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ABSTRACT

Model-based Biomarker Detection and Systematic Analysis

in Translational Science. (May 2012)

Youting Sun, B.S., Tsinghua University

Co–Chairs of Advisory Committee: Dr. Edward R. Dougherty
Dr. Ulisses Braga-Neto

This dissertation is concerned with the application of mathematical modeling

and statistical signal processing into the rapidly expanding fields of proteomics and

genomics. The research is guided by a translational goal which drives the problem

formalization and experimental design, and leads to optimization, prediction and con-

trol of the underlying system. The dissertation is comprised of three interconnected

subjects.

In the first part of the dissertation, two Bayesian peptide detection algorithms

are proposed to optimize the feature extraction step, which is the most fundamental

step in mass spectrometry-based proteomics. The algorithms are designed to tackle

data processing challenges that are not satisfactorily addressed by existing methods.

In contrast to most existing methods, the proposed algorithms perform deisotoping

and deconvolution of mass spectra simultaneously, which enables better identification

of weak peptide signals. Unlike greedy template-matching algorithms, the proposed

methods have the capability to handle complex spectra where features overlap. The

proposed methods achieve better sensitivity and accuracy compared to many popular

software packages such as msInspect.

In the second part of the dissertation, we consider modeling and assessing the

entire mass spectrometry-based proteomic data analysis pipeline. Different modules
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are identified and analyzed, resulting in a framework that captures key factors in sys-

tem performance. The effects of various model parameters on protein identification

rates and quantification errors, differential expression results, and classification per-

formance are examined. The proposed pipeline model can be used to aid experimental

design, pinpoint critical bottlenecks, optimize the workflow, and predict biomarker

discovery results.

Finally, the same system methodology is extended to analyze the workflow in

DNA microarray experiments. A model-based approach is developed to explore the

relationship among microarray data properties, missing value imputation, and sam-

ple classification in a complicated data analysis pipeline. The situations when it is

suitable to apply missing value imputation are identified and recommendations re-

garding imputation are provided. In addition, a missing value rate-related peaking

phenomenon is uncovered.
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CHAPTER I

INTRODUCTION

Translational science translates multidisciplinary scientific research into clinical prac-

tice with the goal of aiding diagnosis, discovering new drugs, developing more effective

treatments, and thus improving human health. Translational research may have dif-

ferent meaning to different researchers, but it seems important to almost everyone [1].

There are generally two paths in the practice of translational research. One

is data-driven and the other is goal-driven. The former tries to make sense of the

data, link the observed phenomenon with scientific explanations, or apply pattern

recognition to discover features that can be associated to phenotypes. The latter

follows the guidance of a goal, which usually leads to carefully designed experiments

and conceptualization of the translational problem [2]. In this dissertation, we adopt

the goal-driven approach, which is more of a systems engineering approach.

For “conceptualization”, a model-based approach is undoubtedly a beneficial way

to go as proved by the successful development and application of many well known

methods such as ANOVA for microarray data analysis [3], hypothesis testing for

biomarker detection, and controlling false positive identifications via decoy databases

in mass spectrometry (MS) based proteomics [4, 5]. The beauty of model-based ap-

proach lies in that by mathematical formalization of the problem, key issues and

factors can be captured, optimal solutions can be achieved, and the gained insights

can be translated into prediction or control of the underlying system. It should be

noted that the conceptualization should be formed at the right level of abstraction:

The model must be sufficiently complex to represent the characteristics or behaviors

The journal model is IEEE Transactions on Biomedical Engineering.
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of the physical system, while at the same time it must be simple enough that the

necessary parameters can be well estimated and the optimization problem is compu-

tationally tractable [2].

In translational science, most research is carried out on the molecular level which

study the fundamental building blocks of living organisms—DNA, RNA and protein

as well as their interactions. The terms “genomics” and “proteomics” were coined for

the two major branches concerning the study of genomes and proteins of organisms,

respectively. Ever since the the advent of DNA microarrays in the mid-1990s, the

development of related analytical equipments and methods has boomed. Microarray

and next generation sequencing for genome-wide gene profiling, mass spectrometry

for large scale protein analysis, along with other high-throughput technologies greatly

expand the experimental capabilities and propel the research.

In this chapter, the high-throughput technologies related to the research con-

ducted for the dissertation are briefly reviewed. The challenges in genomic and pro-

teomic data analysis and the problems with existing methods are outlined, which bring

forward the proposed methodology for biomarker detection and systematic analysis.

A. MS-based proteomics

Mass spectrometry is a key analytical tool in proteomics. It is widely used for large-

scale protein profiling with applications in biomarker discovery [6], signaling pathway

monitoring [7, 8], drug development, and disease classification [9]. A mass spectrom-

eter measures the concentration of ionized molecules at a range of mass-to-charge

ratios (m/z). MS instruments consist of three modules: an ionization source, a mass

analyzer and a detector which captures the ions and measures the intensity of each ion

species. Widely used ionization methods include electrospray ionization (ESI) [10] and
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matrix-assisted laser desorption/ionization (MALDI) [11, 12]. Mass analyzers sepa-

rate the ions according to their mass-to-charge ratios. There are several types of mass

analyzers including the Orbitrap [13], Quadrupole [14], Time-of-Flight (TOF) [15,16],

and Fourier transform ion cyclotron resonance (FTICR) [17].

In a typical MS experiment, unknown protein mixtures extracted from biological

samples are first digested into peptides by enzymes such as trypsin. Then peptides

enter a mass spectrometer where they get ionized and separated according to their

mass-to-charge ratios. As a result, a spectrum is produced which plots the ion inten-

sity against the mass-to-charge ratio. The recorded intensities reflect the abundance

or concentration of peptides. Liquid Chromatography (LC) is often coupled with

MS to achieve additional separation of peptides and thus reduce the complexity of

an individual mass spectrum: before entering the mass spectrometer, peptides are

first passed through an LC column where they are separated by the retention time,

depending on their physicochemical properties and interactions with the solvent. A

single LC-MS experiment usually produces hundreds to thousands of mass spectra

sampled during the LC elution process.

Analysis of LC-MS experiments by computational methods is challenging due

to the huge data size and rich information content, and moreover is complicated by

several facts including: (1) Proteins contained in complex samples such as plasma

and tissue extracts have a wide dynamic concentration range (e.g. 10 orders of mag-

nitude), plus peptides differ in ionization efficiencies, which means that the observed

peptide signal from MS data may also have a wide dynamic range. While high abun-

dance peptides are relatively easy to be identified, low abundance peptides/proteins,

which are often of more biological importance, are likely to be buried under noise

or interfering signals and thus hard to be detected [18]. (2) The shape of peptide

chromatographic peaks is not well predicted [19]. Due to experiment settings and the
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nature of the analytes, asymmetric shape or plateaus of chromatographic peaks may

be observed, which requires designed detection algorithms to be robust in tracking

signals from various peptide species and be adaptable across experiments. (3) A pep-

tide species may register several groups of peaks in different regions of the spectra

due to the following two points: first, a peptide species may take various numbers

of charges during ionization, therefore its peaks can be observed at different charge

states; second, at a given charge state, several peaks with equal spacing can be ob-

served due to heavy isotopes (e.g. 13C), which are commonly referred to as isotopic

peaks or the isotope series. Correctly identifying all the peaks and assigning them to

the right peptide is a non-trivial task. (4) The signal density can be very high even in

high-resolution LC-MS data and overlapping peptide peaks are commonly observed,

the detection of which is very challenging.

1. Feature extraction in MS data analysis

Peptide detection and identification, which extracts features from the raw spectra

and converts the raw data into a list of peptides, is usually the first step in MS

data processing. It is a critical step that directly affects the accuracy of subsequent

analysis, such as protein identification and quantification, data alignment between

multiple experiments, biomarker discovery, and sample classification.

Fragmentation spectra produced by tandem mass spectrometry (MS2) are fre-

quently used by popular software such as SEQUEST and Mascot [20] for database

searching to give peptide identifications. However, only a small percentage of peptides

present in the sample get selected for fragmentation analysis, and of these selected

peptides even fewer can be correctly identified by database searching due to spectrum

matching ambiguity or co-eluting precursor ions [21]. Furthermore, quantitation of

peptide abundance based on MS2 spectral counting is quite rough, and highly vari-
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able especially for low abundance peptides [22]. (Though by using well established

stable isotope labeling approaches such as tandem mass tags, the relative abundance

of analytes in different samples can be accurately determined [23].)

Therefore many algorithms for peptide detection are designed to use MS1 infor-

mation directly, and thus have the potential to identify more peptides. When mass

spectra have low resolution in which isotopic peaks cannot be baseline resolved (i.e.

the isotopic peaks convolve together to form isotope envelopes, and only one peak can

be observed for one peptide at a given charge state), and when peptides are singly

charged as commonly observed in MALDI, to report each detected peak as a peptide

feature might be sufficient, as done in [24–27]. But for high resolution spectra, report-

ing each observed peak as a unique peptide species would give rise to too many false

positives. Thus a variety of algorithms for deisotoping and charge states deconvolution

have been proposed. Such algorithms can be mainly divided into two categories: one-

dimensional (1D) algorithms (e.g. NITPICK [28], PepList [29], Decon2LS [30] and

Hardklör [31]), which perform peak picking, deisotoping and charge state assignment

on a scan-to-scan basis, and two-dimensional (2D) algorithms (e.g. MZmine [32],

SpecArray [18], msInspect [33], SuperHirn [34], VIPER [35], MaxQuant [36], and

OpenMS [37]), which capture the 2D nature of LC-MS data and utilize informa-

tion from both the mass-to-charge and retention-time (RT) dimensions for peptide

detection. 2D algorithms appear to be more promising in handling LC-MS data.

Regardless of category, most of the aforementioned algorithms are grounded on the

idea of greedy template-matching which makes them ineffective to detect overlapping

and low abundance peptides. This motivates the development of a global optimiza-

tion based Bayesian peptide detection algorithm for feature extraction and peptide

detection.
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2. MS analysis pipeline for biomarker discovery

In clinical applications of mass spectrometry, the number of samples available is

usually in the range of tens to a few hundred (small sample size). The samples

are analyzed by an MS instrument and transformed into a series of mass spectra

containing hundreds of thousands of intensity measurements with signal generated by

thousands of proteins/peptides (large feature dimension). This small-sample, high-

dimensionality problem requires the experiment and analysis to be carefully designed

and validated in order to arrive at statistically meaningful results.

The MS analysis pipeline consists of many steps, including sample preparation,

instrument analysis, feature extraction, quantification, statistic analysis and so on.

The pipeline can be viewed as a noisy channel, where each processing step introduces

some loss or distortion to the underlying signal and the biomarker discovery results are

affected by the combined effects of all upstream steps. While individual components

of the MS pipeline have been studied at length, little work has been done to integrate

the various modules, evaluate them in a systematic way, and focus on the impact

of the various steps on the end results of differential analysis and sample classifica-

tion. In real experiments, it is not easy to decouple the compound parameter effects

and determine the marginal influence of various modules on the end results, due to

variations and the complicated nature of the workflow. Moreover, owing to contam-

inants and unknown or incomplete ground-truth, it is hard to meaningfully evaluate

and compare results across different experiments. Thus we propose a model-based

approach to evaluate the pipeline systematically. It allows us to better understand

the characteristics of the MS data, the contributions of individual modules, and the

performance of the full pipeline.
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B. DNA microarray-based genomics

DNA microarrays are small, solid supports onto which the sequences from large num-

bers of genes are immobilized at fixed locations, known as probes. Based on probe-

target hybridization, the microarrays can be used to measure the expression levels

of hundreds and thousands of genes simultaneously. It revolutionizes the way scien-

tists examine gene expression, but also poses many challenges in the analysis of the

resulting high-dimension small-sample data sets.

Microarray data frequently contain missing values (MVs) because imperfections

in data preparation steps (e.g. poor hybridization, chip contamination by dust and

scratches) create erroneous and low-quality values, which are usually discarded and

referred to as missing. It is common for gene expression data to contain at least

5% MVs and, in many public accessible data sets, more than 60% of the genes have

MVs [38].

There exists many imputation methods for estimating MVs. But only a few

studies have examined the impact of MV imputation on high level analysis such

as sample clustering and classification. Furthermore, these studies are problematic

in key steps such as MV generation and classifier error estimation. To address these

problems, a model-based approach is developed to explore the relationship among the

data quality, MVs and high level analysis in the microarray data analysis pipeline.

C. Organization of the dissertation

This thesis is organized as described below.

Chapter II proposes a Bayesian approach, BPDA, for peptide detection in MS

data, such as MALDI-TOF and LC-MS, with high enough resolution [39]. BPDA is

based on a rigorous statistical framework and avoids problems, such as voting and
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ad-hoc thresholding, generally encountered in algorithms based on greedy template-

matching. It systematically evaluates all possible combinations of possible peptide

candidates to interpret a given spectrum, and iteratively finds the best fitting peptide

signal in order to minimize the mean squared error of the inferred spectrum to the

observed spectrum. In contrast to previous methods, BPDA performs deisotoping

and deconvolution of mass spectra simultaneously, which enables better identification

of weak peptide signals and produces higher sensitivity results. Unlike template-

matching algorithms, BPDA can effectively handle overlapping peptide features. Ex-

perimental results indicate that BPDA performs well on both simulated data and real

data, for various resolutions and signal to noise ratios, and compares very favorably

with commonly used commercial and open-source software.

Chapter III proposes a 2D Bayesian peptide detection algorithm, BPDA2d, which

extends the previous work [40]. BPDA2d is specially designed for LC-MS. It models

the spectra from both m/z and RT dimensions, thereby better capturing and fitting

the properties of LC-MS data. Instead of local template matching, BPDA2d performs

global optimization for all possible peptide candidates and systematically optimizes

their signals. Since BPDA2d looks for the optimal among all possible interpretations

of the given spectra, it has the capability in handling complex spectra where fea-

tures overlap. For each peptide candidate, BPDA2d takes into account its elution

profile, charge state distribution, and isotope pattern, and it combines all evidence

to infer the signal and existence probability of the candidate. By piecing all evidence

together — especially by deriving information across charge states — low abundance

peptides can be better identified and peptide detection rates can be improved. Our

experiments indicate that BPDA2d outperforms state-of-the-art detection methods

on both simulated data and real LC-MS data, according to sensitivity and detection

accuracy.
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While Chapter II and III focus on enhancing the feature extraction module in

the MS analysis pipeline, Chapter IV investigates the entire pipeline from a systems

point of view. A model-based approach is presented to integrate various pipeline

modules and evaluate the pipeline systematically, by means of simulation with ground-

truthed data [41]. Key steps and factors of the pipeline are captured, and their effects

on peptide identification rate, protein quantification accuracy, differential expression

results, and classification accuracy are studied. The proposed MS-based proteomics

framework can be used to optimize the workflow and predict experiment results.

Chapter V extends the system approach presented in Chapter IV to the analysis

of DNA microarray data. In this chapter, a model-based approach is developed to

examine the effects of MVs and their imputation on classification in a complicated

microarray data analysis pipeline [42]. Six popular imputation algorithms, two feature

selection methods, and three classification rules are considered. The situations when

it is suitable to apply MV imputation are identified and recommendations regarding

imputation are provided.

Chapter VI summarizes the dissertation and proposes future research directions.

D. Main contributions

The main contributions of this work are summarized below:

• Developed Bayesian peptide detection algorithms to optimize the feature ex-

traction step in MS-based proteomics. The algorithms can effectively identify

low abundance peptides and overlapping peptides, which is not satisfactorily

addressed by existing approaches. The proposed methods achieved better sen-

sitivity and accuracy results compared to many popular software packages.

• Designed a simulation framework for MS-based proteomics, which enables sys-
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tematic evaluation of the MS data analysis pipeline. By contrast, in previous

methods the pipeline is frequently chopped up into individual modules, and

is rarely studied and assessed as a whole from a systems point of view. The

proposed framework can be used to determine the working range of important

parameters, aid experimental design, predict the biomarker discovery results,

and to pinpoint critical bottlenecks which are worth investing resources into for

improving performance.

• Proposed a model-based approach to examine how different properties of a

microarray data set influence the quality of the imputed data and how missing

value imputation influence the classification performance. The results suggest

that it is beneficial to apply MV imputation when the noise level is high, variance

is small, or gene-cluster correlation is strong, under small to moderate MV rates.

In addition, an MV-rate related peaking phenomenon was uncovered.
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CHAPTER II

BAYESIAN PEPTIDE DETECTION FOR MASS SPECTROMETRY∗

A. Background

Feature extraction, which includes peptide detection and quantification, is usually

the first step in MS data processing pipeline. Accurate detection and quantification

of peptides and proteins is essential for biomarker discovery, drug development and

disease classification.

A variety of algorithms for peptide detection in high resolution mass spectra

have been proposed. Most of these algorithms are grounded on the idea of greedy

template-matching. Such algorithms include PepList [29], Decon2LS [30], Noy’s

method [43], MZmine [32], SpecArray [18], msInspect [33], SuperHirn [34], VIPER

[35], and OpenMS [37]. The templates used are often based on theoretic isotope pat-

terns calculated from peptide masses [44]. If an observed group of peaks matches the

proposed template well — the quality of the match is usually assessed by a fitting

score — it will be reported as a feature and then subtracted from the spectra. The

matching and subtraction process goes on until no more matches can be found. The

major problem with greedy template-matching is that it may be ineffective to detect

overlapping peptides. In the case of overlapping (e.g. one doubly charged peptide

can overlap with a singly charged peptide of half the mass given that the two elute

from chromatography column at a similar time), if the peak group of one peptide is

incorrectly matched and subtracted, the rest of the overlapping peptides cannot be

∗Reprinted with permission from “BPDA—a Bayesian peptide detection algo-
rithm for mass spectrometry” by Y. Sun, J. Zhang, U. M. Braga-Neto, and E.
R. Dougherty, BMC Bioinformatics, vol.11, pp. 490-500, 2010, Copyright 2010 by
BioMed Central.
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detected correctly using the remaining signal, which may result in error propagation.

Besides, each template is aimed at matching isotopic peaks of one single peptide,

and thus are likely to be different from the observed overlapping peaks, which ren-

ders a poor match and reduces the sensitivities of these algorithms. Alternatives to

greedy template-matching based approaches include 1D algorithms such as NITPICK,

which is based on non-greedy regression; Hardklör, which approximates an isotope

peak cluster by a set of averagine models [45]. They also include 2D algorithms such

as MaxQuant, which mainly relies on the distance among isotope peaks and the cor-

relation between isotope labeled (SILAC) pairs to detect and quantify peptides in

SILAC-proteome experiments.

In this chapter, we propose a Bayesian Peptide Detection Algorithm (BPDA) to

optimize the workflow of peptide deisotoping and charge state deconvolution. BPDA

can be applied to data generated by MS instruments with mass resolutions high

enough to baseline-resolve isotopic peaks. It evaluates all possible combinations of

possible peptide candidates (originated from well-defined peaks of the raw spectrum

— see Methods section for more details) to interpret a given spectrum, and iteratively

finds the best fitting peptide parameters (peptide peak heights, existence probabili-

ties, etc.) in order to minimize the mean squared error (MSE) of the inferred spectrum

to the observed spectrum.

B. Methods

For 1D MS spectrum, we first perform spectrum preprocessing to remove the baseline,

filter the noise and generate a list of peptide candidates. Then BPDA is applied based

on the developed MS model to infer the best fitting peptide signals of the observed

spectrum, the results being peptide abundances, existence probabilities and so on.
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For 2D LC-MS spectra, we first detect peptide elution peaks along the retention

time dimension, and build elution peak groups by collecting the peaks which have

similar retention time together using a method similar to [46]. Each group contains

a series of consecutive spectra, which are then averaged to form a mean spectrum.

The rationale of using a mean spectrum to represent the group is that the noise

of consecutive spectra could be canceled out to a certain degree [24]. The BPDA

algorithm is then applied to each of the mean spectra, and finally an overall peptide

list is generated. The details of the preprocessing step, the proposed MS model, and

the BPDA algorithm are described in the following subsections.

1. Spectrum preprocessing and obtaining peptide candidates

A non-flat baseline is often observed in mass spectra, the presence of which can distort

the true signal pattern. Thus the first preprocessing step is to detect and subtract the

baseline from MS spectra. We use the minimum of a sliding window along the m/z

axis as the baseline, similar to the method used in [47]. The next step is peak detec-

tion. We use the Matlab function “mspeaks” (http://www.mathworks.com/access/

helpdesk/help/toolbox/bioinfo/ref/mspeaks.html) to perform this task. The

algorithm first identifies all local maxima in the wavelet denoised spectrum as puta-

tive peak locations. Then peaks are filtered based on their intensities and signal to

noise ratios. The last step of preprocessing is to obtain a list of peptide candidates.

Considering one detected peak with centroid at m/z value d, we want to find out

which peptides can potentially register a peak at this position. The answer is given

below in terms of the masses of such peptides:

mass = i(d−mpc)− j mnt, i = 1, 2, . . . , cs, j = 0, 1, . . . , iso, (2.1)



14

where mass is the mass of one peptide candidate, mpc is the mass of one positive

charge and mnt is the mass shift caused by addition of one neutron. Due to mass

defect, the mass shift varies for different elements. We approximate mnt using the

mass shift from 13C to 12C, which is 1.0034, since Carbon contributes most to the

isotope patterns. This approximation works well if the mass calibration of the instru-

ment is correct. The parameters cs and iso are user defined maximum numbers of

considered charge states and isotopic positions, respectively. It is easy to see from the

above equation that each detected peak gives rise to cs× (iso + 1) different peptide

candidates (masses). These candidates exhaust all the possibilities to generate the

peak with centroid d, but it does not follow that all the candidates really exist in

the sample. Therefore, our primary goal in peptide detection is to find the existence

probability of each peptide candidate. Also note that the total number of candidates

should be less than or equal to cs×(iso+1)×number of detected peaks, as is possible

that multiple peaks yield the same candidate mass.

2. Modeling the mass spectrum

Suppose N peptide candidates are obtained from the observed spectrum using the

method described in the previous section. Each candidate can generate a series of

peaks over different charge states, and at each charge state several isotopic peaks can

be registered. The signal generated by the kth peptide candidate is thus modeled by

the following equation, in which i and j represent the charge state and the isotopic

position of the candidate peptide, respectively:

gk(xm) =
cs∑
i=1

iso∑
j=0

ck,ijf(xm; ρk,ij, αk,ij), m = 1, 2, . . . ,M, (2.2)

where the peak shape function is given by f(xm; ρk,ij, αk,ij) = e−ρk,ij(xm−αk,ij)
2
.
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That is, the peak is modeled as Gaussian-shaped, as in [19]. It is reported that the

Gaussian-shaped peak approximates the reality well enough to obtain good detection

results [43]. Still, this peak shape function can be adjusted for different instruments

without affecting the overall structure of the algorithm.

The observed spectrum is a mixture of the signal generated by the N peptide

candidates plus Gaussian random noise, which can be modeled as:

ym =
N∑
k=1

λkgk(xm) + εm =
N∑
k=1

λk

cs∑
i=1

iso∑
j=0

ck,ijf(xm; ρk,ij, αk,ij) + εm, (2.3)

m = 1, 2, . . . ,M.

In the above three equations, xm is the mth mass-to-charge ratio (m/z) in the

spectrum, ym is the observed intensity at xm, M is the number of observations, and

εm is Gaussian random noise with zero mean and standard deviation σ. The value

of σ can be approximated by the standard deviation of the background region in the

spectrum. Note that we model εm as additive Gaussian which is generally a good

model for the thermal noise in electronic instruments. There are reports of non-

Gaussian noise in FTMS [48] and thus it is safer to apply the proposed algorithm to

TOF MS instruments [49]. The parameters of the kth candidate, namely, αk,ij, ρk,ij,

λk and ck,ij are discussed in detail below:

• αk,ij is the theoretic centroid (m/z value) of the peak generated by candidate

k, at charge state i and isotopic number j.

αk,ij =
massk + impc + j mnt

i
, i = 1, 2, . . . , cs, j = 0, 1, . . . , iso, (2.4)

where massk is the mass of the kth candidate. Since the candidate’s mass is

already obtained, αk,ij can be calculated.
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• ρk,ij relates to the shape (width) of the peak centered at αk,ij. It can be es-

timated by using its relationship to the peak’s Full Width at Half Maximum

(FWHM): ρk,ij = 2
√

2 ln 2/FWHM.

• λk is an indicator random variable, which is 1 if the kth peptide candidate truly

exists in the sample and 0 otherwise.

• ck,ij is the height (i.e. intensity) of the peak generated by peptide k, at charge

state i and isotopic number j.

In summary, the model considers peaks at different isotopic positions and charge

states simultaneously for each peptide candidate, incorporating candidates’ existence

probabilities and the spectrum thermal noise.

3. Bayesian peptide detection

Let

θ , {λk, ck,ij; k = 1, . . . , N, i = 1, . . . , cs, j = 0, . . . , iso}

be the set of all the unknown model parameters. The goal of our algorithm is to

determine the value of θ based on the observed spectrum y = [y1, . . . , yM ]T . In fact,

the value of λk is of our prime interest for the peptide detection problem. For this

purpose, we can use a Bayesian approach to first obtain the a posteriori probability

(APP) of all the parameters, P (θ|y). Then the APPs P (λk|y), k = 1, . . . , N, can be

obtained by integration of the joint posterior distribution P (θ|y) over all parameters

except λk. Clearly, the calculation involves high dimension integration which is not an

easy task. Besides, due to the highly nonlinear nature of the data model, none of the

desired APPs can be obtained analytically. To overcome the computational obstacle,

we resort to the Gibbs sampling method [50], which is a variant of the Markov Chain
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Monte Carlo (MCMC) approach [51], to sample the model parameters.

Gibbs sampling is an iterative scheme, which uses the popular strategy of divide-

and-conquer to sample a subset of parameters at a time while fixing the rest at the

sample values from the previous iteration, as if they were true. In other words, for

the lth parameter group θl, we sample from the conditional posterior distribution

P (θl|θ−l,y), where θ−l , θ \ θl. After this sampling process iterates among the

parameter groups for a sufficient number of cycles (which is referred to as the “burn-

in” period), convergence is reached. The samples collected afterwards are shown to

be from the marginal posterior distribution P (θl|y), which is independent of θ−l, and

thus these samples can be used to estimate the target parameters.

The Gibbs sampling process for the kth peptide candidate and the derivations

of the conditional posterior distributions of important model parameters are detailed

below.

a. Sampling the peak height vector

The heights of all the possible peaks (over different charge states and isotopic posi-

tions) of the kth peptide candidate are included in the peak height vector ck, which

is defined as ck , [ck,ij; i = 1, . . . , cs, j = 0, . . . , iso]T . By the Bayesian principle,

the conditional posterior distribution of ck is proportional to the likelihood times the

prior:

P (ck |y,θ−ck ) ∝ P (y|θ)Prior(ck), (2.5)

where θ−ck , θ \ ck.

It is easy to show the likelihood satisfies

P (y|θ) ∝ exp {− 1

2σ2
(y −Gλ(0) − λkHkck)

T IM×M(y −Gλ(0) − λkHkck)}, (2.6)
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where

λ(s) , [λ1, . . . , λk = s, . . . , λN ]T , s ∈ {0, 1}, (2.7)

G =



g1(x1) g2(x1) . . . gN(x1)

g1(x2) g2(x2) . . . gN(x2)

...
...

. . .
...

g1(xM) g2(xM) . . . gN(xM)


M×N

, (2.8)

with the (m, k)-th entry gk(xm) =
cs∑
i=1

iso∑
j=0

ck,ijf(xm; ρk,ij, αk,ij) representing the signal

at m/z value xm generated by peptide candidate k. In addition,

Hk = [hm,(i−1)×(iso+1)+j+1]M×cs(iso+1), with hm,(i−1)×(iso+1)+j+1 =

f(xm; ρk,ij, αk,ij) = e−ρk,ij(xm−αk,ij)
2
.

The heights of the isotopic peaks of peptide candidate k at charge state i fol-

low a multinomial distribution [52], which by the Central Limit Theorem can be

approximated by a Gaussian distribution as below:

P (ck,ij, j = 0, . . . , iso |ak, ηk,i,πk ) = MN(akηk,i,πk) (2.9)

≈ N(akηk,iπk,

akηk,i[diag(πk)− πTk πk]), (2.10)

where ak is the total centroid intensity of candidate k, and ηk , [ηk,1, ηk,2, . . . , ηk,cs]
T

and πk , [πk,0, πk,1, . . . , πk,iso]
T denote the charge state distribution and the theoret-

ical isotopic distribution of peptide candidate k, respectively.

Thus the prior distribution of the peak height vector ck is given by:

Prior(ck) = P (ck |ak,ηk,πk ) ≈ N(µck ,Σck), (2.11)
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where

µck = [akηk,1π
T
k , akηk,2π

T
k , . . . , akηk,csπ

T
k ]T , (2.12)

Σck = diag(Σi), (2.13)

with

Σi = akηk,i[diag(πk)− πTk πk], i = 1, 2, . . . , cs. (2.14)

Substituting Eq. 2.6 and Eq. 2.11 into Eq. 2.5 and it can be shown by algebraic

manipulations [53] that the conditional posterior distribution of ck is also Gaussian,

with the mean vector and covariance matrix given below:

Σck|y,θ−ck
= (I−KHk)Σck , (2.15)

µck|y,θ−ck
= µck + K(y −Gλ(0) −Hkµck), (2.16)

where K , ΣckH
T
k

(
HkΣckH

T
k + σ2IM×M

)−1
is known as the Kalman gain matrix

[54].

b. Sampling the total centroid intensity

The total centroid intensity of candidate k is denoted by ak, whose conditional dis-

tribution takes different forms for different values of λk.

When λk = 1 (the kth candidate is inferred to be present), by definition,

ak |(ck,ij, λk = 1) =
cs∑
i=1

iso∑
j=0

ck,ij · Ick,ij>0. (2.17)

When λk = 0 (the kth candidate is inferred to be absent), the distribution of ak,

which is independent of the observation ck, is modeled by a uniform distribution as
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below:

P (ak |ck,ij, λk = 0) = Unif(0, uk), (2.18)

where uk is the upper bound of ak.

c. Sampling the charge state distribution

Let ηk , [ηk,1, ηk,2, . . . , ηk,cs]
T denote the charge state distribution of peptide can-

didate k. Unlike the isotopic distribution, the charge state distribution cannot be

theoretically predicted even when the peptide sequence is given. Thus ηk needs to

be estimated by the Gibbs sampling process. Let bk , [bk,1, bk,2, . . . , bk,cs]
T , where

bk,i is the total centroid abundance of peptide k at charge state i. Given the charge

state distribution and the total centroid abundance of peptide k, the likelihood of bk

is multinomial:

P (bk|ηk, ak) = MN(ak,ηk). (2.19)

As is well known, the conjugate prior to a multinomial likelihood is Dirichlet,

which is also a reasonable choice for the prior of ηk. Thus, let the prior of ηk be

a Dirichlet distribution with parameter wα, where w is a weight parameter that

controls the strength of the prior information. A small w is preferable if uncertainty

resides in the prior, and vice versa. Then the posterior distribution of ηk is given by

P (ηk |bk ) ∝ P (bk |ηk )Prior(ηk) (2.20)

= Dirichlet(wα+ bk). (2.21)
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d. Sampling the peptide existence indicator variable

The conditional posterior distribution of λk, the existence indicator variable of peptide

k, is given by

P (λk |y,θ−λk ) ∝ P (y |θ )Prior(λk)

∝ exp {− 1

2σ2
‖y −Gλ‖2}Prior(λk), (2.22)

where G is defined in Eq. 2.8.

The log-likelihood ratio (LLR) of λk can be calculated as below

LLRλk = ln
P (λk = 1 |y,θ−λk )

P (λk = 0 |y,θ−λk )

= − 1

2σ2
(‖y −Gλ(1)‖2 − ‖y −Gλ(0)‖2) + ln

P (λk = 1)

P (λk = 0)
, (2.23)

where λ(s), s ∈ {0, 1} is defined by Eq. 2.7.

If no prior knowledge is available about which peptide candidates are more likely

to be present in the sample, then a reasonable choice for the prior of λk could be

the uniform distribution. Therefore the last term in Eq. 2.23 can be dropped. The

conditional posterior distribution of λk is then obtained based on the log-likelihood

ratio as follows:

P (λk = 1 |y,θ−λk ) =
1

1 + e−LLRλk
, (2.24)

P (λk = 0 |y,θ−λk ) = 1− P (λk = 1 |y,θ−λk ). (2.25)

The complexity of the proposed Gibbs sampling algorithm is determined by two

factors: (1) the sheer number of peptide candidates, and (2) the correlation between

parameters that need to be sampled. The algorithm complexity grows exponentially

with the number of peptide candidates, and the correlation between parameters re-

duces the sampling efficiency. To address these two issues, we first partition non-
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overlapping peptide candidates into different groups. The proposed algorithm can be

applied to each group in a parallel manner and the algorithm complexity is reduced,

because within each group the number of candidates is reduced, and the corresponding

signal-containing spectrum region is restricted. Peptide candidates within each group

are then clustered by the k-means clustering algorithm [55], the distance measure be-

ing the correlation between peptide candidate signals. Peptide candidates within

a cluster have strong correlations among each other, and their indicator variables

are sampled from the joint conditional posterior distribution. These two measures

improve the overall efficiency of the algorithm.

Samples taken after convergence can be used to estimate the target parameters.

Particularly, the existence probability of peptide k is calculated as

P (λk = 1|y) =
1

R− r0 + 1

R∑
r=r0

λrk , (2.26)

where r0 is the first iteration after convergence is reached, R is the total number of

iterations, and λrk is the sample value of λk in the rth iteration. The kth peptide

candidate is said to be detected if its existence probability P (λk = 1|y) is greater

than a predefined threshold.

C. Results

We report below the observed performance of BPDA, side by side with well-known

tools, such as OpenMS and Decon2LS, in a number of experiments using both syn-

thetic and real data.
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1. Synthetic data

It is difficult to evaluate the performance of a given detection method using real data

due to the existence of unpredictable contaminants and the unknown true composition

of the samples. The merit of using simulated data is that the ground truth is known

and thus algorithm evaluation can be carried out [19,49].

a. Synthetic 20-mix spectra with different abundance levels (SNRs)

First, to test the robustness of our algorithm, we generated MS data sets with different

signal to noise ratios (SNRs), using the method described in [19]. In fact, the mean

signal strength (i.e., peptide abundance) was varied while the noise level (i.e., the

mean and variance of the noise) was fixed. For each peptide abundance level a, a ∈

{500, 2500, 12500}, the simulation was repeated 50 times. In each repetition, 20 true

peptides (with abundance level a and masses randomly selected from a quality-control

Shewanella Oneidensis data set provided by PNNL (http://omics.pnl.gov) served

as the input of the data model given by Eq. 2.3. The charge state distribution of one

peptide was modeled by a binomial distribution, which was reported to approximate

the real data well [19]. The isotopic distribution was obtained for each peptide by

using the Averagine model [56] and the Mercury algorithm [44]. The output consists

of a simulated mass spectrum. BPDA was applied to obtain the peptide existence

probabilities and abundance results. Its performance was evaluated by the classic

Receiver Operating Characteristic (ROC) curve. To obtain the ROC curve, first a

series of detection levels τ ranging from 0 to 1 with 0.001 increments was selected.

Peptides with existence probabilities not less than τ were said to be detected at this

specific detection level. The True Positive Rate (TPR) and False Positive Rate (TPR)

were then calculated at each detection level as follows: TPR = TruePositive
TruePositive+FalseNegative
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and FPR = FalsePositive
FalsePositive+TrueNegative

. One ROC curve (each point on the curve was a

pair of TPR and FPR at one detection level) was plotted for each repetition. And the

averaged ROC curve for one abundance level was obtained by averaging all the ROC

curves corresponding to the same abundance level. We also applied OpenMS on the

same data sets — to do so, we first wrote the simulated MS data into a text file with

three columns specified by elution time, m/z, and intensity, respectively. Next, the

text file was converted to mzXML (which is a valid input file format for OpenMS) by

the FileConverter tool integrated in the OpenMS software package (http://open-ms.

sourceforge.net). Finally, OpenMS was applied on the mzXML file to give the

detection results including detected features and their qualities. The ROC results

given by the two algorithms for different abundance levels are shown in Fig. 1.
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Fig. 1. ROC results for synthetic 20-mix spectra with different abundance levels

a = 500, 2500 and 12500.
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b. Synthetic 10-mix spectrum with overlapping peptides

As noted before, overlapping peptide peaks can complicate the mass spectra and make

the detection problem much harder. Thus, we investigated the performance of BPDA

in the presence of overlapping peptides. A simulated 10-mix spectrum was generated

by 5 pairs of overlapping peptides with unique masses: 1264.279, 1266.383, 1382.247,

1388.367, 1293.323, 1294.345, 1312.441, 1313.451, 1327.386 and 1329.378 Da. The

detection results for the comparison between BPDA and OpenMS are summarized

in Table I. BPDA detected all 10 peptides when FPR = 0.1, with very small mass

deviations and quite accurate abundance results. Almost all charge states of the 10

true peptides were correctly reported, except for the highest charge state of the 5th

and the 9th peptides. These two charge states were missed because the corresponding

peptide signal was very weak. In contrast, when FPR = 0.1, OpenMS only detected

the 3rd, the 7th and the 9th peptides. And when FPR increased to 0.3, OpenMS

achieved its highest TPR (0.6). But it could detect only one pair of peptides (the

one with the least overlap) and missed one peptide in each of the other 4 pairs. Two

examples are given in Fig. 2 to illustrate the observed overlapping peptide signals

and the detection results. The abundance results given by OpenMS were not close to

those of the true peptides (although the total abundance of each overlapping pair was

not far away from the corresponding total abundance of the true peptides). In total,

18 out of 36 charge states were correctly detected by OpenMS for the 10 peptides,

while BPDA correctly detected 34 out of 36, a much larger number.

We remark that Decon2LS results are missing from both synthetic experiments

described previously because the synthetic data could not be loaded, causing the

program to crash (the data was contained in a mzXML file converted from a 3-

column text file by the OpenMS FileConverter tool, whose format was successfully
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Table I. Results for the synthetic 10-mix data set with overlapping peptides. Intn,

CS and dM denote the normalized intensity, detectable charge states and the

mass deviation from the true mass, respectively. When FPR = 0.1, BPDA

was able to detect all 10 true peptides, while OpenMS detected only 3 peptides

(marked by *). OpenMS achieved its highest TPR (0.6) when FPR = 0.3.

BPDA OpenMS

True Mass (Da) / Intn / CS dM (Da) / Intn / CS dM (Da) / Intn / CS

1264.279 / 0.034 / 1-3 -0.0065 / 0.032 / 1-3 NA

1266.383 / 0.103 / 1-3 -0.0025 / 0.110 / 1-3 −0.0025 / 0.156 / 1-3

1382.247 / 0.171 / 1-4 0.0028 / 0.181 / 1-4 0.0031∗ / 0.228 / 1-3

1388.367 / 0.114 / 1-4 -0.0073 / 0.097 / 1-4 −0.0046 / 0.150 / 1-3

1293.323 / 0.006 / 1-3 -0.0081 / 0.007 / 1-2 NA

1294.345 / 0.008 / 1-3 -0.0124 / 0.008 / 1-3 0.0033 / 0.018 / 1-2

1312.441 / 0.229 / 1-4 0.0018 / 0.247 / 1-4 0.0019∗ / 0.334 / 1-4

1313.451 / 0.183 / 1-4 -0.0061 / 0.173 / 1-4 NA

1327.386 / 0.080 / 1-4 -0.0035 / 0.067 / 1-3 0.0061∗ / 0.114 / 1-3

1329.378 / 0.072 / 1-4 -0.0035 / 0.078 / 1-4 NA
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Fig. 2. Illustration of overlapping peptides observed in the synthetic 10-mix spectrum.

(a) Overlapping peptide signals observed in m/z range 422-424.5, which is gen-

erated by monoisotopic masses 1264.28 and 1266.38 at charge state 3. OpenMS

missed the first one while BPDA detected both. (b) Overlapping peptide sig-

nals observed in m/z range 647-650.5, which is generated by monoisotopic

masses 1293.32 and 1294.35 at charge state 2. OpenMS missed the first one

while BPDA detected both.

verified against mzXML version 2.1). We contacted Decon2LS’s developers, but did

not hear from them in time to have the Decon2LS results included.

2. Real data

In this section we report results from experiments carried out with real MS data.

The test data and parameter files used for different software tools were provided on

the BPDA project website http://gsp.tamu.edu/Publications/supplementary/

sun10a/bpda. We stick mainly to the recommended parameter values while only

adjusted a few parameters such as mass range and detection level to adapt to each

data set.
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a. MALDI-TOF MS 7-mix spectrum

We tested BPDA on a MALDI-TOF MS 7-mix spectrum, which contained seven

standard peptides with monoisotopic masses 1045.535, 1295.678, 1346.728, 1618.815,

2092.079, 2464.191 and 3146.464 Dalton. The spectrum was collected on a Bruker

ultraFlex MALDI TOF in the reflectron mode. As stated before, MALDI mostly

generates singly charged ions, so we only considered charge state 1 in the test. Since

there were contaminants in the data set, the goal was to check whether a detection

algorithm could find all the seven true peptides. The detection results of BPDA,

Decon2LS, OpenMS, and the commercial software flexAnalysis developed by Bruker

Daltonics (http://www.bdal.de) are summarized in Table II. BPDA detected the

first six peptides with a mean (absolute) mass deviation 0.018 Da. Decon2LS missed

the fifth and the last peptides, and the five detected peptides were of a mean mass

deviation 0.013 Da. OpenMS missed the forth and the last peptides, and the five

detected peptides were of a mean mass deviation 0.025 Da. The commercial software

flexAnalysis missed the fifth and the last peptides, and the five detected peptides were

of a mean mass deviation 0.013 Da. It can be seen that for the detected peptides,

the four algorithms yielded similar intensity results. Only BPDA and OpenMS were

able to detect the fifth peptide which had the lowest abundance among the first

six peptides. And all methods failed to report the last peptide. Visual inspection

suggested that this peptide generated very weak signal and its abundance was about

one third of the fifth peptide.

b. High-resolution LC-MS data set MyoLCMS

The preparation of the MyoLCMS data set is detailed as below: the data set was

collected from an overnight tryptic digest of horse myoglobin. Capillary liquid chro-
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Table II. Results for the MALDI-TOF 7-mix data set. Intn and dM denote the nor-

malized intensity, and the mass deviation from the true mass, respectively.
True Masses BPDA OpenMS Decon2LS Bruker

(Da) dM (Da) / Intn dM (Da) / Intn dM (Da) / Intn dM (Da) / Intn

1045.535 -0.023 / 0.550 0.019 / 0.655 -0.021 / 0.615 -0.023 / 0.532

1295.678 0.003 / 0.173 0.026 / 0.232 0.002 / 0.168 -0.001 / 0.167

1346.728 0.017 / 0.053 0.040 / 0.070 0.013 / 0.050 0.011 / 0.052

1618.815 0.035 / 0.178 NA 0.024 / 0.137 0.022 / 0.202

2092.079 0.021 / 0.004 0.021 / 0.009 NA NA

2464.191 -0.012 / 0.042 0.020 / 0.034 -0.007/0.030 -0.009 / 0.047

3146.464 NA NA NA NA

matography mass spectrometry (cLC/MS) was performed with a splitless nanoLC-2D

pump (Eksigent), a 50 mm-i.d. column packed with 10 cm of 5 mm-o.d. C18 particles,

nanoelectrospray and a high-resolution time-of-flight mass spectrometer (MicrOTOF;

Bruker Daltonics). The cLC gradient was 2 to 98% 0.1% formic acid/acetonitrile in

172 seconds at 400 nL/min. Sample was injected at a concentration of 60 fmol/mL

with an injection volume of 10 mL (600 fmol injected on-column).

There were 172 spectra with a m/z range 44.9 to 3005. To apply BPDA, we

first grouped peptide elution peaks, as described in the Method section. A total of 17

groups were obtained, each containing 10-20 consecutive spectra. A mean spectrum

was generated for each group, and BPDA was then applied. The detection results of

BPDA, OpenMS, and Decon2LS, which was applied in conjunction with VIPER [35],

Table III. Results for the high-resolution LC-MS data set MyoLCMS
BPDA OpenMS Decon2LS

Number of detected monoisotopic masses (features) 1635 2176 823
Average number of charge states for each monoisotopic mass 2.40 1.28 NA

Protein coverage of the top 5% detected features (%) 76.6 29.2 2.0
Protein coverage of the top 40% detected features (%) 81.8 77.9 40.9

No. of horse myoglobin peptides reported in the top 5% detected features 15 3 1
No. of horse myoglobin peptides reported in the top 40% detected features 16 11 7

Mean mass deviation of horse myoglobin peptides 0.004 0.019 0.020
in the top 5% detected features (Da)

Mean mass deviation of horse myoglobin peptides 0.004 0.014 0.014
in the top 40% detected features (Da)



30

are summarized in Table III (we also considered the method implemented in the

SpecArray package [29], but found it to be inferior to BPDA, OpenMS, and Decon2LS

— the results were then omitted for the sake of conciseness). The number of features

with unique monoisotopic masses detected by BPDA, OpenMS, and Decon2LS-Viper

were 1635, 2176 and 823, respectively. In fact, it is not very informative to evaluate the

performance of a detection algorithm solely based on the number of detected features,

because of the presence of contaminants and false positive detections. Therefore, we

focus on the top detected features yielded by each detection algorithm. Detected

features were ranked by quality in descending order. Different algorithms utilize

different quality metrics; for example, Decon2LS and OpenMS provide a quality score

which measures how well an observed isotope pattern matches the predicted isotope

pattern, while BPDA provides the peptide existence probability (see Eq. 2.26) as

the quality measure. For each detection algorithm, for a given percentage of top

detected features, we calculated the number of detected horse myoglobin peptides

and the protein coverage rate. Note that by in-silico digestion of horse myoglobin,

there are 39 tryptic peptides with less than 2 missed cleavage sites (19 of which do

not contain any missed cleavage sites). Ideally, we should compare algorithms with

known peptide composition in the sample and report protein coverage at different

false positive rates. However, due to possible peptide contamination in the sample

in any LC/MS experiment, actual peptide species presented in the sample are never

known and this prevents us from estimating the false positive rates on the reported

peptide list. As a result, the statistical significance of reported peptides by different

peptide identification algorithms cannot be evaluated and the only option left for

users in hope of obtaining a list of peptides with relatively low false positive rate is by

applying a percentage threshold on the quality score reported by different algorithms.

Thus, protein coverage v.s. percentage threshold on quality score is a meaningful
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measurement of the performance of peak detection algorithms and the results are

shown in Fig. 3. We need to point out that although the protein coverage of OpenMS

seems to be comparable with the proposed algorithm in regions where the quality

score percentage threshold is large, in such regions the reported peptide list may

contain a lot of false positives and it is not an indication of good or bad algorithm

performance. Instead, how quickly an algorithm reaches high protein coverage as the

percentage threshold increases should be the measurement of the performance. In

Fig. 3, we can see that BPDA reaches high protein coverage much faster than other

algorithms at low percentage threshold regions.
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Fig. 3. Protein coverage results achieved by BPDA, OpenMS, and Decon2LS for the

LC-MS data set MyoLCMS.
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D. Discussion

We observed in our experiments that BPDA performs well on both simulated data

and real data, for various SNRs and resolutions, and in complex cases where features

overlap.

For the synthetic 20-mix experiment, we observe in Fig. 1 that the sensitivity

(i.e., TPR) of BPDA was consistently higher than that of OpenMS for each abundance

level, and both methods gave better sensitivity results as the abundance level (i.e.,

SNR) increased. Also it is observed that BPDA was quite robust for different SNRs.

For the synthetic 10-mix experiment with overlapping peptides, we saw that BPDA

detected all the peptides at a small false-positive rate FPR = 0.1, with very small

mass deviations and quite accurate abundance results, and nearly all the charge states

of the 10 true peptides were correctly reported. In contrast, at FPR = 0.1, OpenMS

could detect only a few of the peptides. The abundance results given by OpenMS

were not very close to those of the true peptides. Also OpenMS could only detect

about half of the charge states.

The results obtained with real data corroborated the findings made with the syn-

thetic experiments. For the MALDI-TOF MS 7-mix data, the four algorithms yielded

similar intensity results, but BPDA was the only one to detect six out of the seven

peptides. For the MyoLCMS experiment, we focused on protein coverage results,

which is an important criterion to determine the confidence in protein identification

and quantification [57,58]. It was observed that BPDA displayed the largest protein

coverage among the programs tested.
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CHAPTER III

BAYESIAN PEPTIDE DETECTION FOR LC-MS∗

A. Introduction

For peptide detection in LC-MS data, 2D algorithms which utilize information from

both the mass-to-charge and retention-time dimensions can better capture the fea-

tures in the data, and thus appear to be more promising compared to 1D algorithms

which perform peak picking, deisotoping and charge state assignment on a scan-to-

scan basis.

In this chapter, we present BPDA2d, a 2D Bayesian peptide detection algorithm

and an extension of BPDA, to process high-resolution LC-MS data more efficiently.

BPDA2d shares the core idea with BPDA, which is to systematically evaluate all

possible combinations of peptide candidates for spectra interpretation, and to opti-

mize all peptide signals in order to minimize the MSE between inferred and observed

spectra. The outputs include peptide monoisotopic mass, retention time, abundance,

existence probability, etc. BPDA2d essentially differs from BPDA by explicitly ex-

ploiting information residing in the RT dimension to analyze spectra and detect pep-

tides. While BPDA only models peptide signals along the m/z dimension, BPDA2d

models the spectra from both m/z and RT dimensions, thereby capturing and fitting

the properties of LC-MS data better.

BPDA2d offers following advantages over conventional methods:

(i) BPDA2d carries out global optimization instead of local template matching.

∗Reprinted with permission from “BPDA2d— a 2D global optimization based
Bayesian peptide detection algorithm for LC-MS” by Y. Sun, J. Zhang, U. M. Braga-
Neto, and E. R. Dougherty, Bioinformatics, vol. 28, pp. 564-572, 2012 Copyright
2012 by Bioinformatics.
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It is “global” in two senses: First, for the detection of one peptide candidate, BPDA2d

extracts all relevant information and observations (including isotopic peaks, charge

state distributions and LC elution peaks) that span all over the m/z-RT space, and

pieces all evidence together to infer the candidate’s existence probability. As a result,

low abundance peptides can be better identified. In contrast, existing algorithms

often perform peptide deisotoping at a single charge state, isolating useful information

that can be drawn from other charge states. While high abundance charge states

may be correctly detected, low abundance charge states might be missed or wrongly

assigned. Additional benefits of collating all charge states are discussed in [59] (though

their method requires the peak clusters at various charge states to have a moderate

correlation, and thus may not work efficiently if the shape of the peak cluster at

any charge state differs from other charge states due to the presence of interfering

peptides.) Second, BPDA2d performs global optimization for all candidates and

simultaneously finds their best fitting signals. Since BPDA2d looks for the optimal

among all possible interpretations of the MS spectra, the procedure is thus systematic.

In contrast, greedy template-matching based methods detect peptides one by one in a

greedy manner, which prevents them from evaluating all potential interpretations of

the given spectra and may lead to poor detection of overlapping peptides (See Results

section). Therefore, the results are often suboptimal.

(ii) BPDA2d provides existence probabilities for all the candidates considered, as

opposed to the fitting scores generally provided by greedy template-matching meth-

ods. The metrics used for fitting score calculation may be heuristic (e.g. KL dis-

tance [33]). In addition, the range of the fitting score may vary from experiment to

experiment, making it hard for the end user to interpret and to select a proper thresh-

old to filter out low quality features. On the contrary, existence probabilities given

by BPDA2d are derived based on a solid statistical framework and can be directly
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used for probability-based evaluation.

(iii) BPDA2d is flexible in the sense that it makes little assumptions about the

underlying spectra. When modeling peptide signals, the model is derived from obser-

vations as opposed to employing any pre-assumed peptide peak shape as in [37, 60].

Therefore, BPDA2d is more effective in tracking signals from various peptide species

and more adaptable across experiments.

(iv) Most parameters in the proposed method possess a clear physical meaning

as they come directly from observations of the mass spectra.

B. Methods

We first preprocess the spectra to remove baseline, filter noise, detect peaks in the

m/z-RT plane, and generate a list of peptide candidates annotated by mass and RT.

Then BPDA2d is applied based on the developed MS model to infer the best fitting

peptide signals of observed spectra, the results being peptide monoisotopic mass, RT,

abundance, existence probability, etc. Details of preprocessing steps, proposed MS

model, and BPDA2d algorithm are described in the following subsections.

1. Spectra preprocessing and obtaining peptide candidates

Non-flat baselines are often observed in mass spectra. Their presence can distort

the true signal pattern. Thus, the baseline of each MS scan is first identified as

the running minima along the m/z axis using a window size of 4 Dalton (a tun-

able parameter), and subtracted from the scan. Then each scan is smoothed by the

LOWESS regression method (Matlab mslowess function: http://www.mathworks.

com/help/toolbox/bioinfo/ref/mslowess.html) with Gaussian kernel and a span

of 9 consecutive points.
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The next step is 1D peak detection along the m/z axis. We followed the approach

implemented in the Matlab mspeaks function. Specifically, in each smoothed MS scan,

local maxima are first identified as putative peak locations. Then peaks are filtered

based on their intensities and signal to noise ratios (defined as the local maximum

divided by the minimum of the two neighboring local minima), and peaks that are

too close to each other (might occur due to over segmentation) are joined into a single

one. The thresholds used for intensity and over-segmentation filters, τintn and τseg,

respectively, are automatically determined depending on the characteristic of each

input MS scan as below:

τintn = mean(intn) + sd(intn),

τseg = min(
200

resolution
, 7× lower 10% quantile of the space

between neighboring m/z values).

And the SNR threshold is a tunable parameter with default value 3.

Next, the detected 1D peaks in adjacent spectra are connected along the RT

dimension: 1D peaks are first sorted by their centroid m/z positions, and then divided

into disjoint subsets, in which the maximal m/z distance between two 1D peaks is

less than twice the smallest m/z in the subset times ∆m (a user defined mass error

in ppm). For each subset, the peaks are then sorted/connected according to their RT

positions (if multiple peaks have the same RT, only the one with the largest intensity

is retained). Next, the connected 1D peaks are split at RT gaps (a tunable parameter),

and the resulting so called elution peaks are smoothed by the LOWESS regression

method with a ±3 scan width. The elution peaks could be multimodal, which may

for instance be produced by two different peptides with partially overlapping elution

peaks, or by isomers with variant post-translational modifications and thus different

retention times. Multimodal elution peaks are split at local minima. A point is
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identified as a local minima/maxima if it is preceded by a local maxima/minima and

is followed by a value greater/lower by 15% (the threshold is a user tunable parameter

which should be comparable to the random intensity fluctuations of the instrument).

Consequently all elution peaks are now unimodal, which will be used to propose a list

of peptide candidates in the next step. For each elution peak, its centroid position in

the m/z axis is estimated as the average of the m/z values of the connected 1D peaks

weighted by their intensities. This method enables very accurate mass estimation, as

reported by [36].

Now, considering one elution peak with centroid at m/z value d, we want to find

out which peptide candidates can potentially produce this signal peak. At least two

conditions need to be satisfied. (1) The masses of such peptides should be restricted

to the following set:

{mass |mass = i(d−mpc)− j mnt,

i = 1, 2, . . . , cs, j = 0, 1, . . . , iso},
(3.1)

where mass is the mass of such a candidate, mpc is the mass of one positive charge

and mnt is the mass shift caused by addition of one neutron. Due to mass defect, the

mass shift varies for different elements. We approximate mnt using the mass shift from

13C to 12C, which is 1.0034, since Carbon contributes most to the isotope patterns.

But mnt is a user accessible parameter whose value can be changed as needed. The

parameters cs and iso are user defined maximal numbers of considered charge states

and isotopic positions, respectively. (2) The shapes of such candidates’ elution peaks

should resemble the aforementioned elution peak with centroid d (hereafter referred

to as the “source” elution peak). But in the presence of scan noise, missing values

or overlapping peptide signals, the actual shapes of candidates’ elution peaks can be

quite different from the observed shape of the source peak. Thus, in order to estimate
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candidates’ elution peaks more accurately, other elution peaks which can be produced

by such candidates need to be taken into account. In more detail, assume the source

elution peak has given rise to a candidate with mass value massk taken from the set

defined in Eq. 3.1. Then, theoretically, this candidate can generate a set of elution

peaks with centroids given by

αk,ij =
massk + impc + j mnt

i
,

i = 1, 2, . . . , cs, j = 0, 1, . . . , iso,

(3.2)

where αk,ij is the theoretic centroid (m/z value) of the elution peak generated by

candidate massk at charge state i and isotopic number j. In theory, the set of

elution peaks generated by this very candidate should have the same shape (up to a

multiplicative constant). Therefore, we search in the previous detected elution peaks

for those whose centroids are coincident with the values given by Eq 3.2 (within

∆m) and have correlation larger than 0.6 with the source elution peak, since these

elution peaks can serve as extra evidence to infer the candidate’s real elution peak.

Finally the candidate’s elution peak is estimated by taking the average of all identified

elution peaks weighted by the mean intensity of each elution peak involved in the

calculation. The candidate’s elution profile is then obtained by normalizing its elution

peak by the apex, and the corresponding RT of the apex is taken as the candidate’s

retention time. It is worth to mention that we do not assume any particular shape

for candidates’ elution profiles, but instead estimate them from relevant observations.

Due to heterogeneity of peptides and fluctuations in liquid chromatography, this

approach is more robust in the presence of noise and more adaptable across analysis

platforms compared to using any pre-defined model [37,60].

As can be seen from Eq. 3.1, each detected elution peak gives rise to cs× (iso+

1) different peptide candidates whose elution profiles have been estimated in the
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previous step, but it does not follow that all these candidates really exist in the

sample. Therefore, our primary goal in peptide detection is to find the existence

probability of each peptide candidate. Also note that the total number of candidates

should be less than or equal to cs × (iso + 1) × (number of detected elution peaks),

as it is possible that multiple elution peaks yield the same candidate. It is worth to

mention that the way candidates are generated in BPDA2d is fundamentally different

from that in BPDA, as additional information carried by elution peaks is utilized.

Candidates are now associated with elution profiles in addition to mass values.

2. Modeling the mass spectra

We propose a complete model to capture the specific properties of peptides and mass

spectra over the entire m/z-RT plane.

Suppose N peptide candidates are obtained from the observed spectra using

methods described in the previous section. Each candidate can generate a series of

elution peaks over different charge states, and at each charge state several isotopic

peaks can be registered. Hence, the signal generated by the k-th peptide candidate

is modeled by Eq. 3.3, in which i and j represent the charge state and the isotopic

position of the candidate, respectively. The baseline removed and smoothed spectra

(see the previous section for details) are a mixture of signals generated by N peptide
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candidates plus Gaussian random noise, which are modeled by Eq. 3.4:

gk(xm, t) =
cs∑
i=1

iso∑
j=0

ck,ijlk(t)Ixm=αk,ij , (3.3)

y(xm, t) =
N∑
k=1

λkgk(xm, t) + ε(t)

=
N∑
k=1

λk

cs∑
i=1

iso∑
j=0

ck,ijlk(t)Ixm=αk,ij + ε(t), (3.4)

m = 1, 2, . . . ,M, t = 1, 2, . . . , T.

In the above two equations, xm is the m-th mass-to-charge ratio in the sig-

nal region, i.e., xm ∈ {m/z values of detected elution peaks}
⋃
{m/z values of all }.

{.candidates’ theoretic peaks }, t indexes spectra, M and T are the total number of

m/z values and spectra, respectively, y(xm, t) represents the intensity at point (xm,t),

I is an indicator function, IA = 1 if A 6= ∅, IA = 0 otherwise, and the noise term ε(t)

follows a Gaussian distribution with zero mean and standard deviation σ(t), which

is generally a good model for thermal noise in electrical instruments. The value of

σ(t) can be approximated by the standard deviation of the background region in the

t-th scan. The parameters of the kth candidate, namely, αk,ij, lk(t), λk and ck,ij are

discussed in detail below:

• αk,ij is the theoretic centroid position (in the m/z axis) of the elution peak

generated by candidate k, at charge state i and isotopic number j, the value of

which is given by Eq. 3.2.

• lk(t) is the normalized elution profile of the k-th peptide candidate, which is

already obtained in previous section.

• λk is an indicator random variable, which is 1 if the kth peptide candidate truly

exists in the sample and 0 otherwise.
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• ck,ij is the apex intensity of the elution peak generated by peptide k, at charge

state i and isotopic number j.

In summary, the model considers peptides’ elution peaks at different isotopic

positions and charge states simultaneously, incorporating candidates’ existence prob-

abilities and spectra thermal noise.

3. Bayesian peptide detection

Let θ , {λk, ck,ij; k = 1, . . . , N, i = 1, . . . , cs, j = 0, . . . , iso} be the set of all unknown

model parameters. The goal of our algorithm is to determine the value of θ based on

the observed spectra vector y = [y(xm, t);m = 1, 2, . . . ,M, t = 1, 2, . . . , T ]T . It is not

an easy task since there are large number of parameters that need to be simultaneously

optimized. To overcome the computational obstacle, we resort to the Gibbs sampling

method [50] to sample model parameters. The Gibbs sampling process for the kth

peptide candidate and the derivations of the conditional posterior distributions of

important model parameters are detailed below.

a. Sampling the apex vector

The apex vector ck , [ck,ij; i = 1, . . . , cs, j = 0, . . . , iso]T incorporates all possible

elution peaks (over different charge states and isotopic positions) of the kth peptide

candidate. By the Bayesian principle, the conditional posterior distribution of ck is

proportional to the likelihood times the prior:

P (ck |y, θ−ck ) ∝ P (y|θ)Prior(ck), (3.5)

where θ−ck , θ \ ck.
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It is easy to show the likelihood satisfies

P (y|θ) ∝ exp {−1

2
(y −Gλ(0) − λkgk)TΣe

−1(y −Gλ(0) − λkgk)}, (3.6)

where

y = [y(x1, 1), y(x1, 2), . . . , y(x1, T ), y(x2, 1), y(x2, 2), . . . , y(x2, T ), . . . ,

y(xM , 1), y(xM , 2), . . . , y(xM , T )]T
(3.7)

is the observed denoised spectra vector.

λ(q) , [λ1, . . . , λk = q, . . . , λN ]T , q ∈ {0, 1}, (3.8)

is an indicator vector for peptide existence.

Σe = diag
(
[σ2

1, . . . , σ
2
T ;σ2

1, . . . , σ
2
T ; . . . ;σ2

1, . . . , σ
2
T ]1×MT

)
, (3.9)

with σ2
t being the variance of the t-th spectrum.

G = (g1,g2, . . . ,gN), (3.10)

whose k-th column is given by

gk = [gk(x1, 1), gk(x1, 2), . . . , gk(x1, T ), gk(x2, 1), gk(x2, 2), . . . , gk(x2, T ), . . . ,

gk(xM , 1), gk(xM , 2), . . . , gk(xM , T )]T ,

(3.11)

which is a MT × 1 vector with the entry gk(xm, t) =
cs∑
i=1

iso∑
j=0

ck,ijlk(t)Ixm=αk,ij , m =

1, 2, . . . ,M , t = 1, 2, . . . , T, representing the signal at (xm,t) generated by peptide

candidate k.

The apexes of the elution peaks of peptide candidate k at charge state i follow

a multinomial distribution [52], which by the Central Limit Theorem can be approx-
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imated by a Gaussian distribution as below:

P (ck,ij, j = 0, . . . , iso |ak, ηk,i, πk ) = MN(akηk,i, πk) (3.12)

≈ N(akηk,iπk,

akηk,i[diag(πk)− πTk πk]), (3.13)

where ak is the total apex intensity of candidate k, ηk , [ηk,1, ηk,2, . . . , ηk,cs]
T de-

notes the candidate’s charge state distribution, and πk , [πk,0, πk,1, . . . , πk,iso]
T is the

theoretical isotopic distribution estimated by the Averagine approach [45,56].

Thus the prior distribution of the apex vector ck is given by:

Prior(ck) = P (ck |ak, ηk, πk ) ≈ N(µck ,Σck), (3.14)

where

µck = [akηk,1π
T
k , akηk,2π

T
k , . . . , akηk,csπ

T
k ]T , (3.15)

Σck = diag(Σi), (3.16)

with

Σi = akηk,i[diag(πk)− πTk πk], i = 1, 2, . . . , cs. (3.17)

Substituting Eq. 3.6 and Eq. 3.14 into Eq. 3.5 and it can be shown by algebraic

manipulations [53] that the conditional posterior distribution of ck is also Gaussian,

with the mean vector and covariance matrix given below:

Σck|y,θ−ck
= (I−KHk)Σck , (3.18)

µck|y,θ−ck
= µck + K(y −Gλ(0) −Hkµck), (3.19)

where Hk = [hms,(i−1)×(iso+1)+j+1]MT×cs(iso+1) is the elution profile matrix of candidate
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k. The [(i− 1)× (iso+ 1) + j + 1]th column contains the normalized elution profile

of candidate k at charge state i and isotopic number j which has been estimated in

preprocessing steps. And K , ΣckH
T
k

(
HkΣckH

T
k + Σe

)−1
is known as the Kalman

gain matrix [54].

Note that the matrices involved in the above equations have huge dimensions

which make the calculation almost infeasible. Thus, to update each peptide’s signal,

the related matrices K,G,H,y and Σe are restricted to the corresponding peptide

signal regions. This does no harm to the calculation accuracy while dramatically

increases the speed.

For the kth peptide candidate, its total apex intensity, ak, and its charge state

distribution, ηk, are updated from the corresponding conditional posterior distribution

derived in a similar manner as done in the previous chapter.

b. Sampling the peptide existence indicator variable

Let λk denote the existence indicator variable for peptide k. Its conditional posterior

distribution is given by

P (λk |y, θ−λk ) ∝ P (y |θ )Prior(λk)

∝ exp {−1

2
(y −Gλ)TΣ−1

e (y −Gλ)}Prior(λk), (3.20)

where G is defined in Eq. 3.10.

The log-likelihood ratio (LLR) of λk can be calculated as below

LLRλk = ln
P (λk = 1 |y, θ−λk )

P (λk = 0 |y, θ−λk )

= −1

2

[
(y −Gλ(1))TΣ−1

e (y −Gλ(1))− (y −Gλ(0))TΣ−1
e (y −Gλ(0))

]
+ ln

P (λk = 1)

P (λk = 0)
, (3.21)



45

where λ(q), q ∈ {0, 1} is defined by Eq. 3.8.

Absent prior knowledge about which peptide candidates are more likely to be

present in the sample, then a reasonable choice is a uniform prior for λk. However,

we wish to be conservative regarding the existence of peptide candidates. The idea

is that by adding more candidates, it is possible to reduce the MSE between the

inferred spectra and the observed denoised spectra, but at the same time the chances

of overfitting increases as the model becomes more complex. Thus, a prior based

on Bayesian information criterion (BIC) [61] is adopted to resolve the problem by

introducing a penalty term for the number of parameters of the model. And the

above equation can be rewritten as:

LLRλk = −1

2

[
(y −Gλ(1))TΣ−1

e (y −Gλ(1))− (y −Gλ(0))TΣ−1
e (y −Gλ(0))

]
− ln(MT )

2
∆, (3.22)

where ∆ = Card(θ)−Card(θ−λk,−ck) = Card(ck) is the difference between the num-

ber of free parameters of the two models – with and without candidate k, respectively.

The conditional posterior distribution of λk is then obtained based on the log-

likelihood ratio as given by Eq. 2.24 and 2.25.

For Gibbs sampling, it is well known that the correlation between parameters

can reduce sampling efficiency. Thus, we cluster peptide candidates which have large

overlaps in both m/z and RT dimensions together. Candidates within one cluster

have strong correlations among each other, and their indicator variables are sampled

from the joint conditional posterior distribution. The iteration order also affects the

performance. Therefore, peptide clusters are first sorted by their importance, which

is defined as the maximal intensity of the peptides in the cluster. The iteration

starts from the most significant cluster and continues to the next significant one.
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Our experimental results suggest that this scheme helps to reduce false positives and

speed up convergence. The pseudocode of the entire Gibbs sampling process is given

by Table IV. Samples taken after convergence can be used to estimate the target

parameters. The existence probability of peptide k is calculated by Eq. 2.26.

If the LC-MS data also contain MS2 fragmentation spectra, then MS1 detected

peptides can be linked to MS2 identified features given by software such as SEQUEST

to obtain peptide sequence information.

C. Results and discussion

We report the observed performance of BPDA2d, side by side with state-of-the-art

methods, such as msInspect and BPDA in a number of experiments using both syn-

thetic and real data. The efficiency of BPDA2d in detecting low abundance and

overlapping peptides is illustrated.

1. Results for synthetic data

a. Synthetic 100-mix LC-MS data sets with different abundance levels (SNRs)

First, to test robustness of various algorithms, we generated LC-MS data sets with

different SNRs using methods described by [19]. More specifically, the mean signal

strength (peptide abundance) was varied while the noise level (mean and variance of

noise) was fixed. For each peptide abundance level a ∈ {100, 500, 5000}, the simula-

tion was repeated 30 times. In each repetition, 100 true peptides (with abundance

level a and masses randomly selected from tryptic digested human proteins) served

as inputs of the model given by Eq. 3.4. The charge state distribution of one pep-

tide was modeled by a binomial distribution, which was reported to approximate the

real data well [19]. The isotopic distribution was calculated theoretically based on
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Table IV. The Gibbs sampling process

1. Cluster candidates into S clusters.

2. Sort clusters by their importance in descending order.

3. For iteration r = 1 toR

4. For cluster s = 1 toS

5. For peptide candidate k = is1 to isNs

6. Draw crk based on its conditional posterior distribution.

7. end of k loop

8. Draw λrk, k = 1 . . . , isNs for the cluster according to the

joint conditional posterior distribution.

9. end of s loop

10. end of r loop

peptide sequence. The peptide elution profile was modeled by an exponentially mod-

ified Gaussian distribution, which captures different distortions of elution peaks by

considering tailing and fronting effects [62]. Each output data set consists of 100 MS

spectra with mass resolution 15,000.

BPDA2d, BPDA and msInspect (the latest Build 613) were applied to the same

data sets to give detection results. We mainly focus on the performance comparison

between BPDA2d and its precursor BPDA, which was shown to outperform popular

algorithms such as OpenMS (Version 1.6.0), Decon2LS and VIPER in [39]. We also

include msInspect in the comparison since it is widely used and has been reported

to outperform other algorithms [63] such as MZmine. To apply BPDA, we followed

the procedure introduced in the original paper [39]: Peptide elution peaks were first

detected along the RT dimension, and elution peaks with similar RT were grouped.

Each group contains a series of consecutive spectra, which were then averaged to form
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a mean spectrum. Each mean spectrum was analyzed by BPDA, and finally an overall

feature list was produced. To apply msInspect, we first wrote each simulated data set

into a text file with three columns specified by RT, m/z, and intensity. Next, the text

file was converted to mzXML and then msInspect was applied to give detection results

including detected features and their qualities. The input parameters of msInspect

were set to enable the inclusion of as many reasonable features as possible (“minpeaks”

and “maxkl” were set to 2 and 10, respectively).

When comparing BPDA2d to its precursor BPDA, we found that the former

had several advantages over the latter as detailed below. (I) For each experiment

conducted, the total number of candidates considered in BPDA2d was greatly reduced

compared to BPDA (reduced by 43% on average). This is expected since BPDA2d

imposes additional constraints on candidates’ elution peaks and can preclude non-

reproducible noise peaks from the candidate list. To clarify, BPDA2d searches for

candidates which can be repetitively observed across retention time — i.e. candidates

whose elution peaks can be clearly identified. Thus, a major fraction of noise peaks

(e.g. shot noise) which are not reproducible in time is removed. In contrast, BPDA is

a 1D algorithm which works along the m/z dimension and processes one mean scan at

a time. The mean scan is produced by taking the average of a few consecutive spectra.

Thus, although noise in the form of random intensity fluctuation can be canceled out

to some degree, non-reproducible noise peaks are still likely to be included in the

resulting mean scan and therefore in the candidate list. Also, BPDA is likely to split

long elution peaks into multiple mean scans and thus generate multiple candidates for

a single true peptide. In summary, BPDA2d can compile a more reliable candidate

list, which may help to reduce the number of detected false positives (FPs), and can

allocate limited computational resources to candidates more likely to be true positives

(TPs).
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(II) BPDA2d reported significantly fewer FPs with existence probability larger

than 0.9 than BPDA (reduced by 47% on average) and detected more TPs than the

latter (increased by 6% on average). This improvement of BPDA2d is achieved by

taking into account peptide elution peaks in addition to isotopic distribution and

charge station distribution. BPDA2d tries to use all available observations from

possible positions on the m/z-RT plane to infer the overall signal of each peptide

candidate. By utilizing more information, detected signals become more reliable and

the evidence of candidates’ existence or non-existence becomes stronger, resulting in

better detection results in terms of more TPs and less FPs.

When comparing BPDA2d to msInspect, we found that on average the TPs

detected by BPDA2d increased by 16% than the latter while the FPs reduced by 40%

(quality thresholds were set to existence probability larger than 0.9 and KL less than

1, for the two algorithms respectively).

To give a complete picture of the detection results, the classic Precision-Recall

(PR) curve was adopted to evaluate the performance of various algorithms since

the ground truth of the data is known. To obtain the PR curve, first a series of

detection levels was selected, which range from the lower bound to the upper bound

of feature quality scores (i.e. existence probability for BPDA and BPDA2d; KL score

for msInspect). Features with quality score better than a given detection level were

said to be detected at this specific detection level. A detected feature was claimed to

be a true positive if it had the correct monoisotopic mass (e.g. within 10 ppm of the

true mass), the correct RT (with a 6-scan tolerance), and the true RT is within the

boundaries of the feature’s elution peak ; otherwise the detected feature was called a

false positive. Then, the True Positive Rate (TPR, i.e. recall) and precision (Prec)

were calculated at each detection level as follows: TPR = TruePositive
TruePositive+FalseNegative

and

Prec = TruePositive
TruePositive+FalsePositive

. The averaged PR curve for one abundance level was
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then obtained (each point on the curve was a pair of averaged precision and TPR

at one detection level for all repetitions). We found that the Precision-Recall results

were largely influenced by the size of the mass window used for matching detected

features with the list of true peptides. Thus we plotted the Precision-Recall curves

for various mass windows as shown in Fig. 4.
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Fig. 4. Precession-Recall results for synthetic LC-MS data sets with different abun-

dance levels (SNRs). Each panel shows the results obtained at a different mass

window size as suggested by the title. Color codes for different abundance lev-

els. Each method is represented by a unique line type. BPDA2d renders the

best precision and sensitivity (i.e., recall) among all the methods compared for

all abundance level in the first two mass window cases. In the last case, the

performance between BPDA2D and msInspect has a very small difference.

In the PR space, the upper right corner ( with a coordinate of [1,1]) represents

100% sensitivity (no false negatives) and 100% precision (no false positives). The

closer the PR curve to the upper right corner, the better the algorithm. In this

sense, BPDA2d is generally the best among all methods at all abundance levels.

BPDA2d’s performance is the least affected by the deterioration of SNRs among the

three algorithms. Thus BPDA2d provides the most robust performance for lower

abundance peptides.

Another advantage of BPDA2d is that it has much higher reported mass accu-

racy. Fig. 5 compares mass accuracies of all three algorithms. It can be seen that
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the mass accuracy reported by BPDA2d is significantly higher than the other two

algorithms. Given different mass accuracies, there is not a fair way for performance

evaluation. Thus we provided performance evaluation in three cases when different

mass window sizes were used. It can be seen that the mass window size does not af-

fect the performance of BPDA2D significantly after 10 ppm because of its high mass

accuracy. On the other hand, msInspect deteriorates quickly as we narrow the mass

window from 20ppm to 10ppm due to its low mass accuracy. BPDA2D outperforms

msInspect at higher mass accuracies of 10ppm and 5ppm. In the case of 20ppm, given

the simple composition of the simulated data, the performance between BPDA2D and

msInspect is similar. It shall be noted that with different mass accuracies by different

algorithms, sample composition will strongly affect the reported PR curve — If the

sample is more complex, with more peptides of similar weights, algorithm with lower

mass accuracy like msInspect will further deteriorate in performance.

b. Synthetic LC-MS data set with 8 pairs of overlapping peptides

As noted, overlapping peptide peaks can complicate mass spectra and make the de-

tection problem much harder. Hence, it is important to investigate algorithm per-

formance in the presence of overlapping peptides. A synthetic 16-peptide-mix was

generated by 8 pairs of overlapping tryptic digested human peptides. The data set

contains 1000 LC-MS spectra with mass resolution 15,000. The intensity ratio of each

pair (light/heavy) ranges from 0.25 to 3, and peptide charge states range from 1 to

4. More details on these peptides and the detection results of different algorithms are

summarized in Table V.

For the first 4 pairs, the challenges are mainly to detect and split overlapping
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Fig. 5. Mass deviation of reported features that can be matched to the ground truth

peptide list using a 20 ppm mass window (along with other criteria imposed on

the retention time as described in the text). Each panel represents a detection

algorithm as suggested by the subtitle. The plot was obtained by normalizing

the mass deviation histogram by the total number of true peptides. It can

be seen that BPDA2d has a much higher mass accuracy than the other two

algorithms: the density around 0 ppm given by BPDA2d increased by around

4 times compared to BPDA and msInspect; and the SD of mass deviation is

3.7, 4.6, and 6.9 ppm for BPDA2d, BPDA and msInspect, respectively.

elution peaks of the two peptides in each pair with similar weights and close RT. For

instance, the elution profiles and observed signals of the two peptides in the 1st pair

are shown in Fig. 6. We observe that the two peptides have significant overlapping

signal regions, which makes the detection problem tough. MsInspect experienced

difficulty in identifying this pair. In fact, it failed to split the overlapping elution

peaks and treated the two peptides as a single one. As a result, the intensity of the

reported peptide (the 2nd one) equals the total intensity of the two. For BPDA,

although it could report both peptides correctly, the intensity results were inaccurate

(the intensity ratio turned out to be greater than 1 while the true ratio was 0.67).

BPDA detected the second peptide correctly from 106s to 128s (approximately from

the beginning to the maximum of the second peptide’s elution profile, see Fig. 6(a)),

while the rest of the signal peaks which appeared after 128s were shadowed by the
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Fig. 6. Overlapping signals of the first pair in 16-mix. a) Overlapping LC profiles of

the two peptides. (b) Signal peaks of the two peptides at charge state 1 in a

3D view. SNR at this region is quite low, and significant peak overlapping can

be observed.

1st peptide, whose signal was stronger. Therefore, in this region BPDA failed to

include the 2nd peptide in its candidate list and tried to use the 1st peptide alone to

explain the observed signal. The second peptide’s corresponding intensity was thus

wrongly attributed to the first one, thereby leading to inaccurate intensity results.

In contrast to msInspect and BPDA, BPDA2d correctly split the elution peaks of

the two peptides by capturing the tiny mass difference of the two and by detecting

intensity dips in the observed overlapping peaks.

For the last 4 pairs, the weights of two peptides in each pair differ approximately

by a multiple of the neutron weight. As a result, their isotopic peaks overlap at

different isotope numbers and the overall isotope pattern deviates from each individ-

ual’s. Thus, it is more challenging to utilize individual isotope pattern to discern the

overlapping pair. As a vivid example, the elution profiles and the observed signals

of peptides in the sixth pair are shown in Fig. 7. It is observed that the SNR at
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Fig. 7. Overlapping signals of the sixth pair in 16-mix. (a) Overlapping LC profiles.

(b) Signal peaks of the two peptides at charge state 3 in a 3D view. This

region has a high SNR, where peaks of the 2nd peptide almost get completely

shadowed by all but the first isotope peak of the 1st peptide. (c) MS scan

sampled at 78s showing signals of the same pair. The observed overall signal

pattern deviates from (d) the theoretic isotope patterns of the two peptides.
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Table V. Results of the data set with 8 pairs of overlapping peptides

Pair No.
True peptide info BPDA2d BPDA msInspect

Sequence Mass(Da) RT(s) CS Intn CS Intn CS Intn CS Intn

1
DYSYER 831.34 141 1-2 .0004 1-2 .0003 1-2 .0008 NA

DENGELR 831.37 127 1-2 .0006 1-2 .0006 1-2 .0005 1-2 .001

2
VVFMSLCK 925.48 414 1-2 .0046 1-2 .0033 1-2 .0043 1-2 .0050

LLLPCLVR 925.58 456 1-2 .0054 1-2 .0044 1-2 .0056 1-2 .0068

3
MTPELMIK 961.50 323 1-3 .0001 1-3 .0001 1-3 .0001 1-2 .0001

IAVMLMER 961.51 340 1-3 .0002 1-3 .0002 1-3 .0003 1-3 .0003

4
ACCLLCGCPK 1009.42 302 1-3 .0011 1-3 .0008 1-3 .0023 1-3 .0024

MLCAGIMSGK 1009.48 314 1-3 .0008 1-3 .0009 1-3 .0014 1-3 .0020

5
AYDPDYER 1027.42 174 1-3 .0077 1-3 .0078 1-3 .0081 NA

EEPSGDGELP 1028.43 194 1-3 .0307 1-3 .0344 1-3 .0418 1-3 .0382

6
NGNEEGEER 1032.41 75 1-3 .4612 1-3 .5110 1-3 .7140 1-3 .7284

TEGEEDAQR 1033.43 79 1-3 .1537 1-3 .1065 NA NA

7
MLANLVMHK 1055.56 312 1-3 .0019 1-3 .0018 1-3 .0017 1-3 .0023

LTLDLMKPK 1057.62 321 1-3 .0009 1-3 .0010 1-3 .0008 NA

8
LLPPLLQIVCK 1235.77 561 1-4 .1768 1-4 .1755 1-4 .1405 1-4 .1193

LMLFMLAMNR 1238.63 577 1-4 .1537 1-4 .1516 1-4 .0779 1-4 .0943

CS and Intn denote detectable charge states and normalized intensity, respectively.

corresponding regions was quite high and peaks of the second peptide in this pair

almost got completely shadowed under all but the first isotope peak of the first pep-

tide (Fig. 7(a),(b)). Hence, the overall signal pattern (Fig. 7(c)) deviates from each

individual’s isotope pattern (see Fig. 7(d)). MsInspect was not able to detect this

deviation: The calculated KL distance between the overlapping peak cluster and the

first peptide’s theoretical isotope pattern was surprisingly small (around 0.027), sug-

gesting a ’good’ match by its own criterion (a smaller KL score suggests a better

match). MsInspect thus stopped there and assigned all overlapping signals to the

first peptide, failing to consider the second peptide. This failure was not caused by

chance. In fact, for the last 4 pairs, msInspect could correctly detect only one pair

of peptides (the one with the least overlap) and missed one peptide in each of the

other 3 pairs. This illustrates the inefficiency of template matching algorithms such

as msInspect in dealing with overlapping isotope patterns as compared to BPDA2d

and BPDA. Indeed, one should be wary of taking KL distance, or other distance
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measures adopted by template matching algorithms, as a reliable measurement of the

isotope pattern deviation. BPDA proposed a candidate corresponding to the second

peptide; however, the candidate’s existence probability was inferred to be 0, thereby

rendering it undetectable. This was caused by the penalty term adopted in BPDA

that penalizes model complexity. More specifically, the additional inclusion of the

second peptide could reduce the MSE between the observed and inferred peaks to a

small extent, but this reduction in MSE could not beat the increase of model com-

plexity. Therefore, BPDA inferred the second peptide to be non-existent. Although

BPDA2d utilizes a similar penalty strategy, the penalty term did not cause exclusion

of the second peptide because BPDA2d used more observations from the m/z-RT

plane than BPDA and the improvement in fitting the observed signal by inclusion of

the second peptide was significant, thereby offsetting the penalty.

In summary, BPDA2d correctly detected all 46 charge states of the 16 peptides

(along with 16 FPs), while BPDA and msInspect correctly detected 43 and 34 charge

states, along with 57 and 4 FPs, respectively. All detected TPs of BPDA2d and

BPDA had existence probability equaling to 1. For msInspect, the KL scores of TPs

were less than 0.76. The box plots of mass and intensity deviation results given by the

three algorithms are shown in Fig. 8. We observe that among the three algorithms, on

average BPDA2d gave the most accurate abundance results and msInspect’s results

were the least accurate. BPDA had the best mass accuracy evaluated by the median

mass deviation, but it rendered a few outliers and a larger variance compared to

BPDA2d. Overall, msInspect produced the least accurate mass results. The synthetic

test data are available upon request.
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Fig. 8. Box plots of (a) absolute mass deviation and (b) normalized intensity deviation

of BPDA2d, BPDA and msInspect for the 16-mix data set

2. Results for real data

a. Data preparation

A QTOF LC-MS/MS data set was downloaded from the repository of the Seattle Pro-

teome Center that is provided as a standard for testing algorithms. The data set was

collected on a Waters/Micromass (Milford, MA) Q-TOF Ultima with Agilent 1100

series autosampler, Agilent 1100 series nanopump flowing at 200 nL/min and electro-

spray ionization. Approximately 200 fmol of total protein was injected on-column.

The data set contains over 3500 MS1 spectra (m/z ranges from 250 to 1400 with

FWHH around 0.15 Da.) and 775 MS2 spectra generated by peptides from 18 tryptic

digested proteins (obtained from Bovine, Rabbit, Horse, etc.). More details can be

found in [64]. MS1 level peptide detection was performed using BPDA2d, BPDA, and

msInspect (the latest Build 613). We tried to optimize input parameters for msIn-

spect: “minpeaks” was set to 2 and “maxkl” was set to 10, enabling the inclusion

of as many reasonable features as possible. The “walksmooth” option was selected

as it was recommended for QTOF data and improved the performance. For BPDA,
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post-processing was applied to combine features that were split over consecutive mean

spectra.

b. Comparative results

Direct comparison of results across different methods is meaningless unless ground

truth of the data is known, but owing to contaminants and issue of peptide detectabil-

ity, the true data composition is hard to know. As a workaround, SEQUEST and

PeptideProphet were applied to analyze all the acquired MS2 spectra, rendering 234

unique peptide identifications associated with a high probability score (i.e. Peptide-

Prophet score greater than 0.9) and could somehow reveal a portion of the truly

existing peptides in the sample. We thus compared the detection results given by

aforementioned MS1-based methods to the MS2 identifications. We say a MS1 fea-

ture is matched to a MS2 feature if the RT of the MS2 feature is within the retention

peak of the MS1 feature and the mass deviation is within 40 ppm. The size of the

mass window is chosen to include as many good matches as possible. It is larger

than that used for synthetic data since here the ground truth peptide weights are

unknown, and mass errors are associated with MS2 identifications as well as MS1

features. MS1 identifications were first filtered based on mass and RT. Only features

with mass 1000-3710 Da. and RT in the range of 840 to 2030 scan were considered

since all MS2 identifications were from these ranges. Remaining features were then

selected based on the reported quality score. Because schemes used for calculating

feature quality score vary across different algorithms, to ensure a fair and meaningful

comparison, quality cutoff thresholds for various algorithms were carefully chosen as

detailed below so that they corresponded to the same significance level.

• For BPDA2d and BPDA, existence probabilities are employed to measure fea-
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ture quality. The cutoff thresholds of existence probability were calculated based

on its null distribution, i.e. the distribution of existence probability of those

candidates that are non-existing in the sample. We identify these peptides as

those highly correlated ( i.e. can be grouped into the same cluster as described

in Method section) with one of the candidates that can be matched to the MS2

identification list. Although the ground truth is unknown, the latter candidates

are likely to be TPs as they are confirmed by the MS2 identifications with high

reliability, while the former are false identifications co-existing with the latter.

These co-existing candidates should be assigned with a low existence probabil-

ity. Given a significance level α, the corresponding threshold γ of the existence

probability p can be calculated based on the right-tail probability of the null

distribution: {γ|Prob(p ≥ γ) = α}.

• MsInspect uses KL score to measure feature quality. Cutoff KL thresholds were

selected based on KL null distribution, i.e. the distribution of KL scores calcu-

lated between random noise and authentic isotopic distributions, as described

in [65]. If KL score can faithfully reflect the deviation between random noise

and real isotopic patterns, then the KL null distribution should skew to the

right or have a small left-tail probability. On the other hand, given a signifi-

cance level α, the corresponding KL threshold τ could be calculated based on

the left-tail probability: {τ |Prob(KL ≤ τ) = α}.

From Fig. 9(a), it can be seen that BPDA2d detected many more features from

the MS2 list than BPDA and msInspect at each significance level compared. Im-

provements are from 32% to 18%, and 64% to 19% compared to BPDA and msIn-

spect, respectively, when significance level increases from 0.01 to 0.1, indicating a

3-6 fold increase in peptide coverage and quantification. In addition, all three MS1-
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based algorithms detected significantly more features than that covered by the 234

MS2 identifications (see Fig. 9(b)), illustrating the under-sampling problem of MS2

and highlighting the benefits of employing MS1-based peptide detection algorithms

to improve protein coverage rate. Performances of various algorithms were further

investigated at a 0.05 significance level. The histogram of normalized intensity of

MS2-level identifications detected by BPDA2d but not by msInspect is plotted in

Fig. 9(c). The majority of identifications detected only by BPDA2d concentrate at

the low intensity region (i.e. the area with normalized intensity less than 0.1), illus-

trating that BPDA2d can better identify low abundance peptides than msInspect.

In addition, extra identifications yielded by BPDA2d did not cause degradation in

mass accuracy (Fig. 9(d)). Moreover, BPDA2d slightly beat the other two methods

in terms that the mean mass deviation is reduced by around 2%.

The average computational time of BPDA2d, BPDA and msInspect for testing

data sets are 3.5 hr, 1 hr and 2.2 min, respectively. BPDA2d is expected to be

more time-consuming since it looks for the optimal solution iteratively through Gibbs

sampling on the whole spectra, while greedy template-matching based algorithms

work on one local region at a time and calculate the fitting score, which typically

does not require much computation. But we point out that the BPDA2D algorithm

is fully parallelizable, and the authors are in fact working on a parallel version of the

software that will be much faster.
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Fig. 9. Detection results of the QTOF LC-MS/MS data set. BPDA2d, BPDA and

msInspect detected (a) number of features that can be matched to MS2 iden-

tifications at various significance levels and (b) total number of features. At

significance level 0.05, the following two panels are obtained: (c) Histogram of

normalized intensity of features detected by BPDA2d but not msInspect. Most

of the features are from the low intensity region. (d) Box plots of absolute mass

deviation of different algorithms.
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CHAPTER IV

MODELING AND SYSTEMATIC ANALYSIS OF THE

LC-MS PROTEOMICS PIPELINE

In this chapter, we model and evaluate the LC-MS data analysis pipeline from a

systems point of view, with the goal of aiding experimental design, optimizing the

workflow, predicting experiment results, and identifying key factors and bottlenecks

that affect biomarker discovery results.

A. Background

1. Motivation

The MS analysis pipeline consists of many steps, including sample preparation, pro-

tein digestion, ionization, peptide detection, protein quantification, and so on. The

pipeline can be viewed as a noisy channel, where each processing step introduces some

loss or distortion to the underlying signal and the end results are affected by the com-

bined effects of all upstream steps. While individual components of the MS pipeline

have been studied at length, little work has been done to integrate the various mod-

ules, evaluate them in a systematic way, and focus on the impact of the various steps

on the end results of differential analysis and sample classification. In real experi-

ments, it is not easy to decouple the compound parameter effects and determine the

marginal influence of various modules on the end results, due to variations and the

complicated nature of the workflow. However, by employing a model-based approach,

we may better understand the characteristics of the MS data, the contributions of

the individual modules, and the performance of the full pipeline.

A key goal of MS-based proteomics is to discover protein biomarkers, which
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can be used to improve diagnosis, guide targeted therapy, and monitor therapeutic

response across a wide range of disease [6]. But to date, the rate of discovery of

successful biomarkers is still unsatisfactory. Through the proposed model-based ap-

proach and by means of simulation using ground-truthed synthetic data, the problem

of biomarker discovery can be studied and evaluated.

2. Results

In this work, we propose to model the Liquid Chromatography (LC) coupled MS

system by identifying critical factors that influence system performance. Different

modules are identified and integrated into the framework (see Fig. 10). The input of

the pipeline can be any standard FASTA file containing proteins of interest. Here, we

focus on analyzing protein drug targets downloaded from DrugBank [66], since LC-MS

is an essential technology used to monitor these target proteins for drug development.

We would like to point out that we are not trying to develop a detailed physical model

for mass spectrometry as is, for instance, attempted in [49], which models the mass

spectra generated by MALDI-TOF instruments. Rather, our purpose is to simulate

the data flow realistically, but without descending into the physical parameters of the

instrument itself. In addition, we do not focus only on MS data modeling, as done

in [19], but we also address subsequent processes, including low level data analysis (e.g.

peptide identification and quantification), and high level analysis (e.g. differential

analysis and sample classification).

3. Application of the proposed model

The proposed LC-MS proteomic pipeline model can be used to determine the work-

ing range of important parameters and may shed light on experimental design. Also,

if knowledge of sample complexity, instrument configuration, system variation and
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Sample preparation 
• In silico protein digestion  
• Retention time prediction 

 
LC-MS experimental factors 

• LC condition 
• Ionization efficiency 
• Experimental variation and noise 
• Measurement error 

Feature extraction 
• MS1-based peptide detection to 

obtain peptide mass, intensity, etc. 
• MS2-based database searching to 

obtain peptide/protein IDs 

Quantification 
• Applying quality filter 
• Peptide to protein 

abundance roll up 
 

Statistical analysis 
• Differential expression analysis 
• Feature selection, classification and validation 

Fig. 10. The proposed MS-based proteomics pipeline.
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detection accuracy is known beforehand, then by tuning corresponding parameters to

their estimated values, the pipeline can be used to predict results on protein identifi-

cation rates, protein differential analysis, quantification accuracies and classification

performance. These results can be used to assess the efficacy of biomarker discovery

in MS data.

B. Methods

1. Protein mixture model

In a typical label-free MS experiment, two sample classes (e.g. control vs. treatment)

are considered. Assume each class has M samples and all samples share up to Npro

possible protein species of a given proteome. Protein concentration in the pooled con-

trol sample is modeled by a Gamma distribution in accordance with the observations

in [67]:

ηl ∼ Gamma(t, θ) , l = 1, 2, . . . , Npro , (4.1)

where t = 2 and θ = 1000 are the shape and scale parameters. The concentration has

a dynamic range of approximately 4 orders of magnitude representing typical real-

world scenarios. For the pooled treatment sample, expression levels of some proteins

(e.g. biomarkers) may differ from those in the control sample, which can be captured

by fold change:

fl =


al, if protein l is over-expressed

1
al
, if protein l is under-expressed

1, otherwise

(4.2)

where the fold change parameter, al > 1, is sampled from a uniform distribution, as

specified in the Results section.
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Sample variation of each protein is modeled by a Gaussian distribution [68],

with means ηl and ηl fl in the control and treatment sample classes, respectively.

Considering the fact that protein expression levels are often correlated, the following

multivariate Gaussian (MVG) distribution is appropriate to model the interactions

among proteins and their concentrations:

cprolj ∼


MVG

(
[η1, η2, . . . , ηNpro ],Σ

)
, j ∈ class 0

MVG
(
[η1f1, η2f2, . . . , ηNprofNpro ],Σ

)
, j ∈ class 1

(4.3)

where the covariance matrix Σ has a block-diagonal structure — proteins within

the same block (e.g. proteins belonging to the same pathway) are correlated with

correlation coefficient ρ and proteins of different blocks are uncorrelated [69]:

Σ = [σ2
lj]Npro×Npro ,

σ2
lj = σllσjjrlj ,

(4.4)

where σll is proportional to the control protein mean ηl by a constant factor φl (i.e.,

the coefficient of variation), and the correlation coefficient matrix is

R = [rlj]Npro×Npro =



Rρ 0 · · · 0

0 Rρ · · · 0

...
...

. . .
...

0 0 · · · Rρ


,

where Rρ is a D×D matrix with 1 on the diagonal and ρ elsewhere. The correlation ρ

and block size D are tunable parameters, with values specified in the Results section.

2. Peptide mixture model

Before being analyzed by the MS instrument, proteins are usually digested into pep-

tides. In the proposed simulation pipeline, in-silico tryptic digestion is performed,
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and retention time of peptide products is predicted using the PNNL Protein Digestion

Simulator (http://omics.pnl.gov/software/ProteinDigestionSimulator.php). Dif-

ferent protein species may share the same peptide sequence. Thus, the molar concen-

tration of peptide species i in sample j is given by the following equation:

cpepij =
∑
k∈Ωi

cprokj , i = 1, 2, . . . , Npep, j = 1, 2, . . . , 2M , (4.5)

where the set Ωi comprises all proteins sharing the peptide species i, and Npep is the

number of peptide species. The concentration cpepij is represented by ion abundance

in MS data. Thus, the expected abundance readout µij of peptide species i in sample

j can be modeled as

µij = cpepij ei κ, (4.6)

where ei is a peptide efficiency factor similar to the one used in [70], and κ is the

MS instrument response factor converting the original analyte concentration to the

output ion current signal. The parameter ei is affected by many factors: first, var-

ious peptides differ in hydrophobicity, which mainly determines their efficiencies in

passing through the liquid chromatography column. Then, upon entering the ioniza-

tion chamber, peptides demonstrate great disparities in ionization efficiency, which

is affected by sample complexity, peptide concentration and characteristics such as

polarity of side chains, molecular bulkiness, and so on [71]. In addition, some amino

acids at the N-terminal end of peptides have destabilizing effects that can reduce the

efficiency factor. Although there are methods attempting to predict ei [70], they often

neglect the fact that peptide efficiency and expected peptide ion abundance depend

not only on the underlying peptide, but also on the combinational effects of other

peptides present (e.g., LC elution competition, ion competition and suppression). In

reality, it is unfeasible to predict ei for all possible peptide combinations. Thus, we
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model ei from a uniform distribution and evaluate a wide range of interval bounds

in simulations — we are not really interested in the precise value of ei, but rather

we aim to examine how the dispersion of ei affects subsequent analysis. As for the

parameter κ, it can be estimated through calibration and is related to the efficiency

by which molecules are converted into gas-phase ions, the efficiency by which ions are

transferred through various stages of the mass spectrometer, and how well experiment

conditions are optimized. For a typical MS instrument, its response is linear for three

to five orders of magnitude [71]. At high analyte concentration, instrument response

plateaus because of detector saturation, restricted amount of excess charge, or limited

space for ionization, as depicted in Fig. 11. To account for instrument saturation, an

upper limit, sat, is set for the expected abundance readout: µij = min(µij, sat).
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Fig. 11. The MS calibration curve which displays the MS ion signal as a function of

analyte concentration in solution. The slope of the linear portion of the curve

is the instrument response factor (i.e. instrument sensitivity). The curve

departs from linear at high analyte concentration. A wider linear dynamic

range is desired for quantitative analysis.
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3. Peptide detection and identification

a. Peptide abundance

The actual abundance vij of peptide species i in sample j is modeled as the expected

abundance plus Gaussian noise:

vij = µij + εij , (4.7)

where

εij ∼ Gaussian(0, αµ2
ij + βµij) , i = 1, 2, . . . , Npep , j = 1, 2, . . . , 2M . (4.8)

The sources of noise include variation in experimental conditions, instrument variance,

thermal noise and measurement error. It is reported that the noise variance follows a

quadratic dependence on the expected abundance [72], which is reflected by Eq. 4.8.

The two parameters in the noise model, α and β, determine the noise severity. Their

value can be estimated using replication analysis, as explained in [72].

In electrospray ionization, peptides can be multiply charged. But we do not

model the charge distribution, considering the following facts: (1) Peptide charge

distribution and the maximum charge states are complicated by many factors such

as sample composition, analyte concentration and peptide conformation [73,74]. The

distribution is hard to predict and has not been well characterized. (2) In order to

get the abundance of a peptide, and further, its parent protein, the abundance of

peptide charge variants will eventually be summed up. We omit the intermediate

process since in reality many factors involved are not well understood.
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b. Peptide detection

Peptide detection from mass spectra is not an easy task — the observed peptide

signals are corrupted by noise and may also be affected by signals of other peptides,

and thus may deviate significantly from the expected pattern. The performance of

a peptide detection algorithm on a specific MS instrument and the underlying SNR

ultimately affect the number of detected true positives, i.e., the true positive rate

(TPR), as shown in [28, 39, 40, 75]. The SNR is defined as the ratio of signal power

to noise power, i.e., SNR , E[v]2/Var(v) = 1/(α + β
µ
), see Eqs. 4.7–4.8. It can

be seen that SNR increases as signal strength µ increases. The relationship between

TPR and SNR can be approximated by a polynomial function, for algorithms such

as those in [39,40,75]:

TPR = k × SNRp + b , (4.9)

where b represents the worst TPR when the SNR approaches zero.

Besides SNR, signal interference and mass resolving power may also have con-

siderable impact on TPR [19,40]. Over the years, much effort has been made towards

enhancing instrument resolution, leading to improved mass accuracy, better separated

MS peaks, and less convoluted peptide signals. But for complex samples, substantial

overlapping of peptide signals is still frequently encountered, due to peptide isoforms

or co-elution. It has been reported that if two peptides have overlapping signal regions,

some detection algorithms may fail to report one of them even when the underlying

SNRs are high, while other algorithms are shown to be superior in the detection of

overlapping peptides [39]. To account for signal interference, we modify Eq. 4.9 by

introducing an overlapping factor oij, so that the TPR of peptide species i in sample

j becomes

TPRij = (k × SNRp
ij + b)× oij , oij ≤ 1 . (4.10)
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For algorithms such as NITPICK [28], BPDA [39] and BPDA2d [40], which are effec-

tive in detecting overlapping peptides, the overlapping factor oij can be approximated

by 1, whereas for algorithms that are ineffective in detecting convoluted peptides, oij

is assumed to be inversely proportional to the number of overlapping peptides, which

is a function of the sample composition and the mass resolution. In our simulation,

two peptide species i1 and i2 are said to overlap if their mass and retention time (RT)

are close, in the sense that

|mass2 −mass1|
mass1

<
1

mass resolution
and

|RT1 −RT2|
# scans

< 0.005 . (4.11)

c. Peptide identification

The output of the MS1-based peptide detection algorithm is a list of detected pep-

tides annotated by monoisotopic mass, retention time, abundance, and so on. To

obtain peptide sequence information, i.e. peptide identification, which can be used to

infer the parent protein from which the peptide was digested, database searching is

required. To do so, the acquired MS/MS (MS2) spectra are searched against a pro-

tein database containing theoretical MS2 spectra generated from in-silico digested

peptide sequences by popular software such as SEQUEST [76] and Mascot [20].

Several machine learning methods have been proposed to predict the probabil-

ity (i.e., identifiability) of a peptide being identified through MS2 database search-

ing [68, 77]. These methods try to extract the common trends residing in peptide

identifiability that can be explained by peptide sequence-specific properties. Their

successful application may suggest that the peptide sequence largely affects the chance

of a peptide getting selected for MS2 analysis, whether the peptide can be sufficiently

fragmented, and the quality of its fragmentation spectra. In our simulation, the iden-

tifiability pi of the true peptide species i is predicted by the APEX software [68],
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trained on the human serum proteome [78], and whether peptide species i in sample

j is identified or not through database searching is determined by the outcome of a

Bernoulli trial with success rate pi.

d. Linking of detection and identification results

For both MS1-based and MS2-based algorithms, sources of error exist that give rise

to false positives (FPs). For the former, error sources include shot noise, abundance

measurement error, signal interference, and so on. For the latter, co-eluting precursor

ions, spectra matching ambiguity, or post-translational modifications may all lead to

false identifications. By confronting the results of the two orthogonal algorithms (i.e.,

a feature is treated as a true positive if it is reported by both algorithms), dubious

features reported by either algorithm can be filtered out.

4. High-level analysis

a. Peptide to protein abundance roll-up

As demonstrated in the previous sections, each step of the MS analysis pipeline intro-

duces a degree of loss or distortion to the underlying true signal. Thus, “decoding”

protein abundance from observed peptide abundance corrupted by noise is nontrivial.

To reduce noise, three levels of filtering are applied: (1) only unique peptides that

exist only in one protein of the analyzed proteome are kept; (2) peptides with large

missing value rates (larger than 0.7) are filtered out, since low reproducibility may

be a red flag for false identifications; (3) among the remaining peptides, those having

sufficiently high correlations (larger than 0.6) with other peptides digested from the

same protein are retained. The estimated abundance of protein l in sample j is then

obtained by averaging the abundances of its children peptides that pass the previous
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filters; if less than two peptides pass the filters, the estimated protein abundance is set

to zero. The estimated protein concentration is calculated by dividing the estimated

protein abundance by the instrument response factor κ.

Quantification accuracy can be assessed by the commonly adopted mean quan-

tification error, defined by

qerr ,

Npro∑
l=1

2M∑
j=1

|cprotlj − ĉ
prot
lj |/c

prot
lj

2MNpro

, (4.12)

where cprotlj and ĉprotlj are the original and estimated concentrations of protein l in

sample j, respectively.

b. Differential expression analysis

Differential expression analysis is performed via a two-sample t-test with equal sample

size and variance. The t statistic (or t score) is calculated as below:

tl ,
|m1

l −m0
l |√

V ar1l +V ar0l
M

, (4.13)

where the superscripts identify the two classes, and ml and V arl represent the es-

timated class mean and variance of the abundance of protein l, respectively. The

standard 0.05 significance level is used to detect differentially expressed markers.

c. Feature selection and classification

In the simulation, t-test feature selection is first performed to reduce the data dimen-

sion, by selecting the top 20 differentially expressed features. Then two classifiers,

namely K-nearest neighbor (KNN, K=3) and linear discriminant analysis (LDA) are

trained using the observed protein expression data. Classification performance is

validated by independent ground-truth (testing) data sets (each with 1000 samples,
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generated from the same data model), and the classification error is recorded. In

addition, the KNN and LDA classification error on the original protein data (before

entering the MS analysis pipeline) is obtained using a similar approach. The latter

may serve as a benchmark to gauge how much loss in classification performance the

analysis pipeline has introduced.

C. Results

To illustrate the application of the proposed pipeline model, a FASTA file containing

around 4000 drug targets (human proteins) was compiled from DrugBank [66], which

serves as the underlying proteome to be studied. In each run, 500 background proteins

along with 20 marker proteins are randomly selected from the proteome to serve as

the input of the pipeline. For each experimental setting studied, the simulation is

repeated 50 times. We are interested in the effects of various factors on quantification,

differential analysis, and classification. The study should be carefully designed to

minimize parameter confounding effects. Thus, while examining the effects of one

parameter, we either fix the values of other parameters, or try to eliminate their

effects. Parameter configurations are given in Table VI, unless otherwise mentioned.

1. Sample characteristics

a. Effect of peptide efficiency factor

Though the exact distribution of the peptide efficiency factor ei is unknown, we eval-

uate a wide range of values and try to find the common trend. It can be seen from

Fig. 12(a) that as the lower bound of ei increases, the quantification error decreases.

This is expected since more ions can be detected by the instrument and transmis-
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Table VI. Proteomics pipeline model summary

Parameters Default values

No. of classes 2

Sample size of each class M = 50

Proteome Homo sapiens

No. of marker proteins 20

No. of non-markers 500

Protein block size D = 2

Protein block correlation ρ = 0.6

Fold change al ∼ Unif(1.5, 2)

Instrument response κ = 5

Instrument saturation effect sat = Inf

Noise level α = 0.03, β = 3.6

Peptide efficiency factor ei ∼ Unif(0.1, 1)

Peptide detection algorithm b = 0, k = .0016, p = 2

No. of MS2 replicates 1

sion loss is reduced as efficiency increases. Fig. 12(b) suggests that the percentage

of observed differentially expressed proteins is positively correlated with ei: this may

be explained by the fact that as ei increases, fewer missing values occur at the pep-

tide level, and more proteins can be quantified in more samples, as can be seen in

Fig. 12(c), resulting in more markers being detected by the differential expression test.

Fig. 12(d) shows that the additional detected markers help to improve classification

accuracy by decreasing the classification error.

b. Effect of protein abundance

The distribution of in-solution protein abundance can affect various detection results

[79]. While high-abundance proteins are easily detectable, low-abundance proteins

are hard to detect since their signals are more likely to be buried in background
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Fig. 12. Various quantities plotted as a function of the lower bound of peptide effi-

ciency factor (the upper bound is fixed at 1). (a) Mean quantification error

as defined in Eq. 4.12. (b) Percentage of observed differentially expressed

marker proteins at a 0.05 significance level. (c) Missing value rates at the

protein and peptide levels. (d) Classification error rates given by LDA and

KNN classifiers, respectively.
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noise. Hence, improving detection of low-abundance proteins has become a central

issue in proteomic research.

To demonstrate the effect of protein abundance on the detection of low-abundance

marker proteins, we conduct an experiment where all markers are exclusively designed

to have low abundance, distributed in the lower 25% quantile of the Gamma distri-

bution; see Eq. 4.1. Fig. 13 depicts the corresponding plots to Fig. 12(b) and 12(d)

in the case of the low-abundance markers. It can be observed that the percentage of

detected differentially expressed markers and the classification results become worse

compared to the results in Fig. 12(b) and 12(d). On average, the number of detected

markers drops by 33.3% and the classification error increases by 42.4%. Similar trends

are observed under other parameter settings (data not shown).

These results indicate that it is essential to develop methods to enhance the

identification results of low abundance peptides which are often of more biological

interests. Relative to hardware, sample fractionation and protein depletion through

immunoaffinity-based approaches [80] can be helpful. Relative to software, there exist

algorithms shown to be efficient for the detection of low-abundance peptides, such as

BPDA2d [40].

c. Effect of sample size

Fig. 14 shows the effect of sample size. The range of values used is typical in proteomic

experiments. It is observed that as more samples become available, the differential

expression results and the classification accuracy improve notably. For instance, when

sample size increases from 30 to 110, the number of detected markers increases by

41% and the classification error decreases by 40%.

In Fig. 14(b), the classification error of the (unobserved) original protein sample,

before passing though the MS pipeline, is plotted side by side with that of the observed
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(b)

Fig. 13. Effect of peptide efficiency factor on (a) differential expression results, and

(b) classification errors for samples with reduced marker concentration. Re-

sults deteriorate compared to those using the default protein concentration

(Fig. 12(b) and 12(d)).

protein data, after analysis by the MS pipeline. The performance degradation caused

by various noise conditions throughout the pipeline is clearly visible.

2. Instrument characteristics

a. Effect of instrument response

The effect of instrument response factor κ is displayed in Fig. 15. The experimental

value of κ spans seven orders of magnitude. As κ first increases (from 0.1 to 100), true

signals get amplified and SNRs become better, resulting in fewer missing values and

false negatives at both peptide and protein levels (Fig. 15(a)), which in turn render

better quantification and differential expression results (Figs. 15(b) and 15(c)). But

when κ > 100, various performance indices level off. This illustrates that beyond a

certain point, merely boosting the instrument response factor cannot help produce

enhanced results. Rather, the performance bottleneck is determined by other factors

such as noise in the system and efficiency of peptide detection algorithms.
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Fig. 14. Effect of sample size M on (a) differential expression results, and (b) classi-

fication error rates. All results generally improve as M increases. In (b) the

classification error of the original protein sample (dashed lines) is plotted side

by side with that of the observed protein data (solid lines), illustrating the

substantial loss in accuracy introduced by the MS analysis pipeline.

b. Effect of saturation

In the previous experiment, the MS instrument is assumed to be working in the

linear range. But for complex samples, for which analyte concentrations span orders

of magnitude, saturation effects need to be taken into account (see Fig. 11). The

previous experiment is repeated with the same settings, except that the saturation

upper limit sat is changed from infinity to 104, corresponding to a 104 linear dynamic

range when κ = 1. Interestingly, the resulting plots shown in Fig. 16 are no longer

monotone as observed in Fig. 15. As the instrument response κ increases, the linear

dynamic range (LDR) actually shrinks given the saturation ceiling is fixed (LDR can

be approximated by sat/κ). Therefore, the percentage of peptides with saturated

ion signals increases, and fewer peptides can pass the correlation filter, adversely

affecting protein detection, quantification, and classification. To wit, when κ > 10,

the protein missing value rate shoots up, fewer markers get detected, and classification
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Fig. 15. Effect of instrument response factor κ on (a) missing value rates, (b) quantifi-

cation accuracy, (c) differential expression results, and (d) classification error

rates. As κ increases, all performance indices improve quickly and then level

off.
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performance and protein quantification results deteriorate.
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Fig. 16. Effect of instrument response κ in the presence of saturation on (a) missing

value rates, (b) quantification accuracy, (c) differential expression results, and

(d) classification error rates. As κ increases, all performance indices at first

improve and then deteriorate (except for the peptide missing value rate, which

levels off).

The compound effects of instrument sensitivity and saturation demonstrate that

the effectiveness of MS in quantitative analysis relies on achieving a wide linear dy-

namic range with a high saturation ceiling and a matching sensitivity. For example,

in electrospray ionization mass spectrometry, the linear range may be extended by

enhancing gas-phase analyte charging, facilitating droplet evaporation, or introducing
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ionization competitors [81].

c. Effect of noise

Noise in the MS analysis pipeline and the performance of peptide detection algorithms

affect the number of proteins that can be quantified. To study noise impact directly,

we eliminate the confounding effects of the peptide detection algorithm by assuming

perfect detection, with TPR ≡ 1 for SNR > 0 and TPR = 0 for SNR = 0. It

is observed in Fig. 17(a) that the peptide missing value rate stays relatively flat

except at the end points where the accumulated effects of increasing noise levels are

discernable: more of the true signal is obscured by noise and more peptides have

infinitesimal SNR, which prevent their detection. The increasing trend in missing

value rate at the protein level is more apparent: the fact that less proteins can be

quantified as the noise level increases is not only due to fewer detectable peptides,

but also because fewer peptides can pass the correlation filter for a protein to be

quantified. Figures 17(b), 17(c) and 17(d) elucidate the adverse effects of noise on

quantification accuracy, differential expression and classification results, respectively.

3. Peptide detection and experimental design characteristics

a. Effect of MS1 peptide detection algorithm

Given the same experimental settings, the performance of peptide detection algo-

rithms may significantly affect the number of detected true positives (TPs). Three

hypothetic detection algorithms with increasingly better performance are considered,

in terms of TPR vs. signal strength curves; see Fig. 18(a). It can be seen in Fig. 18(b-

e)) that the application of these detection algorithms leads to increasingly better re-
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(d)

Fig. 17. Effect of noise on (a) missing value rates, (b) quantification accuracy, (c)

differential expression results, and (d) classification error rates. The x-axis

represents α in the noise model given by Eqs. 4.7–4.8, while β is set to be

120α. The parameter values in the middle of the range (α = 0.04, β = 4.8)

were estimated by an LC-MS analysis of human serum samples
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sults in terms of missing value rate, quantification accuracy, detectable markers, and

classification performance.

b. Effect of overlapping peptides and mass resolving power

To quantitatively evaluate the performance of MS1-based peptide detection algo-

rithms under various mass resolutions and in the presence of overlapping peptides,

two categories of detection algorithms are compared: the first characterizes those

which can effectively detect convoluted peptides, such as NITPICK [28], BPDA [39]

and BPDA2d [40], which are modeled by an overlapping factor oij = 1 in Eq. 4.10,

and the second represents those that are sensitive to mass resolution and ineffective in

detecting overlapping peptides (e.g. algorithms based on greedy template-matching),

which are modeled by letting oij be inversely proportional to the number of overlap-

ping peptides with peptide i in sample j. For algorithms in the first category, robust

performance is expected for a range of mass resolutions (data not shown). In contrast,

for algorithms in the second category, various performance indices generally become

worse as mass resolving power declines, since more peptides cannot be resolved and

are lost in detection (see Fig. 19). Summing up, the superiority of the first category

over the second will be more evident for complex samples with more proteins and

co-eluting analytes analyzed by a MS instrument with limited mass resolution.

c. Effect of MS2 replication

In tandem MS analysis, the precursor ions selected for fragmentation have low re-

producibility across runs, and only a subset of peptides present in the sample can

be analyzed for each run; this problem is known variously as MS2 random sam-

pling and MS2 under-sampling [82]. Hence, though laborious and costly, replicate

MS2 measurements are frequently conducted for in-depth proteomic profiling or for
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(e)

Fig. 18. Effect of using three hypothetic detection algorithms with increasingly better

performance, quantified by the (a) TPR vs. signal strength curves. The

applications of the three algorithms lead to increasingly improved results in

terms of ((b) missing value rates, (c) quantification accuracy, (d) percentage

of detectable markers, and (e) classification error rates.
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(d)

Fig. 19. Performance of a typical peptide detection algorithm in the second category

described in the text under various mass resolutions and in the presence of

overlapping peptides. (a) Missing value rates, (b) quantification accuracy, (c)

differential expression results, and (d) classification errors.
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building an AMT database to facilitate quantitative and high-throughput proteome

measurements [83].

The effect of MS2 replication on various performance metrics is illustrated in

Fig. 20. It is observed that even with a few replicate assays (as low as two or three),

peptide and protein identification rates are boosted remarkably. As more replicates

are made available, the protein identification rate levels off faster than the peptide

rate, which was also observed in [78], indicating that newly identified peptides are

mostly associated with already identified proteins. This may be explained as a bias

towards relatively easily detectable proteins. Those proteins that are hard to detect

may be a result of degradation, a spare amount of children peptides, ineffective ion-

ization, and so on. Figs. 20(a) and 20(b) show that more proteins are detectable with

improved quantification accuracy as the number of replicates increase. Comparing

the use of three replicates against a single assay, Fig. 20(c) shows that the number

of detected differentially-expressed marker proteins nearly doubles, while Fig. 20(d)

indicates that the LDA classification error enjoys a 67% decrease.

4. Summary

The median value of each performance index across all previously studied cases with

default sample size 100 is given in Table VII. It can be seen that the protein quan-

tification rate exceeds the peptide identification rate. This may be explained by the

one-to-many map from protein to its digested peptides: a protein can be quantified if

more than one of its children peptides are identified and can pass the aforementioned

quality filter. In the proteome studied, on average, one protein can be digested

into around 20 peptides, and if we simply assume that each child peptide can be

identified with a probability 0.17 (the calculated average peptide identification rate),

independent of other peptides, and ignore the additional effects of the quality filter,
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Fig. 20. Effect of MS2 replication on (a) missing value rates, (b) quantification accu-

racy, (c) differential expression results, and (d) classification errors. It can

be seen that replicate analysis can significantly boost peptide and protein

identification rates, quantification and classification results even only a few

replicates are made available.
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then the protein quantification probability (an upper bound) can be approximated by

1− (1− 0.17)20− 20× 0.17× (1− 0.17)19 = 0.88. The typical percentage of detected

differentially-expressed protein markers is around 50% and the median value of the

LDA classification error on the observed protein data is 0.18, which is 17 times larger

than that of the original protein data — this exemplifies the signal corruption and

error propagation introduced by the MS analysis pipeline, as well as the intricacy of

biomarker discovery and their applications in disease diagnosis due to limited sample

size, signal interference, ubiquitous noise, measurement errors, and so on.

Table VII. Results summary for the simulated MS-based proteomic pipeline

Performance indices Median values

Peptide identification rate 0.17

Protein quantification rate 0.54

Protein quantification error 0.67

Percentage of detected markers 52%

LDA error on the original protein data 0.01

KNN error on the original protein data 0.03

LDA error on the observed protein data 0.18

KNN error on the observed protein data 0.24

D. Discussion

The main observations that were gleaned from the results of this study are as follows.

• Regarding sample characteristics, we observed a positive correlation between

peptide efficiency and performance. The intricacy in detecting low-abundance

peptides was demonstrated, thereby elucidating the advantage of sample frac-

tionation and protein depletion through immunoaffinity-based approaches. More-
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over, we showed that results could be improved by increasing sample size.

• As for instrument characteristics, the compound effects of instrument response

and saturation were first examined and it was shown that the effectiveness of

MS in quantitative analysis relies on achieving a wide linear dynamic range

with a high saturation ceiling and matching instrument sensitivity. Enhanc-

ing gas-phase analyte charging, facilitating droplet evaporation, or introducing

ionization competitors can be beneficial in extending the linear dynamic range.

The adverse effects of noise was illustrated, highlighting the need in strictly

following experiment protocols to minimize variance and measurement error.

• Peptide detection and experimental design characteristics were also studied. It

was shown that improving peptide detection algorithms in the direction of en-

hancing true positive rate for a wide range of SNR (especially for low SNR) and

tackling convoluted peptide signals could be invaluable, especially for complex

samples and for MS instruments with limited mass resolution. It was also ob-

served that the use of only a small number of replicate tandem MS assays could

effectively reduce the MS2 under-sampling problem and improve performance.

To enable the performance analysis of such a complex system, many reasonable

assumptions are made and the pipeline is simplified and reduced to a few key charac-

teristics; nevertheless corruption of the true signal caused by the pipeline is evident

and readily seen. This is expected to become worse as more steps are considered.

Though we used two sample types to illustrate the use of the LC-MS based

pipeline model, the extension to multiple sample types is straightforward. In addition,

the same methodology can be applied to study other MS platforms such as matrix-

assisted laser desorption/ionization (MALDI). In addition, a similar strategy applies

to labeled experiments.
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CHAPTER V

MODEL-BASED STUDY OF MISSING VALUE IMPUTATION AND

CLASSIFICATION IN DNA MICROARRAY DATA∗

A. Introduction

Missing values (MVs) and low quality data points are frequently observed in microar-

ray data. Many imputation methods have been proposed for estimating MVs in gene

expression data which are usually organized in a matrix form with rows corresponding

to the gene probes and columns representing the arrays. Trivial methods to deal with

MVs in the microarray data matrix include replacing the MV by zero (given the data

is in log domain) or by row average (RAVG). These methods do not make use of the

underlying correlation structure of the data and thus often perform poorly in terms of

estimation accuracy. Better imputation techniques have been developed to estimate

the MVs by exploiting the observed data structure and expression pattern. These

methods include K-nearest Neighbor imputation (KNNimpute) and singular value

decomposition (SVD) based imputation [84], Bayesian principal components analysis

(BPCA) [85], least square regression based imputation [86], local least squares im-

putation (LLS) [87], and LinCmb imputation [88], in which the MV is calculated by

a convex combination of the estimates given by several existing imputation meth-

ods, namely, RAVG, KNNimpute, SVD and BPCA. In addition, a nonlinear PCA

imputation based on neural networks was proposed for effectively dealing with non-

linearly structured microarray data [89]. Gene ontology based imputation utilizes

∗Reprinted with permission from “Impact of missing value imputation on classi-
fication for DNA microarray gene-expression data: a model-based study” by Y. Sun,
U. M. Braga-Neto, and E. R. Dougherty, EURASIP Journal of Bioinformatics and
Systems Biology, vol.50, 17 pages, 2009, Copyright 2009 by SpringerOpen.
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information on functional similarities to facilitate the selection of relevant genes for

MV estimation [90]. Integrative MV estimation method (iMISS) aims at improving

the MV estimation for data sets with limited numbers of samples by incorporating

information from multiple microarray data sets [91].

In most of the studies about MV imputation, the performance of various impu-

tation algorithms is compared in terms of the normalized root mean squared error

(NRMSE) [84], which measures how close the imputed value is to the original value.

However the problem is that the original value is unknown for the missing data,

thus calculating NRMSE is infeasible in practice. To circumvent this problem, all the

studies involving NRMSE calculation adopted the following scheme [84,86–88,91–93]:

First, a sub-complete matrix is extracted from the original MV-contained gene expres-

sion matrix; Then, entries of the complete matrix are randomly removed to generate

the artificial MVs; Finally, MV imputation is applied. The NRMSE can now be cal-

culated to measure the imputation accuracy, since the original values are now known.

This method is problematic for two reasons. First, the selection of artificial missing

entries is random, and thus is independent of the data quality — whereas imputing

data spots with low quality is the main scenario in real world. Secondly, in the cal-

culation of the NRMSE, the imputed value is compared against the original, but the

original is actually a noised version of the true signal value, and not the true value

itself.

While much attention has been paid to the imputation accuracy measured by

the NRMSE, a few studies have examined the effect of imputation on high-level

analyses (such as biomarker identification, sample classification, and gene clustering),

which demand that the data set be complete. For example, the effect of imputation

on the selection of differentially expressed genes is examined in [88, 93, 94] and the

effect of KNN imputation on hierarchical clustering is considered in [38], where it it



93

is shown that even a small portion of MVs can considerably decrease the stability

of gene clusters and stability can be enhanced by applying KNN imputation. The

effects of various MV imputation methods on the gene clusters produced by the

K-means clustering algorithm are examined in [95], the main findings being that

advanced imputation methods such as KNNimpute, BPCA and LLS yield similar

clustering results, although the imputation accuracies are noticeably different in terms

of NRMSE. To our knowledge, only two studies have investigated the relationship

between MV imputation of microarray data and classification accuracy.

Wang et al. study the effects of MVs and their imputation on classification perfor-

mance and report no significant difference in the classification accuracy results when

KNNimpute, BPCA, or LLS are applied [96]. Five data sets are used: a lymphoma

dataset with 20 samples, a breast cancer dataset with 59 samples, a gastric cancer

dataset with 132 samples, a liver cancer dataset with 156 samples, and a prostate

cancer dataset with 112 samples. The authors consider how differing amounts of

MVs may affect classification accuracy for a given dataset, but rather than using

the true MV rate, they use the MV rate threshold (MVthld) throughout their study,

where, for a given MVthld (MVthld = 5n%, where n = 0, 1, 2, 4, 6, 8), the genes with

MV rate less then MVthld are retained to design the classifiers. As a result, the true

MV rate (which is not reported) of the remaining genes does not equal MVthld and,

in fact, can be much less than MVthld. Hence, the parameter MVthld may not be

a good indicator. Moreover, the authors plot the classification accuracies against a

number of values for MVthld, but as MVthld increases, the number of genes retained

to design the classifier becomes larger and larger, so that the increase or decrease

in the classification accuracy may be largely due to the additional included genes

(especially if the genes are marker genes) and may only weakly depend on MVthld.

This might explain the non-monotonicity and the lack of general trends in most of
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the plots.

By studying two real cancer datasets (SRBCT dataset with 83 samples of 4 tumor

types, GLIOMA dataset with 50 samples of 4 glioma types), Shi et al. report that the

gaps between different imputation methods in terms of classification accuracy increase

as the MV rate increases [97]. They test 5 imputation methods (RAVG, KNNimpute,

SKNN, ILLS, BPCA ), 4 filter-type feature selection methods (t-test, F-test, cluster-

based t-test and cluster based F-test) and 2 classifiers(5NN and LSVM). They have

two main findings: (1) when the MV rate is small (≤= 5%), all imputed datasets

give similar classification accuracies that are close to that of the original complete

dataset; however, the classification performances given by different datasets diverge

as the MV rate increases; and (2) datasets imputed by advanced imputation methods

(e.g. BPCA) can reach the same classification accuracy as the original dataset. A

fundamental problem with their experimental design is that the MVs are randomly

generated on the original complete dataset, which is extracted from the MV-contained

gene expression matrix. Although this randomized MV generating scheme is widely

used, it ignores the underlying data quality.

A critical problem within both aforementioned studies is that all training data

and test data are imputed together before classifier design and cross-validation is

adopted for the classification process. The test data influences the training data

in the imputation stage and the influence is passed to the classifier design stage.

Therefore, the test data is involved in the classification design process, which violates

the principle of cross-validation.

In this paper, we carry out a model-based analysis to investigate how different

properties of a dataset influence imputation and classification, and how imputation

affects classification performance. We compare six popular imputation algorithms,

namely RAVG, KNNimpute, LLS.L2, LLS.PC, LS and BPCA, by measuring how
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well the imputed dataset can preserve the discriminant power residing in the original

dataset. An empirical analysis using real data from cancer microarray studies is also

carried out. In addition, the NRMSE-based comparison is included in the study,

with a modification in the case of the synthetic data to give an accurate measure.

Recommendations for the application of various imputations under different situations

are given in the Results section.

B. Methods

1. Model for synthetic data

Many studies have shown the log-normal property of microarray data, that is, the

distribution of log-transformed gene expression data approximates a normal distri-

bution [98, 99]. In addition, biological effects which are generally assumed to be

multiplicative in the linear scale become additive in the log scale, which simpli-

fies data analysis. Thus, the ANOVA model [3, 100] is widely used, in which the

log-transformed gene expression data are represented by a true signal plus multiple

sources of additive noise.

There are other models proposed for gene expression data, including a multi-

plicative model for gene intensities [101]; a hierarchical model for normalized log

ratios [102]; and a binary model [103]. The first two of these models do not take

gene-gene correlation into account. In addition, the second model does not model the

error sources. The binary model is too simplistic and not sufficient for the MV study

in this paper.

Based on the log-normal property and inspired by ANOVA, we propose a model

for the normalized log-ratio gene expression data which is centered at zero, assuming

that any systematic dependencies of the log-ratio values on intensities have been
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removed by methods such as Lowess [104, 105]. Here, we consider two experimental

conditions for the microarray samples (e.g., mutant versus wild-type, diseased versus

normal). The model can be easily extended to deal with multiple conditions as well.

Let X be the gene expression matrix with m genes (rows) and n array samples

(columns). xij denotes the log-ratio of expression intensity of gene i in sample j to

the intensity of the same gene in the baseline sample. xij consists of the true signal

sij plus additive noise eij:

xij = sij + eij. (5.1)

The true signal is given by

sij = rij + uij, (5.2)

where rij represents the log-transformed fold change and uij is a term introduced to

create correlation among the genes.

The log-transformed fold-change rij is given by:

rij =


ai, if gene i is up-regulated in sample j,

0, if gene i is equal to the baseline in sample j,

−bi, if gene i is down-regulated in sample j,

(5.3)

under the constraint that rij is constant across all the samples in the same class.

The parameters ai and bi are picked from a univariate Gaussian distribution, ai, bi ∼

Normal(µr, σ
2
r), where the mean log-transformed fold change µr is set to 0.58, cor-

responding to a 1.5 fold change in the original linear scale, as this is a level of fold

change that can be reliably detected [101]. The standard deviation of log-transformed

fold change σr is set to 0.1.

The distribution of uij is multivariate Gaussian with mean 0 and covariance
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matrix Σ. A block-based structure [69] is used for the covariance matrix to reflect

the interactions among gene clusters. Genes within the same block (e.g. genes belong

to the same pathway) are correlated with correlation coefficient ρ and genes within

different blocks are uncorrelated as given by the following equation:

Σ = σ2
u



Σρ 0 · · · 0

0 Σρ · · · 0

...
...

. . .
...

0 0 · · · Σρ


, (5.4)

where

Σρ =



1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1


D×D

. (5.5)

In the above equations, the gene block standard deviation σu, correlation ρ, and size

D are tunable parameters, the values of which are specified in the Results section.

The additive noise eij in Eq. 5.1 is assumed to be zero-mean Gaussian, eij ∼

Normal(0, σ2
i ). The standard deviation σi varies from gene to gene and is drawn

from an exponential distribution with mean µe to account for the non-homogeneous

missing value distribution generally observed in real data [106]. The noise level µe is

a tunable parameter, the value of which is specified in the Results section.

Following the model above, we generate synthetic gene expression datasets for

the true signal, S, and the observed expression values, X. In addition, the dataset

with MVs XMV is generated by identifying and discarding the low quality entries of
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X, according to

xMV
ij =


xij, if |eij| < τ

MV, o.w.

(5.6)

The threshold τ is adjusted to give varying rates of missing values in the simulated

dataset, as discussed in the Results section.

2. Imputation methods

Following the notation of [107], a gene with MVs to be estimated is called a target

gene, with expression values across array samples denoted by the vector yi. The

observable part and the missing part of yi are denoted by yobs
i and ymis

i , respectively.

The set of genes used to estimate ymis
i forms the candidate gene set Ci for yi. Ci is

partitioned into Cmis
i and Cobs

i according to the observable and the missing indexes

of yi. In row average imputation (RAVG), the MVs of the target gene yi are simply

replaced by the average of observed values, i.e. Mean(yobs
i ).

We will discuss three more complex methods, namely KNNimpute, LLS, and LS

imputation, which follow the same two basic steps:

1) For each target gene yi, K genes with expression profiles most similar to the

target gene are selected to form the candidate gene set Ci = [xp1 ,xp2 , · · · ,xpK ]T .

2) The missing part of the target gene ymis
i is estimated by a weighted combi-

nation of the corresponding K candidate genes xp1 ,xp2 , · · · ,xpK . The weights are

calculated in different manners for different imputation methods.

We will additionally describe briefly the BPCA imputation method.

a. K-nearest neighbor imputation (KNNimpute)

In the first step, the L2 norm is employed as the similarity measure for selecting

the K neighbor genes (candidate genes). In the second step, the missing part of
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the target gene (ymis
i ) is estimated as a weighted average (convex combination) of

the corresponding parts of the candidate genes (xmis
pl
, l = 1, 2, · · · , K ) which are not

allowed to contain MVs at the same positions as the target gene:

ŷmis
i =

K∑
l=1

wl x
mis
pl

. (5.7)

The weight for each candidate gene is proportional to the reciprocal of the L2 distance

between the observable part of the target ( yobs
i ) and the corresponding part of the

candidate (xobs
pl

):

wl =
f(yobs

i ,xobs
pl

)
K∑
l=1

f(yobs
i ,xobs

pl
)

, (5.8)

where

f(yobs
i ,xobs

pl
) =

1

‖yobs
i − xobs

pl
‖2

, l = 1, 2, . . . , K. (5.9)

The performance of KNNimpute is closely associated with the number of neigh-

bors K used. A value of K within the range of 10-20 was empirically recommended,

while the performance (in terms of NRMSE) degraded when K was either too small

or too large [84]. We use the default value of K = 10 in the Results section.

b. Local least squares imputation (LLS)

In the first step, either the L2 norm or the absolute value of the Pearson correlation

coefficient is employed as the similarity measure for selecting the K candidate genes

[87], resulting in two different imputation methods LLS.L2 and LLS.PC, respectively,

with the former reported to perform slightly better than the latter. Owing to the

similarity of performance, for clarity of presentation we only show LLS.L2 in the

results section (the full results including LLS.PC are given on the companion website).
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In the second step, the missing part of the target gene is estimated as a linear

combination (which need not be a convex combination) of the corresponding parts of

its candidate genes (whose MVs are initialized by RAVG):

ŷmis
i =

K∑
l=1

wl x
mis
pl

=
(
Cmis
i

)T
w , (5.10)

where the vector of weights w = [w1, w2, . . . , wK ]T solves the least squares problem

min
w

∥∥∥(Cobs
i

)T
w − yobs

i

∥∥∥
2
. (5.11)

As is well-known, the solution is given by:

w =
((

Cobs
i

)T)†
yobs
i , (5.12)

where A† denotes the pseudo-inverse of matrix A.

c. Least squares imputation (LS)

In the first step, similar to LLS.PC, the K most correlated genes are selected based

on their absolute correlation to the target gene [86].

In the second step, the least squares estimate of the target given each of the K

candidate gene is obtained:

ŷi,l = ȳi + βl(xpl − x̄pl), l = 1, . . . , K , (5.13)

where the regression coefficient βl is given by

βl =
cov(yi,xpl)

var(xpl)
, (5.14)

where cov(yi,xpl) denotes the sample covariance between the target yi and the can-

didate xpl and var(xpl) is the sample variance of the candidate xpl .
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The missing part of the target gene is then approximated by a convex combina-

tion of the K single regression estimates:

ŷmis
i =

K∑
l=1

wl ŷ
mis
i,l , (5.15)

The weight of each estimate is a function of the correlation between the target and

the candidate gene:

cl =

(
corr(yi,xpl)

2

1− corr(yi,xpl)
2 + 10−6

)2

(5.16)

The normalized weights are then given by wl = cl
/ K∑
j=1

cj.

d. Bayesian principal component analysis (BPCA)

BPCA is built upon a probabilistic PCA model and employs a variational Bayes algo-

rithm to iteratively estimate the posterior distribution for both the model parameters

and the MVs until convergence. The algorithm consists of three primary processes,

which are (1) principle component regression, (2) Bayesian estimation, and (3) an

expectation-maximization-like repetitive algorithm [85]. The principal components

of the gene expression covariance matrix are included in the model parameters, and

redundant principal components can be automatically suppressed by using an auto-

matic relevance determination (ARD) prior in the Bayes estimation. Therefore, there

is no need to choose the number of principal components one want to use, and the

algorithm is parameter free. We refer the reader to [85] for more details.
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3. Experimental design

a. Synthetic data

Based on the previously described data model, we generate various synthetic microar-

ray datasets by changing the values of the model parameters, corresponding to various

noise levels, gene correlations, MV rates, and so on (more details are given in the Re-

sults Section). The MVs are determined by Eq. 5.6, with the threshold τ adjusted

to give a desired MV rate. For each of the models, the simulation is repeated 150

times. In each repetition, according to Eq. 5.1 and Eq. 5.2, the true signal dataset,

S, and the measured-expression dataset, X, are first generated. The dataset XMV

with missing values is then generated based on the data quality of X and a given

MV rate. Next, six3 imputation algorithms, namely RAVG, KNNimpute, LLS.L2,

LLS.PC, LS and BPCA are applied separately to calculate the MVs, yielding six

imputed datasets, Xk, for k = 1, . . . , 6. Each of these training datasets contains m

genes and nr array samples and is used to train a number of classifiers separately. For

each k, a measured-expression test dataset U and a missing value dataset UMV are

generated independently of, but in an identical fashion to, the datasets X and XMV ,

respectively. Each of these test sets contains m genes and nt array samples, nt being

large in order to achieve a very precise estimate of the actual classification error.

A critical issue concerns the manner in which the test data are employed. As

noted in the Introduction, imputation cannot be applied to the training and test

data as a whole. Not only does this make the designed classifier dependent on the

test data, it also does not reflect the manner in which the classifier will be employed.

Testing involves a single new example, independent of the training data, being labeled

by the designed classifier. Thus, error estimation proceeds in the following manner

after imputation has been applied to the training data and a classifier designed from
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the original and imputed values: (1) an example U ∈ U is selected and adjoined to

the measured-expression training set X; (2) missing values are generated to form the

set (X ∪ U)MV [note that (X ∪ U)MV = XMV ∪ UMV ]; (3) imputation is applied

to (X ∪ U)MV , the purpose being to utilize the training data in the imputation for

UMV to obtain the complete vector U IMP (the superscript IMP means one impu-

tation method); (4) the designed classifier is applied to U IMP and the error (0 or

1) recorded; (5) the procedure is repeated for all test points; and (6) the estimated

error is the total number of errors divided by nt. Notice that the training data are

used in the imputation for the newly observed example, which is part of the classi-

fier. The classifier consists of imputation for the newly observed example following

by application of the classifier decision procedure, which has been designed on the

training data, independently of the testing example. Overall, the classifier operates

on the test example in a manner determined independently of the test example. If the

imputation for the test data were independent of the training data, then one would

not have to consider imputation as part of the classification rule; however, when the

imputation for the test data is dependent on the training data, it must be considered

part of the classification rule.

The classifier training process includes feature selection and classifier design

based on a given classification rule. Three popular classification rules are used in

this paper: Linear Discriminant Analysis (LDA), 3-Nearest Neighbor (3NN) and Lin-

ear Support Vector Machine (LSVM) [55]. Two feature selection methods, t-test

and sequential forward floating search (SFFS) [108], are considered in our simulation

study. The former is a typical filter method (i.e., it is classifier-independent) while

the latter is a standard procedure used in the wrapper method (i.e., it is associated

with classifier design and is thus classifier-specific). SFFS is a development of the

sequential forward selection(SFS) method. Starting with an empty set A, SFS iter-
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atively adds new features to A, so that the new set A ∪ {fa} is the best (gives the

lowest classification error) among all A∪{f}, f /∈ A. The problem with SFS is that a

feature added to A early may not work well in combination with others but it cannot

be removed from A. SFFS can mitigate the problem by “looking-back” for the fea-

tures already in set A. A feature is removed from A if A−{fr} is the best among all

A− {f}, f ∈ A, unless fr, called the ”least significant feature”, is the most recently

added feature. This exclusion continues, one feature at a time, as long as the feature

set resulting from removal of the least significant feature is better than the feature

set of the same size found earlier in the SFFS procedure [109]. For the wrapper

method SFFS, we use bolstered error estimation [110]. In addition, considering the

intense computation load requested by SFFS in the high-dimension problems such as

microarray classification, a two-stage feature selection algorithm is adopted, in which

the t-test is applied in the first stage to remove most of the noninformative features

and then SFFS is used in the second stage [69]. This two-stage scheme takes advan-

tage of both the filter method and the wrapper method and may even find a better

feature subset than directly applying the wrapper method to the full feature set [111].

In summary, for each of the data models, 8 pairs of training and testing datasets are

generated and are evaluated by a combination of 2 feature selection algorithms and

3 classification rules, resulting in a very large number of experiments.

Each experiment is repeated 150 times, and the average classification error is

recorded. The averaged classification error plots for different datasets, feature se-

lection methods and classification rules are shown in the Results section. Besides

the classification errors, the NRMSE between the signal dataset and each of the 6

imputed datasets are also recorded. The simulation flow chart is shown in Fig. 21.
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Fig. 21. Simulation flow chart

As previously mentioned, there can be drawbacks associated with the NRMSE

calculation; however, in our simulation study, the MVs are marked according to the

data quality and the NRMSE is calculated based on the true signal dataset which

can serve as the ground truth:

NRMSE =

√
Mean[(ximputed − xtrue)2]

Std(xtrue)
.

In this way, the aforementioned drawbacks about using NRMSE are addressed.

b. Patient data

In addition to the synthetic data described in the previous section, we used the two

following publicly-available data sets from published studies:

• Breast cancer dataset (BREAST): Tumor samples from 295 patients with

primary breast carcinomas were studied by using inkjet-synthesized oligonu-

cleotide microarrays which contained 24,479 oligonucleotides probes along with

1281 control probes [112]. The samples are labeled into two groups [113] : 180

samples for poor-prognosis signature group, and 115 samples for good-prognosis

signature. In addition to the log-ratio gene expression data, the log error data

is also available which can be used to assess the data quality.
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• Prostate cancer dataset (PROST): Samples of 71 prostate tumors and

41 normal prostate tissues were studied, using cDNA microarray containing

26,260 different genes [114]. In addition to the log-ratio gene expression data,

additional information such as background (foreground) intensities and SD of

foreground and background pixel intensities are also available and thus can be

used to calculate the log error according to the Rosetta error model [115] — the

log error e(i, j) for the i-th probe in the j-th microarray sample is given by the

following equation:

e(i, j) ∝

√
σ2

1(i, j)

I2
1 (i, j)

+
σ2

2(i, j)

I2
2 (i, j)

(5.17)

where

σ2
k(i, j) =

σk,fg(i, j)
2

Nk,fg(i, j)
+
σk,bg(i, j)

2

Nk,bg(i, j)
(5.18)

and

Ik(i, j) = Ik,fg(i, j)− Ik,bg(i, j), k = 1, 2. (5.19)

In the above equations, k specifies the red or green channel in the two-dye ex-

periment, σk,fg(i, j) and σk,bg(i, j) denote the SD of foreground and background

pixels, respectively, of the i-th probe in the j-th microarray sample, Nk,fg and

Nk,bg are the numbers of pixels used in the mean foreground and background

calculation, respectively, and Ik,fg and Ik,bg are the mean foreground and back-

ground intensities, respectively.

For the patient data study, the schemes used for imputation, feature selection

and classification are similar to those applied in the synthetic data simulation, except
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that we use hold-out-based error estimation, i.e. in each repetition, nr samples are

randomly chosen from all the samples as the training data and the remaining nt =

n−nr samples are used to test the trained classifiers, with nt being much larger than nr

in order to make error estimation precise. We preprocess the data by removing genes

which have an unknown or invalid data value in at least one sample (flagged manually

and by the processing software). After this preprocessing step, the dataset is complete,

with all data values being known. We further preprocess the data by filtering out

genes whose expressions do not vary much across all the array samples [95] [114];

indeed, the genes with small expression variance do not have much discrimination

power for classification and thus are unlikely to be selected by any feature selection

algorithm [97]. The resulting feature sizes are 400 and 500 genes for the prostate and

the breast dataset, respectively. It is at this point where we begin our experimental

process by generating the MVs.

Unlike the synthetic study, the true signal dataset is unknown in the patient

data study since the data values are always contaminated by measurement errors.

Therefore, in the absence of the true signal dataset, the NRMSE is calculated between

the measured dataset and each of the imputed datasets (which is the usual procedure

adopted in the literature). Thus the NRMSE result is less reliable in the patient data

study, which highlights further the need for evaluating imputation on the basis of

other factors, such as classification performance.

C. Results

1. Results for the synthetic data

We have considered the model described in the previous section, for different combi-

nations of parameters, which are displayed in Table VIII. In addition, since the signal
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dataset is noise-free, the classification performance given by the signal dataset can

serve as a benchmark. In the other direction, the benefit of an imputation algorithm

is determined by how well imputation improves the classification accuracy of the mea-

sured dataset. The classification errors of the true signal dataset, measured dataset,

and imputed datasets under different data distributions are shown in figures 22-27.

The full set of figures is given on the companion website. It should be recognized that

the figures are meant to illustrate certain effects and that other model parameters are

fixed while the effects of changing a particular parameter are studied.

Table VIII. Simulation summary for the microarray data analysis pipeline

Parameters/methods Values/descriptions

Gene block standard deviation σu = 0.3, 0.4, 0.5

Gene block correlation ρ = 0.5, 0.7

Gene block size D = 15

Noise level µe = 0.2, 0.3, 0.4

MV rate r = 1, 5, 10, 15%

No. of marker genes 30

No. of total genes 500

Training sample size 60

Testing sample size 200

No. of repetitions for each model 150

Imputation algorithms RAVG, KNN, LLS.L2, LLS.PC, LS, BPCA

Classification rules LDA, 3NN, SVM

Feature selection methods t-test,SFFS

a. Effect of noise level

Fig. 22 shows the impact of noise level (parameter µe in the data model) on imputation

and classification. When noise level goes up (from left to right along the y-axis), the

classification errors (along with the Bayes errors) of the measured dataset and the
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imputed datasets all increase as expected; the classification errors of the signal dataset

stay nearly the same and are consistently the smallest among all the datasets, since the

signal dataset is noise-free. Relative to the signal dataset benchmark, the classification

performances of imputed datasets deteriorate less than that of the measured dataset as

the noise level increases, although their performances degrade with increasing noise.

For the smallest noise level, imputation does little to improve upon the measured

dataset.

b. Effect of variance

The effect of variance (parameter σu in the data model) on imputation and classi-

fication is shown in Fig. 23. As the variance increases, the classification errors of

all datasets increase as expected. When the variance is small (e.g. σu = 0.3), all

imputed datasets outperform the measured dataset consistently across all the com-

binations of feature selection methods and classification rules; however, when the

variance is relatively large (e.g. σu = 0.5), the measured dataset catches up with and

may outperform the datasets imputed by less advanced imputation methods, such as

RAVG and KNNimpute. As variance increases, the discriminant power residing in

the data is weakened, and the underlying data structure becomes more complex (as

confirmed by computing the entropy of the eigenvalues of the covariance matrix of

the gene expression matrix [92], data not shown). Thus it becomes harder for the

imputation algorithms to estimate the MVs.

In addition, it is observed that the classification performance of one imputed

dataset may outperform that of the other imputed dataset for a certain combination

of feature-selection method and classification rule, while the performances of the two

may reverse for another combination of feature selection and classification rule. For

instance, when the classification rule is LDA and the feature selection method is t-
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Fig. 22. Effect of noise level. The classification error of the signal dataset (signal),

the measured dataset (orgn), and the five imputed datasets. The underlying

distribution parameters are: SD σu = 0.4, gene correlation ρ = 0.7, MV rate

r = 10%. Each panel in the figure corresponds to one combination of the

feature selection methods and the classification rules, which is given by the

title. The x-axis labels the number of selected genes, the y-axis is the noise

level, and the z-axis is the classification error.
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test, the BPCA imputed dataset outperforms the LLS.L2 imputed dataset; however,

the latter outperforms the former when the feature selection method is SFFS and the

same classification rule is used (plots on companion website). This suggests that a

certain combination of feature-selection method and classification rule may favor one

imputation method over another.

c. Effect of correlation

Fig. 24 illustrates the effect of gene correlation (parameter ρ in the data model) on

imputation and classification. As the gene correlation goes up, the classification errors

of all datasets increase as expected. Although it is not straightforward to compare

the classification performances of different datasets under different correlations, we

notice that the correlation-based MV imputation methods such as LLS.PC and LS

may slightly outperform BPCA in larger correlation cases, suggesting that the local

correlation structure of a dataset may be better captured by such methods.

d. Effect of MV rate

Perhaps the most important observations concern the missing value rate, which is

determined by adjusting the parameter τ in Eq. 5.6 to obtain a specified percentage

r of missing values: r = 1, 5, 10, 15, 20, 25%. Because we wish to show the effects

of two model parameters, we will limit ourselves in the paper to considering 3NN

and SVM with t-test feature selection. Corresponding results for other cases are on

the companion website. Figures 25, 26, and 27 provide the results for the signal

standard deviation σu = 0.3, 0.4, and 0.5, respectively, with parts a, b, and c of each

figure corresponding to noise levels µe = 0.2, 0.2, 0.3, 0.3, and 0.4, 0.4, respectively.

In all cases, ρ = 0.7. In Fig. 25(a), we observe the following phenomenon: there

is improvement on the performance of the various imputation methods as the MV
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Fig. 23. Effect of variance. The classification error of the signal dataset (signal), the

measured dataset (orgn), and the five imputed datasets. The underlying

distribution parameters are: noise level µe = 0.2, gene correlation ρ = 0.7,

MV rate r = 15%. Each panel in the figure corresponds to one combination

of the feature selection methods and the classification rules, which is given

by the title. The x-axis labels the number of selected genes, the y-axis is the

signal SD, and the z-axis is the classification error.
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Fig. 24. Effect of correlation. The classification error of the signal dataset (signal),

the measured dataset (orgn), and the five imputed datasets. The underlying

distribution parameters are: SD σu = 0.5, noise level µe = 0.2, MV rate

r = 10%. Each panel in the figure corresponds to one combination of the

feature selection methods and the classification rules, which is given by the

title. The x-axis labels the number of selected genes, the y-axis is the gene

correlation strength, and the z-axis is the classification error.
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rate initially increases, and then performance deteriorates (quickly, in some cases),

as the MV rate continues to increase after a certain point. We shall refer to this

phenomenon as the missing-value rate peaking phenomenon. It is important to stress

that degradation of performance of imputation at larger MV rates is quite noticeable:

at 20% the weaker imputation methods perform worse than the measured data and

at 25% imputation is detrimental for kNN and not helpful for SVM. In Fig. 25(b)

we again observe the MV rate peaking phenomenon; however, imputation performs

better relative to the measured data. Imputation remains better throughout for SVM

and only gets worse for kNN at MV rate 25%. In Fig. 25(c), the peaking phenomenon

is again noticeable, but for this noise level imputation is much better relative to the

measured data and all imputation methods remain better at all MV rates. Similar

trends are observed in figures 26 and 27, the difference being that as σu increases from

0.3 to 0.4 and 0.5, the imputation methods perform increasingly worse with respect

to the measured data. Note particularly the degraded performance of the simpler

imputation schemes.

Fig. 28 displays the behavior of NRMSE as a function of MV rate. Here, we

also observe a peaking phenomenon for the NRMSE, though a modest one. This is

in contrast to previous studies, which all generally report the NRMSE to increase

monotonically with increasing MV rate [86, 87, 91, 95]; this may be a consequence of

the different way in which the MVs are selected in those studies as compared with

the present one; in the former, MVs are picked randomly, whereas in the latter, MVs

are picked based on quality considerations, revealing the peaking phenomenon.

2. Results for the patient data

For the patient data, since the true signal is unknown, we only conduct the comparison

of imputations with respect to different MV rates. The effect of MV rate is shown in



115

10 EURASIP Journal on Bioinformatics and Systems Biology

Ttest + KNN

0
10

20
30

Feature size
252015105

MV rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
la

ss
ifi

ca
ti

on
er

ro
r

(a)

Ttest + SVM

0
10

20
30

Feature size
252015105

MV rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
la

ss
ifi

ca
ti

on
er

ro
r

(b)

Ttest + KNN

0
10

20
30

Feature size
252015105

MV rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
la

ss
ifi

ca
ti

on
er

ro
r

(c)

Ttest + SVM

0
10

20
30

Feature size
252015105

MV rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
la

ss
ifi

ca
ti

on
er

ro
r

(d)

Ttest + KNN

0
10

20
30

Feature size
252015105

MV rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
la

ss
ifi

ca
ti

on
er

ro
r

Signal
Orgn
RAVG
KNN

LLS.L2
Ls
BPCA

(e)

Ttest + SVM

0
10

20
30

Feature size
252015105

MV rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
la

ss
ifi

ca
ti

on
er

ro
r

Signal
Orgn
RAVG
KNN

LLS.L2
Ls
BPCA

(f)

Figure 5: Effect of MV Rate. The classification error of the signal dataset (signal), the measured dataset (orgn), and the five imputed datasets.
The underlying distribution parameters are SD σu = 0.3, gene correlation ρ = 0.7, and noise level μe = 0.2, 0.2, 0.3, 0.3, 0.4, 0.4 for subfigures
(a), (b), (c), (d), (e), and (f), respectively. The x-axis labels the number of selected genes, the y-axis is the MV rate, and the z-axis is the
classification error.

Fig. 25. Effect of MV Rate. The classification error of the signal dataset (signal),

the measured dataset (orgn), and the five imputed datasets. The underlying

distribution parameters are: SD σu = 0.3, gene correlation ρ = 0.7 and noise

level µe = 0.2, 0.2, 0.3, 0.3, 0.4, 0.4 for subfigures (a)-(f), respectively. The

x-axis labels the number of selected genes, the y-axis is the MV rate, and the

z-axis is the classification error.
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Figure 6: Effect of MV Rate. The classification error of the signal dataset (signal), the measured dataset (orgn), and the five imputed datasets.
The underlying distribution parameters are SD σu = 0.4, gene correlation ρ = 0.7, and noise level μe = 0.2, 0.2, 0.3, 0.3, 0.4, 0.4 for subfigures
(a), (b), (c), (d), (e), and (f), respectively. The x-axis labels the number of selected genes, the y-axis is the MV rate, and the z-axis is the
classification error.

Fig. 26. Effect of MV Rate. The classification error of the signal dataset (signal),

the measured dataset (orgn), and the five imputed datasets. The underlying

distribution parameters are: SD σu = 0.4, gene correlation ρ = 0.7 and noise

level µe = 0.2, 0.2, 0.3, 0.3, 0.4, 0.4 for subfigures (a)-(f), respectively. The

x-axis labels the number of selected genes, the y-axis is the MV rate, and the

z-axis is the classification error.
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Figure 7: Effect of MV Rate. The classification error of the signal dataset (signal), the measured dataset (orgn), and the five imputed datasets.
The underlying distribution parameters are SD σu = 0.5, gene correlation ρ = 0.7, and noise level μe = 0.2, 0.2, 0.3, 0.3, 0.4, 0.4 for subfigures
(a), (b), (c), (d), (e), and (f), respectively. The x-axis labels the number of selected genes, the y-axis is the MV rate, and the z-axis is the
classification error.

Fig. 27. Effect of MV Rate. The classification error of the signal dataset (signal),

the measured dataset (orgn), and the five imputed datasets. The underlying

distribution parameters are: SD σu = 0.5, gene correlation ρ = 0.7 and noise

level µe = 0.2, 0.2, 0.3, 0.3, 0.4, 0.4 for subfigures (a)-(f), respectively. The

x-axis labels the number of selected genes, the y-axis is the MV rate, and the

z-axis is the classification error.
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Fig. 28. The NRMSE values (y-axis) of the five imputation algorithms with respect

to the MV rate (x-axis). The underlying distribution parameters are: SD

σu = 0.5, noise level µe = 0.2, gene correlation ρ = 0.7.
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figures 29 and 30, for the BREAST and the PROST dataset, respectively. The trends

observed are similar to those in the synthetic data study, in the sense that there is

a degradation of performance of imputation methods with increasing MV rates. On

the other hand, the missing-value rate peaking phenomenon is less evident here, but

still present, as can be seen from the fact that the classification performance of LLS,

LS and BPCA imputed datasets in a few cases becomes better under a larger MV

rate than the corresponding datasets with a smaller MV rate.

It is again observed that the classification performances of imputed datasets

depend on the underlying combination of feature selection method and classification

rule. For example, RAVG and KNNimpute show satisfactory performances for the

combinations SFFS+LDA and Ttest+LDA (data not shown), but perform relatively

poorly for the other combinations.

The NRMSE values of different imputation methods generally decrease first and

then increase as the MV rate increases (see Fig. 31) which is similar to the trend

observed in synthetic data study.

It is also found that there is no strong correlation between the low-level per-

formance measure NRMSE and the high-level measure classification error. A small

NRMSE may not necessarily suggest a small classification error, i.e. an imputation

method may perform better than another imputation method in terms of estimation

accuracy, but the former may not be as good as the latter in terms of classification per-

formance. In other words, although a given imputation method may be more accurate

than another when measured by NRMSE, it might decrease more the discrimination

power presents in the original data.
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Fig. 29. The classification errors of the measured prostate cancer dataset (orgn), and

the five imputed datasets. Each panel in the figure corresponds to one com-

bination of the feature selection methods and the classification rules, which is

given by the title. The x-axis labels the number of selected genes, the y-axis

is the MV rate, and the z-axis is the classification error.
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Fig. 30. The classification errors of the measured breast cancer dataset (orgn), and

the five imputed datasets. The meanings of the axes and titles are the same

as in the previous figure.
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Fig. 31. The NRMSE values (y-axis) of the five imputation algorithms with respect to

the MV rate (x-axis) for the PROST dataset and the BREAST dataset.
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