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ABSTRACT 

 

Synthesis, Characterization and Anion Binding Properties of Boron-based 

Lewis Acids. (May 2012) 

Haiyan Zhao, B.S., Nankai University 

Chair of Advisory Committee: Dr. François P. Gabbaï 

 

The recognition and capture of fluoride, cyanide and azide anions is attracting 

great deal of attention due to the negative effects of these anions on the environment and 

on human health.  One of common methods used for the recognition and capture of these 

anions is based on triarylboranes, the Lewis acidity of which can be enhanced via 

variation the steric and electronic properties of the boron substituents. 

This dissertation is dedicated to the synthesis of novel boron-based anion 

receptors that, for the most part, feature an onium group bound to one of the aryl 

substituents.  The presence of this group is shown to increase the anion affinity of the 

boron center via Coulombic effects.  Another interesting effect is observed when the 

onium group is juxtaposed with the boron atom.  This is for example the case of 

naphthalene-based compounds bearing a dimesitylboryl moiety at one of the peri-

position and a sulfonium or telluronium unit at the other peri position.  Fluoride anion 

complexation studies with these sulfonium or telluronium boranes, show that the boron-

bound fluoride anion is further stabilized by formation of a B−F→Te/S bridge involving 

a lp(F)→*(Te/S-C) donor acceptor interaction.  Some of the sulfonium boranes 



 iv 

investigated have been shown to efficiently capture fluoride anions from wet methanolic 

solutions.  The resulting fluoride/sulfonium borane adducts can be triggered to release a 

“naked” fluoride equivalent in organic solution and thus show promise as new reagents 

for nucleophilic fluorination chemistry.  Interestingly, the telluronium systems show a 

greater fluoride anion affinity than their sulfonium analogs.  This increase is assigned to 

the greater spatial and energetic accessibility of the σ* orbital on the tellurium atom 

which favors the formation of a strong B−F→Te interaction. 

This dissertation is concluded by an investigation of the Lewis acidic properties 

of B(C6Cl5)3.  This borane, which has been reported to be non-Lewis acidic by other 

researchers, is found by us to bind fluoride, azide and cyanide anions in dichloromethane 

with large binding constants.  This borane is also reactive toward neutral Lewis bases, 

such as p-dimethylaminopyridine, in organic solvents. 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

 

1.1 Introduction 

The field of anion recognition has become a very active research area fueled by 

the role that these species play in biological systems and in the environment.  One of 

these anions is the cyanide anion.  It is highly toxic because of its ability to inhibit cell 

respiration by deactivating the cytochrome-c oxidase enzyme.1  Unfortunately, cyanide 

is widely available in both research and industrial settings such that its unintentional 

release or its use for harmful purposes have become unavoidable.2  The azide anion (N3
−) 

possess an analogous biological profile and is also highly toxic.  Again, as for cyanide, 

the azide anion is found in many salts used in a number of widespread applications 

including explosives for car airbags.  Another important nucleophilic anion is fluoride 

anion.  This anion is often added to drinking water and toothpaste because of its 

beneficial effects in dental health.  It is also administered in the treatment of 

osteoporosis.3  High doses of this anion are however dangerous because they can trigger 

conditions such as skeletal fluorosis.4  Thus, as for cyanide and azide, the development 

of analytical methods for the detection of these, especially in water, is a worthwhile 

objective.  Water compatible receptors that operate in low concentration ranges must be 
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designed to overcome the high hydration enthalpy of the fluoride ion (H
o = -504 

KJ/mol) or the competitive protonation of the anion as in the case of cyanide (pKa(HCN) 

= 9.3). 

In turn, molecular receptors that can selectively bind these specific anions, 

especially in protic media, has become a Holy Grail of anion recognition.  The approach 

chosen in the design of such receptors depends largely on the nature of the anionic 

analyte.  While organic receptors that feature hydrogen-bond donor group as recognition 

sites are well suited for large anions, Lewis acidic receptors based on main group 

elements or transition metals have proven competent for the recognition of small 

nucleophilic anions. 

 

1.2 Lewis acidity and anion complexation by triarylboranes 

Among the Lewis acidic receptors, triarylboranes are a typical class that binds small 

anions efficiently in organic solvents.  For example, simple triarylboranes, such as 

trimesitylborane 1 and tri(9-anthryl)borane 2, capture fluoride in organic solvents with 

binding constants in the 105-106 M-1 range (Figure 1).5  This simple reaction provides the 

basis for the construction of anion receptors. 

 

 

Figure 1. The fluoride capture by triarylboranes. 
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The anion binding process by triarylboranes can be monitored by UV-vis 

spectroscopy and/or fluorescence spectroscopy.  Triarylboranes bear a low-energy 

absorbance band in the UV-vis spectrum caused by the presence of a low lying LUMO 

that bears a large contribution from the boron p-orbital.  Anion binding to the boron 

center disrupts the LU, thus leading to the quenching of the low-energy absorbance 

band in the UV-vis spectrum (Figure 2).  For instance, trimesitylborane 1 shows a low-

energy absorption band at max = 331 nm ( = 15500) which can be quenched upon the 

addition of fluoride anions. 

 

 

Figure 2.  Top: the fluoride binding by triarylborane; Bottom: schematic representation 

of the switching of -conjugation in the LUMO of the triarylboranes. 

 

The Lewis acidity of triarylboranes can be easily adjusted by tuning the 

electronic properties and/or the steric bulk of the aryl substituents.  

Pentafluorophenylboranes which are strong Lewis acids due to the electron-withdrawing 

properties of the fluorine atoms, have been widely used in catalysis, small molecule 
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activation, and synthesis.6-15  Decoration of peripheral cationic groups into triarylboranes 

is also a useful method to increase their Lewis acidity, a point that will be discussed later 

in this chapter.   

The steric bulk of aryl substituents is another important tool which can be used to 

control the Lewis acidity of triarylboranes.  Indeed, since anion binding is accompanied 

by pyramidalization of the boron center, a net increase in steric repulsion will be 

observed when a large aryl group is present.  One simple example is that BMes2Ph (3).  

This compound has a higher binding constant for fluoride (5.0 × 106 M-1) than BMes3 

(3.3 × 105 M-1), which may be assigned to the lower steric demand of the phenyl group 

in 3.16  On the other hand, bulky groups such as the mesityl group play an important 

passivation role and impart water stability to triaryl boranes. 

 

1.3 Anion complexation by diboranes 

Diboranes discussed in this chapter consist of two species: one features well-

separated boryl moieties while the other features juxtaposed boryl moieties sufficiently 

close to chelate small anions.  Among the former species, -conjugated diboranes are 

attracting a great deal of attention, because they are more electrophilic as well as more 

Lewis acidic than mononuclear triarylboranes.  For instance, 1,4-

bis(dimesitylboryl)benzene (4), as shown by Kaim, has a significantly more positive 

reduction potential than the corresponding mononuclear triarylboranes 1 under same 

conditions.17  Also, diboranes 5 and 6 display a higher fluorophilicity than mononuclear 

triarylboranes when binding the first fluoride anion.18  The increased electrophilicity and 
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Lewis acidity of these compounds can be attributed to a lowering of the LUMO which 

bears contributions from both inherently unsaturated boron centers. 

 

 

 

Diboranes with juxtaposed boryl moieties sufficiently close to chelate small 

anions19-24 have been used in the domains of anion complexation,25-26 organometallic 

catalysis,27-30 as well as small molecule activation.31-32  In what might be the first 

example of a chelating diborane, it was demonstrated that the simple derivative 7 

chelates methoxide anions effectively (Figure 3).33  Later, several bidentate diboranes 

have been successfully synthesized and investigated.  The peri-substitued naphthalene-

based diborane 8 was the first example of a compound shown to complex chloride by 

forming a B-Cl-B bridge bond when treated with inorganic and organic chloride 

donors.34  Diborane 9, of similar structure to 8, chelates hydride, fluoride as well as 

hydroxide anions to form the corresponding stable adducts.35-36  A related behavior is 

observed for the naphthalene-based diborane 10 which shows a much higher fluoride 

anion affinity than mononuclear borane such as BMes3.37  Diborane 11 can form the 
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hydride adduct by chelating hydride ion when treated with H2 (1.5 bar) at 80 °C  in the 

presence of 2,2,6,6-tetramethylpiperidine (TMP).31  The formation of a B-X-B bridging 

bond in these adducts is responsible for the high Lewis acidity of these diboranes. 

 

 

Figure 3.  The anion chelation by diboranes to form B-X-B bridging bond. 
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Ortho-phenylene diboranes are also showing superior Lewis acidity for 

complexation of neutral electron-rich species and anions.  A prototypical example of 

such diboranes is the 1,2-bis(bis(pentafluorophenyl)boryl)tetrafluorobenzene 12, which 

chelates small anions efficiently including OH-, F-, OMe-, OC6F5
-, NMe2

- and N3
- 

(Figure 4).27 

 

 

Figure 4. The anion chelation process by 12. 

  

Bidentate diboranes based on metallocene units have also been investigated as 

anion chelators.  Reaction of compound 13 with Cu(OH)2 affords a chelate complex with 

the formation of a B-O-B bridge along with oxidation of the cobalt center (Figure 5).38-39  

However, treatment of 13 with C2Cl6 does not afford a chelate complex but instead leads 

to a zwitterion with only one tetrahedral chloride-bound boron center.  In solution the 

chloride is highly fluxional as confirmed by detection of a single resonance in the 11B 

NMR spectrum as well as the equivalence of the C5H4BPri
2 1H and 13C NMR resonances. 
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Figure 5. The reactions of 13 with Cu(OH)2 and C2Cl6. 

 

1.4 Lewis acidity and anion complexation by cationic boranes 

1.4.1 Effects induced by remote cationic functionality 

The incorporation of cationic functionality into triarylboranes is an approach that 

maybe better suited to applications of anion sensing in aqueous solutions because the 

cationic moiety can increase the Lewis acidity as well as the solubility of triarylboranes 

in aqueous environment.  This approach was pioneered 16 years ago by Shinkai who 

showed that oxidation of Fc-B(OH)2 (Fc = ferrocenyl) into the ferrocenium derivative 

[Fc-B(OH)2]+ leads to a significant increase of the Lewis acidity and fluoride ion affinity 

of the boron center.40  As stated by Shinkai, his pioneering studies showed that the 

“oxidized species of ferroceneboronic acid has a stronger interaction with fluoride ions 

compared to the neutral boronic acid”.  Inspired by this work, several groups have been 

implementing this strategy with triarylboranes.   

The Gabbai group has observed that the presence of a somewhat distant and 

diffuse cationic group in organoboranes can have a marked effect on the anion affinity of 
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the boron center via favorable Coulombic effects.  This phenomenon is appropriately 

illustrated by the behavior of the three cationic boranes [14]+, [15]+, and [16]+ which 

have been synthesized by simple electrophilic methylation procedure using MeOTf in 

the case of [14]+ or [15]+ or by reaction of the pyridyl precursor with (bpy)2RuCl2 and 

AgOTf in the case of [16]+ (Figure 6).41-42  A feature common to these three species is 

the distance and relative diffuseness of the cationic functionality.  In the case of [14]+ or 

[15]+, the positive charge is delocalized over the entire pyridinium ring, a factor that may 

further contribute to a lessening of Coulombic effects.  A similar argument could be 

advanced in the case of [16]+ where the charge is delocalized over the entire tris-chelate 

ruthenium complex.  Despite the diffuseness of these cationic groups, these compounds 

feature a distinctly higher fluoride and cyanide affinity than the neutral boranes of 

similar bulks.  Unlike neutral boranes of comparable bulk, these three compounds react 

quantitatively with fluoride and cyanide in organic solvents but show no affinity for 

other anions such as Cl−, Br−, and I−.  Another distinguishing quality of these compounds 

pertains to their ability to capture fluoride ions under biphasic condition.  These 

observations show that the presence of a distant and diffuse cationic group can still 

favorably impact the Lewis acidic properties.   
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Figure 6. The cationic boranes of [14]+, [15]+, [16]+, [17]+ and [18]+. 

 

Similar results have also been obtained by other groups.  For example, the Ir(III) 

derivative [17]+, isolated as PF6
- salt, captures two equivalents of fluoride ions in 

acetonitrile (CH3CN) (Figure 6).43  The binding constant K1 of [17]+ significantly 

exceeds that of the free ligand 2-(4-dimesitylboryl-phenyl)quinoline.  The Cu(I) 



11 
 

 

derivative [18]+, also shows elevated fluoride affinity compared to the corresponding 

free ligand 5,5’-bis(dimesitylboryl)-2,2’-bipyridine (Figure 6).44   

Another compound that has been investigated is the cationic borane [19]+, which 

could be obtained by reaction of the tetrakis(THF)lithium salt of dimesityl-1,8-

naphthalenediylborate with [Me2NCH2]I and subsequent methylation of the resulting 

borane 19 with MeOTf (Figure 7).45  This cationic borane [19]+, containing a remote but 

localized cationic functionality, shows a much higher affinity towards fluoride and 

cyanide than the neutral borane 19 in organic solvents.  More interestingly, [19]+ could 

capture fluoride and cyanide ions under biphasic conditions (H2O/CHCl3).  Surprisingly, 

the fluoride binding constant (K > 108 M–1) of [19]+ exceeds the cyanide binding 

constant (8.0 (±0.5) × 105 M–1) in THF, even though cyanide (pKa = 9.3) is more basic 

than fluoride (pKa = 3.18).46  This selectivity is attributed to the high steric encumbrance 

of the anion binding pocket boron of [19]+ and the relatively larger size of the cyanide 

ion.  The BF---HC hydrogen bond in 19-F, confirmed by structural, NMR spectroscopic, 

and computational analysis, could also contribute to the higher stability constant of 19-F.  

These results indicate that the incorporation of a distant cationic moiety can remarkably 

increase the anion affinity via Coulombic effects.  These effects are however limited as 

none of these compounds show an affinity for any anions including fluoride and cyanide 

in aqueous solutions. 
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Figure 7. The synthesis of [19]+ and its reaction with fluoride under biphasic conditions. 

 

Similar examples in use of ammonium functionality contains the ammonium 

ferrocenyl boranes [20]+ and [21]+.  The cationic borane [21]+ has a much higher fluoride 

affinity than [20]+ due the presence of BF--HC hydrogen bonding interaction in the 

fluoride adduct 21-F.  

 

 

  

In order to address the significance of the remote cationic functionality as well as 

to recognize fluoride in aqueous solutions, the phosphonium borane [22]+ has been 

synthesized by simple methylation of the neutral borane 22 (Figure 8).47  The fluoride 

titration of [22]+ in H2O/MeOH (9:1, v/v) monitored by UV-vis spectroscopy affords a 
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binding constant of 103 M-1.  This compounds is also highly selective since its absorption 

spectrum shows negligible changes in the presence of Cl-, Br-, NO3
- and I-.  The 

enhanced fluoride affinity of [22]+ can be correlated to the favorable Coulombic effects 

introduced by the phosphonium moiety. 

 

 

Figure 8. The synthesis of [22]+. 

 

In an extension of these studies, the effects imparted by the introduction of 

multiple remote cationic groups have been investigated.  Compounds [23]+, [24]2+ and 

[25]3+ have been synthesized as their triflate salts.  The reduction potential of Mes3B, 

[23]+, [24]2+ and [25]3+ have been measured by cyclic voltammetry in CH3CN.  A 

comparison of the reduction peak potentials of these four boranes shows that substitution 

of a Mes group by a [4-(Me3N)-2,6-Me2-C6H2]+ (ArN+) group leads to a linear increase 

of the reduction potential, indicating that [25]3+ is the most electron-deficient compound 

in the series.  Following these results, these boranes have been used for the complexation 

of the small anions in water.  Among the three cationic boranes, only [25]3+ could 

capture cyanide in pure water, in accordance with its higher reduction potential.  In 

addition, [25]3+ shows a high selectivity for cyanide since there is negligible change of 

the absorbance of the boron centered chromophore in the presence of F−, Cl−, Br−, I−, 

OAc−, NO3
−, H2PO4

−, and HSO4
−.  These results suggest that Coulombic effects are 
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additive, thus indicating that the Lewis acidity of triarylboranes can be enhanced by the 

introduction of multiple cationic groups. 

 

 

 

1.4.2 Effects induced by proximal cationic functionality 

In order to address the way in which the proximity of the boron and cationic 

moiety affects the anion binding properties of the compounds, two ammonium boranes 

[26]+ and [27]+ were synthesized and their anion affinity has been evaluated (Figure 9).48  

Both compounds react with fluoride and cyanide ions in organic solvents, such as 

CHCl3, leading to zwitterionic adducts which have been fully characterized.  Following 

this studies in organic media, the complexation of small anions by [26]+ and [27]+ has 

been studied extensively in aqueous solutions.  These two boranes show different anion 

affinity in H2O/DMSO (6:4, v/v).  Cation [26]+ only complexes cyanide ions with an 

elevated binding constant (K(CN-) = 3.9(±0.1)  108 M-1), while [27]+ only binds 

fluoride ions (K(F-) = 910 (±50) M-1).  The anion binding selectivity of these cationic 

boranes most likely results from the interplay of both steric and electronic effects.  
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Because of the proximity of the ammonium functionality, the boron center of [27]+ is 

more Lewis acidic than [26]+.  However, in this case, the increased steric crowding of 

the boron center prevents coordination of the larger cyanide anion.  Since cyanide is 

more basic than fluoride anion, it can be recognized by [26]+ with lower Lewis acidity 

and less steric crowding.  The effects introduced by the proximal cationic functionality 

have been confirmed by Density Functional Theory (DFT) calculations.  [27]+ features a 

lower LUMO (-2.02 eV) than [26]+ (-2.12 eV) ) thus corroborating the increased fluoride 

affinity of the ortho isomer [27]+. 

 

 

Figure 9. The synthesis of [26]+, [27]+ and their anion binding reactions.  

 

  In this vein, the phosphonium borane [28]+, the ortho isomer of [22]+, has been 

synthesized using the same method as for [22]+.25  The fluoride binding properties of 

[28]+ has been evaluated and compared to those of its para isomer [22]+.  Mixing the 

equimolar amounts of [28]+ and 22-F in CDCl3 leads to a quantitative formation of 28-F 
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and [22]+, indicating that [28]+ has a much higher fluoride affinity than [22]+ (Figure 10).  

The fluoride titration in MeOH affords that the binding constant of [28]+ exceeds the 

measurable range (K > 106 M-1), which is at least four orders of magnitude higher than 

that of [22]+ (K = 400 ± 50 M-1).  The higher fluoride affinity of [28]+ arises from the 

presence of a bonding B−F→P donor-acceptor interaction due to the Lewis acidity of the 

phosphonium moiety.  The B−F→P donor-acceptor interaction has been confirmed by 

structural and computational analyses.  The crystal structure of 28-F shows that the 

distance between F and P atoms (2.66 Å) is shorter than the sum of the van der Waals 

radii (ca. 3.45 Å), and the angle of F-P-CPh is 176.36° indicating the appropriate 

orientation of the orbitals involved in the B−F→P donor-acceptor interaction (Figure 11).  

A natural bond orbital (NBO) analysis identifies the lp(F)→σ*(P-C) interaction.  

Energetically, this interaction contributes 5.0 kcal/mol to the stability of the complex 28-

F (Edel = 5.0 kcal/mol).  An atom-in-molecule (AIM) analysis, probing the covalent 

component of the F-P interaction, shows a bond path connecting the P and F atoms with 

an electron density of 0.0205 e bohr−3 at the bond critical point (BCP) (Figure 11).  

Cation [28]+ can also capture azide from aqueous solutions into less polar solvents.  For 

instance, [28]+ transports azide ions from water into chloroform under D2O/CDCl3 

biphasic conditions by forming the azide adduct 28-N3.  Thus, [28]+ can be regarded as a 

cationic bidentate Lewis acid with the boryl and phosphonium moieties as Lewis acidic 

centers. 
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Figure 10. The competition reaction of [28]+ and 22-F in CDCl3. 

 

 

Figure 11. Crystal structure of 28-F (left) and the AIM and NBO analyses of the 

B−F→P donor-acceptor interaction (right). 
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CHAPTER II 

SYNTHESIS, CHARACTERIZATION AND ANION AFFINITY OF SULFONIUM 

BORANE* 

 

2.1 Introduction 

As previously shown by Gabbai group and others, triarylboranes decorated with 

ammonium/phosphonium groups can complex F- ions under aqueous conditions.  

Among these anion receptors, the phosphonium borane [1-Mes2B-2-MePh2P-(C6H4)]+ 

shows remarkably stronger fluoride affinity than its para analog, [1-Mes2B-4-MePh2P-

(C6H4)]+.49  The high fluorophilicity of the former compound arises from Coulombic 

effects which are complemented by the formation of a B-F→P interaction involving low 

lying * orbitals of the P-C bond.  Sulfonium ions, which also have low lying * 

orbitals, are inherently Lewis acidic and can interact with electron-rich substrates to 

form donor-acceptor complexes.  For example, the donor-acceptor interaction exists in 

the compounds 29a-e from the lone pair of the amino group to the * orbital of S-X, 

which is supported by the short distance between the N and S atoms in the crystal 

structure.  Although this phenomenon has been documented,50-55 efforts to use sulfonium 

ions as a binding site in Lewis acidic hosts have been only reported by the Gabbai group. 

 
 
____________ 
*Reprinted in part permission from, “Sulfonium boranes for the selective capture of 
cyanide ions in water”; Kim, Y.; Zhao, H.; Gabbaï, F. P. Angew. Chem., Int. Ed. 2009, 
48, 4957.  Copyright 2009 by John Wiley & Sons, Inc; and ““Nucleophilic Fluorination 

Reactions Starting from Aqueous Fluoride Ion Solutions”; Zhao, H.; Gabbaï, F. P.Org. 

Lett. 2011, 1444.  Copyright 2011 American Chemical Society. 
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As part of our fundamental interest in the chemistry of polydentate Lewis acidic boranes, 

probing the synthesis and properties of anion receptors containing accessible sulfonium 

ions appeared a worthwhile endeavor.  As an added motivation for these studies, we 

anticipated that the anion binding properties of sulfonium boranes would also benefit 

from attractive Coulombic effects similar to those occurring in other cationic boron-

based anion receptors. 

 

 

 

2.2 Synthesis and characterization of sulfonium borane 

 To test the validity of the aforementioned concepts, we synthesized the cationic 

borane [30]+ which feature adjacent sulfonium and boryl moieties connected by a 1,8-

naphthalenediyl.  The salt [30]OTf was obtained by reaction of the tetrakis(THF)lithium 

salt of dimesityl-1,8-naphthalenediylborate with MeSSMe followed by methylation of 

the resulting sulfide MeOTf (Figure 12).56  [30]OTf has been isolated in an analytically 

pure form and characterized by multinuclear NMR spectroscopy, UV-vis spectroscopy 

and single crystal X-ray diffraction.  The 1H NMR spectrum of this compound exhibits 

six distinct resonances that correspond to the aromatic CH groups of the 



20 
 

 

unsymmetrically substituted naphthalene backbone.  In addition, six distinct methyl 

groups are observed for the mesityl substituents indicating that [30]+ has highly 

congested structure.45  The detection of a 11B NMR resonance at 67 ppm and the 

presence of a low energy UV-vis absorption band at 340 nm for [30]+ indicates the 

presence of a coordinatively unsaturated boron center which mediates -conjugation of 

the aromatic ligands.  The resulting boron-centered chromophore is fluorescent and give 

rise to a broad emission band at 464 nm (quantum yield: ϕ=0.02) when excited at 350 

nm in MeOH.  As reported for other sulfonium salts, [30]+ is sensitive to UV light and 

should therefore not be irradiated for extended periods of time. 

 

 

Figure 12 Synthesis of the sulfonium borane [30]OTf 
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Figure 13. Crystal structure of [30]OTf (thermal ellipsoids are drawn at 50% probability 

levels; hydrogen atoms and triflate anion are omitted and the mesityl ligands are 

represented by thin lines for clarity).  Selective bond distances [Å] and bond angles [°]: 

S(1)-C(8) 1.786(3), S(1)-C(30) 1.788(3), S(1)-C(29) 1.791(3), C(10)-C(8) 1.420(4), 

C(10)-C(1) 1.440(4), C(1)-B(1) 1.583(4), C(11)-B(1) 1.576(4), B(1)-C(20) 1.574(4); 

C(8)-S(1)-C(30) 103.59(13), C(8)-S(1)-C(29) 101.55(13), C(30)-S(1)-C(29) 102.94(13), 

C(8)-C(10)-C(1) 125.5(2), C(10)-C(1)-B(1) 129.0(2), C(10)-C(8)-S(1) 118.46(19), 

C(11)-B(1)-C(20) 120.6(2), C(11)-B(1)-C(1) 116.0(2), C(20)-B(1)-C(1) 123.0(2). 
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Table 1. Crystal data, data collections, and structure refinement for [30]OTf. 
 

Crystal data 
 

[30]OTf 
formula  C32H36BCl2F3O3S2 

Mr  671.44 
crystal size (mm3)  0.20 x 0.10 x 0.10 

crystal system  Triclinic 
space group  P-1 

a (Å)  8.5182(17) 
b (Å)  10.144(2) 
c (Å)  18.638(4) 
α () 104.31(3) 
 ()  92.55(3) 
γ () 102.84(3) 

V (Å3)  1513.0(5) 
Z  2 

calc (g cm-3)  1.474 
 (mm-1)  0.406 
F(000)  700 

  

Data Collection  
T (K)  110(2) 

scan mode   

hkl range 
-9  +9 

-11  +11 
-21  +21  

measd reflns  13329 
unique reflns [Rint]  4735 [0.0228] 

reflns used for refinement  4735 
   

Refinement  
refined parameters  388 

GooF  1.061 
R1,a wR2

b all data  0.0448, 0.1216 
fin (max/min) (e Å-3)  0.676, -0.397 

a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2. 
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The crystal structure of [30]+ clearly shows that the boron center adopts a 

trigonal planar coordination geometry (∑(C-B-C) = 359.6°) and that it is only separated 

from sulfur atom by 3.07 Å (Figure 13, Table 1).  This short separation indicates that: 1) 

the unsaturated boron center is sterically encumbered, in agreement with the large B(1)-

C(1)-C(10) angle (129.0°) which substantially derivates from the ideal value of 120°; 2) 

the boron center experiences electron donation from the neighboring sulfur atom through 

a lp(S)→p(B) donor–acceptor interaction.  More details on this bonding feature will be 

provided in 2.5. 

 

2.3 Reaction of the sulfonium borane with fluoride ions 

 

 

Figure 14. Reaction of [30]
+
  with KF to form 30-F in methanol 

 

  



24 
 

 

Reactions of [30]+ with fluoride anion in organic solvents or mixtures of organic 

solvent and water were examined.  Reaction of [30]+ with n-tetrabutylammonium 

fluoride (TBAF) in chloroform at ambient temperature results in a rapid formation of a 

new species, assigned to 30-F.  Compound 30-F precipitates when [30]+ reacts with 

excess KF in MeOH (Figure 14).  Formation of 30-F does not require the use of dry 

methanol.  Instead, 30-F also precipitates from concentrated MeOH/H2O solutions 

containing large fractions of water.  For example, sonicating a mixture of 30-OTf (21 

mg) and KF (45 mg) in 0.5 ml of a MeOH/H2O (3:2, v/v) solution results in the 

precipitation of 30-F (12 mg, 75% yield).  The adduct 30-F has been fully characterized 

by multinuclear NMR spectroscopy and single crystal X-ray diffraction.  The 11B NMR 

resonance of 30-F at 9.0 ppm and the 19F NMR signal at -161.1 ppm are consistent with 

the presence of a typical triarylfluoroborate anion.25-26  The crystal structure of 30-F has 

been determined (Figure 15, Table 2).  It crystallizes in the monoclinic P2(1)/c space 

group with two independent molecules in the asymmetric unit.  Both independent 

molecules feature very similar structures.  The boron atom adopts pyramidal geometry 

indicated by the sum of the Caryl-B-Caryl angles (∑(C-B-C) = 341.4° and 342.8° for the two 

molecules) and is separated from fluoride by an average distance of 1.50 Å, a typical B-

F bond in the triarylfluoroborate species.48, 57   
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The boron-bound fluorine atom is separated from the sulfur atom by an average 

distance of 2.53 Å, which is well within the sum of van der Waals radii of the two 

elements (ca. 3.3 Å).58  The average F-S-CMe angle of 171.7° indicates that the fluorine 

atom occupies an axial coordination site directly opposite to one of the sulfur-bound 

methyl groups.  These geometrical parameters, which are reminiscent of those observed 

in other fluoroborate sulfonium species,59-60 suggest the presence of an interaction 

between the fluorine and sulfur atom.  To confirm this view, the structure of 30-F was 

computationally optimized (DFT, functional: B3LYP; mixed basis set: B, F: 6-31+g(d’); 

S: 6-31+g(d); C, H: 6-31g) and subjected to a Natural Bond Orbital (NBO) analysis.  

This analysis indicates that the short F-S separation present in 30-F corresponds to a 

lp(F)→
(S-C) donor-acceptor interaction which contributes 7.0 kcal/mol to the stability 

of the molecule (Figure 16).  Altogether, these results suggest that the ability of [30]+ to 

complex F- in wet methanol arises from favorable Coulombic effects which are 

complemented by the formation of a B-F→S chelate motif.25 
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Figure 15. Crystal structure of 30-F (only one independent molecule is shown; thermal 

ellipsoids are drawn at 50% probability levels; hydrogen atoms are omitted and the 

mesityl ligands are represented by thin lines for clarity).  Selective bond distances [Å] 

and bond angles [°]: S(2)-C(7) 1.793(4), S(2)-C(62) 1.795(5), S(2)-C(61) 1.798(4), F(2)-

B(2) 1.503(5), C(17)-B(2) 1.659(6), C(15)-B(2) 1.649(6), C(32)-B(2) 1.656(6), C(10)-

C(15) 1.445(5), C(7)-C(10) 1.459(6); C(7)-S(2)-C(62) 103.0(2), C(7)-S(2)-C(61) 

104.0(2), C(62)-S(2)-C(61) 100.2(2), C(10)-C(7)-S(2) 120.4(3), C(15)-C(10)-C(7) 

126.9(3), C(10)-C(15)-B(2) 126.4(3), F(2)-B(2)-C(15) 103.2(3), F(2)-B(2)-C(32) 

103.4(3), C(15)-B(2)-C(32) 116.8(3), F(2)-B(2)-C(17) 105.5(3), C(15)-B(2)-C(17) 

110.8(3), C(32)-B(2)-C(17) 115.2(3).  



27 
 

 

Table 2. Crystal data, data collections, and structure refinement for 30-F. 
 

Crystal data 
 

30-F 

formula C30H34BFS 
Mr 456.44 

crystal size (mm3) 0.15 x 0.06 x 0.03 
crystal system Monoclinic 
space group P2(1)/c 

a (Å) 9.486(9) 
b (Å) 26.43(2) 
c (Å) 20.531(19) 
α () 90 
 () 102.677(12) 
γ () 90 

V (Å3) 5022(8) 
Z 8 

calc (g cm-3) 1.207 
 (mm-1) 0.152 
F(000) 1952 

  

Data Collection  
T (K) 110(2) 

scan mode   

hkl range 
-10  +11 
-31  +31 
-24  +24  

measd reflns 35548 
unique reflns [Rint] 0.1191 

reflns used for refinement 8830 
 

Refinement  
refined parameters 8830/0/595 

GooF 1.058 
R1,a wR2

b all data 0.1286, 0.2132 
fin (max/min) (e Å-3) 0.412, -0.422 

a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2. 
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Figure 16. NBO contour plots that show the two lp(F)→*(S-C) donor-acceptor 

interactions involved in 30-F.  The difference in hybridization of the two fluorine lone 

pairs involved in this interaction is evident from this view. 

  

Next we investigated the fluoride ion affinity of [30]+ under dilute conditions.  

Bearing in mind that anion binding to the boron center should results in a quenching of 

the low-energy band observed in the UV-vis spectrum of the borane, these studies were 

monitored by UV/Vis spectroscopy.  The addition of 100 equiv. fluoride ions to [30]+ 

(0.045 mM)  in MeOH did not result in any changes in the UV-vis spectrum, indicating 

that [30]+ has no or very little affinity for fluoride ions in this solvent under dilute 

conditions.  When the titration experiment was carried out in THF, the absorbance of 

UV-vis spectrum was progressively quenched upon fluoride addition.  The binding 

constant exceeds 107 M-1 by fitting the resulting data to a 1:1 binding isotherm.  A 
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titration experiment was also carried out in aqueous solutions (THF: H2O, 9/1, v/v), 

affording a binding constant of 2.05(±0.5) × 105 M-1 (Figure 17). 

 

 

Figure 17. Left: Changes in the UV-vis absorption spectra of a solution of [30]OTf 

(4.36 × 10-5 M in THF: H2O, 9/1, vol.) upon the addition of a TBAF solution (9.5 × 10-3 

M in THF); Right: resulting 1:1 binding isotherm using30]OTf) = 16350 M-1cm-1 and 

(30-F) = 4900 M-1cm-1 with max = 337nm. 
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2.4 Reaction of the sulfonium borane with cyanide ions 

 

 

Figure 18. Reaction of [30]
+
 with KCN to form 30-CN in methanol. 

 
 Similarly, [30]+ reacts with TBACN in chloroform to affording the zwitterionic 

cyanoborate, 30-CN.  30-CN precipitates when [30]+ reacts with excess KCN in MeOH 

(Figure 18).  The adduct 30-CN has been characterized by multinuclear NMR 

spectroscopy and single crystal X-ray diffraction.  The 11B NMR resonance of 30-CN at 

-13.0 ppm is consistent with the presence of a typical triarylcyanoborate anion and an 

intense IR band at 2162 cm−1 confirms the presence of the boron-bound cyano group.46, 

61   
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This compound crystallizes in the orthorhombic space group P2(1)2(1)2(1) with 

two independent molecules in the asymmetric unit (Figure 19, Table 3).  Both molecules, 

arbitrarily denoted as molecule A and B, feature very similar structures.  The boron 

atoms adopt pyramidal geometries (the sum of the Caryl-B-Caryl angles: ∑(C-B-C) = 340.5°, 

A; ∑(C-B-C) = 339.9°, B), and are separated from the cyanide carbon atom by 1.630(5) Å 

(A) and 1.624(6) Å (B). These B-CCN- distances are comparable to those typically found 

in triarylcyanoborate anions.  The distances between the boron and the sulfur atoms are 

3.247 Å (A) and 3.197 Å (B), much larger than that in [30]OTf (3.075 Å), which suggest 

an increase in steric crowding upon cyanide binding.  This conclusion is in agreement 

with the large angle of B(1)-C(1)-C(9) (128.5(3) ° (A), 129.9(3) ° (B)).  Finally, the 

centroid of the CCN-N(1) (CtCN) bond is separated from the sulfur atom by only 2.95 Å 

and forms a CtCN-S(1)-CMe angle of 157.9°.  To investigate the presence of a possible 

interaction between the sulfur atom and the cyanide group, we carried out an NBO 

analysis of the DFT optimized structure (Figure 20). This analysis reveals the presence 

of a π(C≡N)→σ*(S-C) donor–acceptor interaction unexpectedly complemented by a 

back-bonding lp(S)→π*(C≡N) component.  The concomitant deletion of these two 

interactions leads to an increase of the total energy of the molecule by 4.1 kcal mol
−1, an 

energy comparable to that of a strong hydrogen bond. 
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Figure 19. Crystal structure of 30-CN (only one independent molecule is shown; 

ellipsoids are drawn at 50% probability levels; hydrogen atoms omitted and the mesityl 

groups are represented by thin lines for clarity).  Selective bond distances [Å] and bond 

angles [°]: S(1)-C(32) 1.798(7), S(1)-C(61) 1.809(7), S(1)-C(60) 1.816(7), C(40)-C(39) 

1.474(10), C(40)-C(32) 1.402(9), C(39)-B(1) 1.639(11), C(42)-B(1) 1.686(11), C(62)-

B(1) 1.631(14), C(51)-B(1) 1.668(11), N(1)-C(62) 1.162(9); N(1)-C(62)-B(1) 176.7(7), 

C(32)-S(1)-C(61) 102.5(3), C(32)-S(1)-C(60) 104.2(4), C(61)-S(1)-C(60) 100.6(4), 

C(32)-C(40)-C(39) 127.5(6), C(40)-C(39)-B(1) 128.7(6), C(62)-B(1)-C(39) 106.4(6), 

C(62)-B(1)-C(51) 102.9(5), C(39)-B(1)-C(51)-119.1(6), C(62)-B(1)-C(42) 105.2(5), 

C(39)-B(1)-C(42) 108.5(6), C(51)-B(1)-C(42) 113.5(6).  
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Table 3. Crystal data, data collections, and structure refinement for 30-CN. 
 

Crystal data 
 

30-CN 
Formula C63H70B2Cl2N2S2 

Mr 1011.85 
crystal size (mm3) 0.20 x 0.10 x 0.08 

crystal system Orthorhombic 
space group P2(1)2(1)2(1) 

 a (Å) 8.9440(18) 
b (Å) 21.579(4) 
c (Å) 28.106(6) 
α () 90 
 () 90 

γ () 90 
V (Å3) 5424.4(19) 

Z 4 
calc (g cm-3) 1.239 
 (mm-1) 0.239 
F(000) 2152 

   
Data Collection  

T (K) 110(2) 
scan mode  

hkl range 
-11  +11 
-28  +28 
-36  +37 

measd reflns 59911 
unique reflns [Rint] 12952 [0.0872] 

 reflns used for refinement 12952 
  

Refinement 640 
refined parameters 1.000 

GooF 0.0892, 0.1880 
 R1,a wR2

b all data 0.492 and -0.536 
fin (max/min) (e Å-3)  

a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2. 

  



34 
 

 

 

Figure 20. NBO contour plots showing π(C N)→σ*(S C) (top) and lp(S)→π*(C

N) (bottom) interactions in 30-CN. 

 

Next, titration experiments monitored by UV/Vis spectroscopy were carried out 

to investigate the cyanide ion affinity of [30]+ under dilute conditions.  The addition of 

10 equivalents of CN- into a methanol solution of [30]OTf (0.063mM) resulted in a total 

quenching of the absorption spectrum within 30 minutes.  On the other hand, the 

addition of F- resulted in negligible absorption quenching, and Cl-, Br-, I-, HSO4
-, H2PO4

-

did induce any change of the absorption spectrum.  The difference between cyanide and 
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fluoride affinity probably arises from the basicity of the cyanide anion and the high 

hydration energy of fluoride ion in methanol.  However, the binding process was very 

slow which precludes the determination of the accurate cyanide binding constant of 

[30]OTf in methanol.  The titration carried out in THF shows that the binding constant 

exceeds 107 M-1 (Figure 21).   

 

 

Figure 21. Left: Changes in the UV-vis absorption spectra of a solution of [30]OTf (4.67 

× 10-5 M in THF) upon the addition of a KCN solution (7.5 × 10-3 M) in THF); Right: 

resulting 1:1 binding isotherm using30]OTf) = 16350 M-1cm-1 and (30-CN) = 5800 

M-1cm-1 with max = 337 nm. 

 

2.5 Comparison of Lewis acidity of [30]+ with another sulfonium borane 

 In order to better understand the properties of the borane and its compatibility 

with aqueous environments, we have investigated its reaction with hydroxide anions. 

Interestingly, addition of NaOH to a solution of the cationic borane in D2O/MeOH-d4 
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(9:1 vol.) for [30]+ results in the formation of the corresponding hydroxide adducts as 

confirmed by 11B NMR spectroscopy.  The 11B NMR signal is detected at 2.1 ppm, thus 

confirming the presence of a coordinatively saturated boron center.  This hydroxide 

binding has been discussed in previous papers from the Gabbaï group.62  Next, we 

decided to investigate the Lewis acidity of [30]+ by studying its behavior in aqueous 

solution as a function of pH.  Since hydroxide binding to the boron center is expected to 

interrupt the π conjugation mediated by the vacant p-orbital on the boron atom, we 

monitored the absorbance of the boron-centered chromophore as a function of pH in 

MeOH/H2O (5:95, vol.).  The absorption of the boron-centered chromophore is 

quenched as the pH becomes more basic, in agreement with the formation of the 

hydroxide adduct, which shows that [30]+ is stable up to pH 9.5 (Figure 22).  These 

results suggests that [30]+ has a significantly lower Lewis acidity than other cationic 

boranes, such as the phosphonium borane [1-Mes2B-2-MePh2P-(C6H4)]+ (pKR+ is 

between 2 and 3).  In turn, the addition of 15 equivalents of F− or CN− to a 32 μM 

solution of [30]+ in H2O/MeOH (95:5, vol.) at pH 7 did not result in any changes of the 

absorption spectrum, indicating the absence of any significant interactions.  
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        eq. 1 

 

 
 

Figure 22. Spectrophotometric titration curve of [30]+.  The absorbance was measured at 

337 nm.  The experimental data was fitted to eq. 1 using [30]+) = 16350 M-1 cm-1, 

(30-OH) = 3000 M-1cm-1, and pKR+ = 11.4.  Data point above pH 11 could not be 

obtained because of precipitation.  Because of the lack of reversibility observed in this 

experiment, the pKR+ value use to fit the data does not provide a measure of the 

equilibrium described in eq. 1 
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Figure 23. Partial view of the molecule of [30]+ showing the contour of the NBOs 

involved in the lp(S)→p(B) donor–acceptor interaction. 

 

The crystal structure of [30]+ clearly shows that the boron center is only 

separated from the sulfur atom by 3.07 Å, which indicates that the boron center 

experiences electron donation from the neighboring sulfur atom via a lp(S)→p(B) 

donor–acceptor interaction.  An NBO analysis carried out at the DFT optimized 

geometry of [30]+ indicates the presence of a lp(S)→p(B) donor–acceptor interaction 

(Figure 23) whose deletion leads to an increase of the total energy of the molecule by 

Edel=6.8 kcal mol
−1.  Therefore, in addition to being sterically crowded, the boron center 

of [30]+ experiences electron donation from the neighboring sulfur atom, a phenomenon 

which would be expected to reduce its electron deficiency.  In turn, the relatively weak 

Lewis acidity of [30]+ probably arises from the sterically encumbered boron center and 

the lp(S)→p(B) donor-acceptor interaction caused by the short boron-sulfur separation. 
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2.6 Conclusion 

In conclusion, a new cationic borane [30]+ incorporating a sulfonium moiety as a 

secondary Lewis acidic site has been synthesized successfully.  The stability and Lewis 

acidity of [30]+ has been studied in aqueous environments.  These studies indicate that 

there is limited use for [30]+ as an anion receptor in aqueous media due to its relatively 

weak Lewis acidity.  However, this compound reacts with fluoride and cyanide anions in 

MeOH to afford the corresponding zwitterionic fluoroborate and cyanoborate species, 

30-F and 30-CN, respectively.  Titration experiments carried out in THF indicate the 

binding constants of [30]+ with fluoride and cyanide anions exceed 107 M-1.  The 

resulting fluoro- and cyano-borate species have been isolated and fully characterized.  

The structural and computational analysis of 30-F and 30-CN demonstrates that the 

sulfonium moiety interacts with the fluoride and cyanide guests through a donor-

acceptor interaction.  For 30-CN, such interaction is complemented by the lp(S) → * 

(CN) back-bonding interaction. 

 

2.7 Experimental section 

General Considerations.  Tetrakis(THF)lithium dimesityl-1,8-

naphthalenediylborate was synthesized by following the published procedure 

(Hoefelmeyer, J. D.; Gabbaï, F. P. Organometallics 2002, 21, 982-985).  Dimesitylboron 

fluoride, methyl triflate, potassium fluoride and potassium cyanide were purchased from 

Aldrich, dimethyl disulfide from Alfa Aesar.  Solvents were dried by passing through an 

alumina column (hexanes, dichloromethane) or refluxing under N2 over Na/K (Et2O). 
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UV-vis spectra were recorded on an Ocean Optics USB4000 spectrometer with an 

Ocean Optics ISS light source.  Elemental analyses were performed by Atlantic 

Microlab (Norcross, GA).  pH Measurements were carried out with a Radiometer 

PHM290 pH meter equipped with a VWR SympHony electrode.  NMR spectra were 

recorded on Varian Unity Inova 400 FT NMR (399.59 MHz for 1H, 128.19 MHz for 11B, 

100.45 MHz for 13C) spectrometers at ambient temperature.  Chemical shifts are given 

in ppm, and are referenced against external BF3·Et2O (11B and 19F).   

 Crystallography.  The crystallographic measurements were performed using a 

Bruker APEX-II CCD area detector diffractometer (Mo-K radiation, = 0.71069 Å) for 

[30]OTf, 30-F, and 30-CN.  In each case, a specimen of suitable size and quality was 

selected and mounted onto a nylon loop.  The structures were solved by direct methods, 

which successfully located most of the non-hydrogen atoms.  Subsequent refinement on 

F2 using the SHELXTL/PC package (version 5.1) allowed location of the remaining non-

hydrogen atoms. 

 Synthesis of borane 30.  Dimethyl disulfide (0.247g, 2.62mmol) was added to a 

suspension of tetrakis(THF)lithium dimesityl-1,8-naphthalenediylborate in diethyl 

ether(40 mL) at -20 ºC.  After stirring overnight at room temperature, the reaction was 

quenched with water and extracted with diethyl ether (3 x 50 mL).  The organic phases 

were combined and dried over MgSO4 and filtered.  The solvent was removed under 

reduced pressure yielding light yellow solid.  The solid was washed with hexanes to 

afford compound 30 (0.73 g, yield 73%).  1H NMR (400 MHz, CDCl3) δ 1.81 (s, 3H), 

1.98 (s, 12H), 2.23 (s, 6H), 6.74 (br s, 4H, Mes-CH), 7.39-7.47 (m, 3H, nap-CH), 7.66 
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(dd, 1H, 3
JH-H = 9.4 Hz, 4

JH-H = 1.4 Hz, nap-CH), 7.74 (t, 1H, 3
JH-H = 6.2Hz), 7.83 (dd, 

1H, 3
JH-H = 10.8 Hz, 4

JH-H = 1.2 Hz, nap-CH).  13C NMR (100 MHz, CDCl3) δ 20.98, 

23.22, 24.59, 125.46, 126.95, 128.72, 129.12, 129.25, 131.45, 133.41, 136.66, 139.42, 

141.11.  11B NMR (128 MHz, CDCl3) δ + 77 (bs). 

Synthesis of [30]OTf.  Methyl triflate (0.23 mL, 2.05 mmol) was added to a 

solution of compound 30 (0.72 g, 1.71 mmol) in dichloromethane (25 mL) at room 

temperature.  The mixture was refluxed overnight and cooled to room temperature.  The 

solvent was removed in vacuo to yield a yellow solid as crude.  The solid was washed by 

hexanes to afford the pale product (0.8g, yield 88%).  Single crystals of [30]OTf were 

obtained by evaporation of mixture solution of dichloromethane and diethyl ether.  1H 

NMR (400 MHz, CDCl3) δ 0.73 (s, 3H), 1.84 (s, 3H), 2.16 (s, 3H), 2.19 (s, 3H), 2.34 (s, 

6H), 2.46 (s, 3H), 3.21 (s, 3H), 6.54 (s, 1H, Mes-CH), 6.84 (s, 1H, Mes-CH), 6.94 (s, 2H, 

Mes-CH), 7.58 (t, 1H, 3
JH-H = 10.0 Hz, nap-CH), 7.69 (d, 1H, 3

JH-H = 9.2 Hz, nap-CH), 

7.92 (t, 1H, 3JH-H = 9.2 Hz, nap-CH), 8.09 (d, 1H, 3
JH-H = 10.8 Hz, nap-CH), 8.27 (d, 1H, 

3
JH-H = 10.0 Hz, nap-CH), 8.73 (d, 1H, 3

JH-H = 9.6 Hz, nap-CH).  13C NMR (100 MHz, 

CDCl3) δ 21.33, 21.52, 22.54, 23.02, 23.93, 24.45, 27.02, 33.67, 123.35, 128.14, 128.42, 

128.63, 129.38, 130.98, 132.41, 133.46, 136.49, 137.60, 140.10, 141.15, 141.90, 144.32.  

11B NMR (128 MHz, CDCl3) δ + 67 (bs).  Anal. Calcd for C31H36BF3O4S2 

([30]OTf·H2O): C, 61.5; H, 6.00. Found: C, 61.03; H, 5.74. 
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Synthesis of 30-F.  30-OTf (1.00 g, 1.7 mmol) was added to 20 ml methanol 

solution of KF (0.70 g) which resulted in the formation of a colorless precipitate.  This 

precipitate was isolated by filtration, washed with methanol, and dried under vacuum to 

afford 30-F (0.45 g, yield 58%).  Single crystals of 30-F were obtained by evaporation of 

a solution of acetonitrile.  The purity of this compound was established by NMR 

spectroscopy (Figure 24).  1H NMR (400 MHz, CD3CN) δ 1.54 (bs, 3H, Mes-CH3), 1,83 

(bs, 6H, Mes-CH3), 2.02 (bs, 3H, Mes-CH3), 2.16 (bs, 6H, S-CH3), 2.41 (bs, 3H, Mes-

CH3), 3.09 (bs, 3H, Mes-CH3), 6.49 (bs, 3H, Mes-CH), 6.66 (s, 1H, Mes-CH), 7.24 (t, J 

= 7.6 Hz, 1H, nap-CH), 7.56-7.66 (m, 3H, nap-CH), 8.09 (d, J = 7.6 Hz, 1H, nap-CH), 

8.16 (d, J = 8.0 Hz, 1H, Nap-CH); 13C NMR (100 MHz, CD3CN) δ 20.21(s, 2C, Mes-

CH3), 23.79(s, 2C, S-CH3), 24.42(s, 1C, Mes-CH3), 26.84(s, 1C, Mes-CH3), 30.18(s, 1C, 

Mes-CH3), 31.35(s, 1C, Mes-CH3), 123.95, 125.40, 126.54, 128.05, 128.24, 128.75, 

129.18, 132.47, 135.11, 136.08, 136.23, 137.62, 137.70, 140.36, 142.26 (Ar-H); 11B 

NMR (128 MHz, CD3CN) δ 9.0 (bs). 19F NMR (375.9 MHz, CD3CN) δ -161 (bs). 
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Figure 24. 1H NMR can 13C NMR spectra of 30-F 

 

Synthesis of 30-CN.  [30]OTf (0.025g, 0.043mmol) was added to saturated KCN 

methanol solution.  After stirring 30 min, the pale solid was formed.  The solid was 

filtered, washed with methanol, and dried by vacuum to afford the product (0.015 mg, 

yield 75%).  Single crystals of 30-CN were obtained by evaporation of dichloromethane 

solution.  1H NMR (400 MHz, CDCl3) δ 1.69 (s, 3H), 1.79 (s, 3H), 1.88 (s, 3H), 2.21 (s, 

3H), 2.25 (s, 3H), 2.31 (s, 3H), 2.36 (s, 3H), 3.27 (s, 3H), 6.50 (s, 1H, Mes-CH), 6.70 (s, 
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1H, Mes-CH), 6.78 (s, 1H, Mes-CH), 6.83 (s, 1H, Mes-CH), 7.35 (t, 1H, 3
JH-H = 7.6 Hz, 

nap-CH), 7.55 (d, 1H, 3
JH-H = 7.6 Hz, nap-CH), 7.69 (d, 1H, 3

JH-H = 8.0 Hz, nap-CH), 

7.81 (d, 1H, 3
JH-H = 7.6 Hz, nap-CH), 7.92 (d, 1H, 3

JH-H = 6.4 Hz, nap-CH), 8.17 (d, 1H, 

3
JH-H = 7.6 Hz, nap-CH).  13C NMR (100 MHz, CDCl3) δ 20.74, 20.78, 24.93, 25.27, 

25.33, 27.55, 30.28, 31.44, 33.04, 123.46, 125.12, 126.71, 127.60, 127.66, 128.83, 

129.22, 129.60, 129.92, 133.22, 133.42, 135.90, 136.66, 137.60, 141.04, 141.60, 142.80, 

143.39.  11B NMR (128 MHz, CDCl3) δ -13.0 (s).  Anal. Calcd for C31.5H35BNClS (30-

CN·0.5CH2Cl2, the single crystal contains one CH2Cl2 molecule in the unit cell and 

partial solvent was probably lost in the sample for analysis): C, 74.78; H, 6.97. Found: C, 

73.57; H, 6.83. 

Fluoride titration in THF: H2O, 9/1, v/v.  A solution of [30]OTf (3ml, 4.36 × 

10-5 M in THF/H2O, 9:1, vol.) was placed in the cuvette and titrated with incremental 

amounts of fluoride anions by addition of a solution of TBAF in THF (9.5 × 10-3 M).  

The absorbance was monitored at  = 337 nm (ε = 16350 for [30]OTf, ε = 4900 for 30-

F).  The experimental data obtained was fitted to a 1:1 binding isotherm which indicated 

that the fluoride binding constant of [30]OTf is about 2.05(±0.5) × 105 M-1 (Table 4). 
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Table 4. Absorbance of a solution of [30]+ after successive additions of fluoride anions 

in THF/H2O, 9:1, vol. 

 
CFluoride Absexp Abscalc 

0 0.713 0.713 
1.5807E-05 0.560 0.556 
3.15615E-05 0.435 0.425 
4.72637E-05 0.341 0.336 
6.29139E-05 0.294 0.290 
7.85124E-05 0.269 0.266 
9.40594E-05 0.252 0.252 
0.000109555 0.243 0.244 

0.000125 0.237 0.238 
0.000140394 0.233 0.233 
0.000155738 0.229 0.230 

 

 

Cyanide titration in THF.  A solution of [30]OTf (3ml, 4.67 × 10-5 M in THF) 

was placed in the cuvette and titrated with incremental amounts of cyanide anions by 

addition of a solution of KCN in MeOH (7.5 × 10-3 M).  The absorbance was monitored 

at  = 337 nm (ε = 16350 for [30]OTf, ε = 5800 for 30-F).  The experimental data 

obtained was fitted to a 1:1 binding isotherm which indicated that the fluoride binding 

constant of [30]OTf exceeds 107 M-1 (Table 5). 
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Table 5. Absorbance of a solution of [30]+ after successive additions of cyanide anions 

in THF. 

Ccyanide Absexp Abscalc 

0 0.74 0.763 
1.24792E-05 0.645 0.630208 
2.49169E-05 0.531 0.49801 
3.73134E-05 0.37 0.367008 
4.96689E-05 0.275 0.273348 
6.19835E-05 0.258 0.269493 
7.42574E-05 0.258 0.268584 
8.64909E-05 0.272 0.26796 

 

Computational details: DFT calculations (full geometry optimization) were 

carried out with the Gaussian 03 program using the gradient-corrected Becke exchange 

functional (B3LYP) and the Lee-Yang-Parr correlation functional (Figure 25, Figure 26, 

Figure 27, Table 6, Table 7, Table 8).  Geometry optimization was carried out with the 

following mixed basis set: 6-31+g(d’) for the boron, nitrogen and fluorine atom, 6-

31+g(d) for the sulfur atom, 6-31g basis set was used for other remained carbon and 

hydrogen atoms.  Frequency calculations, which were carried out on the optimized 

structure of the compound, confirmed the absence of any imaginary frequencies.  The 

Natural Bond Orbital (NBO) analysis was carried out using the stand along PC version 

of GENNBO 5.0 program.   
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Figure 25. DFT optimized structure of [30]+ 
 

 

Figure 26. DFT optimized structure of 30-F 
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Table 6. Atom coordinates for the optimized structure of [30]+

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

C1  1.161769 -0.894605  0.835450 

C2  1.138901 -1.934945  1.773123 

H3  0.275232 -2.023975  2.422423 

C4  2.206488 -2.846634  1.953639 

H5  2.132468 -3.615742  2.714409 

C6  3.336137 -2.731875  1.179778 

H7  4.181740 -3.396889  1.322529 

C8  4.577237 -1.663885 -0.652513 

H9  5.393571 -2.349061 -0.447681 

C10  4.684407 -0.746722 -1.679130 

H11  5.583156 -0.684433 -2.280980 

C12  3.588877  0.088781 -1.967087 

H13  3.661737  0.764237 -2.813068 

C14  2.434454  0.028369 -1.194358 

C15  2.299581 -0.842564 -0.059599 

C16  3.411413 -1.745774  0.153694 

C17  0.351181  1.737449  1.196181 

C18 -0.581613  2.707799  0.692731 

C19 -0.301993  4.078236  0.791725 

H20 -1.022070  4.789961  0.396029 

C21  0.861782  4.561496  1.407090 

C22  1.764209  3.619491  1.917818 

H23  2.660692  3.970514  2.421793 

C24  1.536752  2.235785  1.831265 

C25 -1.897928  2.331492  0.032988 

H26 -2.632867  1.996131  0.772032 

H27 -1.801525  1.517711 -0.693655 

H28 -2.323920  3.196763 -0.484924 

C29  1.110620  6.044120  1.554399 

H30  0.698420  6.609148  0.711935 

H31  2.179235  6.268458  1.629286 

H32  0.633182  6.429575  2.465114 

C33  2.564854  1.341814  2.505159 

H34  3.214017  1.939664  3.151240 

H35  3.210402  0.825750  1.786289 

H36  2.101393  0.572452  3.129427 

C37 -1.409042 -0.367702  1.459890 

C38 -2.017558 -0.045427  2.712116 

C39 -3.272414 -0.577656  3.039615 

H40 -3.705473 -0.339523  4.007480 

C41 -3.982657 -1.408962  2.162955 

C42 -3.385662 -1.723975  0.935031 

H43 -3.915421 -2.371948  0.241425 

C44 -2.122933 -1.233754  0.576966 

C45 -1.338712  0.837290  3.745820 

H46 -1.883364  0.800791  4.693737 

H47 -1.299579  1.884787  3.427109 

H48 -0.307977  0.525537  3.951761 

C49 -5.352377 -1.935323  2.522715 

H50 -5.544981 -2.906299  2.055051 

H51 -6.140041 -1.248913  2.183475 

H52 -5.466681 -2.049904  3.605234 

C53 -1.594169 -1.606229 -0.796935 

H54 -0.560302 -1.964540 -0.759268 

H55 -1.629068 -0.749371 -1.486608 

H56 -2.203713 -2.397213 -1.243784 

S57  1.004309  0.975475 -1.737057 

B58  0.023211  0.187161  1.105243 

C59  1.614882  2.685035 -1.930322 

H60  0.793283  3.285398 -2.325903 

H61  1.884499  3.045757 -0.936892 

H62  2.472378  2.712895 -2.603758 

C63  0.806921  0.465990 -3.485796 

H64  0.534424 -0.591050 -3.487762 

H65 -0.010692  1.054985 -3.909310 

H66  1.723819  0.620134 -4.056285 
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Table 7. Atom coordinates for the optimized structure of 30-F 
 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

F1  0.210342 -0.111076 -0.117457 

B2  0.264314  0.050418  1.402763 

C3  1.530718 -0.952195  1.820898 

C4  1.397534 -1.660591  3.017511 

H5  0.541653 -1.439010  3.644332 

C6  2.268552 -2.690297  3.438616 

H7  2.094383 -3.185875  4.388858 

C8  3.292323 -3.095893  2.615590 

H9  3.939527 -3.925564  2.884078 

C10  4.549562 -2.899760  0.527087 

H11  5.127587 -3.760182  0.851741 

C12  4.828779 -2.290856 -0.676836 

H13  5.610505 -2.664428 -1.328695 

C14  4.103313 -1.138031 -1.036743 

H15  4.369696 -0.630139 -1.957742 

C16  3.088373 -0.651581 -0.223715 

C17  2.672577 -1.305777  0.995539 

H18  3.511122 -2.434511  1.377400 

C19  0.447194  1.689149  1.608227 

C20 -0.474161  2.553598  0.931062 

C21 -0.305165  3.948676  0.947398 

H22 -1.027798  4.568229  0.419090 

C23  0.746437  4.567173  1.634245 

C24  1.629587  3.734529  2.326694 

H25  2.442776  4.184487  2.893823 

C26  1.496570  2.331908  2.331368 

C27 -1.689370  2.032092  0.179999 

H28 -2.308772  1.394750  0.818532 

H29 -1.409410  1.419567 -0.681705 

H30 -2.306511  2.866372 -0.171792 

C31  0.886742  6.074023  1.668860 

H32  0.595079  6.527679  0.714155 

H33  1.917482  6.376135  1.886545 

H34  0.247679  6.519287  2.444215 

C35  2.526704  1.583335  3.165844 

H36  3.139789  2.294384  3.730811 

H37  3.206310  0.969748  2.562726 

H38  2.062135  0.902718  3.885072 

C39 -1.136828 -0.589424  2.012728 

C40 -1.780466 -0.095365  3.188970 

C41 -2.978678 -0.667898  3.654229 

H42 -3.436476 -0.261051  4.553992 

C43 -3.594030 -1.741550  3.007460 

C44 -2.945508 -2.264682  1.884584 

H45 -3.375731 -3.128432  1.380633 

C46 -1.746581 -1.725006  1.389478 

C47 -1.232788  1.048262  4.029840 

H48 -1.744398  1.077804  4.998680 

H49 -1.374585  2.021515  3.548536 

H50 -0.161399  0.949748  4.226504 

C51 -4.904641 -2.315170  3.500425 

H52 -4.956872 -3.397814  3.335592 

H53 -5.761968 -1.867339  2.977924 

H54 -5.044837 -2.129235  4.571300 

C55 -1.148087 -2.440815  0.188124 

H56 -0.071078 -2.596046  0.297714 

H57 -1.289674 -1.873883 -0.738072 

H58 -1.622070 -3.421084  0.061621 

S59  2.378630  0.948285 -0.686030 

C60  3.872201  1.955007 -1.021031 

H61  3.522040  2.944494 -1.327272 

H62  4.416071  2.047455 -0.079139 

H63  4.518625  1.526402 -1.787999 

C64  1.766865  0.704766 -2.386869 

H65  2.540528  0.287190 -3.033343 

H66  0.914339  0.032753 -2.300748 

H67  1.435970  1.678583 -2.756662 
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Figure 27. DFT optimized structure of 30-CN.
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Table 8. Atom coordinates for the optimized structure of 30-CN 
 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

B1 -0.209269 -0.104473  1.508291 

C2  1.109748 -1.069787  1.936514 

C3  0.930637 -1.810077  3.109024 

H4  0.024913 -1.638994  3.677194 

C5  1.816974 -2.801175  3.583925 

H6  1.590945 -3.325018  4.507527 

C7  2.927729 -3.124816  2.845686 

H8  3.601234 -3.919703  3.151520 

C9  4.379743 -2.780530  0.924418 

H10  4.967205 -3.615079  1.295708 

C11  4.770383 -2.107285 -0.210688 

H12  5.654502 -2.399474 -0.765769 

C13  4.014613 -0.994935 -0.622203 

H14  4.365427 -0.431753 -1.479706 

C15  2.862526 -0.612329  0.055055 

C16  2.346791 -1.325984  1.206878 

C17  3.218443 -2.410009  1.652676 

C18  0.016669  1.549602  1.653848 

C19 -0.868625  2.437053  0.957923 

C20 -0.643491  3.824667  0.942185 

H21 -1.342302  4.458181  0.398770 

C22  0.425438  4.419091  1.621365 

C23  1.255932  3.569948  2.357649 

H24  2.061778  4.004989  2.946691 

C25  1.070093  2.173238  2.396477 

C26 -2.115948  1.964724  0.227121 

H27 -2.589988  1.119201  0.730196 

H28 -1.901500  1.645013 -0.798898 

H29 -2.846453  2.779834  0.173901 

C30  0.625326  5.919572  1.620103 

H31  0.387534  6.356685  0.643123 

H32  1.658311  6.187298  1.869322 

H33 -0.024142  6.410922  2.357790 

C34  2.021006  1.427600  3.325224 

H35  2.586873  2.145722  3.929195 

H36  2.746184  0.795540  2.800903 

H37  1.488226  0.766378  4.013746 

C38 -1.596663 -0.693555  2.251121 

C39 -2.258364 -0.036005  3.338635 

C40 -3.459879 -0.541920  3.868680 

H41 -3.928505 -0.006911  4.692314 

C42 -4.062483 -1.706232  3.388918 

C43 -3.387489 -2.396230  2.380259 

H44 -3.797623 -3.337309  2.018539 

C45 -2.185960 -1.929113  1.820078 

C46 -1.730565  1.208366  4.036132 

H47 -2.262893  1.353617  4.982890 

H48 -1.863915  2.115629  3.439014 

H49 -0.665157  1.136195  4.267195 

C50 -5.379382 -2.202984  3.943309 

H51 -5.450893 -3.295306  3.888053 

H52 -6.230721 -1.793930  3.381013 

H53 -5.511398 -1.907270  4.990406 

C54 -1.571533 -2.848020  0.774201 

H55 -1.854692 -2.564199 -0.245154 

H56 -1.917884 -3.874843  0.938864 

H57 -0.480380 -2.858261  0.810299 

S58  2.118577  0.942605 -0.510084 

C59  3.480135  2.138794 -0.260087 

C60  2.109874  0.834293 -2.332947 

H61  1.743313  1.798567 -2.694834 

H62  3.097581  0.622578 -2.743202 

H63  1.385617  0.057643 -2.582735 

H64  4.407549  1.796938 -0.722169 

H65  3.157460  3.091449 -0.687172 

H66  3.604791  2.259471  0.816041 

C67 -0.374299 -0.371059 -0.084044 

N68 -0.423592 -0.558614 -1.236253 
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CHAPTER III 

THE APPLICATION OF A SULFONIUM BORANE IN FLUORIDE TRANSFER 

PROCESS* 

 

3.1 Introduction 

 The incorporation of fluorine in organic molecules and materials is gaining 

momentum because of the beneficial properties imparted by this small and highly 

electronegative halogen.  Such properties may include: increased stability in the case of 

organic materials as well as increased metabolic stability, lipophilicity; and 

bioavailability in the case of drugs.63-67  Fluorination chemistry is also becoming 

important in the domain of [18F]-positron emission tomography (PET), a technique that 

necessitates the radiolabeling of organic molecules with [18F]-fluorine atoms.68-71 

 For the reasons enumerated in the preceding paragraph, the field of fluorination 

chemistry is experiencing a surge of interest.  While electrophilic fluorination strategies 

remain preponderant,72-80 there is a growing need for the development of nucleophilic 

pathways.  These research needs have fueled a series of recent efforts that have already 

afforded an array of nucleophilic fluorinating agents reviewed in the following 

sections.81-95 

 
 
 
 
____________ 
*Reprinted in part with permission from, “Nucleophilic Fluorination Reactions Starting 

from Aqueous Fluoride Ion Solutions”; Zhao, H.; Gabbaï, F. P.Org. Lett. 2011, 1444.  
Copyright 2011 American Chemical Society. 
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3.2 Review of nucleophilic fluorinating reagents 

The simplest fluoride sources are alkali metal fluorides, such as KF.  However, 

the applications of these inorganic salts in fluorination chemistry are limited because of 

their poor solubility in aprotic solvents.  ‘Calcine-dried’ or ‘spray-dried’ KF can act as a 

fluorinating reagents in nucleophilic substitution reactions carried out in organic 

solvents.96  However, these reactions occur slowly and necessitate harsh conditions due 

to the poor solubility of KF.  In 1973, Liotta reported that 18-crown-6 can effectively 

increase the solubility of KF in dry CH3CN and benzene (Table 9), thus improving its 

reactivity as a fluorinating agent.97  With this formulation, KF acts as a nucleophile 

which reacts with benzyl bromide (83 ºC, 11.5 h), 2,4-dinitrochlorobenzene (25 ºC, 5 h) 

and acetyl chloride (25 ºC, 5.5 h) in CH3CN leading to the formation of the 

corresponding fluoride compounds, namely: benzyl fluoride, 2,4-dinitrofluorobenzene 

and acetyl fluoride.  However, in the case of 1-bromooctane, the elimination product 1-

octene is also formed with 8% in CH3CN at 83 ºC.  When bromocyclohexane is used in 

CH3CN at 83 ºC , only elimination occurs leading to the formation of cyclohexene.  It is 

important to note that 18-crown-6 serves as a phase transfer catalyst that promotes the 

dissolution of solid KF.  These early results demonstrated that the solubilized fluoride 

ions are nucleophilic as well as basic.   
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Table 9. Solubility of KF in crown ether solution at 25 ºC 

Solvent [18-crown-6], M [KF], M 

Benzene 
1.01 5.2 × 10-2 

0.34 1.4 × 10-2 

Acetonitrile 0.16 3.5 × 10-3 

 

 
When bis-terminal hydroxyl polyethers, such as triethylene glycol and 

tetraethylene glycol, are used as solvents in fluorination reactions with KF as a fluoride 

source, the polyethers also act as multifunctional promoters which help solubilize KF.98  

The reaction of 2-(3-methanesulfonyloxypropoxy)naphthalene with KF was performed 

under different conditions in order to investigate the role played by bis-terminal 

hydroxyl polyethers (Figure 28, Table 10).  Comparison of entries 1-6 clearly shows that 

the use of triethylene glycol and tetraethylene glycol as solvents efficiently increases the 

reaction rate as well as the yield.  The results of entries 7-10 confirm the importance of 

the bis-terminal hydroxyl functionality present in the solvent molecule. 

 

 

Figure 28. Nucleophilic fluorination reaction with KF in various solvents. 
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Table 10. Nucleophilic fluorination reaction with KF under different conditions. 

Entry Solvent Time/h Yield[%] 

1 CH3CN 24 0 

2 18-crown-6 in CH3CN 24 40 

3 tBuOH 1.5 0 

4 Tert-amyl alcohol 1.5 0 

5 Triethylene glycol 1.5 93 

6 Tetraethylene glycol 1.5 92 

7 Triethylene glycol dimethyl ether 1.5 0 

8 Triethylene glycohol monoethyl ether 1.5 42 

9 Triethylene glycohol 1.5 >99 

10 Triethylene glycol dimethyl ether/tBuOH (1:1, v/v) 1.5 0 

 

 
In turn, there are several distinct characteristics of such polyethers as solvents: 1) 

the polyether can enhance the solubility and nucleophilicity of fluoride ion by capturing 

the potassium ion, a role similar to that played by 18-crown-6; 2) the basicity of the 

‘naked’ fluoride is reduced by hydrogen bonding with one of the two OH groups; 3) the 

other OH group is able to activate the electrophilic substrates and thus stabilize the 

transition state, again via hydrogen bonding; 4) the negative result of entry 10 also 

shows that the presence of two hydroxyl groups in one molecule is required.  This last 
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peculiarity supports the multi-functional role played by the polyethers as solvents 

(Figure 29).   

 

 

Figure 29. Bis-terminal hydroxyl polyether as multifunctional promoters in fluorination 

reactions: the polyether acts as the K+ chelator and two OH groups reduce the basicity of 

fluoride anion (F-) while activating the electrophile (E).  

 

Tetraorganofluorophosphoranes R4PF, such as Me4PF 31 and MenBu3PF 32, are 

also potential fluorinating agents for organic substrates.89, 99-103  These species may exists 

in an ionic phosphonium fluoride form ([R4P]+F-) or as trigonal bipyramidal 

fluorophosphorane (Figure 30).  The structure of 31 has been investigated carefully in 

the gas phase, as well as in solution and in the solid state.  In the gas phase, electron 

diffraction and vibrational spectra show that 31 is a fluorophosphorane with the fluorine 

atom in an axial position.  The situation in solutions is more complicated.  In protic and 

high-polar solvents, such as methanol, ethanol, water and acetonitrile, 31 possesses an 

ionic structure as confirmed by 13C, 19F and 31P NMR spectra, while it exists in a 

molecular form when in aprotic solvents of low polarity, such as dimethyl ether, diethyl 

ether, THF and benzene.  The single crystal structure of 31 shows an ionic structure in 
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the solid state.  The fact the 31 is ionic in organic solvents indicates the possibility of 31 

as a ‘naked’ fluoride source.   

 

 

Figure 30. The two structures of R4PF, ionic and molecular form. 

 

The preparation of 32 can be achieved by the reaction of 33 with HF (Figure 31).  

Compound 32 is soluble in organic solvents where it behaves as a potent fluorinating 

reagent.  Indeed, reactivity studies show that 32 can fluorinate benzyl chloride leading to 

the formation of benzyl fluoride in a 80% yield when the reaction is carried out in 

pentane.  However, the fluoride ion of 32 is also highly basic as confirmed by the high 

production of nC10H21-CH=CH2 (50%) when nC12H25Br is used as a substrate. 

  

 

Figure 31. The synthesis of 32. 

  

The first example of naked fluoride salts with tetraorganoammonium as 

countercation is ‘anhydrous’ tetrabutylammonium fluoride (TBAF) 34 containing 0.1 - 

0.3 molar equiv of water, synthesized from TBAF•3H2O under high vacuum at 40 ºC.104  

Compound 34 can react with organohalides and tosylates to yield the corresponding 
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fluoro-organic products at lower temperature and shorter time when compared to the use 

of KF with 18-crown-6 ether.  These results indicate the higher nucleophilicity of 34.  At 

the same time, the fluoride ion in 34 is also basic as indicated by the presence of the 

elimination product 1-octene (12%) when 34 reacts with 1-bromooctane (Figure 32).  

The hydrolysis reaction also occurs to produce the corresponding alcohol as one of the 

side products during the reaction with organohalides due to the presence of 0.1 - 0.3 

molar equiv. of water left in 34.  Moreover, 34 would decompose at 77 ºC by Hofmann 

degradation.   

 

 

Figure 32. The reaction of 34 with 1-bromooctane at 25 ºC and its decomposition at 77 

ºC. 

 

The first stable naked fluoride salt with tetraorganoammonium as counteraction 

is Me4NF, 35, reported by K. O. Christie in 1990 (Figure 33).105  Since the methyl group 

cannot undergo Hofmann decomposition, 35 is stable up to about 150 ºC under vacuum 

during the drying process.  However, 35 is highly basic as indicated by its capacity to 

react with CH3CN to form the dimer.  The solubility of 35 is low because of the high 

lattice energy.  The most common application of 35 is for the synthesis inorganic fluoro-
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anions, such as XeF5
-, TeF7

-, ClF6O-, SOF3
-, and IF6

-, by the fluorination of the neural 

compounds, XeF4, TeF6, ClF5O, SOF2, and IF5O. 106-113   

 

 

Figure 33. The synthesis of 35 from Me4NOH and HF in water. 

 

The synthesis of ‘truly’ anhydrous TBAF, 36, was achieved through a 

nucleophilic aromatic substitution (SNAr) process at low temperature by DiMagno’s 

group in 2005 (Figure 34 and Figure 35)87, 114-115.  This approach is based on the 

nucleophilic displacement of a fluoride ion from hexafluorobenzene by a cyanide anion.  

This reaction can be carried out in THF, CH3CN or DMSO at or below room 

temperature.  The freshly made anhydrous TBAF is stable for hours in CH3CN, and for 

more than 24 hours in THF and DMSO.  The reactions of 36 with organic substrates, 

such benzyl halides, afford higher yields of the corresponding fluorides.  These reactions 

are characterized by short reaction time and require moderate or even on occasion low 

temperature.  Altogether, the observed reactivity of 36 indicates that it is a more 

nucleophilic fluorination reagent than 35 (Table 11).  Due to the complete absence of 

water in 36, the hydrolysis side product alcohol is not formed during the reaction as 

when 35 is the fluoride source.  36 can also be used as a fluorinating reagent for 

aromatic fluorination reaction.  Entry 4, 5 and 6 have shown that electron-withdrawing 

substituents are necessary in such reactions, and the reactions with aromatic compounds 
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bearing more electron-withdrawing substituents proceed faster.  The fluorination process 

can tolerate various functional groups, such as ketones, ethers, esters and aldehydes.   

 

 

Figure 34. The synthesis of 36 from C6F6 and TBACN. 

 

The same group has also designed an elegant “fluoride relay” concept in which 

fluoride ions from KF are first incorporated onto an electron deficient benzene derivative 

before being nucleophilically displaced in dry organic solvent to generate 36 (Figure 

35).87  This general approach affords fluoride ions that, as confirmed by 19F NMR 

spectroscopy, have a “naked” character.  In line with this observation, the in situ 

generated TBAF* is a very potent nucleophilic fluorinating agent that reacts with a 

variety of substrates including aromatic ones (Table 11).  Despite the elegance of this 

approach, its compatibility with wet fluoride sources (rather than KF in DMF) has not 

yet been demonstrated.  For these reasons, the discovery of reagents that could complex 

hydrated fluoride ions and deliver these ions to organic molecules should open new 

routes in fluorination and radiofluorination chemistry.  Stimulated by this possibility, we 

propose to establish whether some of the cationic Lewis acids developed in this research 

could also be used for the capture and delivery of fluoride ions.  
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Figure 35. Fluoride relay from KF to anhydrous TBAF 

 

Table 11. Nucleophilic reactions of 36 with various organic substrates. 

Entry Substrate Conditions Product Yield(%) 

1 PhCH2Br 
CD3CN, -35 ºC, < 5 min, 

1.3-1.5 eq. TBAF 
PhCH2F 100 

2 PhCH2Cl 
THF, RT, < 2 min,  

1.5 eq. TBAF 
PhCH2F 100 

3 CH3(CH2)7Br THF, RT, < 5 min, TBAF CH3(CH2)7F 40-50 

4 

 

CD3CN, RT, < 2 min,  

1 eq. TBAF 
 

>95 

5 
 

DMSO, RT, 14 days,  

4 eq. TBAF   
80 

6 
 

DMSO, RT, 1 h,  

2.5 eq. TBAF  
  >95 
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3.3 Demethylation of the fluoride adduct of the sulfonium borane 

 As shown in Chapter II, the sulfonium borane [30]+ can capture fluoride ions in 

methanol (Figure 36).  Formation of 30-F does not require the use of dry methanol.  

Instead, 30-F also precipitates from concentrated MeOH/H2O solutions containing large 

fractions of water.  For example, sonicating a mixture of [30]OTf (21 mg) and KF (45 

mg) in 0.5 ml of a MeOH/H2O (3:2, v/v) solution results in the precipitation of 30-F (12 

mg, 75% yield).  The ability of [30]+ to complex F- in wet methanol arises from 

favorable Coulombic effects which are complemented by the formation of a B-F→S 

chelate motif.  Realizing that the absence of such interactions would greatly increase the 

liability of the boron-bound fluoride anion, we sought to determine if demethylation of 

the sulfonium moiety could be used to trigger the release of the fluoride anion. 

With this in mind, we tested the reactivity of 30-F toward soft nucleophiles such 

as tetrabutylammonium iodide (TBAI).  When TBAI was mixed with 30-F in dry 

CD3CN or THF, the demethylation of the sulfonium ion at ambient temperature occurred 

slowly with the formation of a new anionic fluoride adduct, namely 30-F-.  This 

demethylation produces MeI which quickly reacts with 30-F- to form MeF, as indicated 

by the appearance of a quartet at -272 ppm in the 19F NMR spectrum of the reaction 
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Figure 36. Reactions sequence showing the use of [30]+ for the capture of fluoride ions 

and their triggered release. (a Edel corresponds to the energy provided by the lp(S)→p(B) 

and lp(F)→(S-C) interactions to the stability of 30 or 30-F, respectively.) 
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mixture.  Formation of MeF, which supports the notion that 30-F- is an active 

fluorinating agent, indicates that iodide salts cannot be used in this approach.  When 

TBAN3 was used as a nucleophile instead of TBAI, the demethylation of the sulfonium 

ion also occurred with the formation of the anionic fluoride adduct 30-F-.  However, at 

elevated temperature (ca. 70 ºC ) MeF was also formed indicated by a quartet at -272 

ppm in the 19F NMR spectrum.   

Next, we have used TBACN as a nucleophile towards the demethylation 

reaction.  Mixing TBACN and 30-F at ambient temperature for 6 h did not result in the 

demethylation indicated by the absence of any change in the 1H NMR and 19F NMR 

spectra.  At 70 ºC , the demethylation of the sulfonium ion proceeded slowly and 

completed after 2.5 h with the formation of the major product 30-F-.  The product 30-F- 

can be stable at ambient temperature for at least 2 days.  Even though the use of TBACN 

can help to limit the formation of MeF, the demethylation reaction requires elevated 

temperature and longer reaction time.   
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Figure 37. Changes of 1H NMR spectra upon mixing 30-F with TBASPh in d3-MeCN. 
 

 

Figure 38. 19F NMR spectra of 30-F- in d3-MeCN before and after addition of water. 
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For this reason, we turned our attention to the phenylthiolate anion (pKa = 10.3).  

Mixing an equimolar amount of tetrabutylammonium phenylthiolate (TBASPh) and 30-

F in dry CD3CN at ambient temperature resulted, after 30 minutes, in elimination of 

PhSMe and formation of 30-F- (Figure 37).  Formation of the latter was accompanied by 

the appearance of ca. 5% of neutral borane 30, suggesting that partial F- release was 

possibly caused by traces of water (Figure 38).  The anionic fluoride adduct 30-F- has 

been characterized by multinuclear NMR spectroscopy.  The 11B NMR resonance at 8.0 

ppm is very close to that of 30-F, consistent with the presence of a typical 

triarylfluoroborate anion.  The 19F NMR signal at -168.9 ppm is shifted upfield 

compared to the compound 30-F but remains within the range of triarylfluoroborate 

anions.25-26  Solutions of this anion are stable for up to 3 days in CH3CN or THF at 

ambient temperature.  Addition of ca. 2 equivalents of water to solutions of 30-F- in 

CH3CN results in the formation of the neutral borane 30 and hydrated fluoride ions as 

indicated by the appearance of a 19F NMR signal at -121.9 ppm (Figure 38).  By 

contrast, solutions of 30-F in CH3CN are perfectly stable when the same amount of 

water is added.  This contrasting behavior can be assigned to: i) the absence of 

stabilizing Coulombic effects in 30-F-; ii) the increased basicity of the sulfur atom in 30-

F- which competes with F- for the Lewis acidic boron center.  Thermodynamically, 

fluoride release from 30-F- is further promoted by formation of a relatively strong 

lp(S)→p(B) donor-acceptor interaction in 30 (Edel = 13.1 kcal/mol) (Figure 39, Table 

12).59  The precipitation of the neutral borane from CH3CN due to its poor solubility also 
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drives the release of F- ions.  These results suggest that 30-F- may be sufficiently labile 

to act as a potent nucleophilic F- source. 

 

 

Figure 39.  The optimized structure of borane 30 (hydrogen atoms omitted for clarity); 

Right: NBO contour plot showing the two lp(S)→p(B) donor-acceptor interactions in 30. 
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Table 12. Atom coordinates for the optimized structure of 30.

 
Center 

Number 
Coordinates(Angstroms) 

X Y Z 

S1 -1.535066  0.114487  2.088939 

C2 -1.779487 -0.988091  3.544614 

C3 -2.549280 -0.753046  0.880043 

C4 -0.588595 -1.200698 -0.680511 

C5  0.035846  1.477947 -0.259738 

C6 -1.970266 -1.366018 -0.283552 

C7  4.282373 -0.379272 -0.831505 

H8  5.021934  0.048097 -1.504816 

C9  1.948128 -0.507851 -0.079918 

C10 -0.116600 -1.996841 -1.729095 

H11  0.929451 -1.924232 -2.008895 

C12  3.704916 -1.894252  0.931271 

H13  3.989400 -2.653608  1.656263 

C14  4.687344 -1.339476  0.103172 

C15 -0.953663 -2.859915 -2.477050 

H16 -0.535645 -3.438585 -3.294810 

C17 -1.119897  3.413443 -1.243314 

H18 -1.764503  3.814186 -2.022139 

C19 -0.825085  2.040393 -1.254329 

B20  0.427091 -0.063512 -0.235955 

C21  2.949963  0.049908 -0.931627 

C22  0.586840  2.378616  0.710207 

C23 -4.213746 -2.329910 -0.755685 

H24 -4.837288 -2.966329 -1.377004 

C25  0.244023  3.737206  0.695550 

H26  0.663130  4.390613  1.457208 

C27 -0.612397  4.279336 -0.270415 

C28 -2.833755 -2.210856 -1.076093 

C29  2.358443 -1.509304  0.849378 

C30 -3.909150 -0.874147  1.142318 

H31 -4.330077 -0.369339  2.005612 

C32 -2.293211 -2.939912 -2.174945 

H33 -2.959140 -3.573124 -2.754436 

C34  2.638536  1.096037 -1.989581 

H35  3.494394  1.221575 -2.661007 

H36  2.416563  2.072005 -1.544682 

H37  1.773887  0.826122 -2.605797 

C38  1.386357 -2.164746  1.810364 

H39  0.489339 -2.528104  1.300221 

H40  1.050231 -1.460730  2.581500 

H41  1.858609 -3.012552  2.317470 

C42  1.546660  1.930384  1.797309 

H43  1.664437  2.719848  2.547077 

H44  2.538986  1.702316  1.393423 

H45  1.197247  1.029903  2.311025 

C46 -1.424690  1.238470 -2.397562 

H47 -1.819833  1.915415 -3.162019 

H48 -2.251615  0.601682 -2.065825 

H49 -0.694440  0.583001 -2.880963 

C50 -4.750511 -1.654877  0.319862 

H51 -5.807658 -1.732373  0.551850 

C52  6.137348 -1.752882  0.222952 

H53  6.231657 -2.795733  0.545224 

H54  6.667858 -1.135652  0.961375 

H55  6.665323 -1.643140 -0.730522 

C56 -0.985686  5.744401 -0.251160 

H57 -0.163621  6.362759  0.126172 

H58 -1.852233  5.924158  0.400214 

H59 -1.250457  6.103652 -1.251401 

H60 -2.830913 -1.029222  3.838389 

H61 -1.414567 -1.997122  3.337455 

H62 -1.199392 -0.553984  4.364834 
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3.4 Nucleophilic reactions using 30-F-  

3.4.1 TBACN as a nucleophile for demethylation 

 With freshly prepared solutions of 30-F- from the reaction of 30-F and TBACN 

in hand, we have decided to investigate the fluorination ability of 30-F- with different 

substrates in CD3CN.  We first studied the reaction of 30-F- with p-tolylsulfonyl chloride 

(Figure 40), which as indicated by 1H NMR and 19F NMR spectroscopy, proceeded 

smoothly.  The 1H NMR spectrum shows the formation of the neutral borane 30 and a 

19F NMR resonance at 62 ppm, corresponding to p-tolylsulfonyl fluoride.  Similarly, the 

addition of benzoyl chloride also results in formation of 30 and benzoyl fluoride which 

displays a resonance at 13.4 ppm in the 19F NMR spectrum.  For substrates such as 

benzylchloride and 1-bromooctane, the fluorination reactions only occur upon elevation 

of the temperature to about 70 ºC .  When benzylchloride is added, the major product is 

benzylfluoride with the major peak at -209 ppm in 19F NMR spectrum.  In the case of 1-

bromooctane, formation of 1-octene is observed indicating that elimination occurs.  This 

side reaction is non-negligible as the 1-fluoroctane/1-octene ratio is close to 1.   

 

 

Figure 40. Reaction of 30-F- with p-tolylsulfonyl chloride in CD3CN. 



 

 

70 

3.4.2 TBASPh as a nucleophile for demethylation 

Addition of substrates such as p-tolylsulfonyl chloride or benzoyl chloride to 

solutions of 30-F- obtained from 30-F and TBASPh (Table 13, entries 1 and 2) results in 

the rapid and high yield fluorination of p-tolylsulfonyl fluoride and benzoyl chloride at 

room temperature.  Using the same protocol, fluorination of activated aromatic 

substrates such as 1-chloro-2-cyano-3-nitrobenzene can also be implemented, albeit with 

longer reaction times (entry 3).  For substrates such as benzylchloride and 1-

bromooctane (entries 4 and 5), fluorination occurs upon elevation of the temperature to 

70 ºC.  Formation of 1-fluoroctane is accompanied by elimination which produces 1-

octene in 53% yield.  The 1-fluoroctane/1-octene ratio observed with 30-F- in MeCN at 

70 ºC  is comparable to that observed with TBAF* (~40%/60%) in THF at room 

temperature89 and distinctly lower than that observed for TBAT (~85%/15%) in MeCN 

upon reflux for 24 h.92  These comparisons suggest that the TBA salt of 30-F- dissociates 

upon elevation of the temperature to produce 30 and TBAF*.  While the synthesis of the 

latter reagent necessitates the use of dry conditions, our approach can be implemented in 

two simple steps starting form aqueous fluoride solutions.   
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Table 13. Fluorination reaction results. (a. All yields are calculated from integration of 

the 1H NMR spectra.) 

entry substrate conditions product yield 
(%)a 

1 
 

30-F- (1.4 equiv)  
25 ºC 

CD3CN, 5 min  
>95 

2 
 

30-F- (1.4 equiv) 
 25 ºC 

CD3CN, 5 min  
>95 

3 
 

30-F- (1.2 equiv) 
 25 ºC 

CD3CN, 2 h  
>95 

4  

30-F- (2 equiv)  
70 ºC 

CD3CN, 1 h  80 

5  
30-F- (2 equiv)  

70 ºC 
CD3CN, 1 h 

 45 

 

 
3.5 Conclusion 

 The results presented in this paragraph show that the cationic borane [30]OTf can 

capture the fluoride ions in wet protic solvents to form the anhydrous zwitterionic 

fluoroborate 30-F. The latter is stabilized by strong Coulombic effects as well as by the 

formation of a B-F→S bridge.  The stabilizing effects can be removed by demethylation 

of the sulfonium moiety.  This demethylation reaction affords the fluoroborate 30-F- 

which acts as a potent reagent for nucleophilic fluorination reactions in organic solvents.  

The reactivity of 30-F- is reminiscent of that of anhydrous TBAF (36).  While 

preparation of the latter necessitates the use of dry conditions, the new approach 
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described in this chapter can be implemented in two simple steps starting from aqueous 

fluoride solutions.  We are currently testing the use of [30]
+- in [

18
F]-radiofluorination 

reactions. 

 

3.6 Experimental section 

General Considerations.  30-OTf was prepared as described in the preceding 

chapter.  Acetonitrile was dried by refluxing over phosphorus pentoxide, followed by 

distillation under N2.  Methanol (ACS reagent grade) was used without purification or 

drying.  NMR spectra were recorded on a Varian Unity Inova 400 FT NMR (399.59 

MHz for 1H, 375.96 MHz for 19F, 128.19 MHz for 11B, 100.45 MHz for 13C) 

spectrometers at ambient temperature.  

Formation of 30-F in aqueous methanolic solutions.  KF (45 mg) was added to 

a 0.5 ml MeOH/H2O (3:2, v/v) solution of 30-OTf (21 mg).  Sonication of the mixture 

for 5 minutes resulted in the precipitation of 30-F which was recovered by filtration in a 

75% yield (12 mg). 

Fluorination reactions from mixing 30-F and TBACN.  In an NMR tube, 

TBACN (2.7 mg, 7.7 mol) was added to a CD3CN solution of 30-F (3.5 mg, 7.7 mol).  

After 20 minutes, the substrate was added to the solution.  The reaction was monitored 

by 1H NMR and 19F NMR spectroscopy. 

Fluorination reactions from mixing 30-F and TBASPh.  In an NMR tube, 

TBASPh (2.7 mg, 7.7 mol) was added to a CD3CN solution of 30-F (3.5 mg, 7.7 mol).  

After 20 minutes, the substrate was added to the solution.  The reaction, which was 
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allowed proceed under the conditions listed in Table 13 of the main text, was monitored 

by 1H NMR and 19F NMR spectroscopy.  The yields were calculated by integration of 

the relevant 1H NMR spectra (Figure 41). 

 

 

 

Figure 41. 1H NMR spectra of reactions of entry 3, 4 and 5. 
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Computational details: DFT calculations (full geometry optimization) were 

carried out with the Gaussian 03116 program using the B3LYP functional.  Geometry 

optimization was carried out with the following mixed basis set: B, F: 6-31+g(d’); S: 6-

31+g(d); C, H: 6-31g.  Frequency calculations, which were carried out on the optimized 

structure of the compound, confirmed the absence of any imaginary frequencies.  The 

Natural Bond Orbital (NBO) analyses117 were carried out using the stand along PC 

version of GENNBO 5.0 program.   
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CHAPTER IV 

A BIDENTATE LEWIS ACID WITH A TELLURONIUM ION AS AN ANION-

BINDING SITE* 

 

4.1 Introduction 

 The chemistry of polyfunctional Lewis acids constitutes a rapidly expanding 

field with important applications in anion sensing.  Most of the polyfunctional Lewis 

acids investigated to date contain group 12,118-121 1310, 20, 23, 25, 122-124 and 14125-128 

elements as Lewis acidic binding sites incorporated in both homonuclear10, 20, 23, 25, 118-128 

and heteronuclear57, 129-131 motifs.26  Advances in the chemistry of boron-based 

heteronuclear bidentate Lewis acids have shown that anion binding at the boron center 

can be assisted by the participation of a secondary Lewis acidic site.57, 129-131  Unlike 

most bidentate diboranes, some of these heteronuclear Lewis acids display an increased 

stability to protic media as well as uncompromised anion affinities.57, 131  In a 

fundamental effort aimed at broadening the type of Lewis acidic moiety that could be 

employed in such systems, we have recently become interested in the use of onium ions 

as secondary Lewis acidic sites.  Initial results obtained in pursuit of this idea have 

revealed that the latent Lewis acidity of phosphonium or sulfonium ions can be exploited  

 
 
 
____________ 
*
Reprinted in part permission from, “A bidentate Lewis acid with a telluronium ion as an 

anion-binding site”; Zhao, H.; Gabbaï, F. P., Nat. Chem. 2010, 2, 984.  Copyright 2010 
by the Nature Publishing Group. 
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for the recognition of potentially toxic anions such as fluoride and cyanide in protic 

environments.49, 61  These favourable effects can be illustrated by the anion affinity of 

the boron-based Lewis acids [28]+ which is enhanced by electron donation from a filled 

orbital of the anion (A-) into a low lying E-C *-orbital of the onium center in the 

corresponding complexes (Figure 42). 

 

 

Figure 42. Anion complexation by chelating cationic boranes and Lewis acidic 

properties of group 16 and 17 compounds. a, Anion chelation by ortho-phenylene-

phosphonium and -sulfonium boranes.  b, Donor-acceptor interactions in halogen-

bonded and chalcogen-bonded complexes. 

 

 These A-
→E+ donor-acceptor interactions are reminiscent of those involved in 

halogen-bonded (Type A)132 or chalcogen-bonded (Type B)133-138 complexes. Although 
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electron donation from the filled-orbital of the donor into the *-orbital of the X-C or 

Ch-C bond (X = halogen, Ch = chalcogen) plays a role in the formation of such 

complexes, electrostatic effects arising from the polarisability and relative 

electropositivity of the X or Ch atom may be the most important factor.75, 132, 136  In 

agreement with this view, the strength of the donor-acceptor interactions observed in 

these complexes has been shown to increase in the order Cl < Br < I for complexes of 

Type A132 and S < Se < Te for complexes of Type B.136  Realizing that similar effects 

may control the strength of A-
→E+ donor-acceptor interactions, we are now considering 

the use of heavier onium ions as Lewis acidic sites.  In an initial exploration of this idea, 

we have decided to synthesize and investigate a bidentate Lewis acid containing a 

telluronium ion and compare its properties to its sulfur analogue.  Although evidence for 

the Lewis acidity of telluronium ions can be gleaned from short anion-cation contacts in 

the crystal structures of their salts,139-142 efforts to use such onium ions for catalysis or 

anion recognition have never been reported. 

 

4.2 Synthesis and characterization of the telluronium borane and its sulfur analog 

 Implementing some of the synthetic approaches that we have recently employed 

for the synthesis of sulfonium boranes,61 the tetrakis(THF)lithium salt of dimesityl-1,8-

naphthalenediylborate56 (THF = tetrahydrofuran) was allowed to react with 

diphenylditelluride to afford the corresponding telluro-borane (37, Figure 43).  The latter 

reacted smoothly with methyltriflate (MeOTf) to afford the borane/telluronium [37]+ 

which has been isolated as triflate salt .  For comparative purposes, we also synthesized 
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the sulfonium analog of [37]OTf, namely [38]OTf, by an analogous series of steps.  

Compounds 37, 38, [37]OTf and [38]OTf have been characterized by multinuclear 

Nuclear Magnetic Resonance (NMR) spectroscopy and elemental analysis.  In all four 

cases, the boron centre remains trigonal planar in agreement with the detection of a 

broad 11B-NMR resonance in the 60 – 70 ppm range.49, 61  For 37 and 38, the 1H NMR 

spectrum exhibits six distinct resonances that correspond to the aromatic CH groups of 

the asymmetrically substituted naphthalene backbone. Four aryl (CHMes) and six methyl 

proton (CH3
Mes) resonances are observed for the two mesityl groups, thus, indicating the 

existence of a congested structure.  The 1H NMR spectra of [37]OTf and [38]OTf are 

consistent with the existence of two diastereomers arising from chirality at the group 16 

onium centre and helical chirality at the boron centre.  Each of these diastereomers gives 

rise to four CHMes resonances and six CH3
Mes resonances leading to a total of eight 

CHMes and twelve CH3
Mes signals.  Accordingly, two resonances are observed for the 

group 16-bound methyl group.  In the case of [37]+, the presence of these diastereomers 

can be further ascertained by the detection of two 125Te NMR resonances at 660 and 677 

ppm,143-144 whose integration ratio corresponds to that observed for the 1H NMR signals 

of each diastereomer. 
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Figure 43. Synthesis and reactivity of the chalcogenium borane salts [37]OTf and 

[38]OTf.  The chalcogenium borane triflate salts [37]OTf and [38]OTf are converted 

into the corresponding fluoride complexes 37-F and 38-F by reaction with KF in 

methanol. 

 

 The crystal structures of 37 and 38 have been determined experimentally (Figure 

44 and Figure 45, Table 14).145  The B-Ch (Ch = chalcogen) distances in 37 (B-Te = 

3.007(2) Å) and 38 (B-S = 2.952(3) Å are well within the sum of the van der Waals radii 

of the two elements (1.50 Å for F, 1.80 Å for S, 2.10 Å for Te), thus suggesting the 

presence of a donor–acceptor interaction in these two compounds.58  In agreement with 
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this view, the boron atom in each compound adopts a slightly pyramidalyzed structure as 

indicated by sum of the C-B-C angles (B-C-B) = 357.21(2)º for 37 and 358.3(2)º for 

38.  This small angular distortion may also partly result from steric effects inherent to 

peri-substituted naphthalene derivatives.  The existence of such effects is corroborated 

by the observation that C(9)-C(1)-B angles in 37 (126.1(2)º) and 38 (126.9(2)º) deviate 

markedly from the ideal value of 120º.  To shed further light on the bonding 

characteristics of 37 and 38, the geometry of these two compounds has been optimized 

using Density Functional Theory (DFT) methods (functional: BP86; mixed basis set: Te: 

aug-cc-pvTz-pp; B: 6-31+g(d’); S: 6-31+g(d); C, H: 6-31g).  The optimized geometries, 

which are close to those experimentally determined (B-Tecalc = 3.014 Å and B-Scalc = 

2.971 Å), were subjected to a Natural Bond Orbital (NBO) analysis which identified a 

lp(Ch)→p(B) donor-acceptor interaction (lp = lone-pair orbital; p = p orbital) (Figure 

46).  As shown by deletion calculations,49 this interaction contributes to the stability of 

the molecules by Edel = 32.4 kcal/mol in the case of 37 and Edel = 16.5 kcal/mol in the 

case of 38.  In turn, the boron center of these derivatives experiences significant electron 

donation from the chalcogen. 
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Figure 44.  Crystal structure of the neutral borane 37 (thermal ellipsoids are drawn at 50% 

probability levels; hydrogen atoms are omitted and the mesityl ligands are represented 

by thin lines for clarity).  Selective bond distances [Å] and bond angles [°]:Te(1)-C(8) 

2.108(2), Te(1)-C(29) 2.119(2), C(8)-C(9) 1.422(3), C(1)-C(9) 1.434(3), C(1)-B(1) 

1.576(3), C(11)-B(1) 1.590(3), C(20)-B(1) 1.597(3); C(8)-Te(1)-C(29) 93.11(8), C(9)-

C(1)-B(1) 126.88(19), C(9)-C(8)-Te(1) 120.34(15), C(8)-C(9)-C(1) 123.34(19), C(1)-

B(1)-C(11) 115.30(18), C(1)-B(1)-C(20) 123.46(19), C(11)-B(1)-C(20) 118.45(18). 
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Figure 45.  Crystal structure of the neutral borane 38 (thermal ellipsoids are drawn at 50% 

probability levels; hydrogen atoms are omitted and the mesityl ligands are represented 

by thin lines for clarity).  Selective bond distances [Å] and bond angles [°]: S(1)-C(29) 

1.779(2), S(1)-C(8) 1.780(2), C(1)-B(1) 1.569(3), C(1)-C(9) 1.440(3), C(8)-C(9) 

1.423(3), C(11)-B(1) 1.587(3), C(20)-B(1) 1.594(3); C(29)-S(1)-C(8) 100.08(11), C(9)-

C(1)-B(1) 126.1(2), C(9)-C(8)-S(1) 120.47(18), C(8)-C(9)-C(1) 123.1(2), C(1)-B(1)-

C(11) 117.1(2), C(1)-B(1)-C(20) 122.0(2), C(11)-B(1)-C(20) 119.2(2). 
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Table 14. Crystal data, data collections, and structure refinements for 37 and 38. 

Crystal data 
 

37 38 

formula C34H33BTe C34H33BS 
Mr 580.01 484.47 

crystal size (mm3) 0.32 x 0.24 x 0.13 0.15 x 0.10 x 0.08 
crystal system Monoclinic Monoclinic 
space group P2(1)/c P2(1)/n 

a (Å) 15.3549(18) 15.337(2) 
b (Å) 12.2755(14) 12.0381(16) 
c (Å) 17.3029(14) 15.458(2) 
α () 90 90 
 () 123.819(7) 111.1150(10) 
γ () 90 90 

V (Å3) 2709.6(5) 2662.5(6) 
Z 4 4 

calc (g cm-3) 1.422 1.209 
 (mm-1) 1.119 0.143 
F(000) 1176 1032 

   

Data Collection   
T (K) 110(2) 110(2) 

scan mode   

hkl range 
-20  +20 
-16  +16 
-22  +23 

-17  +17 
-13  +13 
-17  +17 

measd reflns 30557 26686 
unique reflns [Rint] 6497 [0.0509] 4174 [0.1727] 

reflns used for refinement 6497 4174 
   

Refinement   
refined parameters 325 325 

GooF 1.001 1.000 
R1,a wR2b all data 0.0325, 0.0835 0.0744, 0.1807 

fin (max/min) (e Å-3) 1.316, -0.433 0.513, -0.563 
a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2.
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Figure 46.  NBO contour plots showing the lp(Ch)→p(B) donor-acceptor interactions in 

37 (top left), 38 (top right), [37]OTf (bottom left) and [38]OTf (bottom right).  Two lone 

pairs of chalcogen atoms (one is p-orbital character and the other is s-orbital character) 

are involved in the donor-acceptor interactions in 37 and 38.  Only one lone pair of s-

orbital character is involved in the donor-acceptor interactions in [37]OTf and [38]OTf.  



 

 

85 

To assess the effect of group 16 methylation on this lp(Ch)→p(B) donor-acceptor 

interaction, the crystal structures of [37]OTf and [38]OTf have also been determined 

(Figure 47 and Figure 48, Table 15).145  While there are no unusual intermolecular 

contacts in the structure of [38]OTf, one of the oxygen atoms of the triflate anion in 

[37]OTf forms a short contact of 2.904(5) Å with the tellurium center in agreement with 

the anticipated higher Lewis acidity of the telluronium unit.  Further examination of 

these structures show that: i) the boron atom in each cation becomes trigonal planar 

(B-C-B) = 359.8(5)° for [37]OTf and 359.7(2)° for [38]OTf); ii) the B-Ch distance is 

significantly increased in the cationic species (B-Te = 3.244(6) Å for [37]OTf, B-S = 

3.129(3) Å for [38]OTf).  These structural features may be assigned to the lower 

donicity induced by oxidative methylation of the group 16 element.  The increased bulk 

around the chalcogen atom in [37]OTf and [38]OTf may also play a role in the increased 

B-Ch separation, a conclusion supported by the large C(9)-C(1)-B angles of 129.3(2)º 

and 129.4(5)º observed in [37]OTf and [38]OTf, respectively.  Further insights into the 

strength of the lp(Ch)→p(B) in [37]+ and [38]+ were obtained from computational 

studies carried out at the level of theory used for 37 and 38.  The optimized structures of 

the two cations, which are close to those experimentally determined (B-Tecalc = 3.222 Å 

and B-Scalc = 3.091 Å), were subjected to NBO analyses.  These analyses show that 

lp(Ch)→p(B) donor-acceptor interactions persist in [37]+ and [38]+.  These interactions, 

which account for Edel = 10.8 kcal/mol and Edel = 8.2 kcal/mol to the stability of [37]+ 

and [38]+, are significantly lower than those in 37 and 38, in agreement with the lower 

donicity of the chalcogenium groups (Figure 46). 
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Figure 47.  Crystal structure of the neutral borane [37]OTf (thermal ellipsoids are drawn 

at 50% probability levels; hydrogen atoms and triflate anion are omitted and the mesityl 

ligands are represented by thin lines for clarity).  Selective bond distances [Å] and bond 

angles [°]:Te(1)-C(35) 2.102(6), Te(1)-C(29) 2.111(6), Te(1)-C(8) 2.134(5), C(1)-C(9) 

1.437(7), C(1)-B(1) 1.586(7), C(8)-C(9) 1.414(8), C(11)-B(1) 1.573(8), C(20)-B(1) 

1.572(7); C(35)-Te(1)-C(29) 99.9(2), C(35)-Te(1)-C(8) 96.3(2), C(29)-Te(1)-C(8) 

94.7(2), C(9)-C(1)-B(1) 129.4(5), C(9)-C(8)-Te(1) 121.6(4), C(8)-C(9)-C(1) 125.0(5), 

C(20)-B(1)-C(11) 121.1(4), C(20)-B(1)-C(1) 122.7(5), C(11)-B(1)-C(1) 116.0(4). 
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Figure 48.  Crystal structure of the neutral borane [38]OTf (thermal ellipsoids are drawn 

at 50% probability levels; hydrogen atoms and triflate anion are omitted and the mesityl 

ligands are represented by thin lines for clarity).  Selective bond distances [Å] and bond 

angles [°]:S(1)-C(8) 1.792(3), S(1)-C(29) 1.793(3), S(1)-C(35) 1.798(3), C(1)-C(9) 

1.451(4), C(1)-B(1) 1.582(4), C(8)-C(9) 1.418(4), C(11)-B(1) 1.576(4), C(20)-B(1) 

1.570(4); C(8)-S(1)-C(29) 101.92(13), C(8)-S(1)-C(35) 103.66(14), C(29)-S(1)-C(35) 

105.11(14), C(9)-C(1)-B(1) 129.3(2), C(9)-C(8)-S(1) 119.9(2), C(8)-C(9)-C(1) 126.2(2), 

C(20)-B(1)-C(11) 120.8(2), C(20)-B(1)-C(1) 122.1(2), C(11)-B(1)-C(1) 116.8(2). 



 

 

88 

Table 15. Crystal data, data collections, and structure refinements for [37]OTf and 

[38]OTf. 

Crystal data 
 

[37]OTf [38]OTf 
formula C36H36BF3O3STe C36H36BF3O3S2 

Mr 744.12 648.58 
crystal size (mm3) 0.21 x 0.17 x 0.11 0.14 x 0.13 x 0.10 

crystal system Monoclinic Triclinic 
space group P2(1)/c P-1 

a (Å) 8.4011(16) 8.632(5) 
b (Å) 18.829(4) 10.482(6) 
c (Å) 21.449(4) 18.755(10) 
α () 90 90.939(7) 
 () 97.903(2) 102.507(6) 
γ () 90 100.441(6) 

V (Å3) 3360.6(11) 1626.5(15) 
Z 4 2 

calc (g cm-3) 1.471 1.324 
 (mm-1) 0.998 0.216 
F(000) 1504 680 

   

Data Collection  
T (K) 110(2) 110(2) 

scan mode   

hkl range 
-9  +9 

-21  +21 
-24  +24 

-11  +11 
-13  +13 
-24  +24 

measd reflns 29312 19942 
unique reflns [Rint] 5284 [0.0547] 7878 [0.1168] 

reflns used for refinement 5284 7878 
   

Refinement   
refined parameters 406 406 

GooF 1.002 0.999 
R1,a wR2b all data 0.0759 0.1730 0.1054 0.1405 

fin (max/min) (e Å-3) 1.874, -1.257 0.403, -0.423 
a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2. 
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The UV-vis absorption spectra of these compounds in methanol (MeOH) display 

two distinct low energy bands centred at 353 nm and 312 nm in the case of [37]+ and 

340 nm and 314 nm in case of [38]+ (Figure 49 and Figure 50).  To elucidate the origin 

of these bands, the optimized structures of both cations were subjected to a Time 

Dependent-Density Functional Theory (TD-DFT) calculation (functional: MPW1PW91; 

mixed basis set: Te: aug-cc-pvTz-pp; B: 6-31+g(d’); S: 6-31+g(d); C, H: 6-31g)) using 

the PCM solvation with methanol as a solvent (PCM = Polarizable Continuum Model).  

Examination of the simulated spectra indicates that each of the low energy bands 

observed in the spectra of these cations mainly results from a few dominant excitations.  

The most red-shifted band at 353 nm for [37]+ and 340 nm for [38]+ arises from 

excitations (Ea and Eb, Figure 49 and Figure 50) which mostly involve the lowest 

unoccupied molecular orbital (LUMO) as the accepting orbital.  The second band at 312 

nm for [37]+ and 314 nm for [38]+ involves excitations (Ec, and Ed for [37]+, Ec, Ed and 

Ee for [38]+) in which the LUMO+1, acts as the main accepting orbital.   
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Visualization of these orbitals indicate that the LUMO of [37]+ and [38]+, bears 

an important contribution from the boron p-orbital (Figure 49 and Figure 50).  This 

feature is reminiscent of simple triarylboranes which usually display a low energy band 

resulting from electronic excitations from filled orbitals into the boron-centred LUMO.5, 

25, 146-149  Interestingly, the LUMO+1 which is involved in the band detected at 312 nm 

for [37]+ and 314 nm for [38]+ bears an increased contribution from the Ch-C *-orbital; 

this feature is especially noticeable in the case of the tellurium derivative [37]+ (Figure 

49).  The localization of the LUMO and LUMO+1 orbitals on the neighbouring 

heteroelements, as well as their involvement in the low energy electronic transitions, 

suggests that anion binding to these derivatives may be very efficiently monitored using 

spectrophotometric techniques.5  It is also important to note that the localization of these 

two low lying vacant orbitals on the two heteroelements bodes well for the occurrence of 

anion chelation. 
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Figure 49. Photophysical properties of the chalcogenium borane [37]
+
.  Top: 

Experimental (methanol) and calculated UV-vis spectra.  In addition to the simulated 

spectra, the computed excitations are shown as thin lines with heights proportional to the 

calculated oscillator strengths.  Bottom: View of the LUMO and LUMO+1 

(isovalue=0.03).  These orbitals, which are implicated in Ea-d, bear a large component 

from the boron p- and Ch-C *-orbitals. 
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Figure 50. Photophysical properties of the chalcogenium borane [38]
+
.  Top: 

Experimental (methanol) and calculated UV-vis spectra.  In addition to the simulated 

spectra, the computed excitations are shown as thin lines with heights proportional to the 

calculated oscillator strengths.  Bottom: View of the LUMO and LUMO+1 

(isovalue=0.03).  These orbitals, which are implicated in Ea-e, bear a large component 

from the boron p- and Ch-C *-orbitals. 
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4.3 Anion affinity of the sulfonium borane and telluronium borane 

4.3.1 Fluoride affinity 

  Having these two analogues in hand, we decided to investigate their fluoride ion 

affinity under dilute conditions in MeOH using UV-vis spectroscopy (Figure 51).  

Addition of fluoride ions to [37]+ (0.0673 mM) resulted in the progressive quenching of 

the two lowest energy bands, suggesting coordination of the fluoride anion to both the 

boron and tellurium atom.  The resulting data was fitted to a 1:1 binding isotherm to 

afford K = 750 (±100) M-1 (Figure 51).  By contrast, addition of 1000 eq. of fluoride ions 

to [38]+ did not result in any changes of the UV-vis spectrum, indicating that [38]+ has 

no or very little affinity for fluoride ions in this solvent.  A similar behaviour was 

observed in the case of [1-Mes2B-8-Me2S-C10H6]+ which also shows no marked affinity 

for fluoride ions in MeOH.61  Fluoride binding by [37]+ is also very selective as 

indicated by the absence of any response observed upon addition of Cl-, Br-, I-, OAc-, 

NO3
-, H2PO4

-, and HSO4
- in MeOH. 

In an effort to better understand the origin of the contrasting behaviour displayed 

by [37]+ and [38]+ toward fluoride anions, attempts to isolate 37-F were undertaken 

(Figure 43).  Addition of fluoride to a MeOH solution of [37]OTf led to the rapid 

precipitation of 37-F.  The 11B NMR resonance at 10.9 ppm is consistent with the 

presence of a four-coordinate boron centre.  The 19F NMR signal of 37-F appears at -

130.4 ppm.  This chemical shift is unusual and appears to shift significantly downfield 

when compared to other triarylfluoroborate species5, 47 such as o-Mes2FB(C6H4)NMe3 (-

158.0 ppm), [1,2-(-F)-((C6F5)2B)2C6H4]- (-167.2 ppm) or [1-{Mes2B}v-(-F)-8-
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{(C6F5)Hg}C10H6]- (-164.3 ppm).27, 48, 57  This downfield shift suggests that the fluoride 

anion in 37-F is in an unusual chemical environment.  In line with this argument, the 19F 

resonance of 37-F features two satellites, indicating coupling to the 125Te nucleus (1
JTe-F 

= 940 Hz).  This large 125Te-19F coupling is confirmed by the observation of a doublet 

(= 713 ppm) split by 940 Hz in the 125Te NMR spectrum.  The magnitude of 1
JTe-F in 

37-F is comparable to that observed in o-(C6H4-CH2NMe2)2TeF2 (969 Hz).150  

Altogether, these spectroscopic features suggest that the fluorine atom is not only bound 

to the boron atom but also forms a strong bond with the tellurium atom.  Although no 

evidence for the formation of 38-F were obtained in MeOH under dilute conditions, 

formation of this fluoride adduct could be driven by precipitation through addition of an 

excess of KF to a MeOH solution of [38]OTf (Figure 43).  Some of its salient 

spectroscopic features include a 11B NMR resonance at 8.7 ppm as well as a 19F NMR 

signal at -150.7 ppm in the range expected for typical triarylfluoroborate anions.5 
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Figure 51.   Spectroscopic evidence for the formation and structure of 37-F.  a, Changes 

observed in the UV-vis spectra of [37]+ (6.73 × 10-5 M) in MeOH upon addition of a 

fluoride anions solution.  The observed quenching of the low energy bands is consistent 

with the formation of 37-F.  b, 125Te NMR and 19F NMR spectra of 37-F.  The presence 

of a doublet (1
JTe-F = 940 Hz) in the 125Te NMR spectrum indicates the presence of a 

strong interaction between the fluorine and tellurium nuclei.  Accordingly, the 19F NMR 

signal features two satellites resulting from coupling to the 125Te nucleus (7% natural 

abundance). 
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 Compounds 37-F and 38-F were crystallized from dichloromethane.145  The 

crystal structures of these compounds (Figure 52 and Figure 53, Table 16) clearly show 

that: i) the boron centre adopts a pyramidal geometry (∑(C-B-C) = 339.5(1)° for 38-F and 

343.0(3)° for 37-F); ii) that the B-F bond length in 38-F (1.481(2) Å) is slightly shorter 

than that in 37-F (1.514(4) Å); iii) that the F-Ch-CPh angle is close to linearity (176.6(1)° 

for 38-F and 174.0(1)° for 37-F); iv) that the S-F distance in 38-F (2.548(1) Å) is slightly 

longer than the Te-F distance in 37-F (2.506(2) Å) despite the larger size of the tellurium 

atom.  In fact the Te-F bond distance in 37-F is only moderately larger than the sum of 

the covalent radii of the two elements (1.95 Å).151  This Te-F bond distance can also be 

compared to those observed in other Te(IV) monofluoride species such as [(-

F)Te(CF3)3-DMF]∞ (DMF = dimethylformamide),152 a fluoride-bridged polymeric 

species connected by Te-F linkages of 2.138(2) Å and 2.566(2) Å.  The overall 

coordination geometry of the tellurium atom in 37-F is best described as a seesaw with a 

stereoactive lone pair perpendicular to the F-Te-CPh sequence. 
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Figure 52.  Crystal structure of the fluoride adduct 37-F (thermal ellipsoids are drawn at 

50% probability levels; hydrogen atoms are omitted and the mesityl ligands are 

represented by thin lines for clarity).  Selective bond distances [Å] and bond angles [°]: 

Te(1)-C(35) 2.117(4), Te(1)-C(29) 2.124(3), Te(1)-C(8) 2.151(3), Te(1)-F(1) 

2.5064(18), F(1)-B(1) 1.514(4), C(1)-C(9) 1.443(5), C(1)-B(1) 1.633(5), C(8)-C(9) 

1.448(5), C(11)-B(1) 1.634(5), C(20)-B(1) 1.671(5); C(35)-Te(1)-C(29) 98.29(14), 

C(35)-Te(1)-C(8) 93.52(14), C(29)-Te(1)-C(8) 96.61(13), C(35)-Te(1)-F(1) 86.98(11), 

C(29)-Te(1)-F(1) 174.03(11), C(8)-Te(1)-F(1) 80.19(10), B(1)-F(1)-Te(1) 106.68(18), 

C(9)-C(1)-B(1) 126.2(3), C(9)-C(8)-Te(1) 125.9(2), C(1)-C(9)-C(8) 127.5(3), F(1)-B(1)-

C(1) 103.0(3), F(1)-B(1)-C(11) 106.5(3), C(1)-B(1)-C(11) 112.5(3), F(1)-B(1)-C(20) 

102.6(3), C(1)-B(1)-C(20) 115.8(3), C(11)-B(1)-C(20) 114.7(3). 
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Figure 53.  Crystal structure of the fluoride adduct 38-F (thermal ellipsoids are drawn at 

50% probability levels; hydrogen atoms are omitted and the mesityl ligands are 

represented by thin lines for clarity).  Selective bond distances [Å] and bond angles 

[°]:S(1)-C(8) 1.7850(19), S(1)-C(34) 1.7896(18), S(1)-C(35) 1.7955(18), F(1)-B(1) 

1.481(2), C(1)-C(9) 1.441(2), C(1)-B(1) 1.652(3), C(8)-C(9) 1.432(3), C(11)-B(1) 

1.659(3), C(20)-B(1) 1.653(3); C(8)-S(1)-C(34) 100.50(8), C(8)-S(1)-C(35) 105.15(9), 

C(34)-S(1)-C(35) 102.84(9), C(9)-C(1)-B(1) 126.34(15), C(9)-C(8)-S(1) 119.07(13), 

F(1)-B(1)-C(1) 105.35(14), F(1)-B(1)-C(20) 104.34(13), C(1)-B(1)-C(20) 118.88(14), 

F(1)-B(1)-C(11) 106.63(13), C(1)-B(1)-C(11) 106.85(13), C(20)-B(1)-C(11) 113.80(14). 
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Table 16.  Crystal data, data collections, and structure refinements for 37-F and 38-F. 

Crystal data 
 

37-F 38-F 
formula C35H36BFTe C35H36BFS 

Mr 614．05 518.51 
crystal size (mm3) 0.34 x 0.27 x 0.16 0.21 x 0.17 x 0.15 

crystal system Monoclinic Monoclinic 
space group P2(1)/n 

 
P2(1)/n 

 a (Å) 9.0099(9) 10.757(2) 
b (Å) 24.019(2) 8.8417(19) 
c (Å) 13.2080(12) 30.186(6) 
α () 90 90 
 () 93.7740(10) 94.800(3) 
γ () 90 90 

V (Å3) 2852.1(5) 2861.0(10) 
Z 4 4 

calc (g cm-3) 1.430 1.204 
 (mm-1) 1.072 0.142 
F(000) 1248 
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Data Collection  
T (K) 110(2) 110(2) 

scan mode   

hkl range 
-12  +11 
 -32  +31 
-17  +17 

-13  +9 
 -11  +11 
-38  +29 

measd reflns 34846 15976 
unique reflns [Rint] 7069 [0.0680] 5849 [0.0302] 

 reflns used for refinement 7069 5849 
   

Refinement   
refined parameters 343 343 

GooF 1.001 0.999 
R1,a wR2b all data 0.0610, 0.0757 

 
0.0626, 0.1543 

 fin (max/min) (e Å-3) 0.767 and -0.658 0.426 and -0.427 
a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2 
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In order to investigate the nature of the interaction between the group 16 element 

and the fluorine atom in 37-F and 38-F, we carried out an NBO analysis at the DFT 

optimized structure (functional: BP86; mixed basis set: Te: aug-cc-pvTz-pp; B: 6-

31+g(d’); S: 6-31+g(d); C, H: 6-31g).  For both 37-F and 38-F, this analysis reveals the 

presence of two lp(F)→(Ch-C) donor-acceptor interactions.  As depicted in Figure 54 

in the case 37-F, these two interactions involve two different fluorine lone-pair orbitals 

which differ by their s and p character.  The concomitant deletion of these two 

interactions leads to an increase of the total energy of the molecule by Edel = 22.8 

kcal/mol for 37-F and 9.2 kcal/mol for 38-F, in line with the shorter Ch-F separation in 

37-F.  The covalent component of the Ch-F interaction was further probed by 

performing an Atom-In-Molecule (AIM) analysis.  This analysis shows that the value of 

the electron density at the bond critical point of the group 16-fluorine bond in 37-F ((r) 

= 0.047 e bohr-3) is significantly larger than that in 38-F ((r) = 0.035 e bohr-3), despite 

the increased diffuseness of the tellurium valence orbitals (Figure 54).  Altogether, these 

structural and computational results point to the higher Lewis acidity anticipated for the 

telluronium of [37]+ when compared to the sulfonium of [38]+.  These observations, 

which are in line with previous studies on chalcogen-bonded species,136 can be 

correlated to the lower energy of the Ch-C -orbital in 37-F, as well as to the greater 

electropositivity and polarisability of tellurium when compared to sulfur. 
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Figure 54.  Top: NBO contour plots showing the two lp(F)→*(Ch-C) donor-acceptor 

interactions involved in 37-F and 38-F.  Bottom: AIM electron density maps in the B-F-

Ch plane of 37-F and 38-F.  The thin lines connecting the atoms represent the bond 

paths.  For each bond path, the red dot indicates the position of the bond critical point.
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4.3.2 Cyanide affinity 

 

 

Figure 55. Synthesis of 37-CN and 38-CN in MeOH 

 

We have studied the cyanide binding properties of [37]OTf and [38]OTf in 

methanol using UV/Vis spectroscopy.  The addition of 5 equiv. of CN- into a 0.054 mM 

methanolic solution of [37]OTf resulted in a total quenching of the absorption spectrum 

within 30 minutes.  Similarly, addition of 10 equiv. CN- into a 0.063 mM methanol 

solution of [38]OTf resulted in a total quenching of the absorption, again in 30 minutes.  

In both cases, the binding process is slow which precludes an accurate determination of 

the binding constant.  Compound 37-CN and 38-CN were isolated from the reaction of 

KCN with [37]OTf and [38]OTf, respectively, in methanol at mM concentrations.  These 

cyanide complexes have been characterized by multinuclear NMR spectroscopy, IR 

spectroscopy and single crystal X-ray diffraction (Figure 55). A 11BNMR resonance at -

12.6 ppm for 37-CN and -11.6 ppm for 38-CN indicates the presence of the four-

coordination of the boron center, and an intense IR band at 2153 cm-1 for 37-CN and - 

2163 cm-1 for 38-CN confirms the presence of a boron-bound cyano group.46, 61  The 
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crystal structures of these two complexes show a substantial pyramidalization of the 

boron atom as indicated by the sum of the Caryl-B-Caryl angles ((C-B-C) = 340.8 ppm for 

37-CN and 340.4 for 38-CN).  The B-CCN- bonds (1.638(5) Å for 37-CN and 1.627(6) 

Å for 38-CN) are comparable to those typically found in triarylcyanoborate anions such 

as [Ph3BCN-] (1.65 Å).  The distance between the B and chalcogen atoms (Ch) in the 

cyanide adducts (3.446(4) Å for 37-CN and 3.251(6) Å for 38-CN) are longer than that 

in their cationic precursor ([37]OTf (3.244(6) Å) and [38]OTf 3.129(3) Å), indicating an 

increase in steric crowding.  The centroid of the C≡N (CtCN) bond is separated from the 

chalcogen atom by only 2.958 Å for 37-CN and 2.911 Å for 38-CN.  The CtCN-Ch-Ctrans 

angle of 167.98° for 37-CN and 164.59°for 38-CN are close to linearity, which with the 

short CtCN-Ch separation are indicative of a possible interaction between the cyanide 

group and the chalcogen (Figure 56, Figure 57, Table 17).  
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Figure 56.  Crystal structure of the fluoride adduct 37-CN (thermal ellipsoids are drawn 

at 50% probability levels; hydrogen atoms are omitted and the mesityl ligands are 

represented by thin lines for clarity).  Selective bond distances [Å] and bond angles 

[°]:Te(1)-C(30) 2.120(3), Te(1)-C(29) 2.129(3), Te(1)-C(8) 2.143(3), N(1)-C(36) 

1.152(4), C(1)-C(9) 1.436(4), C(1)-B(1) 1.659(5), C(9)-C(8) 1.441(4), C(11)-B(1) 

1.677(5), C(20)-B(1) 1.652(5), C(36)-B(1) 1.638(5); C(30)-Te(1)-C(29) 96.82(13), 

C(30)-Te(1)-C(8) 97.15(13), C(29)-Te(1)-C(8) 97.21(14), C(9)-C(1)-B(1) 128.8(3), 

C(9)-C(8)-Te(1) 126.1(2), C(1)-C(9)-C(8) 127.9(3), N(1)-C(36)-B(1) 176.9(4), C(36)-

B(1)-C(20) 104.1(3), C(36)-B(1)-C(1) 105.6(3), C(20)-B(1)-C(1) 114.1(3), C(36)-B(1)-

C(11) 105.2(3), C(20)-B(1)-C(11) 117.4(3), C(1)-B(1)-C(11) 109.2(3). 
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Figure 57.  Crystal structure of the fluoride adduct 38-CN•CH2Cl2 (thermal ellipsoids 

are drawn at 50% probability levels; dichloromethane and hydrogen atoms are omitted 

and the mesityl ligands are represented by thin lines for clarity).  Selective bond 

distances [Å] and bond angles [°]:S(1)-C(8) 1.780(4), S(1)-C(29) 1.803(5), S(1)-C(35) 

1.804(4), B(1)-C(1) 1.673(7), C(1)-C(9) 1.446(6), C(9)-C(8) 1.442(6), C(11)-B(1) 

1.667(6), C(20)-B(1) 1.658(6), C(36)-B(1) 1.627(6), C(36)-N(1) 1.145(6); C(8)-S(1) 

C29 104.6(2), C(8)-S(1)-C(35) 105.9(2), C(29)-S(1)-C(35) 100.9(2), C(9)-C(1)-B(1) 

128.8(4), C(9)-C(8)-S(1) 120.1(3), C(8)-C(9)-C(1) 127.5(4), N(1)-C(36)-B(1) 178.5(5), 

C(36)-B(1)-C(20) 103.1(3), C(36)-B(1)-C(11) 106.7(3), C(20)-B(1)-C(11) 114.5(4), 

C(36)-B(1)-C(1) 106.0(4), C(20)-B(1)-C(1) 118.7(4), C(11)-B(1)-C(1) 106.9(3). 



 

 

106 

Table 17. Crystal data, data collections, and structure refinements of 37-CN and 38-CN 

Crystal data 
 

37-CN 38-CN•CH2Cl2 
formula C36H36BNTe C37H38BCl2NS 

Mr 621.07 610.45 
crystal size (mm3) 0.12 x 0.08 x 0.08 0.10 x 0.08 x 0.06 

crystal system Triclinic Monoclinic 
space group P-1 

 
P2(1)/c 

 a (Å) 9.5465(12) 9.6997(9) 
b (Å) 10.0080(13) 16.7280(16) 
c (Å) 15.470(2) 20.3173(19) 
α () 93.260(2) 90 
 () 97.636(2) 100.3250(10) 
γ () 92.549(2) 90 

V (Å3) 1460.5(3) 3242.2(5) 
Z 2 4 

calc (g cm-3) 1.412 1.250 
 (mm-1) 1.044 0.291 
F(000) 632 

 

1288 
    

Data Collection  
T (K) 110(2) 110(2) 

scan mode   

hkl range 
-12  +12 
 -13  +13 
-20  +20 

-11  +11 
 -19  +19 
-23  +23 

measd reflns 18082 28371 
unique reflns [Rint] 7131 [0.0620] 5078 [0.0499] 

 reflns used for refinement 7131 5078 
   

Refinement   
refined parameters 352 379 

GooF 0.921 1.080 
R1,a wR2b all data 0.0681, 0.0691 

 
0.1031, 0.2628 

 fin (max/min) (e Å-3) 1.013 and -0.668 1.430 and -1.038 
a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2.
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In order to investigate the nature of the interaction between the group 16 element 

and the cyanide ligand in 37-CN and 38-CN, NBO analyses were carried out at the DFT 

optimized structures (functional: BP86; mixed basis set: Te: aug-cc-pvTz-pp; B: 6-

31+g(d’); S: 6-31+g(d); C, H: 6-31g).  For 37-CN, this analysis reveals the presence of 

two π(C≡N)→σ*(Te-C) donor–acceptor interactions and one lp(N)→σ*(Te-C) donor–

acceptor interaction (Figure 58).  For 38-CN, the NBO analysis shows a π(C≡N)→σ*(S-

C) donor-acceptor interaction complemented by a back-bonding lp(S)→π*(C N) 

component.  The concomitant deletion of these interactions leads to an increase of the 

total energy of the molecule by Edel = 9.57 kcal/mol for 37-CN and 4.50 kcal/mol for 38-

CN.  These computational results show that the tellurium vacant orbitals are 

energetically and spatially more accessible than those of sulphur.  These considerations 

serve to rationalize the higher Lewis acidity of the telluronium borane [37]+ when 

compared to the sulfonium analogue [38]+. 

 



 

 

108 

 

Figure 58. NBO NBO contour plots showing the donor-acceptor interactions involved in 

37-CN (left) and 38-CN (right). 

 

4.4 Conclusion 

 The results presented in this chapter allow us to introduce a new strategy for the 

design of polyfunctional Lewis acids.  This strategy, which is based on the use of heavier 

chalcogenium ions as Lewis acidic sites, takes advantage of the size, polarizability and 

electropositivity increases observed as the atom becomes larger.  Although the increased 

polarizability and electropositivity of the tellurium atom in 37-F lead to an enhancement 

of the ionic component of the group 16-anion interaction, its larger size allows for a 

reduction of intraligand repulsions, which makes interaction with the anionic guest more 

favorable.  In turn, the anionic guest achieves a shorter approach to the tellurium atom, 
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which leads to an increase of the covalent component of the chalcogen–anion 

interaction. Cumulatively, these effects make the telluronium center of [37]+ a stronger 

Lewis acid than the sulfonium center of [38]+, which thus provides a rationale for the 

enhanced fluoride affinity of [37]+.  Although it was documented previously that heavier 

chalcogenium ions may act as acceptors, this property was not exploited in the context of 

molecular recognition.  In turn, our work may lead to the development of novel Lewis 

acidic receptors or catalysts with telluronium ions as active sites. 

 

4.5 Experimental section 

General Considerations.  Tetrakis(THF)lithium dimesityl-1,8-

naphthalenediylborate was synthesized by following the published procedure.56  

Dimesitylboron fluoride, methyl triflate, diphenyl ditelluride, potassium cyanide and 

potassium fluoride were purchased from Aldrich, diphenyl disulfide from TCI.  Solvents 

were dried by passing through an alumina column (hexanes, dichloromethane, diethyl 

ether) or refluxing under N2 over Na/K (Et2O).  UV-vis spectra were recorded on an 

Ocean Optics USB4000 spectrometer with an Ocean Optics ISS light source.  Elemental 

analyses were performed by Atlantic Microlab (Norcross, GA).  NMR spectra were 

recorded on Varian Unity Inova 400 FT NMR (399.59 MHz for 1H, 128.19 MHz for 11B, 

100.45 MHz for 13C, 126.11 MHz for 125Te) spectrometers at ambient temperature. 

Chemical shifts are given in ppm, and are referenced against external BF3·Et2O (11B, 19F) 

and Ph2Te2 (125Te).  The crystallographic measurements were performed using a Bruker 

APEX-II CCD area detector diffractometer (Mo-K radiation, = 0.71069 Å) for 37, 
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[37]OTf, 37-F, 37-CN, 38, [38]OTf, 38-F and 38-CN.  In each case, a specimen of 

suitable size and quality was selected and mounted onto a nylon loop.  The structures 

were solved by direct methods, which successfully located most of the non-hydrogen 

atoms. Subsequent refinement on F2 using the SHELXTL/PC package (version 5.1) 

allowed location of the remaining non-hydrogen atoms. 

Synthesis of 37.  Diphenyl ditelluride (0.70 g, 1.71 mmol) was added to a 

suspension of tetrakis(THF)lithium dimesityl-1,8-naphthalenediylborate (1.00 g, 1.49 

mmol) in diethyl ether(60 mL) at -20 ºC.  After stirring overnight at 25 ºC , the reaction 

was quenched with water and extracted with dichloromethane (3 x 50 mL).  The organic 

phases were combined, dried over MgSO4 and filtered.  The solvent was removed under 

vacuum yielding a yellow solid.  The solid was washed with hexanes to afford 

compound 37 (0.68 g, yield 79%).  Characterization of 37:  1H NMR (400 MHz, CDCl3) 

δ 0.82 (s, 3H), 1.80 (s, 3H), 2.22 (s, 3H), 2.26 (s, 3H), 2.32 (s, 3H), 2.38 (s, 3H), 6.50 (s, 

1H, Mes-CH), 6.80 (s, 1H, Mes-CH), 6.85 (s, 1H, Mes-CH), 6.87 (s, 1H, Mes-CH), 

7.04-7.19 (m, 5H, ph-CH), 7.33 (t, 1H, 3
JH-H = 7.5 Hz, nap-CH), 7.40-7.47 (m, 2H, nap-

CH), 7.89 (d, 1H, JH-H = 7.5 Hz, nap-CH), 7.93 (d, 1H, JH-H = 7.8 Hz, nap-CH), 8.03 (d, 

1H, JH-H = 7.2 Hz, nap-CH).  13C NMR (100 MHz, CDCl3) δ 21.2, 22.9, 23.5, 25.5, 25.8, 

120.5, 126.2, 126.6, 126.7, 127.2, 127.9, 128.9, 129.1, 129.7, 130.1, 130.2, 131.6, 133.8. 

134.8, 135.1, 137.9, 139.8, 140.8, 141.3, 142.3, 143.4, 144.9.  11B NMR (128 MHz, 

CDCl3) δ + 60 (bs).  125Te NMR (126 MHz, CDCl3) δ 646.  Anal. Calcd for C33H34BTe: 

C, 70.40; H, 5.73.  Found: C, 70.38; H, 5.72. 
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Synthesis of [37]OTf.  Methyl triflate (0.40 g, 2.44 mmol) was added to a 

solution of compound 37 (0.67 g, 1.16 mmol) in dichloromethane (25 mL) at 25 ºC .  The 

mixture was refluxed overnight and cooled to 25 ºC.  The solvent was removed under 

vacuum to yield a sticky yellow solid which was washed by diethyl ether to afford 

[37]OTf as a pale yellow solid (0.40 g, yield 47 %).  Single crystals of [37]OTf were 

obtained by slow evaporation of a dichloromethane solution.  Characterization of 

[37]OTf:  1H NMR (400 MHz, CDCl3) major diastereomer (71%): δ 0.75 (s, 3H), 1.79 

(s, 3H), 2.19 (s, 3H), 2.27 (s, 3H), 2.31 (s, 3H), 2.36 (s, 3H), 2.53 (s, 3H, S-CH3), 6.60 

(s, 1H, Mes-CH), 6.84 (s, 1H, Mes-CH), 6.97 (s, 1H, Mes-CH), 7.12 (s, 1H, Mes-CH), 

7.14 (d, 1H, JH-H = 7.6 Hz, nap-CH), 7.26-7.42 (m, 5H, ph-CH), 7.50-7.61 (m, 2H, nap-

CH), 7.82 (t, 1H, JH-H = 8.0 Hz, nap-CH), 8.07-8.13 (m, 2H, nap-CH).  minor 

diastereomer (29%): δ 0.79 (s, 3H), 1.68 (s, 3H), 1.91 (s, 3H), 2.22 (s, 3H), 2.35 (s, 3H), 

2.57 (s, 3H), 2.68 (s, 3H, S-CH3), 6.43 (s, 1H, Mes-CH), 6.46 (s, 1H, Mes-CH), 6.79 (s, 

1H, Mes-CH), 7.00 (s, 1H, Mes-CH), 7.26-7.42 (m, 5H, ph-CH), 7.50-7.67 (m, 5H, nap-

CH), 8.21 (d, 1H, JH-H = 7.6 Hz, nap-CH).  13C NMR (100 MHz, CDCl3) major 

diastereomer: δ 11.9, 21.2, 21.3, 22.6, 22.7, 25.0, 25.1.  minor diastereomer: δ 20.9, 21.0, 

22.6, 22.7, 24.7, 24.7, 24.9.  Remaining peaks for both diastereomers: δ 118.7, 120.6, 

121.9, 124.4, 124.9, 125.2, 126.9, 127.5, 127.7, 127.9, 128.1, 128.3, 129.4, 129.5, 129.7, 

129.9, 130.3, 130.5, 130.7, 131.0, 131.1, 131.6, 131.6, 131.9, 132.3, 132.6, 133.2, 133.3, 

134.0, 134.2, 134.4, 134.5, 134.6, 136.8, 137.7, 138.9, 139.0, 139.7, 139.7, 139.8, 139.9, 

140.1, 140.5, 140.8, 141.2, 141.7, 142.1, 142.8, 143.2, 145.9, 147.0.  125Te NMR (126 



 

 

112 

MHz, CDCl3) δ 660, 677.  Anal. Calcd for C36H36BO3F3STe: C, 58.11; H, 4.88.  Found: 

C, 57.96; H, 4.88. 

Synthesis of 37-F.  [37]OTf (0.048 g, 0.074 mmol) was dissolved in a saturated 

KF methanol solution leading to the formation of a white precipitate.  After 15 min., this 

precipitate was isolated by filtration, dried under vacuum to afford 37-F (0.035 g, yield 

88%).  Single crystals of 37-F were obtained by slow evaporation of a chloroform 

solution.  Characterization of 37-F:  1H NMR (400 MHz, CDCl3) δ 1.69 (s, 3H), 1.93 (d, 

3H, JH-F = 7.2 Hz), 2.02 (s, 3H), 2.14 (s, 3H), 2.21 (s, 3H), 2.27 (s, 3H), 2.72 (dd, 3H, JH-

F = 2.4 Hz JH-Te = 16.3 Hz) 6.60 (s, 1H, Mes-CH), 6.72 (s, 2H, Mes-CH), 6.75 (s, 1H, 

Mes-CH), 7.15 (t, 1H, JH-H = 7.6 Hz, nap-CH), 7.27 (d, 1H, JH-H = 8.4 Hz, nap-CH), 7.36 

(t, 1H, JH-H = 7.6 Hz, nap-CH), 7.46-7.53 (m, 5H, ph-CH), 7.64 (d, 1H, JH-H = 7.6 Hz, 

nap-CH), 7.70 (d, 1H, JH-H = 6.8 Hz, nap-CH), 7.94 (d, 1H, JH-H = 8.0 Hz, nap-CH). 13C 

NMR (100 MHz, CDCl3) δ 13.06 (d, Te-CH3, JC-F = 11 Hz), 20.9, 21.0, 24.2 (d, Mes-

CH3, JC-F = 7.3 Hz), 24.3, 24.8, 25.6, 123.7, 123.9, 126.7, 127.1, 127.8, 128.6, 129.1, 

129.7, 129.9, 130.1, 130.5, 131.3, 132.9, 133.2, 134.8, 134.8, 135.3, 136.5, 136.5, 139.0, 

141.0, 141.0, 142.1, 142.2, 142.3, 144.6.  11B NMR (128 MHz, d6-acetone) δ + 10.9 (bs). 

19F-NMR (375.9 MHz, CDCl3) δ -130.4 (d, JTe-F = 940 Hz).  125Te NMR (126 MHz, 

CDCl3) δ 713 (d, JTe-F = 940 Hz).  Anal. Calcd for C35H36BFTe: C, 68.46; H, 5.91.  

Found: C, 68.66; H, 5.94. 

Synthesis of 37-CN. [37]OTf (0.048g, 0.074mmol) was added to saturated KCN 

methanol solution.  After stirring 30 min, the white solid was formed.  The solid was 

filtered, washed with methanol, and dried by vacuum to afford the product (0.040 mg, 
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yield 82%).  Single crystals of 37-CN were obtained by evaporation of chloroform 

solution.  Anal. Calcd for C36H36BNTe: C, 69.62; H, 5.84.  Found: C, 67.67; H, 5.66.  

(The EA result is not accurate, probably because the sample sent for analysis contains 

chloroform solvents, making lower C and H percentages.)  1H NMR (400 MHz, CDCl3) 

show there are two distereomers in the solution. The NMR plot is shown: 

 

 

Synthesis of 38.  Diphenyl disulfide (0.703 g, 3.22 mmol) was added to a 

suspension of tetrakis(THF)lithium dimesityl-1,8-naphthalenediylborate (1.80 g, 2.68 

mmol) in diethyl ether(60 mL) at -20 ºC.  After stirring overnight at ambient temperature, 

the reaction was quenched with water and extracted with dichloromethane (3 x 50 mL).  

The organic phases were combined and dried over MgSO4 and filtered.  The solvent was 

removed under reduced pressure yielding light yellow solid.  The solid was washed with 

hexanes to afford compound 38 (0.893 g, yield 69%).  1H NMR (400 MHz, CDCl3) δ 

0.89 (s, 3H), 1.76 (s, 3H), 1.99 (s, 3H), 2.07 (s, 3H), 2.11 (s, 3H), 2.21 (s, 3H), 6.35 (bs, 

1H, Mes-CH), 6.48 (bs, 1H, Mes-CH), 6.64-6.67 (m, 2H, ph-CH), 6.68 (bs, 1H, Mes-

CH), 6.70 (bs, 1H, Mes-CH), 6.94-6.98 (m, 3H, ph-CH), 7.32-7.39 (m, 3H, nap-CH), 
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7.55 (d, 1H, JH-H = 7.5 Hz, nap-CH), 7.89 (d, 1H, JH-H = 7.5 Hz, nap-CH), 7.93 (d, 1H, 

JH-H = 7.8 Hz, nap-CH).  13C NMR (100 MHz, CDCl3) δ 21.4, 23.3, 23.7, 24.4, 24.8, 

125.9, 126.3, 126.8, 127.9, 128.6, 129.7, 130.7, 132.7, 132.9, 134.2, 134.4, 138.3, 138.7, 

139.3, 140.4, 142.2, 143.5, 144.5, 149,8.  11B NMR (128 MHz, CDCl3) δ + 62 (bs).  

Anal. Calcd for C33H34BS: C, 84.29; H, 6.87.  Found: C, 84.02; H, 6.91. 

Synthesis of [38]OTf.  Methyl triflate (0.328 g, 2.00 mmol) was added to a 

solution of compound 38 (0.8 g, 1.65 mmol) in dichloromethane (25 mL) at ambient 

temperature.  The mixture was refluxed overnight and cooled to ambient temperature.  

The solvent was removed in vacuo to yield a yellow solid as crude.  The solid was 

washed by diethyl ether to afford the pale product (0.944g, yield 88%).  Single crystals 

of [38]OTf were obtained by evaporation of dichloromethane solution.  1H NMR (400 

MHz, CDCl3) major diastereomer (79%): δ 0.77 (s, 3H), 1.79 (s, 3H), 2.15 (s, 3H), 2.23 

(s, 3H), 2.32 (s, 3H), 2.38 (s, 3H), 2.74 (s, 3H, S-CH3), 6.63 (s, 1H, Mes-CH), 6.84 (bs, 

1H, Mes-CH), 6.90 (s, 1H, Mes-CH), 6.99 (s, 1H, Mes-CH), 7.48-7.53 (m, 5H, ph-CH), 

7.60 (t, 1H, JH-H = 8.0 Hz, nap-CH), 7.81 (d, 1H, JH-H = 8.0 Hz, nap-CH), 7.84 (t, 1H, JH-

H = 8.0 Hz, nap-CH), 8.12 (d, 1H, JH-H = 8.4 Hz, nap-CH), 8.27 (d, 1H, JH-H = 7.6 Hz, 

nap-CH), 8.41 (d, 1H, JH-H = 7.2 Hz, nap-CH).  minor diastereomer (21%): δ 0.85 (s, 

3H), 1.73 (s, 3H), 1.93 (s, 3H), 1.94 (s, 3H), 2.32 (s, 3H), 2.43 (s, 3H), 3.57 (s, 3H, S-

CH3), 6.11 (s, 1H, Mes-CH), 6.42 (bs, 1H, Mes-CH), 6.79 (s, 1H, Mes-CH), 6.99 (s, 1H, 

Mes-CH), 7.01 (d, 1H, JH-H = 9.6 Hz, nap-CH), 7.33 (t, 1H, JH-H = 8.4 Hz, nap-CH), 7.50 

(t, 1H, JH-H = 7.6 Hz, nap-CH), 7.50-7.53 (m, 5H, ph-CH), 7.73 (d, 1H, JH-H = 7.6 Hz, 

nap-CH), 7.97 (d, 1H, JH-H = 8.0 Hz, nap-CH), 8.36 (d, 1H, JH-H = 8.0 Hz, nap-CH).  13C 
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NMR (100 MHz, CDCl3) major i diastereomer: δ 21.2, 21.3, 22.2, 22.7, 23.8, 25.0, 26.5.  

minor diastereomer: δ 21.0, 22.6, 22.7, 23.5, 24.5, 35.7.  Remaining peaks for both 

diastereomers: δ 119.1, 122.3, 122.8, 123.5, 124.7, 127.5, 127.7, 128.0, 128.3, 128.6, 

128.7, 129.3, 129.3, 129.6, 130.3, 130.4, 130.8, 131.3, 132.1, 133.3, 133.3, 133.8, 133.9, 

134.5, 134.8, 134.8, 136.0, 136.4, 136.7, 137.0, 138.8, 139.5, 139.8, 140.0, 140.2, 141.2, 

141.2, 141.3, 141.5, 141.8, 142.2, 142.2, 143.3, 143.5, 145.4.  Anal. Calcd for 

C36H36BO3F3S2: C, 66.66; H, 5.59.  Found: C, 66.46; H, 5.46. 

Synthesis of 38-F.  [38]OTf (0.050g, 0.077 mmol) was added to saturated KF 

methanol solution.  After stirring 10 min, the white solid was formed.  The solid was 

filtered, washed with methanol, and dried by vacuum to afford the product (0.031 g, 

yield 78%).  Single crystals of 38-F were obtained by evaporation of dichloromethane 

solution.  1H NMR (400 MHz, CDCl3) δ 1.75 (d, 3H, JH-F = 5.6 Hz), 1.91 (s, 3H,), 1.94 

(s, 3H), 2.10 (s, 3H), 2.18 (s, 3H), 2.23 (s, 3H), 3.51 (s, 3H) 6.45 (s, 1H, Mes-CH), 6.66 

(s, 2H, Mes-CH), 6.68 (s, 1H, Mes-CH), 7.19 (d, 1H, JH-H = 8.0 Hz, nap-CH), 7.33-7.45 

(m, 5H, ph-CH), 7.44-7.55 (m, 2H, nap-CH), 7.63 (d, 1H, JH-H = 8.0 Hz, nap-CH), 7.88 

(d, 1H, JH-H = 7.2 Hz, nap-CH), 8.04 (d, 1H, JH-H = 7.6 Hz, nap-CH).  13C NMR (100 

MHz, CDCl3) δ 20.7, 20.9, 24.3, 24.4, 24.7, 27.7, 31.5 (d, S-CH3, JC-F = 14.7 Hz), 123.0, 

125.5, 127.5, 127.7, 127.8, 128.1, 128.2, 128.3, 128.4, 129.0, 129.2, 130.2, 130.3, 131.4, 

132.1, 132.7, 135.3, 136.2, 136.4, 138.6, 140.2, 141.2, 142.7, 143.1.  11B NMR (128 

MHz, d6-acetone) δ + 8.7 (bs). 19F NMR (375.9 MHz, CDCl3) δ -150.7 (bs).  Anal. 

Calcd for C35H36BFS: C, 81.07; H, 7.00.  Found: C, 81.15; H, 7.00. 
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Synthesis of 38-CN. [38]OTf (0.050g, 0.077mmol) was added to saturated KCN 

methanol solution.  After stirring 30 min, the white solid was formed. The solid was 

filtered, washed with methanol, and dried by vacuum to afford the product (0.034 mg, 

yield 84%).  Single crystals of 38-CN were obtained by evaporation of dichloromethane 

solution.  1H NMR (400 MHz, CDCl3) δ 1.36 (s, 3H), 1.74 (s, 3H), 1.77 (s, 3H), 2.07 (s, 

3H), 2.23 (s, 3H), 2.34 (s, 3H), 2.57 (s, 3H), 5.78 (s, 1H, Mes-CH), 6.53 (d, JH-H = 11.2 

Hz, 2H, Ph-CH), 6.66 (s, 1H, Mes-CH), 6.73 (s, 1H, Mes-CH), 6.82 (s, 1H, Mes-CH), 

7.26-7.39 (m, 3H, Ph-CH), 7.46 (t, 1H, JH-H = 10.0 Hz, nap-CH), 7.65 (t, 1H, JH-H = 9.6 

Hz, nap-CH), 7.72 (d, 1H, JH-H = 10.8 Hz, nap-CH), 7.85 (d, 1H, JH-H = 10.0 Hz, nap-

CH), 7.91 (d, 1H, JH-H = 9.2 Hz, nap-CH), 8.30 (d, 1H, JH-H = 10.4 Hz, nap-CH).  13C 

NMR (100 MHz, CDCl3) δ 20.65, 20.77, 24.96, 25.21, 28.07, 34.04, 122.95, 126.44, 

127.39, 127.71, 128.74, 129.47, 129.53, 129.59, 129.95, 130.95, 131.46, 131.64, 132.62, 

133.36, 136.05, 137.66, 138.22, 141.47, 141.78, 142.43, 142.54, 143.25.  11B NMR (128 

MHz, CDCl3) δ -11.6.  Anal. Calcd for C36H36BNS· 1/6CH2Cl2: C, 80.49; H, 6.79. 

Found: C, 80.31; H, 6.85 (the single crystal contains CH2Cl2 solvent, and partial solvent 

molecules were lost when sending out for elemental analysis) 

  



 

 

117 

Computational details. DFT calculations (full geometry optimization) were 

carried out with the Gaussian 03116 program using the BP86 functional (Table 19, Table 

20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, Figure 59, Figure 60, 

Figure 61, Figure 62, Figure 63, Figure 64, Figure 65, Figure 66).  Geometry 

optimization was carried out with the following mixed basis set: Te: aug-cc-pvTz-pp;, B, 

N, F: 6-31+g(d’); S: 6-31+g(d); C, H: 6-31g.  Frequency calculations, which were 

carried out on the optimized structure of the compound, confirmed the absence of any 

imaginary frequencies.  TD-DFT calculations were carried out with the Gaussian 03 

program using the MPW1PW91 functional with and the aforementioned mixed basis set.  

The Natural Bond Orbital (NBO) analyses153 were carried out using the stand along PC 

version of GENNBO 5.0 program.  AIM analyses were carried out using the stand along 

PC version of AIM2000 program.154
 

Electronic spectra simulation: The UV-vis spectra were simulated based on the 

excitation energies and oscillator strengths generated by the TD-DFT calculations.  The 

simulated spectra were generated by application of a Gaussian broadening with a value 

of 0.24 eV.  Table 18 provides a listing of the main low energy excitations responsible 

for the two low energy bands observed in the spectra of [37]+ and [38]+.  The molecular 

orbital contribution of the different transitions to each excitation is also provided. 
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Table 18. Partial TD-DFT calculation output showing the nature of the low energy 

excitations for [37]+ and [38]+. 

[37]+      
Excitations  Energy Oscillator 

strength. 
MO-MO 

transitions Contributions 

Ea  375.31 nm 0.1187 136 ->138 0.21924 

  3.30 eV  137 ->138 0.64571 
Eb  366.45 nm 0.1584 136 ->138 0.62784 

  3.38 eV  136 ->139 -0.13948 

    137 ->138 -0.20235 
Ec  323.97 nm 0.0726 133 ->138 -0.34244 

  3.83 eV  136 ->139 -0.40535 

    137 ->139 0.40643 
Ed  320.84 nm 0.0674 133 ->138 0.53907 

  3.86 eV  134 ->138 -0.12276 

    136 ->138 -0.10795 

    136 ->139 -0.32022 

    137 ->139 0.12385 
[38]+     

Excitations  Energy Oscillator 
strength. 

MO-MO 
transitions Contributions 

Ea  359.25 nm 0.0752 133 ->134 0.66922 

  3.45 eV  133 ->135 -0.15660 
Eb  348.62 nm 0.2147 132 ->134 0.65582 

  3.56 eV  132 ->135 -0.13461 
Ec  313.55 nm 0.0355 129 ->134 0.64324 

  3.95 eV  132 ->135 0.20113 
Ed  311.63 nm 0.0319 129 ->134 -0.15923 

  3.9786 eV  131 ->135 0.15788 

    132 ->134 0.12298 

    132 ->135 0.60372 

    133 ->135 -0.14495 
Ed  307.46 nm 0.535 129 ->134 -0.10788 

  4.0325 eV  132 ->135 0.11618 

    133 ->134 0.16653 

    133 ->135 0.63941 



 

 

119 

 

Figure 59. DFT optimized structure of 37 

 

 

Figure 60. DFT optimized structure of [37]+ 
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Table 19: Atom coordinates for the optimized structure of 37 

 
Center 

Number 
Coordinates(Angstroms) 

X Y Z 

Te1 -0.917797 -1.108870 -0.944925 
C2 4.251566 2.578519 0.199904 
H3 4.724204 3.561945 0.081798 
C4 4.424927 0.207493 0.588944 
H5 5.033629 -0.687828 0.767907 
C6 -1.828741 -0.136494 3.311640 
C7 -0.041901 0.714111 1.763156 
C8 0.144468 1.840175 -2.161674 
C9 -0.011677 1.243177 4.192880 

H10 0.487217 1.745549 5.027996 
C11 2.443358 -1.304937 0.815859 
H12 3.206719 -1.975895 1.247392 
H13 2.087671 -1.764762 -0.126145 
H14 1.577463 -1.278614 1.499027 
C15 -1.230990 -0.085818 1.985713 
C16 -0.774579 -3.255523 -0.823694 
C17 5.066686 1.443563 0.388012 
C18 2.185753 1.226043 0.340075 
C19 2.076590 3.798575 -0.022119 
H20 2.755590 4.661237 0.096807 
H21 1.256956 3.914357 0.709348 
H22 1.616342 3.867723 -1.024151 
C23 -2.152827 3.326137 -1.521536 
H24 -3.031038 3.929914 -1.261174 
C25 0.555875 1.312933 2.890353 
H26 1.482555 1.879593 2.752048 
C27 -1.855177 -0.875349 0.956864 
C28 -0.609895 2.483519 -3.163428 
H29 -0.273263 2.407388 -4.204891 
C30 2.843465 2.494929 0.166274 
C31 -1.445664 2.682386 -0.480654 
C32 -1.769697 3.229136 -2.870992 
C33 3.017788 0.081357 0.584095 
C34 -3.629522 -1.586621 2.491516 

H35 -4.550469 -2.152431 2.662363 
C36 -1.196501 0.550851 4.395389 
H37 -1.656603 0.499841 5.388614 
C38 -0.272705 1.890318 -0.773212 
C39 -0.719462 -5.387929 -2.023482 
H40 -0.802617 -5.947525 -2.961045 
C41 6.579638 1.552811 0.370913 
H42 7.050196 0.729126 0.935915 
H43 6.922387 2.507918 0.807554 
H44 6.973652 1.508178 -0.663526 
C45 1.392709 1.105843 -2.625722 
H46 1.386166 0.997666 -3.724523 
H47 1.481155 0.098058 -2.180783 
H48 2.312703 1.647234 -2.342052 
C49 -0.470663 -6.066002 -0.814562 
H50 -0.355334 -7.154408 -0.809145 
C51 -1.962463 2.942163 0.927833 
H52 -2.665704 3.793145 0.918854 
H53 -1.152569 3.177830 1.637467 
H54 -2.502720 2.072024 1.340842 
C55 -3.026086 -0.885564 3.528477 
H56 -3.457109 -0.900971 4.535772 
C57 -0.515308 -3.937933 0.387754 
H58 -0.429741 -3.380329 1.325368 
C59 -0.372472 -5.338834 0.388545 
H60 -0.177139 -5.861271 1.330959 
C61 -3.033823 -1.589339 1.201160 
H62 -3.492638 -2.175066 0.399075 
C63 -0.876410 -3.987975 -2.030681 
H64 -1.089730 -3.469583 -2.972588 
C65 -2.576386 3.891191 -3.970386 
H66 -1.924989 4.281275 -4.772825 
H67 -3.179850 4.728907 -3.579809 
H68 -3.275916 3.172255 -4.440191 
B69 0.588420 1.152384 0.361088 
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Table 20: Atom coordinates for the optimized structure [37]+ 
 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

Te1  1.453974  0.323877 -0.675331 

C2 -0.810806 -1.003019  1.538351 

B3 -1.539447 -0.116241  0.433760 

C4 -0.122990 -2.302805  4.017578 

H5  0.143638 -2.763731  4.974151 

C6 -0.957324  3.698728  1.294746 

H7 -0.836135  4.319366  2.190283 

C8 -1.284594  1.452296  0.296852 

C9  3.314298 -0.492220 -1.388897 

C10 -1.659009  1.364738 -2.292831 

H11 -1.374590  1.983915 -3.161323 

H12 -2.735776  1.135310 -2.386224 

H13 -1.136042  0.396386 -2.374309 

C14 -2.679288 -0.825144 -0.398454 

C15 -1.203421  3.505232 -1.098652 

H16 -1.259747  3.970525 -2.089922 

C17  0.557718 -0.950161  2.029324 

C18 -3.477320 -2.623847 -1.890305 

H19 -3.258337 -3.513162 -2.493007 

C20 -4.798563 -2.138244 -1.843241 

C21 -4.416962  0.891070  0.477911 

H22 -4.009406  0.848963  1.504218 

H23 -5.514212  0.966156  0.562619 

H24 -4.054400  1.832715  0.026481 

C25 -1.006458  4.326936  0.032251 

C26 -1.398443 -2.436690  3.493094 

H27 -2.160164 -3.016810  4.021424 

C28 -1.370778  2.108292 -0.995054 

C29 -2.427288 -2.003216 -1.180991 

C30  1.666960 -0.347539  1.337245 

C31 -1.725318 -1.798079  2.266716 

H32 -2.746801 -1.891882  1.886813 

C33 -5.050613 -0.991328 -1.057184 

H34 -6.076124 -0.609417 -0.985946 

C35  0.884464 -1.578531  3.304590 

C36  4.706087 -2.453568 -1.764668 

H37  4.896071 -3.521494 -1.624624 

C38 -4.029403 -0.325998 -0.351982 

C39 -1.029920 -2.581491 -1.347828 

H40 -1.074299 -3.625293 -1.702741 

H41 -0.463754 -2.570496 -0.400152 

H42 -0.444123 -2.014558 -2.101431 

C43  2.192598  2.328457 -0.395636 

H44  2.276122  2.806965 -1.382481 

H45  3.167585  2.266845  0.108959 

H46  1.444423  2.848642  0.221353 

C47  5.614803 -1.661747 -2.494839 

H48  6.511915 -2.116685 -2.923642 

C49 -5.919414 -2.825349 -2.595884 

H50 -5.552423 -3.698648 -3.160013 

H51 -6.402772 -2.136771 -3.313650 

H52 -6.709482 -3.175905 -1.906025 

C53  2.205464 -1.489354  3.840184 

H54  2.406707 -1.962840  4.806531 

C55  3.547604 -1.874936 -1.212129 

H56  2.849864 -2.495204 -0.639947 

C57  2.956207 -0.283539  1.877617 

H58  3.780126  0.155425  1.306532 

C59 -0.901422  5.831384 -0.099123 

H60 -0.470340  6.127668 -1.070630 

H61 -0.284803  6.269146  0.704320 

H62 -1.902439  6.299789 -0.031849 

C63  4.213688  0.305367 -2.129448 

H64  4.033672  1.373452 -2.284102 

C65  3.223474 -0.836099  3.156281 

H66  4.231127 -0.772620  3.574794 

C67 -1.092274  1.784928  2.885436 

H68 -1.257549  2.619364  3.587306 

H69 -0.134853  1.308686  3.162832 

H70 -1.883234  1.037384  3.060414 

C71 -1.088377  2.301538  1.453669 

C72  5.369517 -0.287497 -2.676971 

H73  6.073741  0.327045 -3.244979 
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Figure 61. Computed structure of 37-F 
 

 

Figure 62. Computed structure of 37-CN.
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Table 21: Atom coordinates for the optimized structure of 37-F 
 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

Te1 1.588376 0.129918 -0.904963 
F2 -0.774471 -0.184813 -1.327475 
C3 -0.041069 3.699109 0.078384 
H4 -0.057664 4.552723 -0.612020 
C5 -0.808681 1.397530 0.624050 
C6 -0.098958 0.472884 2.964387 
H7 -1.113383 0.093617 3.168529 
H8 0.296807 0.905603 3.900661 
H9 0.518413 -0.410053 2.719668 
C10 4.191971 0.763187 0.568703 
H11 3.463831 1.120882 1.306885 
C12 1.285032 -1.783309 0.062375 
C13 -1.167354 -1.401805 0.844515 
C14 0.067008 -2.171791 0.751838 
C15 3.749304 0.163772 -0.635248 
C16 -0.090711 1.528057 1.862875 
C17 6.075370 -0.104151 -1.339047 
H18 6.805386 -0.435700 -2.084473 
C19 4.697685 -0.262712 -1.592811 
H20 4.377773 -0.718307 -2.535038 
B21 -1.520951 0.007632 0.067148 
C22 -0.802225 2.554680 -0.243483 
C23 0.135816 -3.481585 1.412432 
C24 1.295813 -4.308458 1.303246 
H25 1.283134 -5.281594 1.806980 
C26 0.722603 3.788735 1.261477 
C27 6.511361 0.477084 -0.133247 
H28 7.581624 0.596954 0.060867 
C29 0.661327 2.698158 2.146012 
H30 1.196834 2.758593 3.102908 
C31 -2.202189 -1.950892 1.624069 
H32 -3.144020 -1.396934 1.682524 
C33 -0.965923 -3.954603 2.187689 
H34 -0.878861 -4.932454 2.674268 
C35 5.569001 0.911030 0.819947 
H36 5.904380 1.369692 1.755419 
C37 -1.609527 2.618798 -1.533932 

H38 -1.540664 3.626981 -1.979536 
H39 -2.673591 2.390011 -1.352492 
H40 -1.264499 1.884259 -2.281736 
C41 2.411662 -3.899111 0.593014 
H42 3.297351 -4.535580 0.509428 
C43 -2.114411 -3.190716 2.307444 
H44 -2.963263 -3.547656 2.899990 
C45 1.527758 5.033388 1.586439 
H46 2.129825 4.894492 2.501268 
H47 0.869562 5.908372 1.749997 
H48 2.216953 5.299368 0.763216 
C49 2.406280 -2.615508 -0.011976 
H50 3.310944 -2.279413 -0.525875 
C51 -3.700299 -0.720710 -1.323752 
C52 1.694058 -0.650509 -2.916297 
H53 2.226227 -1.613265 -2.899207 
H54 2.209880 0.085676 -3.552248 
H55 0.649723 -0.784919 -3.230157 
C56 -2.888912 -1.714851 -2.146528 
H57 -2.185546 -2.288602 -1.520117 
H58 -2.286016 -1.212082 -2.924000 
H59 -3.563816 -2.429314 -2.651733 
C60 -3.129875 0.086035 -0.277779 
C61 -5.079590 -0.646890 -1.624035 
H62 -5.476322 -1.277700 -2.430676 
C63 -5.961287 0.189176 -0.914660 
C64 -5.422369 0.933546 0.150060 
H65 -6.090265 1.561617 0.754371 
C66 -4.047097 0.893920 0.479226 
C67 -3.623675 1.730873 1.681270 
H68 -4.514137 2.053317 2.250737 
H69 -3.067881 2.638600 1.385238 
H70 -2.968981 1.172768 2.372582 
C71 -7.431622 0.280098 -1.279475 
H72 -7.793110 -0.658081 -1.737563 
H73 -7.618509 1.092583 -2.009526 
H74 -8.056348 0.490244 -0.392633 
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Table 22. Atom coordinates for the optimized structure of 37-CN 
 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

Te1 0.242009 -1.961422 0.381459 
N2 -1.448128 -0.535751 2.320754 
C3 -3.126840 4.554668 -0.449334 
H4 -3.514090 5.075008 -1.335194 
C5 3.119133 1.352524 1.564673 
C6 -1.762887 2.701886 0.484299 
C7 -1.230203 0.300123 1.510047 
C8 -0.091539 0.194981 -2.086627 
C9 0.784550 1.683328 0.671449 
C10 -2.298346 3.422968 -0.640693 
C11 -2.344095 -0.244954 -1.227417 
C12 1.841597 0.775076 1.117211 
C13 -1.080167 0.428653 -1.058225 
C14 2.069090 -5.523124 -1.527873 
H15 1.834767 -6.591769 -1.560260 
C16 3.352873 2.758172 1.470260 
H17 4.319061 3.148834 1.808128 
C18 -1.533849 -1.473865 -3.215829 
C19 1.806262 -0.680125 1.162614 
C20 1.116841 3.049314 0.598098 
H21 0.338279 3.741674 0.266106 
C22 2.374772 3.593288 0.962514 
H23 2.548211 4.670572 0.871972 
C24 -3.537715 -0.005188 -0.312839 
H25 -4.476791 -0.216897 -0.854939 
H26 -3.572775 1.034762 0.048617 
H27 -3.516738 -0.655745 0.581304 
C28 -0.330463 -0.749158 -3.117060 
H29 0.446320 -0.899509 -3.878222 
C30 2.865260 -1.443442 1.670952 
H31 2.810772 -2.535355 1.665313 
C32 4.166000 0.538197 2.094063 
H33 5.081703 1.036022 2.432072 
C34 1.213593 0.976593 -2.205684 
H35 1.632891 0.847557 -3.219452 
H36 1.985321 0.659209 -1.482240 
H37 1.063310 2.054624 -2.034800 

C38 -2.886803 4.383713 1.929135 
H39 -3.081610 4.766367 2.939668 
C40 -3.460070 5.041121 0.826475 
C41 -2.538447 -1.174547 -2.275361 
H42 -3.514206 -1.669947 -2.364037 
C43 3.156187 -5.013285 -2.262976 
H44 3.770096 -5.685920 -2.869605 
C45 4.045623 -0.838704 2.169370 
H46 4.847714 -1.460812 2.576337 
C47 -2.053637 3.250743 1.785808 
C48 2.666611 -2.765827 -1.438853 
H49 2.905343 -1.698880 -1.405605 
C50 -2.005175 3.069164 -2.093378 
H51 -2.301426 3.906665 -2.750562 
H52 -2.552141 2.170770 -2.429802 
H53 -0.934818 2.871876 -2.268341 
C54 1.583771 -3.279836 -0.692126 
C55 1.277495 -4.658643 -0.745752 
H56 0.431364 -5.067178 -0.182481 
C57 -1.474816 2.693988 3.081108 
H58 -1.487835 3.474283 3.863413 
H59 -0.432443 2.355185 2.962780 
H60 -2.053354 1.833584 3.464023 
C61 -1.758718 -2.481509 -4.328407 
H62 -2.742308 -2.972565 -4.230911 
H63 -0.983941 -3.270809 -4.324732 
H64 -1.722929 -1.999084 -5.323865 
C65 3.451892 -3.636659 -2.218901 
H66 4.294836 -3.237344 -2.791534 
C67 0.148289 -3.271687 2.113804 
H68 -0.640642 -4.014140 1.912718 
H69 -0.148902 -2.621095 2.948348 
H70 1.119410 -3.758537 2.278828 
C71 -4.390694 6.225937 1.005494 
H72 -4.117471 6.826251 1.892096 
H73 -5.439633 5.897549 1.146225 
H74 -4.373177 6.891189 0.123694 
B75 -0.818047 1.328634 0.331697 
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Figure 63. DFT optimized structure of 38 

 

Figure 64. DFT optimized structure of [38]+
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Table 23: Atom coordinates for the optimized structure of 38 
: 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

S1 1.614549 0.271494 -0.963642 
C2 2.879431 -0.926936 -1.444761 
C3 2.157023 0.736259 0.691000 
C4 -0.095515 0.126957 1.711774 
C5 -1.178065 1.450012 -0.485616 
C6 1.283363 0.564776 1.823790 
C7 -4.336185 -1.948539 0.184775 
H8 -5.415282 -1.748711 0.201779 
C9 -2.022549 -1.082894 0.260535 
C10 -0.782910 -0.171999 2.904860 
H11 -1.807062 -0.554065 2.836907 
C12 -2.495659 -3.503052 0.106800 
H13 -2.118096 -4.531606 0.049068 
C14 -3.885279 -3.281805 0.094939 
C15 -0.220286 0.046670 4.192861 
H16 -0.809069 -0.180368 5.087463 
C17 -1.328994 3.903860 -0.776563 
H18 -1.315424 4.904315 -0.326000 
C19 -1.147423 2.783746 0.062836 
B20 -1.015089 0.143439 0.412323 
C21 -3.444542 -0.857939 0.256293 
C22 -1.416724 1.329678 -1.902963 
C23 3.194470 -1.003820 -2.822862 
H24 2.733708 -0.300475 -3.524166 
C25 3.187847 1.302068 3.264881 
H26 3.584898 1.489728 4.268552 
C27 -1.569208 2.480904 -2.704045 
H28 -1.727917 2.355714 -3.782445 
C29 -1.529100 3.781137 -2.165269 
C30 1.849610 0.819791 3.139562 
C31 -1.567427 -2.442692 0.201125 
C32 3.458400 1.228956 0.851774 
H33 4.091591 1.365780 -0.029430 
C34 3.488259 -1.824712 -0.537262 

H35 3.246384 -1.772231 0.527622 
C36 1.062181 0.561882 4.306721 
H37 1.504082 0.760086 5.289600 
C38 -4.055802 0.534716 0.351430 
H39 -5.137525 0.463725 0.561816 
H40 -3.930905 1.103089 -0.587767 
H41 -3.597934 1.143268 1.151157 
C42 -0.091106 -2.798395 0.191132 
H43 0.453022 -2.305411 1.015388 
H44 0.401419 -2.480264 -0.746206 
H45 0.048549 -3.889003 0.288536 
C46 -1.497605 -0.013968 -2.610745 
H47 -1.499515 0.129257 -3.705575 
H48 -2.414735 -0.565961 -2.339230 
H49 -0.646843 -0.670950 -2.355641 
C50 -0.981994 3.076098 1.548246 
H51 -1.224743 4.133158 1.754699 
H52 0.051692 2.899594 1.895203 
H53 -1.638180 2.450851 2.177491 
C54 3.974129 1.521886 2.139922 
H55 4.994815 1.903477 2.238808 
C56 -4.868021 -4.433605 -0.001533 
H57 -4.348005 -5.406937 0.004254 
H58 -5.465701 -4.377776 -0.931440 
H59 -5.583872 -4.427015 0.841847 
C60 4.719341 -2.858808 -2.379533 
H61 5.434259 -3.605132 -2.739153 
C62 -1.694945 5.005711 -3.044332 
H63 -1.951822 4.725141 -4.080277 
H64 -0.764655 5.604537 -3.080135 
H65 -2.492260 5.671858 -2.665063 
C66 4.409736 -2.777931 -1.007189 
H67 4.879932 -3.466348 -0.297402 
C68 4.105933 -1.971595 -3.284581 
H69 4.345539 -2.020910 -4.351618 
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Table 24: Atom coordinates for the optimized structure of [38]+: 
 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

S1 0.086381 0.064947 1.819496 
C2 3.224435 -0.391698 -4.153047 
C3 -0.964501 -1.191268 -0.918628 
C4 -2.641547 -2.622876 0.292056 
C5 -0.069572 3.862406 -0.039988 
H6 0.687810 4.606448 0.235562 
C7 1.100226 0.689732 -3.504173 
C8 -2.379328 3.255174 -0.386228 
H9 -3.441806 3.525636 -0.399334 
C10 0.354162 2.574293 -0.430286 
C11 -2.933135 -3.298430 -0.935655 
H12 -3.708114 -4.071413 -0.935226 
C13 -1.618746 -1.582330 0.318532 
C14 -1.324452 -1.051191 1.625288 
C15 -1.257288 -1.957081 -2.068139 
H16 -0.735326 -1.711079 -2.997725 
C17 -0.615383 1.564845 -0.792033 
C18 2.158282 0.491975 -4.416683 
H19 2.146952 1.041666 -5.365222 
C20 -0.657122 1.556442 2.592628 
H21 -1.427120 1.909719 1.889399 
H22 0.122770 2.325865 2.680958 
H23 -1.089953 1.302017 3.570780 
C24 3.201025 -1.104841 -2.935211 
H25 4.020219 -1.796670 -2.704672 
C26 2.153078 -0.957441 -2.006259 
C27 -1.431067 4.232619 -0.017479 
C28 -2.007844 1.947455 -0.771488 
C29 1.073310 -0.042686 -2.267194 
C30 1.018702 -0.682624 3.204365 
C31 -3.060162 -2.382319 2.704394 
H32 -3.606167 -2.663796 3.608016 
C33 -2.229633 -2.993798 -2.089343 
H34 -2.427452 -3.531991 -3.020514 
C35 1.258012 -2.073183 3.170074 
H36 0.808784 -2.702094 2.396870 

B37 -0.133314 0.126287 -1.263478 
C38 2.252661 -1.732932 -0.701171 
H39 3.027510 -2.515476 -0.767607 
H40 1.298373 -2.222756 -0.438960 
H41 2.534016 -1.072387 0.144083 
C42 -2.019380 -1.427004 2.781066 
H43 -1.740539 -1.016796 3.756365 
C44 -3.344246 -2.980989 1.481171 
H45 -4.114111 -3.756453 1.415126 
C46 -3.133687 1.024262 -1.218464 
H47 -4.063022 1.600675 -1.361265 
H48 -3.348982 0.231265 -0.479996 
H49 -2.905738 0.518565 -2.172111 
C50 0.001154 1.665924 -3.903699 
H51 0.088347 1.926386 -4.972091 
H52 0.056302 2.607384 -3.327217 
H53 -1.011068 1.252634 -3.746572 
C54 1.599083 0.137019 4.194414 
H55 1.433562 1.216727 4.216593 
C56 2.072432 -2.648384 4.162494 
H57 2.254362 -3.726351 4.147823 
C58 -1.856615 5.639877 0.346008 
H59 -1.148484 6.112317 1.048200 
H60 -2.861932 5.657715 0.800769 
H61 -1.896742 6.281607 -0.555353 
C62 1.855856 2.321077 -0.438880 
H63 2.384582 3.122328 0.106046 
H64 2.253862 2.301099 -1.468815 
H65 2.137149 1.354592 0.015868 
C66 4.354617 -0.580859 -5.144278 
H67 4.224581 0.059319 -6.032398 
H68 4.414250 -1.629873 -5.489727 
H69 5.332769 -0.335967 -4.690300 
C70 2.411174 -0.457815 5.180271 
H71 2.856020 0.170164 5.956877 
C72 2.647161 -1.844857 5.166633 
H73 3.278781 -2.298736 5.934779 
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Figure 65. DFT optimized structure of 38-F 

 

Figure 66. DFT optimized structure of 38-CN
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Table 25: Atom coordinates for the optimized structure of 38-F 
 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

F1 -0.619404 -0.222778 0.124022 
B2 -0.345380 -0.003002 1.621951 
C3 1.031871 -0.893207 1.873956 
C4 1.097373 -1.608946 3.084617 
H5 0.271243 -1.481253 3.790580 
C6 2.135743 -2.511310 3.429966 
H7 2.110808 -3.026330 4.395932 
C8 3.149675 -2.763820 2.521978 
H9 3.943370 -3.486890 2.739048 
C10 4.226383 -2.388495 0.352399 
H11 4.965016 -3.140742 0.650780 
C12 4.331943 -1.751217 -0.874376 
H13 5.140683 -1.987896 -1.571094 
C14 3.387336 -0.750329 -1.203368 
H15 3.514747 -0.199132 -2.138917 
C16 2.337741 -0.435011 -0.335172 
C17 2.130433 -1.101119 0.938538 
C18 3.173017 -2.085797 1.265906 
C19 -0.221976 1.647309 1.783101 
C20 -1.258837 2.463110 1.200666 
C21 -1.199642 3.874073 1.258272 
H22 -2.017374 4.453113 0.808304 
C23 -0.142550 4.557098 1.891256 
C24 0.862425 3.770868 2.482272 
H25 1.682842 4.271312 3.014822 
C26 0.841703 2.352598 2.444280 
C27 -2.479667 1.865262 0.512139 
H28 -2.873441 0.998760 1.068173 
H29 -2.241839 1.497772 -0.502533 
H30 -3.279921 2.621936 0.422882 
C31 -0.113014 6.073112 1.964386 
H32 -0.941179 6.464473 2.586312 
H33 -0.218416 6.533613 0.963846 
H34 0.832040 6.435545 2.406188 
C35 1.987202 1.663703 3.180081 
H36 2.605326 2.413808 3.705944 
H37 2.653474 1.094368 2.507371 

H38 1.626151 0.942195 3.933287 
C39 -1.616914 -0.709342 2.427482 
C40 -2.182166 -0.199742 3.647887 
C41 -3.282401 -0.841405 4.265379 
H42 -3.682553 -0.416742 5.195779 
C43 -3.871299 -2.002512 3.735237 
C44 -3.291990 -2.539231 2.571054 
H45 -3.698270 -3.470102 2.152750 
C46 -2.191851 -1.931630 1.924528 
C47 -1.646101 1.029927 4.371735 
H48 -2.069851 1.083133 5.391122 
H49 -1.903945 1.967991 3.849620 
H50 -0.547417 1.016192 4.466892 
C51 -5.078135 -2.649664 4.389461 
H52 -5.081302 -3.744488 4.239102 
H53 -6.026053 -2.260732 3.966962 
H54 -5.102426 -2.454134 5.476609 
C55 -1.658174 -2.664879 0.698600 
H56 -0.556051 -2.691925 0.681646 
H57 -1.977039 -2.178192 -0.240358 
H58 -2.030468 -3.705706 0.687418 
S59 1.277180 0.964985 -0.878828 
C60 2.475119 2.161966 -1.562309 
C61 2.895262 3.150080 -0.643157 
C62 2.915267 2.192636 -2.902935 
C63 3.791430 4.148332 -1.066251 
H64 2.500593 3.153705 0.379362 
C65 3.803260 3.204836 -3.315138 
H66 2.572837 1.452534 -3.631081 
C67 4.249015 4.175377 -2.397868 
H68 4.116695 4.913501 -0.355708 
H69 4.143155 3.232349 -4.354782 
H70 4.939786 4.958446 -2.724153 
C71 0.502821 0.300440 -2.402045 
H72 0.015293 1.137112 -2.926212 
H73 1.241039 -0.202075 -3.043927 
H74 -0.247887 -0.413267 -2.037485 
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Table 26: Atom coordinates for the optimized structure of 38-CN 
 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

B1 -0.013526 -0.000183 -0.004992 
C2 0.005769 -0.004488 1.687774 
C3 1.290757 -0.008055 2.267544 
H4 2.145219 -0.149045 1.600105 
C5 1.558683 0.238464 3.639031 
C6 2.591138 0.209322 4.002119 
C7 0.522754 0.597220 4.485449 
C8 0.707276 0.889614 5.524686 
C9 -1.865421 1.029058 4.873388 

H10 -1.591248 1.359770 5.881272 
C11 -3.194371 1.031367 4.473749 
H12 -3.986468 1.387836 5.137605 
C13 -3.522828 0.505328 3.200159 
H14 -4.577071 0.422107 2.924782 
C15 -2.519100 0.074628 2.325214 
C16 -1.101775 0.200929 2.616674 
C17 -0.818750 0.605726 3.999879 
C18 -0.360867 -1.432932 -0.800578 
C19 -0.644027 -1.392981 -2.214723 
C20 -0.976303 -2.570409 -2.925895 
H21 -1.178263 -2.491281 -4.002392 
C22 -1.026980 -3.835380 -2.311028 
C23 -0.724945 -3.887981 -0.937990 
H24 -0.723875 -4.861440 -0.429659 
C25 -0.399306 -2.732805 -0.184750 
C26 -0.570876 -0.116451 -3.043137 
H27 0.273942 0.522467 -2.737513 
H28 -1.484967 0.496972 -2.946782 
H29 -0.444909 -0.365522 -4.112085 
C30 -1.333841 -5.091402 -3.107072 
H31 -0.438798 -5.455128 -3.649076 
H32 -2.117605 -4.911812 -3.865752 
H33 -1.672735 -5.913681 -2.451570 
C34 -0.043785 -2.988134 1.275235 
H35 -0.072905 -4.071814 1.487178 
H36 -0.729163 -2.494599 1.987753 
H37 0.967257 -2.622318 1.525497 

C38 1.416953 0.729826 -0.509558 
C39 2.526607 -0.000602 -1.068878 
C40 3.686317 0.674578 -1.519459 
H41 4.506770 0.078454 -1.940340 
C42 3.832298 2.069696 -1.434591 
C43 2.788042 2.781678 -0.820325 
H44 2.889538 3.866519 -0.684107 
C45 1.611072 2.150910 -0.354632 
C46 2.582020 -1.520242 -1.182740 
H47 3.622705 -1.841364 -1.371262 
H48 1.956640 -1.909726 -2.004866 
H49 2.239397 -2.023160 -0.263161 
C50 5.065207 2.772318 -1.971691 
H51 5.291725 3.689075 -1.397856 
H52 4.929167 3.075457 -3.028875 
H53 5.953851 2.116770 -1.933438 
C54 0.612864 3.070179 0.338760 
H55 0.138275 2.593116 1.212154 
H56 -0.204350 3.387780 -0.333134 
H57 1.128213 3.981785 0.692048 
S58 -3.033214 -0.828231 0.843546 
C59 -3.728432 -2.410311 1.451319 
C60 -4.087092 -2.664181 2.788508 
C61 -3.866592 -3.401156 0.453977 
C62 -4.620935 -3.924031 3.123384 
H63 -3.936345 -1.906934 3.561426 
C64 -4.415773 -4.649013 0.802776 
H65 -3.517039 -3.215247 -0.566158 
C66 -4.794280 -4.910335 2.133615 
H67 -4.895560 -4.131502 4.161810 
H68 -4.526197 -5.420342 0.035424 
H69 -5.210028 -5.886043 2.401969 
C70 -4.573756 0.009054 0.287924 
H71 -4.923908 -0.556593 -0.589664 
H72 -5.345292 0.009729 1.070232 
H73 -4.262978 1.020766 -0.017552 
N74 -2.168825 1.658080 -0.661366 
C75 -1.235624 0.981310 -0.396955 



 

 

131 

CHAPTER V 

ON THE SYNERGY OF COULOMBIC AND CHELATE EFFECTS IN BIDENTATE 

DIBORANES: SYNTHESIS AND ANION BINDING PROPERTIES OF A CATIONIC 

1,8-DIBORYLNAPHTHALENE 

 

5.1 Introduction 

The chemistry of boron-based bidentate Lewis acids19-24 is an area of active 

investigation with application in the domains of anion complexation,25-26 organometallic 

catalysis,27-30 as well as small molecule activation.31-32  Since the properties of these 

bidentate Lewis acids can be influenced by the respective positions and electronic 

features of the binding sites, a great deal of attention has been dedicated to the synthesis 

of compounds with juxtaposed electron-poor boron functionalities.27, 31  Prototypical 

examples of such compounds include the fluorinated diboranes 12 and 11 which have 

both been shown to chelate small anions.27, 31  
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In a variant of this approach, several groups, including ours, have become 

interested in boron-based bidentate Lewis acids that bear a cationic group in proximity 

from the boron atom.30, 45, 49, 59-62, 155-158  Examples of such compounds include [39]+ and 

[37]+ which have been investigated for the complexation of fluoride anions.59, 158  For 

these compounds, the coordination of the anion is supported by the formation of a B-

F→Sb (for [39]+) or B-F→Te (for [37]+) motif whose formation illustrates the Lewis 

acidic behavior of the heavy onium moiety.  The stability of the resulting complexes also 

benefits from strong Coulombic effects which prevent dissociation of the anion from the 

cationic guest.  The favorable influence of these Coulombic effects have also been 

demonstrated in the case of triarylboranes decorated by peripheral cationic moieties such 

as the phosphonium borane [22]+ which, unlike neutral boranes, captures F- in aqueous 

solution.62 

Building on these earlier achievements, we have now decided to target bidentate 

diboranes that incorporate a peripheral cationic functionality.  From a simple conceptual 

viewpoint, we anticipate that the anion affinity of such system would benefit from: i) the 

chelate effect provided by the chelating diborane moiety; ii) the Coulombic effect 

imparted by the presence of a peripheral cationic group. 

 

5.2 Synthesis and characterization of the cationic diborane 

Inspired by Katz’s seminal contribution on the anion affinity of 1,8-

dimethylborylnaphthalene,20, 34-36 our group has investigated the synthesis of numerous 

naphthalene-based diboranes56, 159-161 including 10,37, 162 whose fluoride binding 
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constants exceed that of monofunctional analogues by at least 3 or 4 orders of 

magnitude.  With the synthesis of a cationic bidentate borane as an objective, it occurred 

to us that the sulfur atom of the thiaborin163-166 moiety could possibly be alkylated.  With 

this in mind, 10 was allowed to react with MeOTf in refluxing dichloromethane to afford 

[40]OTf as a moisture sensitive compound (Figure 67).  This salt has been characterized 

by NMR spectroscopy, UV-vis spectroscopy and single crystal X-ray diffraction.  The 

1H NMR spectrum of this compound shows a singlet at 3.60 ppm corresponding to the 

methyl group of the sulfonium ion.  In addition, six distinct methyl groups are observed 

for the mesityl substituents indicating that the structure of [40]+ is sterically congested.  

Although the S-alkylation of thiaborins has, to our knowledge, never been reported, we 

note that related reactions are known for phosphaborins which can be easily converted 

into the corresponding phosphonium species.47, 167-168 

 

 
Figure 67 Synthesis of the sulfonium diborane of [40]+ 

 
The crystal structure of [40]OTf shows that: 1) both boron centers B(1) and B(2) 

adopt a trigonal-planar coordination geometry as indicated by the sum of the Caryl-B-Caryl 

angles (∑C-B(1)-C = 356.02 º, ∑C-B(2)-C = 359.55 º); 2) the distance separating the 

two boron atoms (3.276(3) Å) is almost identical to that of the neutral precursor 10 
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(3.279(4) Å); 3) the sulfur-bound methyl group points outwards from the diboron pocket 

(Figure 68, Table 27).  The UV-vis spectrum of [40]OTf in CHCl3 exhibits a band 

centered at max = 349 nm.5  This band, whose position is close to that observed for 10 

(max = 363 nm in THF),37 originates from the trigonal planar boron-centered 

chromophores thus implying that the triflate counteranion does not associate with [40]+ 

in solution.  To confirm this photophysical assignment, the structure of [40]+ has been 

computationally optimized using DFT methods (functional: B3LYP; mixed basis set: B: 

6-31+g(d’); S: 6-31+g(d); C, H: 6-31g).  The optimized geometry, which is close to that 

determined experimentally, was subjected to a time-dependent DFT calculation using the 

PCM solvation model with chloroform as a solvent.  The LUMO of [40]+ is localized on 

the cationic and thus inherently electron-deficient sulfonium boryl moiety, with a 

dominating contribution from the pz orbital of the boron atom.  The LUMO+1 is centered 

on the other boryl moiety, again with a large contribution from the pz orbital of the boron 

atom.  These orbital characteristics contrast with those of the neutral precursor 10, for 

which the LUMO shows an almost equal contribution from both boron pz orbitals 

(Figure 69).37, 162, 169  These differences illustrate the asymmetry induced by the cationic 

sulfonium moiety, making one side of the molecule distinctly more electron-deficient 

than the other one.  TD-DFT calculations indicate that both the LUMO and LUMO+1 of 

[40]+ are the main accepting orbitals of the electronic transitions that contribute to the 

low energy band observed at max 349 nm.  We have also compared the electrochemical 

properties of 10 and [40]+.  Unlike the cyclic voltammogram of 10 which shows two 

reversible reduction waves at E1/2 -2.20 V and -2.57 V (vs. Fc/Fc+),162 [40]+ only 
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displays an irreversible wave at Ered -1.66 V (vs.  Fc/Fc+) in THF.  The potential of this 

wave, which is much more positive than that of 10, indicates that [40]+ is substantially 

more electrophilic than 10. Its irreversibility also suggests that the resulting neutral 

radical is unstable. 

 

Figure 68. ORTEP drawing of [40]+ with thermal ellipsoid plots (50% probability).  For 

clarity, the hydrogen atoms and triflate anion are omitted and the mesityl subsitutents are 

represented by thin line.  Selected bond lengths (Å) and angles (°): S(1)-C(23) 1.796(2), 

C(1)-B(1) 1.568(3), C(17)-B(1) 1.569(3), C(11)-B(1) 1.564(3), C(24)-B(2) 1.576(3), 

C(33)-B(2) 1.578(3), C(10)-B(2) 1.567(3);  C(11)-B(1)-C(1) 117.23(18), C(11)-B(1)-

C(17) 117.97(18), C(1)-B(1)-C(17) 120.82(18), C(10)-B(2)-C(24) 124.41(18), C(10)-

B(2)-C(33) 116.85(17), C(24)-B(2)-C(33) 118.29(17), C(6)-C(10)-B(2) 128.27(17), 

C(6)-C(1)-B(1) 131.89(17).  
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Table 27. Crystal data, data collections, and structure refinement for [40]OTf•CH2Cl2. 

Crystal data 
 

[40]OTf•CH2Cl2 
formula  C43H41B2Cl2F3O3S2 

Mr  819.40 
crystal size (mm3)  0.34 x 0.20 x 0.09 

crystal system  Monoclinic 
space group  P2(1)/c 

a (Å)  8.597(4) 
b (Å)  12.470(5) 
c (Å)  37.732(15) 
α () 90 
 ()  102.280(9) 
γ () 90 

V (Å3)  3952(3) 
Z  4 

calc (g cm-3)  1.377 
 (mm-1)  0.324 
F(000)  1704 

  

Data Collection  
T (K)  110(2) 

scan mode   

hkl range 
-11  +11 
-16  +16 
-49  +50  

measd reflns  45225 
unique reflns [Rint]  9592 [0.0805] 

reflns used for refinement  9592 
   

Refinement  
refined parameters  520 

GooF  0.935 
R1,a wR2

b all data  0.1035, 0.1550 
fin (max/min) (e Å-3)  0.971, -0.820 

a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2. 
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Figure 69. Top: Experimental (chloroform) and calculated UV-vis spectra for [40]+.  

Bottom: Views of LUMO and LUMO+1 of [40]+ and LUMO of 10. (isovalue = 0.035). 

 

5.3 Fluoride anion complexation 

 

 

Figure 70. Reactions of [40]+ with fluoride in chloroform. 
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 The cationic borane [40]+ quickly reacts with [nBu4N][Ph3SiF2] in CDCl3 to 

afford the corresponding fluoride complex 40--F (Figure 70).  This fluoride adduct, 

which is air and moisture stable, has been fully characterized.  The 11B NMR resonances 

at -0.4 ppm and 4.4 ppm are consistent with the presence of two four-coordinate boron 

centers.37  The 1H NMR resonance of the sulfur-bound methyl group appears at 3.28 

ppm, upfield from that of [40]+ at 3.60 ppm.  The 19F NMR signal at -174.4 ppm is 

comparable to the chemical shift observed in other fluoride chelate complexes27 

including [10--F]- (-188.7 ppm).37  The structure of 40--F has also been determined 

by single crystal X-ray diffraction (Figure 71, Table 28).  In contrast with the relatively 

symmetrical B-F-B bridge of [10--F]- (B-F bond lengths = 1.585(5) Å and 1.633(5) 

Å),37 the structure of 40--F shows that the fluorine atom forms a short bond with B(1) 

(1.539(4) Å) and a long one with B(2) (1.822(4) Å).  This unsymmetrical coordination is 

logically reflected by a notable difference in the extent of pyramidalization observed for 

each boron center ((C-B(1)-C) = 334.6 º and (C-B(2)-C) = 350.6º).  The 

asymmetry of the B-F-B bridge in 40--F can be correlated to the presence of a 

sulfonium moiety which enhances the Lewis acidity of the adjacent B(1) atom.  This 

conclusion is in agreement with the computational studies of [40]+ which show that the 

pz orbitals of the B(1) boron atom contributes to the LUMO while that of the B(2) atom 

contributes to the LUMO+1.  It is also interesting to note that the sulfur-bound methyl 

group is oriented inwards.  This surprising orientation places the C(41) atom at 3.452 Å 

from the fluorine atom, which is above the range that one would expect if a CMe-H---F 

interaction was present. 
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Figure 71. ORTEP drawings of 40--F with thermal ellipsoid plots (50% probability).  

For clarity, the hydrogen atoms are omitted and the mesityl subsitutents are represented 

by thin line.  Selected bond lengths (Å) and angles (°) for 40--F: F(1)-B(1) 1.540(5), 

F(1)-B(2) 1.822(4), C(2)-B(2) 1.608(6), C(3)-B(2) 1.626(5), C(4)-B(2) 1.599(6), C(10)-

B(1) 1.622(6), C(11)-B(1) 1.631(6), C(29)-B(1) 1.604(6), S(1)-C(41) 1.760(4); B1-F1-

B2 124.1(2), C(29)-B(1)-C(10) 112.8(3), C(29)-B(1)-C(11) 110.3(3), C(10)-B(1)-C(11) 

111.5(3), C(9)-C(29)-B(1) 125.5(3), C(4)-B(2)-C(2) 112.3(3), C(4)-B(2)-C(3) 120.3(3), 

C(2)-B(2)-C(3) 118.0(3), C(9)-C(4)-B(2) 125.2(3).  
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Table 28. Crystal data, data collections, and structure refinement for 40--F. 

Crystal data 
 

40--F 
formula  C41H39B2FS 

Mr  604.40 
crystal size (mm3)  0.10 x 0.08 x 0.06 

crystal system  Monoclinic 
space group  P2(1)/c 

a (Å)  12.492(2) 
b (Å)  12.127(2) 
c (Å)  21.474(4) 
α () 90 
 ()  94.187(2) 
γ () 90 

V (Å3)  3244.4(10) 
Z  4 

calc (g cm-3)  1.237 
 (mm-1)  0.135 
F(000)  1280 

  

Data Collection  
T (K)  110(2) 

scan mode   

hkl range 
-14  +14 
-13  +13 
-24  +24  

measd reflns  28175 
unique reflns [Rint]  5082 [0.0894] 

reflns used for refinement  5082 
   

Refinement  
refined parameters  402 

GooF  0.926 
R1,a wR2

b all data  0.1132, 0.1649 
fin (max/min) (e Å-3)  0.502, -0.404 

a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2. 
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The structure of 40--F has been computationally optimized using DFT methods 

(functional: B3LYP; mixed basis set: B: 6-31+g(d’); S: 6-31+g(d); C, H: 6-31g).  

Interestingly, the optimized structure shows a large deviation from that observed 

experimentally (Figure 72).  The largest deviation is observed in the B(2)-F(1) bond 

which converges to a value of 2.393 Å as opposed to 1.822(4) Å in the crystal structure.  

To elucidate the origin of this difference, we decided to study how variations in the 

B(2)-F(1) bond length affect the total energy of the structure.  To this end, the structure 

of 40--F has been optimized with the B(2)-F(1) constrained at 1.600, 1.822, 2.000, 

2.200, 2.400, 2.600, 2.800, 3.000 and 3.200 Å.  As it can been seen from Figure 72, the 

total energy of the molecule varies by only 1.95 kcal/mol in the 1.822 < B(2)-F(1) < 

2.800 Å range.  This shallow energy well indicates that the B(2)-F(1) bond length has 

limited effect on the total energy of the molecule, the structure of which can therefore be 

influenced by subtle solvation or crystal packing effect. 
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Figure 72. (a) Optimized structure of 40--F.  Calculated bond lengths (Å) and angles 

(°) for 40--F: F(1)-B(1) 1.486, F(1)-B(2) 2.393, C(2)-B(2) 1.604, C(3)-B(2) 1.601, 

C(4)-B(2) 1.589, C(10)-B(1) 1.648, C(11)-B(1) 1.658, C(29)-B(1) 1.625, S(1)-C(41) 

1.836; B1-F1-B2 116.9, C(29)-B(1)-C(10) 113.0, C(29)-B(1)-C(11) 109.6, C(10)-B(1)-

C(11) 110.2, C(9)-C(29)-B(1) 127.2, C(4)-B(2)-C(2) 116.2, C(4)-B(2)-C(3) 122.0, C(2)-

B(2)-C(3) 119.3, C(9)-C(4)-B(2) 129.0.  (b) The enegy changes based on different B(2)-

F(1) lengths in the optimization calculations of 40--F.  (c) AIM electron density maps 

with relevant bond paths and bond critical points of B(1)-F(1)-B(2) bond in 40--F 

(left) and B(1)-N(1)-B(2) bond in 40--N3 (right). 
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 A geometry optimization carried out by constraining the B(2)-F(1) bond length to 

its experimental value (B(2)-F(1) = 1.822 Å) afforded a structure that lies only 1.95 

kcal/mol above the computed minimum with a B(1)-F(1) bong length of 1.555 Å (Figure 

72).  The latter is in good agreement with the B(1)-F(1) bond length of 1.540(5) Å 

determined by X-ray diffraction (Figure 71).  An atom in molecules (AIM) calculation170 

carried out at this constrained geometry identifies a bond path for both the B(1)-F(1) and 

the B(2)-F(2) linkages (Figure 72).  The electron density ρ(r) of 0.100 e bohr−3 at the 

bond critical point (BCP) of the B(1)-F(1) bond is significantly larger than that of the 

B(2)-F(1) bond (0.053 e bohr−3), in agreement with the observed asymmetry of the B-F-

B bridge.  By contrast, AIM calculations carried out at the optimized geometry of the 

[10--F]- indicate a much more symmetrical B-F-B bridge, with similar electron density 

at the BCP of the B(1)-F(1) bond (ρ(r) = 0.074 e bohr−3) and B(2)-F(1) bond (ρ(r) = 

0.077 e bohr−3). 

To further understand the influence of the cationic sulfonium moiety in [40]+, we 

decided to measure the fluoride binding constant of [40]+ and compare it to that of 10.  

Since we have previously shown that the binding constant of neutral 10 exceeds the 

range measurable by a direct titration with tetrabutylammonium fluoride (nBu4NF),37 we 

decided to employ the commercially available tetrabutylammonium 

difluorotriphenylsilicate (nBu4NPh3SiF2) as fluoride source and determine the relative 

binding constant Krel(borane) = K(borane)/K(Ph3SiF) where K(borane) is the absolute 

fluoride binding constant of the borane under study and K(Ph3SiF) is the absolute 

fluoride binding constant of Ph3SiF (see SI for details of the derivation).  Krel(10) could 



 

 

144 

be derived from the integrated 1H NMR and 19F NMR spectra of CDCl3 solutions 

containing 10 and [nBu4N][Ph3SiF2] in different molar ratios, affording Krel(10) = 5.4 

(±1) (see Experimental section for details of the experiments).  Analogous NMR 

experiments carried out with [40]+ indicated the quantitative formation of 40--F.  For 

this reason, we decided to resort to UV-vis spectroscopy, which is more appropriate to 

study large binding constants.  However, addition of [nBu4N][Ph3SiF2] to a dilute 

chloroform solution of [40]+ (6.7 × 10-5 M in CHCl3) resulted in the stoichiometric 

quenching of the absorbance of the boron-centered chromophore at 349 nm in agreement 

with the quantitative formation of the fluoride complex (Figure 73).  These observations 

indicate the relative fluoride binding constant of [40]+ (Krel([40]+) exceeds the value of 

105 M-1 and is thus at least four orders of magnitude greater than that of 10.  The drastic 

difference observed in the fluoride binding properties of 10 and [40]+ underscores the 

higher fluoride affinity of [40]+ which can be assigned to its cationic nature.  Although 

40--F is very stable, it slowly reacts with B(C6F5)3 to afford [40][FB(C6F5)3], thus 

indicating that fluoride binding by [40]+ is reversible.  A similar reaction was observed 

for [10--F]- which also releases fluoride to B(C6F5)3.37 
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Figure 73. Left: Absorbance changes upon addition of nBu4NPh3SiF2 to a CHCl3 

solution of [40]+ (0.067 mM).  Right: Binding isotherm monitored at  = 349 nm 

(Krel([40]+ ≥ 105, ε = 10040 for [40]OTf, ε = 3270 for 40--F). 

 

We also decided to compare the fluoride anion affinity of [40]+ to that of another 

cationic borane.  For the purpose of this study, we selected the phosphonium borane 

[28]+ which was previously shown to react with fluoride to afford 28-F.49  Interestingly, 

mixing equimolar amounts of [40]+ and 28-F in CDCl3 at ambient temperature leads to 

the quantitative formation of [28]+ and 40--F.  Fluoride ion transfer from 28-F to [40]+ 

is confirmed by 1H, 19F and 31P NMR spectroscopy.  Specifically, the 31P NMR spectrum 

shows full conversion of 28-F (28.3 ppm) into [28]+ (23.9 ppm).  Accordingly, the 19F 

NMR spectrum indicates formation of 40--F, the resonance of which appears at -174.4 

ppm.  Related changes are also observed in the 1H NMR spectrum where the P- or S-

bound methyl signals of [40]+ (3.60 ppm) and 28-F (3.12 ppm) disappear to give rise to 

those of 40--F (3.28 ppm) and [28]+ (2.67 ppm) (Figure 74).  This reaction indicates 

that [40]+ is one of the most Lewis acidic cationic boranes ever investigated in our 
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group.  Presumably the cumulative Coulombic and chelate effects occurring with this 

compound are responsible for this enhanced fluoride affinity. 

 

 

Figure 74. Competition reaction of [40]+ with 28-F in CDCl3. 
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5.4 Reaction with other anions 

 

 

Figure 75. Reactions of [40]+ with other anions in chloroform 

 

To conclude this study, we decided to probe the reactivity of [40]+ toward other 

anions.  Interestingly, addition of TBACl, TBABr or TBAI to a CDCl3 solution of [40]+ 

resulted in the formation of the neutral diborane 10 indicating demethylation of the 

diarylmethylsulfonium (Figure 75).  Such demethylation reactions are not unprecedented 

and have been observed in related sulfonium borane species.30, 171  The reactivity of [40]+ 

toward cyanide was also tested using TBACN as a cyanide source.  In this case, 

however, the reaction afforded a mixture of compounds that could not be unambiguously 

identified.  A cleaner anion complexation reaction was observed with TBAN3 in CDCl3, 

leading to the corresponding azide complex 40--N3.  Formation of the latter, which 
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can be reverted by addition of B(C6F5)3, could be monitored by UV-vis spectroscopy to 

afford a binding constant exceeding 107 M-1 (Figure 76). 

 

Figure 76. Left: Absorbance changes upon addition of nBu4NN3 to a CHCl3 solution of 

[40]+ (0.095 mM).  Right: Binding isotherm monitored at = 349 nm (K ≥ 107 M-1, ε = 

10040 for [40]OTf, ε = 3100 for 40--N3). 
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Figure 77. ORTEP drawings of 40--N3 with thermal ellipsoid plots (50% probability).  

For clarity, the hydrogen atoms are omitted and the mesityl subsitutents are represented 

by thin line.  Selected bond lengths (Å) and angles (°): N(1)-N(2) 1.243(5), N(1)-B(1) 

1.643(6), N(1)-B(2) 1.704(6), N(2)-N(3) 1.136(5), C(1)-B(1) 1.621(7), C(11)-B(1) 

1.637(6), C(22)-B(1) 1.626(7), C(24)-B(2) 1.653(6), C(8)-B(2) 1.622(6), C(33)-B(2) 

1.652(6), S(1)-C(23) 1.714(7); B(1)-N(1)-B(2) 124.3(3), C(9)-C(1)-B(1) 125.8(4), C(9)-

C(8)-B(2) 124.4(4), C(1)-B(1)-C(11) 111.0(4), C(1)-B(1)-C(22) 111.8(4), C(11)-B(1)-

C(22) 112.1(4), C(8)-B(2)-C(33) 115.9(4), C(8)-B(2)-C(24) 108.7(3), C(33)-B(2)-C(24) 

119.5(4).  
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Table 29. Crystal data, data collections, and structure refinement for 40--

N3•(CH3)2CO. 

Crystal data 
 

40--N3•(CH3)2CO 
formula  C44H45B2N3OS 

Mr  685.51 
crystal size (mm3)  0.12 x 0.08 x 0.06 

crystal system  Monoclinic 
space group  P2(1)/c 

a (Å)  14.5158(13) 
b (Å)  12.1583(11) 
c (Å)  21.037(2) 
α () 90 
 ()  98.0310(10) 
γ () 90 

V (Å3)  3676.3(6) 
Z  4 

calc (g cm-3)  1.239 
 (mm-1)  0.127 
F(000)  1456 

  

Data Collection  
T (K)  110(2) 

scan mode   

hkl range 
-15  +15 
-13  +13 
-23  +23  

measd reflns  29047 
unique reflns [Rint]  5138 [0.0561] 

reflns used for refinement  5138 
   

Refinement  
refined parameters  460 

GooF  0.961 
R1,a wR2

b all data  0.1048, 0.2359 
fin (max/min) (e Å-3)  1.898, -0.687 

a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2. 
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The azide complex 40--N3, which could be isolated from the reaction of 

[40]OTf with TBAN3 in dichloromethane, has been fully characterized.  It features a 

broad 11B NMR resonance at -4.6 ppm which, we speculate, corresponds to the 

overlapping signals of the two four-coordinate boron centers.  In line with the 

coordination of an anion to the diborane, the resonance of the sulfur-bound methyl group 

at 3.26 ppm is close to that measured for 40--F (3.28 ppm).  The crystal structure of 

40--N3 confirms formation of a chelate complex, with the azide anion bridging the two 

boron centers in a  fashion (Figure 77, Table 29).  While the structure of 40--F 

showed a rather unsymmetrical B-F-B bridge, the N(1)-B(1) (1.635 Å) and N(1)-B(2) 

(1.706 Å) bond lengths in 40--N3 indicate a rather symmetrical B-N-B bridge, which 

is consistent with the propensity of the azide anion to adopt a  coordination mode.  

The DFT optimized structure 40--N3 (functional: B3LYP; mixed basis set: B, N: 6-

31+g(d’); S: 6-31+g(d); C, H: 6-31g) features a B(1)-N(1) distance of 1.644 Å, which is 

very close to that experimentally observed.  The calculated N(1)-B(2) distance of 1.832 

Å is slightly elongated when compared to that experimentally observed, a phenomenon 

reminiscent of that observed in the computed structure of 40--F.  Presumably, small 

variation of this bond length has only a limited effect on the total energy of the molecule, 

making subtle solvation or crystal packing effects the main culprit for this small 

discrepancy.  An AIM analysis carried out at the optimized geometry affords consistent 

results with BCP electron densities (r) = 0.108 e bohr-3 for N(1)-B(1) and (r) = 0.070 e 

bohr-3 for N(1)-B(2), again illustrating the increased acidity of the sulfonium-decorated 

boryl moiety (Figure 72).  
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5.5 Conclusion 

As demonstrated by our earlier work on naphthalene-based diboranes,25 the 

fluoride binding constants of neutral bidentate derivatives exceed those of their 

monofunctional analogues by 3 or 4 orders of magnitude.  The results presented in this 

paper show that the fluoride anion affinity of such diboranes can be further enhanced by 

the simple introduction of a cationic moiety in the proximity of one of the boron atoms.  

This conclusion is substantiated by the observation that the fluoride binding constant of 

[40]+ exceeds that of its neutral precursor by at least four orders of magnitude.  A more 

general lesson which can be derived from this work is that chelate effects and 

Coulombic effects are additive and can be combined to boost the anion affinity of 

bidentate Lewis acids. 

 

5.6 Experimental Section 

General Considerations.  Commercially available chemicals were purchased 

and used as provided (Commercial sources: Aldrich for Mes2BF, TMEDA, 

Me3SiF2S(NMe2)3, nBu4NPh3SiF2, TMSCl, nBu4NF, nBu4NCl, nBu4NBr, nBu4NI and 

nBu4NN3; TCI America for Ph2S; Alpha Aesar for BBr3 and n-butyllithium (2.8 M in 

hexanes).  Diborane 10 was prepared by reaction of tetrakis(THF)lithium dimesityl-1,8-

naphthalenediylborate56, 172 with 10-Bromo-9-thia-10-boranthracene as previously 

described.37  Solvents were dried by reflux under N2 over drying agents, and freshly 

distilled prior to use.  The drying agents employed were: CaH2 for dichloromethane and 

Na/K for diethyl ether and THF.  Air-sensitive compounds were handled under N2 
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atmosphere using standard Schlenk and glovebox techniques.  UV-vis spectra were 

recorded on an Ocean Optics USB4000 spectrometer with an Ocean Optics ISS light 

source.  Elemental analyses were performed at Atlantic Microlab (Norcross, GA).  NMR 

spectra were recorded on Varian Unity Inova 400 FT NMR (399.59 MHz for 1H, 376.03 

MHz for 19F, 128.19 MHz for 11B, 100.45 MHz for 13C) spectrometers at ambient 

temperature. Chemical shifts  are given in ppm and are referenced against external 

BF3·Et2O (11B and 19F). 

Crystallography.  The crystallographic measurements were performed using a 

Bruker APEX-II CCD area detector diffractometer (Mo-K radiation,  = 0.71069 Å) for 

[40]OTf, 40--F, and 40--N3.  In each case, a specimen of suitable size and quality 

was selected and mounted onto a nylon loop.  The structures were solved by direct 

methods, which successfully located most of the non-hydrogen atoms.  Subsequent 

refinement on F2 using the SHELXTL/PC package (version 5.1) allowed location of the 

remaining non-hydrogen atoms. 

Synthesis of [40]OTf.  Methyl triflate (0.1 mL, 0.89 mmol) was added to a 

solution of diborane 10 (0.2 g, 0.35 mmol) in dichloromethane (10 mL) at room 

temperature. The mixture was refluxed overnight and then cooled to room temperature.  

The solvent was removed under vacuum to yield a solid which was washed with diethyl 

ether to afford [40]OTf as a pale yellow product (0.21g, yield 81%).  Single crystals of 

[40]OTf-CH2Cl2 were obtained by slow diffusion of diethyl ether into a dichloromethane 

solution of [40]OTf at -25ºC.  1H NMR (CDCl3): δ 0.95 (s, 3H, Mes-CH3), 1.39 (s, 3H, 

Mes-CH3), 1.47 (s, 3H, Mes-CH3), 1.82 (s, 3H, Mes-CH3), 1.84 (s, 3H, Mes-CH3), 2.23 
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(s, 3H, Mes-CH3), 3.60 (s, 3H, S-CH3), 5.71 (s, 1H, Mes-CH), 6.59 (s, 1H, Mes-CH), 

6.60 (s, 1H, Mes-CH), 6.69 (s, 1H, Mes-CH), 7.39 (d, 1H, 3
J(HH) = 7.2 Hz, nap-CH), 

7.46 (t, 1H, 3
J(HH) = 7.2 Hz, nap-CH), 7.52 (d, 1H, 3

J(HH) = 7.6 Hz, nap-CH), 7.53-

7.63 (m, 3H, nap-CH), 7.77 (t, 1H, 3
J(HH) = 8.0 Hz, CH), 7.82 (t, 1H, 3

J(HH) = 7.6 Hz, 

CH), 7.88-7.94 (m, 2H, CH), 8.04 (d, 1H, 3
J(HH) = 8.4 Hz, CH), 8.13 (d, 1H, 3

J(HH) = 

8.0 Hz, CH), 8.18 (d, 1H, 3
J(HH) = 8.0 Hz, CH), 8.23 (d, 1H, 3

J(HH) = 8.0 Hz, CH).  

13C NMR (CDCl3): δ 21.00 (Mes-CH3), 21.11 (Mes-CH3), 21.19 (Mes-CH3), 22.11 

(Mes-CH3), 23.74 (Mes-CH3), 23.89 (Mes-CH3), 25.26 (S-CH3), 124.39, 126.51, 

126.87, 127.40, 128.20, 128.29, 128.96, 130.12, 130.85, 130.88, 131.70, 132.28, 132.48, 

132.51, 132.99, 133.13, 133.40, 133.98, 134.22, 135.93, 137.71, 138.64, 139.18, 139.76, 

140.44, 141.47, 142.80, 143.49, 145.42, 147.93. 11B NMR (CDCl3): not detected.  Anal. 

Calcd for C42H39B2F3O3S2-1/2CH2Cl2: C 65.70; H 5.19. Found: C 65.74; H 5.28. (The 

sample used for EA was obtained by recrystallization from CH2Cl2; the EA results 

indicate partial loss of the interstitial CH2Cl2 molecule found in the crystal structure). 

Synthesis of 40--F.  To a solution of [40]OTf (50 mg, 0.068 mmol) in CH2Cl2 

(5 mL) at 25ºC, was added a CH2Cl2 solution (5 mL) of Me3SiF2S(NMe2)3 (21 mg, 0.076 

mmol).  After 15 minutes, the solvent was evaporated and the residue was dissolved in a 

mixture solvent of CH2Cl2 (2 mL) and diethyl ether (18 mL).  The resulting solution was 

filtered and evaporated to dryness to afford 40--F as a colorless solid (35 mg, 85% 

yield).  Large colorless monocrystals of 40--F could be obtained by slow evaporation 

of an acetone solution of 40--F at room temperature.  1H NMR (CDCl3): δ 0.86 (s, 3H, 

Mes-CH3), 1.63 (s, 3H, Mes-CH3), 1.79 (s, 3H, Mes-CH3), 1.92 (d, 3H, J(H-F) = 5.2 Hz, 
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Mes-CH3), 2.07 (s, 3H, Mes-CH3), 2.23 (s, 3H, Mes-CH3), 3.28 (s, 3H, S-CH3), 5.99 (s, 

1H, Mes-CH), 6.37 (s, 1H, Mes-CH), 6.39 (s, 1H, Mes-CH), 6.62-6.66 (m, 2H, CH), 

6.67 (s, 1H, Mes-CH), 6.78 (d, 1H, 3J(HH) = 7.2 Hz, CH), 7.00 (t, 1H, 3
J(HH) = 7.6 Hz, 

CH), 7.12-7.25 (m, 5H, CH), 7.35 (t, 1H, 3
J(HH) = 7.6 Hz, CH), 7.49 (dd, 2H, 3

J(HH) = 

6.8 Hz, CH), 7.75 (d, 1H, 3
J(HH) = 8.0 Hz, CH), 7.87 (d, 1H, 3

J(HH) = 8.0 Hz, CH).  

13C NMR (CDCl3): δ 20.74 (Mes-CH3), 21.01 (Mes-CH3), 22.89 (Mes-CH3), 24.58 

(Mes-CH3), 25.16 (Mes-CH3), 25.24 (Mes-CH3), 39.23 (S-CH3), 124.20, 125.12, 

125.92, 126.47, 126.68, 127.17, 127.47, 127.70, 127.92, 127.95, 128.01, 128.22, 129.16, 

123.00 (d, J(CF) = 7.3 Hz), 130.50 (d, J(CF) = 7.1 Hz), 132.24 (d, J(CF) = 6.8 Hz), 

132.61 (d, J(CF) = 2.7 Hz), 134.97 (d, J(CF) = 1.9 Hz), 135.10, 140.37, 140.76 (d, J(CF) 

= 6.2 Hz), 140.98, 141.57, 141.73 (d, J(CF) = 5.9 Hz), 141.84 (d, J(CF) = 6.1 Hz), 

142.90.  11B NMR (CDCl3): +0.4 (s), +4.4 (bs).  19F NMR (CDCl3): -174.4 (s).  Anal. 

Calcd for C41H39B2FS: C 80.47; H 6.50.  Found: C 80.91; H 6.49. 

Synthesis of 40--N3.  To a solution of [40]OTf (84 mg, 0.11 mmol) in CH2Cl2 

(5 mL) at 25ºC, was added a CH2Cl2 solution (5 mL) of nBu4NN3 (35 mg, 0.12 mmol).  

After 15 minutes, the solvent was evaporated and the residue was dissolved in a mixture 

solvent of CH2Cl2 (2 mL) and diethyl ether (18 mL).  The resulting solution was filtered 

and evaporated to dryness to afford 40--N3 as a colorless solid (41 mg, 59% yield).  

Large colorless monocrystals of 40--N3 could be obtained by slow evaporation of an 

acetone/hexane mixture of 40--N3 at room temperature.  1H NMR (CDCl3): δ 1.25 (s, 

3H, Mes-CH3), 1.73 (s, 3H, Mes-CH3), 1.81 (s, 3H, Mes-CH3), 2.10 (s, 6H, Mes-CH3), 

2.23 (s, 3H, Mes-CH3), 3.26 (s, 3H, S-CH3), 6.15 (bs, 1H, Mes-CH), 6.34 (bs, 1H, Mes-
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CH), 6.38 (d, 2H, 3
J(HH) = 8.0 Hz, CH), 6.73 (bs, 1H, Mes-CH), 6.86 (bs, 1H, Mes-

CH), 6.78 (m, 2H, CH), 7.06 (t, 1H, 3J(HH) = 6.0 Hz, CH), 7.18-7.33 (m, 4H, CH), 7.40-

7.48 (m, 3H, CH), 7.66 (d, 1H, 3
J(HH) = 8.0 Hz, CH), 7.77 (d, 1H, 3

J(HH) = 8.0 Hz, 

CH). 13C NMR (CDCl3): 20.73 (Mes-CH3), 23.87 (Mes-CH3), 25.41 (Mes-CH3), 26.08 

(Mes-CH3), 30.95 (Mes-CH3), 41.16 (S-CH3), 123.73, 123.83, 125.03, 125.18, 126.08, 

126.15, 126.31, 126.37, 126.86, 127.83, 128.15, 129.07, 129.57, 130.06, 130.68, 131.50, 

132.52, 132.87, 133.07, 133.57, 133.95, 139.74, 140.53, 142.75.  11B NMR (CDCl3): -

4.6.  Anal. Calcd for C41H39B2N3S: C 78.48; H 6.26. Found: C 78.36; H 6.37. 

Anion (X
-
) complexation in CHCl3.  A CHCl3 solution of [40]OTf (3 ml, c = 

6.73 × 10-5 M for X- = F- and c = 9.5 × 10-5 M for X- = N3
-) was placed in a cuvette and 

titrated with incremental amounts of the anion by addition of a CHCl3 solution of 

nBu4NPh3SiF2 for X- = F- (7.2 mM) or nBu4NN3 for X- = N3
- (33.5 mM).  For both 

experiments, the absorbance of the diborane was monitored at  = 349 nm, showing 

stoichiometric complexation of the anion (ε = 10040 for [40]OTf, ε = 3270 for 40--F, 

ε = 3100 for 40--N3). 
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NMR study of the reaction of diborane 10 with nBu4NPh3SiF2 in CDCl3.  In a 

typical assay, a mixture of diborane 10 and nBu4NPh3SiF2 in CDCl3 was placed in an 

NMR tube and analyzed by 1H NMR and 19F NMR spectroscopy.  Integration of the 

spectra was used to determine the respective concentration of the relevant species.  Two 

data sets (labeled as experiments 1 and 2) are provided below, along with the derivation 

of the equation used to calculate Krel(10) (F0 is the initial concentration of Ph3SiF2
-, and 

B0 is the initial concentration of the diborane 10). 

 

 10 + Ph3SiF + 2 × F-  10F- + Ph3SiF2
- 

 B0 – x  F0 – y  F0 – x – y  x  Y 

Experiment 1 5.1  51    51  100 

Experiment 2 70  100    100  25 

 

K1 = [10F] / ([10]*[F-]) = x / [(B0 – x) * (F0 – x – y)] 

 

KPh3SiF2
- = [Ph3SiF2

-] / ( [Ph3SiF] *[F-]) = y / [(F0 – y) * (F0 – x – y)] 

 

=> Krel(10) = K1/ KPh3SiF2
- = [x * (F0 – y)] / [y * ( B0 – x)] = 5.4 (±1) 
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Electrochemistry. Electrochemical experiments were performed with an 

electrochemical analyzer from CH Instruments (Model 610A) with a glassy carbon 

working electrode, a platinum auxiliary electrode and a reference silver electrode.  The 

reference electrode solution was built by immersing a silver wire in Vycor-capped glass 

tube containing a THF solution of TBAPF6 (0.1 M) and AgNO3 (0.005 M).  All the three 

electrodes were placed in a THF solution (3 mL) containing TBAPF6 (0.1 M) as a 

support electrolyte and [40]OTf (0.010 M).  Ferrocene was used as an internal standard 

and the potentials are reported relative to the E1/2 of the Fc+ /Fc redox couple. 

Computational details.  DFT calculations (full geometry optimization) were 

carried out with the Gaussian 03 program using the gradient-corrected Becke exchange 

functional (B3LYP) and the Lee-Yang-Parr correlation functional (Table 30, Table 31, 

Figure 78, Figure 79).  Geometry optimization was carried out with the following mixed 

basis set: 6-31+g(d’) for the boron, nitrogen and fluorine atoms, 6-31+g(d) for the sulfur 

atom, 6-31g basis set was used for other remained carbon and hydrogen atoms.  

Frequency calculations, which were carried out on the optimized structure of the 

compound, confirmed the absence of any imaginary frequencies.  DT-DFT calculation 

was carried out with the Gaussian 03 program using B3LYP functional with the same 

basis sets as DFT calculation 
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Figure 78. DFT optimized structure of [40]+ 
 

Table 30. Atom coordinates for the optimized structure of [40]+ 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

S1 -3.158224 -1.636815  1.547687 

C2 -1.242174  0.403136  1.887870 

C3  2.975786 -0.582492 -0.180676 

C4 -0.862226  2.322599  0.002165 

C5 -2.753231  0.399897 -0.362082 

C6 -1.668142 -1.171180  3.753131 

H7 -2.165005 -2.056745  4.137791 

C8  0.407163 -0.726466 -1.060410 

C9  5.458859 -1.918645  0.379721 

C10 -1.826820  3.339274  0.107328 

H11 -2.855990  3.073228  0.334191 

C12 -3.519983 -0.712726  0.042717 

C13 -0.763277 -0.481355  4.564288 

H14 -0.572917 -0.828727  5.573482 

C15 -0.178747 -0.470449 -2.345295 

C16 -1.912308 -0.702284  2.455026 

C17  0.701935 -2.402464  0.891502 

H18  0.084328 -3.163923  1.380839 

H19  0.848501 -1.580928  1.595947 

H20  1.687262 -2.846868  0.713049 

C21  0.503565  2.685584 -0.320846 

C22  0.782031  4.097688 -0.495156 

C23 -0.114487  0.654130  4.066042 

H24  0.577976  1.202520  4.694813 

C25  4.858273 -1.080175  1.322218 

H26  5.342299 -0.934682  2.284721 

C27  3.594795 -1.442703 -1.146114 

C28 -1.527733  4.709498 -0.036711 

H29 -2.309462  5.452175  0.080430 

C30 -4.988509 -0.573358 -1.865814 

H31 -5.833253 -0.946476 -2.434073 

C32 -3.174906  1.005634 -1.572935 

H33 -2.618162  1.859638 -1.936031 

C34 -1.392412 -2.603989 -2.279180 
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Table 30. Continued

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

C35 -0.346288  1.075336  2.754686 

H36  0.168562  1.949895  2.377188 

C37  1.607440  1.745797 -0.499960 

C38 -0.237013  5.076622 -0.335067 

H39  0.026977  6.122132 -0.462320 

C40  3.650200 -0.411959  1.065558 

C41  0.145486  0.765160 -3.164354 

H42 -0.278701  0.677669 -4.168899 

H43  1.223138  0.922777 -3.274382 

H44 -0.255576  1.676219 -2.708615 

B45 -1.507148  0.955785  0.436191 

C46 -4.602707 -1.220626 -0.690602 

H47 -5.137816 -2.107877 -0.365664 

B48  1.611175  0.164514 -0.526303 

C49  0.068379 -1.960156 -0.415268 

C50  2.088766  4.548183 -0.836791 

H51  2.249198  5.614361 -0.966661 

C52 -4.271411  0.546815 -2.302754 

H53 -4.559480  1.050964 -3.218690 

C54 -1.043723 -1.409006 -2.924283 

H55 -1.445100 -1.208348 -3.914230 

C56  2.869749  2.279810 -0.813694 

H57  3.701377  1.596343 -0.932813 

C58 -4.660046 -1.271562  2.554679 

H59 -4.526127 -1.730095  3.535555 

H60 -5.516958 -1.722391  2.051697 

H61 -4.784340 -0.191768  2.642820 

C62 -0.835604 -2.850195 -1.015952 

H63 -1.066409 -3.785999 -0.511456 

C64  3.120076  3.655505 -0.997390 

H65  4.117134  3.994354 -1.257067 

C66  3.016803 -1.683884 -2.530738 

H67  3.753270 -2.187771 -3.163842 

H68  2.741027 -0.752768 -3.037109 

H69  2.122415 -2.315624 -2.501283 

C70 -2.322133 -3.596955 -2.936760 

H71 -1.968036 -3.868679 -3.938087 

H72 -3.330600 -3.179993 -3.057948 

H73 -2.406363 -4.517433 -2.351169 

C74  4.809320 -2.076043 -0.853057 

H75  5.266782 -2.704070 -1.613560 

C76  3.082895  0.419921  2.199231 

H77  3.883721  0.768902  2.859570 

H78  2.394027 -0.172857  2.816504 

H79  2.536945  1.294677  1.841673 

C80  6.766110 -2.621413  0.664892 

H81  7.141923 -2.377925  1.663104 

H82  7.537471 -2.338007 -0.061829 

H83  6.654910 -3.711357  0.604935 
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Figure 79. DFT optimized structure of 40--F 

 

Table 31. Atom coordinates for the optimized structure of 40--F 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

S1  3.234204 -0.484771 -2.503270 

F2  0.155097 -0.425737 -0.446635 

C3 -2.587073 -0.684602 -0.564363 

C4 -1.253982  1.647135  0.171470 

C5 -1.221773 -0.674879  1.762166 

C6 -3.860339 -0.053463 -0.742628 

C7 -1.224637  2.574763  1.263283 

C8 -1.115784  2.210017 -1.137045 

C9 -0.999371  3.943596  1.035611 

H10 -0.988342  4.615966  1.891137 

C11  0.034457 -0.744247  2.479642 

C12  2.318671  0.919339 -0.270622 

C13  2.266657 -1.792737 -0.241016 

C14 -4.862817 -0.664994 -1.512417 

H15 -5.817758 -0.154750 -1.623144 

C16 -0.872481  3.582418 -1.317079 

H17 -0.756286  3.965293 -2.329248 

C18 -0.798370  4.471837 -0.243517 

C19 -1.475698  2.196337  2.714460 

H20 -1.616393  3.102167  3.314039 

H21 -0.644873  1.636196  3.153206 

H22 -2.367481  1.576155  2.835764 

C23 -1.196890 -1.515264  4.493651 

H24 -1.183239 -1.796198  5.543687 

C25  0.023374 -1.115709  3.877186 

C26  2.180697 -2.989238  0.508842 

H27  1.597404 -2.980818  1.421995 

C28 -4.680466 -1.908216 -2.127705 

C29 -2.369070 -1.124301  2.415718 

H30 -3.313524 -1.120018  1.880733 

C31  3.746165  3.254845 -1.136701 

H32  4.290191  4.136769 -1.457397 

B33 -1.430378  0.030463  0.331265 

C34 -2.440436 -1.988121 -1.126256 

C35 -1.299305  1.416019 -2.421502 

H36 -0.728402  1.875568 -3.238018 

H37 -2.354395  1.413332 -2.725250 

H38 -1.007600  0.372851 -2.330258 
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Table 31 Continued 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

C39 -4.238945  1.271106 -0.095051 

H40 -5.326479  1.401116 -0.125970 

H41 -3.786704  2.130338 -0.600794 

H42 -3.930482  1.325087  0.952974 

C43  2.290108  2.131691  0.454311 

H44  1.703894  2.169244  1.363342 

C45 -3.465415 -2.558087 -1.902210 

H46 -3.311522 -3.550468 -2.321412 

C47 -0.540785  5.948359 -0.452400 

H48 -0.434228  6.186763 -1.515933 

H49  0.376396  6.274332  0.055918 

H50 -1.360638  6.559893 -0.053968 

C51  1.298977 -0.448336  1.854780 

C52  2.973198  3.275446  0.031306 

H53  2.904511  4.186230  0.617218 

C54 -2.365190 -1.551439  3.766440 

H55 -3.291854 -1.879929  4.228444 

C56  2.439728 -0.400971  2.657150 

H57  3.400228 -0.174423  2.198757 

C58 -1.212027 -2.852652 -0.907324 

H59 -0.871148 -2.809974  0.129799 

H60 -0.365088 -2.546321 -1.530605 

H61 -1.438931 -3.897257 -1.147590 

C62  3.098974  0.955350 -1.442948 

B63  1.521521 -0.408464  0.261254 

C64  1.227625 -1.071605  4.633100 

H65  1.192341 -1.341600  5.685469 

C66  3.057500 -1.889018 -1.402230 

H67  3.818481  2.079645 -1.884093 

H68  4.425600  2.033835 -2.783751 

C69  2.822838 -4.168456  0.120309 

H70  2.716513 -5.061634  0.727979 

C71  3.740134 -3.049301 -1.807490 

H72  4.360660 -3.046156 -2.699122 

C73  1.651746 -0.499768 -3.428836 

H74  1.643900 -1.398096 -4.050216 

H75  1.623366  0.394838 -4.054188 

H76  0.824387 -0.502680 -2.721339 

C77 -5.772247 -2.535808 -2.966652 

H78 -5.466355 -3.515663 -3.348348 

H79 -6.028787 -1.907085 -3.829494 

H80 -6.694566 -2.676492 -2.388033 

C81  2.412492 -0.687413  4.041838 

H82  3.328625 -0.636607  4.623321 

C83  3.612803 -4.204158 -1.036597 

H84  4.129063 -5.112543 -1.327764 
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CHAPTER VI 

LEWIS ACIDITY BEHAVIOR OF TRIS(PENTACHLOROPHENYL)BORANE 

 

6.1 Introduction 

Tris(pentafluorophenyl)borane, in which the small electronegative fluorine 

substituents induce strong Lewis acidity, has attracted a great deal of attention in 

catalysis, synthesis and small molecule activation.6-15  Tuning the Lewis acidity of such 

triarylboranes has been achieved by simple modifications in the electronic and steric 

properties of the aryl substituents.  As previously shown by Norton and Jaekle, 

substitution of a pentafluorophenyl group with a mesityl group in the MesnB(C6F5)(3-n) (n 

= 1, 2, 3) series results in a gradual decrease of the electron affinity and thus Lewis 

acidity of the borane.173  Recently, O’Hare and coworkers have reported the synthesis of 

a new family of triarylboranes, (C6Cl5)nB(C6F5)(3-n) (n = 1, 2, 3), and investigated how 

substitution of a pentafluorophenyl by a pentachlorophenyl groups affects the properties 

of the molecule.174  Cyclic voltammetry and NMR data show that the electron affinity of 

the borane increases as n, the number of pentachlorophenyl group, increases.  This effect 

is rationalized by the greater -Hammet parameter of the chlorine substituents, making 

the pentachlorophenyl group a more electron withdrawing substituent.  Somewhat 

paradoxically, this group decreases the Lewis acidity of the boron center because the 

increased bulk of the chlorine atom hinders pyramidalization of the boron atom.  In line 

with this argument, the O’Hare group observed that B(C6Cl5)3 fails to interact with 

triethylphosphine oxide in chloroform as indicated by 31P NMR spectroscopy.  Intrigued 
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by this presumed lack of Lewis acidity, we decided to carry out a more careful 

investigation of its Lewis acidity. In this study, we report a series of results which shows 

that B(C6Cl5)3 is a potent Lewis acid which binds anions and neutral molecules in 

organic solvents. 

 

6.2 Fluoride ion complexation of B(C6Cl5)3 

First of all, we examined the spectroscopic property of B(C6Cl5)3 by UV-vis 

spectroscopy.  Like other triarylboranes, B(C6Cl5)3 shows a broad low-energy absorption 

band at max = 331 nm in dichloromethane corresponding to the boron-centered 

chromophore.  Since binding of a Lewis base to the boron center will interrupt -

conjugation in this chromophore and thus quench the absorption band, the binding 

process can be easily monitored by UV-vis spectroscopy. 

 

 

Figure 80. The reaction of B(C6Cl5)3 with fluoride anion. 

 

Next, the reactivity of B(C6Cl5)3 toward fluoride was investigated by mixing an 

equimolar quantities of B(C6Cl5)3 and TASF (tris(dimethylamino)sulfonium 

difluorotrimethylsilicate) in CDCl3 (Figure 80).  Both the 19F NMR resonance at -168 
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ppm (broad) and the 11B NMR resonance at 6.5 ppm (broad) indicate the formation of a 

triarylfluoroborate species.26  This new species, [FB(C6Cl5)3]-[S(NMe2)3]+, has been 

isolated from the reaction of B(C6Cl5)3 with TASF in THF.  Large single crystals of 

[FB(C6Cl5)3]-[S(NMe2)3]+ were obtained by slow diffusion of pentane into a THF 

solution of [FB(C6Cl5)3]-[S(NMe2)3]+.  This salt crystallized in a hexagonal P-3C1 space 

group (Figure 81, Table 32).  The crystal structure is affected by a complicated disorder 

thus precluding an accurate determination of the bond distances and angles.  

Nevertheless, the crystal structure has shown that: 1) the B(1)-F(1) bond length of 1.43 

Å is comparable to those measured for other reported triarylfluoroborate species; 2) the 

boron center becomes clearly pyramidalized as indicated by the sum of the Caryl-B-Caryl 

angles (Σ(C-B-C) = 335.1°); 3) the distance between the sulfur atom of the counter cation 

and the boron-bound fluoride is 3.09 Å which is within the sum of Van der Waals radii 

(3.27 Å), indicating a potential weak interaction between the sulfonium center of the 

counter cation and the fluorine atom.  
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Figure 81. ORTEP drawing of [FB(C6Cl5)3]-[S(NMe2)3]+ with thermal ellipsoid plots 

(50% probability).  For clarity, the counter cation [S(NMe2)3]+ and hydrogen atoms are 

omitted.  Selected bond lengths (Å) and angles (°): B(1)-F(1) 1.43(3), B(1)-C(10) 

1.710(16); F(1)-B(1)-C(10) 107.1(12), C(10)-B(1)-C(10)#2 111.7(10). 
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Table 32. Crystal data, data collections, and structure refinement for [FB(C6Cl5)3]-

[S(NMe2)3]+ •1.5THF. 

Crystal data 
 

[FB(C6Cl5)3]-[S(NMe2)3]+
•1.5THF 

formula C30H60BCl15FN3O1.5S 
Mr 1050.19 

crystal size (mm3) 0.15 x 0.14 x 0.10 
crystal system Hexagonal 
space group P-3C1 

a (Å) 13.7551(10) 
b (Å) 13.7551(10) 
c (Å) 25.562(4) 
α () 90 
 () 90 
γ () 120 

V (Å3) 4188.5(7) 
Z  2 

calc (g cm-3) 1.665 
 (mm-1) 1.073 
F(000) 2112 

  

Data Collection  
T (K)  110(2) 

scan mode   

hkl range 
-14  +14 
-14  +14 
-27  +27  

measd reflns 29279 
unique reflns [Rint] 1825 [0.0495] 

reflns used for refinement 1825 
   

Refinement  
refined parameters  

GooF 1.027 
R1,a wR2

b all data 0.1588, 0.2580 
fin (max/min) (e Å-3) 1.541, -2.007 

a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2. 
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A fluoride titration was carried out by monitoring the absorption of B(C6Cl5)3 at 

max = 331 nm with UV-vis spectroscopy.  The fluoride binding constant of B(C6Cl5)3 in 

dichloromethane is 1.5 (±0.2) × 107 M-1 (Figure 82).  Under these conditions, the 

fluoride binding constants of other neutral triarylboranes, such as 41, 42 and 43 which 

are also air stable, are in the range of 104 and 106 M-1.157, 167, 175  These results show that 

B(C6Cl5)3 is more fluorophilic than most other neutral triarylboranes.  Encouraged by 

these results, we tested the ability of B(C6Cl5)3 to extract fluoride from water into a less 

polar solvent.  Shaking a biphasic mixture consisting of tetrabutylammonium fluoride 

(TBAF) in D2O (0.13 M, 0.5 ml) and B(C6Cl5)3 in CDCl3 (0.013 M, 0.5 ml) results in the 

formation of the corresponding fluoride adduct [FB(C6Cl5)3]-[nBu4N]+ after a few 

minutes, as indicated by the presence of 19F NMR resonance at -148 ppm and a 11B 

NMR signal at 5.1 ppm.  Both the 19F NMR and 11B NMR spetra show that the boron 

and fluorine nuclei are coupled by JB-F = 52 Hz.  The difference of the chemical shifts 

(both 19F NMR and 11B NMR) between biphasic conditions and pure chloroform 

probably results from cation effect and solvation effect.  Besides the formation of the 

fluoride adduct, another compound was also formed under biphasic conditions.  This 

other compound is assigned to [(C6Cl5)3BOH]-, as indicated by the presence of 11B NMR 

resonance at 1.5 ppm.  To our knowledge, such a biphasic fluoride capture is 

unprecedented for any neutral triarylboranes and diboranes. 
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Figure 82. Left: Absorbance changes upon addition of TBAF (4.7 × 10-3 M in CH2Cl2) 

to a CH2Cl2 solution of B(C6Cl5)3 (4.84 × 10-5 M).  Right: Binding isotherm monitored 

at = 331 nm (ε = 15000 for B(C6Cl5)3, ε = 150 for [FB(C6Cl5)3]-).  
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6.3 DMAP complexation of B(C6Cl5)3 

 

 

Figure 83. The reaction of B(C6Cl5)3 with DMAP. 

 

In order to gain more insights into the Lewis acidity of B(C6Cl5)3, we decided to 

investigate its reactivity toward p-dimethylaminopyridine (DMAP) in organic solvents.  

First of all, we studied the reaction of B(C6Cl5)3 with DMAP in CDCl3 by 1H NMR and 

11B NMR spectroscopy (DMAP: 0.027 M; CDCl3: 0.7 ml) (Figure 83).  The proton 

signal of the DMAP CH group ortho to the nitrogen atom showed a progressing upfield 

shift when gradual amounts of B(C6Cl5)3 were added to the solution.  These changes 

indicate the formation of a new species, identified as B(C6Cl5)3-DMAP.  The 11B NMR 

resonance at 1.8 ppm also confirmed the presence of the adduct B(C6Cl5)3-DMAP.  The 

precipitation of B(C6Cl5)3-DMAP did not allow for an NMR determination of the 

DMAP binding constant.  Nevertheless, the equilibrium could be studied by UV-vis 

spectroscopy under more dilute conditions, in dichloromethane.  Addition of 34 

equivalents of DMAP in a dichloromethane solution of B(C6Cl5)3 resulted in a 84% 

quenching of the absorption spectrum indicating the formation of the adduct B(C6Cl5)3-

DMAP.  More careful titration carried out in dichloromethane afforded a binding 
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constant of 3.0 (±0.3) × 104 M-1 (Figure 84).  This binding constant is smaller than that 

of fluoride, which can be correlated to the bulk of DMAP as well as its neutrality. 

 

 

Figure 84. Left: Absorbance changes upon addition of DMAP (0.026 M in CH2Cl2) to a 

CH2Cl2 solution of B(C6Cl5)3 (6.8 × 10-5 M).  Right: Binding isotherm monitored at = 

331 nm (ε = 15000 for B(C6Cl5)3, ε = 0 for B(C6Cl5)3-DMAP). 

 

Large single crystals of B(C6Cl5)3-DMAP were obtained by slow diffusion of 

pentane into a THF solution of equimolar amounts of B(C6Cl5)3 and DMAP.  This 

adduct crystallizes in a triclinic P-1 space group (Figure 85, Table 33).  The B(1)-N(1) 

bond (1.615(4) Å) is slightly shorter than those measured in the adducts of triarylboranes, 

such as Ph3B-DMAP, B-NDMAP = 1.636(2) Å).164, 176  Coordination of the DMAP 

molecule to the boron center leads to a distinct pyramidalization of the latter, as 

indicated by the sum of the Caryl-B-Caryl angles (Σ(C-B-C) = 335.9°). 
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Figure 85. ORTEP drawing of B(C6Cl5)3-DMAP with thermal ellipsoid plots (50% 

probability).  For clarity, hydrogen atoms are omitted.  Selected bond lengths (Å) and 

angles (°): N(1)-B(1) 1.615(4), C(1)-B(1) 1.688(5), C(7)-B(1) 1.688(5), C(13)-B(1) 

1.687(5); N(1)-B(1)-C(13) 98.3(2), N(1)-B(1)-C(7) 110.0(3), C(13)-B(1)-C(7) 116.4(3), 

N(1)-B(1)-C(1) 112.8(3), C(13)-B(1)-C(1) 115.4(3), C(7)-B(1)-C(1) 104.1(3). 



 

 

173 

Table 33. Crystal data, data collections, and structure refinement for B(C6Cl5)3-DMAP. 

Crystal data 
 

B(C6Cl5)3-DMAP•3.5THF 
formula C37H26BCl15N2O3.5 

Mr 1097.16 
crystal size (mm3) 0.12 x 0.11 x 0.07 

crystal system Triclinic 
space group P-1 

a (Å) 13.427(3) 
b (Å) 13.490(3) 
c (Å) 14.172(4)) 
α () 68.329(3) 
 () 67.007(3) 
γ () 79.508(3) 

V (Å3) 2193.7(10) 
Z  2 

calc (g cm-3) 1.661 
 (mm-1) 0.982 
F(000) 1100 

  

Data Collection  
T (K)  110(2) 

scan mode   

hkl range 
-15  +15 
-16  +16 
-16  +16  

measd reflns 21110 
unique reflns [Rint] 7695 [0.0381] 

reflns used for refinement 7695 
   

Refinement  
refined parameters  

GooF 1.006 
R1,a wR2

b all data 0.0577, 0.1229 
fin (max/min) (e Å-3) 0.905, -0.559 

a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2. 
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6.4 Complexation of other anions and molecules by B(C6Cl5)3 

Encouraged by these results, we moved on to test the affinity of B(C6Cl5)3 for 

other common anions.  Table 34 has shown the binding constants of B(C6Cl5)3 with 

cyanide and azide, compared to those of fluoride and DMAP in dichloromethane.  The 

binding constants decrease in the order: fluoride > azide > cyanide.  Presumably the 

larger bulk of the azide and cyanide anions are responsible for their lower tendency to 

associate with the borane.  We also decided to test if neutral molecules other than 

DMAP would also bind to the borane.  Only weak binding was observed for pyridine in 

dichloromethane; the less competitive solvent THF (acceptor number = AN = 8.9 for 

THF vs. 20.4 for CH2Cl2) was therefore employed (Table 34).  As shown in Table 34, 

the binding constant of pyridine is much smaller than that of DMAP due to the lower 

basicity of pyridine (pKa(pyridine) = 5.2 vs. pKa(DMAP) = 9.2 ). 

 

Table 34. The binding constants of B(C6Cl5)3 with different Lewis bases in 

dichloromethane and/or THF. 

 Fluoride 
(CH2Cl2) 

Azide 
(CH2Cl2) 

Cyanide 
(CH2Cl2) 

DMAP 
(CH2Cl2) 

DMAP 
(THF) 

Pyridine 
(THF) 

K/ 
M-1 

1.5 (±0.2) 
× 107 

6.0 (±0.6) 
× 106 

1.8 (±0.2) 
× 106 

3.0 (±0.3) 
× 104 

1.0 (±0.1) 
× 107 36 (±4) 

 

6.5 Conclusion 

In conclusion, we report the Lewis acidic behavior of B(C6Cl5)3 which can 

capture fluoride, azide and cyanide in dichloromethane with large binding constants.  
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B(C6Cl5)3 can also extract fluoride ions from aqueous environments into less polar 

phases.  In addition, B(C6Cl5)3 is found to also bind neutral molecule, such as pyridine 

and DMAP, in organic solvents.  The results in this work may lead to the development 

of the chlorinated triarylboranes with potential applications in sensing, catalysis, 

synthesis and small molecule activation. 

 

6.6 Experimental section 

 General Considerations.  Commercially available chemicals were purchased 

and used as provided (Commercial sources: Aldrich for Me3SiF2S(NMe2)3 (TASF), 

nBu4NF, nBu4NCN, nBu4NN3, BCl3 in n-heptane, DMAP; Alpha Aesar for n-

butyllithium (2.6 M in hexanes)).  B(C6Cl5)3 was prepared by reaction of 

pentachlorophenyl lithium with BCl3 as reported by O’Hare group.  Diethyl ether and 

THF were dried by refluxing under N2 over Na/K and freshly distilled prior to use.  

Dichloromethane and pentane were dried over AlCl3 column.  Air-sensitive compounds 

were handled under N2 atmosphere using standard Schlenk and glovebox techniques.  

UV-vis spectra were recorded on an Ocean Optics USB4000 spectrometer with an 

Ocean Optics ISS light source.  Elemental analyses were performed at Atlantic Microlab 

(Norcross, GA).  NMR spectra were recorded on Varian Unity Inova 400 FT NMR 

(399.59 MHz for 1H, 376.03 MHz for 19F, 128.19 MHz for 11B, 100.45 MHz for 13C) 

spectrometers at ambient temperature. Chemical shifts  are given in ppm and are 

referenced against external BF3·Et2O (11B and 19F). 
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Crystallography.  The crystallographic measurements were performed using a 

Bruker APEX-II CCD area detector diffractometer (Mo-K radiation,  = 0.71069 Å) for 

[FB(C6Cl5)3]-[S(NMe2)3]+ and B(C6Cl5)3-DMAP.  In each case, a specimen of suitable 

size and quality was selected and mounted onto a nylon loop.  The structures were 

solved by direct methods, which successfully located most of the non-hydrogen atoms.  

Subsequent refinement on F2 using the SHELXTL/PC package (version 5.1) allowed 

location of the remaining non-hydrogen atoms. 

Synthesis of [FB(C6Cl5)3]
-
[S(NMe2)3]

+
.  TASF (11 mg, 0.040 mmol) was added 

to a solution of B(C6Cl5)3 (30 mg, 0.040 mmol) in THF (5 mL) at room temperature. The 

mixture was stirred for ten minutes.  The solvent was removed under vacuum to yield a 

solid which was washed with diethyl ether to afford [FB(C6Cl5)3]-[S(NMe2)3]+ as a pale 

product (35 g, yield 84%).  Single crystals were obtained by slow diffusion of pentane 

into a THF solution of [FB(C6Cl5)3]-[S(NMe2)3]+ at -25ºC.  1H NMR (399.59MHz, 

CDCl3): δ 2.96 (N-CH3)  13C NMR (100.45 MHz, CDCl3): δ 38.65 (N-CH3), 129.03, (s, 

ortho- C6Cl5), 130.23, 130.66, 136.89, 137.49.  11B NMR (128.19 MHz, CDCl3): 6.8 

(broad signal).  19F NMR (376.03 MHz, CDCl3) -168 (broad).  Anal. Calcd for 

C24H18BFCl15S-1/2THF: C 31.93; H 2.27. Found: C 31.99; H 2.38.  (The sample used 

for EA was obtained by recrystallization from THF, and the initial crystal contains THF 

molecules). 

Lewis bases (X) complexation in CH2Cl2.  A CH2Cl2 solution of B(C6Cl5)3 (3 

ml, c = 4.84 × 10-5 M for X = F-, c = 5.80 × 10-5 M for X = N3
-, c = 7.20 × 10-5 M for X 

= CN-, c = 6.84 × 10-5 M for X = DMAP) was placed in a cuvette and titrated with 
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incremental amounts of the Lewis base by addition of a CH2Cl2 solution of nBu4NF for 

X = F- (4.7 mM), nBu4NN3 for X = N3
- (30 mM), nBu4NCN for X = CN- (3.6 mM), or 

DMAP (26 mM).  For these experiments, the absorbance of B(C6Cl5)3 was monitored at 

 = 331 nm, showing the complexation of the Lewis bases. 

NMR study of the reaction of B(C6Cl5)3 with DMAP in CDCl3.  A  CDCl3 

solution of DMAP (0.027 M, 0.7 ml) was placed in an NMR tube and was added 

B(C6Cl5)3 4 mg each time.  1H NMR spectra were recorded correspondingly each time. 
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CHAPTER VII 

THE HYDROPHOBIC EFFECTS IN THE FLUORIDE COMPLEXATION BY  

A SERIES OF SULFONIUM BORANES 

 

7.1 Introduction 

The recognition of the fluoride anion has been attracting a great deal of attention 

because of toxicity concerns.1-3  Since fluoride has found widespread applications in 

industry and medicine, the potential toxicity of this anion has been the subject of 

numerous discussions and polemics leading to some rather strict regulations for human 

intake. For example, the Environment Protection Agency (EPA) recommends of fluoride 

concentration of just 0.7 ppm for drinking water.  The same agency has also set the 

drinking water maximum contaminant level of fluoride to 4 ppm in drinking water.  For 

these reasons, fluoride anion sensors that can operate in water in the low concentration 

range are worthwhile targets. 

Previous results form the Gabbai group have shown that the introduction of 

cationic moieties into organoboranes increases their Lewis acidity as well as the water 

solubility.25-26, 45-46, 48, 177  For example, onium boranes such as the phosphonium boranes 

[22]+, [44]+, [45]+ and [46]+ capture fluoride ions in aqueous solution, 62  Investigation of 

these four boranes indicates that an increase in the hydrophobicity of the cationic 

boranes leads to an increase of their anion affinity.  On the other hand, the anion affinity 

could be further elevated by placing the cationic moieties next to the boron atom as in 

[22]+ and [28]+.25  These precedents lead us to speculate that the incorporation of 
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hydrophobic groups in close proximity to the boron center may actually result in a more 

significant Lewis acidity increase.  Considering the fact that [28]+ is not stable in water, 

we have now synthesized a series of sulfonium boranes of varying hydrophobicity and 

investigated their Lewis acidity and fluoride affinity in aqueous environment. 

 

 
 

7.2 Synthesis and characterization of sulfonium boranes 

 Using a similar synthetic strategy to that employed in the case of [47]+,61 we 

found that the related sulfonium boranes [48]+, [49]+ and [50]+ could be readily 

synthesized by reaction of 1-Li-2-SPh-C6H4, 1-Li-4-SMe-C6H4 or 1-Li-4-SPh-C6H4 with 

Mes2BF and subsequent methylation of the corresponding neutral thiophenyl boranes 

with MeOTf (Figure 86).  These triflate salts have been characterized by multinuclear 

NMR spectroscopy.  In all four cases, the boron center remains trigonal planar in 

agreement with the detection of a broad 11B-NMR resonance in the 70 - 80 ppm range in 

CDCl3.  Like [47]+, these new sulfonium boranes feature a low energy UV absorption 

band detected at 334 nm for [48]+, 325 nm for [49]+, and 319 nm for [50]+ in 

H2O/MeOH (95:5 vol.), which also confirms the presence of a coordinatively 

unsaturated boron center.146-147, 178  The resulting boron-centered chromophores are 

fluorescent and give rise to a broad emission band at 470 nm for [47]+ and [48]+, 494 nm 
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for [49]+ and 499 nm for [50]+ in H2O/MeOH (95:5 vol.), respectively when excited at 

340 nm.  The crystal structure of the sulfonium borane salt [48]OTf has been obtained 

(Table 35, Figure 87).  These structure shows that: 1) the boron center remains trigonal 

planar geometry indicated by the sum of the Caryl-B-Caryl angles (∑Caryl-B-Caryl = 360.0°); 

2) that the boron-sulfur separation (3.158 Å) is slightly longer than that in [47]+ (3.070 

Å).  The NBO analysis carried out at DFT optimized geometry of [48]+ indicates the 

presence of a lp(S)→p(B) interaction, whose deletion energy (2.54 kcal/mol) is similar 

to that of [47]+, but much weaker than that of [37]+.  These analyses indicate that the 

lp(S) and p(B) orbitals of [48]+ are in a divergent orientation like those of [47]+. 

 

 

Figure 86. Synthesis of the sulfonium boranes [47]+, [48]+, [49]+ and [50]+. 
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Figure 87. ORTEP drawing of of [48]+ (thermal ellipsoids drawn at 50%; for clarity 

purposes, the hydrogen atoms and triflate anion are omitted, and the mesityl ligands are 

represented by thin lines).  Selected bond lengths (Å) and angles (°): S(1)-C(32) 1.783(5),  

S(1)-C(31) 1.784(5), S(1)-C(7) 1.787(5), C(8)-B(1) 1.555(8), C(12)-B(1) 1.576(8), 

C(20)-B(1) 1.595(7); C(32)-S(1)-C(31) 104.0(2), C(32)-S(1)-C(7) 103.8(2), C(31)-S(1)-

C(7) 106.8(2), C(8)-B(1)-C(12) 122.8(5), C(8)-B(1)-C(20) 121.6(5), C(12)-B(1)-C(20) 

115.3(5), C(23)-C(38)-C(39) 120.0(5). 
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Table 35. Crystal data, data collections, and structure refinement for [48]OTf. 

 
Crystal data 

 
[48]OTf 

formula C32H34BF3O3S2 
Mr  598.52 

crystal size (mm3) 0.15 x 0.11 x 0.08 
crystal system Triclinic 
space group P-1 

a (Å) 8.363(6) 
b (Å) 11.161(8) 
c (Å) 16.749(12) 
α () 82.596(10) 
 () 78.412(10) 
γ () 79.602(10) 

V (Å3) 1499.2(19) 
Z  2 

calc (g cm-3) 1.326 
 (mm-1) 0.228 
F(000) 628 

  

Data Collection  
T (K)  110(2) 

scan mode   

hkl range 
-9  +9 

-12  +12 
-19  +19  

measd reflns  13194 
unique reflns [Rint] 4698 [0.1093] 

reflns used for refinement 4698 
   

Refinement  
refined parameters 370 

GooF 0.991 
R1,a wR2

b all data 0.1418, 0.1921 
fin (max/min) (e Å-3) 0.455, -0.448 

a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2. 
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7.3 Lewis acidity and pH stability range studies 

 In order to compare the Lewis acidity of these four sulfonium boranes and study 

their compatibility with aqueous environments, we investigated their behavior in 

aqueous solutions.  Since hydroxide binding is expected to quench the absorption of low 

energy band in the UV-vis spectra of these boranes, we monitored the absorbance as a 

function of pH.5  In all cases, the absorption of the low energy band is quenched as the 

pH of the solution increases.  Acidification of the solution results in a revival of the 

absorbance, indicating that the hydroxide binding process is reversible.  This simple 

equilibrium can be parameterized using eq. 1.  In the case of [48]+ (H2O/MeOH, 95:5 

vol.), a 9% decrease of the absorbance is observed at pH = 6.1.  Further elevation of the 

pH induces the formation of a precipitate, thus preventing completion of the titration.  A 

similar behavior is observed with [47]+, which undergoes a 9% quenching at pH 6.9, 

followed by precipitation at more basic pH.  These results indicate that [48]+ is more 

Lewis acidic than [47]+.  Extrapolation of the limited data obtained suggest the following 

equilibrium constants: pKR+ = 7.89(±0.05) for [47]+, and pKR+ = 7.02(±0.05) for [48]+ 

(Figure 88).  We note in passing that these pKR+ values are mathematically equal to the 

pH value at which 50% of the borane is neutralized by hydroxide.  The same 

experiments were performed for [49]+ and [50]+ under similar conditions (H2O/MeOH, 

95:5 vol.).  Fitting of the titration data to the equilibrium described in eq 1 afforded pKR+ 

= 8.84(±0.05) for [49]+, and pKR+ = 8.54(±0.05) for [50]+, suggesting that [50]+ is 

slightly more Lewis acidic than [49]+.  In turn, comparison of the pKR+ values obtained 

for the ortho-phenylene derivatives [47]+, [48]+ and para-phenylene derivatives [49]+, 
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[50]+ further support the conclusion that the Lewis acidity of the compounds is increased 

when the cationic moiety and the boron atom are placed in close proximity.  Another 

conclusion from these studies is the fact that the anion affinity appears to increase with 

the hydrophobic character of the molecule.  This is reflected by the lowering pKR+ values 

on moving from the dimethylsulfonium derivatives to the methylphenylsulfonium 

derivatives.62  More interestingly, the decrease of pKR+ value from [47]+ to [48]+ (ca. 0.8) 

is more significant than that from [49]+ to [50]+ (ca. 0.3).  In turn, these results suggest 

that hydrophobic effect is more acute when the hydrophobic substituent is placed closed 

to the boron center.  To further assess the validity of this conclusion, we decided to 

investigate the fluoride anion binding properties of these compounds. 

 

 
 

 
 

Figure 88. Spectrophotometric acid-base titration curve of [48]+, or [49]+ and [50]+ in 

H2O/MeOH (95:5 vol.).  The titrations of [48]+ and [50]+ could not be finished due to the 

precipitation of 48-OH and 50-OH. (The acid-base titration data of [47]+ was published 

previously by the Gabbai group.61) 
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7.4 Fluoride ion complexation in methanol 

Since anion binding to the boron center of these sulfonium boranes should result 

in a quenching of the low energy absorption band observed in their UV-vis spectra, we 

monitored the fluoride binding process by UV-vis spectroscopy.  Addition of fluoride 

ions to MeOH solution of these boranes leads to the progressive quenching of the low 

energy absorption band, indicating fluoride coordination to the boron center.  Fitting of 

the resulting titration data afforded the following fluoride binding constants: K = 

4.0(±0.5)×104 M-1 for [47]+, K = 8.5(±0.5)×104 M-1 for [48]+, K = 260(±20) M-1 for [49]+, 

and K = 420(±40) M-1 for [50]+.  These results clearly show that: i) the fluoride affinity 

increases slightly with the hydrophobicity increase of the boranes in MeOH when 

comparing the binding constants of [47]+ and [48]+, or [49]+ and [50]+; ii) such fluoride 

affinity enhancement when phenyl group replaces methyl group in the ortho-sulfonium 

boranes is similar to that of para-sulfonium boranes; iii) for the cationic moiety of 

similar hydrophobicity, the proximity of the sulfonium unit to the boron center leads to a 

notable increase.  Last but not least, these four cationic boranes do not bind other 

common anions such as Cl−, Br−, I−, NO3
−, H2PO4

−, and HSO4
−, suggesting that they are 

highly selective. 
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Figure 89. ORTEP drawing of 48-F. (thermal ellipsoids drawn at 50%; for clarity 

purposes, the hydrogen atoms are omitted, and the mesityl ligands are represented by 

thin lines).  Selected bond lengths (Å) and bond angles (°): S(1)-C(19) 1.762(3), S(1)-

C(16) 1.791(3), S(1)-C(5) 1.793(2), F(1)-B(1) 1.477(3), C(2)-B(1) 1.642(4), C(10)-B(1) 

1.641(4), C(21)-B(1) 1.649(4); C(19)-S(1)-C(16) 104.51(12), C(19)-S(1)-C(5) 

104.48(11), C(16)-S(1)-C(5) 101.54(12), C(10)-B(1)-C(2) 106.9(2), C(10)-B(1)-C(21) 

113.8(2), C(2)-B(1)-C(21) 116.9(2). 
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Figure 90. ORTEP drawing of 50-F.  (thermal ellipsoids drawn at 50%; for clarity 

purposes, the hydrogen atoms are omitted, and the mesityl ligands are represented by 

thin lines).  Selected bond lengths (Å) and bond angles (°): S(1)-C(6) 1.777(3), S(1)-C(2) 

1.777(2), S(1)-C(21) 1.791(2), F(1)-B(1) 1.466(3), C(4)-B(1) 1.661(4), C(5)-B(1) 

1.640(4), C(9)-B(1) 1.667(4); C(6)-S(1)-C(2) 105.53(11), C(6)-S(1)-C(21) 103.09(12), 

C(2)-S(1)-C(21) 104.82(12), C(5)-B(1)-C(4) 107.2(2), C(5)-B(1)-C(9) 118.3(2), C(4)-

B(1)-C(9) 113.2(2). 
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Table 36. Crystal data, data collections, and structure refinements of 48-F and 50-F 

Crystal data 
 

48-F 50-F 
formula C31H34BFS C31H34BFS 

Mr 468.45 468.45 
crystal size (mm3) 0.15 x 0.11 x 0.08 0.12 x 0.11 x 0.06 

crystal system Orthorhombic triclinic 
space group P2(1)/c 

 
P-1 

 a (Å) 8.464(5) 10.0180(10) 
b (Å) 12.829(8) 10.1978(10) 
c (Å) 22.897(14) 14.357(2)  
α () 90 92.035(2) 
 () 90 90.491(2) 
γ () 90 118.5870(10) 

V (Å3) 2486(3) 1286.6(3) 
Z 4 2 

calc (g cm-3) 1.252 1.209 
 (mm-1) 0.156 0.150 
F(000) 1000 

 

500 
    

Data Collection  
T (K) 110(2) 110(2) 

scan mode   

hkl range 
-10  +11 
-16  +16 
-30  +30 

-11  +11 
-12  +12 
-17  +17 

measd reflns 28371 12579 
unique reflns [Rint] 6035 [0.0934] 4515 [0.0478] 

 reflns used for refinement 6035 4515 
   

Refinement   
refined parameters 307 307 

GooF 1.000 1.008 
R1,a wR2b all data 0.1055, 0.1300 

 
0.0762, 0.1104 

 fin (max/min) (e Å-3) 0.366 and -0.492 0.496 and -0.507 
a
 R1 = ||Fo| - |Fc|||Fo|. b wR2 = [[w(Fo2 - Fc2)2]/[w(Fo2)2]]1/2. 
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Attempts to isolate the fluoride adducts were also undertaken.  Addition of excess 

KF to a concentrated MeOH solution of [47]+, [48]+, [49]+ and [50]+ led to the 

precipitation of the corresponding fluoride complexes 47-F, 48-F, 49-F, and 50-F, 

respectively.  These compounds have been characterized by multinuclear NMR 

spectroscopy.  The 11B NMR resonances at  = 6.0 ppm for 47-F,  = 6.8 ppm for 48-F,  

= 6.6 ppm for 49-F and  = 7.0 ppm for 50-F confirm the presence of a four-coordinate 

boron center.  The 19F NMR resonances ( = -153.3 ppm for 47-F,  = -156.5 ppm for 

48-F,  = -178.7 ppm for 49-F and  = -178.8 ppm for 50-F) are also close to those 

observed in compounds featuring triarylfluoroborate moieties.  The crystal structures of 

47-F, 48-F and 50-F have been determined by single crystal X-ray diffraction (Figure 89 

and Figure 90, Table 36; 47-F was synthesized and characterized by Youngmin Kim, a 

former student in the Gabbai group).  In all cases, the B-F bond length (B-F = 1.494 Å 

for 47-F, B-F = 1.477 Å for 48-F and B-F = 1.465 Å for 50-F) is comparable to those 

found in triarylfluoroborate moiety and the boron center adopts a pyramidal geometry as 

indicated by the sum of the Caryl-B-Caryl angles (Σ(C-B-C) = 340.3° for 47-F, Σ(C-B-C) = 337.6° 

for 48-F and Σ(C-B-C) = 338.7° for 50-F).  In the case of 47-F and 48-F, the separation 

between sulfur and fluoride (2.665 Å in 47-F and 2.639 Å in 48-F) is well within the 

sum of van der Waals radii of the two elements and the F-S-Cph angle (170.82° for 47-F 

and 163.93° for 48-F) is close to linearity.  These characteristics indicate the presence of 

a B-F→S donor-acceptor interaction involving a fluorine lone pair (lp) and the σ* orbital 

of S-C bond.  To investigate the strength of the lp(F)→σ*(S-C) interaction, the 

geometries of 47-F and 48-F were optimized using DFT methods (functional: B3LYP; 
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mixed basis set: B: 6-31+g(d’); S: 6-31+g(d); C, H: 6-31g).  NBO analysis, carried out 

on the optimized structure, confirms the presence of the lp(F)→σ*(S-C) interaction.  

Deletion calculations show that this interaction contributes to the stability of the 

molecule by 5.35 kcal/mol for 47-F and 4.51 kcal/mol for 48-F, which are close to the 

interaction identified by o-Mes2BF-ph-PMePh2.49  This donor-acceptor interaction 

accounts for the higher anion affinity of the ortho-phenylene linked isomers [47]+ and 

[48]+ when compared to the para-phenylene linked isomers [49]+ and [50]+. 

 

7.5 Fluoride ion complexation in water 

Having established the pH stability range of these cationic boranes as well as 

their ability to bind fluoride in organic solvents, their anion binding behavior was 

investigated in aqueous media (H2O/MeOH, 95:5 vol.).  Careful titrations of [49]+ and 

[50]+ with fluoride ions monitored by UV-vis spectroscopy under dilute conditions 

(0.052 mM for [49]+ and 0.042 mM for [50]+) afforded K = 8.5(±0.5) M-1 for [49]+ and K 

= 33(±1) M-1 for [50]+ (Figure 91).  The highest fluoride anion affinity of [50]+ maybe 

correlated to its increased hydrophobicity, as speculated in the case of the phosphonium 

analogs of these compounds.62  Considering the poor solubility of the fluoride adducts 

47-F and 48-F in aqueous environments, we carried out fluorescence quenching 

titrations of [47]+ and [48]+ monitored by fluorescence spectroscopy under more dilute 

conditions (see Experimental section for details).  Fitting the data to a 1:1 binding 

isotherm using eq. 2 afforded K = 60(±5) M-1 for [47]+ and K = 1670(±50) M-1 for [48]+ 

(Figure 91).   
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The fluoride affinity of the latter cation [48]+ is almost 30 time higher than that 

of [47]+, again reinforcing the major role played by hydrophobic effects especially when 

the hydrophobic groups is positioned near the anion binding site.  The advantages of the 

ortho-positioned sulfonium moiety in [48]+ include: i) The cationic charge provides a 

Coulombic and inductive drive for the formation of the fluoride adduct and increases the 

solubility of the receptor in water as well; ii) The hydrophobic group in close proximity 

to the boron center results in a significant Lewis acidity increase probably by facilitating 

the covalent ion pairing process between the borane and fluoride ion; iii) The ortho-

positioned S-C moiety engages the fluoride anion in a stabilizing lp(F)→σ*(S−C) 

interaction in 48-F.  In turn, [48]+ is the best receptor for fluoride ions among these four 

cationic boranes. 

 

(I0-I)/I0 = [F-]/(1/K + [F-])     eq 2 
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Figure 91. Top: Experimental data and calculated 1:1 binding isotherm with K = 

8.5(±0.5) M-1 for [49]+ (left) and K = 33(±1) M-1 for [50]+ (right) monitored by UV-vis 

spectroscopy.  Bottom: Fluorescence quenching titration data and calculated 1:1 binding 

isotherm with K = 60(±5) M-1 for [47]+ (left) and K = 1670(±50) M-1 for [48]+ (right). 

 

7.6 Lewis acidity and fluoride affinity in the presence of CTABr 

Since the cation [48]+ is the strongest Lewis acid among the four boranes, we 

decided to investigate its fluoride affinity in water in the presence of CTABr which is 

expected to increase the solubility and fluoride affinity of the receptors in water.179  We 
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first set out to determine the pKR+ of [48]+ by monitoring the absorbance as a function of 

pH.  The hydroxide binding process is still reversible in H2O/MeOH (95:5 vol.) with 

different concentrations of CTABr.  The acid-base titrations of the compound [48]+ 

afforded pKR+ = 6.07(±0.05) with 0.95 mM CTABr, pKR+ = 5.57(±0.05) with 9.5 mM 

CTABr and pKR+ = 5.90 with 47.5mM CTABr.  In turn, the acidity of [48]+ is the highest 

in the presence of 9.5 mM CTABr.  Next, we decided to study the anion binding 

properties of [48]+ in a H2O/MeOH (95:5 vol.) solution containing CTABr (9.5 mM).  

The changes observed in the UV-vis spectrum of [48]+ upon addition of fluoride ions 

(Figure 92) could be fitted to a 1:1 binding isotherm affording a binding constant of 

2.65(±0.2) ×104 M-1.  As shown in Figure 92, 0.76 and 1.52 ppm of fluoride ions cause 

32% and 56% quenching of the absorbance in the UV-vis spectra, respectively.  In 

addition, this detection process is rapid and only takes one minute.  These results 

demonstrate that [48]+ is capable of detecting fluoride ions in the ppm range, which is 

relevant to drinking water analysis. 
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Figure 92. Left: Absorbance change of a solution of [48]+ after successive additions of 

fluoride anions in H2O/MeOH (95:5, vol.; 9.5 mM pyridine buffer, pH = 4.6). Right: 

Experimental data and calculated 1:1 binding isotherm with K = 2.65(±0.2) ×104 M-1 for 

[48]+ using ε([48]+) = 9200 M−1 cm−1
, ε(48-F) = 0 M−1 cm−1. 

 

To test the anion binding selectivity of [48]+, its absorption spectrum has been 

monitored upon the addition of various anions including Cl−, Br−, I−, NO3
−, H2PO4

−, and 

HSO4
−.  The absorbance of [48]+ shows no or negligible quenching after the addition of 

5 equivalents of these anions, suggesting that [48]+ has no or little affinity for these 

anions.  Next, we tested the reversibility of the fluoride binding process of [48]+.  

Addition of an aqueous solution of Al3+ to a solution containing 48-F led to a revival of 

the absorbance of [48]+ showing that fluoride binding is reversible.  

 

7.7 Conclusion 

In summary, the results presented in this chapter show that sulfonium boranes are 
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water stable and react reversibly with hydroxide and fluoride ions in aqueous 

environments. More interestingly, we also demonstrate that the incorporation of 

hydrophobic groups in close proximity to the boron center actually results in a more 

significant Lewis acidity increase.  The presence of CTABr further enhances the Lewis 

acidity of the cationic boranes.  In turn, the integration of Coulombic, chelate and 

hydrophobic effects makes [48]+ sufficiently fluorophilic to sense fluoride at ppm level 

in water. 

 

7.8 Experimental section 

General Considerations.  Methyl triflate and potassium fluoride were purchased 

from Aldrich, diphenyl disulfide from TCI, n-butyllithium from Alfa Aesar.  

dimesitylboron fluoride and 1-dimesitylboryl-4-methylthio-benzene were prepared by 

following the published steps.180-181 Solvents were dried by passing through an alumina 

column (hexanes, dichloromethane) or refluxing under N2 over Na/K (diethyl ether, 

THF).  UV-vis spectra were recorded on an Ocean Optics USB4000 spectrometer with 

an Ocean Optics ISS light source.  Elemental analyses were performed by Atlantic 

Microlab (Norcross, GA).  The pH measurements were carried out with a Radiometer 

PHM290 pH meter equipped with a VWR SympHony electrode.  Fluorescence 

measurements were carried out using a PTI, QuantaMaster spectrofluorometer.  NMR 

spectra were recorded on Varian Unity Inova 400 FT NMR (399.59 MHz for 1H, 375.99 

MHz for 19F, 128.19 MHz for 11B, 100.45 MHz for 13C) spectrometers at ambient 

temperature. Chemical shifts are given in ppm, and are referenced against external 
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BF3·Et2O (11B, 19F).  The crystallographic measurements were performed using a Bruker 

APEX-II CCD area detector diffractometer (Mo-Kradiation, = 0.71069 Å) for 47-F, 

[48]OTf, 48-F and 50-F. In each case, a specimen of suitable size and quality was 

selected and mounted onto a nylon loop.  The structures were solved by direct methods, 

which successfully located most of the non-hydrogen atoms. Subsequent refinement on 

F2 using the SHELXTL/PC package (version 5.1) allowed location of the remaining non-

hydrogen atoms. 

 Synthesis of 47-F.  [47]OTf (0.08 g, 0.15 mmol) was dissolved in MeOH (5 mL) 

and treated with excess amount of KF which resulted in the formation of a white solid.  

After 30 min, the solid was isolated by filtration, washed with MeOH, and dried in 

vacuo to afford 47-F as a white solid (65% yield).  1H NMR (400 MHz, CDCl3) δ 1.90 

(s, 12H), 2.23 (s, 6H), 2.75 (s, 6H), 6.66 (s, 4H), 7.30-7.36 (m, 3H), 7.39-7.41 (m, 1H). 

13C NMR (100 MHz, CDCl3) δ 21.03, 24.90, 29.24, 123.31, 127.14, 128.85, 128.94, 

131.97, 133.41, 137.39 (d, JC-F=6.1 Hz), 141.87, 151.24 (bs), 168.85 (bs). 11B NMR (128 

MHz, CDCl3) δ +6.02 (bs). 19F NMR (376 MHz, CDCl3) δ -153.32 (s). Anal. Calcd for 

C26H32BFS (2-F): C, 76.84; H, 7.94. Found: C, 75.47; H, 7.75. 

Synthesis of [48]OTf.  1,2-dibromobenzene (3.9 g, 16.6 mmol) was allowed to 

react with nBuLi (6.8 ml, 2.8 M in hexane) in THF/Et2O solution at -110 ºC for 1 h.  

Freshly made PhSI in THF (from mixing equimolar PhSSPh and I2) was added and the 

reaction was kept at ambient temperature overnight.  The reaction was quenched with 

water (40 mL) and extracted with dichloromethane.  The organic layer was separated, 

dried over MgSO4, filtered, and concentrated in vacuo to afford a colorless oil (2-
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Bromophenyl)(phenyl) sulfane.  1H NMR. (400 MHz, CDCl3)  7.02 (d, 1H, ph-CH), 

7.12 (t, 1H, ph-CH), 7.24 (t, 1H, ph-CH), 7.48-7.52 (m, 3H, SPh-CH), 7.54-7.58 (m, 2H, 

SPh-CH), 7.66 (d, 1H, ph-CH). 

(2-Bromophenyl)(phenyl) sulfane (2 g, 7.54 mmol) was allowed to react with 

nBuLi (3.0 mL, 8.4 mmol, 2.8M in hexanes) in diethyl ether (60 mL) at -0 ºC .  After 

stirring the reaction mixture for 3 h, dimesitylboron fluoride (2.0 g, 7.46 mmol) was 

added to the resulting solution. The reaction mixture was warmed to ambient 

temperature and stirred overnight. The reaction was quenched with water (40 mL) and 

extracted with dichloromethane.  The organic layer was separated, dried over MgSO4, 

filtered, and concentrated in vacuo to afford a yellow solid. This solid was washed with 

hexanes (10 mL) to afford 1-dimesitylboryl-2-phenylthio-benzene as a pale solid (1.8 g, 

55% yield).  1H NMR (400 MHz, CDCl3)  2.04 (s, 12H, Mes-CH3), 2.28 (s, 6H, Mes-

CH3), 6.76 (s, 4H, Mes-CH), 7.07-7.13 (m, 2H, Ph-CH), 7.19-7.24 (m, 7H, Ph-CH).  11B 

NMR (128 MHz, CDCl3)  81 (bs) 

Without additional purification, 1-dimesitylboryl-2-phenylthio-benzene (1.0 g, 

2.30 mmol) was allowed to react with methyl triflate (0.5 g, 3.05 mmol) in 

dichloromethane (20 ml).  The resulting mixture was heated to reflux, stirred overnight 

and then cooled to ambient temperature.  The solvent was removed in vacuo to afford a 

foamy solid. The solid was washed by diethyl ether to yield a white solid (1.2 g, 87% 

yield).  1H NMR (400 MHz, CDCl3)  2.11 (bs, 9H, Mes-CH3), 2.28 (s, 3H, Mes-CH3), 

2.32 (s, 6H, Mes-CH3), 3.36 (bs, 3H, S-CH3), 6.87 (s, 4H, Mes-CH), 7.49 (d, 2H, JH-H = 

7.6 Hz, Ph-CH), 7.60-7.73 (m, 5H, SPh-CH), 7.82-7.96 (m, 2H, Ph-CH).  13C NMR (100 



 

 

198 

MHz, CDCl3) 21.32, 22.04, 27.88, 30.77, 120.15, 131.42, 134.14, 134.45, 135.65, 

141.03, 141.64.  11B NMR (128 MHz, CD3OD) 81.3 (bs).  Anal. Calcd for 

C32H34BF3O3S2: C, 64.21, H, 5.73.  Found: C, 63.90, H, 5.68. 

Synthesis of 48-F.  [48]OTf (0.050 g, 0.084 mmol) was dissolved in an excess 

KF methanol solution leading to the formation of a white precipitate.  After 15 min., this 

precipitate was isolated by filtration, dried under vacuum to afford 48-F (0.035 g, 89% 

yield).  Single crystals of 48-F were obtained by slow evaporation of a dichloromethane 

solution.  1H NMR (400 MHz, CDCl3) δ 1.95 (s, 6H, Mes-CH3), 2.00 (s, 6H,  Mes-CH3), 

2.24 (s, 3H, Mes-CH3), 2.26 (s, 3H, Mes-CH3), 3.19 (s, 3H, S-CH3), 6.71 (s, 2H, Mes-

CH), 6.72 (s, 2H, Mes-CH), 6.96 (d, 1H, JH-H = 8.0 Hz, Ph-CH), 7.13 (t, 1H, JH-H = 

8.0Hz, Ph-CH), 7.22 (t, 1H, JH-H = 7.6 Hz, Ph-CH), 7.38 (d, 1H, JH-H = 7.6 Hz, ph-CH), 

7.50 (d, 2H, JH-H = 8.0 Hz, SPh-CH), 7.56-7.66 (m, 3H, SPh-CH).  13C NMR (100 MHz, 

CDCl3) δ 20.91, 20.93, 24.73, 24.78, 24.91, 24.95, 28.74 (d, 1C, JH-C = 6.1 Hz, S-CH3), 

126.23, 127.00, 128.66, 129.12, 130.55, 130.97, 132.64, 133.24, 133.39, 137.31, 137.37, 

142.04, 142.37.  11B NMR (128 MHz, CDCl3) δ +7.0 (s). 19F NMR (375.9 MHz, CDCl3) 

δ -156.5 (s).  Anal. Calcd for C31H34BFS: C, 79.48, H, 7.32.  Found: C, 79.27, H, 7.40. 

Synthesis of [49]OTf.  1-dimesitylboryl-4-methylthio-benzene (0.20 g, 0.54 

mmol) was allowed to react with methyl triflate (0.10 g, 0.61 mmol) in dichloromethane 

(5 ml).  The resulting mixture was heated to reflux, stirred overnight and then cooled to 

ambient temperature.  The solvent was removed in vacuo to afford a foamy solid. The 

solid was washed by diethyl ether to yield a white solid (0.18 g, 62% yield).  1H NMR 

(400 MHz, CDCl3)  1.95 (s, 12H, Mes-CH3), 2.31 (s, 6H, Mes-CH3), 3.41 (s, 6H, S-
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CH3), 6.83 (s, 4H, Mes-CH), 7.73 (d, 2H, JH-H = 8.4 Hz, Ph-CH), 7.89(d, 2H, JH-H = 8.0 

Hz, Ph-CH). 13C NMR (100 MHz, CDCl3) 21.26, 23.50, 29.30 (s, 2C, S-CH3), 121.17, 

128.59, 128.74, 137.68, 140.04, 140.76.  11B NMR (128 MHz, CD3OD)  82 (bs).  The 

purity of this compound was established by NMR spectroscopy (Figure 93). 

 

 

 

Figure 93. 1H NMR and 13C NMR spectra of [49]OTf. 
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Synthesis of 49-F.  [49]OTf (0.050 g, 0.093 mmol) was dissolved in an excess 

KF methanol solution leading to the formation of a white precipitate.  After 15 min., this 

precipitate was isolated by filtration, dried under vacuum to afford 49-F (0.030 g, 79% 

yield).  1H NMR (400 MHz, DMSO-d6) δ 1.78 (s, 12H, Mes-CH3), 2.06 (s, 6H, Mes-

CH3), 3.14 (s, 6H, S-CH3), 6.38 (s, 4H, Mes-CH), 7.14 (bs, 1H, Ph-CH), 7.51 (bs, 1H, 

Ph-CH), 7.62 (bs, 1H, Ph-CH), 7.90 (bs, 1H, ph-CH).  13C NMR (100 MHz, DMSO-d6) 

δ 20.96, 25.37, 25.41, 29.00, 119.16, 126.78, 128.51, 131.30, 140.90.  11B NMR (128 

MHz, DMSO-d6) δ +6.6 (bs).  19F NMR (375.9 MHz, DMSO-d6) δ -178.7 (s).  The 

purity of this compound was established by NMR spectroscopy ( Figure 94). 

Synthesis of [50]OTf.  1-dimesitylboryl-4-phenylthio-benzene (0.50 g, 1.15 

mmol) was allowed to react with methyl triflate (0.23 g, 1.38 mmol) in dichloromethane 

(20 ml).  The resulting mixture was heated to reflux, stirred overnight and then cooled to 

ambient temperature.  The solvent was removed in vacuo to afford a foamy solid. The 

solid was washed by diethyl ether to yield a white solid (0.54 g, 78% yield).  1H NMR 

(400 MHz, CDCl3)  1.93 (s, 12H, Mes-CH3), 2.29 (s, 6H, Mes-CH3), 3.73 (s, 3H, S-

CH3), 6.81 (s, 4H, Mes-CH), 7.63-7.74 (m, 5H, SPh-CH), 7.77 (d, 2H, JH-H = 8.8 Hz, 

Ph-CH), 7.90 (d, 2H, JH-H = 8.0 Hz, Ph-CH).  13C NMR (100 MHz, CDCl3) 21.24, 

23.48, 28.89, 125.44, 128.19, 128.56, 128.74, 130.13, 130.17, 131.48, 134.56, 137.65, 

139.97, 140.74.  11B NMR (128 MHz, CD3OD)  78 (bs).  The purity of this compound 

was established by NMR spectroscopy (Figure 95).  

Synthesis of 50-F.  [50]OTf (0.050 g, 0.115 mmol) was dissolved in an excess 

KF methanol solution leading to the formation of a white precipitate.  After 15 min., this 
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precipitate was isolated by filtration, dried under vacuum to afford 3-F (0.046 g, 85% 

yield).  1H NMR (400 MHz, DMSO-d6) δ 1.74 (s, 12H, Mes-CH3), 2.04 (s, 6H, Mes-

CH3), 3.67 (s, 3H, S-CH3), 6.37 (s, 4H, Mes-CH), 7.15 (bs, 1H, Ph-CH), 7.53 (bs, 1H, 

Ph-CH), 7.63-7.71 (m, 5H, SPh-CH), 7.88 (d, 2H, JH-H = 7.2 Hz, Ph-CH).  13C NMR 

(100 MHz, DMSO-d6) δ 20.95, 25.30, 25.33, 27.20, 119.51, 127.31, 128.54, 129.59, 

129.66, 131.09, 131.36, 133.71, 135.80, 140.89.  11B NMR (128 MHz, DMSO-d6) δ +7.0 

(bs).  19F NMR (375.9 MHz, DMSO-d6) δ -178.8 (s).  The purity of this compound was 

established by NMR spectroscopy (Figure 96). 

Computational details. DFT calculations (full geometry optimization) were 

carried out with the Gaussian 03 program using the gradient-corrected Becke exchange 

functional (B3LYP) and the Lee-Yang-Parr correlation functional (Figure 97, Figure 98, 

Table 37, Table 38).  Geometry optimization was carried out with the following mixed 

basis set: 6-31+g(d’) for the boron, and fluorine atoms, 6-31+g(d) for the sulfur atom, 6-

31g basis set was used for other remained carbon and hydrogen atoms.  Frequency 

calculations, which were carried out on the optimized structure of the compound, 

confirmed the absence of any imaginary frequencies.  DT-DFT calculation was carried 

out with the Gaussian 03 program using B3LYP functional with the same basis sets as 

DFT calculation 
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Figure 94. 1H NMR and 13C NMR spectra of 49-F. 
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Figure 95. 1H NMR and 13C NMR spectra of [50]OTf. 
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Figure 96. 1H NMR and 13C NMR spectra of 50-F. 
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Figure 97. DFT optimized structure of 47-F. 

 

Figure 98. DFT optimized structure of 48-F. 
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Table 37. Atom coordinates for the optimized structure of 47-F.. 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

S1  0.171623 -0.233476  0.249971 

F2 -0.150780  0.266484  2.745903 

C3  2.335051  0.128888  2.685448 

C4  0.341943  1.573167  0.290507 

C5  0.949598  3.530063  1.503047 

H6  1.288812  4.004087  2.417975 

C7  0.018264  2.336104 -0.844148 

H8 -0.352372  1.880454 -1.756309 

C9  0.810855  2.122722  1.502686 

C10  0.649753  4.314333  0.387973 

H11  0.772596  5.392172  0.436454 

C12 -0.488659  3.342098  5.792578 

H13 -1.481274  3.693159  6.068917 

C14  1.262855 -1.320346  4.544908 

H15  1.615898 -2.091262  5.239431 

H16  0.307984 -1.652161  4.123648 

H17  1.050528 -0.412825  5.116718 

C18  2.044955  2.456843  5.035032 

C19  3.261613 -2.081209  3.277538 

H20  3.204559 -2.976493  3.894330 

C21  2.302270 -1.074349  3.462819 

C22  0.935754  2.079104  4.217694 

C23  3.430832  0.267685  1.782532 

C24  0.178687  3.721094 -0.792173 

H25 -0.065336  4.327254 -1.658298 

C26  1.859420  3.236727  6.191629 

H27  2.731187  3.502259  6.786229 

C28  0.600929  3.682737  6.599646 

C29  3.482526  2.064180  4.734495 

H30  4.162055  2.570596  5.428979 

H31  3.788273  2.335327  3.720170 

H32  3.645142  0.986622  4.832542 

C33 -0.347453  2.566079  4.630522 

C34  0.546551 -0.658153 -1.489286 

H35  1.574674 -0.349528 -1.687997 

H36 -0.132595 -0.188324 -2.202062 

H37  0.477445 -1.745861 -1.572266 

B38  1.067260  1.181888  2.841158 

C39  4.296713 -1.963774  2.341295 

C40  3.715575  1.532628  0.980042 

H41  4.763650  1.540369  0.660158 

H42  3.543371  2.442110  1.561219 

H43  3.101946  1.621553  0.074850 

C44  4.370854 -0.770027  1.620813 

H45  5.195949 -0.624567  0.925551 

C46 -1.631775  2.294757  3.860819 

H47 -2.438892  2.932603  4.238947 

H48 -1.946154  1.250961  3.959296 

H49 -1.522007  2.491347  2.789878 

C50  0.421556  4.491330  7.866048 

H51 -0.379591  5.232216  7.759618 

H52  1.341093  5.023755  8.133997 

H53  0.156953  3.849904  8.718595 

C54 -1.633716 -0.510275  0.267311 

H55 -1.817833 -1.568312  0.063399 

H56 -2.129594  0.122269 -0.471627 

H57 -1.959592 -0.261129  1.277013 

C58  5.305702 -3.074327  2.143186 

H59  5.714496 -3.421481  3.100315 

H60  6.144607 -2.743920  1.521144 

H61  4.854959 -3.948450  1.652847 
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Table 38. Atom coordinates for the optimized structure of 48-F. 

Center 
Number 

Coordinates(Angstroms) 
X Y Z 

S1  0.686010 -1.576134  1.382780 

F2  0.260745  0.985769  1.489116 

C3 -1.415755 -0.236688  0.209517 

C4 -3.643036 -1.252464 -0.079413 

H5 -4.668268 -1.158755 -0.425065 

C6 -1.911389  2.976665  1.099632 

C7 -1.038435 -1.460785  0.799480 

C8  2.139212  1.447343 -0.649244 

C9 -2.615787  4.189220  1.024549 

H10 -3.155135  4.535493  1.904401 

C11  0.933149 -0.186308 -1.981205 

C12  2.127738 -0.464008 -2.677300 

H13  2.099557 -1.175835 -3.501031 

C14 -1.184488  2.471373 -0.028045 

C15 -1.970521  4.464202 -1.253697 

H16 -1.994961  5.030588 -2.182514 

C17 -3.212628 -2.453033  0.503745 

H18 -3.891434 -3.292959  0.608884 

C19 -1.251300  3.254812 -1.220919 

C20  3.334024  0.173586 -2.375153 

C21 -2.762971 -0.177365 -0.217409 

H22 -3.111386  0.749902 -0.660031 

C23  0.520631 -1.447160  3.195257 

H24  1.481115 -1.701050  3.649060 

H25 -0.278135 -2.087906  3.570936 

H26  0.281776 -0.397795  3.369630 

C27 -1.895254 -2.562324  0.950973 

H28 -1.549397 -3.492598  1.388830 

C29  3.306378  1.146903 -1.369115 

H30  4.215136  1.703091 -1.145787 

C31  1.144627 -3.303032  1.121053 

C32 -2.651664  4.960605 -0.140867 

C33  0.912664  0.754455 -0.907844 

C34 -0.570045  2.865494 -2.522865 

H35 -0.871152  3.551485 -3.322481 

H36 -0.826336  1.853012 -2.845746 

H37  0.520868  2.902722 -2.444497 

C38 -0.305320 -0.905277 -2.503065 

H39 -0.128980 -1.251451 -3.527900 

H40 -1.184223 -0.256835 -2.522275 

H41 -0.579368 -1.785093 -1.907582 

C42  2.246831  2.562299  0.378591 

H43  3.109986  3.199798  0.155020 

H44  2.367461  2.169302  1.393732 

H45  1.350239  3.187443  0.392862 

B46 -0.369543  1.043394  0.103479 

C47  4.610856 -0.151112 -3.120227 

H48  4.404335 -0.699092 -4.046245 

H49  5.287632 -0.770818 -2.515025 

H50  5.162862  0.758783 -3.384809 

C51 -3.387917  6.281747 -0.188742 

H52 -3.650378  6.555999 -1.216606 

H53 -2.775801  7.098095  0.220119 

H54 -4.313093  6.248320  0.398991 

C55 -1.982521  2.258326  2.439222 

H56 -2.767455  2.702207  3.062262 

H57 -1.034730  2.328116  2.982625 

H58 -2.204613  1.192985  2.326802 

C59  1.782427 -3.558258 -0.105285 

H60  1.955922 -2.748606 -0.809046 

C61  0.939418 -4.333204  2.049830 

H62  0.459629 -4.142757  3.002746 

C63  1.988110 -5.894926  0.515287 

H64  2.316115 -6.902208  0.281557 

C65  1.366985 -5.629982  1.741140 

H66  1.212497 -6.429041  2.458424 

C67  2.194607 -4.860139 -0.405096 

H68  2.684781 -5.060539 -1.351539 
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CHAPTER VIII 

SUMMARY 

 

8.1 Lewis acidity of a sulfonium borane and its application in fluorination chemistry 

Since the sulfonium ions are inherently Lewis acidic due to its low lying σ* 

orbitals, the incorporation of the sulfonium moiety into the borane system has been 

performed.  The sulfonium borane [30]+ has been synthesized, and its anion binding 

properties have been investigated.  [30]+ reacts with fluoride in MeOH to afford 30-F.  

Furthermore, 30-F also precipitates from MeOH/H2O solutions.  The structural and 

computational analyses have indicated the presence of a B-F→S chelate motif.  The 

boron-bound fluorine atom is separated from the sulfur atom by an average distance of 

2.53 Å, which is well within the sum of van der Waals radii of the two elements (ca. 3.3 

Å).58  The average F-S-CMe angle of 171.7° indicates that the fluorine atom occupies an 

axial coordination site directly opposite to one of the sulfur-bound methyl groups.  NBO 

analysis indicates that the short F-S separation present in 30-F corresponds to two 

lp(F)→
(S-C) donor-acceptor interactions which contribute 7.0 kcal/mol to the stability 

of the molecule.  Altogether, these results suggest that the ability of [30]+ to complex F- 

in wet methanol arises from favorable Coulombic effects which are complemented by 

the formation of a B-F→S chelate motif. 

 Realizing that the absence of such interactions would greatly increase the liability 

of the boron-bound fluoride anion, we have discovered that the demethylation of the 

sulfonium moiety could be used to trigger the release of the fluoride anion.  When 
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nucleophiles, such as TBAI, TBAN3, TBACN and TBASPh, are employed in dry 

CD3CN or THF, the demethylation of the sulfonium ion occurs and the new anionic 

fluoride adduct, namely 30-F-, is formed.  However, when TBACN is used as a 

nucleophile, the demethylation of the sulfonium moiety requires an elevated temperature 

while for other three nucleophiles, the demethylation can proceed at ambient 

temperature.  When TBAI and TBAN3 work as nucleophiles, MeF can be afforded, 

which could consume some 30-F-.  For these reasons, the phenylthiolate anion (pKa = 

10.3, TBASPh) is employed as a good nucleophile, which can result in the process of 

demethylation at ambient temperature within 30 minutes and the formation of 30-F-.  

Further studies clearly show that the fluoroborate 30-F- can transfer its fluoride ions to a 

variety of substrates, including p-tolylsulfonyl chloride, benzoyl chloride, 1-chloro-2-

cyano-3-nitrobenzene, benzyl chloride, and 1-bromooctane, through nucleophilic 

fluorination reactions in organic solvents.  This process may be applicable for the 

preparation of 18F-labled compound in PET technology. 

 [30]+ reacts with KCN in MeOH affording the zwitterionic cyanoborate, 30-CN.  

The crystal structure of 30-CN shows that the centroid of the CCN-N (CtCN) bond is 

separated from the sulfur atom by only 2.95 Å and forms a CtCN-S-CMe angle of 157.9°.  

NBO analysis reveals the presence of a π(C N)→σ*(S C) donor-acceptor interaction 

unexpectedly complemented by a back-bonding lp(S)→π*(C N) component.  The 

concomitant deletion of these two interactions leads to an increase of the total energy of 

the molecule by 4.1 kcal/mol, an energy comparable to that of a strong hydrogen bond. 
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8.2 Fluoride affinity of a telluronium borane 

 Realizing that the * orbital energy decreases as the size of the group 15 or 16 

elements increases, we are now investigating the Lewis acidic properties of heavier 

onium derivatives.  In a first incarnation of this idea, we have synthesized the 

telluronium derivative [37]+ and compared its fluoride affinity with its sulfur analog 

[38]+.59  [37]+ and [38]+ can be synthesized by the methylation of the corresponding 

neutral boranes 37 and 38, respectively.  The structural and computational studies 

indicate a lp(Ch)→p(B) donor-acceptor interaction in both neutral boranes with a 

stabilizing energy of 32.4 kal/mol in the case of 37 and 16.5 kcal/mol in the case of 38 

by NBO deletion calculations.  The oxidative methylation of the chalcogen  element has 

lowered the donicity and thus has increased the Lewis acidity of the chalcogenium 

moiety indicated by the longer Ch-B distance and smaller NBO deletion energy (Edel = 

10.8 kcal/mol for [37]+ and Edel = 8.2 kcal/mol for [38]+).  The UV-vis spectra of both 

[37]+ and [38]+ in MeOH bear two distinct low-energy bands, involving electron 

excitations in which LUMO and LUMO+1 are main accepting orbitals.  The LUMO 

carries an important contribution from the boron p-orbital and LUMO+1 bears an 

increased contribution from Ch-C *-orbital which is especially noticeable in [37]+.  The 

localization of the LUMO and LUMO+1 orbitals on the boron and chalcogen moieties 

bodes well for the occurrence of anion chelation. 

The fluoride titration in MeOH affords a binding constant of 750 (±100) M-1 for 

[37]+, while [38]+ shows no or very little fluoride affinity under dilute conditions in 

MeOH.  The origin of the contrasting behavior displayed by [37]+ and [38]+ results from 
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the spectroscopic, structural and computational analyses of the fluoride adducts 37-F and 

38-F.  The 11B NMR signals of both fluoride adducts (10.9 ppm for 37-F and 8.7 ppm 

for 38-F) and the 19F NMR signal of 38-F (-150.7 ppm) appear in the expected range for 

typical triarylfluoroborate anions.  However, the 19F NMR signal of 37-F at -130.4 ppm 

appears to move significantly downfield.  Both 19F NMR and 125Te NMR spectra feature 

a Te-F coupling at 940 Hz, which is comparable to that observed in o-(C6H4-

CH2NMe2)2TeF2.  These spectroscopic features suggest that the boron bound fluorine 

atom in 37-F also forms a strong bond with the tellurium atom.  The crystal structure 

shows that Te-F distance in 37-F is slightly shorter than S-F distance in 38-F, despite the 

larger size of the tellurium atom, and the F-Te-Cph angle is close to linearity.  The NBO 

analysis confirms a much stronger lp(F)→σ*(Ch-C) interaction in 37-F (Edel = 22.8 

kcal/mol) than that in 38-F(Edel = 9.2 kcal/mol),  and the AIM analysis shows that the 

electron density at the bond critical point of Ch-F bond in 37-F (ρ(r) = 0.047 e bohr−3) is 

obviously larger than that in 38-F ((r) = 0.035 e bohr-3).  Altogether, these analyses 

confirm the stronger Lewis acidity and thus higher fluoride affinity of [37]+ than [38]+. 

 

8.3 Anion affinity of a cationic diborane 

The neutral diboranes have been used to chelate small anions by forming B-X-B 

bridging bonds.  The fluoride binding constants of 51 exceed that of monofunctional 

analogues by at least 3 or 4 orders of magnitude.  The favorable influence of the 

Coulombic effect in anion complexation has been demonstrated in the case of 
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triarylboranes decorated by peripheral cationic moieties such as the phosphonium borane 

[22]+ which, unlike neutral boranes, captures F- in aqueous solution.62 

Encouraged by these results, we have synthesized [40]OTf to investigate if the 

chelate effects and the Coulombic effects can be combined to boost anion affinity.  [40]+ 

reacts with fluoride and azide ions to afford 40--F and 40--N3, respectively, in 

organic solvents.  The fluoride binding constant of [40]+ exceeds that of its neutral 

precursor by at least four orders of magnitude.  The azide binding constant of [40]+ 

exceeds 107 M-1.  The structural and computational analyses have shown that the B-F-B 

bridging bond in 40--F is asymmetrical when compared to that of [52--F]-.  The B-

N-B bridging bond in 40--N3 is relatively symmetrical indicated by the N(1)-B(1) 

(1.635 Å) and N(1)-B(2) (1.706 Å) bond lengths. 

The structure of 40--F shows that the fluorine atom forms a short bond with 

B(1) (1.539(4) Å) and a long one with B(2) (1.822(4) Å), in contrast with the relatively 

symmetrical B-F-B bridge of [53--F]- (B-F bond lengths = 1.585(5) Å and 1.633(5) 

Å).37  AIM calculation identifies a bond path for both B(1)-F(1) and B(2)-F(2) linkages 

(Figure 72).  The electron density ρ(r) of 0.100 e bohr−3 at BCP of the B(1)-F(1) bond is 

significantly larger than that of the B(2)-F(1) bond (0.053 e bohr−3), in agreement with 

the observed asymmetry of the B-F-B bridge.  By contrast, AIM calculations of [54--

F]- indicate a much more symmetrical B-F-B bridge, with similar electron density at the 

BCP of the B(1)-F(1) bond (ρ(r) = 0.074 e bohr−3) and B(2)-F(1) bond (ρ(r) = 0.077 e 

bohr−3).   
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These results clearly show that chelate effects and Coulombic effects are additive 

and can be combined to boost the anion affinity of bidentate Lewis acids. 

 

8.4 Lewis acidity behavior of B(C6Cl5)3 

 Tris(pentafluorophenyl)borane, B(C6F5)3, has been investigated extensively with 

successful applications in catalysis, synthesis and small molecule activation.  However, 

the investigation of B(C6Cl5)3 is rare and new in this area.  B(C6Cl5)3 can react with 

fluoride, azide and cyanide in dichloromethane with large binding constants, 1.5 (±0.2) × 

107 M-1 for fluoride, 6.0 (±0.6) × 106 M-1 for azide, and 1.8 (±0.2) × 106 M-1 for cyanide.  

Furthermore, B(C6Cl5)3 can react with neutral Lewis bases, such as DMAP and pyridine, 

with the binding constants of 3.0 (±0.3) × 104 M-1 (CH2Cl2), 1.0 (±0.1) × 107 M-1 (THF) 

for DMAP and 36 (±4) M-1 (THF) for pyridine.  The binding constants decrease in the 

order of fluoride, azide, cyanide and DMAP, in which the bulk steric is probably the 

main effect to control the affinity of B(C6Cl5)3 with different Lewis bases.  The binding 

constant of pyridine is much smaller than that of DMAP due to the lower basicity of 

pyridine (pKa(pyridine) = 5.2 vs. pKa(DMAP) = 9.2 ). 

 The single crystals of [FB(C6Cl5)3]-[S(NMe2)3]+ and B(C6Cl5)3-DMAP have been 

obtained from the diffusion of pentane into a THF solution of equimolar of B(C6Cl5)3 

and TSAF, or B(C6Cl5)3 and DMAP.  The crystal structure of [FB(C6Cl5)3]-[S(NMe2)3]+  

shows that the B-F bond length is 1.43 Å, which is comparable with other reported 

triarylfluoroborate species, and the boron center becomes clearly pyramidalized as 

indicated by the sum of the Caryl-B-Caryl angles (Σ(C-B-C) = 335.1°) .  As for B(C6Cl5)3-
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DMAP, the B-N bond (1.615 Å), is slightly shorter than those measured in other DMAP 

adducts of triarylboranes.  Coordination of the DMAP molecule to the boron center leads 

to a distinct pyramidalization of the latter, as indicated by the sum of the Caryl-B-Caryl 

angles (Σ(C-B-C) = 335.9°) . 

 

8.5 Hydrophobic effects in the fluoride complexation by cationic boranes 

In order to speculate how the incorporation of hydrophobic functionality in close 

proximity to the boron center can affect the fluoride affinity of cationic boranes, a series 

of sulfonium borane have been synthesized.  Direct methylation of the neutral thiophenyl 

boranes 47, 48, 49 and 50
 can afford the corresponding sulfonium boranes [47]+, [48]+, 

[49]+ and [50]+.  These four sulfonium boranes feature a coordinatively unsaturated 

boron center confirmed by NMR spectroscopy, UV-vis spectroscopy and single crystal 

X-ray diffraction.  The Lewis acidity of these boranes has been investigated in aqueous 

solutions (H2O/MeOH, 95:5 vol.) by monitoring the absorbance of the boranes as a 

function of pH, which affords pKR+ = 7.89(±0.05) for [47]+, 7.02(±0.05) for [48]+, 

8.84(±0.05) for [49]+, and 8.54(±0.05) for [50]+.  Comparison of these pKR+ values 

reveals that the replacement of methyl with phenyl group in the ortho position of boron 

center (0.87) can increase the Lewis acidity more significantly than that in the para 

position of boron center (0.30). 

The fluoride affinity of these four boranes has also been studied under same 

conditions.  Fluoride titrations of [49]+ and [50]+ monitored by UV-vis spectroscopy 

under dilute conditions (0.052 mM for [49]+ and 0.042 mM for [50]+) afford K = 
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8.5(±0.5) M-1 for [49]+ and 33(±1) M-1 for [50]+.  Due to the poor solubility of the 

fluoride adducts 47-F and 48-F in aqueous environment, the fluoride titrations of [47]+ 

and [48]+ are monitored by fluorescence spectroscopy under more diluted conditions, 

affording K = 60(±5) M-1 for [47]+ and 1670(±50) M-1 for [48]+.  The fluoride affinity of 

[48]+ is around 28 times higher than that of [47]+, while the fluoride affinity of [50]+ is 

only about four times than that of [49]+.  These results indicate that the replacement of 

the ortho-methyl moiety in [47]+ with an ortho-phenyl moiety in [48]+ results in a more 

significant increase of the fluoride affinity when compared to the replacement of a para-

methyl with a para-phenyl moiety from [49]+ to [50]+.  However, these boranes in non-

aqueous environments show different changes in the fluoride affinity  The titrations in 

MeOH afford the following binding constants: K = 4.0(±0.5)×104 M-1 for [47]+, 

8.5(±0.5)×104 M-1 for [48]+, 260(±20) M-1 for [49]+, and 420(±40) M-1 for [50]+.  These 

data show that the fluoride affinity increases slightly from methyl to phenyl group in 

both para and ortho positions to boron center in MeOH.  These different results in 

MeOH and H2O/MeOH (95:5 vol.) indicate that the increase in the hydrophobicity in 

close proximity to the boron center can result in a significant increase in Lewis acidity as 

well as fluoride affinity. 

The presence of CTABr further enhances the Lewis acidity of the cationic 

boranes.  The anion binding properties of the cation [48]+ in a H2O/MeOH (95:5 vol.) 

solution of 9.5 mM CTABr are monitored by UV-vis spectroscopy, affording a binding 

constant of 2.65(±0.2) ×104 M-1.  0.76 and 1.52 ppm of fluoride ions cause 32% and 56% 

quenching of the absorbance of [48]+ in the UV-vis spectra, respectively.  In addition, 
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this detection process is rapid and takes only one minute.  These results demonstrate that 

[48]+ is capable of detecting fluoride ions at the level of drinking water standard with a 

rapid response.  In turn, the integration of Coulombic, chelating, and hydrophobic effects 

leads to [48]+ fluorophilic sufficiently to sense fluoride at ppm level with a rapid 

response. 
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