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ABSTRACT 

 

 

Dissolution of Barite Scale Using Chelating Agents. (May 2012) 

Aniket Vishwanath Shende, B.E., Institute of Chemical Technology 

Chair of Advisory Committee: Dr. Hisham A. Nasr-El-Din 

 

 

Barium sulfate scaling can cause many oilfield problems leading to loss of well 

productivity and well abandonment. Currently, diethylene triamine pentaacetic acid 

(DTPA) is used, along with synergist oxalic acid and potassium hydroxide, to remove 

the scale by dissolution. However, the chemical factors affecting this reaction are not 

known fully, leading to mixed results in terms of treatment effectiveness. This thesis 

investigates the effect of these factors, by analyzing the change in barite dissolution due 

to intrinsic factors like variations in formulation composition and extrinsic factors like 

presence of competing ions. The dissolution reaction is carried out, by taking the barite 

powder and chelant solution in a teflon round bottom flask and measuring the barite 

dissolved periodically, with an ICP-OES. The effect of different factors is studied by 

varying each factor individually and plotting the changes in solubilities. 

These lab tests show that solubility of barite (0.01mM in water), ideally, increases 

with increasing concentrations of chelating agents, even going as high as 239 mM. 

However experimental or field constraints lead to significant decrease in dissolution, 



iv 

 

especially at higher chelant concentrations. Thus, field tests to determine most effective 

chelant concentrations must precede treatment design.  Lab tests also show that 

combination of DTPA with weaker chelating agents like ethylene diamine tetraacetic 

acid (EDTA), L-glutamic acid, N,N-diacetic acid (GLDA) or methyl glycine diacetic 

acid (MGDA) reduces barite dissolution and should be avoided during treatment design. 

Addition of synergists to the formulations, initially improves dissolution performance, 

especially for moderate chelant concentrations, but proves detrimental and hence must 

be avoided, over longer treatments. Finally, presence of competing ions in seawater, 

calcium sulfate and calcium carbonate, can significantly reduce barite dissolution and 

must be carefully studied for each formation-fluid system before design of treatments. 

Thus, this project sets a framework to identify the best chelant formulation and 

estimate its dissolution profile to ensure, a more informed treatment design for barite 

scale removal. 
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  CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 Scale is defined as the secondary deposition of organic or inorganic chemical 

compounds caused by the presence or flow of fluids in a system (Vetter 1976). When we 

drill a well, we disturb the thermodynamic and chemical equilibrium established in the 

formation over a period of many years (Frenier 2001). The scales are precipitated as a 

consequence of the system adjusting to a new equilibrium. This disturbance can be in the 

form of change of pressures, temperatures, mixing of incompatible waters or reactions of 

inappropriate chemicals (Chilingar , Mourhatch and Al-Qahtani 2008). Precipitation of 

scales can occur in any point in the petroleum production process like formation, tubing, 

transfer lines, treatment equipment and storage vessels. 

Scales can be classified as organic and inorganic compounds based on the nature of 

constituents. Inorganic scales are primarily metal salts formed in the presence of water 

and include carbonate, sulfate and sulfide scales. The common sulfate scales are barite, 

celestite, anhydrite and gypsum. These scales are sulfate salts of the alkaline earth 

metals. Since they have many similar physical properties and periodic chemical 

properties, many times, they are precipitated together. 

These scales interfere with fluid flow. Scales enhance corrosion and may also foster 

bacteria. They cause decrease in effective area available for flow of oil leading to the 

increase in required bottomhole pressures. Scales may damage equipment like pumps,  
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separators, etc. Radium Sulfate scales if formed are radioactive and hence care must be 

taken to contain their radioactivity. Thus, scaling can cause many problems in the 

oilfield leading to loss of well productivity and sometimes, well abandonment. So, 

research is required to address these problems and design effective scale treatments. 

1.1 Barium Sulfate Scales 

 Of all the scales in the oil industry, barium sulfate scales are the most easily 

precipitated due to the very low solubility (2.3 mg/L at STP) of barite in water 

(Chilingar , Mourhatch and Al-Qahtani 2008). Barite scales are typically grayish in 

color. Though pure barite is white, the scales may have impurities or organic materials 

trapped in them giving them a blackish tinge. Specific gravity of barite is around 4.5. 

The scales are fairly hard with Mohr hardness in the range 2.5-3.5. 

Barium sulfate scales are precipitated due to comingling of incompatible waters. 

Seawater having 2400mg/L to 4800mg/L sulfate ions, when mixed with formation 

waters rich in barium ions leads to formation of barium sulfate (Gates and Caraway 

1964). Depending on the pH, temperature and pressure, the salts tend to reach a point of 

super saturation leading to a metastable condition which leads to phase separation (ionic 

salts convert from dispersed phase to crystals). The salts precipitate by nucleation and 

crystal growth (Clemmit, Ballance and Hunton 1985).Once these crystals are formed, 

they tend to adhere to form layers or blocks which causes major interference with fluid 

flow. Besides this process, barium sulfate can also be precipitated due to change in 

thermodynamic, hydrodynamic and kinetic parameters (Vetter 1975). Scale treatments 

have to be designed considering all these factors. 
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1.2 Scale Treatments 

Scale treatments include scale inhibition, sulfate ion exchange and scale removal. 

The most effective way of avoiding scaling is by using chemical scale inhibitors which 

prevent or delay scale formation at substoichiometric levels in solution. Nucleation 

inhibitors like polymers PAA, PVS, etc disrupt and redissolve the scale protocrystals 

formed due to supersaturation and prevent deposition. Crystal growth inhibitors like 

DETPMP adsorb on or interact with the crystal growth sites (growing edges or spirals) 

and retard the crystal growth. Intermediate inhibitors like PPCA operate by both the 

above mechanisms. (Inches, Doueiri and Sorbie 2006) 

If inhibitors cannot be used, scale formation can be prevented by removing the 

sulfate ions from seawater by approaches like membrane distillation, nanofiltration, 

reverse osmosis in conjunction with liquid phase precipitation (Bader 2006).These 

approaches can sometimes be the most economical, quick and energy efficient solutions. 

However, if scale formation cannot be prevented, or if the strategy to prevent its 

formation fails, scale deposits need to be removed either with mechanical means like 

milling, jetting, ultrasound or chemical means like sequestration with a chelating agent. 

Mechanical means are effective in the well bore, but are not of much use, if deposits are 

in the formation. Chemical removal treatments are considerably less expensive than 

mechanical methods and effective for scale removal from the formation. 

1.3 Chemical Means of Scale Removal 

 Barite scales in oil field were first identified by Moore (1914). Featherstone (1959) 

analyzed the different factors influencing the precipitation of BaSO4. Shaughnessy and 
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Kline (1983) gave graphical representations of thermodynamics of scale deposition. 

Barium sulfate scale is insoluble in most mineral acids like hydrochloric acid, nitric acid, 

etc. Though it can dissolve in sulfuric acid, it precipitates back. Hence the only way to 

dissolve the barite scale is by using complex organic acids called chelating agents or 

chelants. These chelating agents are ethylamine molecules having multiple carboxylic 

acid arms which can pick up barium molecules from solid state and bring them into the 

solution. Common chelating agents include diethylene triamine pentaacetic acid (DTPA) 

and ethylene diamine tetraacetic acid (EDTA). Fig. 1 shows the chemical structure of 

these chelants with their constituent ethylamines and acetic acid arms. 

                              

Fig.1.  a) EDTA and b) DTPA structures show the carboxylic acid arms, which 

when activated pick up chelate ions. 

 Rhudy (1993) studied efficiency of different chelants in reservoir cores. Paul and 

Fieler (1992) found many new chemical formulations. These formulations were tested in 

the first successful chemical barite removal job in North Alwin region of North Sea (de 

Vries and Arnaud 1993). Lakatos, Lakatos-Szabo and Kosztin (2002a) extended study to 

5 new chelants and found that the barium sulfate dissolution capacity of various 
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chelating agents was in the order DTPA >1,2-PDTA >CDTA > EDTA. Putnis, Putnis 

and Kowacz (2008) studied barite dissolution by different concentrations of DTPA and 

concluded that barite dissolution increases with DTPA concentration until 10mM and 

then decreases. However, the limitations imposed by experimental conditions were not 

identified clearly. Hence, impact of constraints like accessibility of scales, soaking times 

and treatment volumes on barite dissolution, needs to be analyzed properly. Recently, 

biodegradable agents like L-glutamic acid, N,N-diacetic acid  (GLDA) or Methyl 

Glycine Diacetic acid (MGDA) have been used for solving many oilfield problems. But 

their low stability constants for barium sulfate discourage their use for barite removal. 

This project studied the effect of addition of these chelants to DTPA to gain insight into 

chelant interaction mechanisms. 

1.4 Mechanism of the Reaction 

Dunn, Daniel and Shuler (2001) and Putnis, Putnis and Kowacz (2009) established 

mechanism of reaction. Solid-fluid heterogeneous reactions can be studied in two ways. 

They can be simulated with mathematical modeling and computer simulations various, 

to gain insights into reaction mechanisms. Else, they can be analyzed experimentally 

with contact and non contact atomic force microscopy, to better understand surface 

chemistry. 

Solid-Fluid type reactions (non-porous solids) consist of multiple steps including bulk 

diffusion of fluid particle to the boundary layer of solid surface; diffusion through 

boundary layer to the solid surface; adsorption; chemical reaction; desorption of 

products from solid and diffusion through the boundary layer into bulk solution. The 
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slowest step in this multiple step chemical reaction controls the rate of the overall 

reaction and hence is called the rate determining step. Mechanism can be diffusion 

controlled or reaction controlled if the slowest step is diffusion or chemical reaction, 

respectively. The activation energy of barite dissolution by DTPA is 9.59kcal/mol and 

EDTA is 9.31 kcal/mol (Putnis, Putnis and Kowacz 2009). Activation energy values 

below 3.6kcal/mol indicate a significant contribution from the mass transport kinetics. 

Due to high activation energy and strong temperature dependence of reaction, particles 

find diffusion much easier than chemical reaction. Hence, chemical reaction is rate 

controlling step. 

         Two main  mechanisms have been proposed when the fluid is chelating agent 

formulation and the solid is barite.  First mechanism (Dunn, Daniel and Shuler 2001) 

states that the chelant particle physically moves to barite surface and the mechanism 

proceeds exactly as described above. However, recent findings indicate this may not be 

the only mechanism. Putnis, Putnis and Kowacz (2009) suggested that dissolution 

proceeds with barite molecule physically diffusing into the chelant solution and getting 

picked up by chelating agent. Thus, dissolution occurs due to the combination of these 

two mechanisms. 

1.5 Activators 

 Lakatos, Lakatos-Szabo and Kosztin (2002b) studied catalysts for EDTA. Catalyst 

or activator is any chemical species which improves the rate of reaction without itself 

getting consumed. Though catalysts cannot shift equilibrium, they can provide an 

alternative pathway and reduce reaction times for reversible reactions.  Lakatos, 
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Lakatos-Szabo and Kosztin (2002b) found out that except the oxalic acid, all other 

organic acids like malonic acid, maleic acid, succinic acid and tartaric acid, instead of 

having positive impact, reduce the dissolution capacity of EDTA. Oxalic acid, on the 

other hand, has no impact on dissolution. This finding conflicts with the results 

presented by Paul and Fieler (1992) which show 0.5M oxalic acid significantly improves 

the dissolution capacity of EDTA and DTPA.  Hence, this project also studies the effect 

of activators on barite dissolution. 

1.6   Competing Ions 

Once the formulation composition is fixed in terms of DTPA concentration, chelant 

combinations and activator, the effect of external environment is studied. Barite 

dissolution will occur in seawater. Hence the dissolution reaction is carried out in 

seawater to quantify the decrease in dissolution due to presence of magnesium and 

calcium ions in seawater. Also, barite may be co-precipitated with other scales like 

calcium sulfate and calcium carbonate. Thus, these calcium ions will also compete with 

barium ions for chelant molecules. Hence, dissolution is significantly affected in 

presence of these scales. This behavior is also studied in this project. 

Thus, this project will analyze the effect of different intrinsic chelant properties and 

extrinsic environmental factors on barite dissolution. 
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CHAPTER II 

EXPERIMENTAL METHODS AND PROCEDURE 

2.1 Materials 

The chemicals used in these experiments are barium sulfate, calcium sulfate, calcium 

carbonate, chelating agents, bases, and activators. 

2.1.1 Scaling powders 

Barium sulfate powder is obtained from Noah Technologies Corporation, San 

Antonio, Texas. Calcium sulfate powder is obtained by reacting calcium chloride 

dihydrate with sodium sulfate. These powders are separated into size fractions 45-70 

microns, 70-105 microns, and 105-150 microns using sonic sifters. Then, they are 

washed repeatedly, and air dried to remove fines as fines interfere with barium solubility 

measurements. 

2.1.2 Chelant formulations 

Chelant formulations were prepared by dissolving the respective amounts of 

chelating agents in deionized water, and regulating the pH. Table 1. shows the chelating 

agents used in these experiments, and their manufacturers. For optimum activity of 

chelating agents the pH has to be maintained between 11-13 ( Lakatos, Lakatos-Szabo 

and Kosztin 2002b) by adding sodium hydroxide (NaOH) or potassium hydroxide 

(KOH). These were supplied in granular form by Sigma-Aldrich. Oxalic acid used in 

these experiments is obtained in powder form from Sigma-Aldrich. 
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Table 1. Chelating agents used in experiments. 

Chelant Product Name 

Common 

Name Company 

Ethylene Diamine Tetraacetic Acid Dissolvine Z-S EDTA AkzoNobel 

Diethylene Triamine Pentaacetic 

Acid Dissolvine DZ DTPA AkzoNobel 

L-glutamic acid N,N-diacetic acid Dissolvine GL-47-S GLDA AkzoNobel 

Methyl Glycine Diacetic acid Trilon M MGDA BASF 

 

2.2 Establishing Procedure 

Several different procedures have been used in literature, to study barium sulfate 

dissolution. Literature survey shows a wide variation of parameters and hence the 

results. Experiments have been done with initial amount of barite ranging from 0.4gm 

(Dunn, Daniel and Shuler 1999) to 10gm (Nasr-El-Din, Al-Mutairi and Al-Hajji 2004). 

Barite particles from 1micron to 400 microns ( Lakatos, Lakatos-Szabo and Kosztin 

2002a) have been used. Results for final dissolution have been reported in % dissolved, 

ppm, mg/l, and mM. Mixing has been done by shakers, paddle stirrers or magnetic 

stirrers. Due to these wide variations of initial conditions, sometimes diametrically 

opposite conclusions have been drawn. So, final procedure of experiment was 

established after considering impact of barite particle size, rpm of stirrer, and amount of 

initial barite. 

2.2.1 Size of particles 

In 100ml Teflon round bottom flasks, 50 ml of 0.1M DTPA is taken at a pH of 12. 3 

gm of barite in size range 45-75 microns, is added to this solution, and stirred with a 

magnetic stirrer at 20rpm.2ml samples is withdrawn periodically, diluted to50ml, and 
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analyzed for barium concentration using ICP-OES spectrometer. This procedure is 

repeated for other size ranges of barite powder. The barium concentration gives the 

solubility of barite in water. The amount of barium in water as given by ICP is plotted vs 

the time at which the sample was taken. This graph is called the dissolution profile, and 

it quantifies chelant performance. Good chelant formulations have more favorable 

dissolution profiles i.e. the barium concentration in water rises quickly to a high value. 

Poor chelant formulations have low dissolution profiles i.e. they dissolve less barite in 

given time or they take much higher time to dissolve same amount of barite. The most 

interesting aspect of dissolution profile is the amount of barium in the solution at the end 

of experiment i.e. 11 hours. This is the maximum amount barite that can be dissolved by 

that formulation in 11 hours.  

In this experiment, dissolution profiles are similar for all cases, with final dissolution 

after 11 hours being 43.7mM, 40.40mM, and 45.44 mM for 45-75 microns, 75-105 

microns, and 105-150 microns size ranges respectively. Thus, barite dissolution does not 

depend on size of barite particles, in this general size range. This also follows from the 

conclusion that barite dissolution is a rate dependent reaction ( Dunn, Daniel and Shuler 

1999) as chemical reaction is much slower than dissociation of reactants and products. 

However, if the size range is drastically different, then the dissolution profiles will be 

different. Thus, dissolution profile may be different for a continuous scale film or for 

barium sulfate blocks.  However literature survey shows that above size ranges are the 

most commonly used ranges for lab tests. Hence, size range of 105-150 micron is 

selected for future experiments. 
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2.2.2 Stirring rate 

Different stirring rates and stirring mechanisms have been used in lab tests in 

literature. Thus, the effect of stirring rate on dissolution of barite is studied by varying 

the stirring rate from 0 to 80 rpm, and plotting the dissolution profiles. When the stirring 

rate is 0, i.e. no stirrer is present the barite particles settle at the bottom of the round 

bottom flask. When stirrer speed is increased to 20 rpm, all powder is suspended. Thus, 

the above procedure is repeated to test the dependence of dissolution of barite on stirring 

rate. 3 gm barite is taken with 0.1M DTPA. Solution is stirred at rates 0, 20, 40, and 80 

rpm. Sampling and elemental analysis is done as earlier, to obtain results shown in 

Table 2, and plotted in Fig. 2. 

Table 2. Barium dissolved at different times for different stirring rates 

Time,       

min 

mM Ba in 

0 rpm 

mM Ba in 

20 rpm 

mM Ba in 

40 rpm 

mM Ba in 

80 rpm 

0 0 0 0 0 

60 7.14 40.44 39.42 40.78 

120 7.77 40.16 40.58 42.50 

180 9.31 41.84 - 41.35 

240 12.75 42.30 39.96 41.17 

480 15.70 45.44 42.39 45.04 
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Fig.2.  Similar barite dissolution profiles are observed for different stirring rates of 

barite above 20 rpm 

 

Initially, we have taken 3gm or 250 mM barite in the solid state. There is negligible 

barite in the solution as barite has a very low solubility. As time proceeds, chelating 

agent is dissolving solid barite, i.e. concentration of solid powder is decreasing, and the 

amount of barite in the solution is increasing. We are plotting the dissolution profile i.e. 

amount of barium in the solution with time. So, initially all curves start from zero. The 
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nature of this increase can be analyzed, to decide the effectiveness of the chelant 

formulation. When we place 3gm of barite powder in 50ml 0.1M DTPA, and stir it at 80 

rpm, as the dissolution profile shows, 45.04 mM of barium sulfate is dissolved after 480 

min. For the same procedure at 40 rpm, and 20 rpm, 42.39 mM, and 45.44 mM of 

barium sulfate is dissolved. Finally, if the same reactant mixture is taken, and no stirring 

is provided, 15.7 mM of barium sulfate are dissolved in the same time interval. Thus, if 

no stirring is provided, the dissolution reduces to almost one third the value for when 

stirring is provided. This can be explained in terms of accessibility. When no stirring is 

provided the barite powder settles down. Thus, at any given time, only the top layer is 

exposed to DTPA. Thus, dissolution occurs in that layer only. When the stirring is 

increased to 20 rpm, the barite powder is well mixed. Thus, all barite particles are 

floating in the solution, and are thus accessible to the DTPA molecules. Thus, 

dissolution increases to 45 mM. If the stirring rate is increased further, there is no change 

in the dissolution profile as already the accessibility is at the maximum limit. Thus, 

increasing the stirring rate just makes the particles move faster, without changing the 

dissolution profile. This is consistent with the observation stated before that barium 

sulfate dissolution is a rate controlled reaction in which dissociation does not play a 

dominant role. For all future experiments where agitation is used, the stirring rate of 40 

rpm is chosen. 

Comparing to previous literature, different results have been observed for different 

types of mixing. If paddle type stirrers (Putnis, Putnis and Kowacz 2008) are used, lower 

values have been observed possibly because paddles only stir the solution, and not the 
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barium sulfate powder. If shakers are used (Lakatos, Lakatos-Szabo and Kosztin 2003), 

amount dissolved is same, but equilibrium is achieved after 1-5 days as compared to 

roughly 11 hours in our case. Again, this can be attributed to more accessibility of 

suspended barite particles as compared to static particles that are periodically shaken. 

Thus, dissolution of barite does not depend on rpm of magnetic stirrer, but strongly 

depends on accessibility of barite scale. This effect of accessibility is studied by taking 

two cases; static case, when no agitation is provided, and dynamic case, when agitation 

is provided at 40 rpm. 

2.2.3 Selection of initial amount of barite 

In real field conditions, the amount of scale deposited will determine the treatment 

design. This influence can be studied by taking different quantities of barium sulfate 

scale as reactants in the lab tests. So, the above procedure is repeated for 5 different 

initial amounts of barite. 0.5 gm (44 mM ), 1gm (89 mM)  3 gm (257 mM), and 5 gm 

(429 mM), and 10 gm (890 mM) barite is added to 100 mM DTPA at ph 12, and amount 

of barite dissolved is observed by ICP-OES. Since the stoichiometry dictates that1 

DTPA molecule can dissolve only 1 barite molecule, 100 mM DTPA can dissolve 

maximum 100mM barite at infinite time. Table 3. gives the dissolution profile of 0.1M 

DTPA for these different initial concentrations of barite. 
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Table 3. Dissolution for different initial amounts of barite 

Time, 

min 

mM Ba due to 

10gm 

mM Ba due to 

3 gm 

mM Ba due to 

1 gm mM Ba due to 0.5gm 

0 0 0 0 0 

60 20.24 35.24 34.47 23.16 

120 29.51 39.87 39.07 22.86 

180 41.88 40.89 40.42 23.96 

240 41.62 42.03 40.78 26.95 

630 42.96 43.94 42.77 31.22 

 

Time, 

min 

mM Ba due to 5 

gm 

0 0 

60 39.42 

120 38.87 

210 39.95 

420 40.86 

630 42.19 

 

This can be analyzed graphically, when the profile is plotted in Fig. 3. 
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Fig.3.  Barite dissolution remains similar between 1 to 10 gm of initial barite taken 

Thus, when 0.5 gm of barite is taken initially, 31.22 mM of barium is dissolved by 

0.1M DTPA in 630 min. If 1 gm of barite powder is taken initially, then the barium 

dissolved after 630 min is 42.77 mM. If the amount of barite taken initially is increased 

to 3 gm, 5 gm, and 10 gm, the barium dissolved is 43.94, 42.19, and 42.96 mM 

respectively. Thus, amount of barite dissolved is roughly around 0.04 M or 0.5gm for all 

the initial concentrations of the powder excluding 0.5 gm. Thus, like all reversible 
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reactions, extent of barite dissolution is dependent on initial concentration of barite only 

when it is significantly lesser than (limiting condition) the molar concentration of DTPA. 

For other cases, the barite concentration can be treated as excess for kinetic calculations.  

2.2.4 Selection of base 

Chelating agents, being weak acids, their activity increases with increase in basicity 

of the solution. Thus, the reactivity of the acids can be controlled by pH. The reactivity 

of these acids is maximum, when pH is between 11, and 13. Thus, bases like potassium 

hydroxide, sodium hydroxide, sodium carbonate, etc can be added to ensure pH remains 

between 11 and 13 throughout the reaction. The most common bases used for DTPA are 

potassium hydroxide and sodium hydroxide. Putnis, Putnis and Kowacz (2008) has 

shown that potassium hydroxide gives the most favorable dissolution profiles and hence, 

it is used for regulating pH in our experiments. 

2.2.5 Final Procedure 

Thus, after all above considerations, the final procedure for future experiments has been 

designed as follows: 

1. Take 50 ml water in a 100 ml teflon round bottom flask 

2. Put sufficient KOH to maintain pH in the range of 11-13. After complete 

dissolution, prepare the required chemical formulation. 

3. Sieve barite to isolate 45-75, 75-105, 105-150 micron fractions. Wash it with 

deionized water and then with alcohol. Take 3 gm of the air dried barite and put 

it in the solution. Stir the mixture uniformly with a magnetic stirrer at 40 rpm. 

Take care to ensure laminar flow. 
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4. Using a syringe take out 2ml of the mixture periodically. Dilute sample to 

desired volumes and using ICP-OES, measure the concentrations of barium in 

the solution for each volume. 

2.3 Analytical Procedures 

For analyzing the concentrations of barium and calcium, an emission 

spectrophotometric technique, ICP-OES has been used. In ICP-OES electrons of 

elements are excited to a higher energy state and then allowed to fall back to the ground 

state. Energy emitted by these electrons when they fall back to the ground state is 

measured by a spectrophotometer. Each element emits energy at specific wavelengths 

peculiar to its chemical character. The intensity of the energy emitted at the chosen 

wavelength is directly proportional to the concentration of that element in the analyzed 

sample. Thus, by determining which wavelengths are emitted by a sample and by 

determining their intensities, the elements present and their concentrations can be 

identified.  

This procedure is now used to evaluate the intrinsic and extrinsic factors that affect 

barite dissolution.  
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CHAPTER III 

INTRINSIC FACTORS AFFECTING CHELANT 

PERFORMANCE 

Once the procedure is established, it is used to analyze the intrinsic and extrinsic 

factors that affect barite dissolution. The 3 main intrinsic factors that affect chelant 

performance are the 3 aspects of chelant composition namely DTPA concentration, 

presence of chelant combinations and presence of synergists. These factors are studied in 

detail in this chapter. Thus, the impact of DTPA concentration is assessed, by varying 

the concentration of DTPA from 0.001M to 0.5 M and comparing the dissolution 

profiles or chelant performance. The effect of chelant combinations is analyzed by 

taking different combinations of DTPA and EDTA, MGDA and GLDA. Finally, effect 

of synergist is studied by adding 0.5M oxalic acid to DTPA and comparing dissolution 

results with that DTPA alone. 

3.1 Effect of DTPA Concentration 

To a large extent, amount of barite dissolved finally, depends on initial concentration 

of chelating agent. To analyze this effect, dissolution profiles for different concentrations 

of DTPA are observed. Generally the chelant solution is bull headed and the well is shut 

in for the treatment time. Sometimes chelant is flown continuously, making the 

formation act as a static mixer. Thus, dissolution profiles are created for both the static 

and dynamic cases. 
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3.1.1 Effect of different initial concentrations of DTPA, without agitation 

To consider the effect of concentrations of DTPA, the procedure described in chapter 

II, is repeated without any agitation for concentrations of DTPA from 0.01or 10 mM to 

0.5M or 500 mM. Highest DTPA concentration taken is 0.5M, as preparation of more 

concentrated DTPA solutions becomes challenging. The dissolution profiles are obtained 

for different concentrations of DTPA as shown in the Table 4 and Fig.4. 

Table 4. Barium dissolved by different concentrations of DTPA in static mode 

Time 

min 

mM Ba in 

500mM 

mM Ba in 

100mM 

mM Ba in 

50mM 

mM Ba in 

10 mM 

mM Ba in 

DIwater 

0 0 0 0 0 0 

60 9.12 7.14 6.61 4.62 0.37 

120 9.36 7.77 9.87 7.17 0.47 

180 13.15 9.31 11.14 7.43 0.54 

240 14.84 12.75 13.12 7.37 0.48 

630 14.91 15.70 14.74 7.38 0.48 
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Fig.4.  Barite dissolution initially increases with DTPA concentration and then 

remains steady 

Thus, in 11 hours, 500mM of DTPA dissolves 14.9 mM barium sulfate for the 

experimental procedure described earlier. Similarly, 100 mM DTPA dissolves 15.7 mM 

barium sulfate. Barium sulfate dissolved by 50m M, 10mM and only base are 

respectively 14.74mM, 7.38 mM and 0.48mM. As can be seen from the dissolution 

profiles, the dissolution of barium sulfate caused by different concentrations of DTPA is 
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widely different. Thus, dissolution has a strong dependence on the concentration of 

chelating formulations. Also, dissolution increases with concentration of DTPA, until 

0.05M and then remains almost constant. This behavior and its causes are discussed in 

detail in future sections. 

3.1.2 Effect of different initial concentrations of DTPA, with agitation 

To study the effect of chelating agent concentrations in well mixed solutions, 

agitation is provided using a magnetic stirrer rotating at 40 rpm. Thus, all the 

experiments and calculations done above are repeated, this time including the effects of 

agitation. So, barite dissolution caused by different concentrations of chelating agents, is 

measured to create dissolution profiles for each concentration as shown in Fig. 5 and 

Table 5. 

Table 5. Barite dissolution due to different chelant concentrations 

Time 

min 

mM Ba in 

500mM 

mM Ba in 

100mM 

mM Ba in 

50mM 

mM Ba in 

10mM 

mM Ba in 

5mM 

mM Ba in 

1mM 

0 0 0 0 0 0 0 

60 15.13 35.24 25.24 8.02 4.19 0.84 

120 20.84 39.87 28.78 8.17 3.96 0.90 

180 29.28 40.89 28.74 8.38 3.96 0.92 

240 33.46 42.03 28.56 8.51 3.97 0.94 

630 37.09 43.94 28.83 8.80 4.17 1.11 

 

Thus, in 11 hours, 0.5M of DTPA dissolves 37.09 mM barium sulfate for the 

experimental procedure described earlier. Similarly, 0.1M DTPA dissolves 43.94 mM 

barium sulfate. Barium sulfate dissolved by 0.05M, 0.01M, 0.005M, 0.001M and only 

base are respectively 28.83 mM, 8.8 mM, 4.17 mM, 1.11 mM and 0.43mM. 
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Fig.5.  Dissolution profiles of barite dissolution at different initial concentrations of 

chelants show increase in dissolution as concentration increases 

Similar to the pattern of dissolution profiles for the static case, the dissolution of 

barium sulfate caused by different concentrations of DTPA is widely different. Thus, 

dissolution has a strong dependence on the concentration of chelating formulations even 

for well mixed solutions. Also, for higher concentrations of DTPA, the amount of 
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dissolution is almost thrice that of the corresponding concentrations in the static case. 

Thus, it is always beneficial to provide some form of agitation as it greatly increases the 

extent of reaction and enhances dissolution. This increase in dissolution is not that 

apparent for lower concentrations of DTPA. This shows that the agitation increases 

accessibility of barite to DTPA and this leads to increase in dissolution. This point was 

discussed at length while determining the experimental procedure. 

For all concentrations of DTPA below 0.1M, steady state is eventually observed, in 

both static and dynamic cases. But for 0.1M and 0.5M DTPA, true steady state is not 

observed in 11 hours, as reaction is not complete. So, to study true final dissolution in 

0.1M and 0.5M DTPA, the reaction is allowed to continue for a much longer time of 4 

days and results are shown in Table 6 and Fig. 6. Fig. 6 shows that increasing the time 

for reaction, greatly increased the final dissolution for both static and dynamic cases. 

Table 6. Barium dissolved by higher concentrations of DTPA at longer time 

durations 

Time 

min 

Static case Dynamic case 

mM Ba in 

500mM 

mM Ba in 

100mM 

mM Ba in 

500mM 

mM Ba in 

100mM 

0 0 0 0 0 

120 3.02 3.82 29.86 37.19 

240 3.63 4.25 49.57 45.66 

480 5.75 - 57.43 68.50 

1440 14.47 6.38 125.31 86.97 

2880 20.49 15.78 182.85 90.51 

4320 49.75 43.99 209.95 93.07 

5760 63.69 50.32 238.92 93.35 
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Fig.6.  Dissolution significantly improves with time for higher concentrations of 

DTPA 

Fig. 6. shows that for all cases steady state has been attained at the end of 4 days, though 

for dynamic case of 0.1M DTPA, equilibrium is achieved in a day. Also, that there is no 

difference in dissolution for different concentrations for static case. But, for dynamic 

case, dissolution increased a lot with time and concentration. Initially, 3 gm or 257 mM 
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of barite was taken in solid state and 0.5M DTPA has dissolved most of it at the end of 4 

days. In order to better analyze these results, the maximum dissolution at the end of 11 

hours and 4 days for each concentration of DTPA are plotted together in Fig. 7. 

 

Fig.7.  Dissolution profiles improve with higher DTPA concentrations, longer 

treatment times and more accessibility 

Putnis, Putnis and Kowacz (2008) conducted similar experiments and found out that as 

DTPA concentration increases, barite dissolution increases and reaches a peak of 6mM 

at 10mM of DTPA. If DTPA concentration is increased still further, the barite 

dissolution decreases.  Putnis concluded that this dissolution behavior could be caused 

4 days dynamic 

0 

50 

100 

150 

200 

250 

0 100 200 300 400 500 

B
ar

iu
m

 d
is

so
lv

ed
,m

M
 

DTPA Concentration, mM 

4 days static 

11 hour static 

11 hour dynamic 



27 

 

 

 

by two factors. At high concentrations, the DTPA molecules could cause crowding at 

barite surface leading to steric hindrance and reducing overall activity of reaction. Or 

they could form cluster structures in the bulk solution, away from barite, reducing 

accessibility to barite. Putnis et al. had used 0.0429M barite and 100 ml solution. Also, 

they had used a paddle stirrer. In our experiments, we have used a magnetic stirrer to 

uniformly suspend all the barite particles throughout the solution. This eliminates causes 

for second reason in Putnis’ case. Also, we have taken 50 ml chelant solution and 

0.257M of barite initially. Thus, a lot more contact area is available to chelant molecules 

eliminating steric hindrance and any causes for first reason in Putnis’s case. Thus, we 

obtain four unique cases which can be analyzed in Fig. 7. In the static case after 11 

hours, barite dissolution increases with DTPA concentration and then remains same 

above 50mM DTPA. If more time is allowed to lapse, after 4 days in the same static 

case, significantly higher dissolution is achieved. Also, dissolution goes on increasing 

with DTPA concentration even until 500mM. Thus, the only reason, static case after 11 

hours, was showing low dissolution values was because reaction had not progressed far 

enough and if sufficient time is allowed, especially for higher DTPA concentrations, 

much higher barite dissolution can be observed. Now, if we include agitation, almost 

complete barite dissolution is observed at the end of 4 days for 500mM DTPA. Thus, if 

constraints of low scale accessibility, short soaking time and dilute volumes are 

removed, significantly higher barite dissolution can be achieved. 

Another important factor for consideration is the extent of reaction, which is the 

percent of total reaction that is completed in the time interval. Since barite dissolution by 
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a chelating agent is a reversible reaction, the extent of reaction is 100% only after a 

relatively long time. Since stochiometric ratio for barite dissolution by DTPA is 1:1 for 

DTPA: barite, 0.1M dissolves should dissolve 0.1M barite. 

 

 

Fig.8.  Increase in dissolution at higher concentrations and longer times is due to 

more progress of reversible reaction 

Thus, as seen in Fig. 8out of 10mM barite that can be dissolved by 10mM DTPA in 

static case, it has dissolved 7.4 mM at the end of 11 hours, showing reaction is 74% 

complete. Similarly, out of 100mM barite that can be dissolved by 100mM DTPA in 
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dynamic case, it has dissolved 93mM, showing reaction is 93% complete. Reaction 

progress is more when DTPA concentration is less, agitation is provided and time is 

increased from 11 hours to 4 days. 500mM DTPA in dynamic case can dissolve 500mM 

barite. But since only 257 mM of barite are added and 238 mM are dissolved, reaction is 

assumed 92% complete. Thus, progress is high for 0.5mM DTPA as it is in excess of 

barite taken. Thus, 100mM and 500mM DTPA give maximum dissolution in dynamic 

case after 4 days. So, these two cases are considered for all future experiments. 

Extent of reaction decreases as the concentration of DTPA goes on increasing. At 

lower concentrations of DTPA, conditions are much closer to ideal conditions and 

hence, equilibrium is shifted more towards the product side.  So, extent of reaction is 

higher. Also, lower concentrations of DTPA are more efficient than higher 

concentrations for barite dissolution. But, lower concentration solutions may mean more 

volumes of solutions, more energy in mixing and higher sizes of mixing apparatus. Thus, 

this increase in efficiency may not translate to reduction in costs and from economic 

point of view; it may still be beneficial to have highest concentration of chelant solutions 

to be pumped downhole. 

With regards to time of reaction, as concentration of chelant increases, the time for 

attainment of equilibrium increases. For concentrations of chelants lower than 0.01M, 

equilibrium has been achieved within the first two hours. For higher concentrations of 

DTPA, equilibrium needs much more time. Thus, as treatment is designed for higher 

concentrations of chelant, more soaking time should be allowed for completion of 

reaction. However, a positive observation is that majority of the reaction occurs in the 
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first few hours. Thus, soaking time should be decided not based on consideration of 

equilibrium directly, but when 60-70% of equilibrium value has been attained. 

These times are the shortest times possible as in the lab tests, all effects of 

dissociation have been eliminated. The barite is in the form of powder with uniform 

particle size, kept suspended in the solution with a stirrer. In the field, it may be in the 

form of solid blocks or much coarser particles. It may have oil or organic coating. It may 

be contaminated with other scales. It may also contain fines, clay particles, bacteria, etc. 

Also, during soaking, the solution may be essentially static. Thus, there will not be any 

stirring or circulation. Due to this, reaction may take much longer to attain equilibrium. 

Also, amount of barite dissolved will be much lower. 

These tests are not for the purpose of finding the amount of barite dissolved or the 

time required for dissolution. The purpose of lab tests is to compare the reactivity of 

different formulations and identify the best formulation. Thus, from the above graphs, 

the important concept to be grasped is that substantially higher barite dissolution is 

observed in 0.5M DTPA after 4 days of reaction time with maximum accessibility. But, 

if the constraints of concentrations, time and accessibility are left in place, barite 

dissolution is affected. 

3.2 Combination of Chelating Agents 

DTPA is the most efficient chelant for barite dissolution and all formulations need to 

contain it. The value of this formulation could be enhanced further by adding other 

chelants, which though weaker in barite dissolution, could have other complimentary 

qualities like low costs, favorable environmental profiles or higher reactivity to different 
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scale/contaminant.  Thus, the effect of combinations of DTPA with EDTA, MGDA and 

GLDA is studied. 

3.2.1 Combination of EDTA and DTPA 

Ethylene diamine tetraacetic acid and diethylene triamine pentaacetic are two of the 

best known chelants for barite scale dissolution. DTPA having 5 acetic acid arms 

dissolves barite much more effectively than EDTA which has four acetic acid arms. 

Thus, DTPA is widely used in the industry for barium sulfate dissolution. However 

EDTA is much cheaper than DTPA. Also, its lower size causes less stearic hindrance, 

especially for inaccessible scale deposits. Hence, it is also widely used in the industry. 

Hence, the properties of formulations which had both EDTA and DTPA were studied. 

Thus, both chelating agents could complement each other and retain high dissolution 

profiles while reducing cost of chemicals. For this reason, EDTA and DTPA were mixed 

and their dissolution was observed. Experimental procedure developed above was 

followed. EDTA and DTPA were mixed in ratios shown in Table 7 and gave dissolution 

profiles in Table 8 and Fig. 9.  

Table 7. Mole ratios in which chelating agents were mixed. 

Expt No Mol of EDTA Mol of DTPA 

Ratio 

EDTA:DTPA 

1 0 0.1 0 

2 0.05 0.05 1:1 

3 0.1 0 Infinity 
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Table 8. Barite dissolution for different combinations of EDTA and DTPA 

Time 

min 

Mm Ba in 

0.1MEDTA only 

mM Ba in     0.05M 

DTPA + 0.05M 

EDTA 

mM Ba in      0.1M 

DTPA only 

mM Ba in      

0.05M 

DTPA only 

0 0 0 0 0 

60 16.20 29.38 35.24 25.24 

120 16.28 29.96 39.87 28.78 

180 16.79 29.87 40.89 28.74 

240 17.12 30.12 42.03 28.56 

660 17.10 32.04 43.94 28.83 

 

 

Fig.9.  Dissolution profiles for different ratios of chelating agents shows increase in 

dissolution as concentration of DTPA increases. 
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0.1M EDTA by itself dissolves 17mM barite and 0.1M DTPA by itself dissolves 44 

mM. If chelant combination of 0.05M DTPA and 0.05M EDTA is to be considered 

beneficial for barite dissolution, it should dissolve more barite than 0.1M DTPA.    For 

1:1 ratio, amount of barite dissolved (32mM) is midway between 17mM and 44 mM. As 

demonstrated earlier, with decreasing concentration of chelants, the efficiency of 

dissolution increases. Thus, 0.05M DTPA instead of dissolving 22 mM (i.e. half the 

amount of barite dissolved by 0.1M DTPA) actually dissolves 28 mM. Thus, amount of 

barite dissolved by 0.05M EDTA and 0.05 M DTPA  together is less than the sum of the 

amounts dissolved independently by 0.05M EDTA or 0.05M DTPA. In other words, 

even if 1:1 formulation contains 0.05M DTPA and 0.05M EDTA, the extent of reaction 

is similar to 0.1M chelant rather than two 0.05M chelants. The only similarity between 

1:1 formulation and the individual 0.1M chelants is they have the same no of moles of 

chelant species or same no of molecules of chelants. Thus, extent of reaction is related to 

the number of molecules of chelant species rather than their nature. From this we could 

assume that if any other acid with lower stability constant for barite than DTPA, is added 

to DTPA, it will always lead to decrease in total barite dissolution. This will be proven 

in future experiments. 

 As stated in the introduction, two main mechanisms have been proposed for 

dissolution of barium sulfate by chelating agent. First mechanism states that the chelant 

particle physically moves to barite surface, grabs the barium  ion and then moves back 

into the bulk solution. Second mechanism states that barium ion dissociates into the bulk 

solution by itself due to the concentration gradient from bulk solution to boundary layer 
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and gets picked up by chelant molecule. Two cases exist and the above results can be 

explained for each case. 

When barium ions desorb from the barite surface and go into the bulk solution, they 

have to pass through the boundary layer and then through some part of bulk solution. If 

there is less hindrance in their path more barium molecules will travel and also barium 

molecules will travel more distances. Thus, even chelant molecules farther away from 

the surface will be involved with dissolution and dissolution will be high. As number of 

chelant molecules increases, there will be more crowding in the above paths of barium 

molecules. Due to this blocking, barium molecules may find it difficult to dissociate 

freely into the bulk solution. Thus, extent of reaction will reduce. 

When dissolution is only dependent on surface reaction, the surface area occupied by 

each chelant species becomes critical. When more number of molecules are present, 

there may be stearic hindrance. Also, after chelants pick up barium, they may find it 

difficult to dissociate back into bulk solution due to crowding in the boundary layer. This 

will reduce extent of reaction in case of surface mechanism. 

3.2.2 Combination of DTPA and MGDA 

MGDA is a new environmentally friendly chelating agent from BASF. Since it is 

biodegradable, it can improve the environmental profile of the chelant formulation. The 

procedure from chapter II is used to determine the effect of addition of MGDA to 

DTPA. Table 9. shows the different combinations of DTPA and MGDA, analyzed for 

understanding the dissolution behavior of chelant combinations. Table 10. and Fig. 10 

shows the resultant dissolution profiles. 
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Table 9. Different combinations of DTPA and MGDA are taken to study the 

effect of MGDA on barite dissolution 

Concentration of 

MGDA, M 

Concentration of 

DTPA, M 

Molar ratio 

0.5 0.1 5:1 

0.1 0.5 1:5 

0.5 0.5 1:1 

0.1 0 infinity 

0 0.1 0 

0 0.5 0 

 

Table 10. Barite dissolution due to different combinations of DTPA and MGDA 

Time 

min mM Ba in 0.1M MGDA 

 

Time 

min 

mM Ba in 0.5M DTPA+ 

0.5M MGDA 

0 0 0 0 

60 1.26 120 1.66 

120 1.35 240 5.54 

210 1.50 1440 56.51 

360 1.81 2880 94.03 

720 1.87 4320 128.04 

4320 1.92 5760 162.77 

 

 

Time, min 

mM Ba in 0.1M DTPA+ 0.5M 

MGDA 
mM Ba in 0.5M DTPA+ 

0.1M MGDA 
0 0 0 

60 28.08 9.69 

180 34.11 21.00 

360 38.83 34.80 

1260 42.52 86.66 

1860 44.96 102.59 

2820 44.43 119.87 

3360 45.36 120.86 

4320 43.81 133.39 

5040 45.42 137.99 

5760 48.81 150.24 
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Fig.10.  Dissolution profiles due to addition of MGDA to DTPA show wide variation 

MGDA is a very weak barite dissolution agent and has a low stability constant for 

barium. Thus, 0.1M MGDA by itself dissolves only 3 mM of barite. There are two 

reasons for the weakness of any dissolution agent. Either the molecules find difficulty 

collecting the barium ions or they find difficulty retaining the ions. Since MGDA has 

only one nitrogen atom and only one chelating arm as compared to 5 of DTPA, it is very 

weak for dissolution of barium ions. This is quantified by its low stability constant for 

barite. Thus, no increase in dissolution is expected by addition of MGDA to DTPA. 
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However, contrary to expectation, a significant decrease was observed, on addition of 

0.1 MGDA to 0.5M DTPA. When 0.5M MGDA is added to 0.5M DTPA, the drop in 

dissolution increases further. Thus, MGDA is inhibiting the dissolution process. When 

0.5M MGDA is added to 0.1M DTPA, dissolution almost halves, but the drop in 

dissolution is less as compared to loss due to addition of 0.5M MGDA to 0.5M DTPA. 

Thus, addition of MGDA is significantly decreasing barite dissolution. 

This inhibition can be explained in terms of both the mechanisms. Thus, in case of 

surface mechanism, the MGDA molecules near the surface reduce accessibility and 

prevent DTPA from contacting the barite scale, reducing dissolution. In bulk 

mechanism, the MGDA molecules are hindering smooth dissociation of DTPA 

molecules in solution and hence, preventing chelant-ligand interactions. 

Thus, addition of any chelating agent in the formulation can lead significant loss of 

barite dissolution for DTPA and must be avoided. Similar procedure is repeated for 

GLDA to confirm conclusions. 

3.2.3 Combination of DTPA and GLDA 

GLDA is another environmentally friendly chelating agent. It is produced by 

AkzoNobel. It has similar structure to MGDA and consequently is a weak chelating 

agent by itself. Different combinations of GLDA are added to DTPA as given in Table 

11. 
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Table 11. Molar ratios for combinations of GLDA and DTPA 

Expt No. Concentration of 

GLDA, M 

Concentration of 

DTPA, M 

Molar ratio 

1 0.5 0.5 1:1 

2 0.1 0.5 1:5 

3 0.1 0 infinity 

4 0 0.5 0 

5 0 0.1 0 

 

The procedure is repeated exactly similar to MGDA and the dissolution profiles are 

plotted as shown in Fig. 11. 

 

Fig.11.  Dissolution profile for GLDA+DTPA, showing similar trend to that of 

MGDA+DTPA 
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Thus, after analyzing results for addition of EDTA, MGDA and GLDA to DTPA, it 

can be concluded that chelant combinations are detrimental to barite dissolution and 

should be avoided in treatments. 

3.3 Effect of Synergists 

 Paul and Fieler (1992) identified new synergists or activators which increased the 

dissolution capacity of chelant formulations. Synergists are similar to catalysts and can 

decrease reaction time, thereby increasing barite dissolved in given time. Generally, 

many weak organic acids having chelation capabilities have been tried as synergists. Of 

all these synergists, oxalic acid has been shown to be the best synergist for DTPA Paul 

and Fieler (1992). 

3.3.1 Effect of oxalic acid 

There is some debate in the literature over effectiveness of oxalic acid as a synergist 

for barite dissolution. Paul and Fieler (1992) show that oxalic acid is an effective 

synergist for 0.5M DTPA and thus, synergists should be added to chelant formulations. 

However, Lakatos, Lakatos-Szabo and Kosztin (2002) showed that oxalic acid does not 

significantly increase dissolution for 0.1M EDTA and thus, synergists should not be 

added to chelant formulations. However, since the procedures employed by both of them 

were not consistent, it is difficult to correlate the results. Thus, using the procedure 

developed in chapter II, the effect of oxalic acid on barite dissolution is studied. First of 

all, only 0.5M oxalic acid is taken with1M and 5M potassium hydroxide and dissolution 

for each is calculated. However, no significant dissolution is observed in either case. 

Thus, oxalic acid by itself is not effective in barite dissolution. Then, 0.5M oxalic acid is 
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added to 0.1M and 0.5M solutions of DTPA containing potassium hydroxide for pH 

regulation. The dissolution profiles are tabulated in Table 12 and plotted in Fig. 12. 

 
 

Fig.12.  Addition of oxalic acid beneficial initially for 0.1M DTPA, but detrimental 

for 0.5M DTPA 
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Table 12. Dissolution caused by oxalic acid 

Time, min mM Ba in  

0.1M DTPA+ 0.5M 

Oxalic Acid 

mM Ba in  

0.5M DTPA+ 0.5M 

Oxalic Acid 

0 0 0 

60 60.48 39.77 

180 71.18 56.80 

300 76.97 67.03 

1200 77.61 96.78 

1440 79.29 109.09 

3360 78.40 186.13 

5760 78.90 193.57 

7200 78.86 200.47 

 

Thus, 0.1M DTPA dissolves 79 mM with oxalic acid and 87 mM without oxalic 

acid. There is a slight decrease in dissolution due to presence of oxalic acid. However, 

adding oxalic acid decreases the equilibrium time from 1200 min to 180 min. Thus, if 

possible a continuous treatment could be devised where oxalic acid would increase 

dissolution for the short residence times of chelant formulation. However, if treatment 

times are high, oxalic acid should not be added especially for high concentrations of 

DTPA. For 0.5M DTPA and oxalic acid, dissolution is 200 mM or 0.2M. Since 3 gm 

barite is added or 257 mM barite is present initially, 0.5M DTPA with oxalic acid 

dissolves 75% of the barite.  However, equilibrium is only achieved after 3360 hours. 

Also, DTPA individually dissolves much higher barite. Thus, if long treatment times are 

possible, 0.5M DTPA should be added alone.  If short treatment times are desired, a 

chelant solution containing 0.1M DTPA and oxalic acid could be continuously 

circulated.  

Thus, after determining the procedure for lab tests, the effect of intrinsic factors like 

DTPA concentration, chelant combinations and synergists are analyzed. It is seen that 
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0.5M DTPA dissolves maximum barite scale after long time intervals, in presence of 

agitation and in absence of any other chelant or synergist. 

Thus, after fixing the composition of chelant formulation, extrinsic factors are 

identified and their effect on barite dissolution is studied. 
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CHAPTER IV 

EXTRINSIC FACTORS AFFECTING CHELANT PERFORMANCE 

Having finalized the chelant formulation, the next step is to identify extrinsic factors 

that affect barite dissolution. When this chelant formulation is put into the formation, it 

encounters formation and seawater. Possibly, seawater is already being used for 

preparing the chelant. Thus, the effect of seawater on barite dissolution needs to be 

studied further. Another set of extrinsic factors have to deal with the solid scale in the 

formation. There are many scales that precipitate together. Generally, calcium sulfate 

scales precipitate along with barite as calcium belongs to the same group in the periodic 

table and has similar chemical properties. Calcium sulfate is more soluble than barite. 

Thus, if calcium sulfate scale is present along with barite, the calcium ions will compete 

with barium ions for the chelant molecules. Thus, again dissolution is expected to drop 

in presence of calcium sulfate scale. Finally, calcium carbonate may also be found with 

barite, either as scale or as limestone formation. It may also compete with barite for 

dissolution and affect chelant performance. Thus, the effect of extrinsic factors on barite 

dissolution using chelant formulations is analyzed in context of seawater, calcium sulfate 

scale and calcium carbonate scale. 

4.1. Effect of Seawater on Barite Dissolution 

The procedure developed in chapter II is repeated, just replacing deionized water by 

seawater. Synthetic seawater is prepared according to Table 13. 
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Table 13. Composition of seawater  

Salt  Concentration, g/l 

NaCl 38.39 

CaCl22H2O 2.44 

MgCl26H2O 19.06 (.09M) 

Na2SO4 5.26 

NaHCO3 0.27 
 

When the chelant formulation is put into seawater, magnesium hydroxide and 

calcium carbonate precipitate out due to their very low solubility. This deposition of 

magnesium hydroxide and calcium carbonate, on decreasing pH is observed commonly 

in alkaline flooding and desalination. Thus, even before treatment design, this problem 

needs to be addressed first. Chelating agents are active between pH of 11-13. Seawater is 

always going to be present near barite scale. If seawater pH falls as is inevitable on 

mixing with chelant formulation, magnesium hydroxide and calcium carbonate will be 

deposited first, before barite dissolution begins. Thus, barite removal treatment could 

end up depositing a newer scale. 

In waterflooding, this problem is solved by adding antiscalants like enhanced 

maleate (Patel and Milligan 2008) or organic alkali (Berger and Lee 2006). However, 

since most of these organic alkalis or antiscalants are chelants or other polycarboxylic 

acids, their addition would cause significant decline, in barite dissolution. Thus, no extra 

compounds were added for now. This area needs more research in the future. Thus, 

above procedure is repeated to study the barite dissolution by 0.5M and 0.1M DTPA in 

presence of seawater and results are shown in Table 14 and Fig. 13.  
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Time, min mM Ba dissolved by 0.5M 

DTPA in seawater 

mM Ba dissolved by 0.5M 

DTPA in seawater 

0 0 0 

120 14.51 5.10 

240 21.81 9.29 

1440 51.29 51.29 

2880 60.66 72.82 

4320 64.99 102.54 

5460 66.53 106.62 

  

 

Fig.13.  Seawater reduces dissolution capacity of DTPA, especially at higher 

concentrations 
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Table 14. Dissolution profile for 0.5M DTPA in seawater 
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Fig. 12 shows that there is a significant drop in barite dissolution in presence of 

seawater as compared to dissolution in DIwater, especially at 0.5M DTPA. Thus, this 

allowance must be included in treatment design. There are two reasons for the drop in 

dissolution. First, chelant is also dissolving magnesium hydroxide and hence, is not 

available completely to barite. In fact, of the 90 mM magnesium  present in seawater,  

53mM is retained in the solution in case of 0.1mM DTPA and 79mM is retained in case 

of 0.5 M DTPA. Thus, only 10mM magnesium is precipitated showing that chelating 

agent DTPA independently can also be used for suspending magnesium ions, along with 

barium. Another reason for decrease in dissolution is that the presence of ions in the 

electrolyte seawater, hinder barite dissociation into solution in the bulk mechanism. 

Thus, DTPA gives markedly reduced dissolution of barite in presence of seawater, but is 

still successful in dissolving sizable quantity of scale. 

4.2. Effect of Calcium Sulfate Scale 

Many times, barium and calcium are present at super saturation in the formation 

waters and so, barite and calcium sulfate scales get co-precipitated, in the same regions. 

To study the effect of this presence of competing ions, the above procedure is repeated 

by taking 3gm of both barite and calcium sulfate scales, instead of just barite scales. The 

chelant formulation contains first 0.1M DTPA and then 0.5M DTPA. Dissolution 

profiles are given in Table 15 and Figs. 14 and 15.  For case of 0.1M DTPA, almost 

complete reaction has occurred and 75 mM of calcium have been picked up along with 

17 mM of barium. Thus, 92 mM ions have been dissolved or reaction is 92% complete. 

Calcium sulfate gets dissolved earlier and attains equilibrium faster. Selectivity is 4.45:1 
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for Ca/Ba. For case of 0.5M DTPA, also barite dissolution decreases markedly with 

higher selectivity for calcium over barium. Thus, when calcium sulfate scales are 

present, it would be more efficient to treat them first and then start the barite treatment as 

in their presence, barite treatment is highly inefficient. 

Table 15. Dissolution profiles for calcium sulfate scales 

Time, min 0.1M DTPA 0.5M DTPA 

mM Ba mM Ca mM Ba mM Ca 

0 0 0 0 0 

120 8.86 73.68 8.73 80.12 

240 15.09 75.57 16.47 241.69 

1440 16.48 75.44 33.76 251.74 

2880 16.86 74.06 70.10 260.93 

5760 17.02 75.89 110.00 271.10 

 

 

Fig.14.   DTPA dissolves mixed scale containing barite and calcium sulfate in ratio of 

Ca/Ba of 4.45 for 0.1M DTPA 
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Fig.15.  Dissolution profile decreases due to presence of calcium sulfate for 0.5M 

DTPA 

 

4.3. Effect of Calcium Carbonate Scale 

3 gm calcium carbonate powder is taken along with 3 gm barite powder and above 

procedure is repeated for 0.5 M DTPA. Similar results are obtained as earlier with 

substantial drop in barite dissolution, but amount of calcium dissolved is lesser. Thus, 

DTPA is more efficient at picking up calcium sulfate than calcium carbonate. Thus, 

sulfate ions do play part in dissolution mechanism. Thus, if calcite is present, scale could 

be treated first or compensation has to be included in barite treatment design to account 

for presence of carbonate scale. The dissolution profile is given by Fig. 16 and Table 16. 

0 

50 

100 

150 

200 

250 

300 

0 1000 2000 3000 4000 5000 6000 

Io
n

 d
is

so
lv

ed
, m

M
 

time, min 

Ca 

Ba alone 

Ba, in presence of Ca 



49 

 

 

 

Table 16. Dissolution profile for 0.5M DTPA in presence of calcium carbonate 

Time, min Ca dissolved, mM Ba dissolved mM 

0 0 0 

240 86.22 34.95 

1440 83.56 58.16 

2880 81.57 111.27 

5760 81.00 142.00 

 

 

Fig.16.  Dissolution profile for 0.5M DTPA shows significant decrease in dissolved 

barite in presence of calcium carbonate scale 
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in dissolution. These extrinsic factors need to be carefully considered in treatment 

design. 
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CHAPTER V 

CONCLUSIONS 

      Thus, this project identifies the best possible chelant formulation and estimates the 

dissolution profile from lab tests, leading to a more informed and efficient treatment 

design to remove barite scale. 

1. Barite dissolution, ideally, increases with increase in DTPA concentration, 

accessibility and soaking time. However, many constraints are faced during 

actual field treatments, which substantially decrease chelant performance. These 

and similar other constraints must be identified and tested, each time before 

treatment design 

2. Barite dissolution is inhibited by the physical presence of chelant molecules. 

Hence, higher concentrations of DTPA are less efficient in shorter times. Also, 

combinations of DTPA with any chelant acid with lower stability constants 

inhibits barite dissolution. So, performance decreases significantly for 

combinations of DTPA with MGDA or GLDA. 

3. Synergists like oxalic acid, increase initial barite dissolution, especially for 

moderate DTPA concentrations like 0.1M, but inhibit dissolution at equilibrium 

or longer treatment times. 

4. Barite dissolution decreases in presence of seawater as competing ions 

magnesium and calcium reduce chelant activity towards barium and inhibit 

reactant dissociation. Treatment design should also account for the possibility of 
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precipitation of magnesium hydroxide from seawater due to the high pH chelant 

formulation. 

5. DTPA selectively dissolves calcium ions if present, leading to significant 

decrease in barite dissolution. Thus, if scales contain calcium sulfate or calcium 

carbonate, it must be removed prior to barite removal treatment. 
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