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ABSTRACT

On Primitivity and the Unital Full Free Product
of Finite Dimensional C*-algebras. (May 2012)
Francisco Javier Torres Ayala, B.S., National Autonomous University of Mexico;
M.A., National Autonomous University of Mexico

Chair of Advisory Committee: Dr. Kenneth Dykema

A C*-algebra is called primitive if it admits a x-representation that is both
faithful and irreducible. Thus the simplest examples are matrix algebras. The main
objective of this work is to classify unital full free products of finite dimensional C*-
algebras that are primitive. We prove that given two nontrivial finite dimensional
C*-algebras, Ay # C, Ay # C, the unital C*-algebra full free product A = A; % A, is
primitive except when A; = C? = A,.

Roughly speaking, we first show that, except for trivial cases and the case A; =
C? = A,, there is an abundance of irreducible finite dimensional *-representations of
A. The latter is accomplished by taking advantage of the structure of Lie group of the
unitary operators in a finite dimensional Hilbert space. Later, by means of a sequence
of approximations and Kaplansky’s density theorem we construct an irreducible and
faithful s*—representation of A. We want to emphasize the fact that unital full free
products of C*-algebras are highly abstract objects hence finding an irreducible *—
representation that is faithfully is an amazing fact.

The dissertation is divided as follows. Chapter I gives an introduction, basic
definitions and examples. Chapter II recalls some facts about x—automorphisms of
finite dimensional C*-algebras. Chapter III is fully devoted to prove Theorem III.6

which is about perturbing a pair of proper unital C*-subalgebras of a matrix algebra



v

in such a way that they have trivial intersection. Theorem IIL.6 is the cornerstone
for the rest of the results in this work. Lastly, Chapter IV contains the proof of the

main theorem about primitivity and some consequences.



Dedicado a Bety y Vale. Ustedes le dan sentido a todo mi trabajo.



vi

ACKNOWLEDGMENTS

I thank Dr. Kenneth Dykema for all the (mathematical) problems, ideas and
discussions. Above all I am thankful for his patience, understanding and for not
giving up on me. j Gracias !

Also many thanks to all Professors in Texas A& M that taught me many inter-
esting topics. I specially want to thank Professors Aguiar, Douglas, Johnson, Kerr,

Lima-Filho and Schlumprecht.



TABLE OF CONTENTS

CHAPTER
I INTRODUCTION . . . . .. .o
A. Primitive C*-algebras . . . . . ... ... ... ... .. ..
B. Unital full free products of C*-algebras . . . . . . . . ...
C. Acrucial example . . . . . .. ...
II AUTOMORPHISMS . . . . . .. .. ... ...
I11 PERTURBATIONS . . . . ... ... .. .. .. .. .. ..
A. Useful results from Lie groups . . . . . . ... ... .. ..
B. Intersections and perturbations . . . . ... ... ... ..
v PRIMITIVITY . . . . . . e
\Y CONCLUSION . . . .. s
REFERENCES . . . . . . .

vil

Page

[ N



CHAPTER I

INTRODUCTION
At some extent, primitive C*-algebras are the building blocks of the theory of C*-
algebras. Thus the study of this type of C*-algebras is reasonable. The main objective
of this is work is to prove that, except for trivial cases, the unital full free product
of two finite dimensional C*-algebras is primitive except when both algebras have
dimension 2.

Before we start, we make explicit the notation that will be used in this work.

Notation I.1. Given a Hilbert space H, we denote the set of bounded linear operators
by B(H) and the set of compact operators by K(H ).
For a concrete C*-algebra A, contained in B(H), A" denotes the commutator of

A in B(H), in other words
A'={reB(H):za=ax forallain A }.

For a unital C*-algebra A, x-SubAlg(A) denotes the set of all unital C*-subalgebras
of A and U(A) denotes the set of unitary elements of A. For simplicity, given a Hilbert
space H we write U(H) instead of U(B(H)).

By Aut(A) we denote the set of x—automorphisms of A. For u in U(A) we let
Adwu denote the x—automorphism of A given by Adwu(z) = uzu*. The set of all *—
automorphisms of the form Adu, for some u, is called the set of inner automorphism

and it is denoted by Inn(A).

The journal model is Proceedings of the American Mathematical Society.



For a unital C*-algebra A, C'(A) denotes its center. In other words
C(A)={r € A:za=ax forallac A}.

For a positive integer n, M, denotes the set of n x n matrices over C and S,

denotes the permutation group of the set {1,...,n}.

A. Primitive C*-algebras

The purpose of this section is to give examples of primitive C*-algebras and show

some elementary facts.

Definition I.2. A xrepresentation of a C*-algebra A in the Hilbert space H is a
s~homomorphism from A into B(H). A x-representation is called faithful if it is
injective or, equivalently, it is an isometry. A s-representation 7 : A — B(H) is
called topological irreducible if the only closed invariant subspaces for 7w(A) are {0}

and H.

The following well known theorem gives an algebraic characterization of topo-
logical irreducibility. Hence from now on instead of saying that a x—representation is

topological irreducible we just say it is irreducible.

Theorem 1.3. Let 7 : A — B(H) be a x—representation. Then 7 is topological
irreducible if and only if m(A) = Cidy.

Definition I.4. A C*-algebras A is called primitive if there is a Hilbert space H and

a faithful irreducible *representation 7 : A — B(H).

As far as we now, the basic approach to prove that a C*-algebra A is primitive
is start with a faithful *—representation of A, or in some cases a C*-subalgebra of A,

and perform some kind of operation that does not destroy faithfulness but as a result



gives an irreducible s—representation of A. We illustrate this principle by showing

that primitive C*-algebras are closed under hereditary C*-subalgebras.

Definition I.5. Let A be a C*-algebra. A C*-subalgebra B of A is called hereditary

if byaby belongs to B whenever b; and b, lie in B and a lies in A.

Proposition 1.6. Any hereditary C*-subaglebra of a primitive C*-algebra is again

primitive.

Proof. We start proving that any closed two sided ideal of a primitive C*-algebra is
again primitive.

Let A be a primitive C*-algebra and let I be a nonzero closed two sided ideal
in A. The existence of a faithful and irreducible x—representation of I is easy. We
take 7 : A — B(H) a faithful and irreducible s-representation and prove that its
restriction to [ is still irreducible.

Firstly let V' denote the vector space generated by the family {n(x){ : £ € H,x €
I'}. Notice that V' is nonzero and it is 7(A)-invariant (since [ is a left ideal). Thus V/
is dense in H. Take T in B(H) with the property that 7(z)T = T (z) for any x in
I. We now show that T is a scalar operator. Since 7 is irreducible it suffices to show
Tm(a) = m(a)T for any a in A. Since V is dense in H, T'w(a) = 7(a)T is equivalent to
show T'r(a)v = m(a)Tv for v in V. Write v as w(x)¢ for some x in I and € in H. Thus
Tr(a)v = Tr(a)m(x) = Tr(ax) = m(ax)TE and 7(a)Tv = w(a)Tw(x)§ = w(ax)TE,
where in both cases we used 7' commutes with all the elements in I.

Now assume A is a primitive C*-algebra and let B denote a hereditary C*-
subalgebra of A.

Consider the set I = {ab:a € A, b€ B}. From the fact that B is a hereditary
C*-subalgebra of A and Proposition 11.5.3.2 in [3] we obtain I is a closed left ideal

in A. As a consequence the set J = {ba : b € B, a € A} is a closed right ideal



in A. Thus I N J is a closed two sided ideal in A. Hence I N J is a primitive C*-
algebra. Using approximate units we conclude B C I N J and since B is a hereditary
C*-subalgebra of A, B is a two sided ideal in I N J.

]

To finish this section we summarize some of the main known results for primitive
C*-algebras.

One of the earliest results is due to Choi and Yoshizawa. Independently, in
[4] and [15], they showed that the full group C*-algebra of the free group in n
generators, 2 < n < 0o, is primitive. In [10], Murphy gave numerous conditions for
the primitivity of full group C*-algebras, for instance he proved that for amenable
discrete groups its full group C*-algebras is primitive if and only if the group is
ICC. More recently Bédos and Omland proved in [2] that the modular group is
primitive and then generalized this result in [1] and proved that if G; and Gs are
non trivial countable discrete amenable groups where at last one of them has more
that two elements, then the full group C*-algebra of the free product of G; and Gy

is primitive.

B. Unital full free products of C*-algebras

In this section we recall the definition and give the construction of the unital full free
product of C*-algebras.

During this section A; and A, denote two unital C*-algebras. There are many
ways to define the unital full free product of A; and As. One way is using universal
properties and another, more constructive way, is using reduced words. We explain

both ways.

Definition 1.7. The unital full free product of A; and A,, denoted A; x A,, is a



unital C*-algebra together with unital *~homomorphisms ¢; : A; — A; x Ay, 1 = 1,2,
satisfying the following universal property: given a unital C*-algebra B and unital
s—homomorphisms ¢; : A; — B, i = 1,2, there is a unique unital x-homomorphism

v Ay x Ay — B with the property that p o, = ¢;, for i =1, 2.

As you can see from the definition A; * A, is a terminal object in the category
of C*-algebras and unital *-homomorphisms. Another terminology that it is used to
refer to unital full free products is push outs, for this see [12].

Next we prove existence of unital full free products.

For i = 1,2, fix two states ¢; : A; — C and let A? := ker(¢;). For n > 1, an
index 7 = (j(1),---,j(n)), where j(i) € {1,2}, is called admissible if j(1) # j(2) #

.-+ %% j(n). For an admissible index j define W; := Al @+ ® A]Q( where tensor

n)’

product is taken over the complex numbers, and define
A1 *alg A2 =Cl1 D @jo

where j is taken over all admissible indices and 1 is a distinguished element.

The next step is to give Ay x4, Ay an structure of *—algebra.

First multiplication. The element 1 acts as the multiplicative identity. For
admissible indexes j; and j, and elementary tensors z; = aj,(1) ® - -+ ® aj,(n;) € Wi,

1 = 1,2, we define x5 by induction on ny. If ng =1 and x5 € A§2(1) we define

aj1(1)®"'®aj1(n1)®;€2, 1f.71(n1) 7£j2<1),

11Ty = A1) @ ® (Wi (1) T2 — Pio (Wi (1) T2) 14, i o = ju(n) = ja(1)

o =Ji(n1) = 72(1).
+050 (W (1) T2) Ay (1) @+ @ @y (ny 1),

For ny > 2 define 122 = (21a,01) ® -+ ® Ajy(ny—1))ja(ng)- One can check this
operation is well defined, extends to W;, x W;, and makes A; x4, A2 an algebra over

the complex numbers.



Now it is turn of adjoint. For a complex number z define (21)* = Z1. For an
admissible index j and elementary tensor ajy ® -+ ® a;¢ in W; define (a;q) ®
e ® ajm))t = a;f(n) R ® a;‘f(l). Then it is easy to check that along with the
multiplication and adjoint, A;%4,As becomes a *-algebra. Even more, at the algebraic
level Aj*q4 A5 has the universal property that characterize the unital full free product.
In specific define maps ¢; : A; = Ay %4y Az by ti(a) = ¢i(a)l & (@ — ¢i(a)la,). Then
whenever B is a unital s—algebra and ¢; : A; — B are unital *~homomorphism of
x-algebras, there is a unique unital *-homomorphism ¢ : A; *44 A2 — B such that
p o = ;. We denote such a ¢ as ¢ * ¢y . Indeed just take (1) = 1p and
paja) ® - @ ajm) = @) (@) - Pim) (a0m))

Now we define a norm on Ay %4, As by ||z|| = sup,{7(z)}, where the sup is
taken over all x—algebra homomorphisms 7 from A; *44 A into bounded operators

of Hilbert spaces. After separation and completion we obtain a C*-algebra that is

x—isomorphic to the full free product of A; and A, as defined in 1.7.

C. A crucial example

In this section we discuss some aspects of the C*-algebra C?*C?. In particular we are
interested in finding all its irreducible x—representations. All the results presented in
this section are well known and are written for the convenience of the reader. For the
rest of this section A = C?*C2, p = 11((1,0)) and g = 15((1,0)), where ¢1,15 : C? — A

are the canonical inclusions of C? into A.

Lemma 1.8. Show that if P,Q € B(H) are projections then P+ Q — PQ — QP lies

in the center of the unital C*-algebra generated by P and Q).

Proof. Since P, ), PQ) and QP are in the algebra generated by P and () then
P+ @Q — PQ — QP lies in the unital C*-algebra generated by P and Q).



To prove P+ Q) — PQ) — QP lies in the center of the unital C*-algebra generated

by P and @, it suffices to prove that it commutes with P and ). But

P(P+Q - PQ—-QP)=P—PQP=(P+Q— PQ— QP)P,

QP+Q-PQ-QP)=Q—-QPQ=(P+Q—-PQ-QP)Q
[
Proposition 1.9. For any 7 : A — B(K) irreducible *—representation, dim(K) < 2.

Proof. Firstly we show that if there is a nonzero vector that is not cyclic for 7= then

dim(K) = 1. Indeed, assume z in K is nonzero and {m(a)z :a € A} # K. Since 7

is irreducible and {m(a)z : a € A} is a closed 7m(A)-invariant subspace we must have
m(a)z = 0 for all a in A. Thus if V' denotes the one-dimensional subspace generated
by x we have that V is m(A)-invariant. Hence K = V.

Thus we may assume all nonzero vector is cyclic for 7.

Since A is generated by p, ¢ and the identity element, w(A) is generated by P, Q
and idy, where P = 7(p) and Q = 7(q). Furthermore, by Lemma [.8 P+Q—PQ—QP
lies in the center of 7m(A). Since 7 is irreducible its center equals C, hence there is a
complex number A such that P + Q — PQ) — QP = \. Multiplying by P or @), the

last equality implies

PQP = (1-\)P (1.1)

QPQ=(1-X3)Q (1.2)

From (1.1) and (1.2) follow that any word on P and @) simplifies to an expression of
the form (1 — X\)"P, (1 — \)"Q, (1 — \)"PQ, (1 — \)"QP for some natural number n.
Then for all x in K, V = span {Pz, Qz, PQx,QPx} (which is closed being finite

dimensional) is 7(A)-invariant.



We deduce that, for x # 0, K = V. So far dim(K) < 4 but we can reduce this
upper bound for a suitable x.
Notice that if P = idj and @ = idk then 7(A) = C and in consequence 7(A)" =
B(K). Since 7 is irreducible we conclude dim(K) = 1.
Now assume that P # idj, or () # idg. In this case we can pick a nonzero x such
that Pz =0 or Qx = 0. It follows that dim(K) < 2.
[

Our next objective is to compute, up to unitary equivalence, all irreducible *—

representations of A.

Notation I.10. Let f,, f, : [0,1] — M be the continuous functions given by

10 ¢ =)
00 t1—t) 1—t

Notice that for each t in [0, 1], f,(¢) is a projection. Thus, for each ¢ in (0,1) we
have a 2-dimensional irreducible s-representation 7, : A — M, given by m(p) = f,,(¢)
and m(q) = fo(t).

Notice that for ¢ = 0 and t = 1 we have 1-dimensional x—representations that

we denote as follows. Let m,m,, 7, : A — C be the *representations induced by

m(p) = m(p) = idc, mp(p) = idc, mp(q) = 0 and m,(p) = 0, 7,(q) = idc.

Lemma I.11. Let 7 : A — B(K) be a nonzero irreducible x—representation.
If dim(K') = 1 then 7 is unitarily equivalent to one of m, m, or m,.

If dim(K) = 2 then 7 is unitarily equivalent to m for a unique t in (0,1).

Proof. Case dim(K) = 1.
We notice that the only projections in B(K') are the identity and the zero map.

So we have 3 possibilities: 7(p) = 7(q) = idk, my(p) = idk, m,(q) = 0 and 7(p) =



0,m,(q) = idk, that are respectively unitarily equivalent to my, 7, and n,.

Case dim(K) = 2.

Fix {e1,es} an orthonormal basis for K.

In this case we have that the projections in B(K') are 0, idx and of the from P,,
where v is a unit vector and P,(w) = (w, v)v.

Since 7 is irreducible and dim(K) = 2 neither 7(p) nor m(q) equal 0 or idg.
Thus 7(p) = P,, and 7(q) = P,, for two unit vectors v, and v,. Complete {v,} to an

orthonormal base 3. Thus, with respect to the base 8 we have

1 0 a1 ai2
[m(p)]s = , m(@)]s =
00 a1 Q22

where a;; and a; 2 are non negative real numbers and a5 is complex. Notice
that from 7(q)? = 7(q) we deduce |a;2* = a1 1(1 — ay1).

Since the trace of m(q) is 1 we must have a; 1 +as = 1. Even more, a1 and as -
lie in the open interval (0,1). Indeed, if for instance ass = 1 then ay1 = a1 =0. It

follows that

But this in this situation the vector space generated by v, in m(A)-invariant,
a contradiction since 7 is irreducible and dim(K) = 2. A similar argument shows
azs # 0, a11 # 1 and a1 # 0.

Let t = aj;. Then agy = 1 —t and |a15| = \/t(1 — ). Now notice that, for a

complex number A in the unit circle,
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and

10 t aps 10 t Aaig
0 A 1 1—t 0 A Nz 1—t
If we take A such that Aajp = |aia| = +/t(1 — 1) we conclude 7 is unitarily
equivalent to .
Lastly we prove that if s and ¢ lie in (0, 1) and 7 is unitarily equivalent to w4 then
s = t. Assume U is a unitary matrix such that Um(p)U* = 7s(p) and Um(q)U* =
7¢(q). Notice that m,(p) = P,, and 7,(¢q) = P,, where v, = v/te; ++/1 — tey. It follows
that UP,,U* = P,, and UP,,U* = P,, and in consequence Ue; = e; and Uv; = ;.
Thus (Uey, Uvy) = (e1,v,) and since U is unitary we also have (Uey, Uvy) = (e1, vy).
We conclude t = s.

[

As we mentioned before computing full free products is, in general, a difficult
task. Nevertheless using the fact that we know all the irreducible x—representations

of C? x C? we have a nice description.

Proposition 1.12. A is x—isomorphic to the C*-algebra of Ms-valued continuous
functions over the unit interval with the property that its values at 0 and 1 are diagonal

matrices.
Proof. Let
B ={f:][0,1] = My : f is continous and f(0), f(1) are diagonal }

Then f, and f,; belong to B and they are projections. By the universal property
of A, there is a unital x-algebra homomorphism ¢ : A — B such that ¢(p) = f, and

#(q) = f,- We claim ¢ is an isometric *-isomorphism.
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Using Bernestein’s polynomials, we notice that B is the unital C*-algebra gen-

erated by {117[27f17f27fj,k :j7k > 1}7 where

1 0 0 0 t 0 0 0
L(t) = , L(t) = . i) = . fat) =
00 01 00 01—t
and
0 t/(1—t)*
k=
0 0

But taking sums, products and adjoints of the elements 1g, f,, f; we obtain that
{1, >, f1, fa fi 2 3,k > 1} € ¢(A). We conclude ¢(A) = B.

Next we prove ¢ is injective. In order to prove ¢ is injective first we show that
every irreducible x—representation 7 : A — B(K) factors through B i.e. there is a
s—representation o : B — B(K) such that o o ¢ = 7.

Take m : A — B(K) a nonzero irreducible x—representation. Then dim(K) = 1
or dim(K) = 2.

If dim(K) = 1 from Lemma I.11 there are tree irreducible *—representations, 1,

7, and m,, where each *-representation is determined by

m(p) = m(q) = idg, mp(p) =idk,mp(q) =0, me(p) =0,7m,(q) = idk.

In the case 7, let 0 : B — B(K) be given by o(f) = f(1)[1, 1], where f(1)[1,1]
denotes the (1,1)-entry of the matrix f(1).

In the case m,, let 0 : B — B(K) be given by o(f) = f(0)[1,1].

In the case 7, let 0 : B — B(K) be given by o(f) = f(0)[2, 2].

In the case dim(K) = 2, from Lemma I.11, any irreducible *—representations is

unitarily equivalent to 7, for a unique ¢ € (0, 1), where m(p) = f,(t) and m(q) = f,(¢).
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Thus in this case we may take o to be the evaluation at t.
Lastly, take a in ker(¢) and let 7 : A — B(K) be an irreducible *—representation
such that ||7(a)|| = ||a||. If o is defined as above we have ||o(¢(a))|| = ||7(a)|| = ||a|

but ¢(a) = 0 hence a = 0 and we conclude ¢ is injective.
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CHAPTER II

AUTOMORPHISMS
By a x-automorphism of a C*-algebra we mean a bijective map, from the algebra onto
itself, that preserves sums, products and adjoints.
In this chapter we recall some basic results concerning *x-automorphisms of fi-
nite dimensional C*-algebras, in particular we are interested is determine a precise
algebraic relation between the group of x-automorphism and the subgroup of inner

x-automorphisms. In concrete see Propositions I1.3 and I1.4.

Remark II.1. Any x-homomorphism from a simple C*-algebra is either zero or in-
jective (since its kernel is an ideal). Even more, any non-zero s-endomorphism of
a finite dimensional simple C*-algebra is a x-automorphism. Indeed, any such -
endomorphism is injective and thus it is bijective (by finite dimensionality) and a

straightforward computation shows its inverse is a *-endomorphism.

As a consequence any x-automorphism of a finite dimensional C*-algebra move,
without breaking, each one of its simple C*-subalgebras with the same dimension (we
may think these as blocks). Thus modulo an inner *-automorphism, a x-automorphism

is just a permutation. The rest of this chapter is formalizing this ideas.

Proposition 11.2. Let B be a finite dimensional C*-algebra and assume B decom-
poses as @}‘Ilej; where all B; are x-isomorphic to the same matriz algebra i.e. there
is a positive integer n such that, for all j, Bj is x-isomorphic to M,,.

Then for any « in Aut(B) , there is a permutation o in S; and a family of

x-isomorphisms, {a; : Bj = Bo(jy}i<j<J, such that

Oé(bb e ,b]) = (O{o-fl(l)(bo-fl(l)), e ,Oéa—l(t])(bgfl(t]))) .
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Proof. For 1 < 71,72 < J write
alji, jo] = mj, 0 aouy 1 By — By,

where ¢;, : B;, — B is the canonical inclusion and 7;, : B — Bj, is the canonical
projection. Thus a[ji, jo] is a *-homomorphism.
Since all B; have the same dimension, Remark II.1 implies that either «[ji, ja] is

zero or a *-isomorphism. For fixed 7 let
F={ke{l,....J}:alj,k] #0}.

Next we show the sets {F}}1<j<; are pair wise disjoint.

Assume j; < jo. Take by,¢; € B;, and b, co € Bj,. From

(i, (b1)) = (aljn, (b)), - -, alir, J](br),

(e, (b)) = (alja, 1(b2), - ., alja, J](b2)),

we get

(e, (01) + 1 (b2)) = (aljr, 1](br) + aljz, 1(ba), - - aljr, J(br) + aljz, J](b2))-

Since

(e, (br) + 1 (b2)) (e, (e1) + 1, (e2)) = (e, (brea) + 1, (bac2))
we conclude that for all 1 < j < J,
(a1, 71(b1) + alja, j1(b2)) (aljn, ] (1) + aljz, jl(c2)) = aljr, jl(bier) + alja, j](bac2)

which implies

alfz, jl(b2)aliy, (1) + alji, jl(br)alja, jl(c2) = 0. (2.1)
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Take j € Fj so that a[ji,j] is a x-isomorphism. Since afji,j|(1s,) = 1p;,
making b; = ¢; = 1p; and by = ¢; in (2.1) we get alja,j](b2) = 0. We conclude
j ¢ Fj,. This proves the sets F; are pair wise disjoint.

We also notice each F} is not empty. Otherwise a o ¢; is zero, a contradiction
since both are injective maps.

In conclusion we have each F}; contains exactly one element, call it o(j).

Now we show the map j — o(j) is a bijection. Since we are dealing with finite
sets it is enough to show it is injective. Assume j; < jo and o(j1) = 0(j2) = k. Using
that a[ji, k] and «a[js, k] are onto we can pick b € By, non-zero and b; € Bjy, by € By,

both non-zero such that

O{(O, ) bl ) aO) = (07 3 b s ,O)

j1-th entry k-th entry
a(0,..., by ,...,0) = (0,..., b ,...,0)

j2-th entry k-th entry

But this implies
06(07..., bl g e ooy _bQ ’0):0
A ~—~
Jji-th entry jo-th entry

a contradiction.
The maps we are looking for are a; = afj, o(j)].

]

Proposition I1.3. Let B be a finite dimensional C*-algebra, assume B decomposes
as EB‘]-leBj and there is a positive integer n such that all B; are x-isomorphic to M,,.

Fiz {B; : Bj = M, }1<j<; a set of x-isomorphisms.
1. For a permutation o in S; define ¢V, : B — B by

Volbr, ... bg) = (Bt 0 Bo-1(1)(bo-101))s - - -, B7 " 0 Bom1(5y (bo-101))
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Then v, lies in Aut(B) and the map o +— 1, defines a group embedding of S;
into Aut(B).

2. Every element a in Aut(B) factors as
(@3121 Ad UJ) (¢] wU

for some permutation o in S; and unitaries u; in U(B;).

3. There 1s a exact sequence

0 — Inn(B) — Aut(B) — S; — 0.

Proof. Part 1:

A straight forward computation shows that 1, is a *-homomorphism.
The next step is to show

wa o ¢§ = wo'og (22)

Pick b an element of B and let ¢ = 1 (b).

Take k = 07'(j). From the equations

Yale); = B; 0 Bo-1(jy (1)
¢§<b)k = Bk_l © ﬁgfl(k)(bc”(k»

we get
(%o 0%c(D)); = B © Be-t(o0-1(3) (De-1(0-1(5))) = Yoros (D).
Equation (2.2) implies ¢, belongs to Aut(B) and it also shows the map o +— 1),
is a group homomorphism.
Now assume 1, = idg but o # ids,. Then we can find j, with o='(jo) # Jo.

Define an element b in B via bj, = 15, and b; = 0 for j # jo.
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Since 1, = ibg we have
1Bj0 = bjo = waa))jo = Bjio1 © 601'_01 (bd_l(jo)) =0.

Thus o = idg,.

Proof. Part 2:

By Proposition I1.2, there is a permutation o in S; and a set of *-isomorphisms

{@; 1 Bj = Bo(j) h1<j<s with

Oé(b) = (aga(l)(baﬂ(l)), e ,Oéa—l(‘])(bafl(l]))) .

Since fy(j) © o © Bj’l lies in Aut(M,,), it equals Adwv; for some unitary v; in

U(M,,). Thus for all b,-1(;) we have

A1) (bo-18)) = Br  (Vo-10)) B (Bo—1() (bo—1(8)) ) Br - (Vo101

Hence if we take take u; = 6]-_1(2;071@)) we have the result.

Proof. Part 3:
We show Inn(B) is normal in Aut(B) and Aut(B)/Inn(B) is isomorphic to S;.
Thanks to part 2, to show normality, it suffices to show that given any 1, and

unitary v; in U(Bj), there are unitaries w; in U(B;) such that
Vo1 0 (B Adv;) 0 ¢, = &1, Adw;.
A direct computation shows

Yy-1 0 (@;}:1 Ad vj) 0, = Ad Y, (EB}IZI Ad vj) ,
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and by definition

Vo1 (B Advy) = (B7" 0 Boy (o) - - - 87" 0 Boty (Vo()))-

Hence take w; = /Bj_l 0 By(j)(Vo(;)). This completes the proof that Inn(B) is
normal in Aut(B).

By part 2, to show Aut(B)/Inn(B) is isomorphic to Sy, it is enough to prove
{5 : 0 € Sy} NInn(B) = {idg}.

Thus assume there is a unitary « in U(B) such that ¢, (b) = ubu* for all elements

bin B. It follows that for all 1 < j < J,
5]._1 o 60710)(1)0—10)) = ujbju;‘f.

Since we can choose elements b; independently from each other we must have
o71(j) = j for all j, and we are done.

]

So far we have consider C*-algebras with only one type of block subalgebra,
so to speak. Next proposition shows that a x-automorphism can not mix blocks of
different dimensions. As a consequence, and along with Proposition I1.3, we get a

general decomposition of x-automorphisms of finite dimensional C*-algebras.

Proposition 11.4. Let B be a finite dimensional C*-algebra and decompose B as
oL, @j;l B(i, ), where for each i, there is a positive integer n; such that B(i,j) is
isomorphic to M,, for all 1 < j < J;, i.e. we group subalgebras that are isomorphic
to the same matriz algebra.

Then any « in Aut(B) factors as o = ®I_ a; where

a; : ®7L,B(i, ) — &)L, Bli, j)
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1S a *-1somorphism.

Proof. Let’s start with a rough decomposition of a. For 1 < iy,i5 < 1,1 <57 < Jj,

and 1 S jg S Jig let

af(i1, J1), (G2, J2)] = T(ing) © QO L(iy o)

where ¢(;, j,) denote the canonical inclusion of B(iy, j;) into B and 7, j,) denote the
canonical projection of B onto B(i, j2). Then «/[(i1, j1), (i2, j2)] is & *-homomorphism
from B(iy, j1) into B(ia, J2).

Now we proceed by induction on [.

The case I =1 is trivial.

Now assume the result is true for £ and let / =k + 1.

With no loss of generality we may assume ny < - -+ < ng < Ngiq.

Take 1 <[ < Jiyyq. By remark I1.1 af(k + 1,1), (42, j2)] either is zero or injective.
But for 1 < iy < k, it must be zero, because in this case dim B(is, j2)) < dim B(k +
1,1).

As in proposition I1.2, one can show that there is 1 < 031 1(l) < Ji41 unique such
that af[(k 4+ 1,1), (k + 1, 0441(1))] is not zero and the map [ — op,1(l) is a bijection.
Thus it follows that « restricted to @jﬁﬁlB(kz + 1,j) gives a *-isomorphism onto
& Bk + 1, 5).

Next we show that a[(ir, /1), (K +1,))] =0 for 1 < i3 < kand 1 <1 < Jiy1.
Take by € B(i1,71). The (k + 1, 0441(1))-entry of the following identity (which holds

because i; < k+ 1)

@ (¢(iy 50 (01) + e (L)) @ (e g (01) + ey (Lpgsi))

= a (1(i,,51) (0101) + t(e1) (L))
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along with the fact that «[(k + 1,1), (k + 1, 0x11(1))] is a *-isomorphism imply

al(iv, j1), (k + 1, 042 (1))](01) = 0.

Since o is a bijection we conclude a/|(i1, j1), (k+ 1,0)] =0 for all 1 <1 < Jiiq.

Hence we conclude that the image of @®F @

iy B(i,j) under « is contained

in ®F @le B(i,j). But « injective and thus finite dimensionality gives that this
restriction is a x-isomorphism. Lastly we apply induction hypothesis to this restriction

get the desired result. O]
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CHAPTER III

PERTURBATIONS

A. Useful results from Lie groups

In this section we summarize some result that, later on, will be repeatedly used.

Definitions and proofs of results mentioned in this section can be found in [9] and

[8].

The next two theorems are quite important and will be used in the next section.
Theorem III.1. Any closed subgroup of a Lie group is a Lie subgroup.

Theorem I11.2. Let G be a Lie group of dimension n and H C G be a Lie subgroup

of dimension k.

1. Then the left coset space G/H has a natural structure of a manifold of dimension
n — k such that the canonical quotient map © : G — G/H, is a fiber bundle,

with fiber diffeomorphic to H.

2. If H is a normal Lie subgroup then G/H has a canonical structure of a Lie

group.
The next proposition is from Corollary 2.21 in [9].

Proposition II1.3. Let G denote a Lie group and assume it acts smoothly on a
manifold M. For m € M let O(m) denote its orbit and Stab(m) denote its stabilizer

1.e.

O(m) = {gm:g¢€ G},

Stab(m) = {g€ G:g.m=m}.
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The orbit O(m) is an immersed submanifold of M. If O(m) is compact, then the
map g — g.m, is a diffeomorphism from G/Stab(m) onto O(m). (In this case we say
O(m) is an embedded submanifold of M.)

Corollary II1.4. Let G be a compact Lie group and let K and L be closed subgroups
of G. The subspace KL = {kl : k € K,l € L} is an embedded submanifold of G of
dimension

dim K + dim L — dim(L N K).

Proof. First of all KL is compact. This follows from the fact that multiplication is
continuous and both K and L are compact. Consider the action of K x L on G given
by (k,1).g = kgl™'. Notice that the orbit of e is precisely K L. By Proposition I1I.3,
K L is an immersed submanifold diffeomorphic to K x L/Stab(e). Since it is compact,

it is an embedded submanifold. But Stab(e) = {(z,z) : # € K N L} and we conclude
dim KL = dim(K x L) — dim Stab(e) = dim K + dim L — dim(& N L).
]

Proposition II1.5. Let G be a compact Lie group and let H be a closed subgroup.
Let 7 denote the quotient map onto G/H.
There are:
1. Ng, a compact neighborhood of e in G,
2. N, a compact neighborhood of e in H,
8. Ngjm, a compact neighborhood of w(e) in G/H,

4. a continuous function s : Ngu(m(e)) — G satisfying

(a) s(m(e)) = e and w(s(y)) =y for all y in No/u(n(e)),
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(b) The map

NHXNG/H — NG7

(h,y) = hsy(y)

s a homeomorphism.

Proof. Let g and bh denote, respectively, the Lie algebras of G and H. Take m a
vector subspace such that g is the direct sum of h and m. By Lemmas 2.4 and 4.1 in
[8], chapter 2, there are compact neighborhoods Uy, Uy and Uy, of 0 in g, h and m,

respectively, such that the map
Un x Uy — Uy,

(a,b) +— exp(a)exp(b)

is an homeomorphism and 7 maps homeomorphically exp(U,,) onto a compact neigh-
borhood of 7(e). Call the latter neighborhood Ng/ . Take Ng = exp(Uy), Ny =

exp(Uy) and s the inverse of 7 restricted to exp(Up).

B. Intersections and perturbations

In this section we fix a positive integer /N and, unless stated otherwise, B; & My and
By & My denote proper unital C*-subalgebras of My.
The main purpose if this section is give a proof of the following theorem (recall

that for a C*-algebra A, C'(A) denotes its center).
Theorem II1.6. Assume one of the following conditions holds:

1. dimO(B;) = 1 = dim O(By),
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2. dimC(By) > 2, dimC(By) = 1 and By is x—isomorphic to
My dimeB) @ -+ © M/ dimc(By)»
3. dimC(B;) = 2 = dim C(By), By is x—isomorphic to
M2 @ My,
and By is x—isomorphic to
M2 & My car

where k > 2,

4. dimC(By) > 2, dim C(Bs) > 3 and, fori = 1,2, B; is *—isomorphic to
Mn)gimeB) @ - © M) dimo(B)-

Then
A(Bl, BQ) = {U € U(MN) . B1 N UBQ’LL* = C}

is dense in U(My).

The C*-algebra uBsu* is what we call a perturbation of By by u. With this
nomenclature we are trying to prove that, in the cases mentioned above, almost always
we can perturb one C*-subalgebra a little bit in such a way that the intersection with
the other one is the smallest possible.

Roughly speaking, the idea behind is to show that the complement of A(Bs, Bs)
can be locally parametrized with strictly fewer variables than dim U(My) = N2
Thus, the complement of A(By, Bs) is, topologically speaking, small.

We start with some definitions. The group U(B;) acts on *-SubAlg(B;) via

(u, B) — uBu* and the equivalence relation on *-SubAlg(B;) induced by this action
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will be denoted by ~p,. Specifically, we have
B~p C< JuelU(B)):uBu" =C.

We denote by [B]p, the ~pg,-equivalence class of a subalgebra B in *-SubAlg(B;).

Notation III.7. For B in *-SubAlg(By) let

X(BlaBQaB) = {U € U(MN) : UBQU,* N Bl = B}’
Y(By;B) = {ue€UMy):u"BuC By},

Z(By,By;[Blg,) = {uecUMy):uByu* N By ~p, B}

It is straightforward that the complement of A(Bj, By) is precisely the union of
the sets Z(By, Bs; [B]p,), where B runs over all unital C*-subalgebras of By and B #
C . Just for a moment, with out being formal, we may think Z(By, By; [B]g,) as being
parametrized by two coordinates. The first one is an algebra ~p,-equivalent to B.
Hence the first coordinate lives in [B]p,. The second, is a unitary u that realizes the
first coordinate as uByu* N By. X (By, By; B) comes into play in order to parametrize
this second coordinate. The problem is that X (B, Be; Bpg,) is complicated to handle
(for instance it may not be closed). This is way we introduce the friendlier set
Y (By; B). Good properties about Y (Bsy; B) is that it is a closed subset of U(My), in
fact we will show it is a finite union of enbedded compact submanifolds of U(My),
and it contains X (B, Bs; B).

The rest of this section is the formalization of the previous idea. In concrete
our first goal is to show [B]p, has a structure of manifold and we are particularly
interested in finding its dimension.

Let Stab(Bj, B) denote the ~p, -stabilizer of B i.e.

Stab(By, B) = {u € U(B,) : uBu" = B}.
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Remark III.8. Given B in x-SubAlg(B;) we can endow [B|g, with a structure of

1

manifold. Indeed, let U(B;)/Stab(B;, B) denote the set of left-cosets and consider

the map

B [Bls, — U(B))/Stab(By,B),

fe(uBu*) = wuStab(By, B).

One can check g is well defined and bijective. Since U(By)/Stab(By, B) is a manifold,
B induces a structure of manifold on [B]p,. To avoid ambiguity we have to check the
topology does not depend on the representative B. In fact, we will show the topology
induced by (g is the same as the topology induced by the Hausdorff distance.
For C; and Cj in [B]p, define
4n(C1,Ca) = max {supint (o — 2} supint o, = aal} |

where x; is taken in the unit ball of C;, ¢ = 1,2. Since unit balls of unital C*-
subalgebras of B; are compact subsets (in the norm topology), dy defines a metric
on [B|p,. Let 7 and 75 denote, respectively, the topologies on [B]pg, induced by (g
and dyg. We are going to show 7 = 7. Consider the identity map id : ([B]p,,7) —
([B]gysTH). First we show id is continuous. Since U(B;)/Stab(Bj, B) is endowed
with the pull back topology from the quotient map 7 : U(By) — U(B;)/Stab(B;, B)

where U(B) is taken with the norm topology, id is continuous if and only if the map
Bg'om:U(By) — ([Bls,, Tr)

is continuous. Take (u,),>1 a sequence in U(B;) and a unitary u in U(B;) such that

lim,, ||u, — u|| = 0. We need to show

limdg (85" o m(uy), Bg' o w(u)) = lim dg(u, Bu’, uBu*) = 0.
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Take ng such that ||u, —u|| < /2 for all n > ny. For any b in the unit ball of B and
any n > ng, we have

|unbuy — ubu®|| < e.

Thus, for n > ng

supinf ||z; — 22| < e
xo Tl

and

supinf ||z, — x2| < ¢,
] T2

where x5 is taken in the unit ball of w,Bu; and z; is taken in the unit ball of
uBu*. Hence id : ([B]g,,7) — ([B]B,,Tr) is continuous. Lastly, since id is bijective,
([B]g,,T) is compact and ([B]g,,7y) is Hausdorff, we conclude that id is a homeo-

morphism. Thus 7 = 74.

Now that we know [B]p, is a manifold, we want to find its dimension. Since by
construction [B]p, is diffeomorphic to U(B;)/Stab(By, B), dim[B]p, = dimU(B;) —
dim Stab(By, B). Thus we only need to find dim Stab(B;, B).

Notation ITI.9. Whenever we take commutators they will be with respect to the

ambient algebra My, in other words for a subalgebra A in *-SubAlg(My)
A'={r e My:za=ax, forallain A}.
Recall that C'(A) denotes the center of A i.e.
C(A)=ANnA' ={a€e A:za=ax forall xin A}.

Proposition II1.10. For any By in x-SubAlg(My) and for any B in x-SubAlg(B;),

we have

dim Stab(By, B) = dim U(B) + dim U(B; N B') — dim U(C(B)).
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Proof. We'll find a normal subgroup of Stab(B;, B), for which we can compute its
dimension and that partitions Stab(Bj, B) into a finite number of cosets. Let G
denote the subgroup of Stab(B;, B) generated by U(B; N B’) and U(B). Since the
elements of U(B) commute with the elements of U(B; N B’), a typical element of G
looks like vw, where v lies in U(B) and w lies in U(B; N B’). Taking into account
compactness of U(B) and U(B; N B’), we deduced G is compact.

Now we show G is normal in Stab(By, B). Take u an element in Stab(Bi, B).
For a unitary v in U(B) it is immediate that vvu* lies in U(B). For a unitary w in
U(B; N B'), the following computation shows uwu* belongs to U(B; N B’). For any

element b in B we have:
(uwu™)b = vw(u bu)u* = u(u*bu)wu* = bluwu*),

where in the second equality we used u*bu lies in B. In conclusion uGu* is contained
in G for all u in St(By, B) i.e. G is normal in Stab(B, B).

As aresult Stab(By, B)/G is a Lie group. The next step is to show Stab(By, B)/G
is finite. Decompose B as

B=®_, ®/, B(i,j),

where for all ¢ there is k; such that for 1 < j < J;, B(i,7) is *—isomorphic to Mjy,.

For the rest of our proof we fix a family, 8(i,j) : B(4,j) — Mj,, of x—isomorphisms.
An element u in Stab(Bj;, B) defines a *—automorphism of B by conjugation. As

a consequence, Propositions I1.3 and II.4 imply there are permutations o; in S, and

unitaries v; in U(@‘j]i:lB(i, 7)) such that
Vb € B : ubu® = vip(b)v”* (3.1)

where v = @®/_,v; is a uitary in U(B) and ¢ = @®/_,1,, is a *—automorphism in
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Aut(B) (the maps ¥ depends on the family of x—isomorphisms (i, j) we fixed earlier).
Equation (3.1) is telling us important information. Firstly, that i) extends to an *—
isomorphism of B; and most importantly, this extension is an inner *—automorphism.
Fix a unitary Uy in U(By) such that ¢(b) = AdU,(b) for all b in B (note that U, may
not be unique but we just pick one and fix it for rest of the proof ). From equation
(3.1) we deduce there is a unitary w in U(B; N B’) satistying u = vUyw. Since the

number of functions ¢, that may arise from (3.1), is at most J;!--- J;!, we conclude

Now that we know Stab(Bj, B)/G is finite we have dim Stab(B;, B) = dim G, and

Corollary II1.4 gives the result. ]
From Proposition II1.10 and Remark II1.8, we get the following corollary.

Corollary II1.11. For any By in *-SubAlg(My) and any B in *-SubAlg(B;), we

have
dim[B]p, = dim U(B;) — dim U(B' N By) + dim U(C(B)) — dim U(B)
Now we focus our efforts on Y (Bsy; B).

Proposition II1.12. Assume Y (By; B) # (0. Then Y (By; B) is a finite disjoint
union of embedded submanifolds of U(My). For each one of these submanifolds there

is u € Y (By; B) such that the submanifold’s dimension is
dim Stab(My, B) + dim U(By) — dim Stab(Bs, u* Bu).
Using Proposition II1.10 the later equals

dimU(B’) + dimU(B;) — dim U(By N u*B'u). (3.2)
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Proof. We'll define an action on Y (Bs; B) which will partition Y (Bs; B) into a fi-
nite number of orbits, each orbit an embedded submanifold of dimension (3.2) for a

corresponding unitary. Define an action of Stab(My, B) x U(Bsy) on Y (By; B) via
(w,v).u = wuv®.

For u € Y(Bs; B) let O(u) denote the orbit of u and let O denote the set of all orbits.

To prove O is finite consider the function

©: 0 — =x-SubAlg(Bs)/ ~p,,

p(O(u)) = [ Bulp,.

Firstly, we need to show ¢ is well defined. Assume uy € O(uy) and take (w,v) €

Stab(M,,, B) x U(Bsy) such that uy = wujv*. From the identities
us Bug = vugw* Bwuav* = vuy Buqv”

we obtain [us Buj)p, = [u1 Buj]p,. Hence ¢ is well defined.

The next step is to show ¢ is injective. Assume p(O(u1)) = ¢(O(ug)), for
u1,uz € Y(Bg; B). Since [ujBuilp, = [ujBus]p,, we have ulBuy = vuiBujv* for
some v € U(By). But this implies uyv*uj € Stab(My, B) so if w = ujv*ul we conclude
(w,v).uy = uy which yields O(u1) = O(uz). We conclude |O] < |-SubAlg(Bs)/ ~g,
| < o0.

Now we prove each orbit is an embedded submanifold of U(My) of dimension
(3.2). Since Stab(M,, B) x U(Bs) is compact, every orbit O(u) is compact. Thus,
Proposition II1.3 implies O(u) is an embedded submanifold of U(My), diffeomorphic
to

(Stab(My, B) x U(Bs))/Stab(u)
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where

Stab(u) = {(w,v) € Stab(My, B) x U(Bg) : (w,v).u = u}.

Since

(w,v)u=u <& ww' =u <& vwu=uv,

we deduce the group Stab(u) is isomorphic to
U(By) N [u*Stab(My, B)ul,
via the map (w,v) — v. A straightforward computation shows
u*Stab(My, B)u = Stab(My, u* Bu),
for any u € U(My). Hence, for any u € Y (By; B),
dim O(u) = dim Stab(My, B) + U(Bs) — dim U(Bz) N Stab(My, u* Bu).
Lastly, one can check U(By) N Stab(My, u*Bu) = Stab(Bs, u*Bu). O

Notation III.13. For a unital C*-subalgebra B of B;, with the property that B is
unitarily equivalent to a C*-subalgebra of By, or in other words Y (Bs; B) is nonempty,
define

d(B) := dim|B|p, + mzax{dimY;-(Bg; B)},

where Yi(Bs, B),...,Y,(By; B) are disjoint submanifolds of U(My) whose union is
Y (By: B).

As we mention at the beginning of this section, in order to prove Theorem III.6,
we need to parametrize each Z(By, By; [B]p,) with a number of coordinates less than
N2. The number of coordinates will be given by d(B). Thus the next step is to show
that, under the hypothesis of Theorem IIL.6, we have d(B) < N? for B # C. We will
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later see that it suffices to show d(B) < N? for B # C and B abelian.
Before we proceed, we recall definition of multiplicity of of a representation. The

following lemma combines Lemma II1.2.1 in [5] and Theorem 11.9 in [14].

Lemma II1.14. Suppose ¢ : Ay — Ay is a unital x-homomorphism and A; is iso-
morphic to @?:1 My, iy, (i =1,2). Then ¢ is determined, up to unitary equivalence
in As, by an ly X Iy matriz, written pu = p(¢) = u(As, Ay), having nonnegative integer

entries such that

k'l(ll) k2<l2)

We call this the matriz of partial multiplicities. In the special case when ¢ is a
unital x—representation of Ay into My, p is a row vector and this vector is called the

multiplicity of the representation. One constructs i as follows: decompose A, as
! .
Ap = @jp:lApO)

where each Ay(j) is simple, p=1,2, 1 < j <,. Taking projections, m induces unital

x—representations m; : Ay — Ag(i), 1 < i < ly. But up to unitary equivalence, m;

equals
oy @ - Dida) @ @i © - @iday
miylﬁ—rtimes miﬁllﬂ—rtimes
for some nonnegative integer m; ;, 1 < j <ly. Set u[i,j] := m; ;. In particular, p[i, j]

equals the rank of m;(p) € As(i), where p is a minimal projection in A;(j). Clearly,
7 is injective if and only if for all j there is i such that u[i, j] # 0.

Furthermore, the C*-subalgebra

Ay Np(A)) ={x € Ay : zp(a) = p(a)r  for alla € A}



33

is x—isomorphic to @?:1 @21:1 M, 51 and if we have morphisms Ay — Ay — As, then
p(As, Ag)pu( Az, Ay) = pu(As, Ay) for the corresponding matrices.

Our next task is to show d(B) < N2, for abelian B # C. We prove it by cases,

so let us start.

Lemma I11.15. Assume B; is x—isomorphic to My,, (i = 1,2) and let k = ged(kq, k2).
Toke B a unital C*-subalgebra of By such that it is unitarily equivalent to a C*-

subalgebra of By. Then there is an injective unital x—representation of B into M.

Proof. Take u in Y (By; B) so that u*Bu C By. Let m; := u(My, B;), so that
m;k; = N, (i = 1,2). Find positive integers p; and p, such that k; = kp; and
ko = kpy Assume B is x—isomorphic to @2:1 M,,,. To prove the result it is enough to

show there are positive integers (m(1),...m(l)) such that
nym(1) +--- +nmym(l) = k.
Let

W(Br, B) = [mi(1), ..., m(0)],

p(Ba, u*Bu) = [ma(1),...,ma(l)].

Since u(My, By)u(By, B) = p(My, Be)p(Ba, u* Bu) we deduce that mymy (j) = mams(j)

for all 1 < 7 <[. Multiplying by k and using N = mik; = msks we conclude

N . . . N .
—mq(j) = kmama (j) = kmama(j) = —ma(j),
b1 P2
so pamy(j) = p1ma(7). Since ged(pr, p2) = 1, the number m;—fj) = m;—ij) is a positive

integer whose value we name m(j). From

l

!
kpr =k =Y nyma(j) =Y nym(j)pr,
=1

Jj=1
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we conclude k = 23:1 n;m(j). O

Proposition I11.16. Assume By and By are simple. Take B # C an abelian unital

C*-subalgebra of By, that is unitarily equivalent to a C*-subalgebra of By. Then
d(B) < N2

Proof. Assume B; is *—isomorphic to My,, (i = 1,2) and B is *-isomorphic to C',
[ > 2. Using Corollary II1.11 and Proposition II1.12, we may take u in Y (Bs, B) such

that d(B) equals the sum of the following terms,

S((B) = dimU(B,) - dimU(B, N B'),
So(B) = dimU(By) — dimU(By Nu*B'u),
S3(B) = dimU(B’),

Let k = ged(kq, ko) and write ky = kpy, ko = kps. From proof of Lemma I11.15, there

are positive integers m(j), 1 < j <, such that

u(By, B) = [m(1)p1, ..., m(l)p1]

(B, B) = [m(1)ps, ..., m(l)ps].

Hence
l l
Si(B) =k =Y m(i)’pi = k’pi = > m(i)*p}
=1 i=1
l l
So(B) = k3 — > m(i)’ps = K’ps — Y m(i)*p3.
=1 =1
Let m; = u(My, B;), (i = 1,2). Since

:u(MN7 Bl)M(Bl’ B) = M(MNv BQ)M(B% U*BU),
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we get
WMy, B) = [mipim(1),...,mipim(l)] (3.3)

= [mapam(1), ..., mapam(l)].

Hence
!

S3(B) = Z(m(i)plml)( i)p2ms) (Z mt > P1p2mims.

=1

Factoring the term Y'_ m(i)? we get d(B) equals

l
(Z m(i)2> (prp2mams — p} — p3) + K> (0 + p3).
=1

On the other hand, using N = mik, = mikp, = moks = makps, we get N2 =

k*p1pamims,. Hence d(B) < N? if and only if

(Z m(i)2> (p1p2m1m2 - p% - p%) < kQ(p1p2m1m2 - P? - pg) (3.4)
=1

We want to cancel (p1pamimsy — p? — p2), in equation (3.4), so we prove it is positive.

First we divide it by pips to get mimy — pl z—f. But from equation (3.3) we have

p1

o = m—f Thus we need to show mymey — % — 12 g positive. If we divide it by mimao

we get 1 — m% — mig, which is clearly positive (recall that m; > 2 and my > 2 since

By # My and By # My). Therefore, equation (3.4) is equivalent to

!
> oml(i) < k.
i=1
But 22:1 m(i) =k, [ > 2 and each m(7) is positive. O

In the nonsimple case in Theorem II1.6, we will need some minimization lemmas
to show d(B) < N?, for abelian B # C. A straightfroward use of Lagrange multipliers

proves the following lemma, and the one after that is even more elementary.

Lemma III.17. Fiz a positive integer n and let ry,...,r, be positive real numbers.
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Then

(=7
min 5 -2
T

j=

- 1
x-—l} =
jzl ’ Zj:ﬂ“j

where the minimum is taken over all n-tuples of real numbers that sum up to 1.

Lemma II1.18. For an integer k > 2 define

LY 5 1,
h(x,y):Qxy—(l%—ﬁ)y — 5
Then
{h(z,y) |0<2<1,0< <1/2}~—1 !
max{h(z,y <zr<1,0<y< = 2

Proposition I11.19. Suppose dim C(B;) > 2 and By is x—isomorphic to
My dimeB) @ -+ © M/ dimc(By)- (3.5)
Assume one of the following cases holds:

1. dimC(B,) =1,

2. By 1s x—isomorphic to

M2 @ My,

By is x—isomorphic to

M2 @ Myyam)
where k > 2.

3. dim C(By) > 3 and By is x—isomorphic to

MnN/dimc(By) @+ © M/ dimc(By)-

Then for any B # C an abelian unital C*-subalgebra of By that is unitarily equivalent
to a C*-subalgebra of By, we have that d(B) < N2.
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Proof. Let ; = dimC(B;), (i = 1,2), | = dim(B). Take u in Y (Bsy; B) such that

d(B) is the sum of the following terms:

S((B) = dimU(B,) — dimU(B, N B), (3.6)
Sy(B) = dimU(B,) — dim U(B, N u* B'u), (3.7)
Sy(B) = dimU(B'). (3.8)
Write
w(Bi,B) = laijh<i<na<i<i
W( By, u*Bu) = [bjli<i<i <)<ty
WMy, Br) = [ma(1),...,mi(l)],
WMy, Bg) = [ma(1),...,ma(ls)],
w(My,B) = [m(1),...,m(l)]
Then

S(B) = dmU(B) -y Y 0,

Ss(B) = Yy m(j)*.

Since the sum of the ranks appearing in (3.5) is N, we have m (i) = 1 forall 1 < i <.
Since

WMy, B) = p(My, B1)p(B1, B) = p(My, Ba)ju(Ba, u* Bu),

we must have

A lo
m(G) = ai; =Y ma(i)bi,
i=1 =1
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for all 1 < j < [. Hence there are nonnegative numbers «;; and 3;; such that

le LG = 2?:1 Bij = 1 and a;; = a;jm(j), ma(i)b;; = Bijm(j). On the other

hand, since B is a unital C*-subalgebra of My we must have

Thus, there are positive numbers v;, (1 < j <), such that 23:1 v; =1 and m(j) =
v;N. It will be important to notice that v; > 0 for all 1 < j <[ ( otherwise B is not

a unital C*-algebra of My). In consequence,
N2 ! L
_ 2 2 2

Si(B) = T_N (Z%’(Z%g));
! Lo 2.

Sy(B) = dimU(B,) — N? 2 =

2( ) 1m ( 2) (ZV](;m2(Z)2>>7
!
S4(B) = NQ(Z%?).

Case (1). By is simple, let us say it is *—isomorphic to My,. In this case u(My, By) =

[ms] is just one number and we must have myko = N. Notice that my > 2, since by
our standing assumption, By # My. Also notice that from pu(My, Be)p(Ba, u*Bu) =

pu(Mpy, B) we obtain mab;y = m(i) and 3;; = 1 for all 1 <7 <[. In consequence
!
s - X N2<Zv?<2a )
N2 N2 !
5(B) = ———( 7).
= g\ 27
!
Ss(B) = N?(va).
=1
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From Lemma III.17, we deduce

or equivalently

l
1 1 1 1
A Y (S R D
(Z%>( l m3>< L m3

Jj=1

Since [; > 2 and msy > 2 we can cancel the term 1 — % — # Thus we need to show
2

23:1 'y]z < 1. But the latter follows from the fact that [ > 2, each +; is positive and
!
Zj:l Vi = 1.

Case (2). We have

w( My, By)

[17 ]']7

M(MJ\U BQ) = [17 k]

Thus
5.08) = ?—Nz(iﬁ(amaa)),
N A )
S3(B) = NQ(EZ:%?).



From Lemma II1.17 we obtain

N2 N2[
S1(B) < 7—7<Z%2>
=1

Thus, it suffices to show

1 2
2T 1 +4_;€2+Z%(‘_/319 252,j) <1

or, equivalently,

Define

r= Z%( — 8L, - 263,]).

l
§ 2 2 2

40

(3.9)

Now we use the constraints on the variables v; and ; ;. First of all we have 5, ;482 ; =

1 for all 1 < i <. Thus, r simplifies to

I
1 1
r= E ’Y? (252,j - (1 + ﬁ)ﬁg,j - 5)
j=1

We also have

!
Z Ba,i7j
j=1

Indeed, since all blocks of B are one dimensional, we must have

S, - Y
L2720 T ok
7j=1

But kaJ = ﬁgd‘m(j) = BQ’j’YjN, which 1mphes (310)

(3.10)

The final constraint is
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Now we make the change of variables g; := «; 32 ; and r becomes
l 1 ! 17
(o) (o B)ED HE)
j=1 j=1 j=1
Lettingy = (v1,...,%) and ¢ = (qi, . .., ¢;) and using the Cauchy-Schwartz inequality,
we get

1 1
r < 2l — (1+ 5 ) Il - 51112

Set x = [|7]|, ¥y = ||¢||. Notice that 0 <z <1 and 0 <y < 1/2. Take

1 2 1 2
h@w%=hw—(b+@)y—§y

apply Lemma III.18 to get

1

r<n(ll el < § - 5
Now we will rule out equality. Assuming, for contradiction, r = }1 — ﬁ, we must
have equality in the instince of the Cauchy-Schwartz inequality. Hence ¢ = 27 for
some real number z. Summing over the coordinates we deduce z = 1/2 and then, for

all1 < j <l

1
3% =4 = V2,5

Since 7; > 0 we can cancel and get 5, ; = 1/2. Thus, using the original formula-

()

J]=

tion (3.9) of r, we get

which is strictly less that 1/4 — 1/(4k?), because k > 2, I > 2, all ; are strictly

positive and 22:1 v; = 1.
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Case (3). Then Bs is *—isomorphic to

My, ®--- @ MN/IQJ-
lgf;i,mes

Arguing as we did before for m; (i), we have my(i) = 1, for all 1 < i <ly. Hence

s = -v($()
s = v (Er($)
&w):N%ih%.

From Lemma I11.17 we deduce

S1(B)

o V()

Thus, it suffices to show

or equivalently

l
1 1 11
2 I I  [———
(Zﬁy])( l lz>< Loy

7=1

Since [; > 2 and [y > 3 we can cancel the term 1 — % — i in the above equation and

finish the proof as in the previous case. [
The next step is to find parameterizations of Z(By, Ba; [B]g, ).

Lemma I11.20. Take B # C a unital C*-subalgebra of By that is unitarily equivalent

to a C*-subalgebra of By. If dimU(B;) + dimU(By) < N2, B is simple and C in
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x-SubAlg(B) is x—isomorphic to C?, then d(B) < d(C).

Proof. Assume B is #—isomorphic to M} and let m denote the multiplicity of B in
My. Thus we must have km = N. Take a unitary u in the submanifold of maximum

dimension in Y'(Bsy; B), so that d(B) is the sum of the terms

Si(B) = dimU(B;) — dimU(B; N B'),
So(B) = dimU(B,) — dim U(B, Nu*B'u),
S3(B) = dimU(B),

Sy(B) := dimU(BnN B') — dimU(B).

and let v lie in the submanifold of maximum dimension in Y'(Bs, C') so that d(C) is

the sum of the terms

S1(C) = dimU(B,) — dimU(B, N C"),
So(C) = dimU(By) — dim U(By Nv*C'v),

S3(C) = dimU(C).

Clearly, Sy(B) =1 — k%. We write
B ~ P M,
BQ ~ @ ng(z)

and
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From definition of multiplicity and the fact that it is invariant under unitary equiva-

lence we get

w(B1, B)k = 4§(By), (3.11)
w(By,u*Bu)k = §(Bsy),
,U(MN?Bl)(S(Bl) = :U(MN’BQ)(S(BQ) =N,

M(MNaBl):u(BlaB) = M(MNaBQ)M(B%U*Bu>:m

From Lemma III.14 and equation (3.11) we get

1
dimU(B, N B) = 75 dimU(By). (3.12)

Hence
Ly ..
Similarly

Sy(B) = (1 _ %) dim U(B,).

Now it is the turn of C. To ease notation let
:U’(Bv C) = [$1, xQ]
Notice that x; + zo = k. We claim

2 2
T+ 75

S(C) = (1 - )dim[U(Bl).

Using u(B1,C) = u(B1, B)u(B,C) we get

dimU(B, N C") = (2] + 23) dimU(B; N B').



45

Furthermore using (3.12) we obtain

2 2
T+ 75

dim U(Bl N C/) = 12

Hence our claim follows from definition of S;(C). Similarly

2 2
T+ 75

55(C) = (1 - )dim[U(Bg).

Lastly from pu(My,C) = [mazy, mzs] and mk = N we get

2

SiC) = (22 +ad)

2 e
Sy(B) = %
To prove d(B) < d(C') we’ll show
51(B) = 51(C) 4 55(B) — 52(C) + Sa(B) < 53(C) — S3(B). (3.13)

Using the description of each summand we have that left hand side of (3.13) equals

i +a3 -1

= (dimU(Bl) + dimU(32)> +1— K

The right hand side of (3.13) equals

i +ai—1

Ea

But z; and z, are strictly positive, because C' is a unital subalgebra of B. Hence
we can cancel 77 + 23 — 1 and finish the proof by using that 1 — §(B)? < 0 and the
assumption dim U(B;) + dim U(By) < N2 O

We recall an important perturbation result that can be found in Lemma III.3.2

from [5].

Lemma II1.21. Let A be a finite dimensional C*-algebra. Given any positive num-
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ber € there is a positive number 6 = 6(¢) so that whenever B and C are unital C*-
subalgebras of A and such that C' has a system of matric units {ec(s,1, j)}si;, satisfy-
ing dist(ec(s,i,7), B) < 6 for all s,i and j, then there is a unitary u in U(C*(B,C))

with ||u — 1|| < e so that uCu* C B.

Notation II1.22. For an element z in My and a positive number e, M (x) denotes
the open e-neighborhood around x (i.e. open ball of radius ¢ centered at x), where

the distance is from the operator norm in My.

The next proposition is quite technical and is mainly a consequence of Lemma
III1.21. The set [B]p, is endowed with the equivalent topologies described in Re-
mark III.8.

Lemma I11.23. Take B in x-SubAlg(B;) and assume Z(By, Bs; [Blp,) is nonempty.

Then the function

Z(B1, By [Blg,) — [Bls, (3.14)

uw — uByu"N B
1S continuous.

Proof. Assume B is *—isomorphic to
1
B .
s=1
First we recall that the topology of [B]pg, is induced by the bijection

B:[Blg, — U(By)/Stab(By, B),

B(uBu*) = wuStab(By, B).

For convenience let 7 : U(By) — U(By)/Stab(By, B) denote the canonical quotient
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map. Pick ug in Z(By, By;[B]p,). With no loss of generality we may assume B =
uoBaug N By.

We prove the result by contradiction. Suppose the function in (3.14) is not
continuous at ug. Then there is a sequence (uy)r>1 C Z(B1, Be, [B]p,) and an open

neighborhood N of B in [B]p, such that
1. limk Ur = Uog,

2. for all k, uBou} N By ¢ N.

o bl 26/ >

denote a system of matrix units for ugBouj N By. Fix elements fi(s,i,7) in By such
that ex(s,4,7) = urfr(s,4,j)ui. Since By is finite dimensional, passing to a subse-
quence if necessary, we may assume that limy, fi(s,,7) = f(s,4,7), for all s,i and j.

Using property (1) of the sequence (ug)g>1, we deduce
lilgn er(s,i,j) = liinukfk(s,i,j)u,: = uof(s,1,J)ug.

Hence the element e(s, i, j) = uof(s,1i,j)u* belongs to ugBiui N By = B. Use Lemma
II1.21 and take ¢; positive such that whenever C' is a subalgebra in *-SubAlg(B;)
having a system of matrix units {ec(s,7,j)}s,; satisfying dist(ec(s,,j), B) < 41,
for all s,i and j, then there is a unitary @ in U(B;) such that ||@Q — 15,|| < € and
QCQ* C B. Take k such that ||ex(s,i,7) — e(s,i,7)|| < d; for all s,i and j. This
implies dist(ex(s,,7), B) < d§; for all s,7 and j. We conclude there is a unitary @ in

U(By) such that ||Q — 1p5,|| < € and Q*(uxBou; N B1)Q C B. But
dim B = dim uy, Bouj, N By = dim Q™ (uy Bauj, N By)Q,

where in the first equality we used that uy lies in Z (B, Ba; [B]p, ). Hence Q*(ug BaujN
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B;)Q = B. As a consequence,

BlukBauy N By) = B(QBQ") = 7(Q) € BIN).
But the latter contradicts property (2) of (ug)r>1- O

Lemma I11.24. For B in x-SubAlg(B), the function c : [Blg, — [C(B)|s, given by

c(uBu*) = uC(B)u* is continuous.

Proof. First, we must show the function c is well defined. In other words we have to
show Stab(Bj, B) C Stab(B;,C(B)). But this follows directly from the fact that any
w in Stab(Bj1, B) defines a s—automorphism of B and any s—automorphism leaves the
center fixed. Since [B]p, and [C(B)]p, are homeomorphic to U(By)/Stab(By, B) and
U(B;)/Stab(B;, C(B)) respectively, it follows that ¢ is continuous if and only if the
function ¢ : U(By)/Stab(By, B) — U(B;)/Stab(By, C(B)) given by ¢(uStab(By, B)) =
uStab(By, C(B)) is continuous. But the spaces U(By)/Stab(By, B) and U(By)/Stab(By, C(B))

have the quotient topology induced by the canonical projections
B - U(Bl) — Stab(Bl, B), TC(B) - U(Bl) — U(Bl)/Stab(Bl, C(B))

Thus ¢ is continuous if and only if mp o ¢ is continuous. But g o ¢ = m¢(p), which is

indeed continuous. O
We are ready to find local parameterizations of Z(By, Bs; [B]g,).

Proposition I11.25. Take B a unital C*-subalgebra in By that is unitarily equivalent
to a C*-subalgebra of By. Fiz an element uy in Z(By, Be; [Blp,). Then there is a

positive number r and a continuous injective function

U N (ug) N Z(By, By; [B,) — RYCH).
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Proof. Using that Z(By, Bs; [Blp,) = Z(Bi, B, [ugBaul N Bylp,), with no loss of
generality we may assume ugByujy N By = B. Now, we use the manifold structure of
[C(B)]p, and Y (By; C(B)) to construct W. Note that if Y (By, B) is nonempty then
Y (By, C(B)) is nonempty as well. Let d; denote the dimension of [C'(B)]p, and let dy
denote the dimension of the submanifold of Y (By; C'(B)) that contains ug. Of course,
we have d; + dy < d(C(B)).

We use the local cross section result from previous section to parametrize [C(B)]p, .
To ease notation take G = U(By), H = Stab(By, C'(B)) and let 7 denote the canonical

quotient map from G onto the left-cosets of H. By Proposition II1.5 there are
1. Ng, a compact neighborhood of 1 in G,
2. Ny, a compact neighborhood of 1 in H,
3. Ngyu, a compact neighborhood of (1) in G/H,
4. a continuous function s : Ng/g — N satisfying
(a) s(m(1)) =1 and n(s(n(g))) = 7(g) whenever 7(g) lies in N, n,

(b) the function

Nu xNgg — N,

(h,m(g)) = hs(x(g)),

is an homeomorphism.

Since G/H is a manifold of dimension d;, we may assume there is a continuous
injective map ¥q : Ng/g — R%.

Parametrizing Y (By; C(B)) is easier. Since ugBaul N By = B, ug belongs to
Y (Bg; B). Take ry positive and a diffeomorphism Wy from Y (Bg; C(B)) NN, (uo)

onto an open subset of R%.
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Now that we have fixed parametrizations ¥; and W5, we can parametrize Z(By, Bs; [B]p,)
around ug. Recall [C(B)]p, has the topology induced by the bijection g : [C(B)]p, —
G/H, given by S(uC(B)u*) = m(u). The function

Z(‘Bl?BQ;[B]BI) - [C(B)]Bl7

u — c(uBu® N By)

is continuous by Lemma II1.23 and Lemma [11.24. Hence there is d5 positive such that
B(c(uByu*NBy)) belongs to Ny ur, whenever u lies in the intersection Z(By, By; [B]p, )N

N, (ug). For a unitary u in Z(By, Bs; [B]p,) NN, (ug) define
q(u) := s(B(c(uBsu™ N By))).

We note that ¢(ug) = 1, ¢(u) lies in G and that the map u +— ¢(u) is continuous. The

main property of g(u) is that
c(uBou* N By) = q(u)e(B)g(u)*. (3.15)

Indeed, for w in Z(By, Ba; [B]1) N N5, (ug) there is a unitary v in G with the property
uByu*N By = vBv*. Hence c(uByNBy) = vC(B)v*. Since ||[u—ug|| < 2, B(c(uBsu*N
By)) lies in N g. Hence S(c(uBou* N By)) = w(v) lies in N g. Using the fact that
s is a local section on Ng g (property (4a) above) we deduce 7(s(m(v))) = m(v) .

On the other hand, by definition of ¢(u) we have
m(s(m(v))) = m(s(B(uBu” N By))) = m(q(u)).

As a consequence, w(v) = w(q(u)) i.e. v*q(u) belongs to Stab(By, B) which is just
another way to say (3.15) holds. At last we are ready to find r. Continuity of the map

u — q(u) gives a positive d3, less that &, such that ||g(u) — 1| < & whenever u lies in
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Z (B, By; [B]p,) N N, (ug). Define r = min{%,d;}. The first thing we notice is that
q(u)*u belongs to Y (By; C(B))NN;, (ug) whenever u lies in Z(By, Bs; [B]g,) NNs(uo).
Indeed, from

q(u)e(B)q(u)* = c(uByu™ N By) C uByu*
we obtain g(u)*u € Y(Bs;c¢(B)) and a standard computation, using ||q(u) — 1|| < &,

shows [|q(u)*u — ug|| < ;. Hence we are allowed to take Wy(q(u)*u). Lastly, for u in

Z(Bl, BQ, [B]B1) ﬂN(S(U(]) define

() = (U1 (Bc(uBau’ N BY))), Us(qlu)a)).

It is clear that ¥ is continuous.
Now we show W is injective. If W(u;) = W(uy), for two element u; and uy in

Z(By, By; [B]p, ), then

Uy (B(c(uyBauy N By))) = Wi(B(c(uaBauy N By))), (3.16)
Wa(q(u)uy) = Wa(g(ug)us). (3.17)

From (3.16) and definition of ¢(u) it follows that q(u;) = ¢(us) and from equation

(3.17) we conclude u; = us. O

Proposition II1.26. Take B a unital C*-subalgebra of By such that it is unitarily
equivalent to a C*-subalgebra of Bs. Fix an element ug in Z (B, By; [Blg,)-

There is a positive number r and a continuous injective function

U : N, (up) N Z(By, By; [Blg,) — RIP)

The proof of Proposition I11.26 is similar to that of Proposition I11.25, so we omit

it.



52

We now begin showing density in U(My) of certain sets of unitaries.

Lemma II1.27. Assume By and By are simple. If B # C is a unital C*-subalgebra
of By and it is unitarily equivalent to a C*-subalgebra of By then Z(By, Bo; [B]p, )¢ is

dense.

Proof. Firstly we notice that dimU(B;) + dimU(By) < N?. Indeed, if B; is %
isomorphic to My,, i = 1,2 and m; = u(My, B;) then dimU(B;) + dimU(Bs) =
N2(1/m2 + 1/m3) < N?. Secondly we will prove that for any u in Z(By, Bs;[B]|p,)
there is a natural number d,, with d, < N2, a positive number r, and a continuous

injective function W, : N, (u) N Z(By, By; [B]p,) — R%. We will consider two cases.

Case (1): B is not simple. Take d,, = d(C(B)). Since C(B) # C, Proposition I11.16

implies d(C'(B)) < N?. Take r, and W, as required to exist by Proposition I1I.25.

Case (2): B is simple. Take d, = d(B). Since B # C, B contains a unital C*-
subalgebra isomorphic to C?; call it C. Lemma II1.20 implies d(B) < d(C) and
Lemma II1.16 implies d(C) < N?. Take r,, and ¥, the positive number and continuous
injective function from Proposition I11.26.

We will show that UNZ(By, By; [B]g,)¢ # 0, for any nonempty open subset U C
U(My). First notice that if the intersection Uﬂ(UueZ(BhB?;[B]BI) N, (w))€ is nonempty
then we are done. Thus we may assume U C J,czp, B2;[B}31)Mu(u)' Furthermore,
by making U smaller, if necessary, we may assume there is u in Z(Bj, Bs; [B]p,) such
that U C N, (u).

For sake of contradiction assume U C Z(Bjy, By;[B]p,). We may take an open
subset V', contained in U, small enough so that V is diffeomorphic to an open con-

nected set @ of R¥*. Let ¢ : O — V be a diffeomorphism. It follows we have a
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continuous injective function

RY 20 —2-y 24 Rl RN

By the Invariance of Domain Theorem, the image of this map must be open in
RN”. But this is a contradiction since the image is contained in R% and d, < N2.

We conclude U N Z(By, By; [B]g, )¢ # 0. H

Lemma II1.28. Suppose dim C'(By) > 2 and By is x—isomorphic to
M/ dimoB) @ - & Mnjdimo(By)-

Assume one of the following cases holds:

1. diimC(B,) =1,

2. By 1s x—isomorphic to

Mpy /2 ® My

and By 1s x—isomorphic to

My /2 ® Myyany,
where k > 2.
3. dim C(By) > 3 and By is x—isomorphic to
Mn/dimc(By) @ -+ © M/ dimc(By)-

Then for any B # C unital C*-subalgebra of By such that it is unitarily equivalent to
a C*-subalgebra of Ba, Z(B1, Ba; [B]g, )¢ is dense.

Proof. The proof of Lemma III1.28 is exactly as the proof of II1.27 but using Lemma
I11.19 instead of Lemma III.16 . O]
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At this point if the sets Z(B1, By; [B]p,) were closed one could conclude imme-
diately that A(Bj, Bs) is dense. Unfortunately they may not be closed. What saves
the day is the fact that we can control the closure of Z (B, Bs; [B|p,) with sets of the
same form i.e. sets like Z(By, By; [C]p,) for a suitable finite family of subalgebras C.

We make this statement clearer with the definition of an order on *-SubAlg(B).

Definition IT1.29. On *-SubAlg(B;)/ ~p, we define a partial order as follows:
[B]Bl < [O]Bl < dD e *—SUbAIg(C) D ~ B B.

Proposition I11.30. For any B in x-SubAlg(B,),

Z(B1, B [Ble,) € |J  Z(Bi, By [Cls)).

(Cl5, >[B]5,
Proof. Let (ux)r>1 be a sequence in Z(Bi, Bs;[Blp,) and u in U(My) such that
limy |Jur, — u|]| = 0. Pick g in U(My) such that ¢.Bg; = upBsuj N By. Let
{fx(s,4,7)}si; be a matrix unit for ugByuj N By and take elements e(s,4,j) in
By such that fi(s,i,j) = uger(s,i,j)ui. Since By is finite dimensional, passing
to a subsequence if necessary, we may assume limy, fi(s,7,7) = f(s,4,j) € By and
limy, uger(s, i, j)uy = ue(s, i, j)u* for some e(s,i,7) € By, for all s, i and j. It follows
that limy, dist(fx(s,4,j), uBou® N By) = 0. Hence, from Lemma II1.21, for large k,
there is ¢ in U(My) so that q(uyBauj N B1)q* = qqeBqiq* is contained in uByu* N By.
We conclude [uByu* N By|p, > [B]p, and since u lies in Z(By, B; [uByu* N By]) the

proof is complete. ]
Lemma II1.31. Assume one of the following conditions holds:

1. dimC(B;) =1 = dim O(By),
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2. dimC(By) > 2, dimC(By) = 1 and By is x—isomorphic to
My dimeB) @ -+ © M/ dimc(By)»
3. dim C(B;) =2 = dim C(Bs), Bj is x—isomorphic to
M2 @ My,

and By is x—isomorphic to

M2 & My car
where k > 2,

4. dimC(By) > 2, dim C(Bs) > 3 and, fori = 1,2, B; is *—isomorphic to
Mn)gimeB) @ - © M) dimo(B)-

Toke B a unital C*-subalgebra of By such that it is unitarily equivalent to a C*-

subalgebra of By . If  Z(By, By;[Blp,) is not dense and B # C then there is a

subalgebra C' in *-SubAlg(B;) such that [C)p, > [Blg, and Z(Bi, By;[C]p,) is not

dense.

Proof. We proceed by contrapositive. Thus, assume Z(By, By; [C]p,) is dense for all
[C]p, > [B]p,- Since the set {[C]p, : [C]p, > [B]p,} is finite,

ﬂ Z (B, Bs; [C]Bl)b
[ClB, >[Bls,
is open and dense. Furthermore, Lemma I11.27 or Lemma I11.28 implies Z (B, Bs; [B]g, )¢

is dense. Hence the intersection

(&

Z(Bi, B [Blp,)°n (] Z(Bi, Bs; [Cl,)

[ClB,>[B]s,
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is dense. But this along with Proposition I11.30 implies Z (B, By; [B]p,) is dense. [

Lemma II1.32. Assume one of the conditions (1)-(4) of Lemma I11.31 holds. Then

for any B # C, unital C*-subalgebra of By that is unitarily equivalent to a C*-

subalgebra of Ba, the set Z(By, By; [Blp,) is dense.

Proof. Assume Z(By, By; [B]p,) is not dense. By Lemma II1.31 there is [C]5, > [B]5,

such that Z(By, By;[C]p,) is not dense. We notice that again we are in the same
condition to apply Lemma IIL.31, since [C]g, > [B]p, > [C]p,. In this way we can
construct chains, in *-SubAlg(By)/ ~p,, of length arbitrarily large, but this can not

be since it is finite. [
At last we can give a proof of Theorem III.6.

Proof of Theorem III.6. A direct computation shows that

A(B1,By)= ()  Z(Bi,Ba[Blg,)"

(BlB, >[Cl B,

Thus

C

A(B1,B)2 () Z(Bi, Ba[Bls,) -

[B]Bl >[(C]Bl

Now, by Lemma II1.32, whenever [B]p, > [C|p,, the set Z(Bi, By, [B]p,) is dense.
Hence A(Bj, Bs) is dense. O
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CHAPTER IV

PRIMITIVITY

During this section, unless stated otherwise, A; # C and A; # C denote two nontrivial
finite dimensional C*-algebras. Our goal is to prove A; * A, is primitive, except for
the case A; = C?> = A,. Two main ingredients are used. Firstly, the perturbation
results from previous chapter. Secondly, the fact that A; x A5 has a separating family
of finite dimensional x—representations, a result due to Excel and Loring, [7].

Before we start proving results about primitivity, we want to consider the case
C? x C?. This is a well studied C*-algebra; see for instance [3], [11] and [13]. From
Proposition 1.12 C? x C? is *-isomorphic to the C*-algebra of continuous M,-valued
functions on the closed interval [0, 1], whose values at 0 and 1 are diagonal matrices.
As a consequences its center is not trivial. Since the center of any primitive C*-algebra

is trivial, we conclude C? x C? is not primitive.

Definition IV.1. We denote by ¢; the inclusion homomorphism from A; into A; * As.
Given a unital x—representation 7 : A; x Ay — B(H), we define 71 = 7104 and
7 = 7 0 1y. Thus, with this notation, we have 7 = 7 x 7). For a unitary u in

U(H) we call the *representation 7™ * (Adu o 7?), a perturbation of 7 by wu.

Remark IV.2. The * representation 7(")  (Adu o 7(?)) is irreducible if and only if
U7T(2) (AQ)/'LL* N 7'['(1) (Al)/ =C.
where (7(1)(A;))" denotes de commutant of 7(V)(A;) in B(H).

Proposition IV.3. Assume A; and Ay are simple. Given any unital finite dimen-
stonal x—representation w : Ay x* Ay — B(H) and a positive number €, there is u in

U(H) such that ||u —idg|| < ¢ and 7 % (Adu o 7)) is irreducible.
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Proof. Since 7(V(4;)" is again simple, (i = 1,2), the result is a direct consequence of

Remark IV.2 and part (1) of Theorem III.6. O

If A; or A, fail to be simple, then is it not always possible to perturb any given
finite dimensional *representation of A; * A, into an irreducible one, even if A; # C?
and Ay # C2. The key method for the nonsimple case is to repeat blocks of A; and
As.

Lemma I'V.4. Assume A is a finite dimensional C*-algebra x—isomorphic to @élen(j)
and take m : A — B(H) a unital finite dimensional x—representation. Let u(mw) =

m(1),...,m(l)] and let T be the restriction of ® to the center of A. Then

Proof. Write
A= ®§:1A(j)

where A(j) is *-isomorphic to M, ;). Up to unitary equivalence in U(H), 7 equals

ida) @ @ ida) @ Bidag) D - Didagy -

Vv vV
m(1)—times m(l)—times

It follows that, up to unitary equivalence in U(H), 7 equals

de® - Qide®- - @ide @ Didc®- -
n(l):rtimes n(l):,times

N

TV
m(1)—times

@i ® - @idg® - Bide @ - B idg.
n(l):gimes n(l):?imes

m(l)—times

and the result follows. O
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Lemma IV.5. Assume A is a finite dimensional C*-algebra and m: A — B(H) is a

unital finite dimensional x—representation. Let

For any nonnegative integers q(1),...,q(l) there is a finite dimensional unital *—

representation p : A — B(K) such that

u(r @ p) = [m(1) +q(1),...,m(l) +q()].

Proof. Write A as

where A(i) = B(V;) for V; finite dimensional. For 1 < <1, let p; : A — A(i) denote
the canonical projection onto A(7). Notice that p; is a unital *—representation of A.

Define

l
(pi®-®p) : A—>€BA )40 C B(K),
_—/_/

! q(i)—times

%

where K = @'_,(V;%%). Then p is a unital  representation of A on K and

p(m @ p) = [m(1) + q(1),...,m(l) + q()].
]

Definition IV.6. Let p : A; x A, — B(H) be a unital, finite dimensional represen-
tation. We say that p satisfies the Rank of Central Projections condition (or RCP
condition) if for both i = 1,2, the rank of p(p) is the same for all minimal projections

p of the center C'(4;) of A;, (but they need not agree for different values of 7).

The RCP condition for p, of course, is really about the pair of representations

(pM), p). However, it will be convenient to express it in terms of A; * Ay. In any
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case, the following two lemmas are clear.

Lemma IV.7. Suppose p : A1xAy — B(H) is a finite dimensional representation that
satisfies the RCP condition and u € U(H). Then the representation p™V) x (Aduo p®)

of Ay x Ay also satisfies the RCP condition.

Lemma IV.8. Suppose p : Ay x Ay — B(H) and o : A} * Ay — B(K) are finite
dimensional representations that satisfy the RCP condition. Then p@ o : Ay x Ay —
B(H @ K) also satisfies the RCP condition.

The next lemma takes slightly more work and is essential to our construction.

Lemma IV.9. Given a unital finite dimensional x—representation m : Ay x Ay —

B(H), there is a finite dimensional Hilbert space H and a unital x—representation

A~

ﬁAl*AQ%B(H)

such that m & © satisfies the RCP condition.

Proof. For i = 1,2, let [; = dim C(A;), let A; be x—isomorphic to @;":1 M,,;y and
write

p(r?) = [ma(1), ... ma(la)).

Take n; = lem(n;(1),...,n;(l;)) and integers r;(j), such that r;(j)n;(j) = n,, for
1 < j < ;. Take a positive integer s such that sr;(j) > m;(j) for all i = 1,2 and
1 < j5 < [;. Use Lemma IV.5 to find a unital finite dimensional *-representation

pi + A;i = B(K;), i = 1,2 such that
(7D @ p;) = [sri(1), ..., sr(l)]-
Letting x; denote the restriction of 7 @ p; to C(4;), from Lemma IV.4 we have

(ki) = [sri(Dn; (1), ..., sri(li)ni(l;)] = [sng, sng, ..., snyl.
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The * representations (7(!) @ p;) and (7®) @ py) are almost what we want, but
they may take values in Hilbert spaces with different dimensions. To take care of this,
we take multiples of them. Let N = lem(dim(H & K;),dim(H & K»)), find positive

integers k; and kg such that

and consider the Hilbert spaces (H @ K;)®% whose dimensions agree for i = 1,2.
Then
dim(K; & (H @ K,)®®Y) = dim(K, & (H @ K,)®*71)

and there is a unitary operator

U:K,@® (H®K,)®* ) 5 K ¢ ((He K,)**-D,

Take
H = K®H+K)*" D,
1 o= pr® (7 @ ),
op = V@ T,
7o = AdUo (ps® (W(2) oy p)@(ka—l))’
oy = 7@ @y,
T = T *xo.

Then o1 %0y = (T D7) x (7P @ 7y) = @7, We have u(0;) = [kisri(1), ..., kisri(1;)].

Let &; denote the restriction of o; to C'(A4;). From Lemma IV.4 we have
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Proposition IV.10. Suppose A; # C? or Ay # C?> and p : Ay x Ay — B(H) is a
finite dimensional x—representation that satisfies the RCP condition. Then for any
e > 0 there is a unitary u in U(H) such that |[u —idg|| < & and p™» x (Adu o p@) is

irreducible.

Proof. After interchanging A; and A,, if necessary, one of the following must hold:
(1) A; and A, are simple,

(2) dimC'(A;) > 2 and A, is simple,

(3) fori=1,2, A; = My,q1) ® Mp,(2), with ny(2) > 2,

(4) dimC(A4;) > 2, dim C(A42) > 3.

In all cases, we will show using Theorem II1.6 that A(p™(4,)", p?(Ay)) is dense in
U(H), from which the result follows by Remark IV.2.

In case (1), this is just as in Proposition IV.3.

In case (2), let By = pM(C(A;)) and By = p®(A,)’. Notice that dim C'(By) = 1,
dimC(By) = dimC(A;) > 2 and, by the RCP assumption, B is x—isomorphic
t0 Maim t/dimc(By) @ -+ ® Mdim i/ dimc(By)- By Theorem III.6m, part (2), the set
A(By, By) is dense. But since p¥(4;)" C B;, we have A(By, By) € A(pM(Ay), pP(A,)").

In case (3), let By = pM(C(41)) and By = p?(C & M,,). By the RCP

assumption, B; is x—isomorphic to
Maim m/2 © Maim /2
and Bs is *—isomorphic to

Maim /2 © Mdaim H/(2n0(2))-

By Theorem II1.6, part (3), the set A(By, By) is dense. But A(By, By) € A(pM(Ay), pP (Ay)").
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In case (4), let B; = p®(C(A;)) for i = 1,2. Then dim C(B;) = dim C(A;) > 2,
dim C(By) = dim C(As) > 3 and, for i = 1,2, B; is *—isomorphic to

Maim 1/ dimc(B;) D+ + ® Maim 1/ dim ©(B;)-

By Theorem I11.6, part (4), the set A(By, Bs) is dense. But again we have A(Bj, By) C
A(pD (A1), pP (Az)"). 0

Combining Lemma IV.9 and Proposition 1V.10, together with Proposition 1V.3,
and so long as A; and A, are not both C?, we construct irreducible finite dimensional

x—representations of the form
(7 @ 7M) % (Aduo (r? @ 7?)),

starting with any finite dimensional represenation 7 of A; * A, and where u is a
unitary that can be chosen arbitrarily close to the identity. The next proposition
shows that with sufficient control on u, the values of o on any given finite subset can

be as close as desired to the corresponding values of m & 7.

Proposition IV.11. Let A; and As be two unital C*-algebras. Given a nonzero ele-
ment x in Ay x As and a positive number €, there is a positive number 6 = §(x, ) such
that for any u and v in U(H) satisfying ||lu—v|| < § and any unital *—representations

w: Ay x Ay — B(H), we have
(7 % (Adv o 7@))(z) — (7™ % (Ad w0 7)) (2)]|| < e.

Proof. Fix 7, a unital #-representation of A; * Ay into B(H) and two unitaries v and
vin U(H).
To ease notation let p, = 7V % (Adu o 7¥) and p, = 7V % (Adv o 7?).

Case 1: z is a word with letters from A; and As.
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Here we use induction on the length of x.
Assume the length of x is 1. We have two cases. Either x is in A; or it is in As.

If x lies in A; we can take 0 any positive number.

If x lies in A, take 6(e,x) = STl A standard computation shows that, if v and

v satisfy |ju — v|| < 0 then
[oo(x) — pu(z)] <e.
Now, assume the result true for words of length [ and take x = x; - - - 2,41 where
r; is a non zero element in A;, 1 < j <Il+1and iy # - # iq1.
As before we have two cases, z;,1 lies in A; or it lies in As.

For convenience let y = xy ... 2.

If x;,1 happens to be in A;, then using the identities

pu(®) = pu(y)m (2151),
po(x) = pu(y)7V(z111)
we obtain

lov(@) = pu(@)|| < llzalllloo(y) = pu(w)l

Therefore the § that works in this case is §(e,z) = 5(m, ).

The last possibility is that x;,1 lies in As. If so, we use the identities

pu(T) = pu (y)WT(Q) (r1)u”,

po(x) = pu(y)or® (wi)v",
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to obtain

lpo(2) = pu(@)]| < Nlpu(@)or® (@i1)0* = pu(y)or® (20w’
+ () or® (2w — pu(y)or® (i )u”||
+ lpu)or® (i)u — pu(y)ur® (zy0)u|
< 2zl Mlreallllo — wll + lzalll oo (y) — pu(@)l-

Thus we take d(e,z) = min{:,)HIIHH?HIZ+1H , 5(3llwf+1|| Y)}-
Case 2: General case.

Since the algebraic unital full free product of A; and Aj is norm-dense in Ay x As,

we can find words wy, ..., w, with letters from A; and A, such that

u €

T — will < =

Z 73
7j=1

By case 1 there are positive numbers §(wy, 5-), ..., 0(wy, 5) such that
€
pv(wj) - pu(wj) < 3

whenever |lu —v| < d(wy, 5-).
Take 0 = min{d(w1, 57),...,0(wn, 5)}.

If w and v satisfy ||u — v|| < 4, then the identity

pu(T) = pulz) = Pv(m—i“&)

D SUEIRLS
- - 2w)

along with triangle inequality completes the proof.



66

Now our objective is to perturb the direct sum of a sequence of unital finite
dimensional *-representations of A; * Ay into an irreducible one. The construction is
long and uses several intermediate results.

Recall that if 7 and o are two irreducible representations of a C*—algebra A on
the same Hilbert space H such that m and ¢ are not unitarily equivalent, then there
are no nonzero operators 7' € B(H) that intertwine the representations, i.e. such that
7(A)T = To(a) for all a € A. From this fact, one quickly gets the following standard

result:

Proposition IV.12. Let A be a C*-algebra and suppose (7;)j>1 is a sequence of ir-
reducible x—representations w; : A — B(H;) that are pairwise not unitarily equivalent.

Then, for m = @j>1m;, we have
m(A) = {®;>12;1dy, : z; € C, sup{|z|} < oo}.

Lemma IV.13. Let A be a C*-algebra and assume we have 7 : A — B(H), a finite
dimensional x-representation. Given a positive number € there is a finite set F,
contained in the closed unit ball of A, fulfilling the condition for all y in the closed

unit ball of A there is x in F with ||7(z) — w(y)|| < e.

Proof. Let E denote the norm closure, in B(H), of the set {m(a) : ||a]| < 1}. Since H
is finite dimensional, E is compact. Thus there exists {T1,..., T}, a finite -net for
E. For each Tj, take x; in the closed unit ball of A such that [[z; — Ti|| < §. Then

the set F' we are looking for is {x1,...,zy}.

]

Lemma IV.14. Let (H,);>1 be a sequence of finite dimensional Hilbert spaces and let
H denote its direct sum. Assume we have bounded operators T; in B(H;) and let T

denote its direct sum. T is a compact operator in B(H) if and only if lim; ||T};|| = 0.
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Proof. Assume T is compact and in order to get a contradiction assume assume there
is a positive number ¢ and a subsequence (ji)x>1 such that ||}, | > € for all k. Take
hj, a unit vector in H;, with ||T; h;, || > €. Consider the sequence (&)r>1, of unit

vectors in H given by

hj, ifi=j

§k(i) =
0  otherwise
Since T is compact there is a subsequence (k;);>1 such that (T, );>1 converges
in norm. In particular it is Cauchy and then there is ly such that ||T€;, —T&, [l < 5
for all l1,l; > ly. But this implies ||T}, hj, || < § whenever | > Iy, a contradiction.
Now assume lim; ||7}]] = 0. To show 7" is compact just notice 7" is the norm

limit of the sequence of finite rank operators (Si)r>1 where Sy equals 71 & --- & Ty,

& o
on @jlej and it is zero on @;>p1H;. -

The following result follows from the very nice fact that a x-representation is

faithful if and only if it is an isometry.

Lemma IV.15. Let A denote a C*-algebra and let (m : A — B(H))r>1 be a sequence
of faithful x—representations. If w is a x—representation such that for all a in A,

limy, |7 (a) — 7(a)|| = 0 then 7 is faithful.
At last, we can prove A; x A, is primitive when not both of A; and A, are C2.

Theorem IV.16. Assume Ay and As are nontrivial finite dimensional C*-algebras.

If Ay # C? or Ay # C?, then A, x Ay is primitive.

Proof. Write A; = @é;l M,,;). By a result of Exel and Loring [7], there is a
separating sequence (¥; : A; * Ay — B(K));>1, of finite dimensional unital %

representations. By Lemma IV.9, there are finite dimensional Hilbert spaces f(j
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and unital x-representation 19} cApx Ay — IB%(Kj) such each that ¥; ® 1§j satisfies the
RCP condition. Let 7; = ¥; ©9; and H; = K; © K.

We may modify the original sequence (¥,);>1, if necessary, so that each rep-
resentation that appears is repeated infinitely many times and, thus, we may also

assuime

(A x As) NK(H) = {0}, (4.1)

Where ™ = @jzlﬁj and H = @jzl Hj.
We will show that given € > 0, there is a unitary u on U(H) such that ||lu—idg|| <
¢ and the representation 71 * (Aduo 7)) of A, x A, is irreducible and faithful. Find

a strictly increasing sequence of natural numbers (I(j));>o with the property that

1(0) =0,1(1) =1 and for all k > 1,

1(k) I(k+1)
> dimH;< Y dimH, (4.2)
j=l(k—1)+1 j=l(k)+1

Let Gy = Hy and for k£ > 2 define G, = @;g(k_l)ﬂ H; and fix a sequence of positive
numbers (d;);>1 such that 3., d; < 5. By Lemma IV.8, for each k > 1 the direct
sum

o k)
Ak = O )17

satisfies the RCP condition. So by Proposition IV.10, there is a unitary vy in U(Gy)

with the property that ||vy —idg, || < 0 and the *representation
pr =AY % (Ad v 0 A?)

is irreducible and, by Lemma IV.7, satisfies the RCP condition. To ease notation let
p = ®;>1p; and for k > 1let ppy = SF_ p;. If v = Bpz10p then [lv —idy|| < 5 and,
as a direct computation shows, we have p = 7 x (Ad v o 7). By dimension consid-

erations, the irreducible representations p; are pairwise not unitarily equivalent, and
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Proposition IV.12 implies that the commutant of p consists of all diagonal operators
of the form @®j>;2;idg,. We will perturb p a little more to finally get an irreducible
representation.

We will construct a sequence (uy, Fi)r>1 where

(a) ug is a unitary in U(®h_,G;) satisfying

, €
luk —idgr_ gl < SR (4.3)
(b) letting
U k) = U; D ide-H oD ide € U(@leGz)
for 1 < j <k —1, letting

Uk = UpU(p—1,1) U(k—2,k) * ** U(Lk) (4.4)

and taking the unital irreducible *-representation

O = p) % (Ad Uy 0 pl}) 4.5

k P[k]*( kop[k]) (4.5)

of Ay *x A5 on @le G, we have that 0, is irreducible

(c) Fy is a finite subset of the closed unit ball of A; x Ay and for all y in the closed

unit ball of A; * A there is an element z in F), such that

1

164(2) = )]l < 5y

(d) if £ > 2, then for any element x in the union Uf;ll F;, we have
1

Note that (4.5) together with Lemmas IV.7 and IV.8 will ensure that 6, satisfies the
RCP condition.
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We construct such a sequence (uk, Fk;)kzl by recursion. To start, we construct
(u1, Fy) by letting 6; = p; and u; = idg,. Then conditions (a) and (b) hold trivially.
Since p; : A;x Ay — B(H,) is finite dimensional, Lemma IV.13 implies there is a finite
set F contained in the closed unit ball of A; % Ay so that condition (c) is satisfied.
At this stage condition (d) does not apply.

Let k£ > 2 and let us construct (ug, Fy) from (u;, F;), 1 < j <k —1. A conse-

quence of (4.4) and (4.5) is the formula
O = (Brr @ pi) ™ * (Ad g, 0 (61 ® pi)?).

Since 01 and py, satisfy the RCP condition, Proposition 1V.10 yields a unitary uy
as close as we like to the identity, so that 6y is irreducible and (4.3) holds. Applying
Proposition IV.11 and choosing u even closer to the identity, if necessary, we also get
that condition (d) holds. Finally, Lemma IV.13 guarantees the existence of a finite
set F} contained in the closed unit ball of A; % Ay so that condition (c) is satisfied.
This completes the recursive construction of (uy, Fj)r>1 so that (a)—(d) hold.

Now, letting

Ok = Ok © Djzpr1p5- (4.6)

we will show that o, converges pointwise to an irreducible s—representation o of

Ay x Ay. We extend the unitaries uy to all of H by defining
Uy, = ug Dj>r41 1dg;,
and then from (4.5) we obtain

o = pV) x (Ad Uy, o p(2)),
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where Uy = iy, - - - @i. Thanks to condition (4.3) we have

k k
0 —idu| < 3 1o = idull < 3 5
j=1 j=1
and for [ > 1
k+1
1Tt = Uell = Nfigs -+ g — idpg | <> S
Jj=k+1

Hence Cauchy’s criteria implies there is an unitary U € U(H) such that the sequence
(Up)k>1 converges in norm to U and ||U —idy|| < 5. Now, by Proposition IV.11, the

sequence gy converges pointwise to the x—representation
o= pW % (AdU o p?). (4.7)
Thus, we have limy |0y, — || = 0, where
lox — ol = sup |lox(a) —a(a)l|.
a€A, ||la]|=1
Our next goal is to show that ¢ is irreducible. To ease notation let A = A; x As.
From (4.2) and Proposition IV.12 we get
Uk(A)” = B(@?zlGj) ® @ B(Gj)- (4-8)
j>k+1
Hence, for all k& > 1, ox(A)” C o,41(A)". Let B be the norm closure, in B(H), of
Uis1 01(A)". Next we will show B” is contained in o(A)". Take T' € B". Since o(A)
is a unital C*-algebra, showing T lies in o(A)"” is equivalent to showing 7" is in the

strong operator topology closure of o(A). Recall that a neighborhood basis for the

strong operator topology around 7' is given by the sets

Nr(&, ..., &;r)={S eB(H): ||TE — S¢|| <r foralll<j<i},
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where &, . .., & are unit vectorsin H and 0 < r < 1. We will show that given &;,...,¢&;
and r as above, there is an element z in A; * Ay such that o(z) lies in Np(&q, ..., &;7).
This involves several approximations, so let’s start.
By Kaplansky’s Density Theorem there is an operator S in B such that ||S]| <
|T|| and for all 1 < j <4,
IS¢ - T&ll < 1o (4.9)

Since S lies in B, there is ky and an operator R in oy, (A)” such that

,
S —R| < 00" (4.10)
Thus, we have ||R|| <1+ ||S|| < ||T']] + 1. We can pick k; > kg such that
2k111 = 100(”17:” +2) (4-11)
and for all 1 < 7 <i we have
,
1€ — Py ()1 < T00([ T £2)’ (4.12)

where F,;, denotes the orthogonal projection from H onto &7, G;. Since R commutes

with Py}, this implies

r |zl r

— = 4.13
100(| 7] +2) ~ 100 (4.13)

| Py R P, &5 — REG || <

Since R lies in oy, (A)"” and oy, (A)"” C ok, (A)" and oy, (-) P,) = 0k, , Kadison’s tran-

sitivity theorem implies there is y in A such that ||y|| < ||R||+ 1 and for all 1 < j <4

Py ) RBe&5 = Or, (y) (Pira1 (5))- (4.14)

By construction, there is z € Fj, such that

lyll
okr

16k, (1) = O, ([yll2)]| < (4.15)
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Take z = ||y||x and note that we have ||z|| < |ly|]] < ||T|| + 2. We will show o(z) lies
in Np(&rs. o, &)

Fix 1 < j <4 and for simplicity set £ = & and n = Py,1(§;). We also write
§ = (€)1, n = (n(k))r>1 where (k) and n(k) are in Gy. Thus (k) = n(k) for
1 <k <k and n(k) =0 for k > ky. Cleary, ||T¢ — o(z)&|| is bounded above by the

sum of the following terms:

IT¢ — S¢]| (4.16)

IS¢ — RE| (4.17)

|1RE — ok, (y)¢]] (4.18)
low, ()€ = or (2)¢]] (4.19)
low, (2)€ — o (2)¢] (4.20)

From (4.9) and (4.10), the terms (4.16) and (4.17) are both less than 5. For the

third term (4.18), we have

I1RE = or, ()&l < |[RE — Py RPyy €|
+ 1P RPg)€ = Ok, () (P

+ @5k 25 (W)) (€ = Py ()

and from (4.13), (4.14) and (4.12) we deduce that (4.18) is less than . For the

fourth term (4.19) we have

A

low, (¥)§ — or, (2)E]] < low, ()(€ —n)]
low, (y)n — ow, (2)n]l

lok, (2)(n =€)l
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which, along with (4.12) and the upper bounds for ||z|| and |[|y||, yield

10k W)€ — 1 (EI < e + loks ()1 — s (1]

Now we will show

low, (y)n — o, (2)nl] < (4.21)

From definition of oy, (see (4.6)) we get

o (Y)n = (O, (y)(n(1), ..., n(k1)),0,...)

and
Ok, (2)77 = (ekl (Z)<7](1)7 s 777(k1))7 0,... )

Hence from condition (4.15) and (4.11) we deduce (4.21). Thus, term (4.19) is less

3
that 10”0

For the fifth term (4.20), since limg ||ox(2) — o(z)]| = 0, there is ko > k; such
that |lok,(2) — o (2)|| < 155- Hence

ko—1

low, (2)6 = o (2)éll < D lloal2)é = oua ()€l +

k=k1

4.22
100 ( )

For ky < k < ky — 1 we have
or(2)§ = |yl (Hk(:v)(P[k]S), Pr+1(2)E(k + 1), pra(x)E(k +2), . .. )

S (em(x)(am), prsa(@)elh + 1), ... >)
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Hence condition (d) from the construction of the sequence (ug, F) and (4.11) imply

ko—1

> llor(2)E — or ()€l <

k=k1

ko—1
< Iyl ( S 10 © pesn) (@) (Pt — ekH(w)(P[m)n) r

< —_—
P 100

Thus, from (4.22) we conclude that the fifth term (4.20) is less that -a. Putting
together all these estimates, we obtain ||o(2)¢ — T¢|| < r.

Thus we have proved B” C o(A)". But B” = B(H) follows from the fact that
o,(A)" is contained in B” along with (4.8). In conclusion o(A)"” = B(H) which implies
o0(A) = Cidy i.e., o is irreducible.

Now we will show o is faithful. Recall that, by construction, 7 is faithful. Using
the property (4.1) of m, we will show, inspired by Choi’s technique (see Theorem 6 in
[4]), that p is faithful and

p(A) NK(H) = {0}. (4.23)

Recall that we contructed

p=rY%(Advor?)

and v = Bp>1v, where vy, € B(Gy). Moreover, ||vy —idg, || < 6, and limg 0, = 0.
So by Lemma IV.14, V differs from the identity operator by a compact operator. It

follows that the diagram

T " B(H) (4.24)
B(H) —~B(H)/K(H)

commutes, where 7w denotes the canonical quotient map onto the Calkin Algebra.
Indeed, we see directly that 7o o m and mo o p agree on elements of A = A; x A,

that are words of finite length in elements of A; and A;. However, such words span
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a dense subalgebra of A. Since m¢ o 7 is faithful and the diagram (4.24) commutes,
it follows that p is faithful and (4.23) holds.

A second application of Choi’s technique will give us faithfulness of o. Indeed,
from construction, for all x in A, o(x) = limy, 0% (z). Thus if each oy, is faithful Lemma
IV.15 would imply o is faithful. But faithfulness of o, follows from the commutativity

of the diagram

B(H) —~B(H)/K(H),
which is implied by (4.6), and the fact that ¢ o p is faithful. O

We finish with some straightforward consequences of our main theorem.

Definition IV.17. A C*-algebra A is called liminalif for all irreducible x—representations

m: A — B(H) and for all elements a in A, 7(a) is compact.

Example IV.18. From Proposition 1.9, all irreducible * representation of C? x C?

are of dimension 1 or 2. Hence C? % C? is liminal.

Definition IV.19. A C*-algebra A is called antiliminal if {0} is the only closed two

sided liminal ideal.
Part of Lemma 3.2 of [1] is the following:

Proposition IV.20. Any infinite dimensional primitive C*-algebra that admits a

faithful tracial state is antiliminal.

Proof. Assume A is a infinite dimensional primitive C*-algebra and let I be a closed
two sided liminal ideal.
Let m: A — B(H) be a faithful infinite dimensional irreducible *-representation.

One can check that 7 restricted to [ is a faithful irreducible x-representation of I.
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Liminality implies (/) is contained in the compact operators. In addition, if
I # {0}, irreducibility implies 7(I) contains all compact operators.

Thus, the restriction to [ of a faithful tracial state of A gives a faithful tracial
state on the compacts operators of H, a contradiction since H is infinite dimensional.

]

Corollary IV.21. Assume Ay and Ay are nontrivial finite dimensional C*-algebras.

Ay x Ay is antiliminal except when A; = C? = A,.

Proof. By a theorem of Exel and Loring [7], a unital C*-algebra full free product of
residually finite dimensional C*—algebras is again residually finite dimensional. Thus,
by taking a convergent weighted infinite sum of matrix traces composed with finite
dimensional representations (from a separating family of them), the free product C*—

algebra A; *x Ay admits a faithful tracial state. O

We finish with a corollary derived from a proposition of Dixmier. The following

proposition is Lemma 11.2.4 in [6].

Proposition IV.22. If A is a unital primitive antiliminal C*-algebra then pure states

are w*-dense in state space.

Corollary IV.23. Assume Ay and Ay are nontrivial finite dimensional C*-algebras.

If Ay # C?% or Ay # C2?, then pure states of Ay * Ay are w*-dense in the state space.
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CHAPTER V

CONCLUSION
The main contribution of this dissertation was determining all unital full free prod-
uct of finite dimensional C*-algebras that are primitive. At a philosophical level it
seems there is a basic theme underlying primitive C*-algebras. Namely some type
of perturbation or deformation of *-representations. This feature is manifested in
the works of Choi, Murphy, Bédos and Omland where completely different notions of
perturbation are used. We summarize the basic principle behind our approach.

The cornerstone is a theorem that we may call density of C*-subalgebras in
general position, Theorem III.6. This theorem is particularly hard to grasp and this
is due o the fact that we had to break it into several parts. We mention that at some
point we thought we had generalized this theorem as follows: with the same notation
as Theorem I11.6, if dim(B;)+dim(By) < N? then A(By, By) is dense. Unfortunately
computations turned out to be much harder. We leave this as a conjecture for future
research.

Let Ay and A, denote two non-trivial finite dimensional C*-algebras. With Theo-
rem I11.6 at our disposition it is easy to prove that, except for the case A; = C? = A,,
one can find finite dimensional irreducible x-representations of dimensions arbitrary
large. At this point is worth to mention that C? * C2 is an illuminating C*-algebra.
Not only because it has been studied by many people but because in our investigation
it was always a good test case for our claims.

Lastly we took a faithful x-representation, constructed as a direct sum of a sep-
arating family of finite dimensional x-representations and we perturb it, using as a
main tool Kaplansky’s density theorem, to finally obtain a faithful and irreducible

x-representation.
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