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ABSTRACT 

 

Compact Microstrip Filter Designs and Phased Array for Multifunction Radar 

Applications. (May 2012) 

Dong Jin Jung, B.S., Soonchunhyang University, Korea; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Kai Chang 

 

 This dissertation mainly discuses various microstrip bandpass filter (BPF) 

designs. The filter designs include: a coupled line BPF using nonuniform arbitrary image 

impedances, miniaturized BPF utilizing dumbbell shaped slot resonator (DSSR), BPF 

employing isosceles triangle shaped patch resonator (ITSPR), BPF with a 

complimentary split ring resonator (CSRR) and triple-band BPF (TBBPF). In the 

coupled line BPF designs, a capacitive gap-coupled BPF and parallel coupled line BPF 

are introduced, where two different arbitrary image impedances are applied for the 

designs. Based on the proposed equivalent circuit model, the coupled BPF’s design 

equations are derived, and they are validated from comparisons of the calculated and 

simulated results. For a miniaturized BPF, the DSSR is utilized in the filter design. An 

equivalent circuit model of the DSSR is also presented and validated through 

simulations and measurements. The ITSPR is introduced for simple BPF and diplexer 

designs. The ITSPR’s design equations, effective dielectric constant, and fractional 

bandwidth are discussed, and their validities are demonstrated from electromagnetic 
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(EM) simulations and measurements. The coupled type complementary split ring 

resonator (CSRR) is introduced for a compact direct-coupled BPF. The proposed unit 

cell of the resonator consists of two CSRRs, where gaps of outside rings face each other 

to achieve a strong cross coupling. For an analysis of the coupled CSRR, an equivalent 

circuit model is discussed and validated through circuit and EM simulations. Based on 

the coupled CSRR structure, two-/four- pole direct-coupled BPFs are designed, 

simulated, and measured. The TBBPF design using admittance inverters are presented. 

In the TBBPF design, the center frequencies and fractional bandwidths (FBW) of each 

passband can be adjustable. 

 Low cost phased array systems operating from 8 to 12 GHz are introduced. A 

phased array using a piezoelectric transducer (PET) phase shifter is designed and tested. 

Compared to the phased array using the PET phase shifter, another phased array utilizing 

4-bit monolithic microwave integrated circuit (MMIC) phase shifters is demonstrated. 

Both phased array systems are simple and easy to fabricate. 
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NOMENCLATURE 

 

BPF Bandpass Filter 

CMOS Complementary Metal Oxide Semiconductor 

CSRR Complimentary Split Ring Resonator 

CPW Coplanar Waveguide 

DBBPF Dual-Band Bandpass Filter 

DGS Defected Ground Structure 

DSSR Dumbbell Shaped Slot Resonator 

EM Electromagnetic 

ITSPR Isosceles Triangle Shaped Patch Resonator 

LNA Low Noise Amplifier 

LPF Lowpass Filter 

FBW Fractional Bandwidth 

PA Power Amplifier 

SIW Substrate Integrated Waveguide 

SPDT Single Pole Double Throw 

TBBPF Triple-Band Bandpass Filter 

TBR Triple-Band Resonator 
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CHAPTER I 

INTRODUCTION 

 

 Nowadays, wireless systems demand multifunction and multiband operation. 

Personal communication systems, for example, can now provide multiple functions and 

protocols, e.g., global positioning system (GPS), universal mobile telecommunications 

system (UMTS), personal communication systems (PCS), within a single RF front end. 

Throughout the current decade, tunable bandpass filters (BPFs), dual-band and triple-

band BPFs have been attractive research topics because they can be favorably utilized in 

multiband and multifunctional wireless systems. 

 Most microwave and millimeter-wave filters are now fabricated using metallic 

waveguide or dielectric planar substrates. Even though a power handing capability and 

quality (Q) factor of the dielectric planar substrate circuits are lower than the metallic 

waveguide, the dielectric planar substrate has advantages of: easy fabrication, compact 

size, moderate loss, and high integration capability. For these reasons, the dielectric 

planar substrate is widely used for the filter designs in RF/microwave and millimeter-

wave frequency ranges. Among the planar dielectric substrate, microstrip and coplanar 

waveguide (CPW) are popularly utilized in circuit designs. In [1], various microstrip 

filters for RF/microwave applications are well summarized. However, filters using the 

dielectric planar substrate normally provide a narrow bandwidth, where a fractional 

bandwidth (FBW) is less than 20 %. Thus, researches of increasing the bandwidth of the 

_____________ 
This dissertation follows the style of IEEE Transactions on Microwave Theory and Techniques. 
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planar substrate filters have been interested by many researchers. 

 A BPF is one of the most widely used passive components in RF/microwave 

systems. Many filters have been developed to meet today’s filter requirements including 

low-insertion loss, compact size, and low cost. Among planar type BPF circuits, 

parallel/end coupled line BPFs are frequently used because they are relatively simple to 

design and provide a reasonable performance. Their analysis and design formulas are 

well described in [1] and [2]. The parallel coupled line structure is particularly efficient 

for printed-circuit filter designs because it provides relatively large coupling for a given 

coupled line gap dimension. For these parallel/end coupled line BPF designs, 

understanding of the following theories are necessitated: image parameters, impedance 

and admittance inverters, and frequency transformation and impedance scaling from a 

prototype lowpass filter (LPF). 

  Including the parallel and end coupled lines, various microstrip resonators can 

be utilized in BPF designs [3]. An electromagnetic (EM) simulation examines for the 

external Q factors and coupling coefficients between two adjacent resonators. The BPF 

designs using the external Q and coupling coefficients are also based on prototype 

lowpass filter’s element values. In the BPF designs utilizing microstrip resonators, 

simple microstrip structures are preferable for easy analysis and design. In general, 

geometrically complex microstrip passive circuits tend to be more dependent on 

computer aided electromagnetic (EM) simulation. On the other hand, simple circuit 

structures provide a relatively easy analytical solution. As a result, their performance can 
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be predicted in the design process, and the design methodology can be less dependent on 

EM simulation.   

 As the frequency spectrum becomes increasingly crowded, a sharp frequency 

cutoff is necessary for overall system performance and interference prevention. 

Generally speaking, filters require several resonator sections to achieve high frequency 

selectivity. In BPF design, inserting multiple resonator sections makes it difficult to 

reduce the circuit size and insertion loss. The parallel/end coupled lines are not 

convenient for BPF miniaturization since each microstrip resonator is separated by 

several gaps, and the filter’s performance is significantly affected by fabrication errors of 

these gaps. This leads to inevitable errors in design realization which will alter the 

filter’s characteristics. Thus, a simple design which minimizes the number of resonators 

(and therefore gaps) is preferable for low loss and compact filters, but the filter design 

should also produce a sharp frequency cutoff. To meet these requirements, BPF designs 

employing slotted ground structures have been introduced by many researchers. 

 This dissertation is organized as follows. Section II provides backgrounds which 

are necessitated in BPF designs using impedance and admittance inverters. Mathematical 

expressions for an image impedance and image phase constant are also derived. Basic 

characteristics of the impedance and admittance inverters are introduced. Section III 

presents parallel and capacitive gap coupled line BPF designs using non-uniform 

arbitrary image impedances. The two different arbitrary image impedances are employed 

as the characteristic impedance of a transmission line in the BPF’s equivalent circuit 

models. This ultimately results in the expressions of admittance inverters of the 
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designing BPF. In Section IV, dual-band and triple-band BPF synthesis are introduced. 

Dual-band and triple-band lumped resonators are employed in the design, and these 

lumped resonators are realized on microstrip with admittance inverters. Section V 

presents a complimentary split ring resonator (CSRR) on the ground plane. By utilizing 

the CSRR, direct coupling BPF is designed. The equivalent circuit model of the CSRR is 

validated from circuit and EM simulations. Section VI introduces a dumbbell shaped slot 

resonator (DSSR) and its modeling. Based on the proposed DSSR, tunable DSSR and 

compact BPF are designed. In Section VII, isosceles triangle shaped patch resonator 

(ITSPR) is presented with analysis of the ITSPR. Using the proposed ITSPR, a diplexer 

is designed, simulated, and tested. Section VIII presents phased array system designs. 

Two different phased arrays for multifunctional radar applications are discussed. For a 

low cost phased array system, the phased arrays using piezoelectric transducer (PET) 

phase shifters and monolithic microwave integrated circuit (MMIC) phase shifters are 

fabricated and tested in the operating frequency band of 8 to 12 GHz. 

 

  

 

 

 

 

 

 



 5

CHAPTER II 

BACKGROUND 

 

2.1 Image Parameters 

 It is necessary to understand image parameters for analyzing two port microwave 

circuits. The image viewpoint for the analysis of circuits is a wave viewpoint much the 

same as the wave viewpoint commonly used for analysis of RF/microwave transmission 

lines [1]. In this section, two important image parameters, image impedance and image 

propagation constant are introduced based on two port circuit theory. In general, image 

impedance of a two-port network is defined as the impedance seen looking in to Port 1 

(or Port 2) when Port 2 (or Port 1) is terminated with the image impedance of Port 2 (or 

Port1). The image impedances of Port 1 and 2 are not equal if the network is not 

symmetrical with respect to the ports. Fig. 2-1 illustrates infinite chain of identical 

networks used for defining image impedances and the image propagation function. 

 

 

 

Fig. 2-1. Infinite chain of identical two-port networks used for defining image 
impedances and the image propagation function. 
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 In Fig. 2-1, the two port network is assumed to be unsymmetrical with different 

impedance characteristics at Port 1 and Port 2. Since the chain of networks extends to 

infinity in each direction, the same impedance ZI1 (or ZI2) is seen looking both left and 

right at a junction of the two ports. Therefore, there is no reflection of a wave 

propagating through junction, i.e., all perfectly matched between junctions. An 

expression for the image impedance can easily be derived using circuit parameters. Fig. 

2-2 shows two networks are cascaded with terminated load impedance (ZL), where ZL is 

equal to the image impedance, ZI1.   

 Fig. 2-2 (a) represents a two cascaded network. In reality, the number of 

networks could be increased, and simplified as Fig. 2-2 (b). In Fig. 2-2 (b), voltage and 

current of the resulting network can ne expressed as: 

 

 
(a) 

ZL

I1 I’1

Zin

t t

t t

A B

C D

 
 
 

V1 V’1

+

-

+

-

 
(b) 

 
Fig. 2-2. Two cascaded networks with terminated load impedance, ZL=ZI1; (a) cascaded 
two port networks and (b) equivalent network. 
 



 7

 
Fig. 2-3. Network terminated with image impedances at each port. 
 

'
1 1

'
1 1

t t

t t

A BV V

C DI I

   
    

     
                                               (2.1) 

Then, the input impedance, Zin is expressed as: 

 
' '

1 1 11
' '

1 1 1 1

t t t L t t I t
in

t t t L t t I t

AV B I A Z B A Z BV
Z

I C V D I C Z D C Z D

  
   

  
                                (2.2) 

The image impedances at Port 1 and 2 can be derived from Fig. 2-3. Input voltage and 

current in Fig. 2-3 are written as: 

.

 

1 2 2V AV BI                                                          (2.3.a) 

1 2 2I CV DI                                                          (2.3.b) 

Then, image impedance, ZI1 can be expressed: 

1 2 2 2
1

1 2 2 2

I
I

I

V AV BI AZ B
Z

I CV DI CZ D

 
  

 
                                            (2.4) 

Inverse matrix of Fig. 2-3 is written: 

1

2 1 1

2 1 1

1V V VA B D B

I I IC D C AAD BC

         
                 

                                  (2.5) 

Since AD-BC=1 for a reciprocal network, image impedance, ZI2 at Port 2 can be shown 

as: 
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2 1 1 1 1
2

2 1 1 1 1
I

V DV BI DV BI
Z

I CV AI CV AI

  
    

   
                                         (2.6) 

In Fig. 2-3, looking from Port 2 results in a reverse current direction of I1, and this 

reverse current direction validates  ZI1=-(V1/I1). From this condition, image impedance in 

(2.6) can be rewritten as: 

1
2

1

I
I

I

DZ B
Z

CZ A





                                                           (2.7) 

From (2.4) and (2.7), ZI1 and ZI2 can be presented as: 

1

1
1

1

1

I

I
I

I

I

DZ B
A B

CZ A AB
Z

CDDZ B
C D

CZ A

 
   

 
  

                                          (2.8.a) 

2

2
2

2

2

I

I
I

I

I

DZ B
A B

CZ A BD
Z

ACDZ B
C D

CZ A

 
   

 
  

                                          (2.8.b) 

The expressions in (2.8.a) and (2.8.b) show the image impedance of two port network. 

 Image propagation constant is also one of the important image parameters, which 

defines the transmission through the network. From (2.5), voltage and current of 

reciprocal network (AD-BC=1), can be presented as: 

2 1 1 1
1

1

I

V DV BI D B V
Z

 
    

 
                                          (2.9.a) 

 2 1 1 1 1II CV AI CZ A I                                               (2.9.b) 

Using (2.8.a) and (2.8.b), the expressions in (2.9.a) and (2.9.b) can be written as: 
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 2

1

V CD D
D B AD BC

V AB A
                                       (2.10.a) 

 2

1

I AB A
A C AD BC

I CD D
                                       (2.10.b) 

The equations in (2.10.a) and (2.10.a) are defined as transfer constant from Port 1 to Port 

2. Similarly, from (2.3.a) and (2.3.b), the transfer constant from Port 2 to Port 1 can be 

obtained as: 

 1

2

V A
AD BC

V D
                                                 (2.11.a) 

 1

2

I D
AD BC

I A
   .                                             (2.11.b) 

From (2.10) and (2.11), wave propagation functions are defined as: 

 AD BC e                                                       (2.12.a) 

AD BC e   .                                                   (2.12.b) 

where γ=α+jβ. (2.12.a) represents propagation from Port 1 to Port 2, and (2.12.b) from 

Port 2 to Port 1. Since cosh sinhe       and cosh sinhe    , one can 

immediately determine the expressions: cosh AD   and  sinh BC  . From this, 

the propagation constant can be derived as: 

  1ln tanh
BC

AD BC
AD

   
     

 
 .                                      (2.13) 

 The image propagation constant can be expressed in terms of voltage and current 

of a network. (2.11.a) can also be written as: 
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 
 

1 1 11 1 1 1

2 2 2 2 2 2 2

I

I

I I ZV P I V
e e e

V P I V I I Z
                                     (2.14) 

where I1=I2. Then, (2.14) can be rewritten as: 

1 2

2 1

I

I

V Z
e

V Z
                                                                (2.15) 

From (2.15), the image propagation constant (γ) in (2.13) can be shown as: 

1 1

2 2

ln
V I

j
V I

  
 

     
 

                                              (2.16) 

This image propagation constant defines the transmission through the network as 

indicated in (2.14), only if the terminations mach the image impedances. 

 

2.2 Image Parameters for Practical Circuit Structures 

 In this section, image parameters of some useful two port networks are 

introduced. These networks are especially necessary to understand filter designs using J 

or K inverters. 

 

 
Fig. 2-4. An L-type network. 
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 Fig. 2-4 shows an L-type network. From previous section, image impedance of a 

two port network can be derived as (2.8.a) and (2.8.b). ABCD matrix of Fig. 2-4 is 

presented as: 

1
1

2

2

1

1
1

Z
Z

ZA B

C D

Z

         
 
 

                                          (2.17) 

 Then, ZI1 and ZI2 of Fig. 2-4 can be written as: 

 1 1 1 2I

AB
Z Z Z Z

CD
                                             (2.18) 

1 2
2

1 1 2( )
I

Z ZBD
Z

AC Z Z Z
 


                                          (2.19) 

(2.18) and (2.19) represent the image impedances of L type network. From (2.13), image 

propagation constant, γ can be determined as: 

1 1 2

1

coth coth 1
ZAD

BC Z
                                               (2.20) 

 Fig. 2-5 depicts a symmetrical T-type network which consists of two different 

impedances. ABCD matrix of Fig. 2-5 is determined as: 

 

 
 

Fig. 2-5. A symmetrical T-type network. 
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1 1
1 1

2 2

1

2 2

1 1

1
1

Z Z
Z Z

A B Z Z

C D Z

Z Z

  
              

  

                                          (2.21) 

Since Fig. 2-5 is a symmetrical network, image impedance can be written as: 

 1 2 1 1 22I I

AB BD
Z Z Z Z Z

CD AC
                                           (2.22) 

From two port network, the condition, cosh AD   has been derived in the previous 

section. This condition leads to: 

1

2

cosh 1
2

Ze e
AD

Z

 




                                               (2.23) 

Then, the image propagation constant of the T type network can simply be derived from 

(2.23): 

1 1

2

2sinh
2

Z

Z
                                                       (2.24) 

 Fig. 2-6 illustrates a symmetrical π-type network with admittance notations. 

ABCD matrix of Fig. 2-6 is obtained as: 

 

1

2 2

2
1 1

1
2 2

1
1

2 1

Y

Y YA B

C D Y Y
Y

Y Y

            
 

                                          (2.25) 
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Fig. 2-6. A symmetrical π-type network. 
 

In the similar manner shown in Fig. 2-5, image admittance can be found to be: 

2
1 2 1 2 12I I

CD AC
Y Y YY Y

AB BD
                                           (2.26) 

The image propagation constant of Fig. 2-6 can also be determined as: 

1 1

2

2sinh
2

Y

Y
                                                         (2.27) 

 

2.3 Special Image Properties of Lossless Network 

 In order to consider a network itself without load, z- and y-parameters can be 

utilized to express image parameters. When considering Fig. 2-3, it is assumed that the 

image impedances at each ends are not connected to the network. In this case, 

physically, z11 (z22) is the input impedance at Port 1 (Port 2) when Port 2 (Port1) is open 

circuited. Similarly, y11 (y22) is the admittance at Port 1 (Port 2) when Port 2 (Port1) is 

short-circuited. The z- and y-parameters can be expressed in terms of ABCD parameters, 

z11=A/C, y11=D/B, z22=D/C, and y22=A/B. From (2.8.a) and (2.8.b), image impedances 

can be rewritten as: 

11
1

11
I

zAB
Z

CD y
                                                        (2.28) 
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22
2

22
I

zBD
Z

AC y
                                                        (2.29) 

The equations in (2.28) and (2.29) imply that the image impedances derived from perfect 

matching condition of a network can be expressed using z- and y-parameters. This 

ultimately results in more practical method to measure any network. 

 From (2.13), the image propagation constant can be written as: 

1 1
11 11coth coth

AD
j z y

BC
     
     

 
 .                              (2.30) 

For a lossless network, complex frequency, p can be assumed to be p=jω, which is pure 

sinusoid [1]. z11 and y11 can be expressed as: 

11 1( )ocz j X                                                         (2.31) 

 11

1

1

sc

y
j X

                                                        (2.32) 

where j(Xoc)1 is the impedance at Port 1 of the network with Port 2 open circuited, and 

j(Xsc)1 is the impedance at Port 1 with Port 2 short circuited. From (2.31) and (2.32), 

(2.28) and (2.30) can be written as: 

 1 11
( )I oc scZ X X                                                  (2.33) 

1 1

1

( )
coth

( )
oc

sc

X
j

X
       .                                          (2.34) 

Since the inverse, hyperbolic cotangent function in (2.34) is a multivalued function, 

(2.34) can be expressed as: 
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 1 1

1

( )
coth

( )
oc

sc

X
j jn

X
        .                                   (2.35) 

When considering the image impedance in (2.33) and image phase constant in (2.35), 

two cases, i.e., passband and stopband, could be considered. 

 In passband, the expression in (2.33) must be real and positive, which means that 

(Xoc)1 and (Xsc)1 have opposite signs. At the same time, image impedance at Port 2 can 

be presented as: 

 2 22
( )I oc scZ X X                                                     (2.36) 

(2.36) must also be real and positive. Under the passband condition, (2.35) yields 

attenuation constant of zero (α=0) and propagation constant of: 

1 1

1

( )
cot

( )
oc

sc

X

X
                                                      (2.37) 

 For stopband, (Xoc)1 and (Xsc)1 have the same sign. Then, (2.33) and (2.36) are 

both purely imaginary, and they can be rewritten as: 

 1 1 11
( )I oc sc IZ X X jX                                                (2.38) 

 2 2 22
( )I oc sc IZ X X jX                                               (2.39) 

In (2.38) and (2.39), XI1 and XI2 must have positive slopes versus frequency according to 

Foster’s reactance theorem, which states that the reactance of a passive and lossless two 

port network always monotonically increases with frequency. If (Xoc)1>(Xsc)1, (2.35) is 

used to obtain α and β [1]: 

1 1

1

( )
coth

( )
oc

sc

X

X
                                                        (2.40) 
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n                                                                (2.41) 

If (Xoc)1<(Xsc)1, the equivalent form of (2.35), which is shown in (2.41), is used to 

determine the α and β: 

1 1

1

( )
tanh (2 1)

( ) 2
oc

sc

X
j j n

X

         .                              (2.42) 

1 1

1

( )
tanh

( )
oc

sc

X

X
                                                       (2.43) 

(2 1)
2

n
                                                           (2.44) 

where α and β are in nepers and radians, respectively. 

 In fact, for the case of a uniform transmission line, the characteristic impedance 

of the line is also image impedance, and if γ is a propagation constant per unit length, 

then γl is the image propagation function for a line of length, l [1]. 

 

2.4 Inverter Theory 

 The concept of the image impedance and admittance shown in the previous 

sections can be applied to explain an inverter. In this section, the impedance and 

admittance inverters are discussed. K and J represent the impedance and admittance 

inverters, respectively. The inverters have the following characteristics: image 

impedance (or image admittance) is real in the operating frequency range, and their 

image phase is odd multiple of ±π/2. Thus, if any two port network satisfies above 

characteristics, the network could be considered as the inverter. These characteristics can 

automatically be achieved if a symmetrical network shows: 



 17

 
 

Fig. 2-7. A quarter-wavelength transmission line with open and short conditions. 
 

   1/2 1/2oc sc
X X   .                                                 (2.45) 

where (X1/2)oc is the input reactance of the circuit when cut in half and the cut wires are 

left open-circuited, while (X1/2)sc is the corresponding reactance when the cut wires are 

shorted together. For example, the quarter-wavelength transmission line is the simplest 

form of inverters. Fig. 2-7 shows a quarter-wavelength transmission line with open and 

short conditions, where the line characteristic impedance is a real value (K). In Fig. 2-7, 

the input impedances of open and short circuited line can be written as: 

, cot(45 )in ocZ jK jK      .                                          (2.46) 

, tan(45 )in ocZ jK jK    .                                               (2.47) 

 

Since the two equations in (2.46) and (2.47) satisfy the condition in (2.45), a quarter-

wavelength transmission line can be used for an inverter. 

 K inverter operated like a quarter-wavelength transmission line with the 

characteristic impedance K (ohm) at all frequency and may have an image phase shift of 

± 90º. J inverter also operates like a quarter-wavelength transmission line with the 

characteristic admittance J (mho) at all frequency and may have an image phase shift of 
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± 90º [1]. Figs. 2-8 (a) and (b) illustrate the basic characteristics of K and J inverters. In 

Figs. 2-8 (a) and (b), input impedance and admittance are expressed as: 

2

,in k
L

K
Z

Z
  .                                                          (2.48) 

2

,in j
L

J
Y

Y
  .                                                           (2.49) 

 

K ZL

±90° Image phase shift

Zin,k Yin,j

J YL

±90° Image phase shift

 
                                      (a)                                                           (b) 
Fig. 2-8. Characteristics of (a) impedance and (b) admittance inverters. 
 
 

 
                                   (a)                                                           (b) 
Fig. 2-9. Inverters with lumped LC resonators; (a) K and (b) J inverters. 
 

 Figs. 2-9 (a) and (b) depict K and J inverters with lumped LC resonators. In Fig. 

2-9 (a), input impedance, Yin can be written as: 

2 2 2

1 1 1L
in T

in T

Z L
Y j j C

Z K K j CK j L
 

 
                             (2.50) 
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where CT=L/K2 and LT=K2C. The equation in (2.50) implies that a series LC resonator in 

shunt can be seen as a parallel LC resonator in series. In Fig. 2-9 (b), input impedance, 

Zin can be written as: 

2 2 2

1 1 1L
in T

in T

Y C
Z j j L

Y J J j LJ j C
 

 
                                 (2.51) 

where LT=C/J2 and CT=LJ2. The equation in (2.51) implies that a parallel LC resonator in 

shunt can be seen as a series LC resonator in series. By utilizing the inverters, the 

number of lumped LC resonators can be reduced, which ultimately provide an easy 

circuit realization with a distributed element. 

 The inverters can be realized by two different ways; one is a quarter-wavelength 

transmission line and the other is a lumped type circuit. Although the inverter properties 

are relatively narrow-band in nature, a quarter-wavelength line can be used satisfactorily 

as impedance or admittance inverter in narrow band filters [1]. The inverters between the 

resonators are essential in order to obtain a multiple-resonance response if all of the 

resonators are the same type, i.e., series type resonance or shunt type resonance. If 

resonators are connected without the inverters, the resonators would operate like a single 

series resonator or single shunt resonator with a slope parameter equal to the sum of the 

slop parameters of the individual resonators. 

 Except a quarter-wavelength transmission line, there are some other lumped 

circuits which operate as inverters. They provide an image phase shift of odd multiple of 

± 90º and real image impedance over a much wider bandwidth than does a quarter-

wavelength transmission line.  
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                                     (a)                                                            (b) 

 
                                     (c)                                                           (d) 
Fig. 2-10. Lumped circuits for K inverters. 
 

 
                                    (a)                                                              (b) 

CL

Y0

B=Negative B=Positive

Ф=Positive

Ф/2 Ф/2Ф/2 Ф/2

Y0

Ф=Negative
 

(c)                                                              (d) 
Fig. 2-11. Lumped circuits for J inverters. 
 
 
 
 Fig. 2-10 shows lumped circuits which are particularly useful as K inverters. The 

image impedances (K) for Figs. 2-10 (a)-(d) can simply be derived using the image 

parameter theory presented in the previous sections. 
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 The image impedance, K of Fig. 2-10 (a) is: 

K L  .                                                           (2.52) 

 The image impedance, K of Fig. 2-10 (b) is: 

1
K

C
  .                                                           (2.53) 

Figs. 2-10 (a) and (b) are particularly useful in circuits where the negative L and C can 

be absorbed into adjacent positive series elements of the same type so as to give a 

resulting circuit having all positive elements [1]. 

 The image impedance, K and line length of Figs. 2-10 (c) and (d) is: 

0 tan
2

K Z


  .                                                     (2.54) 

1

0

2
tan

X

Z
    .                                                     (2.55) 

where 
2

0

0
0

1

X K

Z K
Z

Z


     

   

. 

 Figs. 2-10 (c) and (d) are particularly useful in circuits where the line of positive 

or negative electrical length   can be added or subtracted from adjacent lines of the 

same impedance. Figs. 2-10 (a) and (c) produce -90º image phase shift, and Figs. 2-10 

(b) and (d) provide +90º image phase shift. The impedance inverter parameter K 

indicated in the Figs. 2-10 (a)-(d) is equal to the image impedance of the inverter 

network and is analogous to the characteristic impedance of a transmission line [1]. The 

mathematical derivations of Fig. 2-10 (a) and (c) are shown in Appendix I. 
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 Fig. 2-11 presents lumped circuits which are particularly useful as J inverters. 

The image admittance (J) for Figs. 2-11 (a)-(d) can simply be derived using the image 

parameter theory presented in the previous sections. 

 The image admittance, J of Fig. 2-11 (a) is: 

1
J

L
  .                                                           (2.56) 

 The image admittance, J of Fig. 2-11 (b) is: 

J C  .                                                            (2.57) 

 The image admittance, J and line length of Figs. 2-11 (c) and (d) is: 

0 tan
2

J Y


  .                                                     (2.58) 

1

0

2
tan

B

Y
    .                                                     (2.59) 

where 
2

0

0
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1

B J

Y J
Y

Y


     

   

.  

 The expressions in (2.56)-(2.59) can be derived in a similar manner 

shown in Appendix A. 
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CHAPTER III 

BPF DESIGNS USING NON-UNIFORM ARBITRARY IMAGE IMPEDANCES* 

 

3.1 Introduction 

 A filter is one of the most essential components in RF/microwave system since it 

controls overall signal flows within a certain frequency band. Among planar type band-

pass filter (BPF) circuits, parallel/end coupled line BPFs are frequently used because 

they are relatively simple to design and provide a reasonable performance. Their analysis 

and design formulas are well described in [4] and [5]. The parallel coupled line structure 

is particularly efficient for printed-circuit filter designs because it provides relatively 

large coupling for a given coupled line gap dimension [1]. However, a dielectric constant 

for the designs of these coupled type BPFs should be selected with care to obtain 

suitable filter dimensions which are reasonable for a conventional low resolution 

fabrication method. For an example, in the conventional parallel coupled line BPF 

design, the higher dielectric constant is used, the narrower coupled line width is 

acquired. On the other hand, in a low dielectric constant case, the coupled line’s gap 

dimension can be too narrow to be fabricated. These narrow line widths and gaps are 

sometime not appropriate for the conventional low resolution etching process. Thus, an 

alternative design technique to adjust the line widths and gap dimensions is necessary. 

 In this chapter, a new design method using arbitrarily selected uniform or non-

_________________________ 

*Parts of this chapter are reprinted with permission from D.-J. Jung and K. Chang, “Novel capacitive gap-coupled

bandpass filter using non-uniform arbitrary image impedance,” Progress In Electromagnetics Research C, vol. 26, pp.

111-121, 2012. Copyright 2012 EMW. 
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uniform image impedances is introduced for a parallel coupled line BPF, capacitive gap 

coupled line BPF, and hairpin BPF. Slope parameters for resonator’s image impedance 

lines are derived from proposed BPF equivalent circuits. Using the slope parameters, 

equations for admittance inverters are also introduced. The proposed design 

methodology and equations are validated through simulation and measurement. The 

circuits are fabricated on Rogers 5880 with a substrate thickness of 0.508 mm and a 

dielectric constant of 2.2, and they are measured using an HP 8510 vector network 

analyzer. 

 

3.2 Parallel Coupled Line BPF Using Nonuniform Arbitrary Image Impedances 

 The equivalent circuit model of a single section parallel coupled line in Fig. 3-1 

(a) can be shown as Fig. 3-1 (b) under the condition of θ=π/2. Zoe and Zoo in Fig. 3-1 (a) 

are the even and odd mode characteristic impedances, respectively. In Fig. 3-1 (b), J is 

the characteristic admittance of admittance inverter, and Y is the admittance of each line. 

Fig. 3-2 illustrates the proposed parallel coupled BPF using non-uniform image 

impedances (Z1 and Z2).  These image impedances (Z1 and Z2) are arbitrarily chosen by a 

designer, where Z1 could be greater than Z2 or less than Z2. Based on the well known 

theory in Figs. 3-1 (a) and (b), the equivalent circuit of the proposed parallel coupled 

BPF can be presented as Fig. 3-3. If a frequency is close to the resonant frequency 

(ω≈ωo), Ya in Fig. 3-3 can be rewritten as (3.1). 
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                                                     (a)                              (b) 
Fig. 3-1 Microstrip (a) parallel coupled line and (b) its equivalent circuit. 
 
 

 
Fig. 3-2. Parallel coupled line BPF with non-uniform image impedances (Z1 and Z2). 

 
 

Fig. 3-3. Equivalent circuit model of the proposed parallel coupled line BPF using non-
uniform image impedances. 
 
 

 
Fig. 3-4. Modified equivalent circuit model of Fig. 3-3. 
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 The expression in (3.1) leads to (3.4) by substituting (3.2) and (3.3). Using (3.4), 

the input admittance, Yb, shown in Fig. 3-3 can be expressed as (3.5). Thus, Bb in Fig. 3-

4 can be derived as (3.6). 
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1

1
1b

J N
B

Y M
   
 

                                              (3.6) 

 
Since the expression in (3.5) is similar to (3.4), the equivalent circuit in Fig. 3-3 can be 

transformed as in Fig. 3-4. In order to obtain susceptances of the transmission line 

sections in Fig. 3-4, the first section can be modeled as in Fig. 3-5 (a) and the second 

section in Fig. 3-5 (b). The input admittances in Fig. 3-5 (a) and (b) are then written as 

(3.7)-(3.9). Thus, Br1 can be obtained by adding Bb, B1, and B2. Br2 can also be 

determined from (3.9). 
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The slope parameters of Br1 and Br2 can be expressed as (3.10) and (3.11), respectively. 
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Using (3.10) and (3.11), the proposed J-inverter expressions can be presented as (3.12) 

and (3.13). 
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 where 2 1

2o

  
  and 2 1

FB
o

 



 . 

 Once the admittance inverters are found, even and odd mode characteristic 

impedances of the parallel coupled lines can be calculated using (3.14) and (3.15), 

respectively. 
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                                                   (a)                            (b) 

Fig. 3-5. Transmission lines of (a) the first and (b) the second section. 
 

                                    
                                        (a)                                                      (b) 

 
(c) 

Fig. 3-6.  Proposed parallel coupled line BPF’s simulated results with Z1=80 Ω and (a) 
Z2=90 & 100, (b) Z2=70 & 75, and (c) Z2=80 Ω. 
 

 2
1oeZ Z JZ JZ                                              (3.14) 

 2
1ooZ Z JZ JZ                                              (3.15) 

 The design methodology and equations for the proposed parallel coupled line 

BPF employing non-uniform arbitrary image impedances are validated through 
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simulation and measurement. For the simulation and measurement, a BPF is designed 

using the parameters of lower cutoff frequency (f1)=5.7 GHz, upper cutoff frequency 

(f2)=5.9 GHz, N=3, and pass-band ripple=0.01 dB. 

 The simulated results in Fig. 3-6 illustrate S-parameters, where Z1 is fixed at 80 

Ω and Z2 varies from 70 to 100 Ω. In Fig. 3-6 (a), a magnitude of S11 pass-band ripples 

increases as mismatch degree (|Z2-Z1|) becomes higher. In Fig. 3-6 (b), the magnitude of 

S11 ripples in the pass-band decreases along with the bandwidth as Z2 is smaller than Z1. 

In this case, it is also observed that the designed filter produces a single S11 pole in the 

pass-band when Z2 is further decreased. Fig. 3-6 (c) shows the frequency response 

characteristic when Z1=Z2=80 Ω. This could be the uniform image impedance case of the 

parallel coupled line BPF [4]. As mentioned earlier, the image impedances (Z1 and Z2) 

can arbitrarily be set by a designer, but input/output port impedances (Z0) is fixed at 50 

Ω. From the study, it has been revealed that magnitude variations of pass-band S11 

ripples are affected by the mismatch degree, |Z2-Z1|. When Z2 is greater than Z1, the 

mismatch degree of 20 Ω has shown a magnitude of 12 dB in a maximum return loss 

ripple. 

 Fig. 3-7 presents the simulated and measured results of the designed parallel 

coupled line BPF using non-uniform image impedances. Two different image 

impedances which are Z1=70 Ω and Z2=80 Ω are applied to the design, where 

input/output port impedances are fixed at 50 Ω. The simulated and measured insertion 

losses at the center frequency of 5.8 GHz are found as 0.3 and 1.6 dB, respectively. As 
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shown in Fig. 3-7, the frequency responses of the simulated and measured results show 

good agreement. 

 

 
        (a) 

 

 
(b) 

Fig. 3-7. Demonstration; (a) simulated and measured S-parameters of the proposed 
parallel coupled BPF using arbitrary image impedances of Z1=70 Ω and Z2=80 and (b) 
photo of the fabricated BPF. 
 

3.3 Capacitive Gap Coupled BPF Using Uniform Arbitrary Image Impedance 

 A conventional parallel coupled line BPF design is well described in [1] and [4]. 

Another design method of the parallel coupled line BPF using uniform arbitrary image 

impedance has also been presented in [6]. A capacitive gap-coupled BPF, which utilizes 
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an end coupled structure, has been reported in [5]. Based on these previous works in [5] 

and [6], a new design technique using arbitrary image impedance is introduced for a 

capacitive gap-coupled BPF. Fig. 3-8 (a) illustrates the conventional capacitive gap-

coupled BPF consisting of transmission line resonators. In the conventional design, the 

resonator’s characteristic impedance is set to 50 Ω of input/output feed line impedance. 

However, the proposed capacitive gap-coupled BPF in Fig. 3-8 (b) employs two 

additional microstrip lines, where Z1 and θA are an arbitrary image impedance and line 

length, respectively. The arbitrary image impedance can be greater or smaller than port 

impedance (Z0). Fig. 3-8 (b) can be modeled as Fig. 3-9 (a) to obtain its admittance 

inverter equivalent circuit, where θA=ФA+Ф0,1/2 (or Фn,n+1/2) and θN=Ф+ФN-1,N/2+ 

ФN,N+1/2. In Fig. 3-9 (b), the input admittance (YA) can be expressed as (3.16) when the 

line length (ФA) is a quarter wavelength.  

 

 
(a) 

 

 
(b) 

 
Fig. 3-8. Capacitive gap-coupled BPF; (a) conventional type and (b) proposed type with 
arbitrary image impedance (Z1), where Z1 can be greater or smaller than Z0. 
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, 1

2
n n , 1
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, 1n nB 

 
(a) 

 
(b) 

Fig. 3-9. Proposed equivalent circuit of Fig. 3-8 (b); (a) transmission line model with 
negative line lengths (Фj,j+1/2) and (b) admittance inverter model with an arbitrary image 
admittance (Y1=1/Z1). 
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If ω≈ωo, (3.16) can be written as (3.17). 
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Fig. 3-10. Proposed equivalent circuit model from Fig. 3-9 (b). 
 

 
Fig. 3-11. Modeling of the transmission lines with a characteristic impedance of Z1 and 
an electrical length of Ф=π. 
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 Substituting (3.18) and (3.19) in (3.17), input admittance (YB) in Fig. 3-9 (b) can 

be written as (3.20).  
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Fig. 3-12. Equivalent circuit model of Fig. 3-10. 

 

 From (3.20), the equivalent circuit shown in Fig. 3-9 (b) can be presented as Fig. 

3-10. The line sections (Y1 and Ф) in Fig. 3-10 can be modeled as Fig. 3-11. Input 

impedance (Zin) in Fig. 3-11 can be expressed as (3.21). Since the resonators in Fig. 3-8 

(b) have a relatively large impedance at each end, the condition ZL>>Z1, can be applied 

to (3.21) and this leads to (3.22). 
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 Thus, Fig. 3-10 can be shown as Fig. 3-12. From (3.20) and (3.22), Br1 in Fig. 3-

12 can be expressed as (3.23), and the slope parameter of (3.23) is shown in (3.24). 

Other slope parameters of shunt susceptances in Fig. 3-12 can be calculated in (3.25), 

where j=2, 3, ···, n-1. 
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   Substituting (3.24) and (3.25) into generalized BPF J-inverter equations leads to: 
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 Using the new J-inverter equations in (3.26)-(3.28), the series capacitive 

susceptances and negative electrical lengths in Fig. 3-9 (a) can be found from (3.29) and 

(3.30). From (3.30), the electrical lengths of the resonators in Fig. 3-8 (b) can be shown 

as (3.31) and (3.32). From (3.29), the series coupling capacitance values can be 

determined by (3.33). 
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where j=1, 2, ···, n. 

, 1
, 1

0, 1, 

j j
j j

o j n

B
C






 

                                         (3.33) 

  
 The capacitive-gap coupled BPF is designed using three different arbitrary image 

impedances (30, 50, and 100 ohm). The filter design parameters are as follow: lower 

cutoff (f1): 5.7 GHz, upper cutoff (f2): 5.9 GHz, N: 5, passband ripple: 0.01 dB, 

input/output port impedance (Zo): 50 ohm. When the image impedance is 50 ohm, the 

conventional and proposed designs produce the same performance as shown in Figs. 3-

13 (a) and (b). However, when the image impedance is not the same as the input/output 

port impedance, the proposed technique achieves better results as shown in Figs. 3-14 

and 3-15.   
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                                             (a)                                             (b) 
Fig. 3-13. 50 ohm (a) conventional (b) proposed. 
 

 
                                             (a)                                             (b) 
Fig. 3-14. 30 ohm (a) conventional (b) proposed. 
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                                             (a)                                             (b) 
Fig. 3-15. 100 ohm (a) conventional (b) proposed. 
 

 A new design technique using arbitrary image impedance has been introduced for 

a capacitive gap-coupled BPF. Using the proposed method, a capacitive gap-coupled 

BPF, which produces the pass-band of 5.7~5.9 GHz and 5-resonant poles within the 

pass-band, is designed and simulated for different image impedance conditions. In cases 

where the image impedance is not the same as the input/output impedance, the simulated 

results based on the proposed design methodology show improved frequency response 

characteristics compared to the conventional design. 
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Fig. 3-16. Equivalent circuit model of Fig. 3-10 (N=3). 
 

 Based on the proposed capacitive gap-coupled BPF design, the BPF with N=3, 

fc=10 GHz, ripple=0.01 dB, and FBW=3.5 % is designed using suspended strip line. The 

arbitrary image impedance is set to 70 Ω. Fig. 3-16 (a) illustrates the cross section view 

of the suspended strip line, where a=5, b=1.954, u=1.4, and t=0.254 mm. Fig. 3-16 (b) 

shows the top view of the suspended strip line, where la=6.1, l1=12.16, l2=12.2, 

g1=0.194, and g2=1.436 mm. For the given dimensions of the suspended strip structure, 

50 Ω line widths of input and output are found to be 1.93 mm. 70 Ω line width is also 

found to be 1.18 mm. Fig. 3-16 (c) presents the circuit and EM simulated results, and 

they show good agreement. 
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3.4 Capacitive Gap Coupled BPF Using Nonuniform Arbitrary Image Impedances 

 This section introduces a new design technique for a capacitive gap-coupled 

bandpass filter (BPF) using non-uniform arbitrary image impedances. Based on the 

proposed BPF equivalent circuit model, the filter’s design equations are derived, and 

they are validated from comparisons of the calculated and simulated results. For this 

theoretical verification, the BPF using non-uniform arbitrary image impedances is 

designed using the specifications of: center frequency (fc)=5.8 GHz, fractional 

bandwidth (FBW)=3.5 %, and filter stage (N)=3. The calculated and simulated results of 

the designed filter show good agreement. The BPF using the proposed design method 

could provide an advantage that one can arbitrarily determine two different image 

impedances, which ultimately affects the BPF’s coupling gaps and line widths. This 

could result in suitable filter dimensions, i.e. gaps and line width, for a conventional low 

resolution photolithography fabrication although a low or high dielectric constant 

substrate is used for the design. 

 Planar type filters using microstrip have been popular, and their various design 

techniques have been presented for last few decades [7]-[18]. In planar type bandpass 

filters (BPFs), parallel and capacitive gap-coupled line BPFs are frequently used for 

many system designs because they are relatively easy to design and provide a reasonable 

performance. Their analysis and design formulas are well described in [4] and [5]. In the 

designs of these microstrip coupled type BPFs, a dielectric constant should properly be 

selected in order to obtain suitable filter dimensions which are appropriate for a 

conventional low resolution photolithography fabrication process. For an example, in a 
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conventional capacitive gap-coupled line BPF design, the lower the dielectric constant is 

used, the narrower the coupled-gap dimensions is required in order to obtain a desired 

capacitance value. Therefore, in a low dielectric constant substrate, the coupled line’s 

gap dimension can be too narrow to be fabricated using the conventional low resolution 

etching process. In order to avoid the inappropriate gap dimensions, an alternative 

design technique to control the gap dimensions is necessary.  

 In [6], a parallel coupled line BPF design using a uniform arbitrary image 

impedance has been introduced. In this paper, a novel design technique for a capacitive 

gap-coupled BPF using non-uniform arbitrary image impedances is introduced. 

Proposed design formulas are validated from comparisons of computed and simulated 

data. Using the proposed design technique, capacitive coupled line’s gap dimensions can 

be controlled by changing the coupled line’s image impedances. 

 A conventional capacitive gap-coupled BPF is presented in Fig. 3-17 (a). As 

shown in the Fig. 3-17 (a), each resonator’s characteristic impedance and input/output 

port characteristic impedance are set at Zo. However, the proposed capacitive gap-

coupled BPFs in Figs. 3-17 (b) and (c) employ two different image impedances (Z1 and 

Z2) which are not identical to the input/output port characteristic impedances. Here, the 

two image impedances could arbitrarily be determined. Fig. 3-18 presents the equivalent 

circuit models of the proposed capacitive gap-coupled BPFs in Figs. 3-17 (b) and (c). It 

should be noted that another transmission line section at input/output in Figs. 3-17 (b) 

and (c) is added for maintaining symmetric coupling structures. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 3-17. Capacitive gap-coupled BPFs (N=3); (a) conventional BPF, (b) proposed BPF 
for Z1>Z2, and (c) proposed BPF for Z1<Z2. 
 

 In order to utilize admittance inverters, the equivalent circuit in Fig. 3-18 (a) 

could be transformed as Fig. 3-18 (b). Then, the transmission line electrical lengths in 

Fig. 3-18 (a) and (b) can be expressed as: 

0 01                                                         (3.34) 

1, , 12i i i i i      
                                            

(3.35) 

where i=1, 2, 3 and  =π/2 at ω0. 
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(a) 

  (b) 
 

  (c) 
Fig. 3-18. Equivalent circuit models of Fig. 3-17 (b) and (c); (a) transmission line model, 
(b) J-inverter equivalent circuit model, and (c) J-inverter model. 
 

 Electrical lengths, θ1,a (=θ3,a) and θ1,b (=θ3,b) are also expressed as 01   and 

12  , respectively. Using the admittance inverter equivalent circuit, Fig. 3-18 (b) can 

be presented as Fig. 3-18 (c). Input admittance, Ya in Fig. 3-18 (c) can be rewritten as: 
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              (3.36) 

In (3.36), ω0 is a center frequency of a designing BPF. When ω≈ω0, the equation in 

(3.36) is then manipulated as: 
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Fig. 3-19. Equivalent circuit model of Fig. 3-2 (c). 
 

 
                                              (a)                                         (b) 

Fig. 3-20. Modeling of the transmission line sections; (a) the first section and (b) the 
second section. 
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For simplicity, the expression in (3.37) could be rewritten as: 
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Based on (3.38), input admittance, Yb in Fig. 3-18 (c) can be expressed as: 
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                                      (3.41) 

Since the expression in (3.41) shows a similar form to (3.38), the equivalent circuit 

model in Fig. 3-18 (c) could be transformed as in Fig. 3-19. As a result, Bb in Fig. 3-19 is 

written as: 
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                                           (3.42) 

In order to obtain the equivalent susceptances of the transmission line sections in Fig. 3-

19, the first and second transmission line sections are modeled in Figs. 3-20 (a) and (b). 

When ω≈ω0, the input impedances (Zin,1 and Zin,2) in Fig. 3-20 (a) are expressed as: 
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The input impedance of the second transmission line section in Fig. 3-20 (b) is then 

shown as: 
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Since both ends of the lines in Figs. 3-20 (a) and (b) are physically open circuit, the 

condition, ZL>>Z1 and ZL>>Z2 could be applied to (3.43)-(3.45). As a result, using their 

admittance expressions, (3.43)-(3.45) can be simplified as: 
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B1 and B2 which are the input susceptances of the first line section in Fig. 3-20 (a) can be 

determined from (3.46) and (3.47). Total susceptance, Br1 of the first line section in Fig. 

3-19 can be obtained by adding Bb, B1, and B2. The equation in (3.48) presents the 

susceptance of the second line section in Fig. 3-20 (b).  

 Once the total susceptances (Br1 and Br2) of the first and second line sections are 

found in Fig. 3-19, their slope parameters can simply be determined by solving the first 

order differential equations in terms of ω: 
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Using (3.49) and (3.50), J-inverter expressions for the proposed BPFs in Figs. 3-17 (b) 

and (c) can be presented as: 
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 Based on the new J-inverter equations in (3.51) and (3.52), the series capacitive 

susceptances and negative electrical lengths in Fig. 3-18 (b) can be shown as: 
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 Since B01=B34 and B12=B23 in Fig. 3-18 (a) and (b), electrical lengths of the 

proposed BPFs in Figs. 3-17 (b) and (c) are: θ0= θ1,a= θ3,a= θ4 and θ1,b= θ3,b. Using the 
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equations in (3.34), (3.35), (53), and (54), the electrical lengths of the proposed BPFs in 

Figs. 3-17 (b) and (c) can be calculated from: 
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Using (3.53), actual series coupling capacitance values in Fig. 3-18 (a) can be 

determined by: 
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 In order to validate the proposed design method, a capacitive gap-coupled BPF 

using non-uniform arbitrary image impedances is designed based on the derived 

equations. The simulated results are then compared with the calculated results. For the 

theoretical verifications, the BPF is designed on microstrip, where a substrate thickness 

and a dielectric constant are 0.508 mm and 2.2, respectively. The BPF’s center 

frequency is 5.8 GHz and the FBW is set to 3.5 %. The number of the filter stages is 

N=3, and Chevyshev prototype element values for passband ripple of 0.01 dB have been 

used for the proposed J-inverter calculations. Based on the proposed equations, the 

BPF’s electrical lengths and capacitance values are calculated from (3.51)-(3.58). Table 

3-1 shows the resulting element values for Fig. 3-18 (a), where B is in pF. 
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 Figs. 3-21 (a)-(d) illustrate the frequency responses of the proposed BPF, where 

the arbitrary image impedance, Z1 is set to 70 Ω, and Z2 varies from 80 to 60 Ω. In Figs. 

3-21 (a) and (b), a magnitude of passband return loss decreases as mismatch degree (|Z1-

Z2|) becomes higher. In this case (Z1<Z2), the filter’s bandwidth also increases as Z2 

becomes greater than Z1. In (3.51) and (3.52), increasing Z2 results in larger J-inverter 

values. Because J-inverter values are always less than a unity for a BPF design, a 

susceptance in (3.53) becomes larger. Therefore, a capacitance in (3.58) becomes 

greater. As a result, increasing Z2 produces a wide bandwidth due to a larger capacitance. 

In Figs. 3-21 (c) and (d), the magnitude of return loss in the passband increases as Z2 

becomes smaller than Z1. However, in this case, a bandwidth of the BPF decreases. 

When Z2 is further decreased in Fig. 3-21 (d), it is also observed that the designed BPF 

produces a single S11 pole in the passband. As mentioned earlier, the image impedances 

(Z1 and Z2) can arbitrarily be set by a designer, but input/output feed line characteristic 

impedances (Z0) are fixed at 50 Ω. 

 

TABLE 3-1 
CALCULATED BPF ELEMENT VALUES FOR FIG. 3-18 

  θ0 , θ1,a θ1,b θ2 B01= B34  B12= B23 

Z1=70, Z2=80 76.6859 85.9543 171.9086 0.0983 0.02439 

Z1=70, Z2=75 76.4879 86.0221 172.0441 0.1001 0.02557 

Z1=70, Z2=65 76.0141 86.1613 172.3225 0.1041 0.02846 

Z1=70, Z2=60 75.7272 86.2328 172.4656 0.1066 0.03025 

Z1=70, Z2=70 76.2656 86.0910 172.1821 0.1019 0.02692 

Z1=50, Z2=50 73.6469 86.0339 172.0679 0.1762 0.03824 
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 Figs. 3-22 (a) and (b) show the frequency responses when Z1=Z2. In Fig. 3-22 (a), 

the arbitrary image impedances, Z1 and Z2 are set to 70 Ω. This could be the uniform 

arbitrary image impedance design for a capacitive gap-coupled BPF. As shown in Fig. 3-

22 (a), the design provides a return loss greater than 20 dB, and satisfies the desired 

design specifications, i.e., FBW, center frequency, and etc. In Fig. 3-22 (b), the arbitrary 

image impedances, Z1 and Z2 are set to 50 Ω, which is identical to a conventional 

capacitive gap-coupled BPF. Both calculated and simulated results in Figs. 3-22 (a) and 

(b) show good agreement. 

 

                                    (a)                                                                     (b) 
  

                                    (c)                                                                     (d) 
Fig. 3-21.  Calculated and simulated results of proposed capacitive gap-coupled BPF, 
where Z1=70 Ω and Z2= (a) 80, (b) 75, (c) 65, (d) 60 Ω. 
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                                    (a)                                                                    (b) 
Fig. 3-22.  Calculated and simulated results of proposed capacitive gap-coupled BPF; (a) 
Z1=70 and Z2=70 Ω and (b) Z1=50 and Z2=50 Ω. 
 

 A capacitive gap-coupled BPF using non-uniform arbitrary image impedances 

has been introduced and studied based on circuit and classical filter theories. The 

proposed design topologies and equations are validated from comparing the equation 

based calculation results and simulated results. In the proposed design, two different 

impedances can arbitrarily be set to the image impedances of a capacitive gap-coupled 

line BPF. Therefore, a designer can favorably control the BPF’s resonator characteristic 

impedances. This would allow of reasonable line widths and gap dimensions on a low or 

high dielectric constant substrate. Using the derived design equations, a capacitive gap-

coupled BPF has been designed and simulated. Both calculated and simulated results 

have shown good agreement. The proposed design technique is simple and easy, and the 

design could be realized using a microstrip line or a suspended strip line.  
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3.5 Hairpin BPF Design Using Nonuniform Arbitrary Image Impedances 

 In this chapter, a new design technique for a hairpin bandpass filter (BPF) using 

nonuniform arbitrary image impedances is introduced. The hairpin BPF using the 

proposed design method could provide an advantage that resonator’s coupling gaps and 

line widths can be adjustable by changing the resonator’s arbitrary image impedances. 

Based on the equivalent circuit of the proposed hairpin BPF, admittance inverters are 

derived, and they are validated from simulations and measurements. In the proposed 

design, resonator’s electrical lengths are also adjusted to maintain the filter’s return loss 

greater than 20 dB. Hairpin bandpass filters (BPFs) have drawn much attention in 

modern RF/microwave filter designs because of their simple planar type structures, 

reliable performance, compactness [19-20], and tuning ability [21]. The design of 

hairpin BPF can be achieved using resonator’s cross coupling coefficients and external 

quality factors (Qext) at input/output ports [22]. However, in the coupling coefficient 

based design, rigorous electromagnetic (EM) simulations are necessary to determine a 

coupling coefficient for given gap dimensions. 

 In this chapter, a proposed hairpin BPF is analyzed based on a transmission line 

(TL) equivalent circuit model. From the TL model, resonator’s slope parameters and 

coupled line’s admittance inverters are derived. As a result, EM simulation for coupling 

coefficients and Qext is not required in the design. The proposed design method employs 

two different arbitrary image impedances, which ultimately becomes the characteristic 

impedances of the hairpin resonators. Changing resonator’s characteristic impedance 

results in a variation of coupling gap; high (low) characteristic impedance produces a 
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wide (narrow) coupling gap. Thus, although a low dielectric substrate is utilized, the 

proposed design could provide a reasonable gap dimension for an easy fabrication. 

 

 
(a) 

   
 (b) 

Fig. 3-23. Hairpin BPFs; (a) conventional and (b) proposed type (θ2+ θ3=90º and θ3+ 
θ4/2=90º). 
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 (b) 
Fig. 3-24. Equivalent circuit models of proposed hairpin BPF; (a) initial and (b) 
simplified models, where Y1 and Y2 are adjustable admittance. 
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 Fig. 3-23 (a) shows a conventional hairpin BPF fed by a parallel coupled line, 

where resonators utilize uniform characteristic impedance optimized from EM 

simulation.  Fig. 3-23 (b) illustrates the proposed hairpin BPF, where resonator’s 

characteristic impedance could arbitrarily be set and lengths (θ2, θ3, θ4) are also 

adjustable. The first coupled line length (θ1) is fixed to λg0/4, but θ2+θ3=λg0/4 and 

θ3+θ4/2=λg0/4. Fig. 3-23 (a) presents an equivalent circuit of the proposed hairpin BPF in 

Fig. 3-23 (b), where arbitrary image admittances (Y1=1/Z1, Y2=1/Z2) are employed as 

characteristic admittances of the resonators. If θ1=π/2 and ω≈ω0 in Fig. 3-24 (a), the 

input admittance, Yin1 could be expressed as: 
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Then, the expression in (3.59) could be simplified as: 
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  Input admittance, Yin,2 in Fig. 3-2 (a) is then written: 

2 2
01 01

,2
,1 1

1[1 ( )]in
in

J J
Y jN M MY Y M

                                  (3.63) 

Since (3.60) and (3.63) are in similar form, equivalent circuit in Fig. 3-24 (a) can be 

transformed to Fig. 3-24 (b). Near a resonant frequency (ω≈ω0), the susceptance, Bb in 

Fig. 3-24 (b), which is the imaginary part of (3.63), becomes zero (Bb=0). Because the 

filter is designed at the center frequency (ω0), Bb can be assumed as zero. 

 The first resonator, Section 1 in Fig. 3-24 (b) could be modeled as shown in Fig. 

3-25. The modeling is necessary for deriving resonator’s slope parameter expression. 

When considering the susceptance, Br1,a in Fig. 3-24 (b), it can be expressed as: 

1, 1, 2,r a a aB B B                                                   (3.64) 

where B1,a=jY1tan(θ1) and B2,a=jY2tan(θA). 

Then, (3.64) leads to: 

1 2
1, 1 1

1

tan tan tan( )r a A

Y
B Y

Y
       
   

                              (3.65) 

 

 
                                                    (a)                                      (b) 
Fig. 3-25. Section 1 modeling; (a) TL model (θA=θ2+θ3) and (b) its equivalent model. 
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Fig. 3-26. Section 2 modeling. 

 

 At resonance (ω≈ω0), (3.65) should be zero. The angle of tangent in (3.64) could 

be rewritten using propagation constant, β and physical line length, l, and the angle 

needs to be equal to nπ: 

1 2
1

1

tan tan( )A

Y
l n

Y
     
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                                  (3.66) 

For a simple case (n=1), (3.66) determines l=λ0/2, then the angle of tangent: 

0

0 0

2 2
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f c
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c f
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From (3.67), (3.65) can be shown as: 

0
1, 1 1

0 0

tan tanr aB Y Y
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                          (3.68) 

When ω≈ω0, (3.68) is simplified: 
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The slope parameter of (3.69) is then: 
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  In similar way, the second resonator (Br2,a) can be modeled in Fig. 3-26. The 

susceptance, Br2,a is expressed as: 

 2, 2 3 4tan 2r aB Y                                                (3.71) 

The slope parameter of (3.71) is then derived as: 
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Finally, admittance inverters for the proposed hairpin BPF can be obtained: 
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                                             (a)                                                  (b) 
Fig. 3-27. θ2 vs. Z1 & Z2 for return loss of greater than 20 dB; (a) for Z1=40 Ω and (b) for 
Z1=50, 60, and 70 Ω. 
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                                           (a)                                                       (b) 
Fig. 3-28. Designed BPF’s frequency responses for (a) θ2=10º and (b) θ2=40º, where 
Z0=50, Z1=40, and Z2=60 Ω. 
 

 
                                           (a)                                                         (b) 
Fig. 3-29. Designed BPF’s frequency responses for (a) θ2=10º and (b) θ2=42º, where 
Z0=50, Z1=50, and Z2=80 Ω. 
 

 In order to validate the proposed design method, a hairpin BPF is tested using 

design specifications:f2=5.92, f1=5.68, fc=5.8 GHz, FBW=0.0414 %, Chevyshev 

ripple=0.01 dB. Resonator’s variable impedances are set to two different cases: Case I 

(Z1=40 Ω, Z2= 60 Ω) and Case II (Z1=50 Ω, Z2= 80 Ω). Electrical length, θ2 is initially 

set to 10º for the both cases. In Fig. 3-27 (a), Region I indicates Z1>Z2. When Z2 is 

relatively smaller than Z1, the designed BPF has shown a single S11 pole, and bandwidth 

shrank due to decreased J-values (J12 & J23). If J decreases, even and odd mode 

characteristic impedances of a coupled line also decrease. This results in coupling 

reduction. However, Z2 becomes greater than Z1, coupling of the parallel coupled line 
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increases with bandwidth. Here, optimum θ2 which produces return loss greater than 20 

dB is experimentally found for different Z1 and Z2. Figs. 3-27 (a) and (b) show the 

optimum θ2 for return loss greater than 20 dB. In this letter, Region II is only considered 

for three S11 poles. From Fig. 3-27 (a) and (b), θ2 for the Cases I and II are 40 º and 42 º, 

respectively. 

 

TABLE 3-2  
DESIGN PARAMETERS FOR CASE I AND II 
Case I Case II 

J01=0.009 J12=0.0014 J01=0.0064 J12=0.001 
Zoe=59.54Ω 
Zoo=30.79Ω 

Zoe=65.41Ω 
Zoo=55.42Ω 

Zoe=71.24Ω 
Zoo=39.09Ω 

Zoe=87.21Ω 
Zoo=73.90Ω 

θ2= 40º θ2= 42º 
 

0.047 λg @ 5.8 GHz

g1

l1
l2 l3

g2

 
Fig. 3-30. Photo of the fabricated BPF; Z1=70, Z2=90, θ2=25º, εr=2.2 (l1=9.24, l2=2.7, 
l3=6.6, g1=0.2, and g2=0.86 mm). 
 

 
Fig. 3-31. EM simulated and measured hairpin BPF in Fig. 3-30. 
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 Table 3-2 presents the calculated BPF parameters. Figs. 3-28 and 29 show 

simulated results of the Cases I and II. By utilizing the proposed hairpin BPF design 

technique, one can have flexibility on selection of substrate’s dielectric constant. For 

high (low) dielectric substrate, low (high) impedance is preferable. Fig. 3-30 presents a 

photo of the fabricated hairpin BPF, where the variable impedances are set to Z1=70 and 

Z2=90 Ω, and θ2 is found as 25º from Fig. 3-27 (b). Fig. 3-31 illustrates EM simulated 

and measured results of the fabricated BPF. Employing high impedance on low 

dielectric substrate increases even and odd mode impedances of a parallel coupled line, 

which ultimately increases a gap distance. Thus, a filter fabrication using conventional 

low resolution photolithography can be easier. 

  

3.6 Conclusions 

 In this Chapter III, BPF designs using uniform or non-uniform arbitrary image 

impedances have been introduced.  For demonstrations, a parallel coupled line BPF, 

capacitive gap-coupled line BPF, and hairpin BPF are utilized. The proposed BPF 

designs are validated from simulations and measurements. The design procedure is 

simple, and the design parameters can directly be calculated from given BPF design 

specifications. In the proposed BPF designs, the coupled line’s gap distance can be 

adjusted by varying the arbitrary image impedance. 
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CHAPTER IV 

DUAL-BAND AND TRIPLE BAND BANDPASS FILTER SYNTHESES 

 

4.1 Introduction 

 As today’s frequency spectrum becomes increasingly crowded, dual-band and 

multi-band systems are emerged for an efficient system operation and frequency use. For 

these dual- or multi-band systems, dualband bandpass filter (DBBPF) and tripleband 

bandpass filters (TBBPF) have been developed. A DBBPF has been reported in [23]-

[29] for multiband applications. In [23], a DBBPF was achieved by connecting two 

different BPFs in parallel. In [24], a wideband BPF was cascaded with a narrow-band 

bandstop filter in order to produce the dual passband. In [25], an anti-resonator, i.e., 

series LC resonator in shunt, has been employed for a DBBPF design. By connecting 

three anti-resonators, three different transmission zeros have been achieved, which 

ultimately produces dual passband. [26] and [27] have utilized stepped impedance 

resonators (SIRs) to realize a DBBPF, where the coupled structure SIRs are mirrored for 

a transmission zero between the two passbands. [28] and [29] proposed DBBPF designs 

based on a classical admittance inverter theory. One of the remarkable advantages of the 

DBBPF designs in [28] and [29] is that the center frequencies and passband widths of 

the dual bands can independently be controlled.  

 TBBPFs have also been developed in [30]-[32]. However, the designs shown in 

[30]-[32] utilizes complicated microstrip structures and is difficult to control the 
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frequency responses including center frequencies and bandwidths. For these reasons, a 

new design method for the TBBPF is developed and introduced in this chapter. 

 

4.2 Dual-Band BPF Synthesis 

Fig. 4-1. Conventional BPF with J-inverters and shunt parallel LC resonators. 

 

 
                                                      (a)                                        (b) 
Fig. 4-2. Lumped (a) composite series resonator and (b) its equivalent LC series 
resonator [29]. 
  

 In this section, a DBBPF design shown in [29] is briefly introduced for 

background review. Fig. 4-1 shows the conventional BPF using parallel LC resonators 

and admittance inverters (J-inverter). The J-inverters can be determined using the well 

kwon formulas in (4.1)-(4.4), where Ωc=1 (rad/sec), ω0= mid-band angular frequency of 

the BPF, FBW=fractional bandwidth, and gi(i=0 to n+1)=prototype LPF element values 

[1]. 
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Fig. 4-3. Frequency response of the composite resonator in Fig. 4-2 (a), where La=0.111 
nH, Lb=0.083 nH, Ca=70.249 pF, and Cb=52.687 pF. 
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 Fig. 4-2 (a) shows a composite series resonator consisting of two cascaded 

parallel LC resonators. The two composite resonators have the susceptances of Ya and Yb, 

and resonate at ωa and ωb, respectively.  
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Fig. 4-4. DBBPF equivalent circuit model using composite resonators and J-inverters 
[29]. 
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 The susceptances of Ya and Yb can be written as (4.5). Using the resonant 

condition in (4.6), (4.5) can be presented as (4.7). In (4.7), the assumption, ωa < ωb leads 

Ya > 0 (capacitive) and Yb < 0 (inductive) for the frequency region of ωa < ω < ωb. As a 

result, the composite resonator in Fig. 4-2 (a) can be represented as a series LC resonator 

in Fig. 4-2 (b). The resonator in Fig. 4-2 (b) produces a bandstop frequency response at 

ω0, where ω0 can approximately be calculated using (4.8). 

 In order to demonstrate the composite resonator in Fig. 4-2 (a), a circuit 

simulation is utilized, where the element values are: La=0.111 nH, Lb=0.083 nH, 

Ca=70.249 pF, and Cb=52.687 pF. These lumped element values have been determined 

using (4.6) and (4.9), where fa, FWBa, fb, FWBb, and J01 for Butterworth (N=2) are set to 

1.8 GHz, 4 %, 2.4 GHz, 4 %, and 0.0212, respectively. The equations in (4.9)-(4.11) are 

derived from (4.2)-(4.4). As shown in Fig. 4-3, the composite series resonator produces 

two resonant frequencies (ωa and ωb), which ultimately becomes the center frequency of 



 64

the DBBPF. Fig. 4-4 presents the equivalent circuit model of the DBBPF. It is important 

to notice that the J-inverter values in the DBBPF design are assumed to be constant over 

the frequency. Fig. 4-5 illustrates a design flow of the DBBPF.   

 
Fig. 4-5. Design flowchart for DBBPF. 
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where r=a or b. 

 Even though this design flow in [29] provide a reasonable design procedure, 

guessing an initial J-value in Fig. 4-5 is difficult. It should be noticed that if inductance 
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and capacitance values in Fig. 4-2 (a) are not properly chosen, the composite resonator 

does not provide the dualband frequency response. This means that DBBPF design using 

the composite resonators in Fig. 4-2 (a) could not be successful although the J-value 

satisfies the realizable microstrip line width. For these reasons, instead of guessing the J-

value, composite resonator’s element value calculations could utilize: 

,
0

i
r i

r r

g
C

FBW Z
                                                (4.12) 

where r=a or b and i=1 to n. Once the capacitance value is determined from (4.12), J-

value and inductance value can be calculated from (4.2-4) and (4.6), respectively. The 

equation in (4.12) is derived from bandpass frequency transformation and impedance 

scaling of prototype LPF element value. 

 

 
Fig. 4-6. 1.8 GHz and 2.4 GHz DBBPF simulation result in Fig. 4-4, where J-inverter is 
realized using a quarter wavelength transmission line at ω0=2.078 GHz. 
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                                                 (a)                                             (b) 
Fig. 4-7. Transformation from (a) the composite series resonator to composite shunt 
resonator [29]. 
 

 Fig. 4-6 presents the circuit simulated S-parameters of the DBBPF in Fig. 4-4. 

Instead of utilizing (4.12), the DBBPF is designed using the method shown in [29]. The 

designed DBBPF produces the pass-band at 1.8 GHz and 2.4 GHz with FBW of 4 %. 

The number of filter stages is N=2, and J01 (=J23) and J12 are set at 0.0212 and 0.0228, 

respectively. Since J-inverter values are defined, the lumped element values in Fig. 4-4 

can be calculated using (4.9) and (4.10). The inductance in Fig. 4-4 can also be 

determined by (4.6). J-inverters in Fig. 4-4 are realized by microstrip quarter wavelength 

transmission line at ω0. The line width, i.e., characteristic impedance, can be determined 

because J-inverter values have already been known. The resulting lumped element 

values in Fig. 4-4 are: Ca1 (Ca2)=70.249 pF, La1 (La2)=0.111 nH, Cb1 (Cb2)=52.687 pF, 

and Lb1 (Lb2)=0.083 nH. However, it is not easy to realize the lumped composite 

resonators using microstrip. Thus, a transformation using additional J-inverter is 

necessary. The lumped composite resonator in Fig. 4-7 (a) can be transformed as shown 

in Fig 38 (b), where the resulting element values (La’, Ca’, Lb’, and Cb’) can be 

determined from (4.13)-(4.16). 

2' JLC aa                                                             (4.13) 
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Fig. 4-8. Transformed DBBPF using parallel composite resonator [29]. 
 
 

 
Fig. 4-9. Circuit simulated S-parameters of DBBPF in Fig. 4-8. 
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 In (4.13)-(4.16), the J-inverters are arbitrarily determined values, but their values 

are limited for realizable microstrip line fabrication. Fig. 4-8 shows the transformed 

DBBPF using parallel composite resonator. In the transformation process of Fig. 4-7, 
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additional J-inverter value has been set to 0.1, which is the same as the characteristic 

impedance of 10 ohm. The line length for the J-inverter is a quarter wavelength at ω0 

determined from (4.8). The transformed lumped element values in Fig. 4-8 are Ca1 

(Ca2)=1.113 pF, La1 (La2)=7.02 nH, Cb1 (Cb2)=0.834 pF, and Lb1 (Lb2)=5.26 nH. Fig. 4-9 

presents the circuit simulated S-parameters of the transformed DBBPF. As shown in the 

Fig. 4-9, the transformed DBBPF produces transmission zeros at 1.5, 2.08, and 2.78 

GHz. Due to these transmission zeros, the transformed DBBPF achieves shaper 

frequency cutoff characteristic than initial DBBPF in Fig. 4-4. 

 In order to fabricate the DBBPF using the microstrip, lumped series resonators in 

Fig. 4-8 should be converted to a microstrip stub. Fig. 4-10 illustrates the lumped series 

resonator transformation to its equivalent microstrip open stub. The reactance of the 

lumped series resonator in Fig. 4-10 (a) can be written as (4.17), and the slope parameter 

of (4.17) is presented in (4.18). 
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 1
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                                                (a)                                          (b) 
Fig. 4-10. (a) Lumped series LC resonator and (b) its equivalent quarter wavelength 
microstrip  open stub. 
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Microstrip open stub in Fig. 4-10 (b) is a quarter wavelength at ωa, so the microstrip line 

length can be shown as (4.19). The reactance of the open stub in Fig. 4-10 (b) can be 

written as (4.20), and its slope parameter is in (4.21). 
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By equating (4.18) and (4.21), (4.22) can be derived. Using (4.19) and (4.22), the 

microstrip open stub length and width can be determined. 
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4.3 Triple-Band BPF Synthesis 

 This section introduces a TBBPF design using admittance inverters and parallel 

LC resonators. Three shunted parallel LC resonators are connected in series to produce a 

triple-bandpass response. In the proposed TBBPF design, each center frequency and 

fractional bandwidth (FBW) of low, mid, and high bands can separately be controlled. In 

order to demonstrate the design methodology, simulated results are compared with 

measured results. For a filter fabrication using microstrip, the TBBPF is designed at a 
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center frequency of 1.8, 2.4, and 3 GHz. FBW is set to 4 % in all passbands, and the 

number of filter stages is N=2. The designed TBBPF shows good agreement in simulated 

and measured results. 

 Fig. 4-11 (a) presents a triple-band resonator (TBR) consisting of three parallel 

LC resonators. The parallel LC resonators are serially connected in shunt to produce 

triple passband. If the resonator’s element values are properly chosen, the TBR could 

produce triple passband with two transmission zeros between low and high bands. 

 
 (a) 

 

 
(b) 

Fig. 4-11. Circuit configuration of (a) triple-band lumped resonator (La=0.09772 nH, 
Ca=80 pF, Lb=0.07329 nH, Cb=60 pF, Lc=0.05863 nH, and Cc=48 pF) and (b) simulated 
frequency response. 
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For a given center frequency of 1.8, 2.4, and 3 GHz, a frequency response of the TBR is 

illustrated in Fig. 4-11 (b), where capacitance values are arbitrarily selected, and 

inductance values are then obtained from: 

2

1
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r r

L
C

  , where r=a, b, or c.                            (4.23) 

Fig. 4-12 shows a TBBPF equivalent circuit consisting of J-inverters and TBRs. The 

capacitance values of the TBR in Fig. 4-12 could be determined from: 
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where FBWr=(ωu-ωl)/ωr, ωr=( ωuωl)
1/2, and ωu and ωl are upper and lower 3 dB cutoff 

frequencies of each band. Ωc and gi are prototype lowpass filter’s cutoff frequency and 

element value, respectively. 

 

 
Fig. 4-12. Equivalent circuit model of TBBPF using J-inverters and parallel LC 

resonators. 
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Fig. 4-13. Equivalent circuit model of transformed TBBPF by additional J-inverters. 
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                                                    (a)                                       (b) 

Fig. 4-14. Equivalent model of (a) lumped series LC resonator and (b) distributed 
element. 
 

 The expression in (4.24) is derived from impedance scaling and frequency 

transformation of the prototype lowpass filter elements (gi). Once the capacitance values 

are found, inductance values in Fig. 4-12 are then calculated from (4.23). J-inverters in 

Fig. 4-12 are realized by a quarter wavelength transmission line. Even though a quarter 

wavelength line is relatively narrow-band in nature, it can satisfactorily be used as an 

impedance or admittance inverter [1]. Here, J-inverter values in Fig. 4-12 should be in a 

reasonable range for fabrication because J-value results in a microstrip line width, i.e., 

Zo=1/Yo and Yo=J. If capacitance values are known, J-inverter values are then determined 

from: 
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 In (4.25)-(4.27), Cai, Cbi, or Cci can be used for the J-inverter calculations because 

it is assumed that an inverter value is constant over the triple-band. By substituting 

(4.24) into (4.25)-(4.27), one may instantly notice that J-values in (4.25)-(4.27) are 

always determined as G0, which corresponds to 50 Ω line. Here, the transmission line 

length must be a quarter guided wavelength at the frequency of: 

 
2

a c
m

  
                                                             (4.28) 

where ωa and ωc are the center frequencies of 1st and 3rd passbands, respectively. 

 Since it is difficult to realize parallel TBRs with distributed elements on 

microstrip, the circuit in Fig. 4-12 is converted to Fig. 4-13 by using: 

,'
, 2

r n
r n

C
L

J
                                                              (4.29) 

' 2
, ,r n r nC J L                                                           (4.30) 

where, r=a, b, or c, and n=1 to n. 

 In (4.29) and (4.30), J is arbitrarily determined. After transformation using 

additional inverters, lumped series resonators in Fig. 4-13 can be converted to distributed 

elements. The input reactance in Fig. 4-14 (a) is written as:  

' '
, '

,

1
in r n

r n

X L
C




                                                 (4.31) 

and its slope parameter is then derived: 

' '
,2 r

r
in r r n

d
X L

d  

 
 

                                              (4.32) 

The input reactance in Fig. 4-14 (b) can be presented as: 



 74

 , , ,cot cot
2in r n r n r n

r

X Z l Z
 


 

      
 

                           (4.33) 

and its slope parameter is also derived as: 

,

2 4r

r nr
in

Zd
X

d  
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 

                                         (4.34) 

Equating (4.32) and (4.34) leads to: 

'
,

,

4 r r n
r n

L
Z




                                                (4.35) 
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Fig. 4-15. Simulated results of Fig. 4-3, where filter1:fa=1.6 GHz (FBWa=0.075), fb=2.4 
GHz (FBWb=0.05), fc=3 GHz (FBWc=0.04) and filter2:fa=1.6 GHz (FBWa=0.06), fb=2 
GHz (FBWb=0.06), fc=2.8 GHz (FBWc=0.06); N=2 (Butterworth). 
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Fig. 4-16. Circuit and EM simulated results of designed TBBPF. 
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Fig. 4-17. EM simulated and measured results of designed TBBPF. 
 

From (4.35), a stub width (Wr) in Fig. 4-14 (b) can be determined. A stub length (lr) is a 

quarter guided wavelength at resonant frequency due to L′r,n and C′rn in (7) and (8). 

Because Zr,n in (4.35) is a function of L′r,n, an arbitrary J value in (4.29) should carefully 

be selected for a realizable line width. When FBW becomes larger (smaller), J value in 

(4.29) should also increase (decrease) for a reasonable line width. 

 
Fig. 4-18. Fabricated microstrip TBBPF (lJ12=22.8, lJ=22.4, la=30, lb=21.35, lc=18.45, 
w=1.5, wJ=11.5, wa=0.3, wb=0.5, wc= 0.3 mm). 
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 Fig. 4-15 illustrates simulated results of designed two TBBPFs and their design 

specifications. As shown in the Fig. 4-15, center frequency and FBW of each band can 

separately be adjusted. In filter 1, the bandwidth is fixed as 120 MHz. 

 TBBPF is designed and fabricated using design parameters of fa=1.8, fb=2.4, 

fc=3.0 GHz, N=2 (Butterworth), FBW=0.04 for all bands. Figs. 47 and 48 compare 

simulated and measured results. Fig. 4-18 illustrates the photo of the fabricated TBBPF. 

Measured insertion losses at each band were less than 3 dB, and return losses were 

greater than 15 dB within passband. Both simulated and measured results have shown 

good agreement. 

 

4.4 Conclusions 

 In this Chapter IV, a triple-band bandpass filter (TBBPF) design has been 

introduced based on lumped triple-band parallel LC resonators and admittance inverters. 

Since the proposed TBBPF produces transmission zeros between passbands, high 

selectivity can be achieved with smaller number of filter stages. For given center 

frequencies of TBBPF, if FBW increases, resonator’s capacitance values decrease in 

(4.24). These decreased capacitance values lower the characteristic impedance in (4.35). 

From the experiment, it has been found that the proposed TBBPF can favorably be 

designed for FBW up to 20 % by appropriately selecting J-inverter values in (4.29) and 

(4.30). The design methodology is validated through simulations and measurements. The 

circuit and EM simulated results show good agreement with the measured data. 
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CHAPTER V 

COMPACT BANDPASS FILTER DESIGN USING SPLIT RING RESONATORS 

 

5.1 Introduction 

 In this chapter, a coupled type complementary split ring resonator (CSRR) is 

introduced for a compact direct-coupled bandpass filter (BPF). The proposed unit cell of 

the resonator consists of two CSRRs, where gaps of outside rings face each other to 

achieve a strong cross coupling. For an analysis of the coupled CSRR, an equivalent 

circuit model is discussed and validated through circuit and EM simulations. Based on 

the coupled CSRR structure, two-/four- pole direct-coupled BPFs are designed, 

simulated, and measured. Their equivalent circuit models are also presented and 

validated from comparing simulated and measured results. The designed BPFs utilizing 

the coupled CSRRs provide a sharp frequency cutoff, low insertion loss, and compact 

size. The BPFs are designed at the center frequency of 2.45 GHz. The designed two-pole 

BPF shows fractional bandwidth (FBW) of 15 %, an insertion loss of less than 1 dB, and 

a size of 0.11λg×0.22λg. The four-pole BPF demonstrates FBW of 20 %, an insertion loss 

of less than 2.8 dB, and a size of 0.33λg×0.45λg. The simulated and measured results of 

both designed BPFs show good agreement. 

 The microstrip band-pass filter (BPF) is one of the most widely used components 

in RF/microwave systems since it controls signal flows within a certain frequency band. 

Recently, many filters have been developed to meet today’s filter requirements including 

low-insertion loss, compact size, and low cost. For these needs, filter designs using 
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complimentary split ring resonator (CSRR) have been studied by many researchers, and 

reported [33]-[36]. In [36], a BPF was designed by combining a lowpass filter (LPF) and 

highpass filter (HPF). The design method presented in [36] has an advantage for 

bandwidth tuning, which relies on cutoff frequencies of LPF and HPF. However, this 

cascaded structure could increase an insertion loss of the filter. As shown in [36], it is 

also difficult to achieve a flat passband when the bandwidth becomes narrow. In 

addition, cascading two different filters would have a disadvantage of reducing a circuit 

size. For these reasons, a simple filter structure is preferable for a low insertion loss and 

size reduction. 

 

 
Fig. 5-1. Proposed unit cell of coupled CSRR and its lumped equivalent circuit model. 

 

 Even though a filter design using resonators mostly relies on coupling coefficient 

and input/output external Q-factor, an analysis and modeling are also important to give 

an insight for a filter design. This paper introduces compact direct- coupled BPF designs 

and their equivalent circuit models. 

  A general design methodology and lumped equivalent circuit models of a direct 

coupled BPF have already been described in [5]. A direct-coupled BPF could be a 
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capacitive- or an inductive- coupled structure. Frequency responses of the direct-coupled 

BPFs normally show asymmetric attenuation characteristics. A direct capacitive-coupled 

BPF produces a slow attenuation slope in upper frequency cutoff region due to series 

capacitances. On the other hand, a direct inductive-coupled BPF shows a slow 

attenuation slope in lower frequency cutoff region because of series inductances. 

 Fig. 5-1 illustrates the proposed unit cell of capacitive-coupled CSRRs. As 

shown in Fig. 5-1, two pairs of square rings are etched off from a ground plane, where 

gaps (S) of the outside rings face each other to enhance the coupling (Cc) between the 

two CSRRs. As the gaps (S) become narrower, a stronger coupling is obtained due to the 

focused electric field within the gaps. An equivalent circuit model for a conventional 

CSRR has been investigated in [37], where slotted complimentary square rings in a 

ground plane are represented as a parallel LC resonator. The lumped equivalent circuit 

model for the proposed coupled CSRRs is shown in Fig. 5-1, where parallel LC (CCSRR 

and LCSRR) shunt resonators are connected with a series capacitor (Cc). 

 Proposed BPFs are simulated and fabricated on Rogers 5880 with a substrate 

thickness of 0.508 mm. A low dielectric constant substrate has been used to minimize 

the dielectric loading effects on miniaturization. 
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5.2 Two Pole Coupled BPF Design Using CSRR 

 
Fig. 5-2. Proposed two pole direct-coupled BPF using one coupled CSRR. 
 

 
 

Fig. 5-3. Equivalent circuit model of proposed two pole direct coupled BPF. 

 
Fig. 5-4. Circuit and EM simulated results of two pole direct-coupled BPF. 
 

 Fig. 5-2 illustrates two pole direct-coupled BPF using a unit cell capacitive-

coupled CSRR structure. It should be noticed that gaps in CSRR’s outside rings must 
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face each other to generate enough coupling so that it could produce passband. If the 

gaps are not faced each other, the passband is not created due to a low coupling. 

Equivalent circuit model of the proposed two pole direct-coupled BPF is shown in Fig. 

5-3. The filter’s center frequency is a function of CSRR dimensions (P, W1, G1, G2, and 

G3), which result in CCSRR and LCSRR. The lumped element values (CCSRR and LCSRR) for 

the given CSRR dimensions can be evaluated as in [37]. Since it is difficult to obtain 

analytical solutions for equivalent element values of the circuit structure in Fig. 5-2, 

other element values (Cg and Cc) are experimentally determined by fitting circuit 

simulated results to EM simulated one [35] and [36]. Bandwidth of the filter is affected 

by Cc. Thus, if CCSRR and LCSRR are known, Cc which achieves the same bandwidth to 

EM simulation can be found with Cg. In Fig. 5-2, the longer feed line length (T) above 

CSRR produces the bigger coupling capacitance, Cg, and smaller gap dimensions of G2 

and G4 result in a larger Cc. 

 The designed filter dimensions in Fig. 5-2 are P=9.8, W1=0.8, G1=0.2, G2=0.4, 

G3=0.5, G4=0.4, and T=4.8 mm. Feed line width, W is set to 1.6 mm which corresponds 

to 50 Ω line. Lumped element values for the given dimensions are found as Cg=0.67, 

CC=0.28, CCSRR=1.45 pF, and LDSRR=1.9 nH. Circuit and EM simulated results are shown 

in Fig. 5-4, where two resonant poles due to two shunted parallel LC resonators are 

observed. 
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5.3 Four Pole Coupled BPF Design Using CSRR 

 
Fig. 5-5. Proposed four pole direct-coupled BPF using two coupled CSRRs. 

 
Fig. 5-6. Equivalent circuit model of four pole direct-coupled BPF. 
 

 
Fig. 5-7. Circuit and EM simulated results of four pole direct-coupled BPF. 
 

 Four poles direct-coupled BPF using two coupled CSRRs is designed and 

presented in Fig. 5-5. Equivalent circuit model of the BPF is illustrated in Fig. 5-6. Each 



 83

pair of CSRRs on a ground plane is coupled to top transmission lines, where the center 

line’s characteristic impedance is Z0 and the length is approximately λg/4 at the center 

frequency of 2.45 GHz. Setting the line length as a quarter guided wavelength, two 

identical resonators can be combined and operated as a multi mode resonator. The two 

identical resonators connected with a quarter guided wavelength line produce a sharper 

frequency cutoff and wide passband, however an insertion would increase with the 

number of resonators. The designed four pole BPF dimensions are P=9.8, W1=0.8, 

G1=0.2, G2=0.5, G3=0.5, G4=0.4, T1=4.7, T2=4.3, and L=21.3 mm. It should be noted that 

L in Fig, 54 significantly affect an upper band cutoff slop, so it is optimized to achieve a 

sharp upper cutoff slope. This results in that L is slightly less than λg/4 at 2.45 GHz. The 

extracted element values are Cg=0.63 cF, CC=0.23 pF, Cg1=0.5 pF, CCSRR=1.45 pF, and 

LDSRR=1.9 nH. Circuit and EM simulated results of the four pole direct-coupled BPF are 

illustrated in Fig. 5-7. Measured results of the fabricated two-/four-pole direct coupled 

BPFs are presented in Figs. 5-8 and 5-9, respectively. Photo of the fabricated four pole 

direct-coupled BPF is illustrated in Fig. 5-10. EM simulated and measured results show 

good agreement. 

 
Fig. 5-8. EM simulated and measured results of two pole direct-coupled BPF. 
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1 up

2 up
 

Fig. 5-10. Photo of fabricated four pole direct-coupled BPF. 
 

 

5.4 Conclusions 

 A compact direct-coupled BPF using coupled CSRRs has been introduced. Their 

equivalent circuit models have also been presented and validated through circuit and EM 

simulations. At the center frequency, the dimensions of the designed two-/four- pole 

BPFs are 0.11λg×0.22λg and 0.33λg×0.45λg, respectively. Measured insertion losses of 

the both filters are found as less than 1 and 2.8 dB within passband, and return losses 

were greater than 20 and 15 dB. Both simulated and measured results of the designed 

filters show good agreement. 
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CHAPTER VI 

MODELING OF VERSATILE DUMBBELL SHAPED-SLOT RESONATOR 

(DSSR)* 

 

6.1 Introduction 

 This chapter presents a dumbbell-shaped slot resonator (DSSR) for miniaturized 

lowpass filter (LPF) and bandpass filter (BPF) designs. Based on circuit theory and an 

electromagnetic (EM) simulation, the DSSR’s lumped and distributed equivalent circuit 

models are presented and validated. The proposed DSSR does not employ a ground slot, 

so the fabrication process is simple. This allows one to minimize cost and fabrication 

errors. Using the DSSRs, a miniaturized LPF and BPF are designed, simulated, and 

measured. The dimensions of the fabricated LPF are 0.27λg×0.17λg at a cutoff frequency 

of 3.4 GHz, and a measured insertion loss of less than 1 dB and a return loss of greater 

than18 dB have been achieved. The dimensions of the fabricated BPF are 0.37λg × 

0.27λg at a center frequency of 7.35 GHz, and an insertion loss of less than 3 dB and a 

return loss of greater than 15 dB have been achieved. The designed BPF provides a 

fractional bandwidth (FBW) of 2%. Both simulated and measured results of the designed 

filters show good agreement. The proposed filters do not utilize stubs or other circuit 

elements, so the filters are compact in size. 

_________________________ 

*Parts of this chapter are reprinted with permission from D.-J. Jung and K. Chang, “Miniaturized bandpass filter using

dumbbell-shaped slot resonator,” IET Electron. Lett., vol. 48, pp. 100-102, Jan. 2012. Copyright 2012 IET.; D.-J. Jung

and K. Chang, “Accurate modeling of microstrip dumbbell shaped slot resonator (DSSR) for miniaturized tunable

resonator and bandpass filter,” Progress In Electromagnetics Research C, vol. 23, pp. 137-150, 2011. Copyright 2011

EMW. 
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 The microstrip resonator is one of the most widely used components in 

RF/microwave and millimeter wave circuits. Many types of microstrip resonators have 

been reported [38]-[42] and employed in both passive and active applications. Microstrip 

resonators are especially essential for planar type filter designs [43]-[46] because they 

are used to produce a frequency passband. For this reason, compact and simple 

resonators are preferred to meet today’s filter design requirements. 

 In this chapter, a dumbbell-shaped slot resonator (DSSR) is introduced for 

miniaturized lowpass filter (LPF) and bandpass filter (BPF) designs. The proposed 

DSSR can be compared with a dumbbell-shaped defected ground structure (DGS) 

described in [8] and [9] since the geometry and analysis are similar. However, there are 

distinctive differences between the dumbbell-shaped DGS and the DSSR. The dumbbell-

shaped DGS utilizes slotted ground structures. Thus, a top microstrip line and a ground 

slot should be precisely aligned in the fabrication process. Fabrication errors can 

increase because of the alignment difficulty, which ultimately affects insertion and 

return losses of a circuit. On the other hand, the DSSR does not employ ground slots, 

therefore the fabrication process is simpler. As presented in [8] and [9], LPF design 

using the DGS utilizes shunt capacitive stubs. In a BPF design as shown in [47] and 

[48], the DGS should be used with another BPF or resonant circuit to produce a 

frequency passband. This could make it difficult to reduce the circuit size. However, in 

LPF and BPF designs using the DSSRs, shunt capacitive stubs or other circuit elements 

are not necessary. 
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 All circuits in the chapter are fabricated on Rogers 5880 substrate with a 

thickness of 0.508 mm, and they are measured using an HP 8510 vector network 

analyzer. A low dielectric constant substrate has been used to minimize the dielectric 

loading effect on miniaturization. 

 

6.2 Modeling of DSSR 

 Fig. 6-1 presents the proposed prototype DSSR. Each square slot (D×D) is 

connected with another rectangular slot (G×W). The input and output microstrip line 

widths (W) of the DSSR are set to a 50Ω line impedance. Fig. 6-2 illustrates the DSSR’s 

equivalent circuit using a distributed model. The distributed equivalent circuit model of 

the DSSR can be instantly obtained from the DSSR’s geometrical structure. However, 

this distributed equivalent circuit model may not account for the parasitic element 

effects. In this section, the DSSR’s distributed equivalent circuit model is studied with 

the lumped equivalent circuit model. Both distributed and lumped equivalent circuits are 

validated through a circuit and EM simulations. 

 

 
 

Fig. 6-1. Proposed prototype dumbbell-shaped slot resonator (DSSR) on microstrip. 
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                                           (a)                                   (b) 

Fig. 6-2. Prototype (a) DSSR and (b) distributed equivalent circuit model. 
 

 
                                       (a)                                           (b) 

Fig. 6-3. DSSR’s lumped equivalent circuit models; (a) complete model and (b) 
simplified model. 
 

 
Fig. 6-4. CDSSR versus gap dimension (G). 

 

 Fig. 6-3 depicts the lumped equivalent circuit model of the DSSR. In Fig. 6-3 (a), 

two square slot areas (D×D) produce an inductance (LDSSR), and a capacitive coupled gap 

separated by a gap dimension (G) generates a capacitance (CDSSR). 
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 The series inductance (LS) and the parallel capacitance (Cp) are mainly caused by 

the transmission line sections (Z1, l1 and Z0, l0) in Fig. 6-2. The impedance (ZDSSR) 

excluding the parallel capacitor (CP) in Fig. 6-3 (a) is written as: 

2
2

2
DSSR

DSSR S
DSSR DSSR

L
Z j L

L C



 

    
                                         (6.1) 

where ZDSSR is purely inductive when ω2LDSSRCDSSR < 2. It should be noted that the 

DSSR’s resonant pole, [ω0=2/(LDSSRCDSSR)]1/2 appears at a much higher frequency region 

than the DSSR’s operating frequency range due to very low CDSSR. As a result, 

ω2LDSSRCDSSR becomes very close to zero in the DSSR’s operating frequency range 

(ω<<ω0). Thus, in the operating frequency region, the inductance (LTotal) of the 

simplified equivalent circuit model in Fig. 6-3 (b) can be written as: 

2
2

DSSR
Total S

L
L L  .                                                       (6.2) 

 

 
 

Fig. 6-5. Circuit and EM simulated results of DSSR (D=3, G=0.2, L=7.4, W=1.56, 
P=2.2, and T=0.2 mm). 
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Fig. 6-6. Comparison of lumped equivalent circuit models in Fig. 6-3 (a) and (b). 
 

 Fig. 6-4 illustrates the capacitively coupled capacitance (CDSSR) separated by the 

gap dimension (G) with a line impedance of Z0. The parallel capacitance (Cp) in Fig. 6-3 

(a) and (b) can be determined using: 

0( ) r
P

A
C F

h

 
                                                      (6.3) 

where ε0=8.854×10-12 F/m, A=microstrip size (in m2), and h=substrate thickness (in m).In 

order to validate the proposed equivalent circuit models in Fig. 6-2 (b) and Fig. 6-3 (b), 

the circuit simulated results are compared with EM simulated results. The DSSR 

dimensions in Fig. 6-1 have arbitrarily been selected as D=3, G=0.2, L=7.4, W=1.56, 

P=2.2, and T=0.2 mm. The exact value of CDSSR is determined as 0.022 pF from coupled 

line gap modeling. From (6.3), using A=19.7×10-6 m2 and h=0.508×10-3 m, CP is 

determined to be 0.76 pF. Then, LTotal in Fig. 6-3 (b) can be determined by: 

2 2

1
( )

4Total
ar DSSR

L H
f C

                                                (6.4) 

where far=arbitrary anti-resonant frequency (S21 pole) due to LTotal and CDSSR. far is 

determined as a frequency which results in the same cutoff slope to the EM simulated 
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result. Using CDSSR=0.022 pF and CP=0.76 pF, a circuit simulation of Fig. 6-3 (b) reveals 

fa=28.18 GHz with LTota of 1.45 nH. These fa and CDSSR values satisfy (6.4). 

 Fig. 6-5 compares the circuit and EM simulated results. The circuit simulated 

results using Fig. 6-3 (b) show good agreement to the EM simulated results, but the 

resonant pole of the Fig. 6-2 (b) is slightly shifted from the EM simulation results. 

However, as shown in Fig. 6-5, the distributed equivalent circuit model in Fig. 6-2 (b) 

still provides a reasonable agreement to the DSSR’s frequency response characteristics. 
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                                         (a)                                                           (b) 

Fig. 6-7. Modified DSSR for LDSSR and CDSSR enhancement; (a) top view of modified 
DSSR (L1=8.6, L2=10.56, D1=3, D2=7, G=0.2, P=0.8, W1=4.16, and W2=1.56 mm) and 
(b) circuit/EM simulated results of modified DSSR. 
 

 Since LTotal has been determined, LDSSR can also be calculated from (6.2). Here, 

LS should be known for the LDSSR calculation. LS can be determined from [9]: 

0 0

0

2
sin( ) sin( )S eff S

c c c

Z Z
L l

 
  

                                               (6.5) 

where ωc, λ0c, and lS are the cutoff frequency of the DSSR, free space wavelength at ωc, 

and physical line length, respectively. The equation in (6.5) is derived from an even and 
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odd mode analysis of a transmission line. The cutoff frequency of 7.07 GHz has been 

found from the EM simulated results in Fig. 6-5. For the given DSSR dimensions, two 

line sections (7.96 mm×2.2 mm and 1.56 mm×1.4 mm, i.e., width × length) correspond 

to a characteristic impedance of 14 and 50 Ω. Using these characteristic impedances and 

line lengths, the inductances in (6.5) are calculated as 0.14 and 0.31 nH, respectively. As 

a result, by substituting LS= 0.45 nH into (6.2), LDSSR= 1.1 nH is determined. Since LS 

and LDSSR have been found, the lumped equivalent circuit models in Figs. 6-3 (a) and (b) 

can be compared. Fig. 6-6 presents the circuit simulated S-parameter results, and the 

results validate the approximation in (6.2) and the simplified equivalent circuit model in 

Fig. 6-3 (b). 

 

6.3 LPF Design Using DSSR 

 Fig. 6-7 (a) shows the modified DSSR which results in increased LDSSR and CDSSR 

values. In Fig. 6-7 (a), widening the rectangular slot (D1×D2) increases LDSSR. Narrowing 

the gap (G) and widening the line width (W1) enhance CDSSR. For an investigation of the 

modified DSSR in Fig. 6-7 (a), the dimensions have arbitrarily been selected as: L1=8.6, 

L2=10.56, D1=3, D2=7, G=0.2, P=0.8, W1=4.16, and W2=1.56 mm.  

 An equivalent circuit model of the modified DSSR is assumed to be the same as 

Fig. 6-3 (b). The capacitive coupled capacitance, CDSSR is found to be 0.06 pF from a 

microstrip coupled gap modeling. From (6.3), using A=22.6×10-6 m2 and h=0.508×10-3 

m, CP is determined as 0.87 pF. The calculated CP and CDSSR values are assumed to be 

the exact values which do not necessitate further optimization. From (6.4), LTotal is 
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validated as 2.8 nH when far is 12.28 GHz. Fig. 6-7 (b) illustrates circuit and EM 

simulated S-parameters of the modified DSSR. The results still show reasonable 

agreement, and this demonstrates that Fig. 6-3 (b) is acceptable as an equivalent circuit 

model of Fig. 6-7 (a). 
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                                    (a)                                                        (b) 
 

 
(c) 

Fig. 6-8. Proposed miniaturized LPF design using two modified DSSRs; (a) DSSR LPF 
circuit configuration, (b) equivalent circuit model, and (c) comparison of fabricated 
DSSR LPF and conventional LPF. 
 

 Fig. 6-8 (a) depicts the proposed microstrip miniaturized LPF employing two 

modified DSSRs, where L1 and P are set to 17.6 and 1.4 mm, respectively. Other DSSR 

dimensions are the same as shown in Fig. 6-7 (a). Fig. 6-8 (b) presents a distributed 

equivalent circuit model of Fig. 6-8 (a). The equivalent circuit consists of transmission 
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lines and gap coupling capacitances, CDSSR. Fig. 6-8 (c) shows a photograph of the 

fabricated DSSR LPF, where the LPF is compared with a conventional ladder type LPF. 

The conventional LPF has been fabricated for comparison with the DSSR LPF. The 

number of stages for the conventional ladder type LPF is set to N=7 since it produces a 

similar cutoff slope as the DSSR LPF. Fig. 6-9 (a) presents the simulated and measured 

S-parameters of the proposed DSSR LPF. The simulated results agree well with the 

measured data. Insertion losses of the simulated and measured results are found to be 

less than 1 dB in the passband. Fig. 6-9 (b) compares the measured S-parameters of the 

DSSR LPF and the conventional ladder type LPF. In Fig. 6-9 (b), the DSSR LPF 

produces a transmission zero above the 3 dB cutoff frequency. Due to this transmission 

zero, the DSSR LPF achieves a steeper cutoff slope than the conventional ladder type 

LPF. 
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                                           (a)                                                                   (b) 
Fig. 6-9. Simulated and measured S-parameters; (a) simulated and measured results of 
DSSR LPF and (b) comparison of DSSR LPF and conventional LPF. 
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6.4 Tunable DSSR Using Varactor Diode 

 A BPF design using the DGS in [47] employs parallel coupled line circuit 

elements to produce a frequency passband. Normally, complicated microstrip structures 

make analysis and design more difficult, and they are not helpful for circuit 

miniaturization. In addition, the fabrication process is complicated by a slotted ground 

structure. In order to minimize fabrication errors, the slotted ground region should be 

precisely aligned with the top microstrip line. For these reasons, a simple microstrip 

structure is preferable for easy analysis, design, and fabrication. A simple microstrip 

geometrical structure is also helpful for circuit miniaturization. In this section, BPF 

design using a coupled DSSR is presented. An equivalent circuit model of the coupled 

DSSR is provided and validated from simulated and measured results. 

 

 
  (a)                                           (b) 

Fig. 6-10. Coupled type DSSR; (a) top view of coupled DSSR (D=3, G1=G2=0.2, L1=6, 
L2=7.96, P=0.7, and W=1.56 mm), (b) lumped equivalent circuit model, and (c) 
circuit/EM simulated results. 
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   (c) 

Fig. 6-10. Continued. 
 

 In the proposed BPF design using DSSRs, additional shunt stubs or other circuit 

elements are not necessary, so the design is simple and compact. Fig. 6-10 (a) presents 

the microstrip circuit configuration of a coupled DSSR. A lumped equivalent circuit 

model of the coupled DSSR is shown in Fig. 6-10 (b). Capacitive coupling by the gap 

(G2) is modeled as a series capacitance (CS), and the center DSSR is modeled as a 

parallel LC resonator with two shunt capacitances (CP). Since the coupled DSSR utilizes 

a capacitive gap coupling structure, a lumped equivalent circuit model is more 

convenient and efficient than a distributed equivalent circuit model. The lumped 

equivalent circuit model could also account for parasitic element effects by adding 

another inductance or capacitance. For example, an inductance due to the fringing field 

effect should be added to the original inductance value for accurate modeling. 

 For the investigation of the proposed coupled DSSR, the dimensions have been 

set to: D=3, G1=G2=0.2, L1=6, L2=7.96, P=0.7, and W=1.56 mm. These dimensions have 

been determined from parametric studies for a resonant frequency of 7.35 GHz. The 

studies also revealed that LDSSR of the coupled DSSR is affected by the dimension (P) as 
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well as the slot dimension (D×D). Since current flows around two slotted regions (D×D), 

a narrower P and larger D increases LDSSR.  Thus, the resonant frequency of the coupled 

DSSR can be varied using different values of P even though the slot dimension (D×D) is 

the same. As previously found in Section 6.2, CDSSR is 0.022 pF for the same microstrip 

gap dimensions (W=1.56 and G1=0.2 mm). The shunt capacitance, CP is calculated as 0.3 

pF from (6.3) when A=7.8×10-6 m2. Then, LTotal and CS become unknown values. 

However, there is only a single value of CS which will result in a particular bandwidth of 

the coupled DSSR. For this reason, LTotal and CS can be determined by fitting the circuit 

simulated frequency response to the EM simulated data, where LToal dominantly affects a 

resonant frequency and CS mainly controls a bandwidth. LTotal and CS are then found to 

be 2.05 nH and 0.08 pF, respectively. Fig. 6-10 (c) presents the EM simulated S-

parameters of Fig. 6-10 (a) and the circuit simulated results of Fig. 6-10 (b); their results 

agree well. It should be noted that the passband bandwidth of the equivalent circuit 

model in Fig. 6-10 (b) is controlled by CS. 

 

   
                                   (a)                                                 (b) 

Fig. 6-11. Proposed (a) tunable DSSR (D=4.5, G1=0.6, G2=0.2, P1=P2=0.7, P3=0.6, 
W=1.56, and S=0.1 mm) and (b) S-parameter characteristics without varactor diode. 
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Fig. 6-12. Equivalent circuit model of the varactor tuned DSSR. 
 
 
 Fig. 6-11 (a) shows the microstrip circuit configuration of the proposed tunable 

DSSR. In Fig. 6-11 (a), DC is isolated from input and output RF ports by coupled gaps 

(G2). Thus, additional lumped DC block capacitors are not necessary for this tunable 

resonator. Other gaps (S) are also added for an isolation of DC bias in Fig. 6-11 (a). By 

employing the gap (S), the series capacitance (CS) due to the coupled gap dimension (G2) 

is decreased. As a result, the resonant frequency is slightly shifted toward to the high 

frequency region. However, the accurate lumped element values for the tunable DSSR 

can still be determined since their element values are obtained from the simulated S-

parameters. Without a varactor diode, the equivalent circuit model of the tunable DSSR 

is the same as the one in Fig. 6-10 (b). In order to demonstrate the proposed tunable 

DSSR and its equivalent circuit, the DSSR dimensions in Fig. 6-11 (a) are arbitrary 

selected as D=4.5, G1=0.6, G2=0.2, P1=P2=0.7, P3=0.6, W=1.56, and S=0.1 mm. The 

corresponding lumped element values for the given tunable DSSR dimensions can be 

determined by using the same method described in the previous sections. The exact 

CDSSR for G1=0.6 and W=1.56 mm is found as 0.01 pF from a cross coupled microstrip 

line modeling. The parallel shunt capacitance (CP) is calculated from (6.3), and then the 
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series capacitance (CS) is obtained by fitting the circuit simulated pass-band bandwidth 

to the EM simulated one. As already mentioned, the coupled DSSR’s bandwidth is 

dominantly affected by CS in Fig. 6-10 (b). Thus, CS can simply be found. After that, 

LDSSR is determined by matching the circuit simulated resonant pole location to the EM 

simulated one. The lumped element values for the given dimensions are CDSSR=0.01 pF, 

LDSSR=1.47 nH, CP=0.8 pF, and CS=0.13 pF. Fig. 6-11 (b) presents the circuit/EM 

simulated and measured S-parameters of the tunable DSSR without a varactor diode. As 

shown in Fig. 6-11 (b), the designed tunable DSSR resonates at 6.04 GHz, and its 

simulated and measured results show good agreement. 

 The lumped equivalent circuit of the tunable DSSR with a varactor diode is 

shown in Fig. 6-12. The variable capacitance (CV) due to the different bias condition of 

the varactor diode changes the resonant frequency of the DSSR. Fig. 6-13 (a) and (b) 

present the simulated and measured S21 for the different bias levels of the varactor diode, 

where the tunable DSSR dimensions are equal to Fig. 6-11 (a). Thus, the lumped 

element values in Fig. 6-12 are also the same as CDSSR=0.01 pF, LDSSR=1.47 nH, CP=0.8 

pF, and CS=0.13 pF. The varactor diode used for this experiment is MA46600 from 

M/A-COM. This diode typically provides 0.381 pF with no bias and 0.243 pF with 30 

volts. From a diode modeling, the measured diode junction capacitances (CV) have been 

found as 0.31, 0.295, 0.278, and 0.27 pF for 0, 5, 10, and 15 volts, respectively. The 

resonant frequency (f0) of the DSSR in Fig. 6-10 (b) can be written as (6.6), where CTotal 

is the total capacitance of the coupled DSSR without the diode capacitance (CV). Then, 

the resonant frequency (fR) of the tunable DSSR’s equivalent circuit in Fig. 6-12 can be 
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estimated using (6.7), where f0 can simply be found from EM simulation. The circuit 

simulated resonant locations in Fig. 6-13 (a) show good agreement with the measured 

results in Fig. 6-13 (b). Fig. 6-14 illustrates the photo of the fabricated tunable DSSR. 

 Quality (Q) factor of a microstrip circuit is a strong function of frequency and a 

substrate thickness [49]. Resonators can be characterized by their unloaded Q factor 

(QU), which is the ratio of the energy stored to the energy dissipated. Since Q factor is a 

figure of merit which represents the resonator’s performance, it is an important 

parameter along with the resonator’s slope parameter. From the measurement, loaded Q 

(QL) can be determined using (6.8). Once QL is found, QU can also be calculated from 

(6.9). Table 6-1 summarizes the performance of the fabricated tunable DSSR. One 

important fact in Table 6-1 is that the tunable DSSR’s QU is a function of varactor diode 

bias voltage. As the bias voltage increases, QU also increases. This is caused by a diode 

junction resistance which is in parallel to the junction capacitance (CV). The junction 

resistance is dramatically increased, i.e., open circuit, in the reverse bias condition, so CV 

becomes dominant. This junction resistance value is decreased as the diode bias voltage 

increased. Thus, QU is increased with the diode bias voltage. The unloaded Q values in 

Table 6-1 are in the range of 100 to 200, which agrees with the theoretical calculation for 

a typical microstrip line [50]. 
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                                       (a)                                                                   (b) 
Fig. 6-13. Varactor tuned DSSR’s (a) circuit simulated S21 (CV,0V=0.31, CV,5V=0.295, 
CV,10V=0.278, and CV,15V=0.27 pF) and (b) measured S21. 
 
 

 
Fig. 6-14. Photo of the fabricated tunable DSSR. 
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TABLE 6-1 
RESONANT FREQUENCIES, LOADED AND UNLOADED Q FACTORS OF THE MEASURED 

TUNABLE DSSR 
Voltage (V) fR (GHz) QL QU 

0 4.69 52.1 144.1 
-5 4.74 52.6 170.7 
-10 4.79 53.2 182.1 
-15 4.82 53.5 188.5 

 

 

6.5 BPF Design Using DSSR 

 Fig. 6-15 (a) shows the proposed microstrip miniaturized BPF using two coupled 

DSSRs. The center frequency of the filter is set to 7.35 GHz for downlink satellite 

communication systems. The designed filter dimensions are: D=3, L1=4.4, L2=7.96, 

G1=G2=0.2, and G3=0.6 mm, and these dimensions are the same as the coupled DSSR 

dimensions in Fig. 6-10 (a). Fig. 6-15 (b) presents an equivalent circuit model of the 

proposed BPF. The capacitive coupling gap (G3) is modeled as CC in Fig. 6-15 (b). For 

the same DSSR dimensions, all other element values except CC have already been 

determined in Fig. 6-10. Thus, CC can be found by matching the circuit simulated S-

parameters to the EM simulated data. This gives a CC value of 0.012 pF. 

 
                           (a)                                                       (b) 

Fig. 6-15. Proposed miniaturized BPF using two coupled DSSRs; (a) top view of 
proposed BPF (L1=4.4, L2=7.96, G1=G2=0.2, G3=0.6, and D=3 mm), (b) lumped 
equivalent circuit model, and (c) comparison of fabricated DSSR BPF and conventional 
parallel coupled line BPF. 
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  (c) 

Fig. 6-15. Continued. 

 
                                                                   (a) 
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                                                                         (b) 
Fig. 6-16. Simulated and measured S-parameters; (a) simulated and measured results of 
DSSR BPF and (b) comparison of DSSR BPF and conventional BPF. 
 

 A photograph of the DSSR BPF and a conventional parallel coupled line BPF is 

shown in Fig. 6-15 (c). The conventional parallel coupled line BPF has been fabricated 

for a comparison. The number of stages for the parallel coupled line BPF is set to N=3 
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since it produces a similar cutoff slope. Fig. 6-16 (a) illustrates the simulated and 

measured results of the designed DSSR BPF, and Fig. 6-16 (b) compares the measured 

results of the DSSR BPF and the conventional parallel coupled line BPF. As presented in 

Fig. 6-15 (c) and Fig. 6-16 (b), a BPF miniaturization can be achieved using coupled 

DSSRs, and the frequency response characteristic of the DSSR BPF is comparable to a 

conventional parallel coupled line BPF with N=3. 

 

6.6 Conclusions 

 A microstrip dumbbell-shaped slot resonator (DSSR) and its equivalent circuit 

models have been introduced in this chapter. Circuit and EM simulations validate 

lumped and distributed equivalent circuit models of the proposed DSSR. Using the 

DSSRs, miniaturized lowpass and bandpass filters are designed and tested. Since the 

DSSR is a simple microstrip structure, an analysis and design are relatively easy, and 

fabrication errors can also be reduced. In LPF and BPF designs using the DSSRs, both 

simulated and measured results agree well. The dimensions of the designed LPF are 

0.27λg × 0.17λg at a cutoff frequency of 3.4 GHz. A measured insertion loss of less than 1 

dB and a return loss of greater than 18 dB have been achieved. The dimensions of the 

designed BPF are 0.37λg × 0.27λg at a center frequency of 7.35 GHz. A measured 

insertion loss of less than 3 dB and a return loss of greater than 15 dB have been 

achieved. Using the proposed miniaturization technique, compact RF/microwave 

microstrip resonators and filters can be achieved. 
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CHAPTER VII 

ISOSCELES TRIANGLE SHAPED PATCH RESONATOR 

 

7.1 Introduction 

 The isosceles triangle shaped patch resonator (ITSPR) is investigated using 

electromagnetic (EM) simulation and a curve fitting method. New design equations 

which determine the ITSPR dimensions are then proposed. Other equations which 

estimate fractional bandwidth (FBW), effective dielectric constant, and center frequency 

of an ITSPR are also introduced.  Simple design techniques for a low loss band-pass 

filter (BPF) and diplexer using ITSPRs are presented to demonstrate its practical uses in 

RF/microwave applications. The BPF designed by the proposed method produces much 

sharper frequency cutoff characteristics compared to a conventional BPF using a single 

ITSPR. The BPF using the ITSPR is easier to design and fabricate than BPFs using other 

coupling structures (such as a parallel/capacitive gap coupled line) since the frequency 

response of the ITSPR is less sensitive to the coupling gap. To validate the proposed 

analysis and design methodology, a 5.8 GHz BPF is designed and measured. The 

designed filter has a wide pass-band with a 2:1 VSWR bandwidth of 12% and an 

insertion loss of less than 1.5 dB in its pass-band. Measured results agree well with the 

simulated results. A diplexer with pass-bands of 5 and 6 GHz is also developed as an 

application of the ITSPR. 

 The microstrip band-pass filter (BPF) is one of the most widely used components 

in RF/microwave systems. Many filters [51]-[56] have been developed to meet today’s 
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filter requirements including low-insertion loss, compact size, and low cost. Simple 

geometrical structures for resonators and filters are preferable for easy analysis and 

design. In general, geometrically complex microstrip passive circuits tend to be more 

dependent on computer aided electromagnetic (EM) simulation. On the other hand, 

simple circuit structures provide a relatively easy analytical solution. As a result, their 

performance can be predicted in the design process, and the design methodology can be 

less dependent on EM simulation.  

 In this chapter, one of the simplest types of patch resonators, an isosceles triangle 

shaped patch resonator (ITSPR), is investigated. Utilizing an EM simulator, ITSPR 

design equations are obtained through curve fitting. The proposed equations provide 

good estimations of ITSPR performance and reduce time-consuming computer 

simulation in the design. 

 As the frequency spectrum becomes increasingly crowded, a sharp frequency 

cutoff is necessary for overall system performance and interference prevention. 

Generally speaking, filters require several resonator sections to achieve high frequency 

selectivity. In BPF design, inserting multiple resonator sections makes it difficult to 

reduce the circuit size and insertion loss. The conventional BPF design techniques 

discussed in [57] and [58] are not convenient since each microstrip resonator is separated 

by several gaps, and the filter’s performance is significantly affected by fabrication 

errors of these gaps.  This leads to inevitable errors in design realization which will alter 

the filter’s characteristics. Thus, a simple design which minimizes the number of 

resonators (and therefore gaps) is preferable for low loss and compact filters, but the 
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filter design should also produce a sharp frequency cutoff. To meet these requirements, a 

BPF using two ITSPRs is introduced as a proposed design. 

 Diplexers or multiplexers are indispensable components in wireless 

communication systems which operate in full duplex mode. Diplexers and multiplexers, 

shown in [59]-[62], are complicated and difficult to design and fabricate since there are 

many design parameters which should be considered for circuit dimensions. For these 

reasons, diplexer and multiplexer designs using a parallel coupled line filter or periodic-

stub structure do not provide convenient design procedures. In this chapter, a diplexer 

which utilizes simple design techniques using ITSPRs is also presented. 
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Fig. 7-1. Simulated S-parameters for an ITSPR with dimensions of W=0.56, L=3.2, D= 
20.5, and G=0.6mm (H=0.635 mm and εr=10.2). 
 

7.2 Background 

 The ITSPR was first introduced as the name of a DC-block cymbal resonator for 

a filter application as described in [63]. Fig. 7-1 presents an ITSPR’s circuit 

configuration and simulated S-parameters. As shown in Fig. 7-1, an ITSPR produces a 
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frequency pass-band like a BPF. One interesting characteristic in its frequency response 

is that an ITSPR operates as a dual mode resonator. By employing two resonant poles, 

an ITSPR is capable of a wider pass-band as compared to a single mode resonator. 

 The design variables for the ITSPR in Fig. 7-1 are: feed line width (W), patch 

length (L), gap (G), patch width (D), and substrate thickness (H). The feed line width 

(W) is always set to 50 Ω. The dimensions of these ITSPR design variables can be 

determined using the conventional design equations [63]: 

 

 
Fig. 7-2. Simulated S-parameters for an ITSPR with dimensions of D=20.5, L=3.2, and 
G=0.6 mm (εr=10.2). 

 

1.27o

r

c
f

D 
 


                                                   (7.1) 

 
6.35

D
L                                                           (7.2) 

 
5

L
G   .                                                          (7.3) 



 109

 In (7.1), fo is the pass-band center frequency and c is the speed of light. These 

conventional equations have been obtained from several simulations for different ITSPR 

dimensions.  

 In BPF design, operating bandwidth and pass-band center frequency are the most 

important design specifications. To obtain the desired performance, the filter should be 

designed based on these design specifications. Since the conventional design equations 

do not account for the substrate thickness effect, one cannot determine how the substrate 

thickness affects the bandwidth and center frequency shift. As illustrated in Fig. 7-2, use 

of the conventional equations (7.1)-(7.3) results in bandwidth and center frequency 

variations for different substrate thicknesses. Due to these frequency response variations, 

one cannot know what substrate thickness will result in the desired bandwidth and center 

frequency location. The conventional ITSPR design equations in (7.1)-(7.3) are only 

valid for a single substrate thickness which is used for the investigation. In Section III, 

new ITSPR design equations which can predict the exact center frequency and 

bandwidth are presented. 

 The conventional ITSPR design equation in (7.1), which determines the 

resonator’s width (D), is a function of the dielectric constant (εr). In general, microstrip 

circuit design relies on the effective dielectric constant (εeff) to account for the fringing 

effects and radiated fields. Since this effective dielectric constant is a function of 

substrate thickness and microstrip line width, circuit design using the effective dielectric 

constant is more reasonable. For this reason, use of (7.1) might decrease the design 

accuracy. In order to obtain accurate ITSPR dimensions, the effective dielectric constant 
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of the ITSPR should be determined. Calculation of the ITSPR’s effective dielectric 

constant is discussed in Section 7.3. 

 

 
Fig. 7-3. Simulated S-parameters for an ITSPR with dimensions of D=20, L=3.1, 
H=0.635 mm, and εr=10.2. 
 

7.3 Considerations of ITSPR Design Variables 

 The analytical solutions for the triangular patch resonator have been reported in 

[64], but these solutions are only valid for an equilateral triangle resonator and may not 

be compatible with an ITSPR. In this section, ITSPR dimensions (D, L, G, and H) as 

design variables are investigated to determine how these parameters affect operation and 

performance. Through this study, practical design equations for ITSPRs are introduced. 

The equations are validated through EM simulation and measurement. 

 Fig. 7-3 shows the simulated S-parameters of an ITSPR which is designed for a 

center frequency of 6 GHz using the conventional equations in (7.1)-(7.3). In a coupled 

type resonator or filter design, coupling gap distance (i.e., coupling coefficient) normally 

affects the frequency bandwidth. However, as illustrated in Fig. 7-3, the ITSPR’s pass-
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band and center frequency do not show major changes even though the variations in gap 

dimension are significant. Due to the wide patch width (D), the coupling, i.e., series 

capacitance, between the two patches is strong. As a result, the coupling can be less 

dependent on the gap dimension (G).  This illustrates that an ITSPR’s pass-band and 

center frequency are not sensitive to the gap dimension. For this reason, the gap 

dimension (G) can be ignored in the ITSPR’s design variables. 

 On the other hand, the frequency pass-band of a parallel/end coupled line BPF is 

very sensitive to its gap dimension.  Thus, a BPF using an ITSPR can be easier to design 

and fabricate than BPFs which utilize other coupling structures. 
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Fig. 7-4. Simulated S-parameters for an ITSPR with dimensions of D=20, G=0.6, 
H=0.635 mm, and εr=10.2. 
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Fig. 7-5. Simulated S21 for an ITSPR with dimensions (D=20, L=3.1, G=0.6 mm, and 
εr=10.2) and varying substrate thickness. 
 

 In Fig. 7-3, transmission zeros are also observed. The transmission zeros below 

the pass-band and above the pass-band result from dominant magnetic coupling and 

electric coupling, respectively [65].  As the gap dimension (G) increases, the capacitance 

between the ITSPR and ground plane increases, and the capacitance between the two 

patches decreases. Accordingly, the magnetic coupling becomes dominant and the zeros 

appear below the pass-band. As the gap dimension narrows, the zero location moves 

closer to the pass-band.  This improves the cutoff characteristic, but it is not significant 

as shown in the frequency responses of Fig. 7-3. Since the zero locations do not affect 

the pass-band and center frequency, which are the most important characteristics of a 

BPF, the formation of the zero locations is excluded from the study. 

 Fig. 7-4 illustrates the simulated S-parameters of an ITSPR which is designed for 

a center frequency of 6 GHz using the conventional design equations in (7.1)-(7.3). As 

shown in Fig. 7-4, the pass-band and center frequency are not appreciably altered when 

the resonator length (L) changes significantly. The electromagnetic field transition 
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region, i.e., resonator length (L), reduces the reflections and focuses the field on the edge 

of the patch (D). Furthermore, an ITSPR’s resonant frequency is mostly affected by the 

length of the patch edge (D).  This explains why resonator length changes do not 

influence an ITSPR’s overall frequency response characteristics. For this reason, the 

ITSPR length (L) can be disregarded from the ITSPR design variables. 

 Fig. 7-5 shows the simulated S21 of an ITSPR which is designed for a center 

frequency of 6 GHz using the conventional equations. As shown in Fig. 7-5, the 

bandwidth and center frequency are different for varying substrate thicknesses. When 

the substrate thickness increases, the bandwidth also increases. As a result, the center 

frequency is no longer fixed at 6 GHz. Thus, even if one designs an ITSPR using the 

conventional equations at a desired center frequency, the desired center frequency and 

bandwidth may not be obtained. This simulation experiment illustrates that the substrate 

thickness is a dominant factor for determining an ITSPR’s operating frequency pass-

band characteristics. For these reasons, the conventional equation in (7.1) is not a 

complete form. The ITSPR’s substrate thickness (H) must be included as a design 

variable. 

 

7.4 The Effective Dielectric Constant of an ITSPR 

 Through the investigation, it has been determined that the resonant point is 

generated when the ITSPR width (D) is approximately the same as the guided 

wavelength (λg). Thus, to develop accurate design equations, the ITSPR’s effective 

dielectric constant (εeff) should be found. 
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(a) 

 
(b) 

Fig. 7-6. Circuit configurations of (a) microstrip line and (b) ITSPR. 
 

 In Fig. 7-6 (a), the effective dielectric constant (εeff ) of the microstrip line can be 

calculated using a closed-form equation obtained from curve fitting measured data [66]. 

Strictly speaking, εeff varies with frequency, but its variation is small. Thus, the closed-

form equation can still be reliable. The microstrip line’s closed-form equation for εeff is a 

function of line width (W) and substrate thickness (H). 

 To obtain a closed-form equation for εeff of an ITSPR, EM simulation and curve 

fitting are employed. This closed-form equation for εeff is used to develop new design 

equations for the ITSPR. For the simulation, the ITSPR dimensions are optimized to 

produce a 5.8 GHz center frequency on three different substrates. The three different 

substrates have dielectric constants of 6.15, 8, and 10.2, but the substrate thicknesses are 

the same at 0.127 mm (5 mil). The ITSPR dimensions and the dielectric constants for the 

simulations are: 

 Case 1: D=25.0, L=4.5, G=0.5, and εr=6.15. 

 Case 2: D=22.1, L=3.4, G=0.5, and εr=8. 

 Case 3: D=19.8, L=2.8, G=0.6, and εr=10.2. 
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These optimized ITSPR dimensions guarantee good resonance characteristics, i.e., an 

insertion loss of less than 0.8 dB and a return loss greater than 20 dB from an EM 

simulation. Fig. 7-7 shows εeff on a fixed substrate thickness of 0.127 mm. Since the 

variation of εeff in Fig. 7-7 is negligible, the frequency effect on εeff can be ignored. Fig. 

7-8 represents the variation of εeff on different substrate thicknesses with the simulating 

frequency fixed at 5.8 GHz. As shown in Fig. 7-8, the substrate thickness (H) does not 

significantly change εeff. For these reasons, the frequency and substrate thickness can be 

disregarded in the closed-form equation for εeff. 

  
Fig. 7-7. EM simulated effective dielectric constant (εeff) for a fixed ITSPR substrate 
thickness (H=0.127 mm or 5 mil). 
 

                
Fig. 7-8. EM simulated effective dielectric constant (εeff) at a fixed simulating frequency 
(f=5.8 GHz). 
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 For W/H > 1, εeff of a microstrip line can be calculated using the conventional 

equation [66] 

 
 1 2

1 1 12
1

2 2
r r

eff

H

W

 
      

  .                            
 (7.4) 

In this conventional closed-form equation, the W/H ratio is a critical factor in 

determining εeff, but the new proposed equation 
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      

 
                                             (7.5) 

has different variables. From the simulated numerical data, it is found that εeff of an 

ITSPR is strongly affected by the D/L ratio. The proposed equation in (7.5) provides a 

good closed-form estimation for εeff of an ITSPR.  

 Table 7-1 validates the formula presented in (7.5) by comparing it to an EM 

simulation of εeff. The dimensions used for the comparison are optimized for a center 

frequency of 5.8 GHz and a substrate thickness of H=0.127mm (5 mil). As shown in 

Table 7-1, εeff determined using (7.5) matches well with the EM simulated results. 

 

TABLE 7-1 
EFFECTIVE DIELECTRIC CONSTANT ( eff ) OF AN ITSPR 

ITSPR 
Dimensions (mm) 

εr  
εeff  

(EM simulation) 
εeff 

(Formula presented here) 
D=25.0, L=4.5, G=0.5 6.15 4.4 4.3 
D=22.1, L=3.4, G=0.5 8 5.6 5.4 
D=19.8, L=2.8, G=0.6 10.2 6.9 6.8 
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7.5 Fractional Bandwidth of an ITSPR 

 The dimensions in Table 7-1 are used to investigate an ITSPR’s bandwidth 

variation with differing substrate thicknesses. By fixing the dimensions and only varying 

the substrate thickness (H), an ITSPR’s bandwidth variations due to H can be plotted 

using simulation results. Equations can be fit to the simulated plot and derived as 

2(%) 2 ln( ) 2.3FBW H      for εr=6.15                                   (7.6) 

3(%) 1.7 ln( ) 4FBW H     for εr=8                                        (7.7) 

3(%) 2 ln( ) 5.5FBW H      for εr=10.2                                   (7.8) 

where H is in mil.  

F
B

W
 (

%
)

 
Fig. 7-9. Fractional bandwidth with varying substrate thickness (H). 

 

 The bandwidth estimating equations in (7.6)-(7.8) have been plotted and 

compared with the EM simulated results in Fig. 7-9. Fig. 7-9 illustrates increasing 

bandwidth of an ITSPR with increasing substrate thickness (H), where the ITSPR 

dimensions are fixed as in Table 7-1. The simulated data and equations proposed here 

show good agreement. From Fig. 7-9, one can estimate the fractional bandwidth and 



 118

optimize the substrate thickness for ITSPR design.  

 

7.6 ITSPR’s New Design Equations 

 In order for an ITSPR to resonate at fo, the patch width (D) should be set equal to 

the guided wavelength (λg) corresponding to fo. This gives the design constraint 

 gD                                                                   (7.9) 

which can be used to give 

 o

g eff eff

c c
f

D  
 

   
                                            (7.10) 

where fo is the center frequency of the pass-band and εeff is the effective dielectric 

constant of an ITSPR as given in (7.5). However, the investigation also reveals that the 

proposed equation in (7.10) is only accurate for a thin substrate (H=0.127 mm or 5 mil) 

because a thick substrate introduces spurious modes (i.e., surface wave modes) within 

the ITSPR. The spurious modes affect the center frequency location, so they are not 

desirable in the proposed design. As described earlier, increasing the substrate thickness 

enhances an ITSPR’s bandwidth. Thus, for a thick substrate case, (7.10) may still be 

used, but the accuracy of the center frequency location is decreased due to the increased 

bandwidth with center frequency shift. This has already been illustrated in Fig. 7-5. 

Since (7.10) has been found most reliable on a substrate thickness of 0.127 mm (5 mil), 

(7.10) is defined as the prototype equation. To increase the accuracy of this prototype 

equation, the effects due to substrate thickness should be considered. Later, the prototype 

equation is modified in order to account for the substrate thickness effects. 
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Fig. 7-10. Normalized center frequencies (fo'= fo(H)/fo(H')) for varying substrate 
thickness (H=variable for substrate thickness and H'=5 mil). 
 

 Fig. 7-10 illustrates normalized center frequencies with varying substrate 

thickness. The ITSPR dimensions in Table I have been used for this analysis and only 

the substrate thickness is altered. The substrate thickness is varied from 0.254 mm (10 

mil) to 0.889 mm (35 mil), and the center frequency is normalized by fo(H') which is the 

center frequency for a 5 mil substrate thickness. Here, fo(H) is obtained from EM 

simulation and fo(H') is calculated using the proposed formula in (7.10), where D and εeff 

are given in Table 7-1. 

 The substrate thickness factor (K) of the normalized center frequency due to the 

substrate thickness, as illustrated in Fig. 7-10, can be represented by a mathematical 

expression as 

 
 

ln 5 0.037
7 ln o

H
K f

H

   
              

                                        (7.11) 

where H is in mils. 

 This substrate thickness factor (K) should be subtracted from (7.10) to obtain a 
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consistent center frequency location for different substrate thickness. Then, a complete 

ITSPR design equation can be written as 

 o eff

c
D

f K 


 
 .                                                 (7.12) 

This equation accounts for the substrate thickness effect. As a result, the ITSPR can be 

designed on different substrate thicknesses without affecting the center frequency (fo). 

 The normalized center frequency (fo′) in Fig. 7-10 is close to unity when H<0.254 

mm (10 mil). Thus, when H <0.254 mm, the substrate thickness factor (K), in (7.12), 

becomes zero. Then, the ITSPR width (D) can be determined by 

o eff

c
D

f 



                                                           (7.13) 

for H < 0.254 mm (10 mil). 

 For the thick substrate region (i.e., H ≥ 0.254 mm), the ITSPR width (D) can be 

calculated by 

 
 

ln 51.037
7 ln o eff

c
D

H
f

H



  
         

                                       (7.14) 

where D is in mm. 

 Once the ITSPR width (D) is found from (7.13) or (7.14) at the desired center 

frequency, other ITSPR dimensions (L and G) can be found from 

D
L

a
                                                                 (7.15) 
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L
G

b
  .                                                              (7.16) 

The constants (a and b) are found from a simulation which gives a good insertion/return 

loss characteristic (i.e., RL > 20 dB and IL < 1 dB). The values for a and b change for 

different dielectric constants, and some values are shown in Table 7-2.  These constants 

(a and b) can be found for other dielectric constants using the method shown here. 

 

TABLE 7-2 
OPTIMIZED VALUES FOR DIFFERENT DIELECTRIC CONSTANTS 

εr A b 

6.15 5.5 9.0 
8 6.5 6.8 

10.2 7.0 4.7 
 

 For further validation of the proposed equations in (7.6)-(7.8) and (7.13)-(7.16), 

ITSPRs with four different substrate thicknesses are designed for a center frequency of 6 

GHz and fabricated. The dielectric constant is kept at 10.2 for all of the designs. The 

ITSPR dimensions of the four different substrate thicknesses are calculated using (7.13)-

(7.16), simulated, and compared with measured results. The four different substrate 

thicknesses and calculated dimensions are: 

 Case 1: H=0.127 mm, D=19.17 mm, L=2.7 mm, G=0.6 mm 
 Case 2: H=0.254 mm, D=19.30 mm, L=2.8 mm, G=0.6 mm 
 Case 3: H=0.381 mm, D=19.50 mm, L=2.8 mm, G=0.6 mm 
 Case 4: H=0.635 mm, D=19.80 mm, L=2.8 mm, G=0.6 mm 
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                                                                         (b) 
Fig. 7-11. S21 frequency response results of (a) EM simulation and (b) measurement for 
varying ITSPR substrate thickness (εr=10.2 for all cases). 
 

 
 The EM simulated and measured S21 results of the four different cases are shown 

in Fig. 7-11. These S21 frequency response characteristics can be compared with Fig. 7-5 

since their center frequency is set to 6 GHz. The results in Fig. 7-11 are achieved using 

ITSPRs with dimensions calculated from the proposed equations in (7.13)-(7.16), and 

the results in Fig. 7-5 are obtained using dimensions calculated by the conventional 

equations in (7.1)-(7.3). The results using the proposed design equations show better 

center frequency agreement. 
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 As shown in this section, an ITSPR’s bandwidth and the center frequency can 

accurately be estimated by substrate thickness and dielectric constant. The proposed 

ITSPR design methodology would also hasten the design process by requiring less EM 

simulation time. 

 

7.7 BPF Design Using Double ITSPRS 

 As previously mentioned, the gap dimensions of the parallel/end coupled line 

BPFs are very critical to their performance. Thus, a new filter design methodology 

reducing the number of gaps while maintaining the sharp frequency cutoff characteristic 

is required to improve overall filter performance. 

 The conventional BPF with a single ITSPR shown in [63] does not produce the 

sharp frequency cutoff characteristic as shown in Fig. 7-3 and 7-4. Due to its poor 

frequency cutoff characteristics, the BPF utilizing a single ITSPR could be considered as 

simply a dual mode resonator rather than a filter. Thus, this conventional BPF cannot be 

applied to a diplexer design when the two frequency channels of the diplexer are close 

each other. For these reasons, an alternative filter design technique using an ITSPR is 

necessary to produce a steep frequency cutoff characteristic. 

 
Fig. 7-12. Proposed BPF using two ITSPRs and one center transmission line. 
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 In order to improve the frequency cutoff characteristics, a new BPF design using 

two ITSPRs is introduced. The improvement of the proposed design method is validated 

through simulation and measurement. The circuits are built on Rogers 3110 with a 

thickness of 0.635 mm and a dielectric constant of 10.2. 

 To demonstrate the double ITSPR design technique, a BPF with a center 

frequency of 5.8 GHz is designed. Fig. 7-12 shows the proposed double ITSPR BPF 

circuit configuration. As shown in Fig. 7-12, the BPF consists of two ITSPRs and one 

center transmission line. The line width (W) is set for a 50 Ω line, and the other ITSPR 

dimensions can be determined from the proposed equations in (7.13)-(7.16). The center 

transmission line length (P) is designed using 

 

 4 o

c
P

f K


 
  .                                             (7.17) 

 

The design equation in (17) can be derived from (10) and (12) when the transmission 

line length (P) is defined as a quarter-wavelength at the center frequency (fo). Here, it 

should be noted that the ITSPR width (D) is not four times greater than the line length 

(P) since the width (D) includes the substrate thickness factor (K) for H ≥ 0.254 mm. 
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                                                                          (a) 

 
                                                                         (b) 

             
                                                                        (c) 
Fig. 7-13. S-parameter frequency responses of (a) simulated and (b) measured double 
ITSPR BPF (D=20.5 mm, L=2.9 mm, G=0.6 mm, and P=13.4 mm) and (c) photo of the 
fabricated ITSPR BPF. 
 

  The designed filter employing two equivalent ITSPRs with a center transmission 

line produces a much sharper frequency cutoff characteristic than a conventional ITSPR 

filter. 
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 For parameters H=0.635 mm, fo=5.8 GHz and εr=10.2, (7.14)-(7.16) can be used 

to find the ITSPR dimensions D, L, and G as 20.5, 2.9, and 0.6 mm, respectively. The 

center line length (P) is found to be 13.4 mm from (7.17). The EM simulated and 

measured results of a BPF with these dimensions are shown in Fig. 7-13 (a) and (b), 

respectively. A photograph of the fabricated BPF is also shown in Fig. 7-13 (c). As 

shown in Fig. 7-13 (a) and (b), the proposed BPF produces much sharper frequency 

cutoff characteristics as compared to the conventional one described in [63]. The 

measured data shows an insertion loss of less than 1.5 dB and a return loss of greater 

than 12 dB in the pass-band. 

 

 
Fig. 7-14. Proposed diplexer utilizing four ITSPRs and its optimized dimensions (6 
GHz: D2=20 mm, L2=3.1 mm, G2=0.6 mm, P2=12.5 mm, and M2=4.3 mm and 5 GHz: 
D3=23.85 mm, L3=3.75 mm, G3=0.75 mm, P3=15 mm, and M3=4.6 mm). 
 

 
Fig. 7-15. Equivalent circuit configuration of the proposed diplexer; ports 2 and 3 are 
terminated with 50 Ω. 
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7.8 Diplexer Design 

 Based on the proposed BPF design utilizing two ITSPRs, a diplexer consisting of 

four ITSPRs is proposed. To demonstrate the proposed design, a diplexer with center 

frequencies of 5 and 6 GHz in each pass-band is designed, simulated, and measured. In 

this section, all circuits are fabricated on Rogers 3110 (thickness=0.635 mm and 

εr=10.2). Since the two channels are close to each other in the frequency band, the filters 

should be capable of producing a sharp frequency cutoff to reduce the interference 

between the two adjacent channels. 

 Fig. 7-14 shows the proposed diplexer with dimensions (D, L, G, P, and M). The 

dimensions for 5 and 6 GHz filters are found from the proposed equations in (7.13)-

(7.17) and optimized using an EM simulator. The connecting line lengths (M2 and M3) 

can be defined by high and low input impedance conditions.  In Fig. 7-15, ZR,in1 and 

ZL,in1 are the input impedances for the 5 and 6 GHz BPFs, respectively. Within the pass-

band of these two filters, the input impedances ZR,in1 and ZL,in1 are about 50 Ω when both 

filters are terminated with 50 Ω. 

 To increase isolation between the two filters, a high and low input impedance 

condition is applied. If the input impedance, ZR,in2 (ZL,in2), at the junction point (J) is a 

high impedance (∞) and ZL,in2 (ZR,in2) is 50 Ω, all input signals flow into port 2 (port 3). 

 For the 5 GHz signal path from the input, ZR,in2 should be 50 Ω near 5 GHz, i.e., 

the pass-band. If ZL,in2 has a much higher impedance than ZR,in2 (ZL,in2 >> ZR,in2 (50 Ω)) at 

5 GHz, all signals at 5 GHz will flow into the 5 GHz path. Since the input impedance of 

ZL,in1 is low at 5 GHz, making M2 a quarter- wavelength line (λg/4) at 5 GHz will make 
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ZL,in2 a high impedance. Fig. 7-16 (a) shows a high input impedance for ZL,in2 (ZL,in2 = 

662.7+j2670 Ω) at 5 GHz. Thus, all signals at 5 GHz flow into the 5 GHz BPF since 

ZR,in2 is 50 Ω as shown in the shaded area of Fig. 7-16 (b). 

 For the 6 GHz signal path from the input, ZL,in2 should be 50 Ω near 6 GHz. If 

ZR,in2 has a much higher impedance than ZL,in2 (ZR,in2 >> ZL,in2(50 Ω)) at 6 GHz, all signals 

at 6 GHz will flow into the 6 GHz path, which is port 2. Since the input impedance of 

ZR,in1 is low at 6 GHz, making M3 a quarter-wavelength line (λg/4) at 6 GHz will make 

ZR,in2 a high impedance. Fig. 7-16 (b) shows a high input impedance for ZR,in2 (ZR,in2 = 

5275 + j7789 Ω) at 6 GHz. Thus, all signals at 6 GHz flow into the 6 GHz BPF since 

ZL,in2 is 50 Ω as shown in the shaded area of Fig. 7-16 (a). 

 The design procedure to determine the dimensions of M2 and M3 are summarized 

as: 

 

 1) The input impedances ZR,in1 (at 6 GHz) and ZL,in1 (at 5 GHz) are found from 

 the electromagnetic (EM) simulation. Their impedances should be low. If their 

 impedances are high, one may use a half-wavelength line for M2 and M3. 

 2) The dimensions of M2 and M3 are approximated as quarter wavelengths at 5 

 GHz and 6 GHz, respectively. 

 3) The dimension of M2 (M3) is optimized to give a high input impedance for 

 ZL,in2 (ZR,in2)  at 5 GHz (6 GHz). 
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Fig. 7-16. Simulated input impedances (a) ZL,in2 and (b) ZR,in2 at the junction, J. 
 

 From the above procedure, M2 and M3 are found to be 4.3 mm and 4.6 mm, 

respectively. Fig. 7-17 (a) and (b) show the simulated and measured S-parameters of the 

designed diplexer. A comparison of these two results is also presented in Fig. 7-17 (c). 

Both simulated and measured results successfully validate the design methodology, and 

they agree fairly well. The isolation between the two output ports has been plotted in Fig. 

7-18 and is greater than 30 dB within the two frequency pass-bands. A photograph of the 

fabricated diplexer is shown in Fig. 7-19. The proposed diplexer in this paper shows 

better performance and less circuit complexity as compared with previous work [59]. 
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Since the designed diplexer has a simple structure, it is easy to fabricate and minimizes 

cost. 

 
        (a) 

 
        (b) 

 
        (c) 

Fig. 7-17. S-parameters of (a) EM simulated and (b) measured diplexer and (c) 
comparison of both results. 
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Fig. 7-18. EM simulated and measured isolation of the diplexer. 
 
 

          
Fig. 7-19. Fabricated diplexer using ITSPRs. 
 

7.9 Conclusions 

 A rigorous investigation to determine an ITSPR’s effective dielectric constant, 

design equations, and bandwidth has been conducted. The proposed equations are 

validated through several simulations and measurements. Based on these studies, simple 

techniques for BPF and diplexer designs using ITSPRs have been presented. The BPF 

using the proposed method has the advantages of wide bandwidth, low loss, and simple 

fabrication. Compared to a conventional BPF using a single ITSPR, the proposed filter 

utilizing two ITSPRs and one center microstrip line produces steeper frequency cutoff 
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characteristics. The insertion loss and return loss of the proposed BPF are measured as 

less than 1.5 dB and greater than 12 dB, respectively. A diplexer design using high and 

low impedance conditions has also been introduced as an application of the ITSPR. The 

simulated and measured results show fairly good agreement in both BPF and diplexer 

designs. 
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CHAPTER VIII 

PHASED ARRAY FOR MULTIFUNCTION RADAR APPLICATIONS 

 

8.1 Introduction 

 The study of phased arrays is very extensive and would need several texts to 

cover adequately. In this section, however, a brief description of relevant backgrounds 

and design parameter will be given for introductory purposes. 

 An antenna is a component that radiates and receives the electromagnetic 

energies and used for almost all wireless communication applications. An antenna is a 

reciprocal device, and the same antenna can serve as a receiving or transmitting device. 

Antennas considered as a component which provide transitions between guided and free-

space electromagnetic waves. Guided waves are confined to the boundaries of a 

transmission line to transport signals from one point to another, while free-space 

electromagnetic waves radiate unbounded [67]. A transmission line is designed for a 

minimized radiation loss, but the antenna is designed to have maximum radiation. The 

radiation generally occurs due to discontinuities (which cause the perturbation of fields 

or currents), unbalanced currents, and so on. 

 Single antennas are popularly utilized for many communication applications 

because of a large HPBW and, consequently, a lower gain. However, for some 

applications including long range communication applications and radar systems, a high-

gain and narrow pencil beam is required. Since most antennas have dimensions that are 

on the order of one wavelength, and since beamwidth is inversely proportional to 
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antenna size, more than one antenna is required to sharpen the radiation beam. 

Generally, by increasing the number of antenna elements, one can increase a directivity 

of the antenna. An array of antennas working simultaneously can focus the reception or 

transmission of electromagnetic energy in a particular direction, which increase the 

useful range of a system. 

 Considering the one-dimensional linear array shown in Fig. 8-1, the radiated field 

from a set of sources can be given by: 
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where Ii, ρi, and Φi are the ith element’s magnitude, polarization, and phase, 

respectively; fi(θ,  ) is the radiation pattern of the ith element and ri is the distance from 

the ith element to an arbitrary point in space; and k0 is the propagation constant, equal to 

2π/λ0. 

 Typically, the polarization of every element is aligned for copolarization, i.e., ρi 

≈ρ =1. The array has N elements with uniform spacing d. It is oriented along the z axis 

with a phase progression Φ. In far field condition, letting r1=r leads to the phase terms 

of: 
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Fig. 8-1. N-element array along z axis. 

 

 For uniform amplitude (Ii=I), if radiation patterns of all elements are identical 

(fi(θ, )= f(θ, )) and the phase progression to antenna elements are the same (Φi=Φ), the 

approximation in (8.2) allows the total field to be given by: 
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The total field from the array described by the equation in (8.3) is made up of an element 

pattern 0( , ) ( / 4 )jk rf I e r    and the array factor (AF). This is known as pattern 

multification. The AF in (8.3) can be rewritten as: 
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where 0 cosk d   . The expression in (8.4) is the AF of a uniform linear array. Φ 

is a progressive phase difference of adjacent two elements. (8.4) implies that AF, i.e., 

main beam, can be controlled by adjusting element spaces (d) and progressive phase 

difference (Φ) between elements. From simple mathematical steps, (8.4) can be shown 

as: 

sin
1 2

1
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N
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                                                              (8.5) 

where 0 cosk d   . (8.5) is a normalized AF of a uniform linear array. 

 For a scanning array with elements laying on z-axis as shown in Fig. 8-1, it is 

desired that the maximum radiation of the array is oriented at an angle θ0, where θ0 is 

ranging from 0° to 180°. For the maximum radiation between 0° and 180°, the 

normalized AF in (8.5) should also be a maximum. When ψ=0 in (8.5), the maximum 

AF is obtained. This leads to: 

0 cos 0k d                                                           (8.6) 
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 As a result, AF in (8.4) can be presented as: 

 0 0

1
( (cos cos ))

1

N
jn k d

i

AF e  


 



                                                    (8.8) 

The expression in (8.8) is useful for computing the AF using commercial mathematic 

plotting tools. 
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Fig. 8-2. Broadside of a uniform linear array with θ0=90°, d=0.5λ, and N=10. 
 

 
Fig. 8-3. Endfire of a uniform linear array with θ0=0°, d=0.5λ, and N=10. 
 
 
 Figs. 8-2 and 8-3 show normalized AFs of a uniform linear array using (8.8).  

When elements lies on z-axis in Fig. 8-1, substituting θ0=90° and d=0.5λ into (8.8) 

produces a broadside array factor pattern in Fig. 8-2. When θ0=0° (or θ0=180°) and 

d=0.5λ, (8.8) results in an endfire array factor pattern as shown in Fig. 8-3. 

  As explained in broadside and endfire array, main beam directions can be 

controlled by the phase excitation between the elements and the distance between the 
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elements.  The progressive phase difference between the elements is the key parameter 

for a scanning array operation. For the scanning array, it is desired that a main beam 

angle (θ0) be 0°<θ0<180° for broadside scanning. Fig. 8-4 illustrates an N-element linear 

array with progressively larger phase delay from left to right. The AF can be formulated 

without consideration of the type of elements. For simplicity, it is assumed that array 

elements are isotropic radiator and a magnitude of element current, Ii=1. The AF of Fig. 

8-4 can be written as: 

0 0 0( cos ) 2( cos ) ( 1)( cos )1 j k d j k d j N k dAF e e e                                    (8.9) 

 Then, (8.9) can be simplified as (8.4), where 0 cosk d   . 
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Fig. 8-4. N-element array with progressively larger phase delay from left to right. 
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(a)  

 
(b) 

Fig. 8-5. Normalized AF of scanning array; (a) absolute value and (b) dB scale, where 
θ0=-30, -20, -10, 0, 10, and 20°. 
 

 The parameter Φ is the progressive phase shift across the array, which means that 

there is a phase difference of Φ between the currents on adjacent elements. The 

progressive phase shift causes the radiation emitted from the array to have a constant 
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phase front that is pointing at the angle θ0 (where θ0=90°-θ) as shown in Fig. 8-4. By 

varying the progressive phase shift across the array, the constant phase front is changed. 

 The scanning operation of Fig. 8-4 can be explained using (8.4). The equation in 

(8.4) is a maximum when the exponential term equals 1. Because 0 cosk d   , this 

maximum happens when 0   or: 

0 0 0 0sin( ) sin(90 ) cos( )k d k d k d                                  (8.10) 

 Then, (8.10) can be rewritten as: 

1
0

0

scanning angle=sin
k d

   
  

 
                                      (8.11) 

where d= distance between two neighboring antennas (m), k0=propagation constant in 

free space (rad/m), and Φ=progressive phase shift. 

 Thus, a scanning angle (θ0 or main beam angel) can be estimated from (8.11) and 

progressive phase difference (Φ) of elements. This is the basic concept used in a phased 

array. Using (8.4) and (8.11), AF pattern of the scanning array in Fig. 8-4 can be plotted. 

Figs. 8-5 (a) and (b) show a normalized AF and its dB scale pattern, respectively. 

Alternatively, (8.11) can also be derived from Fig. 8-4. For each element, at the constant 

phase wavefront, the total phase delay should be the same for all elements. The total 

phase delay equals the summation of the electrical phase delay due to the phase shifter 

and the physical phase delay. From any two neighboring elements, elements 1 and 2 for 

example, one can have: 

0sinl d                                                                  (8.12) 

 



 141

Therefore, 

0 0 0sink l k d                                                            (8.13) 

The expression in (8.13) is the same as (8.10). 

 From an array antenna, the main beamwidth and gain can be estimated from the 

number of array elements. If the elements spaced by half-wavelengths to avoid the 

generation of grating lobes (multiple beams), the number of radiating elements N for a 

pencil beam is related to the half-power ( or 3 dB) beamwidth by [68]: 

3dB BW

100

N
                                                            (8.14) 

where θ3dB BW is the half-power beamwidth in degrees. A gain of the corresponding 

antenna array is: 

G N                                                           (8.15) 

where η is the aperture efficiency. 

 In a phased array, the phase of each antenna element is electronically 

controllable. One can change the phase of each element to make the array electronically 

steerable. The main beam will point to the direction that is normal to the constant phase 

front. This front can be adjusted electronically from individual phase shifter of each 

element. 

 The AF is a periodic function. Thus, it is possible to employ a constant phase 

front in several directions, called grating lobes. This can happen when the argument in 

the exponential in (8.4) is equal to a multiple of 2π. To scan to a given angle, θ0, as in 

Fig. 8-4, Φ must be chosen to satisfy Φ=k0dsin(θ0) as before. Thus, ψ=-2π= k0d(cosθ -
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sinθ0). For the given scan direction, a grating lobe will begin to appear in the end-fire 

direction (θ=180°) when the argument becomes: 

 -k0d(1+sin θ0)= -2π.                                                  (8.16) 

From dividing out 2π from (8.16), the expression in (8.16) can be rewritten as: 

0

01 sin
d







                                                          (8.17) 

Grating lobes reduce the array’s performance to focus the radiated power in a specific 

area of angular space (directivity) and are undesirable in the array pattern. The spacing 

between adjacent elements should be less than the distance defined in (8.17) to avoid 

grating lobes. 

 In a two dimension array, (8.9) can be modified for 2D scanning operation: 

00

1 1
( cos sin )( cos cos )

0 0

y yx x

M N
jn k djm k d

m n

AF e e   
 

  

 

                            (8.18) 

where dx and dy are defined as the pace between the elements in the x and y directions. 

Φx and Φy are the progressive phase shifts in the x and y directions. 
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8.2 X-Band Phased Array Using Piezoelectric Transducer (PET) Phase Shifter 

 In this section, phased array using piezoelectric transducer (PET) phase shifter is 

introduced. Low cost phased array using the PET phase shifter has been introduced in 

[69]-[72]. Fig. 8-6 depicts a multiline differential and progressive phase shifter 

controlled by the PET. A dielectric perturber attached to the PET can move op and down 

by a DC bias voltage varied from 0 to 90 V. The dielectric perturbation changes the 

distributed capacitance of the microstrip line, which is controlled by the PET movement 

and the applied voltage. The capacitance variations correspond to variations in effective 

dielectric constant, which change the propagation constant, thus the phase shift [69]. 

Since the phase shift is proportional to the length of a perturbed line, a triangular shaped 

perturber shown in Fig. 8-6 can achieve the required progressive differential phase shift 

of Φ, 2Φ, and 3Φ between the lines. The expression in (8.11) illustrates that the 

progressive phase shift determines the scanning angel for a fixed frequency and element 

distance. 

 

 
Fig. 8-6. PET controlled phase shifter [69]. 
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 The fixed free type cantilever beam PET, produced by Piezo Systems Inc., 

Cambridge, MA, provides mechanical movement for the attached perturber in the 

vertical direction as illustrated in Fig. 8-6. The PET actuator accommodates the 

dimensions of 57.2 x 31.8 x 2.2 mm3, which ultimately affects PET response time. The 

PET used in this experiment has a response time of approximately 5 ms. The PET shows 

a vertical movement of ±1.2 mm when applying a DC bias of ±60 V. 

 The progressive phase shift between any two neighboring microstrip lines can be 

calculated as: 

    '

0

2
eff effL f f

  


                                  (8.19) 

 where ΔL is the progressive length of the perturber above the microstrip lines, and 

ε’
eff(f) and εeff(f) are the effective relative permittivities of the perturbed and unperturbed 

microstrip lines, respectively [73]. From [73], it has been found that the phase shift can 

be maximized by having: 1) higher permittivity of microstrip line substrate and 

perturber; 2) thicker perturber; 3) narrower microstrip line width; 4) thinner microstrip 

substrate. Additionally, a higher permittivity of the perturber than that of the microstrip 

substrate should significantly increase the phase shift. However, in this case, it is 

possible to degrade the phase shifter performance by becoming very lossy at a high-

frequency range due to the leaky-wave-mode generation [73]. In order to maximize the 

phase variation, the permittivity of the microstrip line substrate has been set to 2.2 with a 

thickness of 0.508 mm. The permittivity of the perturber set to 10.2 with a thickness of 

1.27 mm. The arrays are fed by a 4-way power divider using a binomial multi-section 
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matching transformer. For X-band operation, N=2 are utilized for the power divider 

design. Fig. 8-7 shows a 2-way power divider using binomial matching transformer 

(N=2), where Z1=42.3 Ω, Z2=30.2 Ω, and l1=l2=λg/4 at fc. The center frequency fc is set to 

10 GHz. Fig. 8-8 presents the photograph of the fabricated PET controlled phase shifter 

and 4-way power divider for X-band operation. Figs. 8-9 and 8-10 illustrates the 

measured S-parameters of the fabricated PET controlled phase shifter at 0 and 60 V, 

respectively. As shown in the Figs. 8-9 and 8-10, insertion and return loss characteristics 

are similar in two different bias conditions. However, as mentioned before, the leaky-

wave-mode degrades the phase shifter’s loss characteristics above 14 GHz. 

 

 
Fig. 8-7. Power divider using binomial matching transformer (N=2). 
 

 
Fig. 8-8. Fabricated PET controlled phase shifter and 4-way power divider. 
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Fig. 8-9. Measured S-parameters of PET controlled phase shifter (0 V) in Fig. 8-8. 
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Fig. 8-10. Measured S-parameters of PET controlled phase shifter (60 V) in Fig. 8-8. 
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Fig. 8-11. Measured phase of PET controlled phase shifter (60 V) in Fig. 8-8. 
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 From the expression in (8.11), the progressive phase shift of Φ=30 º and d=10 

mm result in the array’s scanning angle of 16 º, 14.4 º, and 13.13 º at 9, 10, and 11 GHz, 

respectively. Fig. 8-11 presents the measured phase of PET controlled phase shifter, 

where the progressive phase differences are approximately found to be 27 º from 8 to 12 

GHz. Stripline fed Vivaldi antenna shown in [70] is utilized for an H-plane 1x4 array. 

The detail antenna dimensions can be found in [70]. Fig. 8-12 illustrates the H-plane 1x4 

Vivaldi antenna array, where the each antennas are separated by 10 mm, i.e., d=10 mm. 

Fig. 8-13 shows the measured radiation patterns of the H-plane 1x4 Vivaldi antenna 

array in Fig. 8-12. The measured array gain is about 8 dBi from 8 to 12 GHz. Fig. 8-14 

shows the photograph of the measurement setup in anechoic antenna chamber at Texas 

A&M University. Figs. 8-15 (a) and (b) presents the measured radiation patterns of the 

H-plane 1x4 PET controlled phased array operating at X-band. The phased array 

produces the main beam scanning angle about 10 º~14 º over the bandwidth. 

 

 

 
 

Fig. 8-12. H-plane 1x4 Vivaldi antenna array [69]. 
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(a) 

 
(b) 

Fig. 8-13. Measured radiation patterns of 1x4 Vivaldi antenna array at (a) 9 GHz and (b) 
12 GHz. 

 

 
Fig. 8-14. Photograph of H-plane 1x4 PET conrolled phased array in anechoic antenna 
chamber. 
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Fig. 8-15. Measured radiation patterns of H-plane 1x4 PET phased array; (a) 0 V and (b) 
60 V. 
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8.3 X-Band Phased Array Using MMIC Phase Shifter 

 In this section, a phased array operating from 8 to 12 GHz is introduced for low 

cost multifunctional radar systems. Fig. 8-16 illustrates a typical system diagram of a 

transceiver front-end module. In Fig. 8-16, the system consists of single pole double 

throw (SPDT) T/R switches, power amplifiers (PAs), low noise amplifiers (LNAs), 

power divider, phase shifters and antennas. The array antenna, phase shifters, and power 

divider are shared in both transmitting and receiving paths. The T/R switches, PAs, and 

LNAs are normally integrated in a single chip using complementary metal oxide 

semiconductor (CMOS) technologies. In the demonstration for a low cost phased array 

design, the array antennas and power divider are fabricated using a microstrip. The 

MMIC 4-bit phase shifter (HMC543LC4B) produced by Hittite Microwave Corp. is 

utilized for progressive phase shift of the array antenna. The phase shifter covers from 0 

to 360 º with the steps of 22.5 º. The fabricated phased array front-end system including 

the array antennas, phase shifters, and power divider are measured in anechoic antenna 

chamber. 

 

  
 
 

 

T/R switch

PA PA

LNALNA
T/R switch

1X4
Power 
Divider

 
Fig. 8-16. Block diagram for phased array with full duplex operation. 
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Fig. 8-17. Fabricated 1x4 power divider. 
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Fig. 8-18. S-parameters from (a) EM simulations and (b) measurements. 
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 Fig. 8-17 shows a photograph of the fabricated 1x4 power divider using binomial 

multisection matching technique. The power divider utilizes two quarter wavelength 

matching transformers, and operates for X-band. Figs. 8-18 (a) and (b) illustrate EM 

simulated and measured S-parameters of the designed power divider. As shown in the 

Fig. 8-18 (a), the EM simulated insertion losses of all ports are found to be 6.5 dB. The 

return loss is greater than 20 dB in all frequency bandwidth. The measured results in the 

Fig. 8-18 (b) also present reasonable agreement to the EM simulated results. 

 

 
Fig. 8-19. Phase shifter measurement using network analyzer. 
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Fig. 8-20. Measured S-parameters of the phase shifter for on-state. 
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 Fig. 8-19 shows a photograph of the phase shifter, where the output phase of the 

phase shifter is controlled by input voltages (0 or -3 V). The two control input voltages 

of 4 bit phase shifter provide 16 different inputs, and this ultimately produces 16 

different output phase of the phase shifter. The maximum input power of the phase 

shifter is 27 dBm. Fig. 8-20 presents the measured insertion and return losses of the 

phase shifter. The return loss is greater than 10 dB, and the insertion loss is found to be 7 

~ 8 dB from 8 to 12 GHz. 

 
 

S
21

A
ng

le
 (

D
eg

)

 
Fig. 8-21. Measured S21 phase of the phase shifter for on-state. 
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Fig. 8-22. Measured S-parameters of the phase shifter for off-state. 
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 Fig. 8-21 presents the measured output phase of the phase shifter, and it shows 

almost uniform phase difference for each state from 8 to 12 GHz. Measured S-

parameters of the phase shifter for off-state is illustrated in Fig. 8-22. For the off-state, 

the signal cannot pass the phase shifter. This characteristic of the off-state is useful for 

phase measurement of each phase shifter, where the phase shifters are connected to the 

array antenna. The same antenna elements shown in the previous section are utilized for 

the array construction. Fig. 8-23 illustrates the phase array measurement set up. After 

calibrating a measurement system using a standard gain horn antenna in anechoic 

chamber, the phased array including phase shifter and power divider is placed inside of 

the anechoic antenna chamber, and connected to a logic converter. The logic converter is 

also connected to DC power supply and a computer for phase shifter control. Then, 

phase of the each phase shifter is measured, where the phased array is fixed at boresight 

direction. When measuring the output phase of each phase shifter, only the phase shifter 

under the test is on-state. The other phase shifters should be off-state. For X-band 

operation from 8 to 12 GHz, the output phase of each phase shifter is measured at 10 

GHz, which is the center frequency of the bandwidth. From the phase measurement of 

each phase shifter for different phase states, Table 8-1 can be obtained. These phases in 

Table 8-1 present the phase at the corresponding each antenna element. As shown in Fig. 

8-21, the phase variations of the phase shifter are linear to the frequencies. Thus, the 

measured output phase at a single frequency could be used within the operating 

bandwidth. The measured output phases in Table 8-1 can favorably be utilized to 

determine the progressive phase difference of the array elements. 



 155

Transmitter

Anechoic Antenna Chamber

Computer for Phase Shifter Control

DC (-3 V)

Logic 
Converter

Connector Box

Data Acquisition (DAQ)

1x4 Power Divider

Phase Shifter

Array Antenna

 

Fig. 8-23. Phased array measurement set up. 

 

 Fig. 8-24 shows the measured radiation patterns of the phased array, where the 

progressive phase difference is 0 º by selecting phase shifter 1= state 10, phase shifter 2= 

state 7, phase shifter 3= state 7, and phase shifter 4= state 7. Fig. 8-25 presents the 

measured radiation patterns of the phased array, where the progressive phase difference 

is 40 º by selecting phase shifter 1= state 12, phase shifter 2= state 7, phase shifter 3= 
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state 9, and phase shifter 4= state 12. From the expression in (8.11), the progressive 

phase shift of Φ=40º and d=10 mm result in the array’s scanning angle of 19.5 º at 10 

GHz. Fig. 8-26 presents the measured radiation patterns of the phased array, where the 

progressive phase difference is -50 º by selecting phase shifter 1= state 4, phase shifter 

2= state 10, phase shifter 3= state 8, and phase shifter 4= state 6. From the expression in 

(8.11), the progressive phase shift of Φ=-50º and d=10 mm result in the array’s scanning 

angle of -24.6 º at 10 GHz. The measured radiation patterns in the Figs. 8-24, 25, and 26 

show good agreement to the expected results. 

 

 

TABLE 8-1 
MEASURED OUTPUT PHASE OF EACH PHASE SHIFTER AT 10 GHZ 

State Phase shifter 1 Phase shifter 2 Phase shifter 3 Phase shifter 4 
State1 (0º) 127 -108 -120 -138 
State2 (22.5º) 143 -83 -95 -122 
State3 (45º) 158 -53 -62 -100 
State4 (67.5º) 172 -23 -28 -55 
State5 (90º) -173 13 12 -10 
State6 (112.5º) -156 35 30 27 
State7 (135º) -148 59 57 65 
State8 (157.5º) -128 75 72 80 
State9 (180º) -94 103 97 105 
State10 (202.5º) -60 120 112 120 
State11 (225º) -15 135 127 132 
State12 (247.5º) 27 150 143 140 
State13 (270º) 60 170 164 162 
State14 (292.5º) 75 -172 -180 175 
State15 (315º) 98 -160 -168 -177 
State16 (337.5º) 110 -140 -150 -165 

 

 



 157

-90 -60 -30 0 30 60 90
-30

-20

-10

0

8 GHz
9 GHz
10 GHz
11 GHz
12 GHz

Angle (deg)

M
ag

ni
tu

de
 (

dB
i)

 
Fig. 8-24. Measured radiation patterns of progressive phase shift=0 º. 
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Fig. 8-25. Measured radiation patterns of progressive phase shift=40 º. 
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Fig. 8-26. Measured radiation patterns of progressive phase shift=-50 º. 
 

 
 The progressive phase shift of the PET phase shifter is achieved by a mechanical 

movement of a fixed free type PET cantilever beam. Since the response time of the PET 

beam is approximately 5 ms, a beam steering speed is slower than the phased array using 

MMIC phase shifters. However, a fabrication cost of the PET controlled phased array is 

lower. 
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CHAPTER IX 

CONCLUSIONS 

 

9.1 Summary 

 This dissertation covers the compact microstrip filter designs, dual-band/triple-

band BPF designs, microstrip resonator modeling, and low cost phase array system 

designs. 

 In Chapter II, image parameters and inverter theory are reviewed. These 

fundamental backgrounds are necessitated to understand design concepts of microstrip 

filters. Impedance and admittance inverters based on the image parameters are 

commonly utilized for modeling of various coupled type bandpass filters (BPFs). 

Mathematical expressions and derivations for image impedance, image propagation 

constant and impedance/admittance inverters are also introduced. 

 In Chapter III, BPF designs using non-uniform arbitrary image impedances are 

presented. A parallel coupled line BPF, capacitive gap coupled BPF, and hairpin BPF 

are designed using the non-uniform arbitrary impedances. Using the proposed design 

method, a gap distance of parallel coupled line or capacitive gap coupled line can be 

controlled by a designer. By selecting high image impedance of the coupled lines, the 

proposed design ultimately results in a wider gap distance in low dielectric substrate. 

 In Chapter IV, a triple-band BPF (TBBPF) design is introduced. Three shunted 

parallel LC resonators are connected in series to produce a triple-bandpass response. In 

the proposed TBBPF design, each center frequency and fractional bandwidth (FBW) of 
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low, mid, and high bands can separately be controlled. In order to demonstrate the 

design methodology, simulated results are compared with measured results. 

 In Chapter V, a coupled type complementary split ring resonator (CSRR) is 

introduced for a compact direct-coupled bandpass filter (BPF). The proposed unit cell of 

the resonator consists of two CSRRs, where gaps of outside rings face each other to 

achieve a strong cross coupling. For an analysis of the coupled CSRR, an equivalent 

circuit model is discussed and validated through circuit and EM simulations. Based on 

the coupled CSRR structure, two-/four- pole direct-coupled BPFs are designed, 

simulated, and measured. Their equivalent circuit models are also presented and 

validated from comparing simulated and measured results. 

 Chapter VI presents a dumbbell-shaped slot resonator (DSSR) for miniaturized 

lowpass filter (LPF) and bandpass filter (BPF) designs. Based on circuit theory and an 

electromagnetic (EM) simulation, the DSSR’s lumped and distributed equivalent circuit 

models are presented and validated. Using the DSSRs, a miniaturized LPF and BPF are 

designed, simulated, and measured. The dimensions of the fabricated LPF are 

0.27λg×0.17λg at a cutoff frequency of 3.4 GHz, and a measured insertion loss of less 

than 1 dB and a return loss of greater than18 dB have been achieved. The dimensions of 

the fabricated BPF are 0.37λg × 0.27λg at a center frequency of 7.35 GHz, and an 

insertion loss of less than 3 dB and a return loss of greater than 15 dB have been 

achieved. The designed BPF provides a fractional bandwidth (FBW) of 2%. Both 

simulated and measured results of the designed filters show good agreement. The 
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proposed filters do not utilize stubs or other circuit elements, so the filters are compact in 

size. 

 In Chapter VII, the isosceles triangle shaped patch resonator (ITSPR) is 

investigated using electromagnetic (EM) simulation and a curve fitting method. New 

design equations which determine the ITSPR dimensions are then proposed. Other 

equations which estimate fractional bandwidth (FBW), effective dielectric constant, and 

center frequency of an ITSPR are also introduced.  Simple design techniques for a low 

loss BPF and diplexer using ITSPRs are presented to demonstrate its practical uses in 

RF/microwave applications. 

 In Chapter VIII, a phased array for multifunctional radar applications is 

discussed. As a background of the phased array, a basic linear array theory is reviewed. 

For a low cost phased array, two phased arrays using piezoelectric transducer (PET) 

phase shifters and monolithic microwave integrated circuit (MMIC) phase shifters are 

fabricated and tested in X-band. 

 

9.2 Recommendations for Future Research 

 In this dissertation, compact microstrip BPFs, a triple-band BPF, and a phased 

array have been presented. A filter is one of the most essential components in 

RF/microwave system since it controls overall signal flows within a certain frequency 

band. Many filters have been developed to meet today’s filter requirements including 

low-insertion loss, compact size, and low cost. For advanced RF/microwave and 

millimeter wave filter designs, the researches for the following areas are recommended: 
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filter miniaturization, integration with complementary metal oxide semiconductor 

(CMOS) circuits, substrate integrated waveguide (SIW) filter, dual-band/triple-band 

BPF, tunable filters, and reconfigurable filters. These filter designs should satisfy a low 

loss and high frequency selectivity.  

 In phased array design, the following subjects are remained for the future 

researches: a dual-polarized or circularly polarized phased array with electronically 

scanning capability, a phased array with wide scanning angle, and a phased array with 

wide bandwidth. Since antenna elements and phase shifters dominantly affects the 

phased array performance, the researches for the antenna and phase shifter designs are 

also required. 
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APPENDIX A 

K INVERTER DERIVATIONS 

 

This section presents mathematical derivations for K inverters in Figs. 1-10 (a) 

and (c). Image parameters of other K inverter circuits can also be determined in similar 

manner. 

 
Fig. A-1. K inverter shown in Fig. 1-10 (a). 

 

ABCD matrix of Fig. A1: 

1 11 0
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1
10 1 0 1 1
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a a
a a
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b
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A B Z Z Z Z
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                                 

  

            (A.1) 

For symmetrical and reciprocal network, image impedance can be written as: 

1 2 ( 2 )I I a a b

AB BD
Z Z Z Z Z

CD AC
      .                            (A.2) 

where Za=-jωL and Zb=jωL. Thus, (A.2) is: 

1 2I IZ Z L K    .                                                    (A.3) 

where K is a real value. (A.3) represents the image impedance K of Fig. 1-10 (a). From 

(1-24), the propagation constant γ can be rewritten as: 
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12sinh
2

a

b

Z

Z
   .                                                    (A.4) 

For a lossless network, γ=jβ. Then, (A.4) can be: 

1 1 1
2sinh 2sin

2 2

j L
j j

j L




 
   .                                  (A.5) 

Therefore, from (A.5), the image phase constant β of Fig. A-1 has 90º phase shift. 

 

Ф/2

Z0 X=Positive

Ф=Negative

Ф/2 Ф/2
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Z02X2X

 
Fig. A-2. K inverter shown in Fig. 1-10 (c). 
 

Ф/2

Z0 2X open

ZI1,oc open

±90°
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open

±45°

Zin,oc

K K

Fig. A-3. Equivalent circuits of Fig. A-2 and quarter-wavelength line, where circuits are 
cut in half and remained as open. 
 

Fig. A-2 illustrates K inverter circuit in Fig. 1-10 (c). Fig. A-3 presents equivalent circuit 

models of Fig. A-2 and a quarter-wavelength line, where both circuits are cut in half and 

remained as open circuits. Because impedance inverters produce 90º phase shift and has 
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image impedance K, they can simply be modeled as a transmission line where the line 

length is a quarter-wavelength and the characteristic impedance is K.  

 From Fig. A-3, image impedance ZI1,oc and input impedance of open circuited 

transmission line Zin,oc can be determined as: 

 
0 0

1, 0 0

0 0

2 tan 2 tan
2 2

( 2 ) tan 2 tan
2 2

I oc

j X jZ X Z
Z Z jZ

Z j j X Z X

 

 

       
    
       
   

 .                      (A.6) 

, cot(45 )in ocZ jK jK      .                                  (A.7) 

 

 
Fig. A-4. Equivalent circuits of Fig. A-2 and quarter-wavelength line, where circuits are 
cut in half and remained as short. 
 

 Fig. A-4 presents equivalent circuit models of Fig. A-2 and a quarter-wavelength 

line, where both circuits are cut in half and remained as short circuits. From Fig. A-4, 

image impedance ZI1,sc and input impedance of open circuited transmission line Zin,sc can 

be determined as: 

1, 0 tan
2I scZ jZ
   
 

 .                                            (A.8) 

, tan(45 )in scZ jK jK    .                                        (A.9) 
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 From (A.8) and (A.9), image impedance of the inverter in Fig. 1-10 (c) can be 

found as: 

0 tan( )
2

K Z


  .                                              (A.10) 

From (A.6), (A.7), and (A.10),  

0

0 0

0
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jZ jK jZ
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 

 .                      (A.11) 

Letting 2X/Z0=tanθ in (A.11) lead to: 

tan tan
2

tan( ) tan
2 21 tan tan
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
 



                 
 

 .                      (A.12) 

where   tan tan
tan

1 tan tan

  
 


 


 has been applied in (A.12). 

Thus, / 2 / 2     and   . As a result, the assumption, 2X/Z0=tanθ can be: 
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