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ABSTRACT 

 

Process Optimization and Integration Strategies for  

Material Reclamation and Recovery. (May 2012) 

Houssein A. Kheireddine, B.A., Texas A&M University-Kingsville 

                     Co-Chairs of Advisory Committee: Dr. Mahmoud El-Halwagi 
         Dr. Nimir Elbashir 

 
 
 
 

Industrial facilities are characterized by the significant usage of natural resources 

and the massive discharge of waste materials. An effective strategy towards the 

sustainability of industrial processes is the conservation of natural resources through 

waste reclamation and recycles. Because of the numerous number of design alternatives, 

systematic procedures must be developed for the effective synthesis and screening of 

reclamation and recycle options. The objective of this work is to develop systematic and 

generally applicable procedures for the synthesis, design, and optimization of resource 

conservation networks. Focus is given to two important applications: material utilities 

(with water as an example) and spent products (with lube oil as an example). 

Traditionally, most of the previous research efforts in the area of designing direct-

recycle water networks have considered the chemical composition as the basis for 

process constraints. However, there are many design problems that are not component-

based; instead, they are property-based (e.g., pH, density, viscosity, chemical oxygen 

demand (COD), basic oxygen demand (BOD), toxicity). Additionally, thermal 
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constraints (e.g., stream temperature) may be required to identify acceptable recycles. In 

this work, a novel approach is introduced to design material-utility (e.g., water) recycle 

networks that allows the simultaneous consideration of mass, thermal, and property 

constraints. Furthermore, the devised approach accounts for the heat of mixing and for 

the interdependence of properties. An optimization formulation is developed to embed 

all potential configurations of interest and to model the mass, thermal, and property 

characteristics of the targeted streams and units. Solution strategies are developed to 

identify stream allocation and targets for minimum fresh usage and waste discharge. A 

case study on water management is solved to illustrate the concept of the proposed 

approach and its computational aspects. 

Next, a systematic approach is developed for the selection of solvents, solvent 

blends, and system design in in extraction-based reclamation processes of spent lube oil 

Property-integration tools are employed for the systematic screening of solvents and 

solvent blends. The proposed approach identifies the main physical properties that 

influence solvent(s) performance in extracting additives and contaminants from used 

lubricating oils (i.e. solubility parameter (), viscosity (), and vapor pressure (p)).  The 

results of the theoretical approach are validated through comparison with experimental 

data for single solvents and for solvent blends. Next, an optimization formulation is 

developed and solved to identify system design and extraction solvent(s) by including 

techno-economic criteria. Two case studies are solved for identification of feasible 

blends and for the cost optimization of the system. 
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1 INTRODUCTION TO PROCESS OPTIMIZATION AND INTEGRATION 
 

1.1 Preface and Motivation 

Mass, heat, and property integration have been used commonly in the industry in 

order to achieve core objectives of any process. Process integration has been used 

mainly for resource conservation, emission reduction, and sustainability performance 

improvement. These objectives have been targeted for decades now. However, they are 

more important than ever before due to: 

- The escalation of raw material prices: Natural Gas, crude oil, and utilities such 

as fresh water and hydrogen prices keep increasing year after year. Energy is no 

longer cheap. Regardless of the political influence on these prices, optimization 

and integration of existing processes and invention of newer ones can help 

reduce and conserve these resources. 

- Depletion of natural resources: processing facilities use tremendous amount of 

fresh materials. Such usage can lead to depletion of natural resources if not 

recycled and managed properly.  
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- The irresponsible usage of utilities: This applies especially to fresh water. It is a 

major factor in the lack of fresh water in major parts of the world. Dumping 

waste water stream irresponsibly back to the sea or into water ways has caused 

major environmental issues.  

- Increasing environmental regulations: Environmental Protection Agency has 

been a major policy maker toward reduction of emissions and increase safety 

applications. Advances in technology and science allowed scientist better 

understand the effect of pollution on the environment and the human being. A lot 

of work could be done in that matter in order to help create safer world.  

1.2 Key Strategies 

1. Recycle and reuse: Not only from economic stand point, but recycling waste 

streams can have a major contribution to the conservation of these precious 

resources. 

2. Process Modification/alteration: Addition of extra units to the process that helps 

purify toxic emissions is one way to help improve environmental performance 

and conserve natural resources. Another way is to change the process as a whole 

and reduce total utility usage while reaching the same output product. 

3.  Material substitution: Substitute toxic and unrecyclable resources by safer and 

recyclable alternatives. 
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1.3 Process Integration Introduction 

Process integration is a holistic approach to process design, retrofitting, and 

operation whichemphasizes the unity of the process (El-Halwagi, 1997).  It involves five 

main activities (El-Halwagi, 2006):  

1. Task Identification: It is the expression of the goal that we are aiming for, and its 

description in actionable task. 

2. Targeting: It is a very powerful tool that allows us to benchmark process 

performance without specifying the means of achieving these targets.  

3. Generation of Alternatives: It is the generation of enormous number of possible 

solutions and configurations in order to achieve the goal/target. 

4.  Selection of Alternative(s): It is necessary to choose a feasible alternative. 

However, it is more important to choose an optimum one.  

5. Analysis of Selected Alternative(s): It is important to evaluate the selected 

alternative. This evaluation may include economic analysis, safety analysis and 

assessment, etc. 

1.3.1 Mass Integration  

Mass Integration is a holistic approach to the generation, separation, and routing of 

species and streams throughout the process (El-Halwagi, 1997). It requires full 

understanding of the mass flow within the process (Figure 1.1). This mass integration 

could be done with the use of mass interceptors for purification purposes or it could be 
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done without the purchase of any pieces of equipment (Direct Recycle). A source is a 

process stream that contains our target specie, and a sink is a process unit/equipment that 

can accept a source (El-Halwagi, 2006) 

 

Figure ‎1.1:  Mass integration schematic representation (El-Halwagi, Et Al 1996, 
Garrison Et Al 1996) 
 

 

Over the past two decades a huge amount of effort has been done on 

development of mass integration strategies. Pinch analysis and mathematical 

programming methods were developed for targeting.  
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For example, Pinch analysis is a graphical method that targets minimum fresh 

materials, minimum waste discharged and maximum allowable recycle. The steps are as 

follow: 1, rank the sources and sinks in ascending order of compositions. Note that a 

common mistake is to rank them in ascending order of mass load. 2, In order to form the 

source and sink composite curve, plot the source and sink with the load of impurity 

versus flowrate. Each source is connected from the arrow of the previous source with 

superposition arrow starting from the sink with lowest composition. The same applies to 

sinks. After that, the source composite curve could be moved horizontally until touched 

by the sink composite curve. The point of intersection between the sink and source 

composite curves called the pinch point (Figure 1.2). The mass transfer flows from the 

process source to the sink upward on the graph. The flowrate that could not be 

transferred upward from a process source to process sink will be considered waste, and 

the flowrate that could not be supplied by a process source to a process sink upward, it 

will be supplied by a fresh source The thumb rule applied here is that, there should be no 

fresh feed to sink above the pinch, no waste from the source below the pinch, and no 

flowrate passed in the pinch (El-Halwagi, 2006). 
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Figure ‎1.2: Sink and source composite diagram for material recycle pinch analysis 
(El-Halwagi, 2006) 
 

Note that these targets are not theoretical, and they are achievable by following 

the correct procedures. 

The mathematical programming model includes economic assessment of the 

process where The objective is to decide the minimum cost for the system, including the 

cost of the interceptors and the cost of the fresh feed cost and waste cost (El-Halwagi, 

2006). 

                                      ∑       
      
    ∑          

     
   

  
                       (1) 
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Subject to the number of constraints: 

splitting of sources to all interceptores could be expressed as follow: 

   ∑                 
          (2) 

For purification purposes, the removal of pollutant in uth interceptor is: 

  
    (    )    

                  (3) 

After interception, the source split could be presented in equation (1.4): 

     ∑                         
  
       (4) 

The mass balance around sink j at the feed mixing point can be shown as follow: 

          ∑              
  
             (5) 

Component Material balance for each sink j when mixing is expresses below: 

     
                 ∑        

                   
  
      (6) 

Sink j material composition upper and lower bounds can be presented as follow:  

  
      

     
                       (7) 

All the process flows that could not be allocated to a process sink will be sent to waste: 

      ∑           
  
        (8) 

where 

   is the separation efficiency of the interceptor u 

   is the cost of the interceptor u 

       is the fresh feed cost 

       is the waste treatment cost 

      is the flowrate of fresh feed 

      is the flowrate of waste stream 
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   is the composition from each source to unit u 

   is the flowrate to each unit u 

       is the flowrate coming out of each unit u to different sink j 

   is the flowrate into each sink j 

   is the flowrate of each source i 

  
   is the composition of streams into each sink j 

1.3.2 Property Integration  

Mass integration is very powerful targeting tools. It was to batch and continuous 

water networks. However, a major feature of mass integration is that it is chemo-centric. 

This means that the chemical composition of a stream is the only parameter being 

tracked. Because of the heavy dependence of the system design on properties, a more 

important approach for optimal design is the framework of property integration which is 

defined by  El-Halwagi et al. (2004) as  “a functionality-based holistic approach for the 

allocation and manipulation of streams and processing units, which is based on 

functionality tracking, adjustment and assignment throughout the process.”  Several 

graphical and algebraic techniques have been developed for designing and optimizing 

recycle/reuse systems based on property integration (e.g., Shelley and El-Halwagi,2000;  

El-Halwagi et al.,2004; Qin et al.,2004; and Ng et al.,2009). 

This dependency of the system design on properties poses major property 

constraints. The identification of the upper and lower property bounds values are not as 
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simple as they sound. They could be extracted from experimental results or via 

simulation runs. This could be presented as following: 

maxmin

iii ppp        (9) 

One of the major challenges of property integration is the identification of the 

mixing rule expression. Different properties can have different mixing rules. Some may 

be linear, and others can be non-linear. A generic mixing rule expression is shown below 

(El-Halwagi, 2004): 

   
 



i

iri pFPF )()( 
     (10) 

with, 



P  is the property  of the mixture 

)( iP  is the property mixing operator of property r  



F  is the flowrate of mixture and can be expressed as follow: 

    




i

iFF

      (11) 

Note that the multiplication of the flowrate by the property operator is considered 

the property load. Thus, composition can be considered as a special case of property, and 

the same mass integration pinch analysis that was applied to mass can be applied to any 

property. This is very important when it comes to the allocation of process sources and 

sinks taking into account composition and property constraints. 
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In order to normalize the property operator into a dimensionless operator , its 

division by a reference value 
.ref

i  is needed:  

    
ref

r

irr

ir

p



 )( ,

, 

      (12) 

Then, an AUgmented Property (AUP) index for each stream i is the summation 

of the dimensionless operators: 

    




1

,

r

iriAUP

     (13) 

Then, the cluster for property r in stream i can be defined as follow: 

    i

ir

ir
AUP

C
,

,




      (14) 

Now, through clustering, every stream can be presented in a ternary diagram by a 

single point. This could be illustrated in figure 1.3. A very important characteristic of 

clustering is that the summation of clusters is equal to 1.  
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Figure ‎1.3: Ternary diagram representation of Intra-Stream of clusters (Shelly and 
El-Halwagi, 2000) 
 

Another important characteristic of clustering is that it is consistent with lever-

arm additive rule. This means that the resulting mixing stream lies on the line that 

connects both points in the ternary diagram. This could be illustrated in figure 1.4. 
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Figure ‎1.4: Lever arm addition for clusters (Shelly and El-Halwagi, 2000) 
 

1.4 Optimization 

Optimization is the recognition of the best solution among all available alternatives 

(El-Halwagi, 2006). The main objective of an optimization formulation is to maximize 

or minimize an objective function. This objective function is usually subject to a number 

of constraints. These constraints could be linear or non-linear.  The more the non-linear 

constraints are present in the formulation, the more complex it gets to find the optimal 

solution. Also, the variables could be decimals or integers. A special case of integer 

variable is the binary integers where the variable could be only hold a value of zero or 

one. Otherwise, it will be called mixed integer variable.  
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The mathematical formulation of an optimization model entails the following steps 

(El-Halwagi, 2006): 

1- Determine the objective function:  

 Identify the quantity/value that needs to be maximized or minimize 

(maximize profit or minimize cost) 

 Identify the variables that should be included in the function 

 Express the objective function mathematically 

2- Develop the game plan to tackle the problem: 

 Identify how to address the problem 

 What is the validation, motivation, and reasoning  

 What are the key concepts that can help develop a formulation that 

reflects your input and thoughts 

3- Develop the constraints: 

 Convert the approach to a mathematical framework  

 Determine mathematically all the relations and restrictions 

 Determine  the region(s) where the solution can be accepted 

 Include subtle constraints 

4- Improve formulation: 

 Avoid non-linearity 

 Simplify the formulation as much as possible  

 Enhance clarity for debugging purposes 
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1.5 Dissertation Goals 

Water and used lubricating oil are the two waste streams that have been considered 

in this work. The mishandling of these two species has led to major industrial and 

environmental issues. 

Process integration is an important tool that helped not only target water recycle 

and lube oil reclamation for resource conservation and environmental purposes, but it 

also made it economical to do so. This economical drive has posed an important task on 

industry decision makers to benchmark performance and make the modifications needed 

to reach those targets.  

  The following sections will reveal in details the objective of the proposed 

approach and how it contributes to the resource conservation and reclamation (Section 

2). Then, a full description of the water direct recycle network problem statement is 

presented, and followed by the proposed approach. This is followed by case study in 

order to illustrate the applicability of the proposed approach (Section 3). Then, problem 

statement describing the need for a systematic approach for solvent selection in the re-

refining of used lubricating oil is described. Then a validation of the proposed approach 

using experimental result is shown (Section 4). After forming a solvent consideration set 

using the proposed approach in section 4, an optimization formulation that maximizes 

profit is developed in section 5. This is done in order to obtain clear optimal results for 

solvent selection based on economic assessment.  
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Finally, a case study and sensitivity analysis is presented (Section 5). Finally, section 6 

will include an overall conclusion and recommendations for future work. 
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2 OBJECTIVES OF WORK 
 

2.1 Objectives Overview 

Sustainability is the satisfaction of the present generation without depriving the 

future generation from the ability to meet their needs. It has social, economic, and 

environmental dimensions. Therefore, in order to operate in a sustainable matter, there is 

a need for efficient and responsible usage of natural resources. The intent here is to focus 

on the development of systematic and generally applicable tools for the design, 

integration, and optimization of resource-conservation networks that reduce the 

consumption of fresh natural resources and the discharge of waste materials to the 

environment. This focus is given to two important applications: water conservation and 

lube-oil reclamation. For water conservation, an optimization approach will be 

developed to enable the recycle of process streams while considering economic issues as 

well process requirements involving mass, thermal, and property constraints. Next, lube 

oil reclamation will be addressed to conserve the use of fresh base oil and to reduce the 

discharge of spent oil. Two approaches will be developed. The first one is intended to 

identify important bounds for the selection of solvents and solvent blends that can be 

effectively used in extracting the base oil and rejecting contaminants and sludge. The 

second approach involves the development of an optimization program that screens 

solvents and blends and optimizes process design for lube-oil reclamation.  
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2.2 Water Conservation and Direct Recycle Network 

There is a growing need to develop systematic and cost-effective design strategies 

for direct recycle strategies that lead to the reduction in the consumption of fresh 

materials and in the discharge of waste streams. Direct recycle network is defined as the 

case when rerouting of waste streams does not require the purchase of any new pieces of 

equipment (El-Halwagi, 2006). These equipments are usually mass interceptor such as 

stripper, scrubber, etc. In that case, mass separating agents will be required to purify or 

modify the impurity composition. Traditionally, most of the previous research efforts in 

the area of designing direct-recycle networks have considered the chemical composition 

as the basis for process constraints. However, there are many design problems that are 

not component based, but they are property based (e.g., pH, density, viscosity, COD, 

BOD, toxicity). Additionally, thermal constraints (e.g., stream temperature) may be 

required to identify acceptable recycles. In this work, we introduce a novel approach to 

the design of recycle networks which allows the simultaneous consideration of mass, 

thermal, and property constraints. Furthermore, the devised approach also accounts for 

the heat of mixing and for the interdependence of properties. An optimization 

formulation is developed to embed all potential configurations of interest and to model 

the mass, thermal, and property characteristics of the targeted streams and units. Solution 

strategies are developed to identify stream allocation and targets for minimum fresh 

usage and waste discharge. A case study is solved to illustrate the concept of the 

proposed approach and its computational aspects.  
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2.3 Lube Oil Reclamation and Property Integration 

2.3.1 Solvent Selection Systematic Approach 

When thinking along the sustainability lines, one of the main areas that come to 

mind is lube oil reclamation. It is used for many different applications (refer to section 

4). It is composed of base oil and additives. Because of its stability characteristic, the 

base oil molecules stay almost intact after usage. However, the man made additives wear 

out. The need for sustainable re-refining technique is necessary. Also, the significant 

quantities of used and discharged lubricating oils pose a major environmental problem 

around the world. Recently, there has been a growing interest in the sustainable usage of 

lubricating oils by adopting recovery, recycle, and reuse strategies. In this work, a 

property-integration framework is used in the optimization of solvent selection for re-

refining of used lubricating oils. Property-integration tools are employed for the 

systematic screening of solvents and solvent blends. The proposed approach identifies 

the main physical properties that influence solvent(s) performance in extracting additives 

and contaminants from used lubricating oils (i.e. solubility parameter (), viscosity (), 

and vapor pressure (p)).  To identify a feasibility region for an effective solvent or 

solvent blends for this process, we construct a ternary diagram utilizing the property-

clustering technique. The results of the theoretical approach are validated through 

comparison with experimental data for single solvents and for solvent blends. 
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2.3.2 Optimization Formulation for Solvent Extraction in the Lube Oil 

Application 

As discussed above, he lube oil reclamation is necessary. This could be done by 

different technologies. Section 4 briefly describes the advantages and disadvantages of 

each process. As shown in section 4, solvent extraction is ultimate option for many 

reasons. This could be done through the use of organic solvents. This recycling should 

not be done for environmental purposes only, but for economical drive as well. The 

selection of solvent is not an easy task. After the application of screening method 

proposed and justified in section 4, feasible solvent consideration set could be 

developed. However, the selection of optimal solvent should not be valued based on 

experimental performance only. Therefore, an optimization formulation based on 

maximizing profit was formulated. This formulation takes into account the capital cost 

as well as the operating cost associated with each solvent. A case study excluding the 

capital cost was addressed to compare two major single solvents MEK and Butanol. 

Experimental results and Aspen Plus Simulation were used to collect the data required. 

Butanol performs better from PSR point of view. MEK performs better from POL stand 

point. In most cases, MEK was favored due to its lower cost and higher ability to 

preserve our valuable base oil product. Finally sensitivity analysis was performed in 

order to give better insight on the results obtained. 
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3 OPTIMIZATION OF DIRECT RECYCLE NETWORKS WITH THE 

SIMULTANEOUS CONSIDERATION OF PROPERTY MASS AND 

THERMAL EFFECT 

 

3.1 Introduction 

The efficient use of natural resources is a key challenge to industrial facilities 

seeking to operate in a sustainable manner. One of the promising means to accomplish 

the sustainability objectives is material recovery and effective allocation of resources. 

Over the past two decades, significant progress has been made in developing systematic 

process integration techniques for conservation of mass. This effort in the field of mass 

integration has emerged as an effective technique to identify performance targets for the 

maximum extent of material recovery within individual processes (El-Halwagi, 1997, 

1998, and 2006; Dunn et al., 2003). Direct recycle is recognized as an effective saving 

tool in reducing the consumption of raw materials, generation of industrial wastes, and 

cost. Much research has been performed to design cost-effective material (e.g., water, 

hydrogen, solvent) recycle networks. Recent surveys can be found in literature (Foo, 

2009; Faria et al., 2010; Jezowski, 2010). Three general approaches have been 

developed: graphical (Wang et al., 2004; Dhole et al., 1996; Alves et al., 2002; Hallale, 2002; 

El-Halwagi et al., 2003), algebraic (Feng et al., 2007; Sorin et al., 1999; Manan et al., 

2004; Foo et al., 2006), and mathematical programming (El-Halwagi et al., 1996; 

Savelski et al., 2003; Hernandez-Suarez, 2004).  
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Early mass integration methodologies were based on stream compositions. 

Nonetheless, there are many wastewater streams that are characterized by properties in 

addition to concentrations. These problems can be effectively addressed by the property-

integration framework which is defined as “a functionality-based holistic approach for 

the allocation and manipulation of streams and processing units, which is based on 

functionality tracking, adjustment and assignment throughout the process”(El-Halwagi, 

2004). Using the property-based approach, several methodologies have been developed 

for the design of recycle/reuse networks. These include graphical (Shelly and El-

Halwagi, 2000; Kazantzi 2005), algebraic (Qin, 2004; Foo, 2006), and optimization 

techniques (Ng et al., 2009; Ng et al., 2010; Ponce Ortega et al., 2009; Ponce Ortega, 

2010; Nápoles-Rivera et al., 2010).  

This paper expands the scope of recycle/reuse network by introducing for the first 

time a systematic approach which accounts for the simultaneous consideration of mass, 

property and operating temperature constraints to satisfy a set of process and 

environmental regulations. The paper also addresses the dependence of properties on 

composition and temperature. The problem is formulated as a nonlinear programming 

NLP problem that minimizes the total annualized cost of the system while satisfying the 

process and environmental constraints. 

3.2 Problem Statement 

The problem can be expressed as follows. Given is a set of sinks with the 

constraints for the inlet flowrates and allowable compositions, properties and 
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temperatures. Also given is a set of fresh and process sources, which can be 

recycle/reused in sinks. Each source has a known flowrate, composition, property and 

temperature. The fresh sources have to be purchased to supplement the use of process 

sources in sinks. In addition, the discharged waste has to meet the environmental 

regulations. The objective is to find an optimal direct recycle/reuse network while 

simultaneously considering property, mass, and thermal effects and minimizing the cost 

the overall system. Furthermore, the devised approach should also account for the heat 

of mixing and for the interdependence of properties. 

3.3 Approach and Mathematical Formulation  
 

A source-sink mapping diagram is used to represent the superstructure of the 

problem embedding potential configurations of interest (Figure 3.1). Each source is split 

into fractions that are mixed with fractions of other streams to form the feeds to the 

process sinks which must meet the process constraints expressed as bounds on 

concentrations, temperature, and properties.  
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i=1 j=1

Sources Sinks

i=2 j=2

i=Nsource j=Nsink

r=1
Waste

r=Nfresh

...

...

...

 

Figure ‎3.1: Source/sink allocation with direct reuse/recycle 
 

 

Mass balance for the ith source: 

 , ,i i j i waste

j NSINK

F F F i NSOURCE


  
                                                          (1)

  

A similar mass balance can be applied for rth fresh source without assign any fresh 

to waste: 

 ,r r j

j NSINK

F F r NFRESH


                                                                      (2) 

Mass balance for jth sink: 

    , ,j r j i j

r NFRESH i NSOURCE

F F F j NSINK
 

                                                     (3)              
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               Component material balance for cth component in jth sink: 

 , , , , , ,in

j j c r j r c i j i c

r NFRESH i NSOURCE

F z F z F z c NCOMP j NSINK
 

    
                          (4) 

 

 It is worth noting that the component material balances should be limited to the 

key components upon which constraints are imposed or the ones that highly impact the 

heat of mixing.  

If the heat effect of mixing is involved, the heat balance for the jth sink is rewritten 

as: 

 0 , 0 , 0( ) ( ) ( )in mix

j j j r j r r i j i i j j

r NFRESH i NSOURCE

F Cp T T F Cp T T F Cp T T F H

j NSINK

 

      



 
         (5) 

where Cp  can be calculated as 

 = c c

c

Cp x Cp c NCOMP                                                                       (6) 

where  xc denotes the mole fraction of component c and Cp for each component can be 

calculated by a temperature-dependent expression. For example, the following linearized 

equation may be used: 

 
c c cCp a b T c NCOMP                                                                      (7) 

The heat of mixing can be calculated as, 
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                              2

,

( )
E

mix

P x

G
RTH RT

T

 
   
 
                                                                  (8)

 

For the case study, the Wilson Equation (Wilson, 1964) is selected. For the case of 

binary systems: 

 

1 1 2 12 2 2 1 21

12
12 12

21
21 21

ln( ) ln( )

ln

ln

EG
x x x x x x

RT

b
a

T

b
a

T

      

  

  

                                                      (9a) 

where x is the mole fraction, T is the absolute temperature, and   is used to represent 

the Wislon’s equation parameters. For multi-component systems: 

         (∑        )  ∑
      

∑ (      ) 
                      (9b) 

where  is the activity coefficient and Aij is given as a function of absolute temperature:  

          
   

 
 
   

   
                         (9c) 

Hence, Eq. 9 can be expressed as, 

 12 12 21 21

1 2

1 2 12 2 1 21

mix b b
H Rx x

x x x x

  
    

                                                              
(1) 

Property balance for the pth property in the jth sink, 

, , , , ,( ) ( ) ( ) ,in

j p j p r j p r p i j p i p

r FRESH i NSOURCE

F p F p F p p NPROP j NSINK  
 

    
              

(2) 
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Here the property is dependent on the temperature and other properties 'p , the 

operator can be considered as a function of temperature and other properties: 

 ( ) ( , )p p f T p p p                                                                            (3) 

Sinks composition constraints: 

 min max

, , , ,in

j c j c j cz z z c NCOMP j NSINK                                                         (4) 

Sinks temperature constraints: 

 min maxin

j j jT T T j NSINK                                                                      (5) 

Sinks properties constraints: 

 min max

, , , ,in

j p j p j pp p p p NPROP j NSINK                                                      (6) 

It is important to point out that one of the sinks is the environmental discharge 

system with Eqs. (13)-(15) correspond to the environmental regulations. Mass balance 

for the waste: 

 ,waste i waste

i NSOURCE

F F


                                                                                  (7) 

The cth component load in the waste stream can be obtained through the following 

component mass balance: 

 , ,

waste

waste c i waste i c

i NSOURCE

F z F z c NCOMP


                                                       (8) 
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Considering the heat effects of the mixing, the temperature for the waste can be 

calculated as: 

 0 , 0( ) ( )in mix

waste waste waste i waste i i waste waste

i NSOURCE

F Cp T T F Cp T T F H


                                   (9) 

The pth property load in the waste stream is expressed through the following 

property mixing rule: 

 , , ,( ) ( )in

waste p waste p i waste p i p

i NSOURCE

F p F p p NPROP 


                                         (10) 

The objective function aims to minimize the total annualized cost, which involves 

the cost for the fresh sources, cost for the waste discharge, and cost for the pipeline.  

 
, , , ,

Cost Cost

pip pip

r r Y waste waste Y

r NFRESH

r j r j i j i j

r NFRESH i NSOURCE
j NSINK j NSINK

TAC F H F H

F F



 
 

 

 



 
                                                        (11) 
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3.4 Case Study 

 Figure 3.2 shows a schematic representation of the phenol production process 

from cumene hydroperoxide (CHP).  Cumene is fed into the reactor along with air and 

Na2CO3 (which works as a buffer solution).  In the reactor, cumene is oxidized to CHP.  

The mixture of CHP and cumene is then sent to a washing operation to remove the 

excess of the buffer solution and water-soluble materials.   

 Next, the stream leaving the washer is sent to a concentration unit in order to 

increase the low concentration of CHP to 80 wt.% or higher.  After that, the concentrated 

CHP stream is fed to the cleavage units where the CHP is decomposed to form phenol 

and acetone in the presence of sulfuric acid.  The resulting cleavage stream is neutralized 

with a small amount of sodium hydroxide and then it is separated into two phases 

(organic and water phases).  The water phase is sent to wastewater treatment and the 

organic phase (which is mainly a mixture of phenol, acetone and cumene) is washed 

with water to remove the excess alkali and is finally sent to distillation columns where it 

is fractionated into the pure products phenol and acetone. This could be simplified in a 

simple flow diagram (Figure 3.2) that summarizes visually the process described above.
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Figure ‎3.2: Process flowsheet of the production of phenol from cumene 
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3.4.1 Data Extraction (Scenario 1) 

Phenol is chosen as the key pollutant due to its environmental hazards and 

carcinogenic effects. The property studied in this case study is the vapor pressure due to 

its significant contribution volatility which affects both safety and environmental 

impacts. The lower and upper bound constraints on vapor pressure guarantee the 

compliance with the operational conditions as well as the environmental regulations. The 

following mixing rules are used for the pH and the vapor pressure: 

    ipH

i

i

pH x 1010               (21) 

    i

i

i pxp                (22) 

where xi is the fractional contribution of stream i. 

Below is the list of sources, sinks, and available fresh water sources: 

 Process sinks: 

1. Waterwash Cumene peroxidation section (Wash101) 

2. Neutralizer (R104) 

3. Waterwash cleavage section (Wash102) 

 Process sources: 

1. Stream 8 from Wash101 

2. Stream 22 from Decanter (D101) 

3. Stream 25 from Wash102 
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 Fresh water sources: 

1. Freshwater1: 0 impurity concentration 

2. Freshwater2: 0.012 impurity concentration ( mass fraction) 

 

Next, the relevant data are gathered from a developed ASPEN Plus simulation. The 

data are tabulated in Tables 3.1 and 3.2 for the sources and the sink data: 

 
Table ‎3.1 Sources and fresh water (scenario 1) 

 
Source Flowrate 

(kg/hr) 

Impurity 
Concentration 

zi 

(Mass Fraction) 

Temperature 

T(℃) 

Vapor 
pressure 

(kPa) 

Cost 

($/tonne) 

Washer101 3,661 0.016 75 38   

Decanter101 1,766 0.024 65 25   

Washer102 1,485 0.220 40 7   

      

Freshwater1  0.000 25 3  1.32  

Freshwater2  0.012 35 6  0.88  
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Table ‎3.2 Sink data and constraints (scenario 1) 
 

Sinks Water 
Flowrat

e 

(kg/hr) 

Maximum 
Inlet 

Impurity 
Concentratio

n 

(Mass 
Fraction) 

 

Minimum 
Temperatur

e 

T(℃) 

Maximum 
Temperatur

e 

T(℃) 

Minimu
m Vapor 
pressure 

(kPa) 

Maximu
m Vapor 
pressure 

(kPa) 

Wash101 2,718 0.013 60 80  20  47  

Wash102 1,993 0.013 30 75  4  38  

Neutralizer 
R104 

1,127 0.1 25 65  3  25  

 

Note that scenario 1 will be calculated with and without heat of mixing 

considerations. 

3.4.2 Data Extraction (Scenario2) 

This scenario is an extension of Scenario 1 with the consideration of pH in addition 

to the vapor pressure, the chemical components, and thermal effects. The lower and 

upper bound constraints guarantee the compliance with the operational conditions as 

well as the environmental regulations, and they are presented in tables 3.3 and 3.4. 

 

max

jz
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Table ‎3.3 Sources and fresh water (scenario 2) 

Source Flowrate 

(kg/hr) 

Impurity 
Concentration 

zi 

(Mass Fraction) 

Temperature 

T(℃) 

Vapor 
pressure 

(kPa) 

pH Cost  

(10-3 
$/kg) 

Washer101 3,661 0.016 75 38  5.4  

Decanter101 1,766 0.024 65 25  5.1  

Washer102 1,485 0.220 40 7  4.8  

       

Freshwater1  0.000 25 3 7 1.32  

Freshwater2  0.012 35 6  6.8 0.88  
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Table ‎3.4 Sink data and constraints (scenario 2) 
Sinks Water 

Flowrat
e 

(kg/hr) 

Max.  

Inlet 
Impurity 

Concentrati
on 

(Mass 
Fraction) 

 

Min.  

T(℃) 

Max. 

T(℃) 

Min.V
apor 

pressur
e 

(kPa) 

Max 
Vapor 
pressur

e 

(kPa) 

Min. 

pH 

Ma
x 

pH 

Wash101 2,718 0.013 60 80  20  47  4.5 7 

Wash102 1,993 0.013 30 75  4  38  4 8 

Neutralizer 
R104 

1,127 0.1 25 65  3  25  4.5 7 

Waste  0.15     5 9 

 

 

 

3.5 Solution and Results 

Next, the proposed methodology is applied. The optimization software LINGO 11.0 

is used to solve the developed NLP model by the embedded Global Solver. The value of 

the objective function, which is the cost of fresh water, cost of piping, and the cost of 

waste treatment, is evaluated for each case. The amount of fresh water needed without 

the direct recycle strategy is 5,838 kg/hr. However, the amount of fresh needed for all 

four scenarios after direct recycle are summarized in tables 3.5 and 3.6 along with other 

major results. These optimal results are illustrated in Figures 3.3, 3.4, and 3.5. Note that 
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the heats of mixing values were noticeable. However, since water is the material being 

recycled coupled with the large values of other terms in equation (5), there were no 

changes in the overall optimal source sink allocation. This may not be the case in other 

case studies.  

W1,1=2009.73
W=3661 kg/hr
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T=75 ℃
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Figure ‎3.3: Optimal property-based water network with/without heat of mixing 
(scenario 1) 
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Figure ‎3.4: Optimal property-based water network with/without heat of mixing 
(scenario 2) 
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Figure ‎3.5 The retrofitted process flow sheet based on the optimized results
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Table ‎3.5 Piping costs for the case study (32) 

Sink, j 

Sources 

Process, i Fresh, r 

1 2 3 1 2 

1 11.0231 4.4092 6.6138 9.9208 5.5115 

2 7.7161 2.2046 11.0231 6.6138 2.2046 

3 4.4092 8.8184 4.4092 7.7161 3.3069 

*Units in [($·h)/(kg·year)] 
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Table ‎3.6 Comparison for the optimal results with/without property constraints 

 
 

 

 

 

NO PH

 

With pH 

PH 

Min Cost 93825 94016  
Fresh1(kg/hr) 1159.86  1175.47  
Fresh2(kg/hr) 0.00  0.00  
Fresh1,1(kg/hr) 575.84  591.45  
Fresh1,2(kg/hr) 584.01  584.01  

F1,1(kg/hr) 2009.73  1962.90  
F1,2(kg/hr) 988.33  988.33  
F1,3(kg/hr) 662.94  662.94  
F2,1(kg/hr) 132.43  163.65  
F2,2(kg/hr) 420.65  420.65  
F3,3(kg/hr) 464.06  464.06  

w1,waste (kg/hr) 0.00  46.83  
w2,waste (kg/hr) 1212.91  1181.70  
w3,waste (kg/hr) 1020.94  1020.94  

z1 0.013 0.013 
z2 0.013 0.013 
z3 0.1 0.1 

zwaste 0.11  0.11 
T(sink1) (℃) 64.88  64.49  
T(sink2) (℃) 59.30  59.30  
T(sink3) (℃) 61.22  61.22  
T(waste) (℃) 53.40  53.72  
P(sink1) (kPa) 29.95  29.60  
P(sink2) (kPa) 25.00  25.00  
P(sink3) (kPa) 25.24  25.24  

P(waste) 
(kPa) 

16.77  17.10  
pH(sink1) - 6.37  
pH(sink2) - 6.49  
pH(sink3) - 5.24  
pH(waste) - 5.00  
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3.6 Conclusions 

This paper has introduced a systematic procedure which addresses for the first time 

the simultaneous handling of concentrations, temperature, and properties to characterize 

the process streams and constraints. This has been done taking into account the 

interdependency of properties and their dependency on concentrations and temperature. 

An optimization formulation has been developed to identify optimal allocation of 

sources to sinks that will minimize the network cost while satisfying all process and 

environmental constraints. Finally, a case study on water recycle in a phenol production 

plant is solved.  

3.7 Nomenclatures 

(i) Indices: 

c=index for the components, 

i=index for the internal sources, 

j=index for the sinks, 

p=index for the properties; 

r=index for the fresh sources, 

waste= index for waste; 
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(ii) Sets: 

NCOMP={ c | c is one of the components}, 

NFRESH={r | r is a fresh source}, 

NPROP={p | p is one of the properties}; 

NSINK={j | j is an internal sink}, 

NSOURCE={i |i is an internal source}, 

(iii) Parameters: 

ca = Parameter in linerized temperature-dependent expression for heat capacity of 

the pure component, 1.3724 J/(g·K) for water, 0.4685 J/(g·K) for phenol, 

cb = Parameter in linerized temperature-dependent expression for heat capacity of 

the pure component, 0.0083 J/(g·K) for water, 0.0044 J/(g·K) for phenol, 

12a = Binary parameter in Wilson equation for phenol and water solution, 2.4395, 

21a = Binary parameter in Wilson equation for phenol and water solution, -3.2239, 

12b = Binary parameter in Wilson equation for phenol and water solution, -

2229.9297 K, 

21b = Binary parameter in Wilson equation for phenol and water solution, 

1046.1246 K, 

cCp =heat capacity of the pure component, 
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iCp =heat capacity dependant on temperature of process source i, 

rCp =heat capacity dependant on temperature of fresh source r, 

Costr
=unit cost of fresh source r, 

Costwaste
= unit cost of waste; 

iF =total mass flowrate from process source i, 

jF =total mass flowrate inlet process sink j, 

0T = reference temperature, assumed to be 0℃, 

rT =temperature of fresh source r, 

iT = temperature of process source i, 

min

jT =minimum temperature of process sink j, 

max

jT =maximum temperature of process sink j, 

,r pp =pth property of fresh source r, 

,i pp =pth property of process source i, 

min

,j pp =minimum property for pth property of process sink j, 

max

,j pp = maximum property for pth property of process sink j, 
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R = ideal gas constant, 8.314 J/(K·mol), 

,r cz = composition for cth component of fresh source r,  

,i cz = composition for cth component of process source i,  

min

,j cz =minimum composition for cth component of process sink j, 

max

,j cz =maximum composition for cth component of process sink j, 

Hy =Annual operating hours =8000 hr/year 

(iv) Variables: 

jCp = heat capacity dependent on temperature of process sink j, 

wasteCp = heat capacity dependant on temperature of the waste, 

rF =total flowrate consumed from fresh source r, 

,r jF =segregated mass flowrate from fresh source r to sink j, 

wasteF =total mass flowrate of the waste,  

,

in

j pp = inlet property for pth property of process sink j, 

,

in

waste pp =inlet property for pth property of process waste, 

in

jT =inlet temperature of process sink j, 

in

wasteT = inlet temperature of the waste, 
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,i jF =segregated mass flowrate from process source i to sink j, 

,i wasteF =segregated mass flowrate from process source i to the waste stream, 

EG = Excess Gibbs free energy, J/(K·mol), 

w

cz = composition for cth component of the waste w, 

,

in

j cz =inlet composition for cth component of process sink j, 

mix

wasteH =enthalpy change in the mixing node before the waste, 

mix

jH =enthalpy change in the mixing node before process sink j, 

( )p p =property operator of pth property,   

12 = Binary variable in Wilson equation for phenol and water solution, 

21 = Binary variable in Wilson equation for phenol and water solution,  
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4 A PROPERTY-INTEGRATION APPROACH TO SOLVENT SCREENING 

AND CONCEPTUAL DESIGN OF SOLVENT-EXTRACTION SYSTEMS 

FOR RECYCLING USED LUBRICATING OIL 

 

4.1 Introduction and Literature Review 

Lubricating (lube) oils are used in significant quantities to reduce friction between 

surfaces in moving parts.  Lube oil primarily consists of base oil (85-90%) and additives 

(10-15%). The United States Department of Energy (DOE) reported the total national 

and global demand of lube oil to be 2.5 and 10.3 billion gallons per year, respectively. 

Base oil is a mixture of liquid hydrocarbon molecules that contain around 20-70 carbon 

atoms. Base oil may be derived from various sources with crude oil being the primary 

commercial source. In order to enhance the performance of lube oil, additives are mixed 

with the base oil. Table 4.1 provides a list of the most common additives used in the lube 

oil application. 
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Table ‎4.1:  List of Common additives used in lubricating oils (Kopeliovich, 2011) 

 

Upon utilization, the disposal of the used lube oils poses a major environmental 

problem. In this work, the term “used oil” refers to used lubricating oils that are 

collected after usage in small engines, automotive engines, industrial machines, etc.  

Besides consuming the additives during use, lube oil also becomes contaminated as it 

conducts its basic functions. Despite contamination, most of the base-oil portion in the 

used oil is not worn out. In fact, the chemical composition of the base oil is typically 

preserved to a large extent due to the high stability of the heavy compounds contained in 

the base oil. One gallon of lube oil yields 0.7 gallon of re-refined oil. As indicated 

earlier, the major difference between fresh lube oil and used oil is the breakdown of the 

additives to form contaminants that will mix with other light and heavy contaminants 

from the interiors of the engine. Other sources of contamination in used oils are 

generated from wear metals and road dust since one of the functions of motor lube oil is 

to clean the interior of the engine. Water is another major form of contamination in used 

oils. During fuel combustion, water and carbon dioxide are the main byproducts that 

pass through the exhaust when the engine is hot. However, when the engine is cold, 

Common Additives Example(s)

Friction modifiers Graphite, Boron Nitride

Anti-Wear Esters,Chlorinated Paraffins

Rust and Corrosion Inhibitors Organic acids, Alkaline compounds

Anti-Oxidants Alkyl sulfides, Hindered Phenols

Detergents Phenolates, sulphonates

Dispersants Hydrocarbon succinimides

Pour Point Desperssants Co-polymers of polyalkyl methacrylates

Viscosity Index Improvers Acrylate polymers

Anti-Foaming Dimethylsilicones
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condensed water may reach the lube oil lines. Another source of contamination is the 

oxidation of aromatics present in the base oil via the reaction with oxygen present in air.  

Because of the relatively high cost of re-refining, used oils are normally disposed 

of in landfills or illegally dumped in waterways making it an environmental hazard. In a 

number of applications, lube oil has been successfully recycled (Laird, 1982). DOE 

reported that only 17 percent of the recycled oil is being re-refined (DOE, 2006). 

Examples of recycle alternatives include use as a fuel substitute in furnaces or as an 

extending agent in road-paving asphalt. Re-refining is intended for recovery of base oil 

for reuse for the original purpose as lube oil. Because of the rising prices of hydrocarbon 

fuels as well as the depletion of natural resources coupled with the ever increasing 

environmental regulations, an economically profitable and environmentally friendly re-

refining technology that recovers the valuable base oil is essential. There are three major 

re-refining technologies that have been employed industrially to treat used oils. One of 

the oldest technologies used to treat used oils is chemical re-refining which is based on 

acid (normally sulfuric acid) followed by clay treatment. The acid-clay process involves 

atmospheric distillation to remove water and light hydrocarbons. Then, the dry used oil 

is treated with 5-10% by volume sulfuric acid. The sludge dissolves in the solvent 

(sulfuric acid), and settles down at the bottom of the decanter. The sludge containing 

sulfuric acid is removed from the bottom, and the clean oil is decanted out from the top, 

where it undergoes a neutralization step with the clay. The main advantage of this 

process is its capability to produce high quality base oil in an economically attractive 

manner. However, the acidic sludge collected from this process is environmentally 
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hazardous, even more than the used oil itself, and, thus, requires quite expensive disposal 

techniques. 

The other re-refining technique is the physical re-refining which is based on 

distillation processes that involve atmospheric distillation as well as vacuum distillation 

and thin-film evaporation. Similar to chemical re-refining, the first step is an 

atmospherics distillation process to recover the water and light hydrocarbons 

contaminants. This step is followed by vacuum distillation and thin-film evaporation 

(10-30 mmHg) to recover additives and other contaminants. In the last stage, the 

recovered base oil goes through a hydrogenation step in a hydro reactor to completely 

saturate the oxidized hydrocarbons. It is noteworthy to mention that despite the high cost 

of this process, it is more environmentally friendly than the chemical re-refining. 

However, this process has many challenges. For instance, the recovered oil is not of a 

high quality and therefore requires additional treatment. Additionally, fouling inside the 

distillation equipment normally occurs due to carbon deposition. More importantly, in 

order for this approach to become economically attractive it requires a steady and large 

volume input. Yet, both chemical re-refining (acid-clay process) and physical re-refining 

have found their way to commercialization scale.  

The third major re-refining technique for recovering used oils is the solvent 

extraction re-refining process. This is a particularly attractive cleaner technology since it 

is aimed at conserving natural resources and recovering (instead of destroying) the base 

oil. In the solvent extraction process, the used oil and solvent are mixed in appropriate 

proportions to assure miscibility of the base oil in the solvent and the rejection of 
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additives. A demulsifier is also used to coagulate the additives and dispersed particles 

and enhance their aggregation and rejection as large particle (flakes) that can be 

separated from the liquid by either sedimentation or centrifugation. These solvents are 

referred to as extraction-flocculation solvents (Reis and Jeronimo, 1988). Figure 4.1 is a 

simplified schematic representation of the process followed by a brief description of the 

process. 

 

 

Figure ‎4.1: A simplified solvent extraction process. 
 

In the first stage, the used oil is treated in an atmospheric distillation unit to remove 

water and light hydrocarbons. Then, the dry used oil is introduced to a mixer along with 

the solvent(s) in order to extract the base oil from the additives and heavy contaminants. 
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The mixing step is followed by a decantation unit whereby agglomeration and formation 

of large flakes take place and a two-phase solution is obtained. An organic sludge 

containing the worn additives and metals is decanted out the bottom of the decanter, and 

the top phase contains the base oil/solvent, which is separated and sent to a series of 

distillation columns for complete solvent separation for recycling purposes. Finally, base 

oil undergoes chemical treatment in order to adjust its physical properties and 

hydrocarbon structure to the required level. The major advantage of this technology is 

that it overcomes most of the limitations encountered by the aforementioned 

commercialized technologies. Compared to the acid-clay process, it produces a useful 

organic sludge that may be used in the asphalt or ink industries (Reis and Jeronimo, 

1982).  Also, it produces high quality base oil with less likelihood of fouling compared 

to the physical re-refining process. The process is also carried out at a lower overall 

operating cost for similar volume input 

An important experimental measurement of the effectiveness of the solvent 

extraction re-refining process is normally represented by the amount of sludge removed 

from the used oil. This may be expressed as the percent sludge removal (PSR), which is 

the mass of sludge removed in grams per 100 g of oil (Reis and Jernimo, 1988). Another, 

important parameter is the percent oil losses (POL), which is the mass of base oil lost in 

the sludge phase expressed in grams per 100 g of oil (Reis and Jernimo 1988, and 

Elbashir et al. 2002). These two scales are key concepts in measuring the effectiveness 

of the solvent extraction process. The main operation parameters that control the 

efficiency of this process are temperature, solvent-to-oil ratio, and solvent type 
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(normally referred to as the solvent extraction parameters or system). The characteristics 

of the required solvent for this process have been identified by Reis and Jernimo (1988) 

as follows:  (1) it should be miscible in the base oil contained in the processed used oil; 

(2) should have the capability to reject additives and dispersed particle from the solvent-

oil mixture; and (3) should be able to aggregate the remaining additives and 

contaminants to particle sizes large enough to be separated from the base oil and solvent 

mixture by either sedimentation, filtration, or centrifugation. 

Despite the commercialization of numerous solvent extraction processes, there is still 

a need to design a systematic approach to quickly screen alternatives to identify a set of 

candidates that can be optimized. Such an approach has to; simultaneously identify 

appropriate solvent or solvent blends, design an efficient recovery process for the base 

oil, and establish a regeneration method for the recycle of the solvents, all while 

optimizing the overall cost of the process. Because of the system’s dependence on 

solvent properties, a particularly well-suited approach for optimal design is the 

framework of property integration which is defined by El-Halwagi et al. (2004) as  “a 

functionality-based holistic approach for the allocation and manipulation of streams and 

processing units, which is based on functionality tracking, adjustment and assignment 

throughout the process.”  Several graphical and algebraic techniques have been 

developed for designing and optimizing recycle/reuse systems based on property 

integration (e.g., Shelley and El-Halwagi, 2000; El-Halwagi et al.,2004; Qin et al.,2004; 

and Ng et al.,2009).  Optimization techniques have been used to formulate recycle 

problems as property-integration tasks (e.g., Ponce-Ortega et al., 2009 and 2010, Ng et 
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al., 2009; Nápoles-Rivera, 2010). Furthermore, a proposed model was used for the 

synthesis of property-based resource conservation networks in both batch and 

continuous process applications. The framework takes into account direct recycle 

network, interception, and waste treatment simultaneously (Chen, 2010).  Combining 

process and molecular design has also been accomplished through process integration 

using group contributions methods (e.g., Chemmangattuvalappil et al., 2010; Solvason, 

2009; Eljack et al.,2008 and 2007; and Kazantzi, 2007). 

4.2 Problem Statement 

Consider a solvent-extraction process for the recovery and reclamation of spent 

lube oil. The selection of proper solvents and blends is on the most important decisions 

for effective design and operation. It is desired to identify a systematic procedure to 

provide guidelines to the designer on selecting solvents and blends with proper 

properties. A combination of experimental data and simulation is to be used in defining 

the feasibility ranges for the desired properties. A property integration framework is to 

be utilized to generate bounds on the recommended solvents and blends. 

4.2.1 Selection of Principal Properties and Construction of Property Clusters 

While there are several successful experimental studies on the selection and 

design of solvent extraction systems for recycle of used lube oils, there is a need to 

develop systematic design approaches that guide the designer in selecting optimal 

solvents or solvent blends and designing the various components of the recovery system 

while accounting for the properties of the solvents, the properties of the used and 
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recovered oil, and operational criteria such as percent sludge removal and percent oil 

losses (PSR and POL). The approach should also take into account the economic and 

environmental aspects of the design before determining an optimum. Additionally, it 

should cover every unit of the process starting from the atmospheric distillation up to the 

hydro treating step (see Figure 4.1). Different units may be impacted by different 

properties. For example, it is crucial to track the solubility parameter in solvent 

extraction applications, as it is important to track the specific gravity and relative 

volatility in decantation and distillation applications, respectively. Consequently, we 

chose the solubility parameter, viscosity, and vapor pressure as the major properties of 

concern for solvent selection. The following parameters are used in assessing the 

performance of the solvents and solvent blends: 

-Solubility parameter: The latent heat of vaporization indicates the amount of van der 

Waals forces that hold liquid molecules together (Burk, 1984). For a solution to occur, 

the chosen solvent must overcome these forces and find their way around and between 

the base oil molecules. Solubility parameter is a good indicator of such a behavior. As it 

has been stated earlier, a good solvent for re-refining used oils must be highly miscible 

in the base oil and at the same time facilitate the miscibility of additives and their 

subsequent coagulation through the use of a demulsifier (Reis and Jernimo, 1988). These 

requirements have two indications in terms of solubility parameters of the three major 

components that form the used oil (base oil, solvent, and additives + contaminants). For 

dissolving the base oil and additives, the absolute value of the difference between 

solubility parameter of  base oil and solvent has to be as close to zero as possible to 
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facilitate the complete miscibility requirement.   On the other hand, if the additives are 

completely miscible, it will be difficult to coagulate them into flakes using a demulsifer 

(such as KOH). Therefore, the absolute value of the difference between the solubility 

parameter of the solvent and base oil and additives has to be small enough for miscibility 

but not too small for coagulation and flocculation of the additives into separate flakes.  

An optimum range of solubility parameters of the solvent is needed.  Another important 

factor is the polarity of the solvent which facilitates the rejection of the spent additives, 

impurities, carbonaceous particles to flocculate and form large flakes that settle under 

gravity action. Therefore, the optimum range of solubility parameters is selected for 

polar solvents (e.g. alcohols, ketones). 

-Viscosity: Lower viscosity solvents tend to function more favorably in solvent 

extraction processes.  Higher viscosity solvents typically experience a greater amount of 

time for phase separation to occur.  Also, the mass transfer resistance decreases as the 

viscosity of the solution decreases enabling higher solvent effectiveness. From an 

operational point of view, lower viscosity solutions are much easier to handle than 

higher ones (specifically on pumping and tube transportation) (King, 1971). 

-Vapor pressure: In order to complete the optimization loop, vapor pressure (e.g., Reid 

vapor pressure “RVP”) must also be investigated. In order to obtain economical 

separation, the vapor pressure difference between the solvent and the base oil must be as 

great as possible so that the distillation process utilizes a minimum number of stages.  

While many solvents meet this criterion, there still must be a careful balance.  Having 

too low of a vapor pressure causes the solvent to be very volatile whereby it is hard to 
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accomplish appropriate mass transfer during the extraction process. Also, high volatility 

solvent may cause solvent losses due to atmospheric leaks causing environmentally 

hazardous problem and higher operation cost.  

With the appropriate property parameters identified, it is possible to formulate a 

design using property-integration method. Here, we start with the concept of clustering. 

The Cluster terms were introduced by Shelley and El-Halwagi (2000) for component-

less design and they have been used for the tracking of properties in the property 

integration framework proposed by El-Halwagi et al. (2004). From the above analysis, it 

can be concluded that there are constraints on the upper and lower bounds for each 

property; this can be expressed as follows (El-Halwagi, 2006): 

maxmin

iii ppp       (1) 

where P is the property of interest that can either be the solubility, the viscosity, or the 

vapor pressure. The upper and lower bounds are determined either experimentally or via 

simulation. Mixing rules are used to track properties. For instance, the viscosity mixing 

rule may be expressed in the Arrhenius equation as follow: 

      iix  lnln     (2) 

where, 

          is the composition of pure component i in the mixture 

         is the viscosity of pure component i in the mixture 

        is the viscosity of the mixture 

 This means that the viscosity operator )( i can be expressed as follows (Shelley 

and El-Halwagi, 2000): 

i



ix
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     ii  ln)(        (3) 

 From equation (3), the viscosity dimensionless operator 
i,  can be determined 

using the following equation:    

    
ref

i
i






ln

ln
,      (4) 

where,  

        is the viscosity  of a chosen reference solution 

The Reid vapor pressure mixing rule can be expressed as follow: 

                (5) 

where, 

F is the flowrate of the mixture 

P is the Reid vapor pressure of the mixture 

iF is the flowrate of the pure component i in the mixture 

iP is the Reid vapor pressure of pure component i in the mixture 

Therefore, the Reid vapor pressure operator )( iP  can be shown in equation (6). 

Then, the Reid vapor pressure dimensionless operator 
ip,  is calculated using eqn. (7): 

         (6) 

         (7) 

where, 

referencep  is the Reid vapor pressure of a chosen reference solution. 

ref
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The solubility mixing rule is linear and can be expressed in the following equation 

(Barton, 1991):       

      ** iFF      (8) 

where 

  is the solubility parameter of the mixture 

i  is the solubility parameter of the pure component i in the mixture 

Therefore, the solubility operator )( i  can be defined as follow: 

         (9) 

From equation (9), the solubility dimensionless operator can be calculated and expressed 

in the following equation: 

         (10) 

where 

reference is the solubility parameter of a reference solution. 

 Then, the AUgmented Property index iAUP  introduced by Shelley and El-

Halwagi (2000) is defined as the summation of the dimensionless operators as described 

below: 

         (11) 

where r represents the properties being optimized. This approach also introduces a new 

parameter, which is the cluster of a property r, 
irC ,
, that is calculated as the fraction of 

the dimensionless operator divided by iAUP :  

ii  )(

reference

i
i




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
r

iriAUP ,
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i

ir

ir
AUP

C
,

,


     (12) 

 This can also be expanded to the following form to represent all properties of 

concern in this study:  

    
i

i

i
AUP

C
,

,






       (13)

           (14)

           (15)  

 

  The sum of all the clusters as represented above is equal to one, i.e.: 

         (16) 

 Therefore, on a ternary diagram for the clusters of vapor pressure, solubility, and 

viscosity, each solvent is represented by one point. Once the values of two clusters are 

determined, the third cluster is automatically determined (because the sum of clusters is 

one) as shown in Figure 4.2. 
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Figure ‎4.2: The ternary diagram for vapor pressure, solubility parameter, and      
viscosity 

 

 It is also worth noting that the constraints defining the feasibility region for any 

unit (such as the constraints described by Eq. 1) can be represented on the ternary 

diagram as shown by Figure 4.3. Based on the upper and lower bounds of each property, 

six points can be drawn on the ternary diagram. These points constitute the boundaries of 

the feasible region. When the sides of the feasibility region are extended, these lines pass 

through one of the three apexes of the ternary diagram. A feasible point (A) satisfying 

the constraints of a unit must lie inside the feasibility region of the unit. Furthermore, 

because lever arm rules apply for mixing, when two streams (B and C) are mixed, the 

resulting mixture (D) lies on the straight line connecting the two streams.  
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Figure ‎4.3: Ternary diagram that represents the three properties and identifies the 
feasible region for appropriate solvent extraction system 
 

4.2.2 Design Approach 

 The proposed design approach is shown by the flowchart illustrated by Figure 

4.3. It involves a combination of feasibility-region determination, property integration, 

and screening and optimization of feasible solvents and blends. The property constraints 

are used to construct the ternary cluster diagrams where the feasibility region is drawn 

and the candidate solvents are placed based on their properties. Solvents lying outside 

the cluster feasibility regions are discarded as infeasible but are still considered as 

candidates for blends. Straight-line segments connecting two solvents and passing 

through the feasibility region are potentially feasible (necessary but not sufficient 

condition). To insure feasibility, the values of the augmented properties (AUP) of the 

blends have to lie within the feasible range of properties. Based on the lever arms of the 
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line segments lying within the feasibility region, the range of mixing ratios for blended 

solvents is determined. Cost data are used to screen the feasible solvents and blends. 

Whenever experimental data are available, they should be used to verify the design 

results, especially with regards to PSR and POL and the model results should be adjusted 

as needed. The result is a set of feasible solvents/blends along with system design 

arranged in order of cost. The design approach is presented if figure 4.4: 

 

 

Figure ‎4.4: Schematic Diagram for our Solvent Design Approach 
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4.3 Case Study 

In this section, three case studies are solved to demonstrate the applicability of the 

devised design approach. Before proceeding to the results of the case study, details are 

given on how the ranges of the three principal properties were determined. 

a. Solubility Parameter: 

Upper and lower bounds for the values of the Hildebrand solubility parameter have 

been determined through available experimental data. Table 4.2 lists the solubility 

parameters of major alcohols from C1 to C5 utilized in this process in addition to the 

solubility parameters of the base oil and typical chemicals used as additives (e.g. 

polyisobutylene as described by Elbashir, et al. 2002). 

Table ‎4.2: Solubility parameters of base oil, additives and number of alcohol 
solvents 

δ (J/m3)^1/2

Base oil 15.9

Additives 17

Methanol 29

Ethanol 26

Propanol 24.1

Butanol 22.5

Pentanol 21.1  

Rincon et al (2005) concluded that methanol, ethanol, and propanol do not seem to 

be completely miscible in the base oil and as a result they show high POL despite their 

capabilities in extracting the additive and contaminates (good PSR performance). The 

experimental results also showed that as the number of carbon atoms in the solvent 

increases, its ability to remove sludge decreases despite the fact that the solvent became 
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more miscible in the oil (Reis and Jeronimo, 1988). In other words, POL as well as PSR 

decreases as the number of carbons atoms increases (Reis and Jeronimo, 1988). The 

experimental study suggests that butanol is a highly effective single solvent in the used 

oil extraction process and that it outperforms different solvents (lcohols and ketones) 

with carbon atoms ranging between 1 and 5. Considering the information summarized in 

Table 4.2 in addition to the previous experimental assessments of several solvents, we 

recommend that solvents with solubility parameter between 21.5 and 23.5 (J/m3)1/2 

should be considered as candidates for the re-refining of used oils. Solvent(s) with 

solubility parameter less than 21.5 (J/m3)1/2 are highly miscible in both the additives and 

the base oil, and as a result, will make it very difficult for flocculation of contaminants 

and additives (upon the addition of a demulsifier such as KOH) and the formation of the 

sludge phase. On the other hand, any solvent(s), with a solubility parameter higher than 

23.5 (J/m3)1/2 will be relatively immiscible in the base oil; which is an undesirable 

criterion for the solvent as it leads to losses in the base oil. 

b. Vapor Pressure: 

Setting the vapor-pressure bounds is important for the separation process of the 

solvent-recovery unit. Therefore, a set of simulation tests using the software ASPEN 

Plus was used to determine these bounds. Based on the simulation results, it was found 

that any solvent with a vapor pressure between 5 and 150 torr should be included in the 

consideration set. When the vapor pressure is lower than 5 torr, the separation process 

becomes very expensive due to the high temperature requirement. High temperature 

operation does not only come with high utility cost, but it will also decrease the quality 
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of the produced re-refined base oil. Any solvent with vapor pressure higher than 150 torr 

is considered too volatile, which is not desirable in this extraction process since it 

reduces the liquid-liquid molecule interaction between solvent and used oil. 

c. Viscosity: 

Setting the viscosity bounds is crucial for the extraction unit. Therefore, the 

upper bound was extracted from published experimental data (Reis and Jernimo, 1988). 

Any solvent with a viscosity between 0.5 and 3.5 cp is included in the consideration of 

potential solvents. A viscosity higher than 3.5 cp causes the solution to become too 

viscous, which results in an increase in mass transfer resistance, and thus causes longer 

extraction time and higher operating cost (stemming from a pumping system). Solvents 

with typical viscosity less than 0.5 cp are normally in the gas phase, and as a result they 

should be eliminated from the consideration set.  

The ternary cluster representation of the aforementioned constraints is shown in 

Figure 4.5 where the feasible region is plotted.    
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Figure ‎4.5: The ternary-cluster representation of the feasibility region for the three 
properties for solvents and blends to be employed in re-refining of used lubricating 
oil. 
 

As noted before, any solvent or blend of solvents that exists outside the feasible 

region is eliminated. Solvent blends are constructed to lie within the feasibility region 

and the lever-arm principle is used to calculate the relative proportions of the mixed 

solvents. The solvents listed in Table 4.3 are used along with their blends in the case 

studies. Table 4.3 provides key data that were observed experimentally.  
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Table ‎4.3: Experimentally reported performance of number of solvent(s) used in 
re-refining used oils. 

Solvent Observed Performance Reference 

Hexane PSR = 0.0 Kamal and Khan 
(2009) 

Butanol PSR = 4.9 Reis and Jernimo 
(1988) 

Pentanol PSR = 3.6 Reis and Jernimo 
(1988) 

Propanol+Hexane PSR = 6.0 Reis and Jernimo 
(1990) 

Methanol Immiscible with base 
oil 

Reis and Jernimo 
(1988) 

Ethanol Immiscible with base 
oil 

Reis and Jernimo 
(1988) 

Propanol Immiscible with base 
oil 

Reis and Jernimo 
(1988) 

 

Case Study 1: Single Solvents with Experimental Verification 

Figure 4.6 shows the cluster representation of the single solvents being studied 

for lube oil reclamation. Starting with the elimination process, methanol, hexane, and 

pentanol are located outside the feasible region, and are therefore automatically 

eliminated from further consideration as single solvents. Although ethanol and propanol 

fall within the feasible region, their values of the augmented property (AUP) are outside 

the feasible range for the AUP corresponding to feasible region for the  three properties 

(viscosity, solubility parameter, and vapor presure). Therefore, they have been 

eliminated as single solvents as well. Finally, butanol lies within the feasible region and 

passes the AUP feasibility test; making it a viable candidate based on the theoretical 

property-based calculations.  
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The theoretical results were compared to experimental data. As indicated by Reis 

and Jeronimo (1988), it was found that buatnol was the most efficient solvent for this 

process at a solvent to oil ratio of 3: 1 and extraction temperature of  20 C. Therefore, 

the selection of butanol based on the property-integration theoretical procedure is 

consistent with the experimental observation. 

 

 

Figure ‎4.6: Single-solvent representation in the ternary diagram and their positions 
relative to the feasible region. 
 

Case Study 2: Exclusion of All Possible Infeasible Blends of Two Solvents 

Suppose that we are interested in mixing hexane and methanol to get a feasible 

blend. As can be seen from Figure 4.7, all blends of the two solvents lie on the straight 
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line connecting the two solvents. This straight line lies outside the feasibility region. 

Therefore, all methanol/hexane mixtures should be eliminated from further consideration 

as being infeasible. This finding reduces the design effort significantly by eliminating all 

blends that will not be feasible. 

 

 

Figure ‎4.7: Representation of methanol/hexane mixture on the ternary diagram. 

 

Case Study 3: Identifying Ranges of Feasible Blends 

As indicated earlier, the elimination of single solvents lying outside the 

feasibility region does not prevent the possibility of involving these solvents in feasible 

blends. In this regard, the ternary cluster diagram offers an effective and convenient 
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approach to visually determine feasible blends and the proportions of the participating 

solvents. For instance, as shown in Figure 4.8, any blend of propanol and hexane is 

represented by the dashed line connecting the two solvents (shown on the figure as a 

dashed line). The segment lying outside the feasibility region is labeled as A, while the 

segment lying inside the feasibility region is labeled as B. Based on the lever-arm rule, 

section A corresponds to the mixture of hexane to propane ratio greater than 0.9. These 

are infeasible mixtures. For section B, we conducted an AUP test to identify the ratios 

between the two solvents and validate this performance with the experimentally reported 

data. After running the AUP test on the mixture, a feasible mixture was found to exist of 

all mixtures with propanol percentage between 72 and 90%. Reis and Jeronimo (1989) 

experimentally measured the performance of a mixed solvent of 75% propanol and 25% 

hexane and concluded that it was an effective blend. This is consistent with the range of 

feasible solvents identified by our approach. 
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Figure ‎4.8: Propanol-hexane mixture representation of Case Study 3 on the ternary 
diagram 

 
 

4.4 Conclusions 

A systematic approach has been developed for the selection of feasible ranges of 

solvents and solvent blends for lube-oil reclamation. A property-integration framework 

was adopted as the basis for design. Specifically, property clusters were used to 

graphically represent the process and candidate solvents. Three principal properties were 

used: solubility parameters, pressure, and viscosity. A combination of reverse-simulation 

and experimental results was used to set the boundaries on the constraints required by 

the process. The feasibility of single solvents and solvent blends was identified through 

the ternary-cluster visualization diagram. Infeasible solvents and solvent blends were 
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determined and removed from further consideration. Also, all ratios of solvent blends 

leading to feasible mixtures were determined. Three case studies were solved and 

compared to demonstrate the effectiveness of the devised approach. Experimental 

observations were used to confirm the validity of the approach and theoretical results.  

In addition to its effectiveness in selecting solvents and blends and designing 

lube-oil reclamation processes, the proposed approach also serves as the basis for 

guiding experimental work by identifying feasible and promising solvents and blends 

and by shedding light on the insights on the design aspects. 

Recommended future work includes the development of an optimization 

approach to extend the applicability of the procedure to more than three key properties 

and to automate the decision-making process and use it as a basis for the optimization of 

solvent selection and process design. 
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5 A SYSTEMATIC TECHNO-ECONOMICAL ANALYSIS FOR THE 

SUPERCRITICAL SOLVENT FISCHER TROPSCH SYNTHESIS 

 

5.1 Introduction 

Annually, 2.7 billion gallons of lube oil are sold in the United States. About 2.7 

billion gallons is consumed, and the rest is considered used oil. 500 million gallons are 

left without any recycling program (Project Rose, 1990). The mishandling of used 

lubricating oil poses a major environmental crisis. It has been mainly dumped in land 

field, burned as fuel, etc (Figure 5.1). 

 

 

Figure 5.1: Common Used oil disposal methods (Project Rose 1990) 
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 Most of these actions are harmful for the environment such as leakage into 

waterways, and irresponsible toward our future generation duties such as depletion of 

natural resources. The recycling of used lubricating oil is a more sustainable form of 

action. It makes sense not only from the environmental point of view but economic as 

well. If the used oil is fed to a boiler, a net saving of $0.65/gal could be achieved. 

However, a net saving of $1.50/gal could be realized if it is recycled (Project Rose, 

1990). Chemical and physical methods have been developed to recycle the used 

lubricating oil. The chemical method is acid-sludge re-refining technique. It involves the 

use of sulfuric acid as a solvent. The main disadvantage of such a process is the acidic 

sludge produced. It is more harmful than the base oil itself. The other re-refining 

technique is the physical method where the separation occurs at very high temperature 

which causes the lube oil to break down. Therefore, the main disadvantages of this 

technique are the low quality base oil produced, and high volume requirement for 

economic purposes. Solvent extraction yields the advantages and eliminates the 

disadvantages of both processes. High volume is not required; organic sludge is 

produced; high quality base oil is produced.   
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The recycling of used lubricating oil not only helps in the preservation of natural 

resources, but also reduces the dependency on foreign oil. This work is unique because 

the developed optimization formulation not only reveals the identity of the optimal 

solvent but also targets the optimal operating conditions based on profitability. 

5.2  Solvent Extraction Process Description and Problem Statement 

Due to the stability of the heavy base oil molecules, the base oil itself stays intact 

after usage. One gallon of lube oil yields 0.7 gallon of re-refined oil (Everest, 2005). The 

re-refining of used lubricating oil’s job is to completely remove the metals and worn 

additives from base oil. This is not an easy task to accomplish. The solvent extraction 

process could be designed in many different ways. However, there are three essentials 

unites needed in order to accomplish the desired task. If further detailed design of units 

is requested, simulation data will be needed in order to include all design elements in the 

process. Therefore, a generic block flow diagram of the solvent extraction process could 

be shown in Figure 5.2. 
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Figure 5.2: Simplified block flow diagram for the solvent extraction process of 
recycling used lubricating oil. 
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 Used lubricating oil is fed to separation unit I (atmospheric distillation column) 

to remove water and light hydrocarbons. Dry used oil is collected as bottom of the 

column. Then, it is mixed with the organic solvent. Two phase solution is formed. 

Organic sludge (bottom phase) is constituted of contaminants and lost oil/solvent 

mixture. The upper phase contains the base oil and solvent mixture. The organic sludge 

is easy to handle. For instance, it could be collected and sold for ink or asphalt 

industries. The oil/solvent mixture is sent to separation unit II for complete regeneration 

of solvent. In order to prevent the breakdown of base oil molecules at high temperature, 

it is suggested to use both atmospheric and vacuum distillation columns. 

5.3 Problem Statement 

This section presents the model formulation for the optimization process, and 

these equations are based on the representation of figure 5.3. 

Note that figure 5.3 includes different equipments/units which may or may not be used 

to accomplish the desired task. Therefore, it has been left to the optimization to decide 

whether certain equipments are needed or not. Also, figure 5.3 shows only three units, 

but the formulation includes the option of infinite number of stages. The optimization 

will decide if it is worth to spend the extra capital investment for the extra unit(s) to be 

purchased in order to remove the excess contaminants.  
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Figure 5.3: Process Flow Diagram for the solvent extraction process of recycling 
used lubricating oil. 
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There are many rooms for optimization within the process. The extraction unit 

depends on three major factors. First of all, the solvent type and cost are very important 

variables to be considered in the formulation. Solvent type affects the percent sludge 

removal (PSR) and Percent oil Loss (POL). Note that PSR and POL are primary 

parameters used for the evaluation of extraction performance. It is desired to yield the 

lowest POL and the highest PSR possible. Another major factor is the operating 

temperature. For instance, the higher the temperature the higher the miscibility of 

solvents in oil is, but the lower the PSR is. Therefore, there is an optimal temperature at 

which the chosen solvent should operate taking into account cost of heating 

simultaneously. Last but not least, solvent to oil ratio (SOR) poses limitation on both 

POL and PSR. In order to achieve solvent saturated mixture, high SOR is desired. 

However, the higher the SOR is, the more make-up solvent and regeneration cost are 

associated with such a desire. Also, it is very important to note as it has been shown 

experimentally that there is an optimal SOR at which the addition of more solvent does 

not cause further separation. In other words, at SOR >SORoptimal, POL and PSR remain 

almost constant. This will be shown later in the case study. It is worth to note that the 

limitation on the PSR affects the number of stages required in order to remove all 

contaminants. This, in terms, affects the capital and operating cost of the extraction unit.  

 Next, the separation unit is part of the process, it has been considered in the 

holistic optimization formulation. The optimal separation temperature in both the 

atmospheric (SU) and vacuum distillation (VDU) has been targeted. Temperature as well 

as solvent type and SOR affect the solvent recovery and operating and capital cost of 
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both columns including condensers and reboilers. Therefore, the consideration of both 

units simultaneously is essential and shows the uniqueness of this work. 

5.3.1 Mass Balance 

This section presents the material balances in the representation of Figure 5.3. 

First, the material balance around Mixer 1 is stated as follows. 

    111 GRUM       (1) 

In previous equation M1 is solvent make up fed to mixer 1, U is the mass flowrate 

of dry based oil, R1 is the flowrate of regenerated/recycled solvent to extraction stage 1, 

G1 is the flowrate of mixture fed to stage 1. 

 Material balance around mixer i with i> 1 can be stated as follows: 

   11   iRFMG iiii     (2) 

where Mi is the flowrate of solvent make-up fed to mixer i, Fi-1 is the flowrate leaving 

the top of decanter i-1 before fed to the next mixer i, Ri is the flowrate of 

recycled/recovered solvent to stage i, and Gi is the flowrate of mixture fed to decanter i. 

 The material balance around decanter i is: 

  IiSFG iii        (3) 

with i is the number of stages and it takes values of 1,2,3…istages, Fi is the flowrate of 

solvent/oil mixture leaving decanter i, and Si is the flowrate of sludge leaving decanter i. 

 Material balance around atmospheric column (SU): 

   FBRa  1        (4) 
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where Ra is the flowrate of the recovered solvent leaving the top of the atmospheric 

column, B1 is the bottom of the atmospheric column, F is the flowrate leaving the top of 

the last decanter. 

 Material balance around vacuum distillation column (VDU): 

    21 BRB b        (5) 

where Rb is the flowrate of the recovered solvent leaving the top of the vacuum column, 

B2 is the bottom of the vacuum column which should include the saturated base oil. 

 Material balance of recovered solvent: 

  IiRRRR ba

i

i 
1

     (6) 

5.3.2 Component Material Balance 

 Similar to the mass balance, there are component balances for the base oil, 

contaminants and solvent in the different sections of the diagram. 

 The component balance around mixer 1 is stated as follows: 

 NnYGYRYUYM G

n

R

na

U

n

M

n
a  1

1

1

1 ****    (7) 

 In previous equation Yn is the composition by weight of component N given, 

where  3,2,1N , and n=1 corresponds to the base oil, n=2 is used for the contaminants 

and n=3 is for the solvent. 

 Component balance around mixer i and decanter i consecutively: 
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            NnYSYFYG Si
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ni  ***    (9) 
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 Component balance around SU and VDU consecutively: 

  NnYFYBYR F

n

B

n

Ra

na  11

1 ***     (10) 

  NnYBYBYR B
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nb  1

1

2

2 ***     (11) 

 Component balance for the total recycled solvent is as follow: 

  NnYRYRYR R

n

R

n

R

n  2

2

1

1 ***     (12) 

5.3.3 Heat Balance 

 The heat balance around heat exchanger i corresponding to stage i in the 

extraction unit is expressed as follow: 

   )(** '_

_

GiGiimix

piiHeater TTCGQ      (13) 

where Qheater_i is the heat load needed to increase/decrease the temperature from its value 

TGi’ to an optimal extraction temperature TGi, and CP
mix_i is the heat capacity of the 

mixture.  

 Since the extraction will occur in liquid phase, it can be correlated to the pure 

component values as follow: 

    
n

p

Gi

n

imix

p n
CYC *_      (14) 

where Cpn is the heat capacity of pure component n and it is function of temperature. 

 The heat balance data around both reboilers and condensers of the distillation 

columns could be extracted from ASPEN PLUS and to determine the dependence of 

operating temperature. 
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5.3.4 Equilibrium Equations 

 The percent sludge removal (PSR) is the mass of dry sludge being removed in 

grams per 100 g of used oil (Reis and Jernimo, 1988).. Therefore, the PSR from stage 1 

is expressed as follow: 

   Ii
GY

SY
PSR

i

Gi

i

Si

i 



*)1(

*

3

2     (15) 

   ),,( iii SORTtypesolventPSRPSR      (16) 

 The percent oil loss is defined as the mass of base oil lost with the sludge in 

grams per 100 g of used oil (Reis and Jernimo, 1988, and Elbashir et al., 2002), and it is 

shown in the following equation: 

   Ii
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Gi

i

Si

i 



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3

1     (17) 

   ),,( iii SORTtypesolventPOLPOL      (18) 

 A new variable K is defined to express the equilibrium equations in both the SU 

and VDU units. Kn is the ratio of the mass fraction of component n of the bottom of the 

column divided by the mass fraction of top stream. Therefore, the K relationship for the 

component n in both SU and VDU is expressed consecutively as follow: 

    Nn
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1     (19) 
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     Separationseparation

n PTKK ,     (21) 
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5.4 Optimization Formulation 

Most of the work done on the solvent extraction optimization is to find the 

optimal solvent with the lowest POL and highest PSR regardless of cost. This might be a 

good indication for an optimal solution, but it is not sufficient from a holistic approach. 

A look at the process as a whole is necessary to find the optimal solution. As is the case 

in most optimization formulations, an objective function that maximizes profit is needed, 

and for this case the net profit is stated as follows: 

CostSalesofitMaximize Pr     (22) 

sludgeSaleoilSaleSales __      (23) 

   wtSludgeStoilBoilSale *cos_*cos_*_ 2      (24) 

where W is the hours of operation per year, Oil_cost is the cost of base oil per Kg, 

Sludge_cost is the cost of sludge per Kg that could be obtained from ink or asphalt 

industries. 

 Note that S is the combination of all the sludge leaving the extraction unit and 

could be expressed as follows: 

,i

i

S S i I        (25) 

 Then, the annual cost is the summation of both annual operation cost and annual 

capital cost, and it could be calculated as follow: 

  OperationCostCapitalCostCost __     (26) 
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 The capital cost includes all major pieces of equipment in the whole process and 

it is defined as: 

VDUCostSUCostMixerDecanterCostHexCostCapitalCost
i

i

i i

ii _____        (27) 

where Cost_Hexi is the annual cost of the heat exchanger needed in stage i, which is 

responsible on bringing the temperature of mixture to optimal extraction temperature, 

Cost_Decanteri and Cost_Mixeri are the annual costs for the decanter and the mixer in 

stage i, respectively. Cost_SU is the annual cost of the atmospheric column needed for 

the separation, this includes the capital cost of the condenser and reboiler associated with 

the column, and Cost_VDU is the annual capital cost of the vacuum distillation column 

required, this includes the capital cost of condenser and reboiler associated with the 

column. 

 The equations that describe the annual capital cost of these equipments are 

shown below: 

  iiHeateriHeater
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iHeater

FCi ACCHeaterCost )(*_     (28) 

  iimixerimixer
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FCi VCCMixerCost )(*_      (29) 
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B YYYTBfVDUCost      (32) 

 Another major cost that contributes to the total annual cost is the annual 

operation cost, which depends on so many factors. It includes the cost of heating/cooling 
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needed for an optimal operating condition as well as the solvent make up cost. It is 

calculated as follows: 

   CostupMakeboilingCostgCondenCostHeatingCostOperationCost
i

i __Re_sin___    (33) 

 Note that Cost_Heatingi is the annual heat duty cost of stage i required to 

increase the mixture temperature Ti to the optimal extraction temperature Ti
opt. This cost 

is obtained as the product of heat duty Qi times the heating utility cost multiplied by the 

yearly hours of operation: 

   wHUCostQHeatingCost ii *_*_      (34) 

where Cost_Condensing is the total condensing cost required by both columns and 

Cost_Reboiling is the total reboiling cost required by both columns. 

 The Make_up_cost is expressed as follow: 

  
i

i wSolventCostMtupMake *_*cos__    (35) 

5.5 Case Study and Results 

 This section presents a case study to show the applicability of the proposed 

optimization formulation.  

5.5.1 Data Collection 

To illustrate the applicability of the proposed optimization approach, a case is 

presented. In this case, Methyl Ethyl Ketone (MEK) and Butanol have been chosen as 

solvents of interest. As it has been proven previously (Nimir, 1997), MEK yields the 
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lowest POL, and Butanol performs best at PSR. It is good to put these values in terms of 

economics, and let the optimization decides the overall optimal solvent. Experimental 

results have been used to collect PSR and POL data (Katiyar, 2010). These results are 

presented in figures 5.4 and 5.5. All other data have been extracted from Aspen Plus 

simulation. 
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Figure 5.4: Effect of solvent to oil ratio (SOR) and Temperature (T) on percent oil 
loss and percent sludge removal (POL/PSR) using 1- Butanol as a solvent (Katiyar 
2010). 
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Figure 5.5: Effect of solvent to oil ratio (SOR) and Temperature (T) on percent oil 
loss and percent sludge removal (POL/PSR) using MEK as a solvent (Katiyar, 
2010). 
 

 Figures 5.4 and 5.5 show that the increase in temperature leads to decrease in the 

POL. This is an indication of increase of base oil miscibility in the solvent as the 

temperature increases. However, from the experimental results, it can be noticed that 

there is a trade off since the increase in temperature decreases the PSR as well. This 

makes it an interesting optimization problem. It is desirable to achieve an optimal 

extraction temperature that yields the highest PSR and lowest POL possible based on 

profitability. In addition, Figures 5.4 and 5.5 show that the increase in SOR increases the 

PSR and decreases the POL. However, the increase in SOR reaches a critical value after 

which the addition of solvent does not change the POL and PSR. Note that the more 

solvent is used the bigger the equipment (higher capital cost) will be needed the more 

solvent make-up will be purchased, and the more operating solvent recovery cost will be 
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indicated. Note that deriving equations (16) and (18) from both figures is not an easy 

task to perform. Lingo optimization software has been used to derive these equations. 

This was done by composing an objective function that minimizes the error between the 

experimental and calculated values. A generic equation with multiple unknown 

parameters and two variables (SOR and T) was assigned in order to evaluate the 

calculated values. The value of the error squared was less than 4 in all cases given 32 

data points for each equation. This indicated good plot fitting approach, and shows that 

the generic equation provided was relatively good.  

2.51851T0.15175)SOR (-0.413386.51903exp15.691 ii BUTANOL

iPOL  (35) 

2.313249T0.042875)SOR (-0.3865766.89802exp6.71806 ii MEK

iPOL  (36) 

ii T0.0555)SOR (1.669866ln 3.291565 BUTANOL

iPSR     (37) 

ii T0.062)SOR (1.331624ln 3.303513 MEK

iPSR     (38) 

Note that Ti is in degree Celsius.  

To highlight the importance of operation cost, it is assumed that the process 

already exists, and no need to purchase any pieces of equipment. Therefore, the capital 

cost is ignored from the objective function. The distillation columns separation data have 

been obtained using Aspen Plus (refer to Appendix A). Note that condensing, reboiling, 

and extraction heat duties were extracted from Aspen Plus as well.  
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 Finally, binary variables Z1 and Z2 were assigned for Butanol and MEK 

consecutively, and the Big-M formulation was used to relax most constraints. This could 

be illustrated in the following set of equations:  

)Z-(1100PP 1 BUTANOL

ii OLOL     (39) 

)Z-(1100PP 1 BUTANOL

ii OLOL     (40) 

)Z-(1100PP 2 MEK

ii OLOL     (41) 

)Z-(1100PP 2 MEK

ii OLOL     (42) 

    121  ZZ       (43) 

5.5.2 Results and Discussions 

The base case assumes that three extraction stages exist with a capacity of SOR less 

than or equal to 5:1. Also, the used oil composition is 85% base oil and 15% 

contaminants. Solvents and base lube oil costs were extracted from ICIS pricing website 

and they are summarized in Table 5.1 (ICIS website): 

Table 5.1: Solvents and oil costs 
Cost $/kg

Base oil 1.75

Butanol 1.54

MEK 0.75  

 It is assumed that the organic sludge could be sold for $0.5/kg less than three 

times the value of base oil. It is also assumed that the three extraction units are 
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responsible on removing a total of more than 80% of the contaminants. Another major 

constraint is that base oil should not be exposed to temperature higher than 140 °C in 

order to eliminate the risk of breaking it down and reducing its value. No data was 

available for the percent of solvent loss with the contaminant. Therefore, results were 

generated at 5 % and 10% of solvent loss. The optimization chooses MEK as the optimal 

solvent in both cases. This is due to lower MEK cost and its higher ability to conserve 

the base oil (lower POL). At 5 and 10% solvent loss, the optimal extraction temperature 

in all three stages was 20 °C. SOR values are summarized in Table 5.2. 

Table 5.2: SOR values at 5% and 10% solvent losses. 

  

 The values are not too different. The reason lies behind the major constraint of 

20% of contaminants removal. In order to study the effect of that constraint on the 

optimal operating extraction condition as well as the solvent selection, a series of Lingo 

models were ran at 5% and 10% solvent loss, and the results are tabulated in tables 5.3 

and 5.4. 

 

 

 

Solvent loss SOR1 SOR2 SOR3

5% 4 4.5 4.9

10% 4.3 4.5 4.7
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Table 5.3: Solvent selection and extraction operating conditions at different total %    
sludge removed taking into account 5% of solvent is lost at each stage. 

Total % Sludge removed T1 © T2 © T3 © SOR1 SOR2 SOR3 Solvent

33.3 20 50 50 3.3 3.67 3.9 MEK

46.7 20 50 50 3.3 3.67 3.9 MEK

53.3 20 50 50 3.3 4 4 MEK

60.0 20 30 50 3.5 3.9 4.3 MEK

66.7 20 20 50 3.7 4.1 4.6 MEK

73.3 20 20 32 3.8 4.2 4.7 MEK

80.0 20 20 20 4 4.5 4.9 MEK

83.3 20 20 20 3.3 4 5 Butanol

5% of Solvent Loss

  

Table 5.4: Solvent selection and extraction operating conditions at different total % 
sludge removed taking into account 10% of solvent is lost at each stage 

Total % sludge removed

33.3 T1 © T2 © T3 © SOR1 SOR2 S0R3 Solvent

46.7 20 20 50 2.2 2.3 2.4 MEK

66.7 20 20 26 2.4 2.6 2.7 MEK

73.3 20 20 20 3.3 3.5 3.7 MEK

80.0 20 20 20 4.2 4.5 4.7 MEK

83.3 20 20 20 3.3 4 5 Butanol

10% Solvent Loss

  

 As the total percent sludge removed increases, the temperature decreases and the 

SOR increases. MEK is the optimal solvent in all cases except at total %sludge removed 

higher than 83.3%. This is due to the physical ability limitation of MEK to remove the 

contaminants at higher level. Because Butanol is better sludge removal solvent, it was 

selected at total % sludge higher than 83.3. Note that this conclusion holds true in both 

cases of 5% and 10% solvent loss. These results would have been different if the SOR<5 

constraint was ignored. At lower total % sludge removed, it is worth to note that T2 and 

T3 values at 5% solvent loss are higher than T2 and T3 values at 10% solvent loss. 

However, this is accompanied by higher SOR2 and SOR3 values in the 5% than the 10% 

solvent loss. The reason is the optimization preference in the 5% solvent loss to increase 
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the temperature indicating lower oil loss and sacrificing higher SOR (higher solvent loss) 

at 5% rate of solvent loss. However, in the 10% solvent loss, the optimization tendency 

was to decrease the temperature indicating higher percent oil loss and decreasing SOR to 

decrease the amount of solvent loss at 10% rate of solvent loss.  

 Another important factor to be studied is the MEK and Butanol prices variation. 

If MEK price stays the same at $0.75/kg, at what price Butanol or a solvent that 

performs the same as Butanol should be in order to be optimal? This solvent price value 

is different in both 5% and 10% solvent loss cases. In the 5% solvent loss case, Butanol 

or equivalent solvent should be at $0.35/kg or lower to become favored. In the 10% 

solvent loss case, Butanol or equivalent solvent should be at $0.55/kg or lower in order 

to become favored over MEK. 

 Now, if Butanol price stays the same at $1.54/kg, up to what price MEK or a 

solvent that performs the same as MEK stays favored over Butanol? This value is 

different in both 5% and 10% solvent loss cases. In the 5% solvent loss case, MEK or 

equivalent solvent could be at a cost of $1.7/kg or lower to stay favored over butanol. In 

the 10% solvent loss case, MEK or equivalent solvent could be at $1.54/kg or lower in 

order to stay favored over Butanol. 

 Another sensitivity analysis is done over the quality of base oil. It is assumed that 

the SOR constraint is not valid, and therefore SOR could have a value greater than 5. 

This was done by the keeping the constraint on the contaminant composition leaving the 

last extraction unit with base oil/solvent mixture to be less than 3% of the used oil fed to 

the first extraction unit. The quality of base oil was varied by changing the composition 
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of base oil in the feed from 85% to 90% and 80%. The results are summarized in Tables 

5.5 and 5.6: 

Table 5.5:  Result summary of the effect of base oil quality taking into account 5% 
solvent loss in each stage. 

% Base oil in the feed T1 SOR1 T2 SOR2 T3 SOR3 Solvent

90% 20 3.3 50 3.7 50 3.9 MEK

85% 20 4 20 4.5 20 4.9 MEK

80% 20 7.3 20 8 20 9.1 MEK

5% Solvent Loss

  

Table 5.6: Result summary of the effect of base oil quality taking into account 10% 
solvent loss in each stage. 

% Base oil in the feed T1 SOR1 T2 SOR2 T3 SOR3 Solvent

90% 20 2.4 20 2.5 20 2.6 MEK

85% 20 4 20 4.5 20 4.9 MEK

80% 20 7.7 20 8.1 20 8.6 MEK

10% Solvent Loss
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Tables 5.5 and 5.6 show that MEK is the optimal solvent, and this is due to its 

lower cost and its high ability in preserving the oil (low POL). The results in both tables 

are similar in the 85% and 80% case. However the results are different in the 90% case. 

This is due to the operating condition flexibility of MEK in removing lower amount of 

contaminants. In the case of 10% solvent loss, lower temperature and lower SOR were 

favored in order to decrease the amount of solvent loss. In the case of 5% solvent loss, 

higher temperature and higher SOR were favored since the solvent loss is at lower rate. 

In the 85% and 80%, MEK does not have a lot of operating condition flexibility in 

removing the large amount of contaminants. The low temperature and high SOR were 

necessary to satisfy the total sludge removal constraint. 

Note that these results depend heavily on the assumptions made as well as the 

solvents chosen for this case study. The results will be a lot different if they were to 

change.  Also, it would be different if this case study gave the optimization the flexibility 

of deciding the number of units based on cost as shown in the generic formulation. Also, 

note that this formulation could be applied not only to single solvents as shown in the 

case study, but it also applies to solvent blends as well. 

 

 

 

 

 

 



 95 

5.6 Conclusions 

This paper presents an optimization formulation for the optimal production oil 

from used oil through different solvents and configurations. This formulation takes into 

account the capital cost as well as the operating cost associated with each solvent. The 

proposed model was tested for the use of Butanol and MEK as solvent considering 

experimental data and data obtained from simulation. Results show that Butanol 

performs better from PSR point of view; whereas, MEK performs better from POL stand 

point. In most cases, MEK was favored due to its lower cost and higher ability to 

preserve our valuable base oil product. 

 As of future work, it would important to include safety metrics in the formulation 

in order to eliminate the risk of using hazardous solvents as well as the decrease the risk 

associated to the operating conditions required. In addition, it will be important to 

address a case study with the inclusion of the capital cost and show its effect on the 

optimal results. Finally, heat integration could be another economic incentive. 
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6 CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK 
 

This work has introduced systematic approaches for the recycle and reclamation of 

material utilities and spent products. In the area of material-utility (e.g., water) recycle; a 

new process-synthesis procedure has introduced to addresses, for the first time, the 

simultaneous handling of concentrations, temperature, and properties to characterize the 

process streams and constraints. This has been done, taking into account the 

interdependency of properties and their dependency on concentrations and temperature. 

An optimization formulation has been developed to identify optimal allocation of 

sources to sinks that will minimize the network cost while satisfying all process and 

environmental constraints. A case study on water recycle in a phenol production plant 

has been solved.  

A systematic approach has also been developed for the selection of feasible ranges 

of solvents and solvent blends for lube-oil reclamation. A property-integration 

framework was adopted as the basis for design. Specifically, property clusters were used 

to graphically represent the process and candidate solvents. Three principal properties 

were used: solubility parameters, pressure, and viscosity. A combination of reverse-

simulation and experimental results was used to set the boundaries on the constraints 

required by the process. The feasibility of single solvents and solvent blends was 

identified through the ternary-cluster visualization diagram. Infeasible solvents and 

solvent blends were determined and removed from further consideration. Also, all ratios 

of solvent blends leading to feasible mixtures were determined. Next, an optimization 

formulation was developed to identify the key design and operating variables of the 
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system as well as the selection of the optimal solvent(s) for extraction. Key parameters 

were considered such as percent oil loss (POL), percent sludge removal (PSR), and their 

dependency on temperature and solvent to oil ratio (SOR). Three case studies were 

solved and compared to demonstrate the effectiveness of the devised approach. 

Experimental observations were used to confirm the validity of the approach and 

theoretical results.  

In addition to its effectiveness in selecting solvents and blends and designing lube-

oil reclamation processes, the proposed approach also serves as the basis for guiding 

experimental work by identifying feasible and promising solvents and blends and by 

shedding light on the insights on the design aspects. 

Recommended future work includes the following: 

 Inclusion of heat integration in the design of material-utility recycle networks 

 Incorporating additional properties (e.g., density) in the reclamation of lube oil 

 Comparison of extraction-based reclamation networks to other recovery and disposal 

alternatives (e.g., thermal conversion) 

 Incorporation of safety metrics for the solvents and the process into the optimization 

formulation to generate inherently safer designs 

 Design of flexible systems that can respond to the dynamic fluctuations in the 

characteristics of wastewater streams. 

 Inclusion of life cycle analysis for the used materials and the designed processes. 
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APPENDIX A 

Water Network Coding 

Data: 
 NSOURCE=3; 
 NFRESH=2; 
 NSINK=3; 
 NWASTE=1; 
! NCOMPOSITION=1; 
! NPROPERTY=1; 
 
Enddata 
 
Sets: 
     Source/1..NSOURCE/:SRInx; 
 FreshSource/1..NFRESH/:FRInx; 
 Sink/1..NSINK/:SKInx; 
 Waste/1..NWASTE/:WasteInx; 
! Composition/1..NCOMPOSITION/:CompInx; 
! Property/1..NPROPERTY/:PropInx; 
Endsets 
 
Sets: 
 flowSRtoSK(Source,Sink):flowSRSK;     
 !segregated mass flowrate from process source i to sink j; 
 flowSRtoWaste(Source,Waste):flowSRWaste;   
 !segregated mass flowrate from process source i to the waste stream; 
 TotalflowSource(Source):TotalFlowSR;     !total 
mass flowrate from process source i; 
 flowFreshtoSK(FreshSource,Sink):flowFRSK;   
 !segregated mass flowrate from fresh source r to sink j; 
 Fresh(FreshSource):flowFR, costFR;      !total 
flowrate consumed and unit cost of fresh source r; 
 flowSink(Sink):inflowSK;       
 !total mass flowrate inlet process sink j; 
 FlowWaste(Waste):inflowWaste,costWaste;     !total 
mass flowrate and unit cost of the waste; 
 
 CompositionFresh(FreshSource):compFR,molecompFR,moleWaterFR;
 !composition of process source r; 
 TemperatureFresh(FreshSource):tempFR;    
 !temperature of process source r; 
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 PropertyFresh(FreshSource):propFR;     
 !property of fresh source r; 
 heatCapacityFresh(FreshSource):CpFR;     
 !heat capacity of process source r; 
 
 CompositionSource(Source):compSR,molecompSR,moleWaterSR;!composition 
of process source i; 
 TemperatureSource(Source):tempSR;     
 !temperature of process source i; 
 PropertySource(Source):propSR;      
 !property of process source i; 
 heatCapacitySource(Source):CpSR;      !heat 
capacity of process source i; 
 
 CompositionSink(Sink):incompSK,mincompSK,maxcompSK, molecompSK, 
moleWaterSK, moleSink; !inlet, minmum and maximum composition of process sink j; 
 TemperatureSink(Sink):intempSK,mintempSK,maxtempSK;  !inlet, 
minmum and maximum temperature of process sink j; 
 PropertySink(Sink):inpropSK,minpropSK,maxpropSK;   !inlet, 
minmum and maximum property of process sink j; 
 heatCapacitySink(Sink):CpSK;      
 !heat capacity of process sink j; 
 
 deltaEnthalpySink(Sink):deltaH_Sink,A12,A21,Ln_Gamma1,Ln_Gamma2,Gam
ma1,Gamma2;   !enthalpy change in the mixing node before process sink j; 
 deltaEnthalpyWaste(Waste):deltaH_Waste,Aw12,Aw21,Ln_GammaW1,Ln_Ga
mmaW2,GammaW1,GammaW2; !enthalpy change in the mixing node before waste;
  
 
 CompositionWaste(Waste):compWaste, molecompWaste, moleWaterWaste, 
moleWaste;  !composition of the waste; 
 TemperatureWaste(Waste):tempWaste;     
 !temperature of waste; 
 PropertyWaste(Waste):propWaste;      
 !property of waste; 
 heatCapacityWaste(Waste):CpWaste;     
 !heat capacity of waste; 
 
Endsets 
 
Data: 
 TotalFlowSR=3661,1766,1485; 
 compSR=0.016, 0.024, 0.22; 
 tempSR=75,65,40; 
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 propSR=38,25,7;    
! CpSR=4.2, 4.2, 4.2;  
 
 compFR=0, 0.012; 
 tempFR=25,35; 
 propFR=3,6; 
! CpFR=4.2,4.2; 
   costFR=0.00132,0.00088; 
  
 inflowSK=2718,1993,1127; 
 mincompSK=0,0,0; 
 maxcompSK=0.013, 0.013, 0.1; 
 mintempSK=60,30,25; 
 maxtempSK=80,75,65; 
 minpropSK=15,10,13; 
 maxpropSK=35,25,40; 
! CpSK=4.2, 4.2, 4.2;  
 
! deltaH_Sink=0,0,0;      !assumed to be zero; 
! deltaH_Waste=0; 
! CpWaste=4.2;  
 
 To=0;        !standard 
temperature is assumed to be zero; 
 costWaste=0.002;      !assumed value; 
 MoleWtWater=18;      !unit:   g/mol; 
 MoleWtPhenol=94.11; 
! Cp_Water=4.190;      !Cp = 4.1855 J/(g·K) 
(25 °C) = 4.1855 kJ/(kg·K); 
  
 Constant_R=8.314;      ! the gas constant 
8.314472 J/(K·mol)= 8.314472 kJ/(K·kmol); 
 alpha12=2.4395; 
 alpha21=-3.2239; 
 b12=-2229.9297; 
 b21=1046.1246; 
Enddata 
 
 
!objective function: ; 
min=MinCost*8000; 
 
MinCost=@sum(Fresh(r):flowFR*costFR)+@sum(Waste(w):inflowWaste*costWaste); 
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!constraints; 
!1. Mass balance for ith source:;  
 @for(TotalflowSource(i): 
   TotalFlowSR(i) = 
@sum(flowSink(j):flowSRSK(i,j))+@sum(Waste(w):flowSRWaste(i,w))); 
!2. The similar mass balance can be applied for rth fresh source without assign any fresh 
to waste:;  
 @for(Fresh(r): 
   flowFR(r) = @sum(flowSink(j):flowFRSK(r,j))); 
!3.Mass balance for jth sink:; 
 @for(flowSink(j): 
   inflowSK(j)= 
@sum(Fresh(r):flowFRSK(r,j))+@sum(TotalflowSource(i):flowSRSK(i,j))); 
!4. Component material balance for jth sink:; 

 @for(flowSink(j): 
   inflowSK(j)*incompSK(j)= 
@sum(Fresh(r):flowFRSK(r,j)*compFR(r))+@sum(TotalflowSource(i):flowSRSK(i,j)*
compSR(i))); 
!5. If the heat effect of mixing is involved, the heat balance for the jth sink can be 
rewritten as:; 

 @for(flowSink(j): 
   inflowSK(j)*CpSK(j)*(intempSK(j)-To) 
   = @sum(Fresh(r):flowFRSK(r,j)*CpFR(r)*(tempFR(r)-
To))+@sum(TotalflowSource(i):flowSRSK(i,j)*CpSR(i)*(tempSR(i)-
To))+deltaH_Sink(j)); 
!Calculating the mole fractions:; 

 @for(CompositionFresh(r): 

  
 molecompFR(r)=compFR(r)/MoleWtPhenol/(compFR(r)/MoleWtPhenol+(1-
compFR(r))/MoleWtWater); 
   moleWaterFR(r)=1-compFR(r); 

  ); 

 @for(CompositionSource(i): 

  
 molecompSR(i)=compSR(i)/MoleWtPhenol/(compSR(i)/MoleWtPhenol+(1-
compSR(i))/MoleWtWater); 
   moleWaterSR(i)=1-molecompSR(i); 
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  ); 

 @for(CompositionSink(j): 
  
 molecompSK(j)=incompSK(j)/MoleWtPhenol/(incompSK(j)/MoleWtPhenol+(1-
incompSK(j))/MoleWtWater); 
   moleWaterSK(j)=1-molecompSK(j); 
  ); 

 @for(CompositionWaste(w): 
  
 molecompWaste(w)=compWaste(w)/MoleWtPhenol/(compWaste(w)/MoleWtPh
enol+(1-compWaste(w))/MoleWtWater); 

   moleWaterWaste(w)=1-molecompWaste(w); 

  ); 

!Calculating heat capacity:; 

 @for(heatCapacityFresh(r):  

  
 CpFR(r)=molecompFR(r)*(0.0044*(tempFR(r)+273.15)+0.4685)+moleWaterFR
(r)*(0.0083*(tempFR(r)+273.15)+1.3724); 

  ); 

 @for(heatCapacitySource(i):  

  
 CpSR(i)=molecompSR(i)*(0.0044*(tempSR(i)+273.15)+0.4685)+moleWaterSR
(i)*(0.0083*(tempSR(i)+273.15)+1.3724); 

  ); 

 @for(heatCapacitySink(j):  

  
 CpSK(j)=molecompSK(j)*(0.0044*(intempSK(j)+273.15)+0.4685)+moleWaterS
K(j)*(0.0083*(intempSK(j)+273.15)+1.3724); 

  ); 

 @for(heatCapacityWaste(w):  
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 CpWaste(w)=molecompWaste(w)*(0.0044*(tempWaste(w)+273.15)+0.4685)+m
oleWaterWaste(w)*(0.0083*(tempWaste(w)+273.15)+1.3724); 

  ); 

!Calculating heat of mixing:; 

!the oringinal heat of mixing should multiply the mole flow rates of sinks or waste; 

 @for(deltaEnthalpySink(j): 

   deltaH_Sink(j)=-
Constant_R*moleSink(j)*molecompSK(j)*moleWaterSK(j)*(A12(j)*b12/(molecompS
K(j)+moleWaterSK(j)*A12(j))+A21(j)*b21/(moleWaterSK(j)+molecompSK(j)*A21(j))
); 

!Calculate the mole flow rates of sinks;  

  
 moleSink(j)=inflowSK(j)*incompSK(j)/MoleWtPhenol+inflowSK(j)*(1-
incompSK(j))/MoleWtWater; 

   Ln_Gamma1(j)=-
@log(molecompSK(j)+A12(j)*moleWaterSK(j)) 

     
 +moleWaterSK(j)*(A12(j)/(molecompSK(j)+A12(j)*moleWaterSK(j))-
A21(j)/(moleWaterSK(j)+A21(j)*molecompSK(j))); 

   Ln_Gamma2(j)=-
@log(moleWaterSK(j)+A21(j)*molecompSK(j)) 

      -
molecompSK(j)*(A12(j)/(molecompSK(j)+A12(j)*moleWaterSK(j))-
A21(j)/(moleWaterSK(j)+A21(j)*molecompSK(j))); 

   Gamma1(j)=@exp(Ln_Gamma1(j)); 

   Gamma2(j)=@exp(Ln_Gamma2(j));   

   A21(j)=@exp(alpha21+b21/(intempSK(j)+273.15));  

   A12(j)=@exp(alpha12+b12/(intempSK(j)+273.15));  
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  ); 

!6.Property balance in the jth sink; 

 @for(flowSink(j): 
   inflowSK(j)*inpropSK(j)= 
@sum(Fresh(r):flowFRSK(r,j)*propFR(r))+@sum(TotalflowSource(i):flowSRSK(i,j)*p
ropSR(i))); 
!7.property is dependent on the temperature and composition; 
 
 
! @for(PropertySink(j): 
   inpropSK(j)= 
molecompSK(j)*0.133322*2.58*@exp(0.0314*intempSK(j)) 
     +(1-molecompSK(j))*0.133322*@exp(20.386-
5132/(intempSK(j)+273.15))); 
!8.Sinks composition constrains:; 

 @for(CompositionSink(j): 

   incompSK(j)<=maxcompSK(j)); 

 @for(CompositionSink(j): 

   incompSK(j)>=mincompSK(j)); 
!9.Sinks temperature constrains:; 

 @for(TemperatureSink(j): 

   intempSK(j)<=maxtempSK(j)); 

 @for(TemperatureSink(j): 

   intempSK(j)>=mintempSK(j)); 

!10. Sinks properties constrains:; 

 @for(PropertySink(j): 

   inpropSK(j)<=maxpropSK(j)); 

 @for(PropertySink(j): 

   inpropSK(j)>=minpropSK(j)); 

!11.Mass balance for the waste:; 
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 @for(Waste(w): 
   inflowWaste(w)= @sum(TotalflowSource(i):flowSRWaste(i,w))); 
!12. Component material balance for waste:; 

 @for(Waste(w): 
   inflowWaste(w)*compWaste(w)= 
@sum(TotalflowSource(i):flowSRWaste(i,w)*compSR(i))); 
!13. If the heat effect of mixing is involved, the heat balance for the waste can be 
rewritten as:; 

 @for(Waste(w): 
   inflowWaste(w)*CpWaste(w)*(tempWaste(w)-To) 
   = 
@sum(TotalflowSource(i):flowSRWaste(i,w)*CpSR(i)*(tempSR(i)-
To))+deltaH_Waste(w)); 
 
!Calculating heat of mixing:; 
 @for(deltaEnthalpyWaste(w): 

   deltaH_Waste(w)=-
Constant_R*moleWaste(w)*molecompWaste(w)*moleWaterWaste(w)*(Aw12(w)*b12/
(molecompWaste(w)+moleWaterWaste(w)*Aw12(w))+Aw21(w)*b21/(moleWaterWast
e(w)+molecompWaste(w)*Aw21(w))); 

!!Calculate the mole flow rates of wastes;   

  
 moleWaste(w)=inflowWaste(w)*compWaste(w)/MoleWtPhenol+inflowWaste(w
)*(1-compWaste(w))/MoleWtWater; 

   Ln_GammaW1(w)=-
@log(molecompWaste(w)+Aw12(w)*moleWaterWaste(w)) 

     
 +moleWaterWaste(w)*(Aw12(w)/(molecompWaste(w)+Aw12(w)*moleWaterW
aste(w))-Aw21(w)/(moleWaterWaste(w)+Aw21(w)*molecompWaste(w))); 

   Ln_GammaW2(w)=-
@log(moleWaterWaste(w)+Aw21(w)*molecompWaste(w)) 

      -
molecompWaste(w)*(Aw12(w)/(molecompWaste(w)+Aw12(w)*moleWaterWaste(w))-
Aw21(w)/(moleWaterWaste(w)+Aw21(w)*molecompWaste(w))); 
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   GammaW1(w)=@exp(Ln_GammaW1(w)); 

   GammaW2(w)=@exp(Ln_GammaW2(w));   

   Aw21(w)=@exp(alpha21+b21/(tempWaste(w)+273.15));  

   Aw12(w)=@exp(alpha12+b12/(tempWaste(w)+273.15)); 
  

  ); 
!14.property load in the waste stream; 
 @for(Waste(w): 
   inflowWaste(w)*propWaste(w)= 
@sum(TotalflowSource(i):flowSRWaste(i,w)*propSR(i))); 
! @for(PropertyWaste(w): 
   propWaste(w)= 
molecompWaste(w)*0.133322*2.58*@exp(0.0314*tempWaste(w)) 
     +(1-
molecompWaste(w))*0.133322*@exp(20.386-5132/(tempWaste(w)+273.15))); 
 
 @free(alpha21); 
 @free(b12); 
 @for(deltaEnthalpySink(j): 
   @free(deltaH_Sink(j)); 
   @free(A12(j)); 
   @free(A21(j)); 
   @free(Ln_Gamma1(j)); 
   @free(Ln_Gamma2(j)); 
   @free(Gamma1(j)); 
   @free(Gamma2(j));   
  ); 
 @for(deltaEnthalpyWaste(w): 
   @free(deltaH_Waste(w)); 
   @free(Aw12(w)); 
   @free(Aw21(w)); 
   @free(Ln_GammaW1(w)); 
   @free(Ln_GammaW2(w)); 
   @free(GammaW1(w)); 
   @free(GammaW2(w));    
  ); 
 Solvent Extraction coding 

 
The coding used for the optimization of the base case at 5% solvent loss: 
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MAX=SALES-COST; 

 

SALES=B2*COST_OIL+(S1+S2+S3)*COST_SLUDGE; 

COST=(M1+M2+M3)*COST_SOLVENT+((Q1+Q2+Q3+QREBOILING)*4*10^-

6)+(QCONDENSING*6*10^-6);!4$/MMBTU AND ASSUME; 

COST_BUTANOL=1.54;!1.54$/kg; 

COST_MEK=0.75;!0.75$/kg; 

 

COST_SOLVENT=COST_BUTANOL*Y1+COST_MEK*Y2; 

COST_OIL=1.75; 

COST_SLUDGE=0.5; 

 

 

!stage 1; 

 

G1=RA+U+M1; 

U=100;!kg/hr; 

G1=S1+F1; 

y1G1*G1=Y1S1*S1+Y1F1*F1; !1 IS FOR BASE OIL; 

Y2G1*G1=Y2S1*S1+Y2F1*F1; !2 IS FOR CONTAMINANTS; 

Y3G1*G1=Y3S1*S1+Y3F1*F1; !3 IS FOR SOLVENT; 

Y1G1+Y2G1+Y3G1=1; 

Y1S1+Y2S1+Y3S1=1; 

Y1F1+Y2F1+Y3F1=1; 

 

Y1G1*G1=0.85*U; 

Y2G1*G1=0.15*U; 

Y3G1*G1=M1+RA; 

 

a11=15.69097; 

b11=6.519031; 

c11=0.4133834; 

d11=0.15175; 

e11=2.518516; 

k11=0.1395698E-04; 

l11=3.291565; 

m11=1.669866; 

n11=0.555E-01; 

 

A22=6.718061; 

B22=6.898024;            

C22=0.386576;             

D22=0.42875E-01;         

E22=2.313249; 

K22=0; 

L22=3.303513; 

M22=1.331624; 

N22=0.62E-01; 

 

T1<50;!T is temperature in C; 

T1>20; 

SOR1>1;!r is solvent to oil ratio; 

SOR1<5; 
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!T=25; 

!SOR1=3; 

!PERCENT_SLUDGE_REMOVAL1>2; 

 

POL_BUTANOL_1=(a11+b11*(@exp(-c11*SOR1)))+(-d11*T1+e11);!BUTANOL; 

PSR_BUTANOL_1=(k11+l11*(@log(m11*SOR1)))-(n11*T1);!BUTANOL; 

 

POL_MEK_1=(a22+b22*(@exp(-c22*SOR1)))+(-d22*T1+e22);!MEK; 

PSR_MEK_1=(k22+l22*(@log(m22*SOR1)))-(n22*T1);!MEK; 

 

!POL_1=POL_BUTANOL_1*Y1+POL_MEK_1*Y2; 

POL_1<=POL_BUTANOL_1+100*(1-Y1); 

POL_1>=POL_BUTANOL_1-100*(1-Y1); 

POL_1<=POL_MEK_1+100*(1-Y2); 

POL_1>=POL_MEK_1-100*(1-Y2); 

 

 

!PSR_1=PSR_BUTANOL_1*Y1+PSR_MEK_1*Y2; 

PSR_1<=PSR_BUTANOL_1+100*(1-Y1); 

PSR_1>=PSR_BUTANOL_1-100*(1-Y1); 

PSR_1<=PSR_MEK_1+100*(1-Y2); 

PSR_1>=PSR_MEK_1-100*(1-Y2); 

 

 

SOR1=(RA+M1)/U; 

POL_1*U/100=Y1S1*S1; 

PSR_1*U/100=Y2S1*S1; 

Y3S1*S1=0.05*RA;!5%SOLVENT LOSS; 

 

Q1_BUTANOL=(2.1*U+2.936*(RA+M1))*(T1-20); ! 20C IS ROOM TEMPERATURE THE 

UNIT OF Q IS KJ/HR; 

Q1_MEK=(2.1*U+2.23*(RA+M1))*(T1-20); 

!Q1=Q1_BUTANOL*Y1+Q1_MEK*Y2; 

 

Q1<=Q1_BUTANOL+100000*(1-Y1); 

Q1>=Q1_BUTANOL-100000*(1-Y1); 

Q1<=Q1_MEK+100000*(1-Y2); 

Q1>=Q1_MEK-100000*(1-Y2); 

 

!Stage 2; 

 

T2>20; 

T2<50; 

SOR2>1; 

SOR2<5; 

 

G2=F1+M2+RB; 

G2=F2+S2; 

Y1G2*G2=Y1F2*F2+Y1S2*S2; 

Y2G2*G2=Y2F2*F2+Y2S2*S2; 

Y3G2*G2=Y3F2*F2+Y3S2*S2; 

 

Y1G2*G2=Y1F1*F1; 

Y2G2*G2=Y2F1*F1; 
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Y3G2*G2=Y3F1*F1+M2+RB; 

 

Y1G2+Y2G2+Y3G2=1; 

Y1F2+Y2F2+Y3F2=1; 

Y1S2+Y2S2+Y3S2=1; 

 

 

 

POL_BUTANOL_2=(a11+b11*(@exp(-c11*SOR2)))+(-d11*T2+e11);!BUTANOL; 

PSR_BUTANOL_2=(k11+l11*(@log(m11*SOR2)))-(n11*T2);!BUTANOL; 

 

POL_MEK_2=(a22+b22*(@exp(-c22*SOR2)))+(-d22*T2+e22);!MEK; 

PSR_MEK_2=(k22+l22*(@log(m22*SOR2)))-(n22*T2);!MEK; 

 

!POL_2=POL_BUTANOL_2*Y1+POL_MEK_2*Y2; 

POL_2<=POL_BUTANOL_2+100*(1-Y1); 

POL_2>=POL_BUTANOL_2-100*(1-Y1); 

POL_2<=POL_MEK_2+100*(1-Y2); 

POL_2>=POL_MEK_2-100*(1-Y2); 

 

 

!PSR_2=PSR_BUTANOL_2*Y1+PSR_MEK_2*Y2; 

 

PSR_2<=PSR_BUTANOL_2+100*(1-Y1); 

PSR_2>=PSR_BUTANOL_2-100*(1-Y1); 

PSR_2<=PSR_MEK_2+100*(1-Y2); 

PSR_2>=PSR_MEK_2-100*(1-Y2); 

 

SOR2=(Y3G2*G2)/((1-Y3F1)*F1); 

(POL_2/100)*(1-Y3F1)*F1=Y1S2*S2; 

(PSR_2/100)*(1-Y3F1)*F1=Y2S2*S2; 

Y3S2*S2=0.05*Y3G2*G2; !5%SOLVENT LOSS; 

 

Q2_BUTANOL=(2.1*Y1F1*F1+2.936*Y3F1*F1)*@ABS(T2-T1)+2.936*(M2+RB)*(T2-

20); 

Q2_MEK=(2.1*Y1F1*F1+2.23*Y3F1*F1)*@ABS(T2-T1)+2.23*(M2+RB)*(T2-20); 

!Q2=Q2_BUTANOL*Y2+Q2_MEK*Y2; 

Q2<=Q2_BUTANOL+100000*(1-Y1); 

Q2>=Q2_BUTANOL-100000*(1-Y1); 

Q2<=Q2_MEK+100000*(1-Y2); 

Q2>=Q2_MEK-100000*(1-Y2); 

 

 

!Stage 3; 

 

T3>20; 

T3<50; 

SOR3>1; 

SOR3<5; 

 

G3=F2+M3+RC; 

G3=F3+S3; 

Y1G3*G3=Y1F3*F3+Y1S3*S3; 

Y2G3*G3=Y2F3*F3+Y2S3*S3; 
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Y3G3*G3=Y3F3*F3+Y3S3*S3; 

 

Y1G3*G3=Y1F2*F2; 

Y2G3*G3=Y2F2*F2; 

Y3G3*G3=+Y3F2*F2+RC+M3; 

 

 

Y1G3+Y2G3+Y3G3=1; 

Y1F3+Y2F3+Y3F3=1; 

Y1S3+Y2S3+Y3S3=1; 

 

 

 

POL_BUTANOL_3=(a11+b11*(@exp(-c11*SOR3)))+(-d11*T3+e11);!BUTANOL; 

PSR_BUTANOL_3=(k11+l11*(@log(m11*SOR3)))-(n11*T3);!BUTANOL; 

 

POL_MEK_3=(a22+b22*(@exp(-c22*SOR3)))+(-d22*T3+e22);!MEK; 

PSR_MEK_3=(k22+l22*(@log(m22*SOR3)))-(n22*T3);!MEK; 

 

!POL_3=POL_BUTANOL_3*Y1+POL_MEK_3*Y2; 

POL_3<=POL_BUTANOL_3+100*(1-Y1); 

POL_3>=POL_BUTANOL_3-100*(1-Y1); 

POL_3<=POL_MEK_3+100*(1-Y2); 

POL_3>=POL_MEK_3-100*(1-Y2); 

 

 

!PSR_3=PSR_BUTANOL_3*Y1+PSR_MEK_3*Y2; 

PSR_3<=PSR_BUTANOL_3+100*(1-Y1); 

PSR_3>=PSR_BUTANOL_3-100*(1-Y1); 

PSR_3<=PSR_MEK_3+100*(1-Y2); 

PSR_3>=PSR_MEK_3-100*(1-Y2); 

 

SOR3=(Y3G3*G3)/((1-Y3F2)*F2); 

(POL_3/100)*(1-Y3F2)*F2=Y1S3*S3; 

(PSR_3/100)*(1-Y3F2)*F2=Y2S3*S3; 

Y3S3*S3=0.05*Y3G3*G3; !5%SOLVENT LOSS; 

 

Q3_BUTANOL=(2.1*Y1F2*F2+2.936*Y3F2*F2)*@ABS(T3-T2)+2.936*(M2+RC)*(T3-

20);!BUTANOL; 

Q3_MEK=(2.1*Y1F2*F2+2.23*Y3F2*F2)*@ABS(T3-T2)+2.23*(M2+RC)*(T3-20); 

!Q3=Q3_BUTANOL*Y1+Q3_MEK*Y2; 

Q3<=Q3_BUTANOL+100000*(1-Y1); 

Q3>=Q3_BUTANOL-100000*(1-Y1); 

Q3<=Q3_MEK+100000*(1-Y2); 

Q3>=Q3_MEK-100000*(1-Y2); 

 

Y2F3*F3<0.03*U; !THIS MEANS THAT THE PERCENT SLUDGE AFTER THE 

EXTRACTION UNITS SHOULD BE LESS THAN 3%; 

 

!KG_SLUDGE_REMOVED=Y2S1*S1+Y2S2*S2+Y2S3*S3; 

!KG_SLUDGE_REMOVED>6; 

 

SU=Y1F3*F3+Y3F3*F3;!THIS EQUATION SAYS THAT NO CONTAMINANTS GOES INTO 

THE DISTILLATION COLUMN; 
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Y1SU*SU=Y1F3*F3; 

Y3SU*SU=Y3F3*F3; 

SU=R1+B1; 

Y1SU*SU=Y1R1*R1+Y2B1*R2; 

Y3SU*SU=Y3R1*R1+Y3B1*B1; 

Y1SU+Y3SU=1; 

Y1R1+Y3R1=1; 

Y1B1+Y3B1=1; 

Y3B1_BUTANOL=2*10^65*Tsu^(-25.29); 

Y3B1_MEK=3*10^43*Tsu^(-17.16); 

Y3B1=Y3B1_BUTANOL*Y1+Y3B1_MEK*Y2; 

Y3R1>0.99; 

Tsu<400;!T IN THE COLUMN IN KELVIN, HIGHER THAN 410K THE BASE OIL 

STARTS DECOMPOSING AND LOOSES QUALITY; 

 

QCONDENSING1_BUTANOL=1454.32*R1; 

QCONDENSING1_MEK=1094.61*R1; 

QCONDENSING1=QCONDENSING1_BUTANOL*Y1+QCONDENSING_MEK*Y2; 

QCONDENSING1>0; 

 

QREBOILING1_BUTANOL=489156+(-378124-R1*(-1454.32)); 

QREBOILING1_MEK=335966+(-284598-R1*(-1094.61)); 

QREBOILING1=QREBOILING1_BUTANOL*Y1+QREBOILING1_MEK*Y2; 

QREBOILING1>0; 

 

VDU=B1; 

Y1VDU*VDU=Y1B1*B1; 

Y3VDU*VDU=Y3B1*B1; 

Y1VDU+Y3VDU=1; 

VDU=R2+B2; 

Y1VDU*VDU=Y1R2*R2+Y1B2*B2; 

Y3VDU*VDU=Y3R2*R2+Y3B2*B2; 

Y1R2+Y3R2=1; 

Y1B2+Y3B2=1; 

Y3B2_BUTANOL=-0.0016*Tvdu+0.6; 

Y3B2_MEK=-0.0015*Tvdu+0.5511; 

Y3B2=Y3B2_BUTANOL*Y1+Y3B2_MEK*Y2; 

 

Y1R2=0; 

 

Y3B2<0.02; 

Tvdu<410;!kelvin; 

QCONDENSING2_BUTANOL=1664.32*R2; 

QCONDENSING2_MEK=1207.74*R2; 

QCONDENSING2=QCONDENSING2_BUTANOL*Y1+QCONDENSING2_MEK*Y2; 

QCONDENSING2>0; 

QREBOILING2_BUTANOL=476755+(-432721-R2*(-1664.31)); 

QREBOILING2_MEK=336466+(-338166-R2*(-1207.74)); 

QREBOILING2=QREBOILING2_BUTANOL*Y1+QREBOILING2_MEK*Y2; 

QREBOILING2>0; 

 

 

 

QCONDENSING=QCONDENSING1+QCONDENSING2; 
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QREBOILING=QREBOILING1+QREBOILING2; 

 

 

R1+R2=R; 

R=RA+RB+RC; 

 

 

@BIN(Y1); 

@BIN(Y2); 

Y1+Y2=1; 

 

 

The coding used for the optimization of the base case at 10% solvent loss: 

MAX=SALES-COST; 

 

SALES=B2*COST_OIL+(S1+S2+S3)*COST_SLUDGE; 

COST=(M1+M2+M3)*COST_SOLVENT+((Q1+Q2+Q3+QREBOILING)*4*10^-

6)+(QCONDENSING*6*10^-6);!4$/MMBTU AND ASSUME; 

COST_BUTANOL=1.54;!1.54$kg; 

COST_MEK=0.75;!0.75$/kg; 

 

COST_SOLVENT=COST_BUTANOL*Y1+COST_MEK*Y2; 

COST_OIL=1.75; 

COST_SLUDGE=0.5; 

 

 

!stage 1; 

 

G1=RA+U+M1; 

U=100;!kg/hr; 

G1=S1+F1; 

y1G1*G1=Y1S1*S1+Y1F1*F1; !1 IS FOR BASE OIL; 

Y2G1*G1=Y2S1*S1+Y2F1*F1; !2 IS FOR CONTAMINANTS; 

Y3G1*G1=Y3S1*S1+Y3F1*F1; !3 IS FOR SOLVENT; 

Y1G1+Y2G1+Y3G1=1; 

Y1S1+Y2S1+Y3S1=1; 

Y1F1+Y2F1+Y3F1=1; 

 

Y1G1*G1=0.85*U; 

Y2G1*G1=0.15*U; 

Y3G1*G1=M1+RA; 

 

a11=15.69097; 

b11=6.519031; 

c11=0.4133834; 

d11=0.15175; 

e11=2.518516; 

k11=0.1395698E-04; 

l11=3.291565; 

m11=1.669866; 

n11=0.555E-01; 
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A22=6.718061; 

B22=6.898024;            

C22=0.386576;             

D22=0.42875E-01;         

E22=2.313249; 

K22=0; 

L22=3.303513; 

M22=1.331624; 

N22=0.62E-01; 

 

T1<50;!T is temperature in C; 

T1>20; 

SOR1>1; 

SOR1<5; 

 

!T=25; 

!SOR1=3; 

!PERCENT_SLUDGE_REMOVAL1>2; 

 

POL_BUTANOL_1=(a11+b11*(@exp(-c11*SOR1)))+(-d11*T1+e11);!BUTANOL; 

PSR_BUTANOL_1=(k11+l11*(@log(m11*SOR1)))-(n11*T1);!BUTANOL; 

 

POL_MEK_1=(a22+b22*(@exp(-c22*SOR1)))+(-d22*T1+e22);!MEK; 

PSR_MEK_1=(k22+l22*(@log(m22*SOR1)))-(n22*T1);!MEK; 

 

!POL_1=POL_BUTANOL_1*Y1+POL_MEK_1*Y2; 

POL_1<=POL_BUTANOL_1+100*(1-Y1); 

POL_1>=POL_BUTANOL_1-100*(1-Y1); 

POL_1<=POL_MEK_1+100*(1-Y2); 

POL_1>=POL_MEK_1-100*(1-Y2); 

 

 

!PSR_1=PSR_BUTANOL_1*Y1+PSR_MEK_1*Y2; 

PSR_1<=PSR_BUTANOL_1+100*(1-Y1); 

PSR_1>=PSR_BUTANOL_1-100*(1-Y1); 

PSR_1<=PSR_MEK_1+100*(1-Y2); 

PSR_1>=PSR_MEK_1-100*(1-Y2); 

 

 

SOR1=(RA+M1)/U; 

POL_1*U/100=Y1S1*S1; 

PSR_1*U/100=Y2S1*S1; 

Y3S1*S1=0.1*(RA+M1);!10%SOLVENT LOSS; 

 

Q1_BUTANOL=(2.1*U+2.936*(RA+M1))*(T1-20); ! 20C IS ROOM TEMPERATURE THE 

UNIT OF Q IS KJ/HR; 

Q1_MEK=(2.1*U+2.23*(RA+M1))*(T1-20); 

!Q1=Q1_BUTANOL*Y1+Q1_MEK*Y2; 

 

Q1<=Q1_BUTANOL+100000*(1-Y1); 

Q1>=Q1_BUTANOL-100000*(1-Y1); 

Q1<=Q1_MEK+100000*(1-Y2); 

Q1>=Q1_MEK-100000*(1-Y2); 
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!Stage 2; 

 

T2>20; 

T2<50; 

SOR2>1; 

SOR2<5; 

 

G2=F1+M2+RB; 

G2=F2+S2; 

Y1G2*G2=Y1F2*F2+Y1S2*S2; 

Y2G2*G2=Y2F2*F2+Y2S2*S2; 

Y3G2*G2=Y3F2*F2+Y3S2*S2; 

 

Y1G2*G2=Y1F1*F1; 

Y2G2*G2=Y2F1*F1; 

Y3G2*G2=Y3F1*F1+M2+RB; 

 

Y1G2+Y2G2+Y3G2=1; 

Y1F2+Y2F2+Y3F2=1; 

Y1S2+Y2S2+Y3S2=1; 

 

 

 

POL_BUTANOL_2=(a11+b11*(@exp(-c11*SOR2)))+(-d11*T2+e11);!BUTANOL; 

PSR_BUTANOL_2=(k11+l11*(@log(m11*SOR2)))-(n11*T2);!BUTANOL; 

 

POL_MEK_2=(a22+b22*(@exp(-c22*SOR2)))+(-d22*T2+e22);!MEK; 

PSR_MEK_2=(k22+l22*(@log(m22*SOR2)))-(n22*T2);!MEK; 

 

!POL_2=POL_BUTANOL_2*Y1+POL_MEK_2*Y2; 

POL_2<=POL_BUTANOL_2+100*(1-Y1); 

POL_2>=POL_BUTANOL_2-100*(1-Y1); 

POL_2<=POL_MEK_2+100*(1-Y2); 

POL_2>=POL_MEK_2-100*(1-Y2); 

 

 

!PSR_2=PSR_BUTANOL_2*Y1+PSR_MEK_2*Y2; 

 

PSR_2<=PSR_BUTANOL_2+100*(1-Y1); 

PSR_2>=PSR_BUTANOL_2-100*(1-Y1); 

PSR_2<=PSR_MEK_2+100*(1-Y2); 

PSR_2>=PSR_MEK_2-100*(1-Y2); 

 

SOR2=(Y3G2*G2)/((1-Y3F1)*F1); 

(POL_2/100)*(1-Y3F1)*F1=Y1S2*S2; 

(PSR_2/100)*(1-Y3F1)*F1=Y2S2*S2; 

Y3S2*S2=0.1*Y3G2*G2; !10%SOLVENT LOSS; 

 

Q2_BUTANOL=(2.1*Y1F1*F1+2.936*Y3F1*F1)*@ABS(T2-T1)+2.936*(M2+RB)*(T2-

20); 

Q2_MEK=(2.1*Y1F1*F1+2.23*Y3F1*F1)*@ABS(T2-T1)+2.23*(M2+RB)*(T2-20); 

!Q2=Q2_BUTANOL*Y2+Q2_MEK*Y2; 

Q2<=Q2_BUTANOL+100000*(1-Y1); 

Q2>=Q2_BUTANOL-100000*(1-Y1); 



 122 

Q2<=Q2_MEK+100000*(1-Y2); 

Q2>=Q2_MEK-100000*(1-Y2); 

 

 

!Stage 3; 

 

T3>20; 

T3<50; 

SOR3>1; 

SOR3<5; 

 

G3=F2+M3+RC; 

G3=F3+S3; 

Y1G3*G3=Y1F3*F3+Y1S3*S3; 

Y2G3*G3=Y2F3*F3+Y2S3*S3; 

Y3G3*G3=Y3F3*F3+Y3S3*S3; 

 

Y1G3*G3=Y1F2*F2; 

Y2G3*G3=Y2F2*F2; 

Y3G3*G3=+Y3F2*F2+RC+M3; 

 

 

Y1G3+Y2G3+Y3G3=1; 

Y1F3+Y2F3+Y3F3=1; 

Y1S3+Y2S3+Y3S3=1; 

 

 

 

POL_BUTANOL_3=(a11+b11*(@exp(-c11*SOR3)))+(-d11*T3+e11);!BUTANOL; 

PSR_BUTANOL_3=(k11+l11*(@log(m11*SOR3)))-(n11*T3);!BUTANOL; 

 

POL_MEK_3=(a22+b22*(@exp(-c22*SOR3)))+(-d22*T3+e22);!MEK; 

PSR_MEK_3=(k22+l22*(@log(m22*SOR3)))-(n22*T3);!MEK; 

 

!POL_3=POL_BUTANOL_3*Y1+POL_MEK_3*Y2; 

POL_3<=POL_BUTANOL_3+100*(1-Y1); 

POL_3>=POL_BUTANOL_3-100*(1-Y1); 

POL_3<=POL_MEK_3+100*(1-Y2); 

POL_3>=POL_MEK_3-100*(1-Y2); 

 

 

!PSR_3=PSR_BUTANOL_3*Y1+PSR_MEK_3*Y2; 

PSR_3<=PSR_BUTANOL_3+100*(1-Y1); 

PSR_3>=PSR_BUTANOL_3-100*(1-Y1); 

PSR_3<=PSR_MEK_3+100*(1-Y2); 

PSR_3>=PSR_MEK_3-100*(1-Y2); 

 

SOR3=(Y3G3*G3)/((1-Y3F2)*F2); 

(POL_3/100)*(1-Y3F2)*F2=Y1S3*S3; 

(PSR_3/100)*(1-Y3F2)*F2=Y2S3*S3; 

Y3S3*S3=0.1*Y3G3*G3; !10%SOLVENT LOSS; 

 

Q3_BUTANOL=(2.1*Y1F2*F2+2.936*Y3F2*F2)*@ABS(T3-T2)+2.936*(M2+RC)*(T3-

20);!BUTANOL; 
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Q3_MEK=(2.1*Y1F2*F2+2.23*Y3F2*F2)*@ABS(T3-T2)+2.23*(M2+RC)*(T3-20); 

!Q3=Q3_BUTANOL*Y1+Q3_MEK*Y2; 

Q3<=Q3_BUTANOL+100000*(1-Y1); 

Q3>=Q3_BUTANOL-100000*(1-Y1); 

Q3<=Q3_MEK+100000*(1-Y2); 

Q3>=Q3_MEK-100000*(1-Y2); 

 

Y2F3*F3<0.03*U; !THIS MEANS THAT THE PERCENT SLUDGE AFTER THE 

EXTRACTION UNITS SHOULD BE LESS THAN 3%; 

 

!KG_SLUDGE_REMOVED=Y2S1*S1+Y2S2*S2+Y2S3*S3; 

!KG_SLUDGE_REMOVED>6; 

 

SU=Y1F3*F3+Y3F3*F3;!THIS EQUATION SAYS THAT NO CONTAMINANTS GOES INTO 

THE DISTILLATION COLUMN; 

Y1SU*SU=Y1F3*F3; 

Y3SU*SU=Y3F3*F3; 

SU=R1+B1; 

Y1SU*SU=Y1R1*R1+Y2B1*R2; 

Y3SU*SU=Y3R1*R1+Y3B1*B1; 

Y1SU+Y3SU=1; 

Y1R1+Y3R1=1; 

Y1B1+Y3B1=1; 

Y3B1_BUTANOL=2*10^65*Tsu^(-25.29); 

Y3B1_MEK=3*10^43*Tsu^(-17.16); 

Y3B1=Y3B1_BUTANOL*Y1+Y3B1_MEK*Y2; 

Y3R1>0.99; 

Tsu<400;!T IN THE COLUMN IN KELVIN, HIGHER THAN 410K THE BASE OIL 

STARTS DECOMPOSING AND LOOSES QUALITY; 

 

QCONDENSING1_BUTANOL=1454.32*R1; 

QCONDENSING1_MEK=1094.61*R1; 

QCONDENSING1=QCONDENSING1_BUTANOL*Y1+QCONDENSING_MEK*Y2; 

QCONDENSING1>0; 

 

QREBOILING1_BUTANOL=489156+(-378124-R1*(-1454.32)); 

QREBOILING1_MEK=335966+(-284598-R1*(-1094.61)); 

QREBOILING1=QREBOILING1_BUTANOL*Y1+QREBOILING1_MEK*Y2; 

QREBOILING1>0; 

 

VDU=B1; 

Y1VDU*VDU=Y1B1*B1; 

Y3VDU*VDU=Y3B1*B1; 

Y1VDU+Y3VDU=1; 

VDU=R2+B2; 

Y1VDU*VDU=Y1R2*R2+Y1B2*B2; 

Y3VDU*VDU=Y3R2*R2+Y3B2*B2; 

Y1R2+Y3R2=1; 

Y1B2+Y3B2=1; 

Y3B2_BUTANOL=-0.0016*Tvdu+0.6; 

Y3B2_MEK=-0.0015*Tvdu+0.5511; 

Y3B2=Y3B2_BUTANOL*Y1+Y3B2_MEK*Y2; 

 

Y1R2=0; 
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Y3B2<0.02; 

Tvdu<410;!kelvin; 

QCONDENSING2_BUTANOL=1664.32*R2; 

QCONDENSING2_MEK=1207.74*R2; 

QCONDENSING2=QCONDENSING2_BUTANOL*Y1+QCONDENSING2_MEK*Y2; 

QCONDENSING2>0; 

QREBOILING2_BUTANOL=476755+(-432721-R2*(-1664.31)); 

QREBOILING2_MEK=336466+(-338166-R2*(-1207.74)); 

QREBOILING2=QREBOILING2_BUTANOL*Y1+QREBOILING2_MEK*Y2; 

QREBOILING2>0; 

 

 

 

QCONDENSING=QCONDENSING1+QCONDENSING2; 

QREBOILING=QREBOILING1+QREBOILING2; 

 

 

R1+R2=R; 

R=RA+RB+RC; 

 

 

@BIN(Y1); 

@BIN(Y2); 

Y1+Y2=1; 
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Fitted Simulation Data 
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Figure 5.6: Butanol Fitted K value versus atmospheric column temperature 
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Figure 5.7: Butanol Fitted K value versus vacuum column temperature 
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Figure 5.8: MEK Fitted K value versus atmospheric column temperature 
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Figure 5.9: MEK Fitted K value versus vacuum column temperature 
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