC-based receiver is the most 

promising solution for future high-speed I/O links. In addition, enhanced power 

efficiency by PAE and hybrid architecture will make this change earlier. 

 

5.1 Future Work 

 This work could be extended to diverse advanced researches. In this section, 

some of possible extensions of research are presented. First of all, ADC-based link with 

PAM-4 suffers from additional SNDR degradation due to constellation loss. This may 

motivate advanced digital equalizer beyond FFE-DFE, such as maximum-likelihood 
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sequence estimator (MLSE) [19]. However, MLSE is non-linear equalizer so that 

statistical analysis is challenging with MLSE. Although one possible analysis approach 

is Markov chain modeling, this typically becomes extremely complicated with large taps 

of channel modeling with uncontrolled ISI. 

 Secondly, actual power modeling is not included in this work. It is clear that 

ADC-based link performs better with high channel attenuation while binary receiver 

may be preferred for low loss channels. Thus, power break-even point between them in 

terms of channel loss and data rate needs to be analyzed. Actual power saving from 

hybrid architecture is still not clear because digital equalizer power itself may not be 

significant comparing to ADC power, and dynamic power consumption for enabling and 

disabling digital circuits in hybrid architecture is often critical. 

 Thirdly, the hybrid architecture with embedded-DFE and error propagation 

mitigation techniques could be further researched as well as its statistical modeling. Here 

are examples of previously proposed approaches to relax error propagation. In [39], 

erasure-DFE is proposed, which is similar idea to hybrid receiver but DFE subtraction is 

selectively taken based on a certain thresholds. Also, pre-coded data can help to alleviate 

error propagation [40]. The advantage of coding method is that this does not increase 

structural complexity of transceivers. 

 Finally, due to significant channel loss and additional constellation loss with 

PAM-4, actual implementation of ADC having tiny LSB for optimal FSR could be 

challenging. Generally, small LSB of ADC is not favorable because of many design 

issues such as current injection from non-ideal CMOS switch, limited input sensitivity of 
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clocked comparator and inductive kickback to sampled ADC input. Variable gain 

amplifiers (VGAs) can help this issue, but limited high frequency gain and bandwidth 

makes implementation difficult as well as generated noise by VGAs. Thus, resolution 

requirement reduction is potentially limited by non-ideal FSR adjustment and achievable 

enhancement in reality could be explored. 
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