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ABSTRACT 

 

An Integrated Study of Avian Influenza Impacts and Associated Climate Change Issues. 

(May 2012) 

Jianhong Mu, B.A., Renmin University of China; 

M.S., Renmin University of China 

Chair of Advisory Committee: Dr. Bruce A. McCarl  

 

 

This dissertation examines issues related to avian influenza (AI) disease. This is done via 

three essays that individually examine: (1) the impacts of climate change on the 

probability and expected numbers of AI outbreaks and associated economic loss; (2) the 

effects that media coverage of AI outbreaks has on meat demand in the United States, 

and (3) the potential effectiveness of AI mitigation strategies on poultry production and 

welfare under a simulated AI outbreak in United States.  

The climate change and spread of AI outbreaks study finds that the probability 

and expected number of AI outbreaks increases as climate change proceeds. Particularly, 

past climate change has contributed to the current spread of AI disease by 11% and the 

future climate change will increase this spread by another 12%.  Moreover, the 

underreporting probability of AI outbreaks is also examined and results show that the 

underreporting probability is much higher in countries with lower gross domestic 

production level, larger export of poultry products and more numbers of AI confirmed 
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human deaths. Therefore, disease prevention and control plans should focus on these 

economically poor and climatically changed regions.   

AI outbreak information has significant effects on meat demand in the United 

States. In particular, impacts of overseas AI human deaths on meat demand equal 0.02% 

for beef, -0.005% for pork, and -0.01% for chicken for sample when there was no AI 

occurred in the United States, while it has smaller impacts on meat expenditure when 

using the whole sample. In addition, human deaths due to AI disease will increase beef 

demand and decrease that for pork and chicken. However, AI media coverage in short-

run has insignificant effect on meat demand, which suggests that consumers are more 

cautious when cases occur within the United States as opposed to international cases. 

In the study on the effects and welfare implications of AI mitigation strategies, 

results find that vaccination strategy is welfare decreasing under most cases of demand 

shocks but is desirable in some regions when both domestic and excess demand 

decrease. Under the assumption of one AI outbreak in the United States, the associated 

mitigation costs because of past climate change are relatively small. 
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1. INTRODUCTION 

 

1.1 Introduction and Objectives 

In the past few years, Avian Influenza (AI) disease has become a topic of concern in 

many areas of the world. Although the spread of the AI disease is slowing down, the 

pandemic threat due still exists since the virus is still endemic in some countries. AI is 

very contagious among birds and some of these viruses can make certain domesticated 

birds species very sick and kill them, which in turn can cause large economic impacts 

and raise human health risks.  

This dissertation will extend and contribute to current literature in three ways. 

Specifically,  

 Examining whether climate factors are statistically found to be involved in 

the disease spread and also to produce risk probabilities under climate change  

 Examining how media coverage of international AI outbreaks affects meat 

demand across poultry, beef and pork in the United States 

 Examining how AI disease control strategies affect poultry production and 

welfare under a simulated AI outbreak in the United States 

 

 

This dissertation follows the style of American Journal of Agricultural Economics. 
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Collectively, this dissertation investigates issues surrounding AI outbreaks and 

livestock related vulnerability. Figure 1-1 shows the underlying linkages among topics in 

this dissertation. 

 

 

 
Figure 1-1 Overall Framework of This Study 

 

 

 

The dash line indicates the secondary effects of climate change on economic 

through impacts of AI outbreaks. Arrows point to areas that will be 

economically/economically examined.  
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1.2 Plan of Dissertation 

This dissertation contains three essays,  

 Essay 1 examines the effects of climate factors on the probability and 

outcomes of AI outbreaks using econometric models, and then simulates the 

risk of AI outbreaks under past and future changes in climate to evaluate 

shifts in outbreak probabilities and the associated economic losses   

 Essay 2 statistically estimates the economic impacts of international AI 

outbreak information on meat demand by using a dynamic demand model, 

which examines both short and long run shocks  

 Essay 3 investigates how AI mitigation strategies behave under a simulated 

AI outbreak. Additional costs caused by past climate change are also 

evaluated in this essay using results from essay 1 

These essays and supporting materials are organized into six sections including,  

 Section 1 introduces the problems investigated and the research objectives 

 Section 2 provides background information on AI 

 Section 3 presents the first essay on climate change and AI outbreaks 

 Section 4 presents the second essay on AI media coverage and meat demand  

 Section 5 presents the third essay on AI mitigation strategy implications 

 Section 6 summarizes contributions, key findings, limitations and directions 

for future research 
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2. BACKGROUND OF AI DISEASE 

 

2.1 Background on AI 

AI or "bird flu" is a contagious animal disease caused by avian influenza viruses (Cooper 

et al. 2007; Jin and Mu 2012). Infections can be divided into two low and high extremes 

of virulence, namely, the highly pathogenic avian influenza (HPAI) and the low 

pathogenic avian influenza (LPAI). The LPAI is less contagious, and infected species 

may not carry any symptoms. The HPAI virus spreads rapidly with a high mortality rate 

among infected birds (up to 90-100% within 48 hours) and can spread to humans1. 

The HPAI H5N1 subtype was initially detected in poultry on a farm of Scotland, 

UK, in 1959 (Fang et al. 2008). From then until 1990, there were nine H5N1 outbreaks 

recorded in Europe, North American and Australia.  Those outbreaks were contained by 

stamping out infected flocks (Alexander 2000). From 1990 to 2002, an additional ten 

H5N1 outbreaks were confirmed (Peiris et al. 2007).  

Since 2003, H5N1 outbreaks have occurred at unprecedented levels in terms of 

scale and geographic distribution, initially through East and Southeast Asia in 2003–

2004 and then into Mongolia, southern Russia, the Middle East and to Europe, Africa 

and South Asia in 2005–2006, with outbreaks recurring in various countries in 2007 

(Sims and Brown 2008; Jin and Mu 2012).  

                                                
1 More information about avian influenza is available through http://www.cdc.gov/flu/avianflu/. Accessed 
on March 4, 2012.   
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As of summer 2010, twelve countries were experiencing an ongoing epidemic of 

at least one strain AI2. Outbreaks of HPAI H5N1 in poultry since 2003 are shown in 

Figure 2-1. 

The H5N1 virus has the ability to cross the species barrier to humans inducing 

severe disease and even death. The first known human cases were reported in Hong 

Kong in 1997 and involved deaths of six out of 18 infected persons (Chan 2002; Peiris et 

al. 2004). The source of human infections appeared to be live-poultry markets where 

chickens, ducks and geese were sold for human consumption. Figure 2-2 portrays the 

number of HPAI H5N1 human cases from 2004 to 2012 reported to the World 

Organization for Animal Health (OIE). To date, the confirmed HPAI cases of human 

illness and death since 2003 is 596 and 350, respectively3. 

 
 
 
 

                                                
2 More information is available through http://www.cirad.fr/en/news/all-news-
items/articles/2010/science/avian-influenza-the-role-of-migratory-birds. Accessed on March 4, 2012.  
3 More information is available through 
http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/index.html. 
Accessed on March 2012. 
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Figure 2-1 Reported H5N1 Outbreaks in Poultry since 2003

4
 

 

 

 
Figure 2-2 Cumulative Number of Human Cases and Death of H5N1 Outbreaks

5
 

                                                
4 Available via http://www.oie.int/animal-health-in-the-world/update-on-avian-influenza/2011/, and edited 
by the author.  
5 More information is available via 
http://www.cdph.ca.gov/programs/vrdl/Pages/AvianInfluenzaOutbreaksinHumans.aspx, and edited by the 
author. 
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2.2 Economic Consequences Caused by AI Outbreaks 

AI outbreaks, especially those involving the HPAI strain, pose a significant threat to the 

economy. Currently the anticipated policy in the event of an HPAI outbreak generally 

involves mass slaughter of birds.  Historically such actions have been seen to reduce 

aggregate supply of poultry products, causing disruptions in international export 

markets, and leading to local and national revenue losses (Brahmbhatt 2005; McLeod et 

al. 2005). As estimated by the World Bank, the global economic impact of a flu 

pandemic could amount to $800 billion, which is equivalent to 2% of global economic 

output (Page et al. 2006).  

The vulnerability of specific countries has been seen to differ due to the relative 

importance of their poultry industry plus its structure. In particular, in a country like 

Vietnam, where the bulk of poultry production is produced by backyard producers, the 

largest losses fell on small scale commercial chicken producers with limited numbers of 

other livestock (McLeod et al. 2005). According to Delquigny et al. (2004), the loss of 

birds, 2.3 months of production and consumption were estimated to have cost $69 to 

$108 million for households involved in the outbreak. The 2004 HPAI outbreaks in 

Cambodia caused a significant price reduction (75% drop) for poultry products to 

producers during the first two months immediately following the outbreaks and prices of 

other meats rose by 30% as a consequence of the first epidemic wave in 2004(VSF 2004; 

Otte et al. 2008). In Laos, the total reported losses were only 3% of the national flock, 

but the impacts were highly localized with nearly 80% of the reported loss in 

commercial farms in Vientiane province (Rushton et al. 2006).  



8 

 

AI outbreaks also have affected the international poultry market -- a more than 

$10 billion per annum market (Nicita 2008), likely due to consumers’ fear of contacting 

AI by eating poultry meat (Taha 2007). Observed global poultry exports from the 

outbreak areas fell by approximately one-third or 6 million tons (CASERED 2004; 

Basuno et al. 2010). Because of the HPAI outbreaks, Thailand lost its position as the 

worlds’ fifth largest exporter of poultry meat and Brazil replaced China and Thailand as 

the world’s largest supplier of frozen raw chicken products (McLeod et al. 2006; Nicita 

2008).  

In the United States, several outbreaks were detected during 2003 and 2004. For 

example, it had H7N2 in New York in 2003, H5N2 in Texas and H7N2 in Delaware, 

New Jersey, and Maryland in 20046. The largest outbreak of LPAI occurred in 2002, 

when 4.7 million birds owned by 197 farms were depopulated in Virginia and 

surrounding states for disease control purpose (Senne 2007). Later, a HPAI strain was 

diagnosed in Gonzales County, Texas in a flock of infected broiler chickens based on 

molecular diagnostics in February 2004.  In response, 44 countries banned imports on 

either Texas or U.S.-origin poultry and/or poultry products (Pelzel et al. 2006). The 

economic losses to the poultry industry in United States due to the closure of export 

markets following the 2004 HPAI outbreak in Texas were speculated to be as high as 

hundreds of millions of dollars (Pelzel et al. 2006). 

                                                
6 More information on past avian influenza outbreaks is available through 
http://www.cdc.gov/flu/avian/outbreaks/past.htm. 
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2.3 Scope of This Study 

In this dissertation, I emphasize three aspects of AI outbreaks including risk factors of 

disease spread, impacts on demand and production in the United States. In the demand 

side, impacts come from three types of AI information, AI outbreaks in the United States, 

AI human cases in countries other than the United States and AI news reports covering 

AI outbreaks all over the world. The spread of AI has received considerable media 

coverage, which raised fears of consuming poultry meat or related poultry products, in 

turn having a negative impact on meat demand (Beach and Zhen 2008). It would be 

interesting to examine how AI outbreak information affects meat demand in the United 

States since few studies have analyzed this issue so far.  

In the production side, poultry producers need to consider the mitigation 

strategies of animal disease to minimize production costs. There are two disease control 

options in the AI context, quarantine strategy and vaccination strategy. The former 

recommends establishing a quarantine strategy zone in a 5-miles radius around the 

outbreak site within which every flock is depopulated, and then a varying surveillance 

radius around that zone plus movement restrictions and testing (Pelzel et al. 2006)7. The 

vaccination strategy suggests vaccinating all susceptible flocks in near proximity to the 

quarantine zone in addition to the quarantine strategy stated above in terms of reducing 

the probability of infection and the amount of virus produced by an infected flock (FAO 

2004). Both strategies depend on the probability of AI outbreaks, the densities of poultry 

                                                
7 They portray the zoning strategy actually implemented during the Gonzalez County (East of San Antonio) 
outbreak in 2004. 
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flocks and the contact rate between different poultry flocks. In this case, the decision of 

choosing the quarantine or vaccination response is determined by the expected economic 

costs due to a potential AI outbreak.  

Overall, economic impacts of AI outbreaks are affected by the risk and outcomes 

of AI outbreaks, which is possibly affected by climate conditions. Thus, it is necessary to 

examine the spread of AI outbreaks before examining the sequential adverse effects on 

demand and production. Therefore, this dissertation also dedicates efforts in 

investigating the relationship between climate and the probability and outcomes of AI 

outbreaks and then evaluating the associated economic losses of disease outbreaks under 

past and projected climate change.  
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3. CLIMATE CHANGE, AI OUTBREAKS AND LOSS 

 

3.1 Introduction 

Since 2003, epidemics of the most dangerous AI strain -- HPAI H5N1 -- have occurred 

with unprecedented frequency across an ever-wider part of the globe. This strain was 

initially observed in East and Southeast Asia during 2003 and 2004, and migrated to 

Russia in 2005. Since then, it has spread to the Middle East, Africa and Europe 

(Alexander 2007; Sims and Brown 2008), and over 60 countries have experienced HPAI 

H5N1 outbreaks (Alexander 2007).  Currently, the list of countries having had HPAI 

outbreaks is still expanding8. HPAI is also a public health concern because this strain is 

capable of causing human mortality. To date, H5N1 have been reported 596 cases of 

human infection, resulting in 350 deaths9. 

The global outbreaks of HPAI resulting loss of over 250 million domestic poultry 

including chickens, ducks, turkeys, quail and ostrich, causing huge negative 

socioeconomic and livelihood impacts, as well as affecting food and protein resources, 

wildlife populations and public health (Alexander 2007). Determining the factors 

involved in HPAI outbreaks spread and producing risk probabilities is important 

ultimately to target surveillance and control measures, and to reduce losses and improve 

disease prevention planning (Paul et al. 2010). Climate change is a possible factor in the 
                                                
8 More information on current avian influenza outbreaks is available through 
http://www.cirad.fr/en/news/all-news-items/articles/2010/science/avian-influenza-the-role-of-migratory-
birds. 
9 More information is available through 
http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/index.html. 
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widening spread as it may alter conditions involved with disease transmission and 

persistence including wild bird migration patterns (Si et al. 2009; 2010; Ottaviani et al. 

2010) and trade of live poultry (Gilbert et al. 2008; Kilpatrick et al. 2006). 

In spite of the importance of forecasting and anticipating the global spread of 

HPAI outbreaks, few efforts have been made to predict HPAI risk across regions and 

countries under climate change (Williams et al. 2008). This paper examines the extent to 

climate is affecting HPAI outbreaks and projects future consequences along with 

changes in temperature and precipitation.  In particular, I examine how temperature, 

precipitation, seasonality and regional characteristics affect outbreak probability and 

severity using data from the events in Asia, Europe, Africa and North America. Then I 

use the estimated statistical results to simulate how much the outbreak probability has 

shifted and the associated economic loss has involved due to HPAI outbreaks stimulated 

by past and projected future climate change.  

This essay is organized as follows. Section 3.2 reviews previous studies; Section 

3.3 presents the statistical models and describes the data; Section 3.4 interprets 

estimation results; Section 3.5 predicts the risk of HPAI outbreaks under past and future 

climate change; Section 3.6 evaluates associated economic losses due to HPAI outbreaks 

under climate change and section 3.7 presents conclusions.  

3.2 Literature Review 

The literature suggests that climate change may alter several factors involved with HPAI 

H5N1 spread and persistence. Climate has been found to alter pathogen survival and 

disease vector behavior. Experimental evidence shows that low temperature and high 
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relative humidity conditions increase the persistence and stability of the HPAI H5N1 

virus (European Food Safety Authority 2006; Liu et al. 2007), and climate change would 

almost certainly influence the HPAI H5N1 virus transmission cycle, and directly affect 

virus survival outside the host (Gilbert et al. 2008).  

Empirical studies including precipitation and temperature indicate lower levels of 

moisture and humidity may affect wild bird food availability and thereby influence their 

distributions (Si et al. 2009). Additionally, temperature pattern have been argued to be 

contributors to an increase in disease occurrence and the spread among live birds (Liu et 

al. 2007). For example, precipitation was found as an important risk factor affecting the 

distribution of the H5N1 virus in China (Fang et al. 2008). Cold weather may trigger 

winter movements of migratory birds and therefore contribute to the spread outside the 

actual migration period in Europe (Ottaviani et al. 2010; Kilpatrick et al. 2006).  A 

recent study finds that HPAI H5N1 occurrences in wild birds in Europe are highly 

correlated with increased minimum temperatures and reduced precipitation in January 

(Si et al. 2010).  

In terms of vectors of disease spread, there has been considerable effort 

investigating how the HPAI H5N1 virus enters previously unaffected countries. The 

main pathways that have been identified are wild bird migration, live bird trade and the 

transport of poultry and poultry products. Results from previous studies suggest that wild 

birds are capable of carrying H5N1virus over long distances and are able to introduce it 

into new areas during migration (Si et al. 2009; 2010; Gilbert et al. 2008; Kilpatrick et 

al. 2006; Ward et al. 2009). For example, wild ducks can carry the H5N1 virus 
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asymptomatically (Chen et al. 2005). In addition, circumstantial evidence from Russia 

and Mongolia indicates that wild birds played a significant role in disease spread, 

suggesting that they can become infected and travel varying distances before dying (Si et 

al. 2009; Gilbert et al. 2006; Feare 2007; Cui et al. 2011). 

Some studies have attributed the increased frequency of outbreaks to the fast 

expanding, intensive poultry industry as well as greater movement of live poultry and 

poultry products (Pfeiffer et al. 2007). Analysis of H5N1 outbreak data in Romania 

during spring 2006 indicated that the movement of poultry might have facilitated the 

spread of infection (Ward et al. 2008). However, to quantify the contribution of this 

pathway is difficult due to the combination of local, unregulated movements and trade in 

poultry by peasant farmers and the broader-scale, illicit bird trade (Williams et al. 2008; 

Williams and Peterson 2009). Therefore, few studies have been able to include the 

dimension of live poultry movements (Kilpatrick et al. 2006). 

Studies in Romania, Thailand, Indonesia and China have provided other insights, 

suggesting that human infection and poultry outbreaks are enhanced by some agro-

ecological and socio-demographic factors (Hogerwarf et al. 2010). These factors include 

agricultural population density, poultry density and local/environmental factors, such as 

the incidence of rice paddy fields, water sources and transportation. For example, the 

environment and landscape (specifically the Danube River Delta) played a critical role in 

the introduction and initial spread of H5N1 in Romania (Ward et al. 2008). The distance 

to the nearest main city, distance to the nearest body of water and distance to the nearest 

highway contributed to the spread of the disease in China (Fang et al. 2008). In addition, 
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the risk of HPAI H5N1outbreaks increases if poultry densities (for both chickens and 

ducks) or road density increase, or areas are located near major cities and highway 

junctions (Paul et al. 2010; Yupiana et al. 2010). 

As discussed above, HPAI outbreaks have received worldwide attention and 

previous studies have examined factors that may contribute to their risk and spread. 

However, most have neglected climate factors such as temperature and precipitation, 

instead focusing on geographic and social-economic characteristics, and few studies 

have discussed the risk under climate change due to the dynamic pattern of disease 

outbreaks and the issue of underreporting. In addition, few have addressed the 

underreporting issues in HPAI outbreaks. This current study extends previous studies in 

its geographic scope and methodological features and examines 

 The effects of climate on the probability and expected numbers of HPAI 

outbreaks  

 The problem of underreporting issues to calibrate the probability of reporting 

true zeros 

 The impacts of climate change on the probability of  HPAI outbreaks as 

realized in the last 20 years and as projected 

 The associated economic loss of additional HPAI outbreaks under climate 

change 

Based on previous studies and later estimation models, the relationship between 

climate change and HPAI outbreaks was constructed, as shown in Figure 3-1. 
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Figure 3-1 Conceptual Framework of Climate Effects on HPAI Outbreaks 

 

 

 

Suppose temperature and precipitation are the main climate variables affecting 

disease outbreaks, impacts could be direct or indirect. Temperature and precipitation 

could affect the survival and persistence time of HPAI virus directly, for example in the 

environment and water (Chen et al. 2005; FAO 2004). Temperature and precipitation are 

also major factors affecting the distribution of wild birds through the availability of food 

and water to change their migration patterns (Si et al. 2009; 2010; Ottaviani et al. 2010). 

Therefore, I include a number of other variables 
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 Proximity of wild bird migratory flyways  

 Incidence of extreme cold and hot weather  

 Number of live birds traded, and  

 Total Gross Domestic Product (GDP) 

 Quantity of poultry meat exported 

 Density of total population 

3.3  Models and Data 

The statistical analysis will be carried out over monthly outbreak incidence data cross 90 

regions in 16 countries, which are distributed in Asia, Africa, Europe and North America 

from January 2004 to December 2008. Involved countries are Malaysia, South Korea, 

Cambodia, Indonesia, Thailand, Japan, Vietnam, China, Egypt, Nigeria, Germany, 

Romania, Turkey, Pakistan, Russia and the United States, among which China, Egypt, 

Nigeria, Germany, Turkey and Russia are on major affected flyways according to a 

recent Food and Agriculture Organization (FAO) fact sheet (Newman et al. 2010). 

Regions are defined according to each country’s size and larger countries have more 

regions than small couintres. For example, there are 18 regions in China and 9 regions in 

the United States.  

The HPAI outbreak incidence data were drawn from the World Animal Health 

Information Database (WAHID) Interface for 2005-2008 with 2004 data drawn from the 

Animal Health Database HANDISTATUS II. The data on total number of confirmed 

HPAI human deaths by country were drawn from the World Health Organization 
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(WHO) for the time from January 2004 to December 2008. Three AI outbreak incidence 

related variables were generated, 

 Total count of HPAI outbreaks by region and month 

 A dummy variable by region and month where a one indicates whether a 

region had at least one HPAI outbreak in a given month and zero otherwise  

 Total number of confirmed HPAI human death by region and month 

Climate data, including mean temperature and total precipitation, were collected 

from the National Environmental Satellite, Data and Information Service (NESDIS) 

from January 2004 to December 2008. Mean monthly temperature was computed in 

Celsius degree (oC), and the total precipitation including rain and/or melted snow was 

computed in millimeter(mm). Seasonal patterns were also observed, peaking from 

October to March, when the mean temperature is below 20 oC and the relative humidity 

is high (European Food Safety Authority 2006). 

Data on country characteristics were also used. I included total GDP from the 

USDA Economic Research Service (ERS), and the country-to-country trade in live birds 

was drawn from the Food and Agricultural Organization of the United Nations and the 

U.S. Census Bureau, Foreign Trade Division. The numbers reported in country-to-

country trade in live birds but do not include illegal or unreported trade.  
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I also used the data regarding commodity code H1-0105 (live poultry, domestic 

fowls, ducks, geese, etc.)10 . For each country, either trade value ($) or net weight (kg) 

were recorded. I calculated the numbers of live birds by using the median number of 

birds per kilogram 10.61 for poultry (most traded poultry are small domestic fowl<185g) 

(Kilpatrick et al. 2006).  

I also included a set of dummy variables to indicate the location of a country and 

a flyway of wild bird migration. Disease clusters have occurred throughout the East 

Asia-Australian flyway (except Australia) since 2003. In the Central Asian flyway, 

disease clusters started emerging in July 2005 and waned in October 2005. In the Black 

Sea-Mediterranean flyway, clusters lasted from December 2005 to March 2006. Finally, 

clusters appeared in the East Atlantic and East Africa-West Asian flyway in March and 

April 2006, respectively (Si et al. 2009). Figure 3-2 shows the five major wild bird 

migratory flyways. 

 

 

 

                                                
10 I also considered trade of wild birds by aggregating the totals from three commodity codes: H2-010632 
(live birds including parrots, parakeets, macaws and cockatoos), H1-010631 (live birds of prey) and H1-
010639 (live birds excluding H1-010632 and H2-010631). However, data are missed so many that it is not 
apporporiate to be used in analysis. 
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Figure 3-2 Five Broad Flyways of Migratory Wild Birds

11
 

 

 

 

Annual data characterizing country characteristics are also used giving GDP,  

numbers of live poultry traded, population density and quantity of poultry meat 

exported. Those data are obained for each country from the World Bank, the FAO of the 

United Nations, respectively.  

This study focuses on HPAI outbreaks that occurred from January 2004 to 

December 2008, which captures a peak period of the HPAI epidemic activity in 

Southeast and Central Asia, Africa and Europe. Data from the WHO show 7984 

                                                
11 This map is originally from Si et al. (2009), but is modified by the author. 
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outbreaks in poultry flocks in almost 60 countries. Table 3-1 provides definitions and 

statistic descriptions for the variables. 

 

 

 

Table 3-1 Definitions and Statistic Descriptions of Variables 

Variable Definition Mean Std. 
Dev. 

Min Max 

AIProb Outbreak incidence in a  
country and month equaling 1 
if outbreaks occured,0 
otherwise 

0.12 0.32 0 1 

AIProbt-1 Lagged outbreak incidence 0.12 0.33 0 1 
sptemp Spring* Mean temperature 4.51 8.91 -7.2 34.33 
sptemp_sq Spring*Squared mean 

temperature 
99.65 228.44 0 1178.8 

ftemp Fall* Mean temperature 4.85 9.36 -7.9 35.69 
ftemp_sq Fall*Squared mean 

temperature 
111.05 239.89 0 1273.5 

wtemp Winter* Mean temperature 2.43 7.25 -21 30.40 
wtemp_sq Winter*Squared mean 

temperature 
58.49 171.81 0 924.16 

spprecp Spring* Total precipitation 17.50 58.86 0 2335.8 
spprecp_sq Spring* Squared total 

precipitation 
3770.4 76031.1 0 5455887 

fprecp Fall* Total precipitation 18.90 62.07 0 1143 
fprecp_sq Fall* Squared total 

precipitation 
4208.9 31056.2 0 1306449 

wprecp Winter* Total precipitation 11.45 48.23 0 2383.5 
wprecp_sq Winter*Squared total 

precipitation 
2456.8 77989.3 0 5681244 

Cold_Month 
(index1)  
 

Dummy variable for whether 
 The month average  
temperature is <= 4oC 

0.12 0.32 0 1 

Hot_Month  
(index2) 
 

Dummy variable for whether  
the month average  
temperature is >= 28oC 

0.16 0.36 0 1 
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Table 3-1 Continued 

Variable Definition Mean Std. 
Dev. 

Min Max 

lnimportp Logged numbers of live 
poultry traded 

8.95 5.06 0 15.91 

lngdp Logged GDP in billion $ 6.40 1.74 1.6 9.49 
lnexport Logged poultry export 

quantities 
10.11 7.27 0 18.88 

lnppden Logged population 4.68 0.91 2.2 6.18 
aihuman Numbers of confirmed AI 

human death 
3.92 8.19 0 45 

EAAFW The East Asia Australian  
Flyway  

0.53 0.50 0 1 

CAFW The Central Asian Flyway 0.12 0.33 0 1 
BSMFW The Black Sea 

Mediterranean Flyway 
0.30 0.46 0 1 

EAFW The East Atlantic Flyway 0.09 0.28 0 1 
EFWAFW The East African West  

Asian Flyway 
0.04 0.21 0 1 

Numbers of observations  5400    
 

 

 

Figure 3-3 shows the spatial distribution of HPAI H5N1 outbreaks reported to 

the World Organization for Animal Health (OIE) since 2005, suggesting that there exists 

heterogeneity across regions with 12% of regions having had at least one HPAI H5N1 

outbreak in the past 5 years. 
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Figure 3-3 Outbreaks of HPAI H5N1 in Poultry since 2005

12
 

 

 

 

3.3.1 Functional Form and Variables 

We consider the following latent variable model 

(3.1)  * ( )i i iy f x u    

where *

iy  is the unobserved probability of HPAI outbreaks or counts of HPAI outbreaks; 

iu is a continuously distributed residual, assumed independent of 
ix with ~ (0,1)iu N ; 

ix  is a set of independent variables including: 

                                                
12 Available via 
http://web.oie.int/wahis/public.php?selected_start_day=1&selected_start_month=1&selected_start_year=2
005&selected_end_day=31&selected_end_month=12&selected_end_year=2011&page=disease_outbreak
_map&date_submit=OK. 
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 Monthly mean temperature in degrees Celsius (°C), total precipitation in 

millimeters, and squared precipitation and temperature due to the previous 

inconsistent results in the literature (Si et al. 2010; Fang et al. 2008; Chen et 

al. 2005) 

 Interaction terms of seasonal indicator variables (with summer as the 

reference) and climate variables (temperature and precipitation): in the 

northern hemisphere, HPAI infection rates are higher during the spring and 

fall migration periods (Si et al. 2010; Kilpatrick et al. 2006; European Food 

Safety Authority 2006), and disease virus might readily persist during spring 

in cooler areas (Si et al. 2010; Ottaviani et al. 2010) 

 Dummies reflecting temperature extremes: HPAI viruses can survive for long 

periods in the environment, especially when temperatures are low (Fang et al. 

2008). In two studies, HPAI virus retained its infectivity at 4°C for more than 

100 days but lost its infectivity after 24 hours when kept at room temperature 

(28°C) (Brown et al. 2007; Shahid et al. 2009). Therefore, two temperature 

indices are constructed. Cold_Month is 1 when the mean temperature is 

lower than 4oC, and zero otherwise; Hot_Month is 1 when the mean 

temperature is higher than 28oC and zero otherwise 

 A set of migratory bird flyway indicators that identify indicate (one) whether 

a country is on one of five specific wild bird migratory flyways, or zero 

otherwise.  
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 Variables that give country characteristics include total GDP, poultry export, 

population density, and country-to-country trade in live poultry as identified 

and measured by Kilpatrick et al. (2006) 

3.3.2 Estimation Approach  

The outbreak data to be estimated give a probaility of an outbreak that falls between zero 

and one or is a count of the number of outbreaks.  Estimating an equation for such data 

requires an approach that takes that into account the characteristics of the data, which 

usually need regression models for categorical dependent variables (Cameron and 

Trivedi 1998; Cameron and Trivedi 2009). Specifically, a binary choice or a count 

outcome model is used depending on whether the dependent variable is a dummy 

indicator or a count outcome.  

3.3.2.1 The dynamic panel binary choice model 

I will estimate a relationship between the probability of HPAI outbreaks and a number of 

regional climate factors, economic characteristics plus the lagged indicator of outbreaks. 

This is done using the basic functional form13,  

(3.2) *

, 1it it i t i ity x y c e        

where *

ity  is the probability of HPAI outbreaks; 
itx  is a vector of independent, 

contemporaneous explanatory variables; , 1i ty   is the lagged dependent variable allowing 

the current outbreak probability to be altered by whether the region has incurred 
                                                
13 The dynamic nonlinear model is used because we are interested in whether there is pure state 
dependence, that is, 0 in the equation after controlling for the unobserved heterogeneity

ic

(Wooldridge 2002). In this paper, I am interested to see whether the past HPAI outbreaks could affect the 
probability of current outbreaks after controlling unobserved effects.  
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previous ones;
ic is the unobserved effect and is allowed to be correlated with some 

elements of 
itx ;and 

ite  is an error term and , 1 1| ( , ,..., , ) ~ (0,1)it i i t i ie x y y c Normal . 

In estimation, *

ity is a latent dependent variable measuring the probability of 

observed data. Instead of observing *

ity , we observe only a binary variable y  indicating 

whether an outbreak occurred, 

(3.3) 
*

it

*

it

1                        if  y 0 

0                       if   y 0                       
ity

 
 



 

where ity indicates whether a region i  had any HPAI outbreaks in time period t . 

Without loss of generality, I can reorder the observations starting at 0t  , so that 

0iy  is the first observation on y . For 1,2,...t T , the density function of 
ity then can be 

written as, 

(3.4)  1

1 0 , 1 , 1

1

( ,..., | , , , ) ( ) [1 ( )]it it

T
y y

T it i t i it i t i

t

f y y y x c x y c x y c     

 



        

However, to estimate  and  consistently, I need to address the initial 

conditions problem by making an additional assumption on 
ic , that is, a decision on how 

to treat the initial observations 
0iy . Under the assumption of 

2

0 0 1 0| ( , ) ~ ( , )i i i i i ac y x Normal y x     (Wooldridge 2000; 2005; 2002), I can specify 
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the density in such a way that can be estimated using the standard Random-Effects 

Probit Estimation14,  

(3.5) 0 1 0i i i ic y x a       

where 2

0| ( , ) ~ (0, )i i i aa y x Normal   which is assumed not to depend on itx .  

To avoid a large dimension problem in estimation15, I use 
ix  to replace 

itx

(Chamberlain 1980), which is the average of 
itx over time. Also to identify time 

indicators, which do not vary across i  , they must be omitted from 
ix  by setting 0 .  

In turn, the dynamic Probit model with unobserved effects arises,   

(3.6) 
2 1/2

0 , 1 1 0

0 , 1 1 0

( 1| ) [( ) (1 ) ]

[( )

it it it i t i i a

a it a a i t a i i a

P y x x y y x

x y y x

     

    







        

     
   for  1,2,...t T  

where the a  subscript means that a parameter vector has been multiplied by 2 1/ 2(1 )a
 . 

This functional form will be used to estimate the HPAI outbreaks. If applying the 

econometric model to the data, the empirical model for estimation is,  

                                                
14 This model is different from the pure random-effects model since we allow some kind of correlation 
between the error term and independent variables by specifying the conditional distribution of the 
unobserved effects.   
15 Since I have monthly data from January 2004 to December 2008, i

x is a 60k   matrix if it
x is a n k

matrix, which is too large to be estimated based on our sample size.   
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(3.7)

3
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1

3 3

2 , 3 ,

1 1

3
2
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1

6 7

(AIProb 1| ) ( ) ( AIProb *

* _ *

* _
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it it a a i t as is t it

s
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s s
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a it a
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  
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index npimport gdp


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 

  



 

 





    

   

  


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I can consistently estimate 
0 1, , ,a a a a    and 

a by calculating the conditional 

Maximum likelihood Method (MLE) and using a Probit regression with random-

effects(Wooldridge 2005). The average partial effects can be calculated by using the 

average across i  of 0 , 1 1 0
ˆ ( )aj a it a a i t a i i ax y y x          for continuous variables and 

taking the difference of values at two different 
jtx for discrete variables, i.e. 

0 , , , , 1 1 0

0 , , , 1 1 0

ˆ ˆ ˆ ˆˆ( )

ˆ ˆ ˆˆ( )

ia j it a j a j a i t a i a

ia j it a j a i t a i a

x y y x

x y y x

     

    

  

  

     

    
.   

However, if there exists interaction terms in the nonlinear estimation, the 

marginal effects would be different from the case of calculating the average partial 

effects of a single variable. In this study, I use interaction terms of seasonal dummies 

and climate variables, so I employ the marginal effect calculation approaches proposed 

in Ai and Norton (2003) and Norton et al. (2004).  
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Suppose one continuous variable 1x  and one indicator variable 2x  interact, the 

interaction effect is the discrete difference of the single derivative (Ai and Norton 2003; 

Norton et al. 2004). The marginal effects for climate interaction terms are computed as, 

2

1 1 2
1 1

2 2

( )

{ ( )}
{ ( )}|x

x x

x x

 
  

 


  
  

 
. 

3.3.2.2 The standard count outcome models 

When iy is the number of outbreaks, normally, a Poisson model is used to estimate these 

kind of data. Usually, the Poisson distribution is give as, 

(3.8) 
exp( )

Pr( )
!

y

Y y
y

 
   for 0,1,2,...y   

where y  is the observed count and   is sole parameter determining the distribution with 

0  . The expected mean and variance of the Poisson distribution is

( | ) ( | )i i i i iE y x Var y x  , which means the conditional mean of each count dependent 

variable equals to its corresponding conditional variance.   

Given the independent observations with the density function, the log-likelihood 

function of the Poisson distribution for thi  observation is calculated as, 

(3.9) 
1

[ log( ) log( !)]
n

P i i i i

i

LL y y 


     

However, in empirical studies, the conditional variance usually exceeds the 

conditional mean, thereby presenting a problem of over-dispersion. The over-dispersion 

problem is mainly related to the heterogeneity and positive contagion in data (Bilgic and 
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Florkowski 2007). As suggested by Cameron and Trivedi (1998) and Cameron and 

Trivedi (2009), the popularity of the Negative Binomial (NB) model is due largely to its 

ability to model count data with varying degrees of overdispersion (Lloyd-Smith 

2007).Therefore, I first estimate the count outcome using the NB distribution,  which is 

given by,  

(3.10) 
1

1 1
1

1 1 1

( )
( ) ( ) ( ) , 0,1,...; , 0

! ( )

yy
P Y y y

y

  
 

    


 



  

 
   

  
 

where ( | )i i iE y x   and 
2

1
( | ) ( | )i

i i i i iVar y x E y x



 

   . 1   is a shape parameter 

which quantifies the amount of overdispersion with 1 0    indicating a standard Poisson 

model is preferred; ix  are vectors of independent variables pertaining to i  observations, 

and y is the response variable of disease outcomes -- the number of HPAI outbreaks.   

Given the probability function, the log likelihood for thi  observation is, 

(3.11)  
11

1

1 1 1

( )
log( ) log( ) log( ) log( !)

( )

i
NB i i

y
LL y y

 


    




  

 
   

  
 

3.3.2.3 The mixtural count outcome models 

In previous session, the NB model is used to improve the overdispersion problem in the 

Poisson model by increasing the conditional variance without changing the conditional 

mean (Long and Freese 2006). However, there is another problem that raises a challenge 

to the estimation -- the large percent zero observations in the empirical data. When 

counting outbreaks of infectious diseases, such as AI, these datasets necessarily are 

drawn from successful outbreaks. Therefore, there is the possibility of selection bias for 
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an increased proportion of exceptionally infectious individuals (Donnelly et al. 2004; 

Lloyd-Smith 2007). For example, some countries elect not to report AI outbreak cases, 

to delay reporting them, or to deliberately under-report the serious cases of AI (such as 

H5N1) due to financial, economic or social reasons (Nature editorial 2006). This is a 

typical issue in some developing countries, especially for those in Asia and Africa, they 

selected not to report AI outbreak cases, probably because 

 Their financial support for compensation is insufficient due to low GDP and 

high proportion of chicken production. According to OIE, the major reason is 

that the compensation for lost chickens is very low (Nordqvist 2006) 

 Most of them have had human infectious and human death, therefore, 

reporting additional outbreaks could breakdown people’s belief in disease 

control and prevention plans, which in turn will cause large panic   

In any way, no-reporting or underreporting of AI outbreaks could induce a 

selection bias problem in the sample since it represents a potential source of uncertainty 

and error (Li et al. 2008), and it may cause results from the standard apporach 

underestimated. Thus, it is important to determine which factors could affect the 

probability of no-reporting or underreporting to get more efficient disease surveillance 

and control plans if the real probability of outbreaks is higher than that is recorded.  

Since it is impossible to observe whether a zero comes from underreporting 

(sampling zeros which occur by chance) or a true zero observation (structural zeros 

which are inevitable) (Mohri and Roark 2005), Cameron and Trivedi (2009) recommend 
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assigning a probability for each of the two ways that a zero could arise and estimating a 

mixed model over the probabilities.  

In this study, zeros may come from two ways, 

 Channel 1: Countries in Asia and Africa were under-reporting or delay-

reporting incidences of AI outbreaks, thus extra zeros were generated, or 

 Channel 2: Countries were with a very low frequency of having HPAI 

outbreaks in past years, thus the probability of true zero outbreaks is high  

Because of the specific data generating process, which is unobservable, I could 

assign a probability for each process and estimate a mixture model with probabilities. As 

suggested by Ridout et al. (1998), the Zero-Inflated Poisson (ZIP) and Zero-Inflated 

Negative Binomial (ZINB) are both considered here.  

If assume that the probability of reporting an extra zero is p and it is determined 

by a logistic model assuming that the error term follows a logistic distribution. If the 

standard count distribution is a Poisson, the probability function of the ZIP model is 

written as,  

(3.12) 
(1 )exp( ),                              0

( ) exp( )
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The mean and variance of the ZIP distribution are ( | ) (1 )i i i iE y x p    and 

( | ) ( | )(1 ) ( | )i i i i i i i iVar y x E y x p E y x   , respectively.  

Alternatively, if the standard count distribution follows a Negative Binomial 

distribution, then a ZINB model is given by, 
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(3.13) 

1

1

1

1

1 1

1 1 1

(1 )( ) ,                                  0

( )
( )

(1 ) ( ) ( ) ,    1,2,...
! ( )

i

i

i

y

i

i

p p y

P Y y
y

p y
y







 

  

    









 

  


  


  

   
   

 

The mean and variance of the ZINB distribution are ( | ) (1 )i i i iE y x p    and 

( | ) ( | )[1 1 ( )] ( | )i i i i i i iVar y x E y x p E y x      , respectively.  

Following Hu et al. (2011), the Poisson, NB, ZIP and ZINB models relate   to 

covariates by assuming, 

(3.14)  'exp( )i ix   

In addition, the ZIP and ZINB models relate p  to covariates by assuming, 

(3.15) 
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where ix  are vectors of independent variables affecting the expected numbers of AI 

outbreaks; iz  are vectors of independent variables affecting the probability of reporting 

extra zeros,   and   are the corresponding vectors of regression coefficients in two 

processes, respectively.  

In order to fit the zero-inflated distributions, the log-likelihood function of ZIP 

and ZINB for thi  observation are calculated as follows, respectively 
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In both cases,  and  are parameters to be estimated. Maximum Likelihood 

Estimation (MLE) method is used to improve the efficiency of estimation (Wooldridge 

2002).  

3.4 Estimation Results 

Estimation results involving estimated coefficients, predicted outbreak probabilities and 

expected outcomes of HPAI disease are reported in this section.  

3.4.1 The Probability of HPAI Outbreaks 

The estimated coefficients from the Probit model with Random-Effects are reported in 

Table 3-2. To compare, I report results from the full model and alternatives that drop 

economic variables and indices of migratory flyways, respectively16 to check which 

model performs the best. 

 

 

 

 

 
                                                
16 I also tested the robustness by comparing with the linear probability model with the random-effect 
model. For most significant variables, these two models give similar results. However, the linear 
probability model is poor in fitting the data because the within sample mean squared error is much smaller. 
Therefore, I use results from the Probit model in the following analysis. Estimation results of the linear 
probability model are available upon request. 
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Table 3-2 Estimation Results from Regression Models  

Variable Model1 Model2 Model3 
AIProbt-1 1.4519*** 1.4547*** 1.4597*** 
 (0.0665) (0.0662) (0.0667) 
wtemp 0.0110 0.0103 0.0103 
 (0.0124) (0.0124) (0.0124) 
wtemp_sq -0.0006 -0.0005 -0.0005 
 (0.0005) (0.0005) (0.0005) 
sptemp 0.0348** 0.0347** 0.0355** 
 (0.0174) (0.0172) (0.0173) 
sptemp_sq -0.0013** -0.0013** -0.0013** 
 (0.0006) (0.0006) (0.0006) 
ftemp 0.0299 0.0281 0.0304 
 (0.0205) (0.0205) (0.0203) 
ftemp_sq -0.0013* -0.0013* -0.0014* 
 (0.0008) (0.0008) (0.0007) 
wprecp 0.0065*** 0.0063*** 0.0065*** 
 (0.0021) (0.0021) (0.0021) 
wprecp_sq -0.0000*** -0.0000** -0.0000*** 
 (0.0000) (0.0000) (0.0000) 
spprecp 0.0004 0.0005 0.0004 
 (0.0016) (0.0016) (0.0016) 
spprecp_sq -0.0000 -0.0000 -0.0000 
 (0.0000) (0.0000) (0.0000) 
fprecp 0.0007 0.0008 0.0007 
 (0.0011) (0.0011) (0.0011) 
fprecp_sq -0.0000 -0.0000 -0.0000 
 (0.0000) (0.0000) (0.0000) 
Cold_Month  0.3559** 0.3590** 0.3507** 
 (0.1420) (0.1418) (0.1411) 
Hot_Month  -0.0618 -0.0654 -0.0540 
 (0.0950) (0.0947) (0.0948) 
lnpimport 0.0479  0.0388 

(0.0828)  (0.0839) 
lngdp -1.0322***  -0.9979*** 
 (0.3107)  (0.3104) 
EAAFW 0.4581** 0.6065***  
 (0.2283) (0.2222)  
CAFW 0.0911 -0.0515  
 (0.1372) (0.1216)  
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Table 3-2 Continued 

Variable Model1 Model2 Model3 
BSM FW 0.5612** 0.8317***  
 (0.2468) (0.2130)  
EAFW 1.0577*** 1.0748***  
 (0.2725) (0.2760)  
EAWAFW 0.8811*** 1.1591  
 (0.3336) (0.3025)  
Constant -1.2822 -2.0770** -0.0965 
 (1.0490) (0.9741) (0.9734) 
sigma_u 0.1171** 0.1318*** 0.1702*** 
 (0.0512) (0.0483) (0.0451) 
rho 0.0135 0.0171* 0.0282** 
 (0.0117) (0.0123) (0.0145) 
Likelihood-ratio test of rho=0 1.83* 2.80** 6.41*** 
Brier Score (with-in-sample) 0.0689 0.0691 0.0697 
Brier Score (out-of-sample using 2009 data) 0.26 0.26 0.27 
Brier Score (out-of-sample using 2010 data) 0.20 0.20 0.22 
Note: variable definitions are in Table 3-1; * p<0.1, ** p<0.05, and *** p<0.01; standard errors are in 
parenthesis; Model 1 is the full model with all variables; Model 2 is the reduced model without economic 
variables and Model 3 is the reduced  model without indices of wild bird migratory flyways. 

 

 

 

I find significant nonlinear effects of climate variables on HPAI outbreaks. 

Model 1 shows that in the spring, outbreak risk increases as temperature rises up to a 

threshold where it reduces.  HPAI outbreak probability peaks at 13oC. Similarly, disease 

outbreaks increase with more precipitation in winter but peaks when precipitation is 

around 140 mm.  

I present the calculated marginal effects and associated standard errors in Table 

3-3. There we see that the total effects of temperature in spring will increases the risk of 

HPAI outbreaks by 0.0056%. Precipitation also has statistically significant and positive 
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impacts on HPAI outbreaks in winter. Apparently, precipitation affects the risk of 

disease outbreaks through its effects on the water and food resource and on AI virus 

survival time. Compared to temperature, precipitation has the larger marginal effect on 

the risk of 0.13% (model 1). 

 

 

 

Table 3-3 Average Partial Effects from Regression Models 

Variable Model1 Model2 Model3 
AIProbt-1 34.2176*** 34.5219*** 35.0526*** 
 (0.0249) (0.0250) (0.0252) 
sptemp 0.0056** 0.0246** 0.0210** 
 (0.0000) (0.0001) (0.0001) 
ftemp 0.3241 0.0349 0.0006 
 (0.0022) (0.0003) (0.0000) 
wtemp 0.2228 0.2770 0.2542 
 (0.0025) (0.0033) (0.0031) 
spprecp 0.0001 0.0004 0.0002 
 (0.0000) (0.0000) (0.0000) 
fprecp 0.0075 0.0010 0.0000 
 (0.0001) (0.0000) (0.0000) 
wprecp 0.1311*** 0.1699*** 0.1597*** 
 (0.0004) (0.0006) (0.0005) 
Cold_Month  5.0566** 5.1614** 5.1054** 
 (0.0241) (0.0244) (0.0245) 
Hot_Month  -0.6859 -0.7331 -0.6206 
 (0.0102) (0.0103) (0.0106) 
lnpimport 0.5498  0.4592 

(0.0095)  (0.0099) 
lngdp -11.8584***  -11.8137*** 
 (0.0359)  (0.0370) 
EAAFW 5.1908** 6.9549***  
 (0.0253) (0.0249)  
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Table 3-3 Continued 

Variable Model1 Model2 Model3 
CAFW 1.1044 -0.5800  
 (0.0175) (0.0133)  
BSMFW 7.7933* 12.7792***  
 (0.0401) (0.0400)  
EAFW 22.2110*** 22.9077***  
 (0.0827) (0.0849)  
EAWAFW 17.7875** 26.9119***  
 (0.0976) (0.1029)  
Note: variable definitions are in Table 3-1; * p<0.1, ** p<0.05, and *** p<0.01; Coefficients are 
multiplied by 100; standard errors are in parenthesis; Model 1 is the full model with all variables; Model 2 
is the reduced model without economic variables and Model 3 is the reduced  model without indices of 
wild bird flyways. Marginal effects of interaction terms are calculated using methods proposed by Ai and 
Norton (2003) and Norton et al. (2004).  corresponding standard errors are adjusted as well. 

 

 

 

Previous studies have examined the role of wild bird movements in HPAI spread, 

and some find that wild birds can carry the virus great distance through their migration 

flyway (Si et al. 2009). Results from Tables 3-2 and 3-3 also show that whether a 

country is on the migration flyway is statistically significant and positively related to 

disease outbreaks. I include five flyways: the East Asia-Australian flyway, the Central 

Asia flyway, the Black Sea-Mediterranean flyway, the East Atlantic flyway and the East 

African-West Asian flyway.  For those flyways that have statistically significant effects, 

I find the East Atlantic flyway has the largest effects on disease outbreaks than other 

three. Previous studies have found that HPAI outbreaks in some European and African 

countries are very likely due to early movements of wild birds (Si et al. 2010; Ottaviani 

et al. 2010).  My results confirm that wild bird migratory flyway is one of the major 
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factors of disease outbreak and spread, so countries on these flyways should pay more 

attention to disease control and prevention plans.   

I also find the unsurprising result that past outbreaks increase the chance of a 

current outbreak. A number of Asian countries succeeded in eradicating the disease, 

notably Japan, Malaysia, and the Republic of Korea, but all of these experienced 

reincursions of H5N1 virus (Newman et al. 2010). These repeated outbreaks provide a 

source of virus maintenance once introduced into an area (Sims and Narrod 2008). The 

dynamics of how HPAI survives is also very important for a country’s decision of 

whether to implement disease prevention and control strategies. 

In addition, the probability of disease outbreaks is correlated to a country’s total 

GDP. A higher GDP the country has, a lower risk it faces. It is argued that a country 

with higher development level, it will implement a more effective surveillance system. 

For countries, such as China, Viet Nam, Thailand and Nigeria, they had the financial 

issue of disease compensation and control plan. Sometimes, disease outbreaks could not 

be reported immediately due to insufficient disease surveillance and reporting system.  

3.4.2 Prediction Accuracy Assessment 

Although regression results are quite stable across three models in Table 3-2, I use the 

Brier score (Brier 1950) and Probabilistic graph (Casillas-Olvera and Bessler 2006) to 

check the forecast performance.  

The Brier score reference is a popular measure of forecast accuracy and measures 

the difference between the actual event and the forecast probabilities.  In the context of 

the dynamic panel Probit model, the overall Brier score is, 
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where BS is the total Brier score, ˆ
itp is the predicted probability of HPAI H5N1 

outbreaks and itd is the index of event occurs, in other words, with index equals one of 

H5N1 outbreak and zero of H5N1 not occurring.  

The Brier score is similar to the mean squared error but it ranges from zero 

(prefect prediction) to one (imperfect prediction). A lower Brier score indicates better 

predictions. In Table 3-2, I present the Brier scores using within sample prediction as 

well as out-of-sample forecast using data from 2009-2010. Subsequently, model 1 and 

model 2 give much smaller scores than model 3 indicating they fit somewhat better; 

however, it is still difficult to make decision which model is the best.  

To resolve this, I draw the probabilistic graph using data from 2009-2010 

(Casillas-Olvera and Bessler 2006; Yates 1988). The basic idea is to run a regression of,   

(3.19) it it it it itp a b d e    

where ita is the intercept for ith  country at time t , itb is the slop and ite is the error term. 

If event index 1itd  , then it it itp a b  ; otherwise, it itp a . Therefore, we could plot a 

two-way graph with event index and the predicted probability and compare it with a 45o 

line. The area between the regression line and 45o line represents the prediction error 

with smaller areas indicating better predictions. Figure 3-4 shows the area of prediction 

error and model 1 is relatively better than model 2. Therefore, I use model 1 in my 

subsequent predictions.   
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Figure 3-4 Probabilistic Graphs 

 

 

 

3.4.3 The Severity of HPAI Outbreaks 

Before going to the estimation results of HPAI outbreaks severity, Figure 3-5 shows the 

distributions of the Poisson, the NB model and the observed outbreaks. It could be seen 

that Poisson model is over-dispersed and the NB model fits data better. 
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Figure 3-5 Comparison between the Poisson and NB Model 

 

 

 

I also compute the Pearson goodness-of-fit to test whether observations are 

random, whose distribution belongs to a Poisson distribution and the null hypnosis is 

rejected at the 1% confidence level, which means that results from the Poisson 

regression may be not appropriate, suggesting the NB model is preferred. I also report 

results from the ZINB and ZIP model because of the problem of excess zeros. Table 3-4 

shows these regression results.   
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Table 3-4 Regression Results of HPAI Outbreak Outcomes  

Variable NB  ZIP  ZINB 
wtemp 0.9544  1.0391  1.0689** 
 (0.0336)  (0.0459)  (0.0296) 
wtemp2 1.0021  1.0002  0.9987 
 (0.0014)  (0.0016)  (0.0012) 
sptemp 1.0831  1.1115  1.2259*** 
 (0.0634)  (0.0983)  (0.0671) 
sptemp2 0.9971  0.9965  0.9931*** 
 (0.0021)  (0.0031)  (0.0020) 
ftemp 0.9629  0.9693  1.0720 
 (0.0593)  (0.1410)  (0.0783) 
ftemp2 1.0006  1.0014  0.9973 
 (0.0022)  (0.0055)  (0.0025) 
wprecp 1.0235***  1.0024  1.0141*** 
 (0.0050)  (0.0086)  (0.0054) 
wprecp2 0.9999***  1.0000  1.0000*** 
 (0.0000)  (0.0000)  (0.0000) 
spprecp 1.0080**  1.0018  1.0025 
 (0.0037)  (0.0033)  (0.0030) 
spprecp2 1.0000***  1.0000  1.0000 
 (0.0000)  (0.0000)  (0.0000) 
fprecp 1.0015  1.0002  1.0004 
 (0.0036)  (0.0059)  (0.0031) 
fprecp2 1.0000  1.0000  1.0000 
 (0.0000)  (0.0000)  (0.0000) 
index1 3.5265***  3.2549*  6.3519*** 
 (1.2821)  (2.1052)  (2.8880) 
index2 0.5129**  0.4126  0.5592** 
 (0.1560)  (0.2246)  (0.1468) 
AIProbt-1 32.3001*** 0.0824*** 4.2514*** 0.0247*** 9.5719*** 
 (7.6831) (0.0138) (0.8943) (0.0125) (2.5009) 
lnpimport 0.9677  1.0094  0.9243** 
 (0.0266)  (0.0422)  (0.0364) 
lngdp 0.4636*** 1.3067*** 0.7725** 1.1073 0.5724*** 
 (0.0462) (0.0600) (0.0958) (0.1456) (0.0881) 
EAAFW 0.4874 0.9681 0.2937** 0.5497 0.0093*** 
 (0.3055) (0.4019) (0.1537) (0.4250) (0.0132) 
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Table 3-4 Continued 

Variable NB  ZIP  ZINB 
CAFW 3.6155*** 0.4837*** 0.8386 1.3364 6.4583*** 
 (1.2610) (0.0978) (0.3132) (0.7756) (2.4710) 
BSMFW 0.3283 0.8754 0.1943*** 0.5905 0.0150*** 
 (0.2274) (0.3036) (0.1127) (0.2677) (0.0185) 
EAFW 3.5945*** 0.4562*** 1.3049 0.5149 0.4582 
 (1.7766) (0.1164) (0.4919) (0.2484) (0.2736) 
EFWAFW 0.5050 0.4501 0.0526*** 0.1750 0.0072*** 
 (0.3964) (0.2632) (0.0328) (0.1887) (0.0111) 
lnexport  1.0275**  1.0870*** 
  (0.0115)  (0.0273)  
lnppden  0.7807*  0.7320  
  (0.1030)  (0.1650)  
aihuman  0.9568***  0.6116*** 
  (0.0094)  (0.0883)  
N 5271  5271  5271 
AIC 6366.88  21727.18  5940.69 
BIC 6524.56  21950.56  6170.64 
Log-likelihood -3159.44 -10829.59 -2935.35 
Note: a Exponentiated coefficient; variable definitions are in Table 3-1; * p<0.1, ** p<0.05 and *** 
p<0.01; Standard errors in parentheses. 
 

 

 

For variables in both binary and count equations in ZIP and ZINB regression, the 

signs of the corresponding coefficients from the binary regression have opposite 

direction of those from the count regression. It is because the binary process is prediction 

of outbreaks that always have zero counts, so a positive coefficient implies lower 

outbreaks. The count process predicts number of outbreaks so that a negative coefficient 

would indicate lower outbreaks (Long and Freese 2006).  

A country with a higher GDP has a lower probability to report extra zero of 

HPAI outbreaks, and the probability is about 0.2 less than that for a country with lower 
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GDP level. This is probably because most countries in this study are developing 

countries and a big proportion of their GDPs are coming from agriculture production, 

especially poultry production.  

Countries with lower export of poultry products have a smaller probability of 

reporting extra zeros with a 0.37 difference between the largest and smallest export 

countries. Taking Thailand and China as examples, they are two of the largest exporters 

of poultry products in the world market. Reporting HPAI can cause huge economic 

losses due to drops of domestic consumption or international demand (McLeod et al. 

2006; Nicita 2008). Although there is a risk of disease underreporting, countries with 

lower GDP and higher poultry production would have incentive to keep the information 

of disease outbreaks unpublished. As animal diseases like HPAI can spread worldwide if 

the country does not take an action immediately, it is necessary to stimulate countries 

with lower GDP and higher level of poultry production to inform and report any animal 

disease outbreak. 

A country’s decision of underreporting or no reporting is related to its history of 

HPAI outbreaks or associated human death, both of which will increase the 

underreporting probability. It is possible that reported disease was not controlled, or 

even it was repeating or causing human death in some regions. Releasing news of 

disease outbreaks and spread will challenge people’s faith in public policy of and 

efficiency in disease prevention and control.  In addition, if a country has repeated 

disease outbreaks, it is difficult for this country to convince other countries in the world 
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market that their poultry meat or products are safe. If releasing news of disease 

outbreaks, this export country probably will lose its advantage in international market. 

For factors determining the expected number of HPAI outbreaks, results from 

NB and ZINB are consistent for most interested variables.  For example, winter 

precipitation has inverted U-shape effects on the expected number of AI outbreaks with 

outbreaks increase as winter precipitation rises and decrease if precipitation beyond a 

certain threshold.  In addition, if temperature is below 4oC, it will increase the expected 

number of AI outbreaks by a factor of 3.53, and 6.35 for NB and ZINB, respectively, 

holding all other variables constant. Similarly, temperature that is higher than 28oC will 

decrease the expected numbers for NB and ZINB. 

If hold other variables constant, countries with higher GDP have a higher 

probability of reporting zero outbreaks and will have less expected numbers of HPAI 

outbreaks by a factor of 0.46, 0.77 and 0.57 for NB, ZIP and ZINB model, respectively. 

Figure 3-6 shows that conditional on reporting, the probability of zero HPAI outbreaks is 

higher in developed countries than that in developing countries. However, the 

probability with more than one outbreak in developed countries is much lower than that 

in low-income countries.  
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Figure 3-6 Probability in High-income and Low-income Countries 

 

 

 

Previous literature found that the number of HPAI outbreaks increases along with 

more movements of people and lower per capita poultry production in a region where 

population of people is intensive (Fang et al. 2008; Hogerwarf et al. 2010). Some 

developed countries have a higher productivity of poultry production and lower density 

of people population, and in most cases, these countries have larger investments in 

disease prevention. Therefore, these countries can control disease easily, even with 

outbreaks.  

Whether a country is on the wild bird migration flyways also has significant 

impacts on the expected number of HPAI outbreaks.  Particularly, countries on the 

Central Asian Flyway will increase the expected disease outbreak numbers. Moreover, a 
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country’s expected numbers of AI outbreaks are associated with past AI outbreaks, 

which will be increased if this country has HPAI outbreaks in the past.  

3.4.4 Tests of Model Specification 

Table 3-4 also reports statistical criteria of model selection including the Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) (Vaudor et al. 

2011), which are given by,  

(3.20) 2 2ln( )AIC k L   

(3.21) 2ˆln( ) ln( )eBIC n k n   

where k  is the number of parameters in the statistic model and L is the maximized 

value of the likelihood function for the estimated model; n is the total observation and 

2ˆ
e is the error variance for the estimated model.  

Among all three models, the ZINB gives the smallest BIC and AIC values, which 

suggests that the ZINB model fits data the best, followed by NB, while ZIP is the worst.  

Additionally, the Log-likelihood Ratio (LR) test of NB versus ZINB prefers the ZINB 

model at the 1% confidence level.  

The alternative way to test which model performs better is to compare the 

difference between predicted and observed values (Long and Freese 2006; Vuong 

1989)17. According to Long and Freese (2006), the mean predicted probability is given 

by, 

                                                
17 Actually, Long and Freese (2006) developed a package that could be installed in STATA and the name 
of the code is “countfit”. 
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where m is the number of HPAI outbreaks. N is the total observation for estimation and 

ix  is a set of independent variables affecting the expected number of HPAI outbreaks. 

 

 

 

 

Figure 3-7 Mean Probabilities of Count Regression Models  
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Figure 3-7 shows the difference of mean probability among three count 

regression models. Points above zero indicate more observed counts than predicted and 

points below zero indicate more predicted than observed (Long and Freese 2006). The 

graph shows that ZIP model has a problem predicting the average numbers of zeros, 

while NB and ZINB do equally well.  However, combining BIC and AIC values as well 

as the LR test results, the ZINB model is the best for fitting data and therefore, it will be 

used in following analyses.   

3.5 Impacts of Climate Change on Disease Outbreaks 

Using results from the full Probit regression model, I predict the effect of climate change 

on the probability of HPAI outbreaks in each country. In this case, I will discuss and 

examine 

 How much has the realized climate change of the last 20 years contributed to 

today’s outbreaks 

 How much will projected climate change of the future 2 decades contribute to 

the likelihood of future outbreaks 

3.5.1 Past Climate Change Contributions to Current Outbreaks 

Based on historical records, the Intergovernmental Panel on Climate Change Fourth 

Assessment Report in 2007  (IPCC AR4)  presents data indicating that the global 

average temperature has increased by 0.55°C per decade from 1970-2006 (IPCC 2007). 

Changes in overall precipitation amounts vary by regions and seasons, but globally there 

has been a statistically significant 2 to 4% increase in the frequency of heavy and 
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extreme precipitation events when averaged across the middle and high latitudes during 

the last three decades of the 20th century (Kunkel 2003; Groisman et al. 2005).  

I use the observational climate data used in IPCC AR4 (IPCC 2007), separately 

from the intervals 1971-1980, 1981-1990 and 1991-2000, and compare it to the current 

probabilities of outbreaks. Figure 3-8 shows the annual average temperature (°C) and 

precipitation (mm/month) data for the past 10 and 20 years in each country18. Compared 

with mean temperature and precipitation in the northern hemisphere in 1971-1980, 

temperature increased in all countries while changes in precipitation vary. As shown in 

Figure 3-8, Cambodia and South Korea has heavier precipitation as time goes by, 

whereas Romania, Thailand and Vietnam have less.  

Controlling all other variables and using the past temperature and precipitation 

data, I compute the influence of past versus current climatic conditions on the 

probability of HPAI outbreaks in the figure in page 56. Other than Indonesia, I find the 

changes of temperature and precipitation in past 20 years have increased the risk of 

HPAI outbreaks. In other words, climate change as observed to date has significantly 

increased the probability of HPAI, which indicates that climate change is one of the 

forces driving the recent increase in outbreaks observed.  

                                                
18 I use the climate in 1971-1980 as the baseline, and calculate the difference of temperature and 
precipitation between 1971-1980 to 1981-1990 for a 10-year comparison and 1971-1980 to 1991-2000 for 
a 20-year comparison. 
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Figure 3-8 Changes in Climate in Past 20 Years

19
 

 

 

 

3.5.2 Projected Climate Change Contributions to Future Outbreaks 

Now I turn attention to the effects of future projected climate change on outbreak risk.  I 

use projections from three Global Climate Models (GCMs) used in IPCC AR4 (IPCC 

2007).  The chosen climate models are,  

                                                
19 I use the climate in 1971-1980 as the baseline to calculate the difference of temperature and 
precipitation from 1971-1990 and 1971-2000. 
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 The Hadley Center coupled model, version 3 (HAD: CM3), which is a stable 

global mean climate Collins et al. (2001) and is a mid-sensitivity case 

(Schlenker et al. 2006)  

 The Geophysical Fluid Dynamics Laboratory global climate model, version 

2.0 (GFDL: CM2.0), which is a model with strikingly lower drifts in 

hydrographic fields such as temperature and salinity, and more realistic 

currents that are closer to their observed values (Gnanadesikan et al. 2006; 

Delworth et al. 2006)  

 The Centre National de Recherches Météorologiques coupled atmosphere-

ocean climate model, version 3 (CNRM: CM3), which achieves a reasonable 

simulation of present-day climate and simulates a general increase in 

precipitation throughout the twenty first century (Salas-Mélia et al. 2005)    

There are multiple scenarios run with each climate model. I choose to use those 

under the A1B emission scenario, a medium scenario relative to the IPCC Special 

Report on Emission Scenarios (SRES) range (IPCC 2007; Nakićenović 2000). In 

addition, the simulated warming over a short time period (i.e. by 2030) is not very 

sensitive to the choice of scenarios across the SRES set (IPCC 2007).  

Through the IPCC Data Distribution Center (DDC), I obtained the average of 

projected temperature and precipitation between 2011 and 203020 for each climate 

model. Considering the uncertainty of projections from each climate model, I use the 

                                                
20 I project effects for 2030 to minimize uncertainties in climate change and economic development. 
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temperature and precipitation, which is averaged over three climate models, and predict 

the probability of HPAI outbreaks under these climate conditions.  

Nearly all projections indicate increased temperature in countries (in Figure 3-9). 

Even though future climate changes will be highly spatially variable, some model 

climate projections suggest that precipitation is not uniformly distributed and will 

increase at high latitudes, and decrease in the tropical and subtropical regions (IPCC 

2007). In turn, Figure 3-10 shows the effect on probabilities of HPAI outbreaks under 

future climate change.  

Clearly, projected climate change increases the risk of HPAI outbreaks in most 

countries. I find big increases in disease outbreak probabilities in Indonesia, Thailand 

and Vietnam (Note all these countries are in lower latitudes and projections indicate 

increases in temperature). In addition, these countries have total GDP that is under the 

world average. For countries located in temperate zone, they will have an increasing or 

decreasing risk of disease outbreaks depending on local changes in temperature and 

precipitation. Other countries, such as Japan, South Korea and Russia, have a declining 

probability of HPAI outbreaks since these countries have a higher GDP level and are 

able to implement disease surveillance and control plans. In other words, a country with 

a higher development level may be less affected since they have more capital and 

advanced technology to combat with disease outbreaks (Burns et al. 2008; Rushton et al. 

2006).  
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Figure 3-9 Changes in Climate under Three Climate Models

21
 

 

 

 

                                                
21 I use the climate in 1961-1990 as the baseline to calculate the difference of temperature and 
precipitation from climate models by 2011-2030. 
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Figure 3-10 Predicted Probability of HPAI Outbreaks under Climate Change 

 

 

 

3.6 Economic Loss of HPAI Outbreaks under Climate Change 

The next question to answer in this section is what would be the associated economic 

losses under past and future climate change? Since different countries have different 

contributions of poultry production to their total GDP, I calculate the additional 

economic loss by applying the changes of the outbreak probability under climate change 

to the countries I studied following the estimation procedure used in the World Bank 
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report by Burns et al. (2008)22. In addition, considering the underreporting issue, I 

calibrate the predicted probability of HPAI outbreaks by using the probability of 

reporting extra zeros. In my calculations I assume,  

 When an outbreak occurs that 12% of the domestic birds in each region die 

from the HPAI disease or are killed to prevent its spread. I use this 

percentage to calculate the GDP reduction of a further HPAI outbreak due to 

climate change  

 I calculate the averaged percentage of poultry production to the total GDP in 

each country in 2004-2008 ( ipp ) and assume the averaged percentages keep 

constant in each country over years 

For each country i , if assume that the probabilities under past, current and future 

climate condition is pip , cip and fip (averaged over three climate models), respectively, 

then pi ci pip p p    and fi fi cip p p    is the difference of HPAI outbreak probability 

under past and future climate change, respectively. Similarly, for each country i , assume 

cuip (averaged over three climate models) is the probability of reporting extra zeros 

under current climate condition, then 1 cuip is the probability of reporting actual HPAI 

outbreaks. Therefore, I have two equations to calculate the additional economic loss due 

to past and future climate change, respectively,  

                                                
22 According to their study, the reported results are based on a scenario where bird-to bird flu becomes 
enzootic throughout the world to the degree observed in Vietnam in 2004 (approximately 12 percent of all 
domestic birds died from the disease or were culled to prevent spread). 
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(3.24) 12% (1 )pi pi pi i criLoss GDP p pp p       for 1,...,16i   

(3.25) 12% (1 )fi fi fi i criLoss GDP p pp p       for 1,...,16i   

where piGDP  is the averaged real 2005 GDP between 1971-2000 and  fiGDP  is the 

averaged projected GDP between 2011 and 2030 in billions of 2005 dollars.  

Figures 3-11 and 3-12 show the GDP loss due to HPAI outbreaks under past and 

future climate, respectively. Additional GDP losses occur across the countries and future 

climate change generally causes a larger economic loss because of a higher probability 

of HPAI outbreaks. Comparing two graphs could see that developed countries, such as 

South Korea and Japan, had insignificant losses relative to their total GDP. However, 

some developing countries in Asia with relatively small economies and high proportions 

of poultry production, such as Indonesia, Thailand, and Vietnam, were exposed to a high 

proportion of losses. Additionally, many countries in our sample have reported more 

than one HPAI outbreaks since 2003, so the expected economic loss due to past climate 

change could be larger because of a higher frequency of outbreaks. 
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Figure 3-11 GDP Loss Due to HPAI Outbreaks under Past Climate ($ million) 

 

 

 

 
Figure 3-12 GDP Loss Due to HPAI Outbreaks under Future Climate ($ million) 
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3.7 Concluding Remarks 

I examine the relationship between climate conditions and the probability and outcome 

of HPAI outbreaks.  I also evaluate the effects of past and projected climate change on 

disease outbreak probability and discuss the problem of reporting extra zeros in count 

outcome. The results show that climate plays an important role in the outbreak 

probability and expected numbers. In particular, the risk of HPAI outbreaks increases as 

spring temperature rises or winter precipitation increases. More importantly, countries 

with lower GDP, larger export of poultry products and more cases of confirmed human 

death due to HPAI outbreaks will have more incentive to report extra zeros, in other 

words, they have a high probability to under-report AI outbreaks.   

Using data from the past 20 years, out-of-sample prediction shows that past 

climate change is a contributor to current disease outbreaks with 11% increase in 

probability. In addition, I also find that increases by 12% in disease outbreak probability 

under climate change as projected to 2030 across countries. Based on this prediction, 

countries in lower latitudes with higher temperature in spring and more precipitation in 

winter would face the largest increase in probability. These areas, in most cases are 

economically poor regions, so the associated economic loss due to HPAI outbreaks 

under climate change is significant to these countries. Therefore, it may be desirable to 

increase surveillance and other control measures in such regions.  
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4. AI INFORMATION AND MEAT DEMAND IN UNITED STATES 

 

4.1 Introduction 

Since the end of 2003, a HPAI--H5N1 virus -- has spread widely reaching almost 60 

countries in Asia, Europe and Africa continents, which has caused thousands of poultry 

depopulated. To date, there are 596 confirmed AI human cases, resulting in 350 human 

deaths in countries other than the United States23. During the same process, United 

States has several cases of LPAI virus, one H5N2 in poultry, and three Bovine 

Spongiform Encelopathy (BSE) cases.  

These disease outbreaks have received considerable media coverage all over the 

world, which may affect meat demand in the United States since media coverage of 

disease outbreaks and spread will hurt consumers’ confidence in meat safety.  As found 

in previous studies (Burton and Young 1997; Verbeke and Ward 2001; Piggott and 

Marsh 2004; Beach and Zhen 2008; Mazzocchi et al. 2006), information regarding food 

safety/disease incidence could affect consumption patterns, and that negative 

information can adversely alter the allocation of consumer expenditures on meats.  

However, situation may be different if we could trace where and when the animal 

disease occurred. Since United States is the second largest exporter of poultry meat and 

poultry product, disease shock on international demand was expected much larger than 

that on domestic demand. Moreover, changes of meat price based not only on domestic 

                                                
23 More information is available via 
http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/index.html. 
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demand shock but also on shift of excess demand. Therefore, taking account of 

international market effects is very important when analyzing negative impacts of animal 

disease incidence.  

This essay reports on research that examines how information of animal disease 

incidences (AI and BSE) affects meat demand in the United States using monthly meat 

consumption data from January 1989 to December 2010. This is done first employing an 

error corrected demand model to investigate short-run adjustment to the long-run 

equilibrium and second, using the general error correction model as the benchmark to 

examine and evaluate out-of-sample forecasting power of two models.  

This essay is organized as follows. Section 4.2 summarizes previous literature on 

demand shocks and food safety issues; Section 4.3 provides data and their statistical 

descriptions; Section 4.4 introduces models; Section 4.5 presents estimation results and 

forecasting evaluation and section 4.6 is the concluding remarks. 

4.2 Literature Review 

A large body of research has considered meat demand shifters including effects of food 

safety and product recall news (Burton and Young 1996; Mazzochi 2003; 2006; Piggott 

and Marsh 2004; Beach and Zhen 2008; Verbeke and Ward 2001). In that literature, the 

studies generally employ the Almost Ideal Demand System (AIDS) model developed by 

Deaton and Muelbauer (1980), and expand the demand function to use either an 

information index of the volume of relevant news, or an indicator variable that tells 

when the event occurred.   
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Burton and Young (1996) use the index approach in the form of contemporary 

and cumulative numbers of BSE articles, which allows transitory and permanent quality 

shocks and find that negative publicity on British beef reduces the beef market share by 

4.5% by the end of 1993. Piggott and Marsh (2004) incorporate quarterly media 

coverage indices of beef, pork, and poultry safety issues separately. They find that 

heightened public alert over food safety reduces per capita beef, pork, and poultry 

consumption by 2.21%, 0.99%, and 6.88%, respectively. Piggott et al. (2007) extend 

Piggott and Marsh (2004)’s study and update the food safety indices until 2005, and their 

results show that food safety information has a significant impact on consumer demand 

in the United States.   

Beach and Zhen (2008) use media coverage of AI in Italy and find that the short-

term AI media index reduces poultry consumption and increases beef demand. They also 

find that the impacts of newspaper articles on consumers’ food choices are determined 

by the magnitude and duration that the issue was covered.  Based on previous studies, 

Marsh et al. (2004) expand media coverage by adding the total number of recalls in a 

quarter and find effects of meat recalls on meat demand in the United States are 

statistically significant but economically small. 

Regarding to animal diseases impacts, Ishida et al. (2010) include BSE and AI 

outbreaks in a study in Japan and find that BSE and AI scares reduce demand for both 

beef and chicken, while increase demand for substitutes, such as pork and fish products. 

In stand of using the standard demand model, Mazzocchi (2003) and Mazzocchi et al. 

(2006) develop a stochastic, time-varying response approach as an alternative to the 
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inclusion of news coverage and apply it to assess the impact of food scare events. He 

finds that BSE in 1996 is linked with a small negative reduction in beef demand, along 

with a positive impact on pork and poultry. 

However, few studies have paid attention to the time series properties of demand 

data and not even discussed the possibility that the marginal effects of a single piece of 

news may not constant over time (Mazzocchi et al. 2006). Most importantly, few studies 

have evaluated the performance of demand models by testing their forecasting ability.  

Therefore, this essay extends previous work addressing shortcomings discussed 

above. Especially, I test the time series properties of demand data and use directed 

acyclic graph (DAG) to check causality between price and quantity to determine which 

type of demand model is appropriate for this study. I then estimate a dynamic demand 

model to incorporate animal disease index as well as to take account of the time 

properties of demand data. Finally, I predict out-of-sample forecast to evaluate the 

performance of the dynamic demand model calculating the root mean squared forecast 

errors (RMSFE) and the encompassing test.  

4.3 Models and Methods 

In this section, I first present the static demand model, and then discuss its dynamic form 

and the general form plus calculations of elasticities.  

4.3.1 Form of the Static Demand Model 

I use the generalized inverted AIDS demand function following Eales and Unnevehr 

(1994) by incorporating animal disease information as the shock on the intercept (Duffy 

2003),  
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(4.1) 
3 3 4

1 1 1

ln ln( )i i ik k i is s ij j i i

k s j

w AI BSE D q Q u     
  

          

With 

(4.2) 
4 4 4

0

1 1 1

ln ln 1/ 2 ln lnj j ij i j

j i j

Q q q q  
  

     

where iw  is the budget share of the thi  good; kAI  is the AI information index with 1k   

indicating a dummy telling when an AI poultry case occurs in United States; 2k  giving 

a count of number of overall AI related newspaper coverage in each month, and 3k 

giving the cumulative number of AI human cases that occur outside of the United States 

in each month; BSE is a  dummy variable telling when a BSE case occurs in the United 

States in a month; sD  is a seasonal dummy for the quarters of the year for s  spring, 

summer or fall; and jq  is the quantity of good j .  

In equations (4.1) and (4.2), ,   ,  ,  ,  , and   are parameters to be 

estimated. Restrictions of homogeneity and symmetry are needed but involve only the 

fixed, unknown coefficients and so may be easily tested or imposed (Eales and 

Unnevehr 1994). These restrictions are: 

(4.3) 1i

i

  , 0i

i

   , 0ik

i

  , 0is

i

  , 0i

i

  adding-up restrictions 

(4.4) 0ij

j

  , homogeneity restrictions 

(4.5) ji ij  , symmetry restrictions
 

Specifying the exact form of the demand function involves choice between a 

nonlinear or linear form. Hahn (1994) suggests estimating AIDS using its nonlinear form 
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because the linear form is an approximate of the nonlinear one. Although estimation 

results from Eales and Unnevehr (1994) do not reject the linear IAIDS form, they 

indicate a nonlinear form is preferred. More importantly, elasticities of IAIDS demand 

function can be calculated directly from its nonlinear form (Green and Alston 1990; 

1991). Thus, this essay uses the nonlinear IAIDS24.  

 Elasticities from the nonlinear IAIDS demand model are calculated following 

the same procedure in deriving the elasticities from the nonlinear AIDS (Green and 

Alston 1990; 1991). For nonlinear IAIDS, Eales and Unnevehr (1994) define the term of 

flexibilities as the inverse term of elasticities in AIDS, so the interpretation of 

flexibilities can be made in a manner similar to elasticities. For example, a demand for a 

commodity is said to be inflexible if a 1% increase in consumption of that commodity 

leads to a less than 1% decrease in the marginal value of that commodity in consumption 

(in absolute value). Commodities are termed as gross quantity-substitutes if their cross 

price flexibility is negative and as gross quantity-complements if it is positive (Eales and 

Unnevehr 1994).  

The interpretation of scale flexibilities can be considered as the case of 

homothetic preferences. If the scale flexibility of one commodity is less than -1, it means 

this commodity is a necessity. In other words, the commodity is a luxury good if the 

scale flexibility is greater than -1.  

                                                
24 Set 0 5   in the Nonlinear Seemly Unrelated Regression (NLSUR) algorithm according to Deaton and 
Muellbauer (1980). 
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4.3.2 An Error Corrected Demand Model 

Previous studies assume that either price or quantity in the demand system is exogenous 

(Piggott and Marsh 2004; Verbeke and Ward 2002; Beach and Zhen 2008). However, 

for aggregated demand data, the presumption of taking price or quantity as given is not 

appropriate. In addition, consumers’ consumption behavior may be changing over time.  

Thus, an error corrected inverted almost Ideal demand system function, i.e. the ECM-

IAIDS, is needed because using a dynamic generating process demand function is able 

to calculate consumers’ consumption preference adjustments (Eakins et al. 2003). The 

ECM-IAIDS model is based on the static IAIDS demand function identified above 

(Duffy 2003; 2006)25.  

If assuming quantities and expenditure are weakly exogenous, the ECM-IAIDS 

model with 1m lag is written as below,  

(4.6) 

1 1 1

1

3 3 4

1 1 1

1 1 1

1

ln ( ln )t k kt t s st j jt t
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

  

  



          

    

  


 

with  

(4.7) 
4 4 4

1 1 1

ln ln 1/ 2 (ln ln )t k kt kj k j t

k k j

Q q q q 
  

       

                                                
25 DAG results show the causality between price and quantity and finds that quantities are affected by 
prices, which means an IAIDS model is appropriate.  
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where  represents the first difference operator;  1itw   captures consumers’ habits and 

3 3 4

1 1 1

1 1 1

[ ln ln( )]t m t m k k s s j j t m

k s j

u w AI BSE D q Q       

  

          is the estimated 

residual lag from the static IAIDS model and 
tu is assumed to be a white noise stationary 

series process. 1 is the 3 1 vector and 1  is the 3 3 matrix and t is a vector of 

innovations that may be contemporaneously correlated with each other but are 

uncorrelated with their own lagged values and uncorrelated with all of the right-hand 

side variables. If 1  has ranks 1r  and 1 3r  , then tw  is cointegrated with 1r cointegrating 

vectors, reflecting a long-run relationship among variables in the system (Wang and 

Bessler 2003; 2006).  

From equations above, the ECM-IAIDS model that incorporates short-run shock 

is an error correction representation of the static IAIDS model. As stated by Eakins et al. 

(2003), this dynamic form allows for disequilibrium in the short-run by treating the error 

term iu in equation (4.1) as the equilibrium errors and these errors tie the short-run 

behavior of the dependent variable to its long-run value.  

The first-differenced terms on the right hand side capture the short-run 

disturbances. The error correction term 1t mu  captures the long-run equilibrium 

relationship given by the static IAIDS model and 1  measures the speed of adjustment 

to the long-run equilibrium with 1 1   indicating instantaneous adjustment. If 1  is 

large or closer to one in absolute value, then there is a rapid adjustment and a smaller 1

indicates a slower speed to go back to the long-run equilibrium.  
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Flexibilities from the static demand function are treated as the long-run 

equilibrium and the short-run flexibilities are given by the ECM-IAIDS model. The 

difference between the long-run and short-run equilibrium is adjusted by 1 , the 

coefficient of the error correction term.  

4.3.3 A General Error Corrected Model 

Since the purpose of this study is to examine the performance of the ECM-IAIDS model 

giving in a forecasting point of view, it is useful to have a relatively simple base or 

reference model (Klaiber and Holt 2010). One such possibility is to assume all prices, 

quantities and expenditures are endogenous, so the general error correction model is 

chosen, which is presented as below with 2m lag ,  

(4.8) 
2 2 2

2

2 1 2

1

T

t m t m t m t t

m

y y y D   



        

where 2  is the 9 1  scalar;  2 is the 9 9  matrix,   is 9 3  matrix; D is the 3 1  vector 

of seasonal dummies and ty  is 9 1  vector of endogenous variables, including price and 

quantity of beef, pork, chicken and turkey as well as the total expenditure.  

2 , 2  and   are coefficients to be estimated and t is a vector of innovations 

that may be contemporaneously correlated with each other but are uncorrelated with 

their own lagged values and uncorrelated with all of the right-hand side variables (Engle 

and Granger 1987). If 2 has a rank 2r  and 2 9r  , then ty  is cointegrated with 2r

cointegrating vectors, reflecting a long-run relationship among variables in the system 

(Wang and Bessler 2003; 2006) 
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4.4 Data and Tests 

Demand functions for four commodities are estimated including beef, pork, chicken and 

turkey.  Monthly data on retail price and per capita consumption were obtained from the 

U.S. Department of Agriculture (USDA) and the U.S. Census Bureau sources from 

January 1989 to December 2010. The beef and pork price data are the averaged retail 

value, and turkey price is measured by the retail value per pound of whole frozen birds. 

The chicken price is a composite price averaged across whole bird, chicken breast, and 

chicken legs weighted by quantity demanded.  

The per capita consumption data for chicken and turkey were collected from the 

USDA Poultry Yearbook. Since the per capita consumption of beef and pork was not 

available in the USDA Red Meat Yearbook, I divided the total consumption of beef or 

pork, which is measured by the retail disappearance, by population that was collected 

from the Population Division of the U.S. Census Bureau, to calculate the per capita 

consumption of beef or pork.   

An AI media index was constructed using the LexisNexis Academic search 

engine. I searched for news articles related to AI from up to 50 English-language 

newspapers worldwide. The number of news articles in each month is an AI index in that 

month. The keywords searched were “avian influenza” or “bird flu” over the period 

January 1989 to December 2010. Confirmed AI human cases were obtained from the 
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WHO web site from January 200326 to December 2010. Finally, two dummy variables 

were generated in the model. A BSE-US index indicates whether a BSE case was 

announced in a month in United States with ones for December 2003, June 2005 and 

March 2006, and zero for others. An AI-US index indicates whether an AI poultry 

outbreak was confirmed in each month in United States with ones for November 2003, 

February 2004 and March 2004, and zero for others. Therefore, I include four animal 

disease variables, 

 A dummy variable indicating whether the AI poultry case occurred in the 

United States as a shock on domestic meat demand (AI-US)  

 A counted number of articles covering AI outbreaks information as a shifter 

for both domestic and international demand (AI-media coverage)  

 A variable identifying the cumulative number of confirmed AI human deaths 

reported by WHO as a shock on the international demand (AI-human deaths) 

 A dummy of whether a BSE event occurred in the United States (BSE-US) 

Figure 4-1 shows the expenditure share of beef, pork and chicken during January 

1989 and December 2010. The vertical dash line indicates the first BSE case in the 

United States on December 2003 and the vertical solid line indicates the most dangerous 

H5N2 AI case in Texas on February 2004. With the first BSE announcement, beef 

expenditure dropped and chicken expenditure went up slightly. However, with the H5N2 

AI case, there was no significant shift of meat expenditure. It is possible because of 

                                                
26 The WHO only provides confirmed AI human cases since January 2003, so I assume that there was no 
confirmed AI human case before that. I also checked webpage information, and it seems that no confirmed 
AI human case was reported before 2003.  
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interaction effects spill over beef and chicken demand, which probably offset positive 

and negative effects among demand of meat. 

 

 

 

 
Figure 4-1 Meat Expenditure Patterns for Beef, Pork and Chicken 

 

 

 

Based on the assumption that price is predetermined (Deaton and Muellbauer 

1980) or the quantity consumed is predetermined (Eales and Unnevehr 1994; Klaiber 

and Holt 2010), two types of demand models are applied in demand estimation. This is a 

quantity-dependent demand function (e.g. AIDS) or a price-dependent demand function 

(e.g. IAIDS). As shown in Wang and Bessler (2006), this empirical modeling strategy 
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has a problem because the choice between price-dependent and quantity-dependent 

functions remains arbitrary and is not trivial. To avoid possible problems associated with 

the choice of functional forms, I test for causal relationship between price and quantity at 

level and at the first difference as well.  

According to Wang and Bessler (2006), the causality between price and quantity 

could be examined by using the Directed Acyclic Graph (DAG). I employ TETRADIV 

with the GES algorithm to identify the contemporaneous causal flows between prices 

and quantities. Figure 4-2 shows the causal relationships among prices and quantities, all 

are in logged term. Arrows indicate that beef (lnq1), pork (lnq2) and chicken (lnq3) 

quantities are affected by their own prices, while the causality between turkey price 

(lnp4) and its quantity is unidentified. In fact, turkey takes a small proportion of total 

meat consumption and the commodity with the smallest consumption is usually the 

equation dropped in demand system estimation, so the relationship between turkey price 

and quantity becomes negligible27. When looking at the first difference level, chicken 

and turkey quantities are both affected by turkey price and there is no direct causality 

between price and quantities of beef and pork, respectively.  

                                                
27 Actually, DAG in pattern shows that turkey quantity is affected by its own price.  
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2 1.72,  P 0.632,  BIC 15.01value                    
2 33.96,  P-value 0.026,  BIC 77.49      

Figure 4-2 Causalities among Prices and Quantities  

 

 

 

Figure 4-2 suggests that a price-determined demand function is not appropriate 

(e.g. AIDS model), so a quantity-predetermined demand function should be used under 

the assumption that quantities and expenditures are weakly exogenous. Otherwise, a 

general error correction model should be used with the assumption that quantities and 

expenditures are endogenous (Wang and Bessler 2006). Considering time series 

properties of demand data, I first apply the two-step demand model proposed by Morana 

(2000) and Mazzocchi et al. (2006), and then use the general error correction model to  
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release the assumption of weakly exogenous28.   

4.5 Results  

In this section, I first test time series properties of demand data, then interpret results 

from the static IAIDS model along with the long-run flexibilities, and results from the 

dynamic ECM-IAIDS model along with the short-run flexibilities. Finally, I evaluate 

forecasting performance between the ECM-IAIDS and the general ECM model.  

4.5.1 Testing Time Series Properties of Demand Data 

Before interpreting estimation results, variables are tested to check whether they have 

unit root by using the Augmented Dickey-Fuller (ADF) t test. Table 4-1 presents ADF 

test results showing that turkey budget share, price of beef, pork, chicken and turkey 

have unit roots and other variables are stationary at the 5% confidence level. All 

variables are stationary at the 1% confidence level at their first-difference.   

It is known that one weakness of the ADF test is its potential confusion of 

structural breaks in the series as evidence of nonstationarity. Therefore, test proposed by 

Clemente et al. (1998) is used since it allows for structure breaks. Table 4-1 also reports 

results of unit root test with one structure break.  

 

 

 

                                                
28 Due to the assumption of weakly exogenous in the demand model, the purpose of using the general error 
correction model (ECM) is to test the robustness of the two-step demand estimation. Initially, the ECM 
model has no economic meaning for estimated parameters, but it could be helpful to release the exogenous 
assumption and determine the forecasting ability when doing the evaluation of the two-step demand 
model. 
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Consistently, most variables at level cannot reject the null hypothesis of unit root 

with one structure break, and all variables at the first difference reject the null hypothesis 

of unit root, which means that demand data at level have unit roots and thus in the 

absence of cointegration. In other words, parameters and elasticities estimates from 

demand models at level are spurious (Eakins et al. 2003; Mazzocchi et al. 2006).  

There are two popular ways to determine the rank and lag in the ECM-IAIDS 

and the ECM model. The conventional approach is a two-step procedure involving 

system-based LR tests to determine r and k  sequentially (Park et al. 2008). This 

procedure is first to determine the lag length using information matrices, and then to 

determine the rank of cointergration vectors based on a trace test (Johansen1988). The 

second approach is the model selection method based on information criteria (Aznar and 

Salvador 2002; Baltagi and Wang 2007; Phillips and McFarland 1997; Park et al. 2008).  
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Table 4-1 Unit Root Tests with and without Structural Break 

 Variable Description ADF Test Clemente, Montanes and Reyes (1998) Test 
For zero structure break For one structure 

break  
(IO model) 

For one structure break  
(AO model) 

Level Difference Level Difference Level Difference 

w1 Budget share of beef -4.250**  -14.965** -3.947 -5.456** -2.811 -4.421** 
w2 Budget share of pork -5.730** -13.221** -2.918 -5.401** -2.362 -4.764** 
w3 Budget share of chicken -3.386** -21.855** -3.573 -5.232** -2.928 -5.489** 
w4 Budget share of turkey -2.568 -13.764** -4.372** -4.4** -0.945 -5.976** 
lnp1 Retail price of beef (cents/lb) -0.358 -13.013** -3.151 -5.761** -2.714 -3.85** 
lnp2 Retail price of pork(cents/lb) -0.921 -12.911** -2.93 -4.396** -3.054 -3.295 
lnp3 Retail price of chicken(cents/lb) -2.000 -19.756** -2.391 -9.436** -3.664** -9.98** 
lnp4 Retail price of turkey(cents/lb) -3.954** -15.416** -2.043 -5.427** -0.649 -5.002** 
lnq1 Consumption of beef (lb/capita) -10.275** -30.243** -3.499 -7.569** -1.982 -7.639** 
lnq2 Consumption of pork(lb/capita) -8.259** -25.916 ** -2.082 -5.749** -2.006 -5.629** 
lnq3 Consumption of chicken(lb/capita) -4.449** -34.857** -2.365 -8.632** -1.912 -12.53** 
lnq4 Consumption of turkey(lb/capita) -10.461** -25.291** -2.371 -6.958** -1.868 -4.744** 
lnexp Expenditure on meat (cents/capita) -3.527** -34.655** -1.195 -6.891** -1.15 -7.096** 
5% critical value  -2.879 -2.880 -4.27 -4.27 -3.56 -3.56 
Note: the null hypothesis of Augmented Dickey-Fuller test is that there is a unit root at some level of confidence; ** indicates we cannot accept the null 
hypothesis of a unit root at the 5% critical value. The AO model captures a sudden change in a series and the IO model allows for a gradual shift in the 
mean of the series.  
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Table 4-2 reports selection-order criteria for lag 1m  and Johansen tests for 

cointegration 1r . It can be seen that different information criteria give different length of 

lags, which could affect rank for cointegration. If choosing  1 2m   or 1 3m  , there are 

1 2r  for sample before disease outbreaks in United States and 1 0r   for the whole 

sample. However, it is difficult to determine the rank for the sample after disease 

outbreaks in the United States since there is zero rank if 1 2m  , and two ranks if 1 3m  .  

Therefore, a more advanced model selection procedure is used to determine the 

lag and rank simultaneously. Table 4-3 provides information criteria from model 

selection approach and finds that 1 2m  and 1 2r  has the minimum Hannan and Quinn 

loss (HQIC)  as well as the minimum Schwarz-loss criterion (BIC) loss for both 

subsamples for the ECM-IAIDS model. 

 

 

 

Table 4-2 Selection of  1m and Johansen Tests for 1r  

  Selection-order Criteria for Lag Johansen Tests for Cointegration 
 Rank AIC HQIC BIC    Lag=2 Lag=3 
  1989m1-2003m10 (before animal disease outbreaks in United States) 

0 -18.1863 -18.1642 -18.1318 81.4043 77.9229 
1 -22.8225 -22.7341 -22.6046 26.8317 19.1338 
2 -23.0637 -22.9091* -22.6825* 2.9682* 2.6257* 
3 -23.064* -22.8431 -22.5194     
4 -23.0581 -22.7708 -22.35     
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Table 4-2 Continued  

 Selection-order Criteria for Lag Johansen Tests for Cointegration 
 Rank AIC HQIC BIC    Lag=2 Lag=3 
  1989m1-2006m7(after animal disease outbreaks in United States) 

0 -18.2971 -18.2776 -18.2488 93.0585 91.6218 
1 -22.7335 -22.6554 -22.5403 34.3344 23.573 
2 -22.9378 -22.801* -22.5997* 4.0414 3.3972* 
3 -22.9842* -22.7889 -22.5012     
4 -22.9635 -22.7096 -22.3356     

  1989m1-2010m12 (whole sample) 
0 -18.1603 -18.1438 -18.1192 101.2958 103.9294 
1 -22.8086 -22.7426 -22.6443 33.5604 21.8731 
2 -23.0387 -22.923 -22.7511* 5.2282 4.1758 
3 -23.1165* -22.9513* -22.7056     
4 -23.1097 -22.8949 -22.5756     

Note: in this table, 2 2ln( )AIC k L   where k is the number of parameters in the statistic model and L

is the maximized value of the likelihood function for the estimated model; 2
ˆln( ) ln( )BIC n k ne  , 

where 2
ˆe is the error variance for the estimated model; log( ) 2 log log( )

RSS
HQIC n k n

n
  , where n is 

the number of observation and RSS is the residual sum of squares that results from the statistical model.  
 

 

 

Table 4-3 Model Selection Procedure for Rank ( 1r ) and Lag ( 1m ) 

l
Lag 

 
Rank 

1989m1-2003m10 1989m1-2006m7 
HQIC BIC HQIC BIC 

1 1 -22.706 -22.6207 -22.6124 -22.5365 
1 2 -22.7689 -22.6516 -22.6808 -22.5764 
2 1 -22.8627 -22.6807 -22.7269 -22.5649 
2 2 -22.9423 -22.7282 -22.8237 -22.6332 

3 1 -22.8249 -22.5454 -22.7532 -22.5047 
3 2 -22.8629 -22.5512 -22.8019 -22.5248 
4 1 -22.7551 -22.3774 -22.6804 -22.3448 
4 2 -22.7761 -22.366 -22.7102 -22.3458 
5 1 -22.8341 -22.3575 -22.715 -22.2917 
5 2 -22.829 -22.3199 -22.7152 -22.263 
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Based on the rank and lag selection results, I estimate the ECM-IAIDS model 

with 1 2r   and 1 2m   using a one-step, simultaneous, non-linear seemingly unrelated 

regression (NLSUR) approach (McElroy et al. 1988).  This method also allows for 

correlations in the residual variance-covariance matrix and will lead to more efficient 

estimation for small samples. In addition, Elder (1997) finds that this NLSUR algorithm 

is more stable and robust with respect to poor initial values.    

 For the general ECM model, I use the model selection approach to determine 

2m and 2r . Figure 4-3 shows the minimum point from BIC is at 2 4r   and 

2 1m  .Therefore, I estimate the general ECM model with 2 4r   and 2 1m  . 

 
Figure 4-3 Rank ( 2r ) and Lag( 2m ) Selection for the ECM Model 

 

 



81 

 

4.5.2 Estimation Results  

For the static IAIDS model, estimated parameters for the budget share equations are 

presented in Table 4-4 with model diagnostics. The results presented here are from a 

regression over three samples including January 1989 to October 2003, January 1989 to 

July 2006 and the whole sample. Since all variables entering the static regression are 

stationary in first-difference, interpreting the results from this regression relies on the 

stationary of residuals. ADF t test is used to test whether residuals from the static IAIDS 

equations are stationary and results in Table 4-4 reject the null hypothesis of unit roots at 

the 1% confidence level. Thus, the following results can be stated. 

If only consider impacts of AI media coverage, results from sample from January 

1989 to October 2003 show that it only increases pork budget share and has insignificant 

impacts on other meat. Under a static situation, the confirmed AI human deaths in other 

countries affect beef expenditure positively and chicken expenditure negatively over two 

subsamples. In particular, impacts of overseas AI human deaths on U.S. demand are 

statistically significant though economically small, equaling 0.02% for beef, -0.005% for 

pork, and -0.01% for chicken for subsample from January 1989 to July 2006. Moreover, 

it has smaller impacts on meat expenditure when using the whole sample.  

Since AI human cases have not occurred in the United States and there were only 

several poultry cases in history, it seems that nearby outbreaks and deaths would have 

larger effects than overseas’ disease outbreak information. This is also suggested by 

results from the general AI media coverage all over the world because it has positive and 

significant impact on chicken expenditure for the sample from January 1989 to July 
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2006 and increases beef expenditure and reduces pork expenditure in the whole sample. 

Therefore, distinguishing where the information comes from is necessary when defining 

situations like animal disease.  

For BSE events, they increase pork expenditure and decrease chicken 

expenditure in the whole sample, and have insignificant effects on beef. It is suspected 

that AI effects, which come from strongly and intensively media reports of AI disease 

spread and human deaths, will offset impacts of BSE events. Nevertheless, results show 

that adverse information from the nearby disease outbreaks has negative impacts on 

meat demand and this is consistent to previous study by Piggott and Marsh (2004) and 

Beach and Zhen (2008). The later also argue that similar but smaller impacts on chicken 

consumption in the United States would be expected.   

Table 4-5 reports the uncompensated own and cross flexibilities as well as the 

scale (expenditure) flexibilities along with the appropriate standard errors from the static 

IAIDS model. All the flexibilities were calculated at the sample means. Note that all 

own-quantity flexibilities are negative as theoretically expected, and all own-quantity 

flexibilities estimates were less than one in absolute value, indicating beef, pork and 

chicken demands in the United States are quantity inflexible. In addition, beef, pork and 

chicken are substitutes with all signs negative, which is consistent with results in Eales 

and Unnevehr (1994).  
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When looking at the AI media coverage flexibility, it is interesting to see that in a 

long run, it increases pork consumption if only considering overseas disease outbreaks. 

However, it increases chicken consumption and reduces pork consumption if taking 

account of domestic animal disease outbreaks. It is possible due to shocks on 

international market, consumers benefit from a lower price of chicken. Alternative 

reason is people may switch to chicken when BSE disease is announced. Since AI and 

BSE disease occurred across each other, both possibilities exist in a long-run equilibrium, 

while a short-run analysis could tell which reason is more important.  

As expected, information related to human deaths causes more attention from 

people and they become more cautious when purchasing meat. In the long run, beef 

consumption increases as the number of confirmed AI human deaths increases, while 

pork and chicken consumption decreases.   
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Table 4-4 Estimation Results from the Static IAIDS with Model Diagnostics 

  Model Estimation Model Diagnostics 
  AI-US AI-media 

coverage 
AI-human 

death 
BSE-US DW test  

on residual 
Unit root 

test on residual 
RMSE R2 

1989m1 
- 
2003m10 

Beef  -0.0036   2.2164 -8.340*** 0.0080 0.9997 
 (0.0023)       

Pork  0.0032*   2.5930      -8.629*** 0.0060 0.9995 
 (0.0017)       

Chicken  0.0001   1.8368 -8.180*** 0.0069 0.9992 
 (0.0019)       

1989m1 
- 
2006m7 

Beef 1.0231* -0.0006 0.0168*** -0.3473 1.9522 -5.051*** 0.0092 0.9996 
(0.5730) (0.0004) (0.0023) (0.4321)     

Pork -0.4283 -0.0002 -0.0051*** 0.9061 2.2027 -8.103*** 0.0071 0.9993 
(0.4352) (0.0003) (0.0018) (0.5625)     

Chicken -0.5372 0.0007** -0.0136*** -0.6775 1.5601 -5.292*** 0.0068 0.9993 
(0.4232) (0.0003) (0.0017) (0.4140)     

1989m1 
- 
2010m12 

Beef 0.8375 0.0005* 0.0052*** -0.3704 2.5680 -9.995*** 0.0085 0.9997 
(0.5184) (0.0003) (0.0005) (0.3862)     

Pork -0.4167 -0.0005** -0.0022*** 1.1046** 2.4600 -10.460*** 0.0064 0.9994 
(0.3916) (0.0002) (0.0004) (0.5075)     

Chicken -0.3822 -0.0001 -0.0055*** -0.6996** 2.4733 -11.409*** 0.0058 0.9995 
(0.3541) (0.0002) (0.0003) (0.3475)     

Note: Coefficients and standard errors in this table are multiplied by 100 to make them more comparable; * p<0.1, ** p<0.05, and *** p<0.01; Standard 
errors are in parenthesis.  
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Table 4-5 Long-run Own- and Cross-Price and Expenditure Flexibilities  

  1989m1-2003m10 1989m1-2006m7 1989m1-2010m12 
  Beef Pork Chicken Beef Pork Chicken Beef Pork Chicken 
Beef -0.8713*** -0.1457*** -0.0885*** -0.9248*** -0.1156*** -0.0774*** -0.8914*** -0.1266*** -0.0700*** 

(0.0248) (0.0093) (0.0057) (0.0251) (0.0083) (0.0055) (0.0193) (0.0067) (0.0040) 
Pork -0.1119*** -0.8316*** -0.0142*** -0.0405 -0.8412*** -0.0283*** -0.0677*** -0.8347*** -0.0251*** 

(0.0254) (0.0112) (0.0037) (0.0301) (0.0086) (0.0051) (0.0223) (0.0074) (0.0048) 
Chicken 0.0036 0.0139 -0.8590*** 0.0346 -0.0117 -0.8600*** -0.0103 -0.0242*** -0.8568*** 

(0.0363) (0.0145) (0.0083) (0.0340) (0.0125) (0.0082) (0.0230) (0.0079) (0.0030) 
Expenditure -1.0771*** -0.9773*** -0.8737*** -1.0998*** -0.9192*** -0.8573*** -1.0681*** -0.9269*** -0.9248*** 

(0.0261) (0.0343) (0.0443) (0.0261) (0.0356) (0.0386) (0.0216) (0.0288) (0.0290) 
AI media 
coverage 

-0.0072 0.0112** 0.0005 -0.0012 -0.0008 0.0025** 0.0010 -0.0018** -0.0005 
(0.0046) (0.0060) (0.0071) (0.0008) (0.0010) (0.0010) (0.0005) (0.0007) (0.0007) 

AI human 
deaths 

      0.0324*** -0.0171*** -0.0482*** 0.0100*** -0.0076*** -0.0196*** 
      (0.0044) (0.0059) (0.0061) (0.0009) (0.0013) (0.0011) 

Note: I calculated the Marshallian own- and cross price flexibilities using equation 
( ln )

1
qij i j ij ki

ij ij
wi

   

 

  
    and the expenditure 

flexibilities using equation 1 ifi
wi


   , where ij  is the Kronecker delta with 1ij   if i j  and 0ij   if i j . * p<0.1, ** p<0.05, and *** 

p<0.01; Standard errors are in parenthesis. 
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There are three criteria to determine a preferred long-run equilibrium model 

(Eakins et al. 2003), which could be used for estimating the dynamic one.  

 Whether the estimated flexibilities imply a downward sloping demand curve 

 Whether the regression model passes various diagnostic tests including 

goodness-of-fit, serial correlation, etc. 

 Whether the model indicates a stationary pattern of residuals  

As shown in Tables 4-4 and 4-5, model diagnostics and estimated flexibilities 

suggest that the static IAIDS model meets all three criteria. Table 4-6 reports regression 

results from the ECM-IAIDS model based on equation (4.6) and (4.7).   

The error correction term 1  for beef is -12% when there was no AI and BSE 

outbreak in the United States, which implies that 12% of the disturbance to the long-run 

equilibrium in the previous period is corrected or adjusted back to long-run equilibrium 

in this period. However, with the animal disease outbreaks, the adjustment rate is 30%, 

indicating there is quick adjustment after disease outbreaks. For chicken expenditure, 11% 

of the disturbance to the long-run equilibrium is adjusted when there were AI outbreaks 

overseas, and the adjustment rate decreases to 0.3% and 4% if there are AI and BSE 

outbreaks occurred in the United States, suggesting there is a slower adjustment speed 

for chicken demand.  
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In the short run, information on overseas’ disease outbreaks is insignificant on 

meat expenditure. However, information on domestic disease outbreaks has statistically 

significant impacts. Beef expenditure increases as AI outbreaks and decreases as BSE 

outbreaks. Moreover, pork expenditure goes up as BSE outbreaks. Results also show 

shifts in consumers’ meat demand habits are significant at the 1% confidence level for 

all three samples, which indicates consumers are persistent to their consumption 

behaviors over time.  

Table 4-7 gives estimates of short-run own- and cross-price and expenditure 

flexibilities. The short-run own-price flexibilities of beef, pork and chicken are close to 

their long-run flexibilities. Combined with the error correction coefficients in Table 4-6, 

the quantity frequencies of demand for beef, pork and chicken do not move far from 

their long-run frequencies.  
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Table 4-6 Estimation Results from the ECM-IAIDS Model 
  AI-US AI-

media 
coverage 

AI-
human 
death 

BSE-US 
1tw   , 2beef tu   , 2pork tu   , 2chicken tu   RMSE R2 

1989m1-
2003m10 

Beef  0.0336   -
11.1821*** 

-11.9550* -12.3468 -3.5983 0.0040 0.8725 

  (0.0334)   (2.5491) (6.5747) (8.2662) (6.3261)   
Pork  0.0179   -7.9512*** 4.0262 3.3013 4.3918 0.0031 0.9290 
  (0.0255)   (2.3362) (5.0379) (6.3276) (4.8332)   
Chicken  -0.0261   -6.1812** -3.7455 -6.6925 -

10.5372** 
0.0034 0.7391 

  (0.0283)   (3.1049) (5.5451) (7.0431) (5.3526)   
1989m1-
2006m7 

Beef 0.5226** 0.0084 0.0041 -
0.3989*** 

-
12.7952*** 

-
29.9868*** 

-
24.9069*** 

-
19.7354** 

0.0043 0.8533 

 (0.2356) (0.0339) (0.0084) (0.1288) (2.3516) (7.6247) (8.7519) (8.5523)   
Pork -0.2292 0.0105 0.0052 0.3710** -9.3800*** 5.6888 0.7484 -3.0699 0.0030 0.9323 
 (0.1613) (0.0232) (0.0058) (0.1873) (2.1080) (5.2317) (6.1330) (6.1115)   
Chicken -0.2843 -0.0060 -0.0113 0.0025 -7.6040*** 4.4136 1.5689 -0.3776 0.0039 0.7188 
 (0.2144) (0.0308) (0.0076) (0.1722) (2.7641) (6.9959) (8.1480) (7.7560)   

1989m1-
2010m12 

Beef 0.5211** 0.0124 0.0020 -
0.4188*** 

-
10.9211*** 

-
30.1533*** 

-13.2837** -
20.8174** 

0.0045 0.8413 

 (0.2374) (0.0336) (0.0067) (0.1346) (2.1534) (8.5169) (6.5043) (9.4714)   
Pork -0.1971 0.0015 0.0016 0.3961** -9.2270*** 1.7190 4.4262 0.3583 0.0032 0.9233 
 (0.1673) (0.0237) (0.0047) (0.1909) (1.9230) (5.9993) (4.4580) (6.6950)   
Chicken -0.3040 -0.0017 -0.0058 -0.0126 -7.9034*** 4.6507 -4.7119 -4.1110 0.0040 0.6983 
 (0.2126) (0.0300) (0.0059) (0.1726) (2.4709) (7.6468) (5.8834) (8.4790)   

Note: coefficients and standard errors in this table are all multiplied by 100 to make them more comparable; * p<0.1, ** p<0.05, and *** p<0.01; 
Standard errors are in parenthesis.  
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Table 4-7 Short-run Own- and Cross-Price and Expenditure Flexibilities  

  1989m1-2003m10 1989m1-2006m7 1989m1-2010m12 
  Beef Pork Chicken Beef Pork Chicken Beef Pork Chicken 

Beef -0.7936*** -0.1183*** -0.0935*** -0.7978*** -0.1111*** -0.0958*** -0.7951*** -0.1109*** -0.0969*** 
(0.0092) (0.0049) (0.0082) (0.0093) (0.0047) (0.0084) (0.0086) (0.0043) (0.0076) 

Pork -0.1193*** -0.8084*** -0.0622*** -0.1120*** -0.8117*** -0.0684*** -0.1115*** -0.8100*** -0.0692*** 
(0.0052) (0.0049) (0.0052) (0.0048) (0.0043) (0.0051) (0.0045) (0.0040) (0.0045) 

Chicken -0.0914*** -0.0635*** -0.8412*** -0.0939*** -0.0696*** -0.8317*** -0.0950*** -0.0706*** -0.8319*** 
(0.0088) (0.0052) (0.0107) (0.0089) (0.0050) (0.0107) (0.0080) (0.0045) (0.0094) 

Expenditure -1.0254*** -0.9967*** -0.9756*** -1.0245*** -0.9932*** -0.9819*** -1.0277*** -0.9842*** -0.9858*** 
(0.0088) (0.0118) (0.0145) (0.0088) (0.0108) (0.0153) (0.0079) (0.0098) (0.0134) 

AI media 
coverage 

0.0676 0.0633 -0.0969 0.0170 0.0372 -0.0224 0.0250 0.0052 -0.0064 
(0.0673) (0.0901) (0.1050) (0.0682) (0.0820) (0.1143) (0.0677) (0.0837) (0.1115) 

AI human 
deaths 

      0.0079 0.0177 -0.0401 0.0038 0.0055 -0.0205 
      (0.0162) (0.0195) (0.0270) (0.0128) (0.0159) (0.0211) 

Note: * p<0.1, ** p<0.05, and *** p<0.01; Standard errors are in parenthesis. 
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Following Deaton and Muellbauer (1980), symmetry and homogeneity 

constraints are tested using the LR test, which is written as, 

(4.9) *

1 2(log log )RT L L    

where RL  is the likelihood from the restricted estimation and *L  is from the unrestricted 

estimation. Since the standard LR test approach provides biased results toward rejection 

of the null hypothesis (Meisner 1979),  three alternative test statistics as proposed by 

Deaton(1972;1974) and Baldwin et al. (1983) are also used, which are presented below,   

(4.10) 1 *

2 [( ) ( )]R RT T tr       

(4.11) 
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In all three equations, R  is the estimated variance-covariance matrix of the 

error terms from the restricted model and *  is from the unrestricted model; n is the 

number of equations, k  is the number of explanatory variables and T is the total 

observations for estimation. 1T , 2T and 4T are all asymptotically distributed as 

2[ ( 1) / 2]n n   under the null hypothesis and 3T  is asymptotically distributed as 

( ( 2) / 2,( 1)[ ( 2)])F n n n T n     under the null hypothesis. 

Table 4-8 reports test results from 1T  to 4T  with significant level. It can be seen 

that the null hypothesis that homogeneity, or symmetry, or both restrictions hold is 

rejected at the 1% confidence level in the static IAIDS model. However, for all test 
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statistics, results cannot reject the null hypotheses that economic restriction holds at the 

1% confidence level in the ECM-IAIDS model for two subsamples, which suggests that 

imposing the dynamic term of consumption habits and the adjustments of short-run 

disturbance from the long-run equilibrium is helpful to explain U.S. meat demand 

patterns.  

 

 

 

Table 4-8 Tests of Homogeneity and Symmetry in Demand Models 

Model  Unrestricte
d V.S. 
Homogenei
ty (3) 

Unrestricte
d V.S. 
Symmetry 
(3) 

Homogeneit
y V.S.  
Restricted 
(3) 

Symmetr
y V.S. 
Restricte
d  (3) 

Unrestricte
d V.S.  
Restricted 
(6) 

  1989m1-2003m10  
IAIDS T1 26.26 *** 34.74 *** 27.77*** 19.29*** 54.03*** 

T2 21.93*** 31.61*** 26.61*** 18.24*** 47.80*** 
T3 4.12*** 6.06*** 5.05*** 3.40** 9.48*** 
T4 12.37*** 18.17*** 15.15*** 10.21** 28.43*** 

ECM-
IAIDS 

T1 9.64** 0.68 0.9 9.86** 10.54 
T2 9.34** 0.68 0.90 9.56** 10.22 
T3 1.47 0.11 0.14 1.51 1.61 
T4 4.41 0.32 0.42 4.52 4.84 

  1989m1-2006m7  
IAIDS T1 28.29*** 26.33*** 17.14*** 19.10*** 45.43*** 

T2 17.55*** 21.17*** 16.71*** 17.51*** 33.95*** 
T3 4.99*** 7.23*** 4.14*** 4.15*** 4.26*** 
T4 14.96*** 21.69*** 12.43*** 12.44*** 12.79** 

ECM-
IAIDS 

T1 7.87** 8.40** 3.48 2.95 11.35* 
T2 7.67 8.07 3.47 2.88 11.06* 
T3 1.87 0.14 1.90 1.90 1.92* 
T4 5.60 0.41 5.70 5.69 5.77 
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Table 4-8 Continued 

Model  Unrestricte
d  
V.S. 
Homogenei
ty (3) 

Unrestricte
d  
V.S. 
Symmetry 
(3) 

Homogeneit
y 
V.S.  
Restricted 
(3) 

Symmetr
y  
V.S. 
Restricte
d (3) 

Unrestricte
d 
V.S.  
Restricted 
(6) 

  1989m1-2010m12  
IAIDS T1 43.93*** 22.51*** 12.99*** 34.41*** 56.92*** 

T2 38.91*** 21.01*** 12.74*** 32.56*** 50.98*** 
T3 7.78*** 9.50*** 5.42*** 5.57*** 5.70*** 
T4 19.80*** 28.49*** 16.27*** 16.70*** 17.11*** 

ECM-
IAIDS 

T1 16.01*** 2.98 2.64 15.67*** 18.65*** 
T2 15.45*** 2.98 2.64 15.12*** 18.06*** 
T3 2.78** 0.18 2.59* 2.64** 2.65** 
T4 7.67* 0.55 7.78* 7.91** 7.94 

 Critical values 
 df 0.1  0.05  0.01 

2  3 6.2513  7.8147  11.3448 
6 10.6446  12.5915  16.8118 

F  3 2.0838  2.6049  3.782 
6 1.7741  2.0986  2.802 

Note: * p<0.1, ** p<0.05, and *** p<0.01; Degree of freedom is in parenthesis. 
 

 

 

For the whole sample, 1T  and 2T  both reject the null hypothesis that homogeneity 

or both homogeneity and symmetry restrictions hold, while 3T  and 4T  cannot reject these 

two restrictions at the 1% confidence level. These results are consistent with previous 

studies using the same statistics (Deaton 1972; 1974).  

Table 4-8 also shows that the ECM-IAIDS model performs better than the IAIDS 

model. However, the robustness of the ECM-IAIDS model should be checked by testing 

its forecasting ability. To do this, the general ECM model is used by treating all prices, 
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quantities and expenditures endogenous. Since both homogeneity and symmetry 

restrictions cannot be rejected in the ECM-IAIDS model according to test statistics 3T  

and 4T , I compare forecasting results of the ECM-IAIDS model with both homogeneity 

and symmetry imposed and the general ECM model without any restrictions. 

4.5.3 Forecasts Evaluation 

As indicated above, the robustness of the ECM-IAIDS model should be checked because 

of the weakly exogenous assumption of quantities and expenditure. Using two 

subsamples estimated above, I predict one-step ahead forecast for the rest of the data, i.e. 

from November 2003 to December 2010 and from August 2006 to December 2010, 

respectively. The same procedure is applied to the general ECM model. According to 

previous studies (Kastens and Brester 1996; Klaiber and Holt 2010; Wang 2010), models 

are evaluated by two approaches--the root mean squared forecast errors (RMSFE) and 

the encompassing tests following Chong and Hendry (1986) and Wang and Bessler 

(2003).  

The compassing tests require that the following estimation, 

(4.13) ( )it it jt ite e e      

where ite  and jte  represents forecast errors from model i  and j , respectively. I test the 

null hypothesis of model i  encompasses model j  by testing 0  . A t test or a LR test 

statistics could be used to perform the test. A significant p-value indicates that the 

forecasts generated from model i  and model j  are different and do not encompass each 

other (Klaiber and Holt 2010).  
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Table 4-9 RMSFE and Statistics on Encompassing Tests  
 2003m11-2010m12 2006m8-2010m12 
 Beef Pork Chicken Beef Pork Chicken 
ECM 0.0037 0.0046 0.0034 0.0036 0.0040 0.0027 
ECM-IAIDS 0.0056 0.0034 0.0051 0.0064 0.0037 0.0047 

Tests of Two-way Encompassing 
 Coefficient Test statistics Coefficient Test statistics 

ECM encompasses  
ECM-IAIDS 

0.4060 F(1,256)=181.14 
Prob>F=0 

0.3160 F(1,157)=67.17 
Prob>F=0 

ECM-IAIDS  
Encompasses ECM 

0.5939 F(1,256)=387.71 
Prob>F=0 

0.6840 F(1,157)=314.76 
Prob>F=0 

Note: I did the following transformation of forecast values to get the forecast budget share of 
ˆ ˆ ˆ ˆexp(ln ln ln exp )w p q
t t t t
   , where ˆln p , ˆln q  and ˆln exp

t  are one-step ahead forecast value from 
the ECM model.  

 

 

 

Table 4-9 reports the RMSFE and statistics on the encompassing tests. In both 

subsamples, ECM performs better for the beef and chicken forecasting, while the ECM-

IAIDS model fits the data better for the pork equation. The encompassing test results 

also show that the ECM and the ECM-IAIDS models are different and cannot 

encompass each other. In other words, the ECM-IAIDS model proposed in this study is 

also important to capture the meat consumption pattern in the United States. Figure 4-4 

and Figure 4-5 shows predicted and observed values for two subsamples, respectively. 
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Figure 4-4 Forecasted and Observed Budget Share from 2003m11 to 2010m12 
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Figure 4-5 Forecasted and Observed Budget Share from 2006m8 to 2010m12  
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4.6 Concluding Remarks 

In this paper, I analyze the economic impacts of animal disease information on meat 

consumption in the United States using the error corrected inverse almost ideal demand 

model (ECM-IAIDS).  

By testing time series properties of demand data, I find that employing a dynamic 

demand model is appropriate. Examining the ECM-IAIDS model, results find that in 

short run, people react more to nearby disease outbreaks than to those that occurred 

overseas, whereas in long run, all information related to animal disease outbreaks will 

influence consumers’ consumption patterns. Although the economic influences of 

animal disease on meat consumption are statistically significant, they are economically 

small.  

Based on restriction tests and forecast evaluation, results show that the ECM-

IAIDS model fits the data better. In particular, both homogeneity and symmetry 

restriction hold for subsamples based on alternative test statistics proposed by Deaton 

(1972; 1974). From a comparison with the benchmark ECM model, which is usually 

considered as the superior model in forecasting (Wang and Bessler 2003), results of 

RMSFE and the encompassing test statistics both present that the ECM model cannot 

encompass the ECM-IAIDS model. In other words, both models are important in 

forecasting.  
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5. EVALUATION OF AI MITIGATION STRATEGIES
29

 

 

5.1 Introduction  

The prevalence of outbreaks of AI in Asia, Europe and Africa and their economic 

consequences raise concerns about prevention methods, mitigation options and their cost 

effectiveness. Referring to the United States, several AI strains caused outbreaks among 

poultry during 2003 and 2004 (H7N2 in New York in 2003, and Delaware, New Jersey 

and Maryland in 2004; H5N2 in Texas in 2004), all of which caused large losses to 

farmers as well as in exports of poultry and/or poultry products as revealed in Section 2.  

Historically, the 1993-1994 outbreaks of LPAI in Pennsylvania resulted in 

depopulation of over 17 million birds and cost the federal government over $60 million 

(Akey 2003). The 1983-1984 AI outbreaks cost $63 million and a 2002 case led to a 

producers’ loss of between $130 and $140 million (Cupp et al. 2004). More recently, a 

HPAI strain was diagnosed in Gonzales County, Texas in a flock of infected broiler 

chickens in February 2004, which involved a broiler farm of 6 thousand birds plus 5 live 

bird markets. Subsequently, 44 countries banned imports from either Texas or United 

States-originated poultry or poultry products (Pelzel et al. 2006). The overall value of all 

poultry and poultry products produced and exported from Texas was $123 million, 

which represented 5.4% of the total value of U.S. poultry and poultry product in 2002. 

                                                
29 This section is extended based on Egbendewe (2009)’s dissertation. Please refer to Egbendewe (2009) 
for background information.  
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Although there has been no large AI outbreak in the United States since 2004, 

planning of mitigation strategies is important for preventing a potential outbreak of AI 

and for reducing the economic costs of future outbreaks. AI outbreaks are unpredictable 

as most poultry producing regions are on wild bird flyways and evidences show that 

wild birds’ migration can spread the disease (European Food Safety Authority 2006).  

This study simulates an AI outbreak in the United States and evaluates two 

mitigation strategies -- quarantine and vaccination. By using epidemic and economic 

models, this study examines how a large AI outbreak assumed in the United States 

would affect production and welfare by alternative AI mitigation strategies considering 

not only the domestic demand shock, but also a potential international demand shift. In 

pursuing of the objective, this study  

 Uses a susceptible, latent, infected and removed epidemic model developed 

by Egbendewe (2009) to simulate the loss of the poultry population in the 

United States 

 Incorporates the simulated production outcomes plus domestic demand and 

international trade responses into a U.S. Agricultural Sector Model (Adams et 

al. 2005) 

 Uses the linked economic and epidemic model to simulate the production, 

price and welfare changes under two alternative mitigation strategies  

This essay is organized as follows. Section 5.2 discusses the economic intuition; 

section 5.3 reports design of this study; section 5.4 presents results; section 5.5 examines 
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the ex-post evaluation of AI outbreak costs due to paste climate change and section 5.6 

provides conclusions and policy implications.    

5.2 Economic Intuition  

In this section, a theoretical model is discussed to reveal the underlying economic 

meaning of this study. Assuming an AI outbreak occurs nationally in the United States 

and spreads to other flocks in each region with the same contact rate as surveyed in 

Texas by Egbendewe (2009).  

Theoretically, the AI outbreak causes depopulation of chicken if vaccination is 

not implemented. Figure 5-1 shows the case with supply shock. Domestic demand and 

export demand also shrinks because people become more cautious of consuming poultry 

products when receiving a large number of media coverage of AI outbreaks all over the 

world. Sequentially, national prices and welfares are impacted due to those effects. 

However, changes vary when different AI mitigation strategies are implemented and the 

biggest difference is depending on how large the supply and demand curves shift. 

Figures 5-2, 5-3 and 5-4 show changes of price, production quantity and welfare under 

three cases of demand shocks without vaccination.  

 If only domestic demand is affected negatively, and the magnitude is smaller 

than the shift of supply, then both price and production quantity will go down 

slightly. Therefore, producers’ surplus decreases and consumers’ surplus is 

uncertain if vaccination is not used 
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 If only excess demand shock is included, price will go down significantly, 

consumer surplus increases and producer surplus declines under no 

vaccination strategy 

 If both domestic and excess demand is affected, price and production 

quantity will go down significantly, producer surplus declines but consumer 

surplus is unclear 

This essay assumes the effect of the AI outbreak on supply is negligible if 

vaccination strategy is applied. Therefore, Figures 5-2, 5-3 and 5-4 could also present 

the situation with vaccination. 

 

 

 

 
Figure 5-1 Changes in Price and Production under Supply Shock 
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Figure 5-2 Changes in Price and Production under Domestic Demand Shock 

 

 

 

 
Figure 5-3 Changes in Price and Production under Excess Demand Shift 
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Figure 5-4 Changes in Price and Production under Both Demand Shifts 

 

 

 

5.3 Study Design 

Based on theoretical models, there are three steps to integrate the epidemic model and 

economic model to examine AI mitigation strategies under alternative demand shifts. 

These steps includes, 

 Constructing Scenarios 

 Making appropriate adjustments in epidemic model to reflect economic 

questions 
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 Making necessary conversions for the epidemic model output to become the 

economic model input and make appropriate adjustments in the economic 

model 

5.3.1 Scenario Constructions 

The first step before starting an integrated economic/epidemic study is to determine the 

focus and scope of the region to be depicted plus the nature of the disease outbreak and 

possible control strategies (Hagerman 2009). 

5.3.1.1 Research regions 

Assuming there is a national outbreak of AI which could hurt the poultry industry in the 

United States, especially for states have a high proportion of poultry production, such as 

Alabama, Arkansas, Georgia, Kentucky, Mississippi, North Carolina and Texas. As 

shown in Figure 5-5, Alabama (11%), Arkansas (13%), Georgia (16%), Kentucky (3%), 

Mississippi (9%), North Carolina (9%) and Texas (7%) produce a large share of U.S. 

broiler production, and the total is around 68%. Also shown in Table 5-1, these selected 

regions produce 22% of U.S. egg production and 25% of U.S. turkey production. Thus, 

mainly these seven regions are included in this study. 
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Figure 5-5 Inventory of Broiler Production in 2007 

 

 

 

In addition, I also consider the shock on U.S. exports of poultry meat or products 

due to the AI outbreak. AI is one of the epidemic diseases that can spread quickly within 

birds and its outbreak in the United States could also affect international demand since 

people in other countries are afraid of eating poultry products. The United States is the 

world's largest producer and second largest exporter of poultry meat. In 2007, poultry 

production meat was over 36 billion pounds and the total farm value of U.S. poultry 

production exceeded $22 billion. Meanwhile, broiler exports were about 12% of 

production with 5.9 billion pounds exported, valued at $2.7 billion.  
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Table 5-1 Proportion of Productions in Selected Regions 

 Regions Broiler Egg Turkey 

 Production 
(million head)  

Percent 
(%) 

Production 
(million) 

Percent 
(%) 

Production 
(million head) 

Percent 
(%) 

Alabama  1023 11 2090 2   
Arkansas  1176 13 3236 4 30 11 
Georgia  1399 16 4792 5   
Kentucky  303 3 1170 1   
Mississippi  824 9 1523 2   
North Carolina  781 9 2960 3 39 14 
Texas  616 7 4995 5   
Regional Total 6122 68 20766 22 69 25 
U.S. 8907 100 91101 100 267 100 
Source: U.S. Agriculture Census of 2007. 
 

 

 

5.3.1.2 Intervention strategies 

As stated in Section 2, there are two disease control options in the AI context, one is a 

quarantine strategy and the other is the vaccination strategy. The former recommends 

establishing a quarantine strategy zone in a 5-miles radius around the outbreak site 

within which every flock is depopulated, and then a varying surveillance radius around 

that zone plus movement restrictions and testing (Pelzel et al. 2006). The vaccination 

strategy suggests vaccinating all susceptible flocks in near proximity to the quarantine 

zone in addition to the quarantine strategy stated above in terms of reducing the 

probability of infection and the amount of virus produced by an infected flock (FAO 

2004).  

Both strategies depend on the probability of an AI outbreak, the densities of 

poultry flocks and the contact rate between different poultry flocks. Therefore, the 
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decision of choosing the quarantine or vaccination response is determined by the 

expected economic costs of a potential AI outbreak.  

To poultry producers, vaccination is a risk investment strategy. If the probability 

of an AI outbreak is low, vaccination will increase their management costs; In return, 

produces will face less loss if the probability of an AI outbreak is high.  Meanwhile, 

producers are also affected by demand shifts as the reason discussed in Section 4. Thus, 

the cost-effectiveness of mitigation strategies depends not only on intervention strategies, 

but also on demand changes from domestic and international market due to the AI 

outbreak. 

5.3.1.3 Scenarios  

In general, a “base” scenario runs the integrated simulation model once for no disease 

incursion. This makes the assessment of alternative scenarios more meaningful in that 

there is a frame of reference from which to compare (Hagerman 2009). Although in 

Section 4, I estimated the impacts of AI media information on chicken demand in the 

United States would decline by 0.25 %, a more serious case of 5% demand shock and a 

lighter case of no demand shock are both considered for sensitivity analysis.  Therefore, 

8 scenarios are constructed regarding to different intervention options and demand 

shocks as shown in Table 5-2.  
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Table 5-2 Scenarios Constructed in ASM  

 Intervention Domestic demand  
shift 

Excess demand shift 

Scenario No vaccination Vaccination 0% 5% 0% 5% 
1 X  X  X  
2 X   X X  
3 X  X   X 
4 X   X  X 
5  X X  X  
6  X  X X  
7  X X   X 
8  X  X  X 
 

 

 

5.3.2 Epidemic Modeling 

The second stage in doing integrated disease modeling is to estimate the animal loss, 

degraded performance and extent of the control effect caused by the disease using 

principles of epidemiology. This is typically done using an epidemic model (Hagerman 

2009). 

5.3.2.1 Epidemic SLIR model  

Few studies of AI mitigation strategies have been done partly because limited 

availability of epidemic or statistical models within which the consequences of strategies 

can be simulated. Previous studies of animal disease suggest that studies which contain 

more through integration of economic and epidemic models would improve the analysis 

quality (Paarlberg et al. 2005; Pritchett et al. 2005).  
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In an AI context, Elbakedze (2008) presents a largely theoretical model that 

depicts AI mitigation options within the small poultry farm sector (backyard flocks) by 

incorporating epidemiologic susceptible-infected-recovered (SIR) model into an 

economic cost-minimization framework, but does not integrate price response or a very 

comprehensive framework ignoring feed effects and possible adjustments in production 

of substitute meat. In a following study, Egbendewe (2009) constructs a SLIR model 

based on farm survey data, examines the use of vaccination to control an AI outbreak in 

Texas, and finds that vaccination dominates non-vaccination. This study follows 

Egbendewe (2009) extending the model to a national basis.  

Egbendewe (2009)’s AI epidemic analysis is based on the SLIR model. In each 

time period, individual farms are assumed to be in one of the four stages of the disease 

progression. Those stages are susceptible (S), latent infectious (L), symptomatic 

infectious (I) and removed (R). If vaccination is utilized during the outbreak period, the 

vaccinated farms are immune and are therefore subtracted out each period from the 

susceptible farms because they are not vulnerable to the disease. This implies that 

vaccinated flocks would not need to go through the latent and the infected stages 

(Egbendewe 2009). Thus, by the end of the period, for example 30 days or more, there is 

a proportion of bird category at each stage.  

Both Elbakidze (2008) and Egbendewe (2009) studies were limited in geographic 

scope and in the markets considered. Once there was an AI, its effects would not 

necessarily be confined to the domestic market, it could reach international market 

through media coverage (Beach and Zhen 2008), so I will use an economic sector model, 
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which could take care of not only the domestic supply and demand shock, but also the 

international demand shift. To achieve this, I use the epidemic model to feed data into a 

sector model.  

 

 

Table 5-3 Number of Farms in Selected Regions 
Regions Layersl Layerss Broiler Turkey Backyards Total 
Alabama 7 446 2263 279 1964 4959 
Arkansas 5 543 2408 530 2499 5985 
Georgia 35 494 2170 350 2341 5390 
Kentucky 3 106 909 434 4020 5472 
Mississippi 3 215 1478 203 1707 3606 
North Carolina  8 452 1879 846 3266 6451 
Texas Central Black 10 54 395 235 1526 2220 
Texas East 6 111 923 282 1847 3169 
Total 77 2421 12425 3159 19170 37252  
Source: U.S. Agriculture Census of 2007. 
 

 

 

Table 5-4 Infected and Latent Daily Contact Rate 

 Layersl Layerss Broiler Turkey Backyard 
 Infected daily contact rates 
Layersl 2.93 2.87 2.87 2.87 2.87 
Layerss 2.87 2.93 2.87 2.87 2.87 
Broiler 0.57 0.57 0.61 0.57 0.57 
Turkey 1.29 1.29 1.19 1.3 1.29 
Backyard 2.87 2.87 2.87 2.87 2.93 
 Latent daily contact rates 
Layersl 0.06 2.87 2.87 2.87 2.87 
Layerss 2.87 0.06 2.87 2.87 2.87 
Broiler 0.57 0.57 0.57 0.57 0.57 
Turkey 1.29 1.29 1.19 0.01 1.29 
Backyard 2.87 2.87 2.87 2.87 0.06 
Source: : Egbendewe (2009). 
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5.3.2.2 Data for the SLIR model  

Based on the U.S. Agriculture Census of 2007, poultry farms in each affected region can 

be categorized into five types of farms as follows:  

 Large size layers operations of more than 100,000 birds (layersl) 

 Small size layers operations between 400 birds to 100,000 birds (layerss) 

 Backyard operations of layers less than 400 birds (backyards) 

 Broiler operations (broiler) 

 Turkey operations (turkey) 

The total number of farms in each affected regions is given in Table 5-3. I 

assume that infected and latent daily contact rate across these regions for individual 

flocks are those found in the Texas survey by Egbendewe (2009),  which could be found 

in Table 5-4. The only difference between infected and latent daily contact rate is that 

the contact rate between the same categories is much smaller in latent flocks.   

I calculate the probability of disease transmission between flocks using

Contact Rate

1N 
, where N  is the number of farms of each flock in each region. Table 5-5 

gives the probability of AI disease transmission from infected and latent flocks. In all 

selected regions, transmission probability is relatively high between layers to layers and 

backyards, but relatively low from layers to broiler and turkey.   
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Table 5-5 Probability of Disease Transmission in Affected Regions 

  Layersl Layerss Broilers Turkey  Backyard Layersl Layerss Broilers Turkey  Backyard 

 Transmission probability from infected flocks 
 Alabama  Mississippi  
Layersl 0.4883 0.0064 0.0013 0.0103 0.0015 1.4650 0.0134 0.0019 0.0142 0.0017 
Layerss 0.4783 0.0066 0.0013 0.0103 0.0015 1.4350 0.0137 0.0019 0.0142 0.0017 
Broilers 0.0950 0.0013 0.0003 0.0021 0.0003 0.2850 0.0027 0.0004 0.0028 0.0003 
Turkey 0.2150 0.0029 0.0005 0.0047 0.0007 0.6450 0.0060 0.0008 0.0064 0.0008 
Backyard 0.4783 0.0064 0.0013 0.0103 0.0015 1.4350 0.0134 0.0019 0.0142 0.0017 
 Arkansas  North Carolina  
Layersl 0.7325 0.0053 0.0012 0.0054 0.0012 0.4186 0.0064 0.0015 0.0034 0.0009 
Layerss 0.7175 0.0054 0.0012 0.0054 0.0012 0.4100 0.0065 0.0015 0.0034 0.0009 
Broilers 0.1425 0.0011 0.0003 0.0011 0.0002 0.0814 0.0013 0.0003 0.0007 0.0002 
Turkey 0.3225 0.0024 0.0005 0.0025 0.0005 0.1843 0.0029 0.0006 0.0015 0.0004 
Backyard 0.7175 0.0053 0.0012 0.0054 0.0012 0.4100 0.0064 0.0015 0.0034 0.0009 
 Georgia  Texas central black 
Layersl 0.0862 0.0058 0.0013 0.0082 0.0012 0.3256 0.0542 0.0073 0.0123 0.0019 
Layerss 0.0844 0.0059 0.0013 0.0082 0.0012 0.3189 0.0553 0.0073 0.0123 0.0019 
Broilers 0.0168 0.0012 0.0003 0.0016 0.0002 0.0633 0.0108 0.0015 0.0024 0.0004 
Turkey 0.0379 0.0026 0.0005 0.0037 0.0006 0.1433 0.0243 0.0030 0.0056 0.0008 
Backyard 0.0844 0.0058 0.0013 0.0082 0.0013 0.3189 0.0542 0.0073 0.0123 0.0019 
 Kentucky  Texas East 
Layersl 1.4350 0.0279 0.0032 0.0066 0.0007 0.5740 0.0266 0.0031 0.0102 0.0016 
Layerss 0.2850 0.0054 0.0007 0.0013 0.0001 0.1140 0.0052 0.0007 0.0020 0.0003 
Broilers 1.4650 0.0273 0.0032 0.0066 0.0007 0.5860 0.0261 0.0031 0.0102 0.0016 
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Table 5-5 Continued 
  Layersl Layerss Broilers Turkey  Backyard Layersl Layerss Broilers Turkey  Backyard 
Turkey 
Backyard 

0.6450 
1.4350 

0.0123 
0.0273 

0.0013 
0.0032 

0.0030 
0.0066 

0.0003 
0.0007 

0.2580 
0.5740 

0.0117 
0.0261 

0.0013 
0.0031 

0.0046 
0.0102 

0.0007 
0.0016 

 Transmission probability from latent flocks 
 Alabama  Mississippi  
Layersl 0.0100 0.0064 0.0013 0.0103 0.0015 0.0300 0.0134 0.0019 0.0142 0.0017 
Layerss 0.4783 0.0001 0.0013 0.0103 0.0015 1.4350 0.0003 0.0019 0.0142 0.0017 
Broilers 0.0950 0.0013 0.0003 0.0021 0.0003 0.2850 0.0027 0.0004 0.0028 0.0003 
Turkey 0.2150 0.0029 0.0005 0.0000 0.0007 0.6450 0.0060 0.0008 0.0001 0.0008 
Backyard 0.4783 0.0064 0.0013 0.0103 0.0000 1.4350 0.0134 0.0019 0.0142 0.0000 
 Arkansas  North Carolina  
Layersl 0.0150 0.0053 0.0012 0.0054 0.0012 0.0086 0.0064 0.0015 0.0034 0.0009 
Layerss 0.7175 0.0001 0.0012 0.0054 0.0012 0.4100 0.0001 0.0015 0.0034 0.0009 
Broilers 0.1425 0.0011 0.0002 0.0011 0.0002 0.0814 0.0013 0.0003 0.0007 0.0002 
Turkey 0.3225 0.0024 0.0005 0.0000 0.0005 0.1843 0.0029 0.0006 0.0000 0.0004 
Backyard 0.7175 0.0053 0.0012 0.0054 0.0000 0.4100 0.0064 0.0015 0.0034 0.0000 
 Georgia  Texas central black 
Layersl 0.0018 0.0058 0.0013 0.0082 0.0012 0.0067 0.0542 0.0073 0.0123 0.0019 
Layerss 0.0844 0.0001 0.0013 0.0082 0.0012 0.3189 0.0011 0.0073 0.0123 0.0019 
Broilers 0.0168 0.0012 0.0003 0.0016 0.0002 0.0633 0.0108 0.0014 0.0024 0.0004 
Turkey 0.0379 0.0026 0.0006 0.0000 0.0006 0.1433 0.0243 0.0030 0.0000 0.0008 
Backyard 0.0844 0.0058 0.0013 0.0082 0.0000 0.3189 0.0542 0.0073 0.0123 0.0000 
 Kentucky  Texas East 
Layersl 0.0300 0.0273 0.0032 0.0066 0.0007 0.0120 0.0261 0.0031 0.0102 0.0016 
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Table 5-5 Continued 

  Layersl Layerss Broilers Turkey  Backyard Layersl Layerss Broilers Turkey  Backyard 
Layerss 1.4350 0.0006 0.0032 0.0066 0.0007 0.5740 0.0005 0.0031 0.0102 0.0016 
Broilers 0.2850 0.0054 0.0006 0.0013 0.0001 0.1140 0.0052 0.0006 0.0020 0.0003 
Turkey 0.6450 0.0123 0.0013 0.0000 0.0003 0.2580 0.0117 0.0013 0.0000 0.0007 
Backyard 1.4350 0.0273 0.0032 0.0066 0.0000 0.5740 0.0261 0.0031 0.0102 0.0000 
Source: Egbendewe (2009) but edited by the author. 
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5.3.2.3 Results from the SLIR model  

Using the data from Table 5-5, I simulate the situation after a time period, for example 

30 days, to see the proportion of each flock at each stage. Figure 5-6 reports results from 

the SLIR model, which I will put into ASM to examine welfare changes of two AI 

mitigation strategies under different demand shocks.  

 

 

 

 
Figure 5-6 Proportions of Each Stage of Flocks in Selected Regions 
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In all affected regions, It could be seen that backyards have a high proportion of 

the latent stage as well as the removed stage. Kentucky, Mississippi and North Carolina 

are affected seriously with a higher proportion of poultry removed. In other regions, 

impacts of AI outbreaks after 30 days are not significant. 

5.3.3 Economic Modeling 

The third stage is the bridging of the epidemic and economic models and the disease 

related adjustments in the economic model (Hagerman 2009). A sector model is used 

here in conjunction with the Epidemic model to depict the welfare and market responses 

associated with an assumed AI outbreak.  

5.3.3.1 ASM model 

The ASM is incorporated in the Forest and Agricultural Sector Optimization Model 

(FASOM). ASM and FASOM are dynamic and nonlinear programming models that 

were developed to evaluate the welfare and market impacts of public policies that cause 

land transfers between the sectors and resource reallocation involving alterations of 

activities within the sectors (Adams et al. 2005). ASM is a spatially disaggregated 

agricultural sector model representing the United States in terms of 63 production 

regions and 10 market regions depicting trade with a number of foreign countries and it 

also depicts production in an equilibrium year and is thus an intermediate run model 

giving implications for policy after it has been fully worked into the sector (Adams et al. 

2005).   

More importantly, ASM is a partial equilibrium model and its advantage is to 

allow price to be endogenous. The assumption of price is very important. If price is 
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exogenous, as in Egbendewe (2009)’s study, it limits the impacts of an AI outbreak to 

the study region. However, if allowing price changes along with demand and supply, 

price and quantity of poultry could change, so a regional outbreak could affect 

producer’s welfare nationally through the product and factor markets. Based on this fact, 

it is more realistic to let price be endogenous and that is why ASM is used in this essay.  

In implementing an animal disease, the focus will be on reducing the production 

of outputs and increasing other costs. This will imitate a “disease shock” on the region of 

interest. Budgets in ASM are normalized to a one animal basis. This means epidemic 

data in terms of head slaughtered, vaccination, or restricted must also be normalized. 

Intuitively, the impact of the disease is spread evenly across an entire region such that 

the average productivity per animal in the region is reduced and the average cost of 

production per animal is increased. Because of the supply and demand relationships in 

the model, an animal disease shock impact assessment can occur both upstream and 

downstream of the actual livestock production budgets (Hagerman 2009).   

5.3.3.2 Data for the ASM model  

Since ASM only includes eggs rather than layers, It is needed to transfer production of 

layers to production of eggs. Table 5-6 presents percentage of layer production for each 

category. When constructing or altering model data, I need to map each layer category 

into egg production and adjust the livestock production budget, feed use and 

management costs of eggs rather than layers.   
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Table 5-6 Percentage of Layer Production in Selected Regions 

 Regions Layerss Layersl Backyards 
Alabama 0.8285 0.1668 0.0047 
Arkansas 0.7377 0.2583 0.0040 
Georgia 0.5248 0.4724 0.0029 
Kentucky 0.9121 0.0654 0.0225 
Mississippi 0.9449 0.0481 0.0070 
North Carolina  0.6850 0.3085 0.0065 
Texas 0.2616 0.7224 0.0160 
Total 0.6102 0.3817 0.0081 
Source: U.S. Agriculture Census of 2007. 

 

 

 

Management costs in this study include surveillance cost, cost of disposal, 

vaccination cost and cost of labor, all of which are measured in unit and are obtained 

from different sources. Table 5-7 shows details of each cost and source.  

 

 

 

Table 5-7 Management Costs and Sources 

Costs Category  Cent/bird Source 
Surveillance 20 birds in each 

farm  
15 Texas AI response document (2006) 

Carcass disposal Layersl 0.008 Egbendewe (2009) 
Layerss 0.006 
Broiler 0.006 
Turkey 0.004 
Backyard 0.002 

Vaccination All birds 0.012  CIDRAP (2005); Smith (2007) 
Labor All birds  0.038 Egbendewe(2009) 
Source: Egbendewe (2009) but edited by the author. 
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5.3.3.3 Adjustments performed in the ASM model 

Herd types in ASM impacted by AI are broilers, eggs (layersl, layerss, and backyard) 

and turkey. Therefore, it needs to adjust budget constraints individually.  

The number of adults in the broiler, layers and turkey herd is adjusted to reflect 

reactions due to the death of directly infected, indirect contacts due to quarantine policy 

and the removed of infected animals. 

The following equations show the adjustments made for this study and these 

adjustments are corresponding to each flock, particularly,  

(5.1) Re , , Re , ,_ _ *(1 _ )g Type Animal g Type AnimalLB Broiler LB Broiler Perc Change   

(5.2) ,Re , , ,Re , ,_ _ *(1 _ )i g Type Animal i g Type AnimalLB Eggs LB Eggs Perc Change   

(5.3) Re , , Re , ,_ _ *(1 _ )g Type Animal g Type AnimalLB Turkey LB Turkey Perc Change   

where  

_LB Broiler  is the pounds of poultry meat produced by a broiler 

_ iLB Eggs is the numbers of eggs produced by a layer, i  indicates different type 

of layers in this study including layersl, layerss and backyard 

_LB Broiler  is the pounds of turkey meat produced by a turkey  

Reg is the region of infection 

Type is the type of budget being adjusted including production, management 

costs and feed inputs   

Animal is the output of the budget being adjusted 

_Perc Change is the percentage of disease loss in the infection region 
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After making these adjustments, I run the ASM model to get economic results 

including national welfare, price and production, producers’ surplus and regional 

consumers’ and producers’ surplus.  

5.4 Results  

The ASM Model has several benefits in terms of examining multiple areas impacted by 

the disease shock. The impact categories discussed below are the areas that have been 

used most intensively for this animal disease analysis (Hagerman 2009).  

5.4.1 Changes in National Welfare 

Welfare change is a measure of economic gain/loss that is more encompassing than loss 

measures like GDP or disease mitigation cost (Paarlberg et al. 2008) and useful in 

determining the impact of policy changes and disease shocks (Rich et al. 2005). ASM 

shows changes in total national agricultural welfare from the baseline of no disease and 

breaks those changes down by domestic agriculture producers, consumers and 

processors and it also examines changes in welfare for foreign producers, consumers and 

processors (Hagerman 2009).  

In this study, I focus on changes in total U.S. welfare from agriculture. Table 5-8 

shows the national welfare changes from the base and concludes that national welfare is 

reduced because of the AI outbreak.  
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Table 5-8 National Welfare and Loss from the Base under Demand Shifts 

  No vaccination Vaccination 
 Mean 95% C.I. Mean 95% C.I. 
 (billions) [lower, upper] (billions) [Lower, upper]  
 Base 
National welfare (billion) 1463.82   1463.82   
 No demand shift 
National welfare (billion) 1461.33 1461.2 1463.75 1447.96 1447.16 1463.4 
Loss from the base -2.49   -15.86   
 5% domestic demand shift 
National welfare (billion) 1412.44 1375.05 1463.6 1398.77 1360.68 1463.25 
Loss from the base -51.38   -65.05   

 5% excess demand shift 
National welfare (billion) 1460.99 1460.68 1463.75 1447.63 1446.65 1463.4 
Loss from the base -2.83   -16.19   
 5% domestic & excess demand shift 
National welfare (billion) 1411.96 1374.15 1463.6 1398.29 1359.77 1463.25 
Loss from the base -51.86     -65.53     
Note: C.I. indicates the confidence interval.  

 

 

 

Without demand shock, national welfare will decline by $2.49 billion if no 

vaccination is used and $15.86 billion if vaccination is used. With 5% domestic demand 

shift, national welfare will decrease by $51.38 billion and $65.05 billion without and 

with vaccination, respectively.  

With 5% excess demand shift, national welfare losses are close to the case 

without demand shift and they are reduced by $2.83 and $16.19 billion under two 

intervention strategies, respectively. If domestic and excess demand both shifts by 5%, 
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national welfare declines more, by $51.85 billion without vaccination and $65.53 with 

vaccination.  

It can be seen that situations are even worse if vaccination is used. From Figures 

5-1 to 5-4, it seems that changes in price and quantities determine whether vaccination is 

cost effective or not. Empirical results show that vaccination is not cost effective under 

all demand shifts.  

5.4.2 Changes in Producers’ Surplus 

Only examining the changes in total U.S. agricultural producers welfare may mask the 

fact that some regions’ producers will be face more losses than other regions. In fact, 

some regions producers who are not directly infected could potentially gain from the 

outbreak (Hagerman 2009). To examine these, dynamic producers’ surplus is examined 

on a national and sub-regional basis.  

5.4.2.1  National producers’ surplus 

When looking at producers’ welfare at a national level, results are consistent with 

changes in national welfare with producers lose more under demand shocks. Table 5-9 

reports changes in total producers’ surplus from the base under different demand shocks. 

If there is no demand shock, producers gain $1.38 billion without vaccination and lose 

$17 billion with vaccination. In addition, under any demand shift, producers’ surplus is 

declining with or without vaccination. Among all demand shocks, loss of producers’ 

surplus is the largest under demand shift in both domestic and international market with 

-$20 billion without vaccination and -$36 billion with vaccination.  
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Table 5-9 Changes in Total Producers’ Surplus (in billion 2004 dollars) 

  No vaccination Vaccination 
Base 36.35 36.35  
No demand 1.38 -17.04 
5% domestic demand -18.09 -34.17 
5% excess demand -1.42 -19.85 
5% domestic and excess -20.10 -36.06 

 

 

 

Figures 5-7 and 5-8 show changes in producers’ surplus under demand shocks. In 

two cases, vaccination strategy dominates no vaccination strategy with a higher cost. 

However, the difference between no vaccination and vaccination becomes smaller when 

demand shifts in both domestic and international markets by 5%.   

 

 

 

 
Figure 5-7 Producers’ Welfare Losses under 5% Domestic Demand Shock 
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Figure 5-8 Producers’ Welfare Losses under Both 5% Demand Shock 

 

 

 

5.4.2.2 Regional total mitigation costs 

If there is a AI outbreak in the United States, the welfare of Alabama, Arkansas, Georgia, 

Kentucky, Mississippi, North Carolina, Texas Central Black lands and Texas East is 

damaged due to changes in consumers’ or producers’ surplus.  The magnitudes of 

mitigation cost are determined by how serious the demand shifts in both domestic and 

international markets as well as by whether vaccination strategy is used.  
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Figure 5-9 Total Costs of AI Outbreaks with No Demand Shock 

 

 

 

 
Figure 5-10 Total Costs of AI Outbreaks with 5% Domestic Demand Shift  

 

 

Alabama Arkansas Georgia Kentucky 
Mississip

pi 
North 

Carolina 
Txcnblack Txeast 

No vaccination 496 753 37 32 294 -5 61 -20 

vaccination 4060 4473 2199 1169 3334 1276 160 955 

Alabama Arkansas Georgia Kentucky 
Mississip

pi 
North 

Carolina 
Txcnblac

k 
Txeast 

no vaccination 3016 3602 2792 1182 3112 2129 1544 1304 

vaccination 6578 7525 4778 2170 6023 3432 1688 2209 
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Figure 5-11 Total Costs of AI Outbreaks with 5% Excess Demand Shift 

 

 

 

 
Figure 5-12 Total Costs of AI Outbreaks with Both Demand Shift by 5% 

 

 

Alabama Arkansas Georgia Kentucky 
Mississip

pi 
North 

Carolina 
Txcnblack Txeast 

no vaccination 906 1269 253 116 855 116 19 191 

vaccination 4458 5218 2408 1112 3817 1396 116 1157 

Alabama Arkansas Georgia Kentucky 
Mississip

pi 
North 

Carolina 
Txcnblack Txeast 

no vaccination 6863 3955 2943 1244 3404 2223 1521 1448 

vaccination 3289 7877 4929 2230 6316 2223 1668 2352 
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As shown in Figures 5-9 and 5-11, in the case of no demand shock and 5% 

excess demand shock, total costs of an AI outbreak are smaller if vaccination is not used. 

With 5% domestic demand shock as in Figure 5-10, damages of an AI outbreak become 

much more significant across regions and costs without vaccination are still larger than 

that with vaccination. 

Figure 5-12 shows that with 5% domestic and excess demand shock, total costs 

of an AI outbreak with vaccination are smaller or equal to the case without vaccination 

in Alabama and North Carolina, and the difference of AI impacts in other regions are 

smaller under this circumstance than that with other demand shocks. 

5.4.3 Changes of National Price and Production 

These changes in the price from the no disease base are a key benefit to use the ASM 

model. They include not just the commodities impacted directly like chicken, turkey and 

egg but also the price changes in complement and substitute products. This more fully 

captures the dynamics of who gains and who loses from the disease outbreak (Hagerman 

2009).  

Assuming there is no domestic and international demand shift, only domestic 

supply is affected and it shifts to left due to depopulation of latent and infected flocks 

and remove of dead flocks.  As shown in Figure 5-1, supply shock causes a higher 

national price and probably less production. However, magnitudes of price and 

production changes depend on whether farmers have implemented vaccination strategy 

or not. If vaccination is implemented, fewer birds will be infected, so supply will shift 

less compared to the condition if vaccination is not used.   
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Changes of national price and production from the base can be found in Table 5-

10.  Specifically, in the base scenario, the national price of eggs, live broiler and live 

turkey is about $0.892/dozen, $0.508/lb, and $0.455/lb, respectively. Without 

vaccination, price goes up to $1.5/dozen for egg, $0.517/lb for live broiler and $0.463/lb 

for live turkey. If vaccination strategy is used, price increases less with $1.02/dozen for 

egg, $0.512/lb for live broiler and turkey price is unchanged.   

National prices are declining and results are very sensitive to demand shocks, so 

I report mean prices with 95% confidence interval in Table 5-10. Among all three types 

of demand shifts, prices of chicken and turkey are the highest when only international 

market is affected by the AI outbreak. However, they become the worst if domestic and 

excess demand shifts together. With the same demand shifts, changes in prices are larger 

when vaccination strategy is used.  

 

 

Table 5-10 National Price with Domestic and Excess Demand Shifts ($/ unit) 

  No vaccination  Vaccination 
 Base Mean 95% C.I. 

[Lower, Upper] 
Mean 95% C.I. 

[Lower, Upper] 
  5% domestic demand shift 
Eggs 0.892 0.1785 0.0000 0.9359 0.1379 0.0000 0.8866 
Chicken 69.209 37.4423 20.1920 69.0896 37.2132 20.1920 69.0896 
Turkey 68.302 35.1221 15.0460 68.1874 34.7479 15.0460 68.1754 
  5% excess demand shift 
Eggs 0.892 1.4682 0.9071 1.4970 1.0206 0.8954 1.0270 
Chicken 69.209 61.1541 54.6635 69.1982 60.8608 54.6360 69.1982 
Turkey 68.302 65.2890 62.1100 69.3394 64.6567 62.1100 68.2962 
  5% domestic demand  and 5% excess demand shift 
Eggs 0.892 0.1785 0.0000 0.9359 0.1379 0.0000 0.8866 
Chicken 69.209 31.3099 11.5810 69.0556 31.1420 11.5810 69.0556 
Turkey 68.302 31.8049 7.9564 68.1754 31.5755 7.9564 68.1472 
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Table 5-11 shows that production of eggs, broilers and turkeys are most affected 

by intervention options rather than by demand shifts since changes in national 

production are the same under different demand shocks. 

 

 

 

Table 5-11 National Production under Different Demand Shifts (million units) 

 Base 5% domestic 
demand shift  

5% excess  
demand shift 

5% domestic & 5% 
excess demand shifts 

Percent 
changes 
(%) 

 No vaccination 
Eggs 6693.0389 6344.667 6344.667 6344.667 -5.20 
Broilers 342.6115 341.0146 341.0146 341.0146 -0.47 
Turkeys 62.3054 61.9378 61.9378 61.9378 -0.59 
 Vaccination 
Eggs 6693.0389 6612.431 6612.431 6612.431 -1.20 
Broilers 342.6115 342.3165 342.3165 342.3165 -0.09 
Turkeys 62.3054 62.2885 62.2885 62.2885 -0.03 
 

 

 

5.5 Costs of Past Climate Change 

Results in previous section are based on the assumption that there is an AI outbreak in 

the United States. However, according to findings in Section 3, the probability of AI 

outbreaks will be 0.116 and 0.077 corresponding to current and past climate conditions, 

which suggests that the probability of an AI outbreak have been almost doubled 

increasing by 50% from a base of 0.077 due to past climate change. Therefore, it would 

be interesting to see how much costs of an AI outbreak are caused by past climate 
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change. I use this probability to do an ex post analysis and Table 5-12  gives the total 

mitigation costs caused by past climate change in each affected region. 

Generally, without any demand shock and vaccination, Texas East gains from the 

AI outbreaks for about $0.12 million, while Arkansas has the largest costs up to $4.67 

million. With vaccination, Texas Central Black land has the lowest mitigation costs of 

$0.99 million and again Arkansas has the highest cost of $27.73 million. 

 

 

 

Table 5-12 Mitigation Costs of the AI Outbreak Due to Past Climate Change 

Regions AL AR GE KY AL AR GE KY 
 Without vaccination With vaccination 
 No demand shock 
CS -0.44 -0.26 -0.69 -0.40 -0.12 -0.07 -0.19 -0.11 
PS  -2.63 -4.41 0.47 0.20 -25.05 -27.66 -13.45 -7.14 
Total costs  3.08 4.67 0.23 0.20 25.17 27.73 13.63 7.25 
 5% domestic demand shock 
CS -4.27 -2.49 -6.71 -3.85 -4.23 -2.46 -6.64 -3.81 
PS  -14.43 -19.85 -10.60 -3.48 -36.56 -44.19 -22.98 -9.65 
Total costs  18.70 22.33 17.31 7.33 40.78 46.66 29.62 13.45 
 5% excess demand shock 
CS -0.19 -0.11 -0.30 -0.17 0.14 0.08 0.22 0.12 
PS  -5.43 -7.76 -1.27 -0.55 -27.78 -32.43 -15.15 -7.01 
Total costs  5.62 7.87 1.57 0.72 27.64 32.35 14.93 6.89 
 5% domestic and excess demand shock 
CS -4.12 -2.39 -6.47 -3.71 -4.09 -2.37 -6.42 -3.68 
PS  -38.43 -22.13 -11.78 -4.00 -16.31 -46.46 -24.14 -10.14 
Total costs  42.55 24.52 18.25 7.71 20.39 48.84 30.56 13.83 
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Table 5-12 Continued 

Regions MS NC CTBK EAST MS NC CTBK EAST 
 Without vaccination With vaccination 
 No demand shock 
CS -0.29 -0.71 -0.77 -0.18 -0.07 -0.19 -0.20 -0.05 
PS  -1.54 0.74 0.39 0.30 -20.60 -7.73 -0.79 -5.87 
Total costs 1.82 -0.03 0.38 -0.12 20.67 7.91 0.99 5.92 
 5% domestic demand shock 
CS -4.92 -6.80 -7.41 -1.75 -4.92 -6.72 -7.33 -1.73 
PS  -14.37 -6.41 -2.16 -6.34 -32.43 -14.56 -3.13 -11.97 
Total costs 19.29 13.20 9.57 8.08 37.34 21.28 10.47 13.70 
 5% excess demand shock 
CS -0.26 -0.30 -0.33 -0.08 -0.06 0.22 0.24 0.06 
PS  -5.04 -0.42 0.21 -1.11 -23.60 -8.87 -0.96 -7.23 
Total costs 5.30 0.72 0.12 1.18 23.67 8.66 0.72 7.17 
 5% domestic and excess demand shock 
CS -4.80 -6.55 -7.15 -1.69 -4.80 -6.55 -7.09 -1.67 
PS  -16.31 -7.23 -2.28 -7.29 -34.35 -7.23 -3.26 -12.91 
Total costs 21.10 13.78 9.43 8.98 39.16 13.78 10.34 14.58 
Note: CS indicates consumers’ surplus and PS indicates producers’ surplus.  

 

 

 

With 5% demand shock and no vaccination, the mitigation costs would range 

from $8.08 to $22.33 million. With vaccination, costs fall in the range of $10.47 to 

$46.66 million.  

With 5% excess demand shock and no vaccination, the mitigation costs would 

range from $0.12 to $7.87 million. With vaccination, costs would fill in the range of 

$0.72 to $32.35 million. 

With both excess demand and domestic demand shift by 5% and no vaccination, 

the mitigation costs would range from $7.71 to $42.55 million. With vaccination, costs 

would fill in the range of $10.34 to $ 48.84million. 



132 

 

5.6 Concluding Remarks 

This paper uses an epidemic model and an agricultural sector model to examine the cost-

effectiveness of mitigation strategies in the face of a simulated U.S. AI outbreak. In 

addition, results from Section 3 are used to calculate the expected AI mitigation costs 

due to past climate change under alternative intervention options and different demand 

shocks.  

Results show that vaccination strategy is not generally favorable unless there is 

both domestic and international demand growth. This result is inconsistent to 

Egbendewe (2009) where he carried out a regional study of three districts in Texas and 

assumed that price is exogenous. Results in this paper are consistent with the theoretical 

analysis that benefits coming from vaccination may be offset by a higher national price 

caused by no vaccination.   
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6. SUMMARY AND CONCLUSIONS 

 

This dissertation investigates economic issues regarding AI disease by examining three 

aspects of the issue as follows, 

 The effects of climate on the probability and outcomes of HPAI outbreaks 

plus the associated economic impacts of climate change of the last 20 years 

and that projected for the next 20 years 

 The effects of AI outbreak media information on meat demand for beef, pork, 

chicken and turkey in the United States 

 The effects of AI mitigation strategies on poultry production and welfare in 

the United States 

This section provides an executive summary of the main procedures/results and 

identifies directions for future research.  

6.1 Summary and Conclusion 

Essay 1 in Section 3 examines the relationship between climate conditions and the 

spread of HPAI outbreaks. I evaluate the outbreak probability and expected numbers as 

well as associated economic loss under past and future climate change by using 

econometric methods. Specifically, I estimate outbreak probability over panel data and 

use count regression models to investigate underreporting issue and the effects of 

climate conditions on the expected numbers of HPAI outbreaks. Finally, I project the 

probability of and expected loss to HPAI outbreaks under past and future climate 

change.  
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Resutls from estimation models are expected. Particularly, the risk and the 

expected numbers of HPAI outbreaks are found to increase in areas with higher 

temperatures in spring and heavier precipitation in winter. Past climate change plays a 

significant role in increasing the proabbility of disease outbreaks by 11% and that this 

probability will increase under future climate change by another 12%. Furthermore, I 

find the issue of underreporting HPAI cases is more serious in countries with lower 

GDP, larger export of poultry products and more cases of confirmed HPAI human death 

cases. Consequently, the associated economic loss due to HPAI outbreaks under climate 

change is larger for countries located in lower latitudes with higher temperature in spring 

and heavier precipitation in winter. Therefore, disease prevention and control plans 

should focus on these economically poor and environmentally changed regions.  

Essay 2 in Section 4 investigates how media coverage of AI outbreaks affects 

meat demand in the United States. It contains an econometric analysis using monthly 

meat demand data from January 1989 to December 2010.  

The results show that AI outbreaks information has significant effects on meat 

demand in the United States. In particular, impacts of overseas AI human deaths on meat 

expenditure are very small but statistically significant, equaling 0.02% for beef, -0.005% 

for pork, and -0.01% for chicken for period when there was no AI occurred in the United 

States, while it has smaller impacts on meat expenditure if using the whole sample. In 

addition, human death due to AI disease will increase beef expenditure and decrease that 

for pork and chicken. However, AI media coverage in short-run has insignificant effects 

on meat demand in United States. From a long run point of view, results show that 
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consumers are more cautious when animal disease cases occur within the United States 

as opposed to international cases. 

Essay 3 in Section 5 focuses on the comparison between two AI control 

strategies, vaccination and no vaccination extending Egbendewe (2009)’s study to a 

national basis. An epidemiologic susceptible-latent-infected-recovered (SLIR) model 

and an Agricultural Sector model (ASM) are used together to examine the cost 

effectiveness of these two strategies and associated costs due to past climate change are 

also calculated. 

Results find that vaccination strategy is not favorable under most cases with 

different demand shocks unless demand decreases across the board. Under the 

assumption of one AI outbreak in the United States, the associated mitigation costs 

because of past climate change are relatively small. For example in Texas, about $2 

million in additional costs are estimated under past climate change. 

6.2 Limitation and Future Research 

There are several limitations of studies in this dissertation and these limitations could be 

addressed and developed in future research.   

In essay 1, I use a set of dummy variables to reflect whether a country is on wild 

bird migratory flyways, which does not differentiate among flyways and whether or not 

prior and recent outbreaks have occurred on this flyway. Future study needs to refine this 

by constructing a more specific and complex flyway indices.  

In essay 2, I use the dynamic inverse almost ideal demand system model (IAIDS) 

to estimate effects of AI media coverage on meat demand; however, this model is used 
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based solely on time series properties. The theoretical limitation of the dynamic IAIDS 

model could be further examined and alternative models could be compared and tested 

in future studies. 

In essay 3, the assumption of the constant contact rate among all regions does not 

take account of differential geographic characteristics across regions, and this should be 

investigated further. In addition, as stated by Egbendewe (2009), it would be interesting 

to introduce a contact rate with live birds.  
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