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ABSTRACT

Statistical Inference for Costs and Incremental

Cost-Effectiveness Ratios with Censored Data. (May 2012)

Shuai Chen, B.S., Peking University

Co–Chairs of Advisory Committee: Dr. Hongwei Zhao
Dr. Lan Zhou

Cost-effectiveness analysis is widely conducted in the economic evaluation of new

treatment options. In many clinical and observational studies of costs, data are

often censored. Censoring brings challenges to both medical cost estimation and

cost-effectiveness analysis. Although methods have been proposed for estimating the

mean costs with censored data, they are often derived from theory and it is not always

easy to understand how these methods work. We provide an alternative method for

estimating the mean cost more efficiently based on a replace-from-the-right algorithm,

and show that this estimator is equivalent to an existing estimator based on the inverse

probability weighting principle and semiparametric efficiency theory. Therefore, we

provide an intuitive explanation to a theoretically derived mean cost estimator.

In many applications, it is also important to estimate the survival function of

costs. We propose a generalized redistribute-to-the right algorithm for estimating the

survival function of costs with censored data, and show that it is equivalent to a simple

weighted survival estimator of costs based on inverse probability weighting techniques.

Motivated by this redistribute-to-the-right principle, we also develop a more efficient

survival estimator for costs, which has the desirable property of being monotone, and

more efficient, although not always consistent. We conduct simulation to compare
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our method with some existing survival estimators for costs, and find the bias seems

quite small. Thus, it may be considered as a candidate for survival estimator for costs

in a real setting when the censoring is heavy and cost history information is available.

Finally, we consider one special situation in conducting cost-effectiveness analysis,

when the terminating events for survival time and costs are different. Traditional

methods for statistical inference cannot deal with such data. We propose a new

method for deriving the confidence interval for the incremental cost-effectiveness ratio

under this situation, based on counting process and the general theory for missing

data process. The simulation studies show that our method performs very well for

some practical settings. Our proposed method has a great potential of being applied

to a real setting when different terminating events exist for survival time and costs.
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CHAPTER I

INTRODUCTION

Due to skyrocketing of health care costs and limited resource available, economic

evaluation of new treatments has received more and more attention. To compare

different treatments, cost-effectiveness analysis helps evaluate the economic impact

of the new treatment and its effects on health care, in the hope of finding an effective

treatment without causing too much a burden to the society.

The analysis of cost data involves some unique challenges that require advanced

statistical methodologies, especially when costs are censored. For example, random-

ized clinical trials often enroll subjects over a broad time period, but the trial ends at

a fixed time point. As a result, subjects are observed for differing amounts of time,

and those who are still alive at the end of the study are considered censored. Thus, we

cannot observe further costs after censored time for those patients. Besides, censoring

poses a unique problem for cost estimation due to the “induced informative censor-

ing” problem, first noted by Lin et al. (1997). Traditional survival analysis methods

assume that the censoring time is independent of the survival time (conditional on

some covariates). However, the costs at censoring time are no longer independent of

the potential total costs. For example, a healthier patient will accumulate costs more

slowly, and therefore will have less costs at the censoring time, and at the potential

event time (Lin, 2003). Thus, many standard approaches for survival analysis (e.g.,

Kaplan-Meier estimator and Cox regression model) are not valid for the analysis of

cost data.

Therefore, many researchers have proposed methods for estimating the mean med-

 This thesis follows the style of Biometrics.
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ical costs, and most of them focus on the time-restricted medical costs, i.e., the costs

accumulated within a time limit. Although many estimators for the mean costs have

appeared in the literature, they are often based on theory, and it is not always easy

for practitioners to understand why these methods work. To alleviate this situation,

Zhao et al. (2011) established a mathematical equivalency between the BT estima-

tor for the mean costs (Bang and Tsiatis, 2000), and a replace-from-the-right (RR)

algorithm (Pfeifer and Bang, 2005). Thus, the BT estimator, which is based on the

inverse probability weighting technique (Horvitz and Thompson, 1952), has a more

intuitive explanation from the RR algorithm. Motivated by this idea, we will ex-

tend this work by proposing a modified RR algorithm, the RRimp method, which

utilizes the cost history information and is therefore generally more efficient than the

RR estimator. We will provide a proof of the mathematical equivalence between the

RRimp method and an existing estimator for the mean costs, the ZT estimator (Zhao

and Tian, 2001). Due to a lack of a theoretical background for understanding the BT

and ZT estimators, some practitioners might be reluctant to use them. With the easy

interpretation of the RR and RRimp estimators, and established equivalency between

these estimators and the BT, ZT estimators, we believe these estimators will become

more popular among practitioners.

Furthermore, since cost data are often highly skewed, it is more desirable to estimate

the median and other quantiles of the costs. These quantities can be available if we

can estimate the survival function of costs. Using the original redistribute-to-the right

algorithm, we propose a RRS (abbreviated as RRS for survival estimator) survival

estimator for costs, and show that it is equivalent to a simple weighted (SW) survival

estimator for costs (Zhao and Tsiatis, 1997; Zhao et al., 2012). We extend this method

and propose a RRimpS survival estimator. Further simulation studies are conducted

to compare this RRimpS survival estimator with the RRS survival estimator (or



3

equivalent SW estimator), and a more efficient ZTS survival estimator (Zhao and

Tsiatis, 1997; Zhao et al., 2012).

Moreover, in performing cost-effectiveness analysis with censored data, there have

been several measures proposed to evaluate the treatments (Chaudhary and Sterns,

1996; Heitjan, 2000; Willan and Lin, 2001; Briggs et al., 2002; O’Brien and Briggs,

2002; Willan and Briggs, 2006). Among them the incremental cost-effectiveness ratio

(ICER) is a widely used criterion. The ICER is defined as the costs incurred for sav-

ing an additional year of life. When one treatment has a significant effectiveness over

another treatment but is more expensive, this measure is especially useful. Usually

the effectiveness are defined as the survival time for patients, and therefore the end-

points for costs and effectiveness are the same. However, it is commonly encountered

in clinical studies that we need to use different endpoints for costs and effectiveness

estimation. For example, a new strategy might prevent the heart failure event. Hence,

it may extend the heart-failure free survival time, but not overall survival time. How-

ever, we are still interested in the costs estimation up to death. In this situation, we

are interested in estimating the ICER based on the heart-failure free survival time but

costs accumulated until death. Although the construction for the confidence intervals

(CI) of usual ICER with the same terminating points has been studied much, there

are no theoretical results for research on this ICER and its CI which allow different

terminating events. Thus, we propose a method to handle this problem.

The remainder of the thesis is organized as followed. In Chapter II, we will discuss

the mean cost estimators with corresponding intuitive explanation, as well as the

survival function estimators for cost. In Chapter III, we will concentrate on cost-

effectiveness analysis, and show how to handle the problem of ICER with different

terminating events. The Chapter IV is the Summary of this thesis, which summarizes

the innovative methods we proposed in this thesis.
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CHAPTER II

ESTIMATING THE MEAN COST AND SURVIVAL FUNCTIONS

FOR COSTS

1. Introduction

Economic evaluation of new treatments has received more and more attention, due

to skyrocketing of health care costs and limited resource available. Cost-effectiveness

study is often carried out to evaluate new treatments in the hope of finding an effec-

tive treatment without causing too much a burden to the society. In clinical trials and

in observational studies, survival time and health costs are often censored for admin-

istrative reasons, since not all patients can be observed until they experience some

events, such as death, or disease relapse. Censoring poses a unique problem for cost

estimation due to the “induced informative censoring” problem, first noted by Lin

et al. (1997). Traditional survival analysis methods assume that the censoring time

is independent of the survival time (conditional on some covariates). However, the

costs at censoring time are no longer independent of the total uncensored costs. For

example, a healthier patient will accumulate costs more slowly, and therefore will have

less costs at the censoring time, and at the potential event time (Lin, 2003). Thus,

many standard approaches for survival analysis, such as the Kaplan-Meier estimator

(Kaplan and Meier, 1958), or the Cox regression model (Cox, 1972), are not valid for

the analysis of cost data. Many researchers have proposed methods for estimating the

mean medical costs, and most of them focus on the restricted medical costs, i.e., the

costs accumulated within a time limit. Among them, Lin et al. (1997) proposed esti-

mators via survival probability weighting using partitioned time intervals; Bang and

Tsiatis (2000) proposed consistent estimators using the inverse probability weighting
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technique; Zhao and Tian (2001) proposed a more efficient estimator. Later, Zhao

et al. (2007) discovered some conditions under which the estimators without using

cost history, and estimators using cost history become identical within each class.

Although many estimators for the mean costs have appeared in the literature, they

are often based on theory, and it is not always easy for practitioners to understand

why these methods work. To alleviate this situation, Zhao et al. (2011) established a

mathematical equivalency between the BT estimator for the mean costs (Bang and

Tsiatis, 2000), and a replace-from-the-right (RR) algorithm (Pfeifer and Bang, 2005).

Thus, the BT estimator, which is based on the inverse probability weighting tech-

nique (Horvitz and Thompson, 1952), has a more intuitive explanation from the RR

algorithm. Motivated by this idea, we will propose a modified RR algorithm, the

RRimp method, which utilizes the cost history information and is therefore generally

more efficient than the RR estimator. We will provide a proof of the mathemati-

cal equivalence between the RRimp method and an existing estimator for the mean

costs, the ZT estimator (Zhao and Tian, 2001). The ZT estimator was derived from

complicated theory. Therefore, the RRimp algorithm will provide an insight on how

the ZT estimator works and will eventually help promote its application in practice.

Since cost data are often highly skewed, with most people incur little costs, but

a few people accumulate huge costs, it is often desirable to estimate the median

and other quantiles of the costs. These quantities can be readily available if we can

estimate the survival function of costs. Using the original redistribute-to-the right

algorithm, we propose a RRS (abbreviated as RRS for survival estimator) survival

estimator for costs, and show that it is equivalent to a simple weighted (SW) survival

estimator for costs (Zhao and Tsiatis, 1997; Zhao et al., 2012). We extend this method

and propose a RRimpS survival estimator. We conduct simulation studies to compare

this RRimpS survival estimator with the RRS survival estimator (or equivalent SW
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estimator), and a more efficient ZTS survival estimator (Zhao and Tsiatis, 1997; Zhao

et al., 2012). We will discuss our findings in the Conclusion section.

2. Notation and Assumptions

For the ith individual in the study, i = 1, 2, . . . , n, we define Ti as the survival time

from the beginning of the study until the occurrence of some event, e.g. death, or

disease relapse. The censoring time for the ith individual is denoted as Ci. We can

observe either the survival time or the censoring time, whichever is smaller, i.e. we

observe the follow-up time Xi = min(Ti, Ci) and the indicator variable ∆i = I(Ti ≤

Ci). We define Mi(t) as the accumulated cost of patient i from time 0 to t. For some

real applications, we only observe the total cost Mi = Mi(Xi). However, in other

studies, we may know the entire cost history, Mi(t), 0 < t < Xi.

We assume that the censoring variable is independent of the survival time and

cost accumulation process, which is often satisfied in well-conducted clinical trials

and some observational studies where censoring is caused mainly by administrative

reasons. Due to the presence of censoring, the marginal distribution of cost may be

nowhere identifiable without making some parametric assumptions (Huang, 2002).

Hence we adopt an approach that focuses on the accumulated cost by a time limit L,

where L is chosen such that a reasonable amount of information is still available at

that time. A consequence of using such a restriction is that a survival time larger than

L can be considered equivalently as having an event at time L, i.e. TL
i = min(Ti, L)

(we still use Ti for notational convenience).

We consider the problem of estimating the mean cost, µ = E{Mi(Ti)}, and the

survival function of cost, S(x) = Pr{Mi(Ti) > x}, for costs accumulated to a time L.

For reasons that will become clear later, we also need to define the survival function
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for the event time as ST (t) = Pr(Ti > t), and the survival function for the censoring

time as K(t) = Pr(Ci > t).

3. Estimating the Mean Cost

3.1. Without Using Cost History: The BT Estimator and Its Equivalent RR Esti-

mator

For estimation of mean cost accumulated over time L with censoring data, a consistent

estimator was proposed by Bang and Tsiatis (2000) based on the inverse probability

weighting technique:

µ̂BT =
1

n

n∑
i=1

∆iMi

K̂(Ti)
, (2.1)

where Mi is the total observed cost for the ith individual, and K̂(Ti) is the Kaplan-

Meier estimator for the survival function of the censoring time, K(t) = Pr(Ci > t).

K(Ti) represents the probability that a subject is uncensored at Ti. The basic idea

of the BT estimator is that each complete observation represents potential 1/K̂(Ti)

observations who might be censored.

Even though the BT estimator is easy to obtain mathematically, it is not very

intuitive for people to understand why it works. The replace-from-the-right (RR)

estimator proposed by Pfeifer and Bang (2005), on the other hand, is a more intuitive

estimator. To explain the main idea of the RR method, first we note that without

censoring, a mean cost estimator is simply the average of costs from all observations.

When a subject is censored, we only know that this subject lives longer than his

censoring time, but we do not have information on his total cost. In the RR algorithm,

we replace this subject’s cost by an average of costs from those individuals who

survived longer than this subject. Specifically, a RR estimator for the mean costs can

be obtained by first arranging all the subjects from the smallest observed time to the
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largest observed time (if there is a tie, put the events a little before the censored).

We then move from the right (the largest observation time) to the left (the smallest

observation time). When we encounter the largest censored observation, say, at time

Ci, we replace its costs by the average of costs from all the observations to its right,

MRR
i =

∑n
j=1 I(Xj > Ci)Mj∑n

j=1 I(Xj > Ci)
. (2.2)

We move to the left and repeat this process of replacing all the censored costs with

the average of all upstream costs (some of these are real costs and some are replaced

costs). The RR mean cost estimator is simply an average of all the costs from both

complete observations and censored observations (replaced costs), i.e.

µ̂RR =
1

n

n∑
i=1

{∆iMi + (1−∆i)M
RR
i }. (2.3)

Although the BT estimator (2.1) and the RR method (2.3) look quite different –

the former is based on a well-known theory, and the latter makes intuitive sense, it is

quite amazing that the two estimators are actually mathematically equivalent. The

detailed proof was provided in Zhao et al. (2011).

3.2. Using the Cost History: The ZT Estimator and Its Equivalent RRimp Estimator

The BT estimator and its equivalent RR algorithm use only the total cost information

from uncensored subjects. Hence, they are not very efficient. An improved estimator

was proposed by Zhao and Tian (2001), which utilizes cost history information from

both censored and uncensored observations. Therefore the ZT estimator is often more

efficient. The ZT estimator has the following simplified form (Pfeifer and Bang, 2005):

µ̂ZT =
1

n

n∑
i=1

∆iMi

K̂(Ti)
+

1

n

n∑
i=1

(1−∆i)[Mi(Ci)−M(Ci)]

K̂(Ci)
, (2.4)
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where M(Ci) =
∑n

j=1 I(Xj ≥ Ci)Mj(Ci)/
∑n

j=1 I(Xj ≥ Ci), which is the average

accumulative cost at time Ci of those subjects who are alive at Ci.

The ZT estimator consists of two terms. The first term is the BT estimator. The

second term is constructed using cost history information, which can be viewed as

an adjustment term. The ZT estimator gains more efficiency by adjusting the BT

estimator based on the difference of censored costs and the average accumulated

costs at the same time point. Zhao and Tian (2001) established the large sample

property for this estimator. Furthermore, Zhao et al. (2007) described the conditions

under which this estimator is equivalent to the partitioned Bang and Tsiatis (2000)

estimator, as well as the two estimators of medical costs proposed by Lin et al. (1997).

Since the BT estimator has an intuitive explanation through the RR algorithm, it

is natural to wonder whether the ZT estimator has a similar intuitive explanation. As

a result, we propose a RRimp algorithm, which makes intuitive sense, and later we

show that it is equivalent to the ZT estimator. In contrast to the simple RR method,

which depends only on the total costs from complete observations, the RRimp algo-

rithm uses the cost history information. Intuitively, for a censored subject, we already

know his accumulated cost before censoring. Hence, the only thing we need to esti-

mate is his cost after the censoring time point. We can achieve that by the average

of additional costs accumulated by those subjects who survive longer. The detailed

RRimp estimator can be described as follows. First arrange all the subjects from the

smallest observed time to the largest observed time. If there is a tie, we assume events

happen shortly before censoring times. Since we focus on time-restricted costs esti-

mation, we assume that the individual with the largest observed time is uncensored.

Starting from the right (the largest observed time) we move to the left. We first find

the largest censoring time, denoted as Ci. We replace the cost for this observation by

a summation of his observed cost and the average additional accumulated costs from
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all subjects who have a larger survival time, i.e.

MRRimp
i = Mi(Ci) +

∑n
j=1 I(Xj > Ci){Mj −Mj(Ci)}∑n

j=1 I(Xj > Ci)
. (2.5)

We then move to the second largest censoring time and perform the same replacement

procedure, where we use the replaced cost for the largest censoring time in calculating

the average. We move to the left and repeat this process until we replace all the

censored costs. The RRimp estimator is then obtained by an average of costs from

all complete observations (real costs) and the censored observations (replaced costs),

i.e.

µ̂RRimp =
1

n

n∑
i=1

{∆iMi + (1−∆i)M
RRimp
i }. (2.6)

We illustrate this algorithm using a simple example in Figure 1. Suppose we observe

the following data: X = {1, 2, 3, 4, 5}, ∆ = {1, 0, 1, 0, 1}, and their accumulated costs

Mi(·) are shown in the figure below. Here the 2nd and 4th subjects are censored.

In Step 1, we try to obtain the replacement cost for subject 4. Since subject 5 is

the only one surviving longer than subject 4. the replacement cost for subject 4 is

equal to the summation of the censored cost of subject 4 (=60) and the additional

accumulated cost of subject 5 from time X4 to X5 (= 40−30), which is 70. Similarly,

in Step 2 we try to obtain the replacement cost for subject 2 by adding the observed

cost of subject 2 (=50) and the average of additional costs after time X2 for subject 3

(=100-60, real costs), subject 4 (=70-20, replaced costs) and subject 5 (=40-10, real

costs), which is equal to 90. Therefore, the mean cost estimated from the RRimp

method gives an estimate of 62, as shown in the graph below.
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Xi = 1 2 3 4 5
x o x o x

M1(·) =10

M2(·) =20 50

M3(·) =30 60 100

M4(·) =10 20 40 60

M5(·) =5 10 20 30 40

Step 1: (MRRimp
4 ) 70{= 60 + (40− 30)}

Step 2: (MRRimp
2 ) 90{= 50 + [(100− 60) + (70− 20) + (40− 10)]/3}

µ̂RRimp = (10 + 90 + 100 + 70 + 40)/5 = 62.

Figure 1. An example for the RRimp mean cost estimator.

Meanwhile, the ZT estimator of the mean cost obtained from the same data set is:

µ̂ZT =
1

5

5∑
i=1

∆iMi

K̂(Ti)
+

1

5

5∑
i=1

(1−∆i)[Mi(Ci)−M(Ci)]

K̂(Ci)

=
1

5
(
10

1
+

100

3/4
+

40

3/8
) +

1

5
(
50− 35

3/4
+

60− 45

3/8
)

=
1

5
(10 + 400/3 + 320/3) +

1

5
(20 + 40)

= 50 + 12 = 62,

where the Kaplan-Meier estimates for K(t) = Pr(Ci > t) are K̂(Xi)=(1, 3/4, 3/4,

3/8, 3/8), at Xi = {1, 2, 3, 4, 5}, and M(Ci) = {35, 45}, at Ci = {2, 4}, respectively.

Hence, We obtain exactly the same estimate for the mean cost using the ZT estimator

and the RRimp method using this data set. Actually they are always the same no

matter what data sets we use. A mathematical proof of the equivalence of these two

estimators is provided in Appendix A.

In summary, the RRimp method works as follows. Due to censoring, we use the

upstream complete costs to infer the censored cost. When we have cost history infor-
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mation for both censored and uncensored observations, we can replace the censored

cost by supplementing what we have observed with the additional accumulated costs

from upstream observations. This RRimp method is mathematically equivalent to the

ZT estimator, and as demonstrated by simulations and examples in Zhao and Tian

(2001), they are generally more efficient than the BT estimator and its equivalent RR

method.

4. Estimating Survival Functions for Costs

In additional to estimating the mean costs, it is often desirable to estimate the sur-

vival function of costs in practice, since the the survival function can provide more

information about the costs, such as the medians, and quartiles, which are more ro-

bust to outliers. Motivated by the idea of the RR algorithm for estimating the mean

costs, we investigate how to use the RR principle to develop survival estimators for

the costs. We show that a naive way of deriving the survival estimator based on the

RR algorithm for the mean cost estimator will result in a biased estimator. Instead

we propose a new redistribute-to-the-right (RRS) algorithm for an estimator of the

survival function of costs (we add “S” to indicate it is a survival estimator), based

on the original idea from Efron (1967) who discovered the algorithm for the survival

time. We will show that it is equivalent to a simple weighted (SW) survival estimator

of costs, whose form was described in the context of estimating the quality adjusted

lifetime by Zhao and Tsiatis (1997). We also attempt to derive a survival estimator

based on the redistribute-to-the-right algorithm that uses cost history information.

We will discuss the advantage and disadvantage of such an estimator.
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4.1. The SW Estimator and Its Equivalent RRS Estimator

Following the idea of Zhao and Tsiatis (1997), a SW estimator for the survival function

of costs can be obtained by

ŜSW (x) =
1

n

n∑
i=1

∆i

K̂(Ti)
I(Mi > x). (2.7)

The large sample property of this estimator, such as its consistency and asymptotic

normality can be established similarly, which is omitted here.

To construct an equivalent RR survival estimator, one is tempted to use the re-

placement costs at each censored points, and estimate the survival function for costs

using the following formula:

Ŝnaive(x) =
1

n

n∑
i=1

{∆iI(Mi > x) + (1−∆i)I(MRR
i > x)}. (2.8)

Unfortunately, if we use the empirical distribution function shown above to estimate

the survival function for costs, treating the replaced costs as if they were the real

costs, the estimated curve will be biased, although the area under the curve, i.e.,

the estimated mean costs, is unbiased. This will be demonstrated in subsequent

simulation studies.

In order to find an equivalent RRS estimator, we rely on the original idea of

redistribution-to-the-right proposed by Efron (1967), which was used to explain the

Kaplan-Meier estimator for survival time. For each censored subject, since we do not

know the actual costs, we will find the contributions from observations that are larger

than this subject. Specifically, we first sort all subjects according to their observation

times from the smallest (left) to the largest (right). For any tied observations, we

assume the death time occurs a little earlier than the censored time. Consider a cen-

sored observation i whose initial weight is set to be 1. We distribute its weight evenly
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to all the time points to its right. For example, if there are ni such observations, then

each one gets a weight of 1/ni. Next we find the smallest censored observation to

its right, and redistribute its weight again evenly to all the observations to its right.

Repeat this process until we have redistributed the weight of the largest censoring

time. Note that after redistribution the weights are non-zero only at those complete

observations larger than the censored observation i. Denoting the final weight at the

jth complete event time as W
(i)
j , it represents the contribution of a complete subject

j to the censored subject i.

Due to censoring we often cannot evaluate the mark I(Mi > x), instead we use the

weighted sum

I(Mi > x)RR =
n∑

j=1

∆jI(Tj > Xi)W
(i)
j I(Mj > x) (2.9)

as the replacement mark. As a result, the RRS estimator for the survival function of

costs is

ŜRR(x) =
1

n

n∑
i=1

{∆iI(Mi > x) + (1−∆i)I(Mi > x)RR}. (2.10)

We illustrate this idea using a simple example. Assume we have data [X =

{1, 2, 3, 4, 5}, ∆ = {1, 0, 1, 0, 1}, M = {10, 20, 40, 30, 50}]. As shown in Figure 2, we

first find the weight W
(2)
j , i.e. the contribution of complete observations to the cen-

sored observation 2. In Step 0, the censored observation 2 gets the weight of 1. In

Step 1, we distribute its weight of 1 to all the 3 observations to its right, so that each

of them gets a weight of 1/3. Moving to the next censoring time, observation 4, we

distribute its weight of 1/3 to the one observation to its right, making the weight at

time 5 to be 2/3. Hence we have W
(2)
3 = 1/3, and W

(2)
5 = 2/3.

It is easy to obtain the contributions of complete observations to the censoring
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3
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Figure 2. An example for weight W
(2)
j .

observation 4, in this case, W
(4)
5 =1. Hence the RRS estimator is

ŜRR(x) =
1

5

5∑
i=1

[∆iI(Mi > x) + (1−∆i)I(Mi > x)RR]

=
1

5
{I(M1 > x) + I(M3 > x) + I(M5 > x) + I(M2 > x)RR + I(M4 > x)RR}

=
1

5
{I(M1 > x) + I(M3 > x) + I(M5 > x)

+
1

3
I(M3 > x) +

2

3
I(M5 > x) + I(M5 > x)}

=
1

5
{I(M1 > x) +

4

3
I(M3 > x) +

8

3
I(M5 > x)}.

The simple weighted estimator for this example is

ŜSW (x) =
1

5

5∑
i=1

[
∆iI(Mi > x)

K̂(Ti)
]

=
1

5
{I(M1 > x)

1
+

I(M3 > x)

3/4
+

I(M5 > x)

3/8
}

=
1

5
{I(M1 > x) +

4

3
I(M3 > x) +

8

3
I(M5 > x)}.

It is clear that the RRS estimator is equivalent to the SW survival estimator for costs

in this example.
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Remarks

1. It is not difficult to find that the weight W
(i)
j is related to the estimated con-

ditional probability of an event occurring at Xj given that the subject is alive

at Xi (discrete case). Thus, W
(i)
j can be easily obtained from Kaplan-Meier

estimator:

W
(i)
j =

1

nŜT (Ci)K̂(Tj)
, (2.11)

where ŜT (x) is the Kaplan-Meier estimator for Pr(T > x), K̂(x) is the Kaplan-

Meier estimator for Pr(C > x).

2. The weights W
(i)
j are exactly the weights needed for obtaining the replaced costs

for a censored observation i, in estimating the mean costs, i.e.

MRR
i =

n∑
j=1

∆jI(Xj > Xi)W
(i)
j Mj. (2.12)

3. We can show that this RRS estimator (2.10) for the survival function of costs

is mathematically equivalent to the SW estimator based on the similar results

for mean cost estimators.

4.2. RR Improved Survival Estimator for the Survival Function of Costs

As in the case of estimating the mean costs, the SW and its equivalent RRS estimator

for the survival function of costs are not efficient, since they utilize only the costs from

complete observations. Based on the principles of constructing the RRS survival

estimator and the RRimp estimator for mean costs, we propose an improved RR

survival (RRimpS) estimator, as shown below:

ŜRRimp(x) =
1

n

n∑
i=1

[∆iI(Mi > x) + (1−∆i)I(Mi > x)RRimp], (2.13)
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where

I(Mi > x)RRimp =
∑

j

[∆jI(Tj > Xi)W
(i)
j I(M

(i)
j > x)], (2.14)

is the new replacement mark, and M
(i)
j = Mi(Ci)+Mj−Mj(Ci) is the cost combining

information from censored and complete data.

This RRimpS estimator is always monotone, which is a desirable property for a

survival estimator. In contrast, an improved survival function estimator of costs

developed similar to Zhao and Tsiatis (1997), which we will call the ZTS survival

estimator, cannot be guaranteed to be monotone (Huang and Louis, 1998). The

RRimpS estimator is also more efficient than the SW estimator and the ZTS estimator,

for many realistic situations. However, unlike the SW and the ZTS estimators, this

RRimpS estimator is not consistent anymore. In the next section, we will conduct

simulation experiments to examine the properties of these survival estimators.

5. Simulation Studies

We conduct simulation studies under several different scenarios to evaluate the sur-

vival function estimators for costs. We generate survival times using an exponential

distribution T ∼ exp(10), and a uniform distribution T ∼ Unif(0, 15). The survival

time is truncated at L=10. We generate also censoring times using a uniform distri-

bution, C ∼ Unif(0, 22), for light (25%-30%), and Unif(0, 15), for heavy censoring

(37%-44%). The sample size is set to be 100, and the number of simulations is 1000.

We consider U-shaped sample paths for the cost distribution, similar to the simu-

lation settings of Bang and Tsiatis (2002) and Zhao et al. (2012). We partition the

entire time period of 10 years into 10 equal intervals. Each individual’s costs consist

of initial diagnostic costs incurred at time 0, terminal costs incurred during the last

year before the failure time, fixed annual costs, and random annual costs (which vary
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from year to year). The diagnostic costs, fixed annual costs, random annual costs,

and terminal costs are generated using a log normal distribution with parameters

(10, 0.2452), (6, 0.2452), (4, 0.2452), (9, 0.6322), respectively. We estimate the survival

function of costs using the SW estimator, the ZTS estimator from Zhao and Tsiatis

(1997), and our RRimpS estimator, under the four different simulation scenarios. We

also examined the naive survival estimator of (2.8) for one of the settings.
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Figure 3. The mean of estimated survival functions for costs from 1000 replications

with naive method.
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Figure 3 shows the true survival function for costs and the average of the survival

curves from the 1000 simulations using different estimators, for the setting with heavy

censoring and exponential survival time. As expected, the SW estimator and the ZTS

estimator are both unbiased since they overlap with the true survival curve. However,

the naive method obtained by using the replacement costs as the true costs is severely

biased. Similar biases for the naive method under other scenarios are also observed.

Figure 4 and Figure 5 display the mean and sample variance of different survival

function estimators for costs based on 1000 replications, under four simulation scenar-

ios. The SW and ZTS estimators are consistent as in Figure 3, since they overlap with

the true survival curve. Although from a theoretical point of view the new proposed

RRimpS estimator is not always consistent, its average survival curves follow the true

survival curves very well, for all the settings considered here. This indicates that the

bias of the RRimpS survival estimator is relatively small. In the plots of the sample

variances, we find that the ZTS estimator is more efficient than the SW estimator.

More importantly, our RRimpS estimator outperforms both SW and ZTS estimators

under all these four scenarios, with more efficiency gain under a heavy censoring.

The results show that the RRimpS survival function has significant improvement in

efficiency. More importantly, the improvement is achieved without sacrificing the

monotonicity property, unlike the ZTS estimator and other more efficient estimators

(Huang and Louis, 1998).

Since the RRimpS survival estimator performs worse when there is a high corre-

lation between costs accumulated in different periods, we design an extreme case to

examine how biased the RRimpS estimator could be. We generate the fixed annual

costs using a log normal distribution with parameters (8, 0.2452), while setting the

diagnostic costs, random annual costs, and terminal costs to be 0. All other pa-

rameters stay the same. The mean survival curves and the Mean Squared Errors
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Figure 4. The mean of estimated survival functions for costs from 1000 replications.
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Figure 5. The sample variance of estimated survival functions for costs from 1000

replications.
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Figure 6. The mean and MSE of estimated survival functions for costs under the

extreme case from 1000 replications.
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(MSE=variance+bias2), for the case with exponential survival time and heavy cen-

soring, and for different sample sizes (n=100, 400), are displayed in Figure 6. We

observe similar trends for other simulation settings. Figure 6 shows that the bias for

the RRimpS estimator is noticeable now, albeit very small. The MSE for the RRimpS

estimator is still mostly the smallest among the three methods available, even when

the sample size is as large as 400. In general, as the sample size gets larger, the

variance becomes smaller but the bias stays the same, we expect the gain in terms of

MSE for the RRimpS estimator will decrease with increasing sample sizes.

6. Conclusion

In this chapter we extend the research conducted by Zhao et al. (2011) who provided a

link between a theoretically justified mean cost estimator which is based on the inverse

probability weighting techniques, the BT estimator, and an intuitive RR estimator.

We propose a modified replace-from-the-right algorithm, the RRimp estimator, which

utilizes the cost history process and therefore is generally more efficient than the RR

estimator. We establish a mathematical equivalency between the RRimp estimator

and an improved mean cost estimator, the ZT estimator. Thus, we are able to provide

an intuitive explanation on how the ZT estimator works. We believe our effort enables

a better understanding of the theoretically derived mean cost estimators, the BT and

ZT estimators, and meanwhile provides justification for the simple, intuition based RR

and RRimp estimators. Due to a lack of a theoretical background for understanding

the BT and ZT estimators, some practitioners might be reluctant to use them. With

the easy interpretation of the RR and RRimp estimators, and established equivalency

between these estimators and the BT, ZT estimators, we believe these estimators will

become more popular among practitioners.
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It proves to be a more challenging problem deriving an intuitive estimator for the

survival function of costs. We show that a naive method using the replaced cost as the

true costs in an empirical survival function gives rise to a biased estimator. Resorting

to the original idea of redistribute-to-the right algorithm (Efron, 1967) for explaining

the Kaplan-Meier estimator, we construct a RRS survival estimator, which can be

shown to be equivalent to the SW survival estimator for costs. We also propose a

RRimpS survival estimator which has the desirable property of being monotone, and

more efficient than the RRS survival estimator, but unfortunately, this estimator is

not always consistent. Since the bias seems to be quite small from many simulations

we conduct, it may be considered as an alternative survival estimator for costs in

a real setting when the sample size is not very large and cost history information is

available. Further research needs to be conducted in order to find a survival estimator

for costs which is monotone, consistent and efficient.
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CHAPTER III

ESTIMATING ICER AND CI WITH DIFFERENT TERMINATING

EVENTS FOR SURVIVAL TIME AND COSTS

1. Introduction

Due to skyrocketing costs of health care and limited resources available, economic

studies of different treatment options are becoming increasingly popular in evaluating

new treatment strategies. The U.S. Preventive Services Task Force and the Panel of

Cost-Effectiveness in Health and Medicine have urged consideration of both cost and

clinical effectiveness when directing health care investments. They have also issued

a comprehensive set of guidelines to aid practitioners of Cost-effectiveness Analysis

(CEA) (Gold et al., 1996; Walker, 2001; American College Physicians, 2008). It is

clear that if two competing programs do not differ in their health benefits, then

the one with the lower cost would be preferred. On the other hand, if the costs of

two programs are judged equivalent, the intervention with the greater health benefit

would be preferred. However, when a program has both higher cost and greater

benefit than its competitor, a decision must be made as to which of the two programs

should be adopted. The incremental cost-effectiveness ratio (ICER) is designed to

measure the trade-off between the costs and health benefits of medical interventions.

It is defined as the costs incurred for saving an additional year of life. This measure

has been the most popular tool used for CEA (e.g., Zwanziger et al., 2006; Wailoo

et al., 2008; McIntosh et al., 2009; Edlin et al., 2010; Huang et al., 2010; Maud et al.,

2010; Shiroiwa et al., 2010; Linde et al., 2011).

The analysis of cost data involves some unique challenges that require advanced sta-

tistical methodologies, especially when costs are censored. For example, randomized
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clinical trials often enroll subjects over a broad time period, but the trial ends at a

fixed time point. As a result, subjects are observed for differing amounts of time, and

those who are still alive at the end of the study are considered censored. It has been

just over a decade since it was recognized that caution should be exercised regarding

the non-standard survivorship bias inherent in censored cost data, as described in a

landmark paper by Lin et al. (1997). The authors pointed out that censored cost

data can be problematic when analyzed using most standard tools, including sample

mean and variance, t-test, ordinary least squares, Kaplan-Meier estimator, Log-rank

test, and Cox proportional hazards regression. The problem arises from the induced

informative censoring problem. Even when the survival time and the censoring time

are independent, which is true for end-of-study or administrative censoring in clinical

trials, the corresponding costs are generally not independent. Major efforts have been

made to provide consistent and efficient estimation of mean medical costs (Bang and

Tsiatis, 2000; Zhao and Tian, 2001; Bang, 2005; Zhao et al., 2007, among others).

Since ICER is a ratio statistics, the distribution of ICER is quite skewed. Thus,

instead of providing the standard errors of the ICER, it is often desirable to construct

a confidence interval (CI) for the ICER in order to estimate its variability. Various

methods have been proposed on finding CIs for the ICER. Non parametric bootstrap-

ping methods include Efron and Tibshirani (1986); Efron and Tibshirani (1993); Cook

and Heyse (2000); Jiang and Zhou (2004); Dinh and Zhou (2006); Wang and Zhao

(2008), and parametric methods include Fieller (1954); O’Brien et al. (1994); Laska

et al. (1997); Gardiner et al. (2001). Although most researchers believe that the

bootstrap method provides better coverage, since the Fieller method is based on the

large sample normal assumption, Hwang (1995) and Jiang et al. (2000) showed that

both of them are equivalent since they are both first order accurate.

To estimate ICER and calculate its confidence intervals by Fieller’s theorem, we
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need estimate not only between-treatment differences with respect to cost and effect,

but also their respective variances and covariance. Many researchers have proposed

methods for estimating the mean medical costs and related variance, and most of them

focus on the restricted medical costs, i.e., the costs accumulated within a time limit.

A challenge comes when the terminating events for cost and survival are different.

For example, a new strategy might prevent the heart failure event, but may not

improve the overall survival time. Hence, it extends the heart failure free survival

time, but not the overall survival time. Meanwhile, we are still interested in the cost

estimation up to death. Although the construction for the CI of usual ICER with the

same terminating points has been studied much, there are no theoretical results for

research on the ICER and its CI which allow different terminating events.

The remainder of this chapter is organized as follows. We first review mean cost and

mean survival estimator, as well as their variance estimators, and propose the modified

form for mean heart failure free survival estimator. A consistent estimator for ICER

with different terminating events will then be proposed, as well as the construction

method of corresponding CI. As one of key steps, the covariance estimator between

mean cost and heart failure free survival estimators are proposed together. This is

followed by the numerical studies, which displays the performance of our proposed

covariance formula, as well as the empirical coverage of CI for this special ICER.

Finally, the application for this method and our future works will be discussed.

2. Method

2.1. Notation and Assumptions

For clinical trials, the death of patients may not be observed until study ends. There-

fore, those patients are treated as censored subjects, with their survival time and
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total costs unknown.

Moreover, assume the patients in study may suffer from heart failure, and a new

treatment can reduce the risk of heart failure. Thus, patients with the new treatment

tend to have longer time before heart failures, or even they may have no heart failures

occurred during overall survival time. Therefore, we define heart failure free survival

time as the time of heart failure or death, whichever occurs first. Since the new

treatment can lower the risk of heart failure, but not extend the overall survival

time, this heart failure free survival time can measure the effects of the treatment

better. Meanwhile, the cost cumulation is until the overall survival time. Thus, there

will be four types of patients: observing death without heart failure; observing heart

failure first and then death; observing heart failure and then censored; censored before

observing death or heart failure.

We first concentrate on patients in one arm of the study. For the ith person, let

Ti denote the overall survival time, T F
i denote the heart failure free survival time,

i.e. T F
i = min(HFi, Ti), where HFi is the time when a patient has a heart failure.

Ci is the censoring time. Denote overall follow-up time Xi = min(Ti, Ci), and death

indicator ∆i = I(Ti ≤ Ci). Similarly, XF
i = min(T F

i , Ci), ∆
F
i = I(T F

i ≤ Ci), where

I(.) is the indicator function. Let Mi(u) be the cost accumulated over time u. For

simplicity, we denote Mi = Mi(Xi) as the observed total cost.

We assume that the censoring times Ci is independent of the survival time Ti,

the heart failure time HFi, and the cost history process {Mi(u), u ≤ Ti}. This

assumption is reasonable for a well conducted clinical trial, where censoring is mainly

caused by different entering times into the study, and cost collection is ended early

due to reasons other than patients’ health status. Due to the presence of censoring,

it is impossible to estimate the cost over the entire health history. Therefore, we only

consider cost accumulated up to a maximum of L units of time. This is equivalent to
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redefining our survival time as TL
i = min(Ti, L), and T FL

i = min(T F
i , L). For ease of

notation, we suppress the superscript L of TL
i and T FL

i later.

For each of the two treatment groups, k = 0, 1, we observe the following identi-

cally distributed, independent data {Xi, ∆i, X
F
i , ∆F

i , Mi(Xi), i = 1, · · · , nk}; nk is the

number of patients for arm k. Our goal is to estimate the mean cost µM = E(Mi)

and the mean heart failure free survival time µF = E(T F
i ) for each of the treatment

groups, and then obtain the ICER and its confidence interval comparing the two

treatment groups.

2.2. Estimating Mean Cost for Each Group

For estimation of mean cost accumulated over time L with censoring data, a consistent

estimator was proposed by Bang and Tsiatis (2000) based on the inverse probability

weighting technique:

µ̂M
BT =

1

n

n∑
i=1

∆iMi

K̂(Ti)
, (3.1)

where Mi is the total observed cost for the ith individual, and K̂(Ti) is the Kaplan-

Meier estimator for the survival function of the censoring time, K(u) = Pr(Ci >

u). K(Ti) represents the probability that a subject is uncensored at Ti. The basic

idea of this estimator is that each complete observation represents potential 1/K̂(Ti)

observations who might be censored.

When cost history is available, the BT estimator is not efficient since it does not

use the cost information from censored ones. A more efficient estimator is proposed

by Zhao and Tian (2001). We can estimate the mean cost by using their improved

estimator:

µ̂M
ZT = n−1

n∑
i=1

∆iMi

K̂(Ti)
+ n−1

n∑
i=1

∫ L dNC
i (u)

K̂(u)
[Mi(u)− Ĝ∗{M(u), u}], (3.2)
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where K̂(u) is the Kaplan-Meier estimator for survival distribution of Ci at time u,

NC(u) =
n∑

i=1

NC
i (u) =

n∑
i=1

I(Xi ≤ u, ∆i = 0),

Ĝ∗{M(u), u} = {
n∑

i=1

Mi(u)Yi(u)}/Y (u), (3.3)

and Y (u) =
∑n

i=1 Yi(u) =
∑n

i=1 I(Xi ≥ u).

The ZT estimator has the following simplified form (Pfeifer and Bang, 2005):

µ̂M
ZT =

1

n

n∑
i=1

∆iMi

K̂(Ti)
+

1

n

n∑
i=1

(1−∆i)[Mi(Ci)−M(Ci)]

K̂(Ci)
, (3.4)

where M(Ci) =
∑n

j=1 I(Xj ≥ Ci)Mj(Ci)/
∑n

j=1 I(Xj ≥ Ci), which is the average

accumulative cost at time Ci of those subjects who are alive at Ci.

It was shown that this estimator is consistent, and asymptotically normally dis-

tributed with variance that can be estimated consistently by

V̂ ar(µ̂M
ZT ) =

1

n2

n∑
i=1

∆i(Mi − µ̂M
ZT )2

K̂(Ti)
+

1

n2

∫ L

0

dNC(u)

K̂(u)2
{Ĝ(M2, u)− Ĝ(M, u)2}

− 2

n2

∫ L

0

dNC(u)

K̂(u)2
[Ĝ{MM(u), u} − Ĝ(M, u)Ĝ{M(u), u}]

+
1

n2

∫ L

0

dNC(u)

K̂(u)2
[Ĝ∗{M(u)2, u} − Ĝ∗{M(u), u}2], (3.5)

where

Ĝ(Z, u) =
1

nŜ(u)

n∑
i=1

∆i

K̂(Ti)
ZiI(Ti ≥ u), (3.6)

for any random variable Z, and Ŝ(u) is the Kaplan-Meier estimator for S(u), the

survival distribution of T at time u, using data (Xi, ∆i, i = 1, · · · , n).

Ĝ∗{Z, u} = {
n∑

i=1

ZiYi(u)}/Y (u), (3.7)

and Y (u) =
∑n

i=1 Yi(u) =
∑n

i=1 I(Xi ≥ u).
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This formula for variance, given by Zhao and Tian (2001); Zhao and Wang (2010),

is a simplified form of original formula.

2.3. Estimating Mean Heart Failure Free Survival Time for Each Group

The mean survival time can be obtained by the area under the survival function, i.e.,

µ̂T =

∫ L

0

Ŝ(x)dx, (3.8)

where Ŝ(x) is the Kaplan-Meier estimator for S(u) = Pr(T > u). This mean survival

time estimator can be equivalently estimated by (Satten and Datta, 2001):

µ̂T =
1

n

n∑
i=1

∆iTi

K̂(Ti)
. (3.9)

Similarly, the mean heart failure free survival time can be estimated by

µ̂F =
1

n

n∑
i=1

∆F
i T F

i

K̂F (T F
i )

, (3.10)

where K̂F (u) is the Kaplan-Meier estimator for K(u) = Pr(C > u), the survival

distribution of C at time u, using data (XF
i , ∆F

i , i = 1, · · · , n). Following Zhao and

Tian (2001), its variance can be estimated consistently by

1

n2

n∑
i=1

∆F
i (T F

i − µ̂F )2

K̂F (Ti)
+

1

n2

∫ L

0

dNF (u)

K̂F (u)2
{ĜF (T F2, u)− ĜF (T F , u)2},(3.11)

where

NF (u) =
n∑

i=1

NCF
i (u) =

n∑
i=1

I(XF
i ≤ u, ∆F

i = 0),

ĜF (Z, u) =
1

nŜF (u)

n∑
i=1

∆F
i

K̂F (T F
i )

ZiI(T F
i ≥ u), (3.12)

ŜF (u) is the Kaplan-Meier estimator for SF (u) = Pr(T F
i > u).

As discussed in Zhao and Tian (2001), discounting of future years of survival time
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and costs at a specific annual rate can be easily accommodated in the above formulae.

2.4. Estimating the ICER and Its Confidence Interval

To compare two treatments, the ICER is the ratio between difference of their costs

and difference of effects. Here we use mean of heart failure free survival time as the

measure of effectiveness.

For a two-arm trial (k, k = 0, 1), denote µM
k as the mean cost and µF

k as the mean

heart failure Free survival time, each limited to a window of time [0, L]. We consider

the ICER as the additional cost for a new treatment for saving one year of heart

failure free lifetime and define it as

γ =
µM

1 − µM
0

µF
1 − µF

0

,

which can be estimated by

γ̂ =
µ̂M

1 − µ̂M
0

µ̂F
1 − µ̂F

0

, (3.13)

where, µ̂M
k is the ZT estimator for the mean cost and µ̂F

k is the estimator for mean

heart failure free life time for group k.

We use Fieller’s Theorem to obtain confidence intervals for the ICER, similarly as in

Zhao and Tian (2001). Assuming that asymptotically x = µ̂M
1 − µ̂M

0 and y = µ̂F
1 − µ̂F

0

are bivariate normally distributed, the 100(1− 2α) percent confidence limits for the

ICER γ are

xy − z2
αsxy ± {(xy − z2

αsxy)
2 − (x2 − z2

αsxx)(y
2 − z2

αsyy)}1/2

y2 − z2
αsyy

, (3.14)

where sxx, syy, sxy are respectively the variances of x and y, and the covariance of x

and y, zα is the cut-off point with tail area α of the standard normal distribution. If

the denominator of equation (3.14) is positive, the CI is finite. When the denomina-
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tor is negative, which means the difference between effects of two treatments is not

significant (i.e., zero belongs to the CI of the divisor), the CI for ICER is exclusive

and thus infinite.

The variance of x and y can be obtained from results mentioned earlier, assuming

independent samples. To find the covariance between x and y, we need to find the

covariance between µ̂M
k and µ̂F

k . The mean heart failure free survival time estimator

and the mean cost estimators can both be described by martingale forms (Zhao and

Tian, 2001), and the covariance between them can be derived based on the counting

process and the general theory for missing data process (Fleming and Harrington,

1991; Robins and Rotnitzky, 1992; Robins et al., 1994). In Appendix B we show that

the covariance between the improved estimator for cost and the estimator for mean

heart failure free survival time for each arm can be estimated consistently by

1

n2

n∑
i=1

∆iMiT
F
i

K̂(Ti)
− 1

n3

n∑
i=1

∆iMi

K̂(Ti)

n∑
i=1

∆F
i T F

i

K̂F (T F
i )

+
1

n2

∫ L

0

dNCF (u)

K̂F (u)2
{ĜF0(T F M, u)− ĜF0(M, u)ĜF0(T F , u)}

− 1

n2

∫ L

0

dNCF (u)

K̂F (u)2
{ĜF0{T F M(u), u} − ĜF0{M(u), u}ĜF0(T F , u)},

where

ĜF0(Z, u) =
1

nŜF (u)

n∑
i=1

∆i

K̂(Ti)
ZiI(T F

i ≥ u), (3.15)

As mentioned before, the bootstrap methods can also be used for CI construction,

but they take more time, and not necessarily better than the Fieller’s method, which

can also be seen from the numerical comparison conducted by Wang and Zhao (2008).
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3. Numerical Studies

As commonly used in scenarios for simulation, survival time is simulated by expo-

nential distribution. The overall survival time T ∼ exp(10) for both two groups

with different treatments. The heart failure time HF ∼ exp(6) for Group 0, and

HF ∼ exp(12) for Group 1 with a more effective treatment to prevent heart failure.

T and HF are simulated independently and truncated at L=10, and heart failure free

survival time is T F = min(T,HF ). The censoring time C ∼ Unif(0, 15) with 42%

heavy censoring for overall survival time and 24%-30% censoring rate for heart failure

free survival time. The true mean heart failure free survival time for Group 0 and

Group 1 are 3.49 and 4.58 respectively. Figure 7 shows the survival functions of T F

for two groups. The survival function of Group 1 is above Group 0, which indicates

the patients in Group 1 tend to have a larger heart failure free survival time.

U-shaped sample paths for the costs are considered. The entire time period [0, 10]

is partitioned into 10 equal intervals. There are initial diagnostic cost at time 0, and

terminal cost during the last year before death. Within each time interval, there are

fixed annual cost (which fixes for each patient) and random annual cost (which varies

from year to year). We considered two settings of scenarios with uniform costs and

log normal costs. For uniform setting, the diagnostic cost, fixed annual cost, random

annual cost, and terminal cost are uniform distribution with respective parameters

(1000, 3000), (1000, 2600), (0, 400), (10000, 20000) for Group 0, and (20000, 30000),

(1000, 1600), (0, 400), (10000, 20000) for Group 1. For log normal setting, the diag-

nostic cost, fixed annual cost, random annual cost, and terminal cost are log nor-

mal distribution with respective parameters (9, 0.2452), (6.5, 0.2452), (4, 0.2452), and

(9, 0.6322) for Group 0, and (10, 0.2452), (6, 0.2452), (4, 0.2452), and (9, 0.6322) for

Group 1. The true mean cost for Group 0 and Group 1 are 23646 and 43505 under
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Figure 7. The survival functions of heart failure free survival time for two groups.

uniform setting, and 18998 and 31651 under log normal setting. Thus, the more

effective treatment adopted by Group 1 saves more heart failure free lifetime, while

costs much more than Group 0 by a large amount of diagnostic cost. Figure 8 shows

the kernel densities of costs for two groups, which indicates the mean cost of Group

1 is more than Group 0. It can also be seen that the distribution of log normal costs

is more skew than the uniform costs.

The simulation results for variance and covariance estimation based on 2000 replica-
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Figure 8. The kernel densities of cost for two groups in simulation.

tions are summarized in Table 1, where SVar is the sample variance of the estimator,

EVar is the mean of estimated variance, SCov is the sample covariance of µ̂M and µ̂F ,

and ECov is the mean of estimated covariance. The results show that the estimated

variance and covariance are close to the sample variance and sample covariance, and

the biases of estimators are small. Thus, the simulations display the consistency of

those estimators. The empirical coverage under different scenarios are shown in Table

2, in which we can find the coverage is approaching to nominal level as the sample

size increases.

4. Conclusion

Censoring brings challenges to estimating ICER and calculating its CI in cost-effectiveness

analysis, since usually failures can not be observed for all patients during clinical tri-

als. Another new challenge comes from the different terminating events, which is
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Table 1

Summary of variance and covariance estimation from 2000 replications

µ̂M µ̂F Cov(µ̂M , µ̂F )

Cost n k Bias SVar EVar Bias SVar EVar SCov ECov

Lnorm 100 0 19 770464 772142 -0.014 0.118 0.106 9.4 13.3

1 -30 1072544 1063645 0.005 0.145 0.141 -24.2 -23.7

200 0 20 385962 389229 -0.003 0.055 0.053 2.0 2.9

1 -28 525137 532257 -0.005 0.070 0.071 -11.8 -13.0

400 0 15 196160 195746 -0.003 0.026 0.026 1.1 1.5

1 11 264317 266563 -0.008 0.036 0.035 -7.3 -6.9

Unif 100 0 18 933790 895854 -0.016 0.116 0.106 69.2 75.4

1 21 778935 768607 -0.011 0.148 0.140 44.1 42.3

200 0 -20 438629 444898 0.006 0.052 0.053 31.8 34.5

1 22 372260 384993 0.005 0.068 0.070 18.1 19.1

400 0 -17 214646 222930 0.003 0.026 0.027 17.7 16.9

1 6 191395 192043 0.004 0.035 0.035 8.0 8.7

commonly encountered when the treatment aims to low risk of some events, for in-

stance, heart failure in our article, but not the extension of the overall survival time.

Therefore, statistical inference for ICER allowing different terminating events are

needed for practitioners to evaluate such a new treatment.

In this chapter, we provide a consistent estimator for ICER with different termi-

nating events, as well as a method to construct its CI. Our method not only handles

censoring problem well, but also allows different terminal events. Simulation studies

showed that our covariance estimator and the constructed CI perform very well for
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Table 2

Empirical coverage of confidence intervals for ICER from 2000 replications

Sample Nominal Log normal Uniform

Size level Cost Cost

100 0.95 0.935 0.936

0.90 0.884 0.879

0.80 0.781 0.779

200 0.95 0.948 0.945

0.90 0.895 0.899

0.80 0.801 0.798

400 0.95 0.953 0.954

0.90 0.908 0.902

0.80 0.803 0.793

some practical settings. Thus, our method provides an effective way to make statis-

tical inference for such data and is easy to implement. Furthermore, our proposed

covariance estimator can be used not only in the construction of CI for ICER, but

also other cases which require the covariance estimator.

Further work may be conducted to compare our method with Bootstrap method,

and investigate how ICER changes with different groups. Besides, ICER with heart

failure Free Quality-Adjusted lifetime (QAL) can also be studied similarly.
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CHAPTER IV

SUMMARY

In this thesis, several innovative methods are proposed for cost estimation and cost-

effectiveness analysis with censored data. Censoring brings unique challenges to this

field, since we cannot observe complete data for all the subjects in the study. Even

though it is reasonable to assume that the censoring and the potential event time are

independent (or conditionally independent) for most studies, the “induced informative

censoring” problem makes the cost evaluation more difficult, since many standard

methods for survival analysis are not appropriate for cost evaluation any more.

We first extend the research conducted by Zhao et al. (2011) who provided a link be-

tween the BT estimator and an intuitive RR estimator for estimating mean costs with

censored data. Our proposed RRimp estimator utilizes the cost history and therefore

is generally more efficient than the RR estimator. We establish the mathematical

equivalency between the RRimp estimator and an improved mean cost estimator, the

ZT estimator. Thus, we are able to provide an intuitive explanation for how the ZT

estimator works. We believe our effort enables a better understanding of the theo-

retically derived mean cost estimators, the BT and ZT estimators, and meanwhile

provides justification for the simple, intuition based RR and RRimp estimators.

It is more challenging to derive an intuitive estimator for the survival function of

costs. Motivated by the original idea of redistribute-to-the right algorithm (Efron,

1967) for explaining the Kaplan-Meier estimator, we construct a RRS survival esti-

mator, which can be shown to be equivalent to the SW survival estimator for costs.

We also propose a RRimpS survival estimator which has the desirable property of

being monotone, and more efficient than the RRS survival estimator, but unfortu-

nately, this estimator is not always consistent. Since the bias seems to be quite small
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from many simulations we conduct, it may be considered as an alternative survival

estimator for costs in a real setting when the sample size is not very large and cost

history information is available. Further research needs to be conducted in order to

find a survival estimator for costs which is monotone, consistent and efficient.

In performing cost-effectiveness analysis with censored data, a new challenge arises

from having the different terminating events for survival and cost estimation. There-

fore, statistical inference for ICER allowing different terminating events is desirable

for practitioners to deal with such data. We propose a consistent estimator for this

special ICER, as well as a method to construct its CI. The conducted simulation

studies show that our method performs very well for some practical settings. Thus,

our method provides an effective way to make statistical inference for such data and is

easy to implement. Further work for ICER and corresponding CI may be conducted to

compare our method with the Bootstrap method, and investigate how ICER changes

with different groups.
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APPENDIX A

PROOF FOR THE EQUIVALENCY OF THE ZT MEAN COST

ESTIMATOR AND THE RRIMP METHOD

Suppose we have observed the following survival and cost history data

[{Xi, ∆i, Mi, Mi(tj), j = 1, · · · , J}, i = 1, · · · , n],

where i denotes individuals, tj(j = 1, · · · , J) denotes the ordered distinctive censoring

times. Let Yj indicate the number of people who have observation times greater than

tj (i.e., Yj =
∑n

i=1 I(Xi > tj)), and nj represent the number of people who are

censored at time tj. If an event occurs at a censoring time tj, we assume this event

happens shortly before tj. Therefore, the set {Xi = tj} consist only of censored data.

First, for the subject i who is censored at tj (note that we allow multiple subjects

who are censored at time tj), define δMi(tj) as the difference between the observed

cost at time tj for the ith subject and the average accumulated cost at tj for subjects

who are still alive at tj:

δMi(tj) = Mi(tj)−M(tj) = Mi(tj)−
∑

i:Xi≥tj
Mi(tj)

Yj + nj

. (A.1)

Define M∗(tj) as the sum of δMi(tj) over all subjects who are censored at tj:

M∗(tj) =
∑

i:Xi=tj

δMi(tj) =
∑

i:Xi=tj

Mi(tj)− njM(tj)

=
∑

i:Xi=tj

Mi(tj)−
nj

Yj + nj

∑
i:Xi≥tj

Mi(tj). (A.2)

Starting from the largest censoring time tJ , there are YJ subjects who have complete

costs and whose survival times are greater than tJ . Hence, the RRimp cost for the
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kth subject censored at tJ is

MRRimp
J,k = Mk(tJ) +

1

YJ

∑
i:Xi>tJ

{Mi −Mi(tJ)}.

Recall that the replacement cost from RR method for the kth subject censored at

time tJ is

MRR
J =

1

YJ

∑
i:Xi>tJ

Mi,

thus, the sum of difference between MRRimp
J,k (in RRimp method) and MRR

J (in RR

method) at tJ is

∑
k:Xk=tJ

(MRRimp
J,k −MRR

J )

=
∑

k:Xk=tJ

Mk(tJ) +
nJ

YJ

∑
i:Xi>tJ

{Mi −Mi(tJ)} − nJ

YJ

∑
i:Xi>tJ

Mi

=
∑

i:Xi=tJ

Mi(tJ)− nJ

YJ

∑
i:Xi>tJ

Mi(tJ)

= (1 +
nJ

YJ

)
∑

i:Xi=tJ

Mi(tJ)− nJ

YJ

∑
i:Xi≥tJ

Mi(tJ)

= (1 +
nJ

YJ

){
∑

i:Xi=tJ

Mi(tJ)− nJ

YJ + nJ

∑
i:Xi≥tJ

Mi(tJ)}

= (1 +
nJ

YJ

)M∗(tJ). (A.3)

Now we move to the 2nd largest censoring time tJ−1, where the number of subjects

surviving longer than tJ−1 is YJ−1. The RRimp cost for the kth censored subject at
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tJ−1 is

MRRimp
J−1,k

= Mk(tJ−1) +
1

YJ−1

∑
i:Xi>tJ−1

{Mi −Mi(tJ−1)}

= Mk(tJ−1) +
1

YJ−1

{
∑

i:Xi>tJ−1

∆i[Mi −Mi(tJ−1)] +
∑

i:Xi=tJ

[MRRimp
J,i −Mi(tJ−1)]}

= Mk(tJ−1) +
1

YJ−1

{
∑

i:Xi>tJ−1

∆iMi −
∑

i:Xi>tJ−1

∆iMi(tJ−1)−
∑

i:Xi=tJ

Mi(tJ−1)

+
∑

i:Xi=tJ

Mi(tJ) +
nJ

YJ

∑
i:Xi>tJ

∆i[Mi −Mi(tJ)]}

= Mk(tJ−1) +
1

YJ−1

{
∑

i:Xi>tJ

∆iMi +
∑

i:tJ−1<Xi≤tJ

∆iMi −
∑

i:Xi>tJ−1

Mi(tJ−1)

+
∑

i:Xi=tJ

Mi(tJ) +
nJ

YJ

∑
i:Xi>tJ

∆iMi −
nJ

YJ

∑
i:Xi>tJ

Mi(tJ)}

=
1

YJ−1

(1 +
nJ

YJ

)
∑

i:Xi>tJ

∆iMi +
1

YJ−1

∑
i:tJ−1<Xi≤tJ

∆iMi + Mk(tJ−1)

− 1

YJ−1

∑
i:Xi>tJ−1

Mi(tJ−1) +
1

YJ−1

∑
i:Xi=tJ

Mi(tJ)− nJ

YJYJ−1

∑
i:Xi>tJ

Mi(tJ)

where the first two terms 1
YJ−1

(1 + nJ

YJ
)
∑

i:Xi>tJ
∆iMi + 1

YJ−1

∑
i:tJ−1<Xi≤tJ

∆iMi =

MRR
J−1 (Zhao et al. 2011). Thus, the sum of difference between MRRimp

J−1,k and MRR
J−1 at
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tJ−1 is

∑
k:Xk=tJ−1

(MRRimp
J−1,k −MRR

J−1)

=
∑

i:Xi=tJ−1

Mi(tJ−1)−
nJ−1

YJ−1

∑
i:Xi>tJ−1

Mi(tJ−1) +
nJ−1

YJ−1

∑
i:Xi=tJ

Mi(tJ)

−nJ−1nJ

YJ−1YJ

∑
i:Xi>tJ

Mi(tJ)

= (1 +
nJ−1

YJ−1

)
∑

i:Xi=tJ−1

Mi(tJ−1)−
nJ−1

YJ−1

∑
i:Xi≥tJ−1

Mi(tJ−1)

+
nJ−1

YJ−1

(1 +
nJ

YJ

)
∑

i:Xi=tJ

Mi(tJ)− nJ−1nJ

YJ−1YJ

∑
i:Xi≥tJ

Mi(tJ)

= (1 +
nJ−1

YJ−1

)M∗(tJ−1) +
nJ−1

YJ−1

(1 +
nJ

YJ

)M∗(tJ) (A.4)

Similarly, we have

∑
k:Xk=tJ−2

(MRRimp
J−2,k −MRR

J−2)

= (1 +
nJ−2

YJ−2

)M∗(tJ−2) +
nJ−2

YJ−2

(1 +
nJ−1

YJ−1

)M∗(tJ−1)

+
nJ−2

YJ−2

(1 +
nJ−1

YJ−1

)(1 +
nJ

YJ

)M∗(tJ) (A.5)

In (A.3), the contribution of M∗(tj) is (1 + nJ

YJ
). In (A.4), its contribution is

nJ−1

YJ−1
(1 + nJ

YJ
). For (A.5), the contribution is nJ−2

YJ−2
(1 + nJ−1

YJ−1
)(1 + nJ

YJ
). If we generalize

the conclusion and sum up the equations from J to 1, we can find the contribution of

M∗(tJ) is(
1 +

nJ

YJ

)
+

(
1 +

nJ

YJ

)
· nJ−1

YJ−1

+ · · ·+
(

1 +
nJ

YJ

)
· · ·

(
1 +

n2

Y2

)
· n1

Y1

=
J∏

j=1

(
1 +

nj

Yj

)
.
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Similarly, the contribution of M∗(tj) is(
1 +

nj

Yj

)
+

(
1 +

nj

Yj

)
· nj−1

Yj−1

+ · · ·+
(

1 +
nj

Yj

)
· · ·

(
1 +

n2

Y2

)
· n1

Y1

=

j∏
l=1

(
1 +

nl

Yl

)
.

Hence,

µ̂RRimp

=
1

n
{

n∑
i=1

∆iMi +
∑

k:Xk=tJ

MRRimp
J,k +

∑
k:Xk=tJ−1

MRRimp
J−1,k + · · ·+

∑
k:Xk=t1

MRRimp
1,k }

=
1

n
{

n∑
i=1

∆iMi +
∑

k:Xk=tJ

MRR
J +

∑
k:Xk=tJ−1

MRR
J−1 + · · ·+

∑
k:Xk=t1

MRR
1 }

+
1

n
{

J∏
j=1

(1 +
nj

Yj

)M∗(tJ) +
J−1∏
j=1

(1 +
nj

Yj

)M∗(tJ−1) + · · ·+ (1 +
n1

Y1

)M∗(t1)}

= µ̂RR +
1

n
{

J∏
j=1

(1 +
nj

Yj

)M∗(tJ) +
J−1∏
j=1

(1 +
nj

Yj

)M∗(tJ−1) + · · ·+ (1 +
n1

Y1

)M∗(t1)}

Where µ̂RR = µ̂BT is already known, and M∗(tj) =
∑

i:Xi=tj
[Mi(tj)−M(tj)] according

to its definition. It can also be shown that the Kaplan-Meier estimator for K(tj) is

K̂(tj) =

j∏
l=1

Yl

Yl + nl

,

which means

1

K̂(tj)
=

1∏j
l=1

Yl

Yl+nl

=

j∏
l=1

(
1 +

nl

Yl

)
.



52

Thus,

µ̂RRimp

= µ̂BT +
1

n
{
∑

i:Xi=tJ
[Mi(tJ)−M(tJ)]

K̂(tJ)
+

∑
i:Xi=tJ−1

[Mi(tJ−1)−M(tJ−1)]

K̂(tJ−1)

+

∑
i:Xi=tJ−2

[Mi(tJ−2)−M(tJ−2)]

K̂(tJ−2)
+ · · ·+

∑
i:Xi=t1

[Mi(t1)−M(t1)]

K̂(t1)
}

= µ̂BT +
1

n

n∑
i=1

(1−∆i)[Mi −M(Ci)]

K̂(Ci)

= µ̂ZT .

We have proved that the RRimp estimator is the same as the ZT estimator for

estimating the mean cost.
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APPENDIX B

ESTIMATING THE COVARIANCE BETWEEN THE MEAN COST

AND THE MEAN HEART FAILURE FREE SURVIVAL TIME

For ease of notation, we confine our attention to one arm of the study. We define two

martingales based on the censoring variable for the survival time and heart failure free

survival time, Ti and T F
i , respectively. For the ith individual, the martingale for the

censoring variable for survival time Ti is defined as MC
i (u) = NC

i (u)−
∫ u

0
λC(t)Yi(t)dt,

where λC(u) is the hazard function for C, λC(u) = limh→0
1
h

Pr(C < u + h|C ≥ u),

Yi(u) = I(Xi ≥ u), NC
i (u) = I(Xi ≤ u, ∆i = 0). Similarly, the martingale for the

censoring variable for heart failure free survival T F
i is defined as MCF

i (u) = NCF
i (u)−∫ u

0
λC(t)Y F

i (t)dt, where Y F
i (u) = I(XF

i ≥ u), NCF
i (u) = I(XF

i ≤ u, ∆F
i = 0). The

filtration F(u) is defined as the increasing sequence of σ−algebras generated by

σ{I(Ci ≤ x), x ≤ u; I(Ti ≤ s), I(T F
i ≤ s), Mi(s), 0 ≤ s < ∞, i = 1, . . . , n}.

Using results from Zhao and Tian (2001), the improved cost estimator can be

expressed approximately by

n
1
2 (µ̂M − µM)

= n−
1
2

n∑
i=1

(Mi − µM)− n−
1
2

n∑
i=1

∫ L

0

dMC
i (u)

K(u)
{Mi −G(M, u)}

+n−
1
2

n∑
i=1

∫ L

0

dMC
i (u)

K(u)
[Mi(u)−G{M(u), u}] + op(1),

where µM is the true mean cost, G(Z, u) = E{ZiI(Ti ≥ u)}/S(u), for any random

variable or functional Z.
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The mean heart failure free survival time estimator can be approximated by

n
1
2 (µ̂F − µF )

= n−
1
2

n∑
i=1

(T F
i − µF )− n−

1
2

n∑
i=1

∫ L

0

dMCF
i (u)

K(u)
{T F

i −GF (T F , u)}+ op(1),

where µF is the true heart failure free survival time, GF (Z, u) = E{ZiI(T F
i ≥

u)}/SF (u), for any random variable or functional Z.

To derive the covariance formula between the cost estimator and the survival time

estimator, we need to calculate the covariance between the two different martingale

processes < dMC
i (u), dMCF

i (u) >. Define

dMC∗
i (u) = dNC∗

i (u)− λC(u)I(Ci ≥ u)du

where NC∗
i (u) = I(Ci ≤ u). We can show that

dMC
i (u) = I(Ti > u)dMC∗

i (u),

dMCF
i (u) = I(T F

i > u)dMC∗
i (u),

and

Var{dMC∗
i (u)|F(u)} = I(Ci > u)λC(u)du.

Hence,

Cov{dMC
i (u), dMCF

i (u)|F(u)}

= I(T > u)I(T F > u)Var{dMC∗
i (u)|F(u)}

= Y F
i (u)λC(u)du.

The covariance between the mean cost estimator µM and the mean heart failure
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free survival time estimator µF becomes

Cov{n
1
2 (µ̂M − µM), n

1
2 (µ̂F − µF )}

= Cov(Mi, T
F
i ) + E

∫ L

0

{T F
i −GF (T F , u)}{Mi −G(M, u)}Y F

i (u)

K(u)2
λC(u)du

−E

∫ L

0

{T F
i −GF (T F , u)}{Mi(u)−G{M(u), u}}Y F

i (u)

K(u)2
λC(u)du.

= Cov(Mi, T
F
i ) + E

∫ L

0

[{T F
i −GF (T F , u)}{Mi −G(M, u)}I(T F

i ≥ u)]
λC(u)

K(u)
du

−E

∫ L

0

[{T F
i −GF (T F , u)}{Mi(u)−G{M(u), u}}I(T F

i ≥ u)]
λC(u)

K(u)
du.

= Cov(Mi, T
F
i ) +

∫ L

0

[GF{T F M, u} −GF{M, u}GF (T F , u)]
SF (u)λC(u)

K(u)
du

−
∫ L

0

[GF{T F M(u), u} −GF{M(u), u}GF (T F , u)]
SF (u)λC(u)

K(u)
du

This can be estimated consistently by

1

n

n∑
i=1

∆iMiT
F
i

K̂(Ti)
− 1

n2

n∑
i=1

∆iMi

K̂(Ti)

n∑
i=1

∆F
i T F

i

K̂F (T F
i )

+
1

n

∫ L

0

dNCF (u)

K̂F (u)2
{ĜF0(T F M, u)− ĜF0(M, u)ĜF0(T F , u)}

− 1

n

∫ L

0

dNCF (u)

K̂F (u)2
{ĜF0{T F M(u), u} − ĜF0{M(u), u}ĜF0(T F , u)},

where

ĜF0(Z, u) =
1

nŜF (u)

n∑
i=1

∆i

K̂(Ti)
ZiI(T F

i ≥ u), (B.1)

Although some of G can be estimated by

ĜF (Z, u) =
1

nŜF (u)

n∑
i=1

∆F
i

K̂F (Ti)
ZiI(T F

i ≥ u), (B.2)

which seems to adopt more data information when available, using the same form of
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Ĝ achieves more efficiency in numerical studies. Thus, we suggest to use the same

estimator for G.
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