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ABSTRACT

Deformations of Quantum Symmetric Algebras Extended by Groups. (May 2012)

Jeanette Matilde Shakalli Tang, B.S., University of Notre Dame

Chair of Advisory Committee: Dr. Sarah Witherspoon

The study of deformations of an algebra has been a topic of interest for quite some

time, since it allows us to not only produce new algebras but also better understand

the original algebra. Given an algebra, finding all its deformations is, if at all possible,

quite a challenging problem. For this reason, several specializations of this question

have been proposed. For instance, some authors concentrate their efforts in the study

of deformations of an algebra arising from an action of a Hopf algebra.

The purpose of this dissertation is to discuss a general construction of a deforma-

tion of a smash product algebra coming from an action of a particular Hopf algebra.

This Hopf algebra is generated by skew-primitive and group-like elements, and de-

pends on a complex parameter. The smash product algebra is defined on the quantum

symmetric algebra of a finite-dimensional vector space and a group. In particular,

an application of this result has enabled us to find a deformation of such a smash

product algebra which is, to the best of our knowledge, the first known example of a

deformation in which the new relations in the deformed algebra involve elements of

the original vector space. Finally, using Hochschild cohomology, we show that these

deformations are nontrivial.
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CHAPTER I

INTRODUCTION

A deformation of an algebra is obtained by slightly modifying its multiplicative struc-

ture. Deformations arise in many areas of mathematics, such as combinatorics [6],

representation theory [9], and orbifold theory [10]. From this assertion, it is clear that

the study of deformations of an algebra is of utmost importance. The main interest

in this dissertation is to study deformations arising from an action of a Hopf algebra.

According to Giaquinto’s survey paper [17], the aim of studying deformations is to

organize objects of some type, in our case algebras, into continuous families and then

determine how objects within each family are related. The works of Fröhlicher and

Nijenhuis [12], and Kodaira and Spencer [25] on deformations of complex manifolds set

the basic foundations of the modern theory of deformations. Gerstenhaber’s seminal

paper [14] marked the beginning of algebraic deformation theory. Although the origins

of deformations lie in analytic theory, the algebraic setting provides a much more

general framework.

In general, finding all possible deformations of an algebra is quite a challenging

task (see Section IV.A for a detailed discussion on this matter). For a certain kind

of Hopf algebra, Witherspoon [37] has found an explicit formula that yields a defor-

mation of its Hopf module algebras. By a Hopf module algebra, we mean an algebra

that is also a module, for which the two structures are compatible. Applications of

this formula have been studied in [20] and [37] for the case of the smash product

algebra of the symmetric algebra of a vector space with a group. The purpose of this

dissertation is to extend these results to the case of the smash product algebra of

The journal model is Journal of Algebra.
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the quantum symmetric algebra of a vector space with a group, thus increasing the

number of known examples of deformations.

To place this work in context, let us briefly describe what is known about de-

formations. First, let us introduce some notation. In this work, the set of natural

numbers N includes 0. By k, we will denote a field of characteristic 0. Unless stated

otherwise, by ⊗ we mean ⊗k. Let V be a k-vector space with basis {w1, . . . , wk}. By

T (V ) we denote the tensor algebra of V given by

T (V ) =
⊕
n≥0

V ⊗n, where V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

is the nth tensor power of V . Let qij ∈ k× for which qii = 1 and qji = q−1
ij for

i, j = 1, . . . , k. Set q = (qij). Then the quantum symmetric algebra Sq(V ) of V is

defined as

Sq(V ) = T (V ) / (wiwj − qijwjwi | 1 ≤ i, j ≤ k),

where the element wi ⊗ wj is abbreviated as wiwj. If qij = 1 for all i, j, then we

obtain the symmetric algebra S(V ). Let G be a group acting linearly on V . If the

action of G on V extends to all of Sq(V ), then the smash product algebra Sq(V )#G

is obtained by using Sq(V ) ⊗ kG as a vector space but with a new multiplication

given by

(a#g)(b#h) = a g(b) # gh for all a, b ∈ Sq(V ), g, h ∈ G.

For further details, see Definition II.29 and Example II.31.

Graded Hecke algebras, also known as Drinfeld Hecke algebras [9], can be viewed

as deformations of S(V )#G of type

(T (V )#G) / (wiwj − wjwi −
∑
g∈G

ag(wi, wj) g), where ag(wi, wj) ∈ k. (I.1)
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The so-called symplectic reflection algebras [10] and rational Cherednik algebras [6]

are special cases of Drinfeld Hecke algebras. Analogously, braided Cherednik alge-

bras [2] are deformations of Sq(V )#G of type

(T (V )#G) / (wiwj − qijwjwi −
∑
g∈G

ag(wi, wj) g), where ag(wi, wj) ∈ k. (I.2)

For other types of deformations of S(V )#G and Sq(V )#G, not as much is known,

and from what is known, not all the resulting algebras are necessarily defined by

generators and relations, but via a universal deformation formula, originally intro-

duced by Giaquinto and Zhang in [18], coming from a Hopf algebra action. Roughly

speaking, a Hopf algebra is an algebra with some additional structure. For a precise

definition, see Definition II.14.

In his fundamental work [14], Gerstenhaber showed that two commuting deriva-

tions on an algebra A lead to a deformation of A. Giaquinto and Zhang generalized

this idea in [18] with their theory of universal deformation formulas. The question

that naturally arises is what about skew derivations. The answer is that sometimes

skew derivations do lead to a deformation via a Hopf algebra action, as shown in [20]

and [37] for the case of S(V )#G. The work presented here generalizes these results

to the quantum version, that is to the case of Sq(V )#G. This is particularly relevant

since explicit examples of deformations of Sq(V )#G have proven to be difficult to

find. Moreover, it turns out that some of the deformations constructed in this disser-

tation are not graded in the sense of Braverman and Gaitsgory [4] (see Remark IV.18

for a detailed discussion). We are confident that this newly found set of examples

will be helpful in the quest to understand deformations more generally.

This dissertation is organized as follows: In Chapter II, Hopf algebras are defined

and a detailed exposition of the Hopf algebra Hq is given. This Hopf algebra is
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fundamental for our discussion, as all the deformations that we will present are based

on the action of Hq. Chapter III introduces some basic concepts of homological

algebra and their applications to Hochschild cohomology. The core of this dissertation

is Chapter IV, where we present the basics of algebraic deformation theory, construct

some original examples of deformations, and build a general theory that encompasses

our new examples as a special case. In Chapter V, using Hochschild cohomology,

which was introduced in Chapter III, we prove that the deformations obtained in

Chapter IV are nontrivial. Finally, concluding remarks and possible extensions of

this work are given in Chapter VI.
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CHAPTER II

HOPF ALGEBRAS

In this chapter, we will present some definitions and results that are necessary to

define a Hopf algebra. According to [1], the origins of the theory of Hopf algebras can

be traced back to two main sources: algebraic topology and algebraic group theory.

Armand Borel was the first to use the expression Hopf algebra in [3], in honor of the

work of Heinz Hopf [23] on algebraic topology. In [5], Pierre Cartier gave the first

formal definition of a Hopf algebra, under the name of hyperalgebra, inspired by the

work of Jean Dieudonné [7, 8] on algebraic group theory. The theory of Hopf algebras

became an independent part of abstract algebra with the publication of Sweedler’s

book [35] in 1969.

Unless stated otherwise, the ideas discussed here can be found in [30] and [35].

In Section A, we recall the basic concepts of an algebra and a coalgebra. Section B

introduces the notion of a Hopf algebra, which is fundamental for this work, and

gives a detailed description of the Hopf algebra Hq. Section C discusses modules,

Hopf module algebras and smash product algebras. In subsequent chapters, we will

be interested in the deformations of the smash product algebras that are Hq-module

algebras. Finally, graded and filtered algebras are introduced in Section D.

A. Algebras and Coalgebras

The concept of an algebra is fundamental in mathematics. Its definition and basic

properties can be found in several references, for instance see [24]. The definition that

we present here can be easily dualized.

Definition II.1. A k-algebra is a k-vector space A together with two k-linear maps,
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multiplication m : A⊗ A→ A and unit u : k→ A, such that the following diagrams

commute:

a) associativity b) unit

A⊗ A⊗ A m⊗id //

id⊗m

��

A⊗ A

m

��
A⊗ A m // A

A⊗ A

m

��

k⊗ A

u⊗id
99

scalar mult.
%%

A⊗ k

id⊗u
ee

scalar mult.
yy

A

If the underlying field is understood from the context, a k-algebra will simply be

called an algebra. By dualizing the notion of an algebra, we obtain the following:

Definition II.2. A k-coalgebra is a k-vector space C together with two k-linear

maps, comultiplication ∆ : C → C⊗C and counit ε : C → k, such that the following

diagrams commute:

a) coassociativity b) counit

C ∆ //

∆

��

C ⊗ C

∆⊗id

��
C ⊗ C id⊗∆ // C ⊗ C ⊗ C

C

∆

��

1⊗

yy

⊗1

%%
k⊗ C C ⊗ k

C ⊗ C
ε⊗id

ee

id⊗ε

99

We will use the terms comultiplication and coproduct interchangeably.

For any k-spaces V and W, the twist map τ : V ⊗ W → W ⊗ V is given by

τ(v⊗w) = w⊗ v. We say that an algebra A is commutative if and only if m◦ τ = m.

Similarly, a coalgebra C is cocommutative if and only if τ ◦∆ = ∆.

Definition II.3. Let C and D be coalgebras, with comultiplications ∆C and ∆D,

and counits εC and εD, respectively. Then
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• A map f : C → D is a coalgebra morphism if the following two conditions hold:

∆D ◦ f = (f ⊗ f) ◦∆C and εC = εD ◦ f.

• A subspace I ⊆ C is a coideal if the following two conditions hold:

∆I ⊆ I ⊗ C + C ⊗ I and ε(I) = 0.

Next, let us look at some examples.

Example II.4. Let A be an algebra and C a coalgebra. Then the opposite algebra

Aop is obtained by using A as a vector space but with new multiplication m′ given by

m′ = m ◦ τ , where τ is the twist map on A ⊗ A. Similarly, the coopposite coalgebra

Ccop is obtained by using C as a vector space but with new comultiplication ∆′ given

by ∆′ = τ ◦∆, where τ is the twist map on C ⊗ C.

Notation. Let C be a coalgebra. Then the sigma notation for ∆ is given by

∆(c) =
∑

c1 ⊗ c2 for all c ∈ C. (II.5)

The subscripts on the right hand side of (II.5) are just symbolic and are not

meant to designate particular elements of C. Notice that, under the sigma notation,

• the coassociativity diagram in Definition II.2 gives

∆n−1(c) =
∑

c1 ⊗ · · · ⊗ cn,

where ∆n−1(c) is the (necessarily unique) element obtained by applying the

comultiplication (n− 1) times.

• the counit diagram in Definition II.2 says that for all c ∈ C,

c =
∑

ε(c1) c2 =
∑

ε(c2) c1.



8

Finally, we will introduce the notion of group-like and skew-primitive elements.

Definition II.6. Let C be a coalgebra and let c ∈ C.

• We say that the element c is group-like if

∆(c) = c⊗ c and ε(c) = 1.

The set of group-like elements in C is denoted by G(C).

• The element c is g, h-primitive if there exist g, h ∈ G(C) such that

∆(c) = c⊗ g + h⊗ c.

The set of g, h-primitive elements is denoted by Pg,h(C). An element is called

skew primitive if it is g, h-primitive for some g, h.

B. Bialgebras, Convolution, and Hopf Algebras

The purpose of this section is to define a Hopf algebra, which is essential for this

dissertation. Roughly speaking, a Hopf algebra is an object that has the structure

of an algebra and a coalgebra, these two structures are compatible, and in addition,

there exists a map known as the antipode with very specific properties. The following

definitions make this notion more precise.

Definition II.7. Let B be a k-vector space. We say that (B,m, u,∆, ε) is a bialgebra

if

• (B,m, u) is an algebra.

• (B,∆, ε) is a coalgebra.

• Either of the following (equivalent) conditions holds:



9

? ∆ and ε are algebra morphisms.

? m and u are coalgebra morphisms.

When no confusion arises, we will simply say that B is a bialgebra.

Definition II.8. Let B and B′ be bialgebras. Then

• A map f : B → B′ is a bialgebra morphism if it is both an algebra morphism

and a coalgebra morphism.

• A subspace I ⊆ B is a biideal if it is both an ideal and a coideal.

Remark II.9. It can be shown that the quotient of a bialgebra by a biideal is again

a bialgebra.

Example II.10. Let G be a group. The group algebra kG is defined to be

kG =

{∑
g∈G

ag g

∣∣∣∣ ag ∈ k with ag = 0 for all but finitely many g ∈ G

}
.

The group algebra can be given the structure of a bialgebra by defining(∑
g∈G

ag g

)(∑
g∈G

bg g

)
=
∑
g,h∈G

(ag bh) gh

a

(∑
g∈G

ag g

)
=
∑
g∈G

(a ag) g

∆(g) = g ⊗ g

ε(g) = 1

for all g ∈ G, ag, bg, a ∈ k.

Remark II.11. In Definition II.6, ifB is a bialgebra and g = h = 1, the multiplicative

identity of B, then the elements of P (B) = P1,1(B) are called the primitive elements

of B.
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Let us now define the convolution product. For two k-vector spaces V and W ,

we denote by Homk(V,W ) the set of all k-linear maps from V to W .

Definition II.12. Let A be an algebra and C a coalgebra. Then the convolution

product ∗ : Homk(C,A)⊗ Homk(C,A)→ Homk(C,A) is given by

(f ∗ g)(c) = (m ◦ (f ⊗ g) ◦∆)(c),

for all f, g ∈ Homk(C,A), c ∈ C.

Remark II.13. It is possible to show that Homk(C,A) can be given the structure

of an algebra by setting the convolution product ∗ as the multiplication, and u ◦ ε as

the unit element. Moreover, under the sigma notation II.5, the convolution product

can be written as

(f ∗ g)(c) =
∑

f(c1) g(c2) for all f, g ∈ Homk(C,A), c ∈ C.

Now we are ready to define a Hopf algebra and its antipode.

Definition II.14. Let (H,m, u,∆, ε) be a bialgebra. Then H is a Hopf algebra if

there exists an element S ∈ Homk(H,H) which is an inverse to the identity map idH

under the convolution product ∗ , i.e. S satisfies

∑
S(h1) h2 = ε(h) 1H =

∑
h1 S(h2) for all h ∈ H.

S is called an antipode for H.

Definition II.15. Let H and K be Hopf algebras. Then

• A map f : H → K is a Hopf morphism if it is a bialgebra morphism and

(f ◦ SH)(h) = (SK ◦ f)(h) for all h ∈ H.

• A subspace I ⊆ H is a Hopf ideal if it is a biideal and S(I) ⊆ I.
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Remark II.16. It is possible to show that the quotient of a Hopf algebra by a Hopf

ideal is again a Hopf algebra.

Let us illustrate the concept of a Hopf algebra by means of two simple examples.

Example II.17. The group algebra kG presented in Example II.10 can be given the

structure of a Hopf algebra by defining

S(g) = g−1 for all g ∈ G.

Example II.18. Let n be a positive integer (n ≥ 2) and let q ∈ C be a primitive

nth root of unity. The Taft algebra is defined to be

Tn = C〈g, x | gn = 1, xn = 0, xg = q gx〉.

It is possible to show that Tn is a Hopf algebra with

∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x,

ε(g) = 1, ε(x) = 0,

S(g) = g−1, S(x) = −g−1x.

Some elementary properties of the antipode are stated in the following:

Proposition II.19. Let H be a Hopf algebra with antipode S. Then

• S is an anti-algebra morphism, i.e.

S(hk) = S(k)S(h) and S(1H) = 1H for all h, k ∈ H.

• S is an anti-coalgebra morphism, i.e.

∑
(S(h))1⊗(S(h))2 =

∑
S(h2)⊗S(h1) and ε(S(h)) = ε(h) for all h ∈ H.
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Proof. See Proposition 4.0.1 in [35].

We end this section with an example of a Hopf algebra that will be needed

throughout this work. This Hopf algebra appeared in [37], where it was used to

derive a deformation formula.

1. The Hopf Algebra Hq

Let q ∈ C×. The quantum integer (i)q is given by

(i)q = 1 + q + q2 + · · ·+ qi−1 with (0)q = 0. (II.20)

Let n ∈ N, n ≥ 2. Notice that if q is a primitive nth root of unity, then (n)q = 0.

The quantum factorial (i)q! is defined as

(i)q! = (i)q (i− 1)q · · · (1)q with (0)q! = 1.

The quantum binomial coefficient
(
i
k

)
q

is(
i

k

)
q

=
(i)q!

(k)q! (i− k)q!
. (II.21)

Notice that if q is a primitive nth root of unity, then(
n

k

)
q

= 0 for k = 1, . . . , n− 1. (II.22)

Let H be the algebra generated by D1, D2, σ and σ−1 subject to the following

relations:

D1D2 = D2D1,

σσ−1 = σ−1σ = 1,

qσDi = Diσ for i = 1, 2.
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Proposition II.23. H is a Hopf algebra with

∆(D1) = D1 ⊗ σ + 1H ⊗D1, ε(D1) = 0, S(D1) = −D1 σ
−1,

∆(D2) = D2 ⊗ 1H + σ ⊗D2, ε(D2) = 0, S(D2) = −σ−1 D2,

∆(σ) = σ ⊗ σ, ε(σ) = 1, S(σ) = σ−1.

Sketch of Proof. Let us check that

∑
S(h1) h2 = ε(h) 1H for all h ∈ H.

It suffices to show that this condition holds for the generators of H.

Since ∆(D1) = D1 ⊗ σ + 1H ⊗D1,

S(D1) σ + S(1H) D1 = −D1 σ
−1 σ +D1 = 0 = ε(D1) 1H .

Since ∆(D2) = D2 ⊗ 1H + σ ⊗D2,

S(D2) 1H + S(σ) D2 = −σ−1 D2 + σ−1 D2 = 0 = ε(D2) 1H .

Since ∆(σ) = σ ⊗ σ,

S(σ) σ = σ−1 σ = 1H = ε(σ) 1H .

The rest of the conditions can be checked similarly.

Let us now show that

∆(D1D2) = ∆(D2D1).

Since we require ∆ to be an algebra homomorphism, we have that

∆(D1D2) = ∆(D1) ∆(D2)

= (D1 ⊗ σ + 1H ⊗D1)(D2 ⊗ 1H + σ ⊗D2)

= D1D2 ⊗ σ +D2 ⊗D1 +D1σ ⊗ σD2 + σ ⊗D1D2
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and

∆(D2D1) = ∆(D2) ∆(D1)

= (D2 ⊗ 1H + σ ⊗D2)(D1 ⊗ σ + 1H ⊗D1)

= D2D1 ⊗ σ +D2 ⊗D1 + σ ⊗D2D1 + σD1 ⊗D2σ

= D1D2 ⊗ σ +D2 ⊗D1 + σ ⊗D1D2 +D1σ ⊗ σD2

and therefore, ∆(D1D2) = ∆(D2D1). The rest of the relations can be verified in a

similar fashion.

Remark II.24. By Definition II.6, σ is group-like, D1 is σ, 1H-primitive, and D2 is

1H , σ-primitive.

Recall that n ∈ N, n ≥ 2. Let I be the ideal of H generated by Dn
1 and Dn

2 .

Proposition II.25. If q is a primitive nth root of unity, then I is a Hopf ideal.

Proof. By Definition II.15, we need to show that I is a coideal, that is ∆(I) ⊆

I ⊗ H + H ⊗ I and ε(I) = 0, and that I satisfies S(I) ⊆ I. Notice that it suffices

to show that these conditions hold for the generators of I. Recall that the quantum

binomial coefficient was defined in (II.21).

Since ∆(D1) = D1 ⊗ σ + 1H ⊗D1, it can be shown by induction that

∆(Dn
1 ) = Dn

1 ⊗ σn +
n−1∑
k=1

(
n

k

)
q−1

Dk
1 ⊗Dn−k

1 σk + 1H ⊗Dn
1 ,

which can be simplified by (II.22) to

∆(Dn
1 ) = Dn

1 ⊗ σn + 1H ⊗Dn
1 .

Notice that ∆(Dn
1 ) ∈ I ⊗H +H ⊗ I. Similarly, since ∆(D2) = D2 ⊗ 1H + σ ⊗D2, it
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can be shown by induction that

∆(Dn
2 ) = Dn

2 ⊗ 1H +
n−1∑
k=1

(
n

k

)
q−1

Dk
2 σ

n−k ⊗Dn−k
2 + σn ⊗Dn

2

= Dn
2 ⊗ 1H + σn ⊗Dn

2 .

Again notice that ∆(Dn
2 ) ∈ I ⊗H +H ⊗ I.

Since ε(D1) = ε(D2) = 0, clearly

ε(Dn
1 ) = ε(Dn

2 ) = 0.

Since S(D1) = −D1 σ
−1, it can be shown by induction that

S(Dn
1 ) = (−1)n q(n2−n)/2 Dn

1 σ
−n.

Notice that S(Dn
1 ) ∈ I. Similarly, since S(D2) = −σ−1 D2, it can be shown by

induction that

S(Dn
2 ) = (−1)n q(n2+n)/2 Dn

2 σ
−n.

Again notice that S(Dn
2 ) ∈ I. Therefore, I is a Hopf ideal.

If q is a primitive nth root of unity, then by Proposition II.25 and Remark II.16,

the quotient H/I is a Hopf algebra. Define

Hq =


H/I, if q is a primitive nth root of unity (n ≥ 2),

H, if q = 1 or q is not a root of unity.

C. Modules, Hopf Module Algebras, and Smash Product Algebras

In Chapter IV, we will study the smash product algebras that have the structure of a

Hopf module algebra for a particular kind of Hopf algebra. In this section, we present

the definition of a Hopf module algebra and a smash product algebra. In order to
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define a Hopf module algebra, we first need to introduce the concept of a module.

Definition II.26. Let A be a k-algebra. A left A-module is a k-vector space M

together with a k-linear map γ : A ⊗ M → M such that the following diagrams

commute:

a) b)

A⊗ A⊗M m⊗id //

id⊗γ

��

A⊗M

γ

��
A⊗M γ //M

k⊗M u⊗id //

scalar mult.

##

A⊗M

γ

��
M

Similarly, we can define a right A-module. For the sake of brevity, we skip the

details.

Having defined a module, we can now introduce the tensor product of modules.

Let H be a Hopf algebra, and V and W left H-modules with structure maps γV and

γW , respectively. Then V ⊗W is a left H-module via

γV⊗W = (γV ⊗ γW ) ◦ (idH ⊗ τ ⊗ idW ) ◦ (∆⊗ idV ⊗ idW ) : H ⊗ V ⊗W → V ⊗W,

given by

h(v ⊗ w) =
∑

h1(v)⊗ h2(w) for all h ∈ H, v ∈ V, w ∈ W,

where τ is the twist map on H ⊗ V . By a similar procedure, if V and W are right

H-modules, then V ⊗W can be given the structure of a right H-module.

Roughly speaking, a Hopf module algebra is an algebra that is also a module, for

which the two structures are compatible. The following makes this statement more

precise.

Definition II.27. Let H be a Hopf algebra. An algebra A is a left H-module algebra
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if the following conditions hold:

• A is a left H-module, via h⊗ a 7→ h(a).

• mA and uA are H-module maps, i.e.

h(ab) =
∑

h1(a) h2(b) and h(1A) = ε(h) 1A for all h ∈ H, a, b ∈ A. (II.28)

Next, we introduce the concept of a smash product algebra.

Definition II.29. Let H be a Hopf algebra and A a left H-module algebra. The

smash product algebra A#H is obtained by using A⊗H as a vector space but with

new multiplication given by

(a#h) (b#k) =
∑

a h1(b) # h2k for all a, b ∈ A, h, k ∈ H,

where we write a#h for the element a ⊗ h to emphasize that the multiplication is

different from the usual tensor product of algebras.

Remark II.30. Skew group algebras are a special case of smash product algebras

in which the Hopf algebra is a group algebra (see Example II.31). Crossed product

algebras are a generalization of smash product algebras.

Example II.31. Recall from Example II.17 the definition of the group algebra. Let

G be a group and kG its group algebra. Let A be a left kG-module algebra, that is

g(ab) = g(a) g(b) and g(1A) = 1A for all a, b ∈ A, g ∈ G.

In this case, the multiplication in A#kG is given by

(a#g)(b#h) = a g(b) # gh for all a, b ∈ A, g, h ∈ G.

For simplicity, we denote the smash product algebra A#kG by A#G.
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Finally, we define the notion of a skew derivation. For an algebra A, we denote by

Autk(A) the group of all algebra automorphisms of A that preserve the multiplicative

identity.

Definition II.32. Let g, h ∈ Autk(A). A g, h-skew derivation of A is a k-linear

function F : A→ A such that

F (ab) = F (a) g(b) + h(a) F (b) for all a, b ∈ A.

If g = h = idA, then we say that F is a derivation of A.

Recall that skew primitive and primitive elements were introduced in Defini-

tion II.6 and Remark II.11.

Example II.33. Let H be a Hopf algebra and A an H-module algebra. Then every

primitive element of H acts as a derivation of A. More generally, if g, h ∈ G(H), then

every g, h-primitive element of H acts as a g, h-skew derivation of A.

D. Graded and Filtered Algebras

In the literature, many of the deformations that are described are graded in the

sense of Braverman and Gaitsgory [4]. The deformations that are constructed in this

dissertation are not necessarily graded in this sense (see Remark IV.18). Here we

define when an algebra is called graded and present some examples. Then we define

a filtered algebra and give several basic properties.

Definition II.34. An algebra A is graded if there exist subspaces A0, A1, . . . of A

such that

A =
⊕
i∈N

Ai and Ai Aj ⊆ Ai+j for all i, j.

Let us illustrate this definition by means of two examples.
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Example II.35. The polynomial algebra C[x1, . . . , xn] is graded. To see this, it

suffices to note that

C[x1, . . . , xn] =
⊕
k∈N

Pk,

where Pk denotes the subspace of homogeneous polynomials of degree k.

Example II.36. From the definition of T (V ), introduced in Chapter I, it directly

follows that the tensor algebra is graded.

Next, we introduce the notion of a filtered algebra.

Definition II.37. An algebra A is filtered if there exists an increasing sequence of

subspaces

{0} ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fi ⊂ · · · ⊂ A

such that

A =
⋃
i∈N

Fi and Fi Fj ⊆ Fi+j for all i, j.

Example II.38. The polynomial algebra C[x1, . . . , xn] is filtered. To see this, it

suffices to notice that

C[x1, . . . , xn] =
⋃
`∈N

C`[x1, . . . , xn],

where C`[x1, . . . , xn] denotes the subspace of polynomials of degree no greater than `.

In Chapter IV, we will make use of the following example:

Example II.39. Let V be a k-vector space and let G be a group acting linearly on

V . Extend the action of G on V to all of T (V ) by algebra automorphisms. Then the

resulting smash product algebra T (V )#G is filtered. To see this, set the degree of

the vector space elements to be 1 and the degree of the group elements to be 0. Then
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define

S0 = kG

S1 = kG⊕ (V ⊗ kG)

S2 = kG⊕ (V ⊗ kG)⊕ (V ⊗ V ⊗ kG)

...

Si = kG⊕ (V ⊗ kG)⊕ · · · ⊕ (V ⊗i ⊗ kG)

...

where the notation V ⊗i was introduced in Chapter I. It is straightforward to show

that

T (V )#G =
⋃
i∈N

Si and Si Sj ⊆ Si+j for all i, j.

Remark II.40. Notice that every graded algebra is filtered. To see this, define

Fi =
i⊕

k=0

Ak,

where Fi are the subspaces coming from Definition II.37 and Ak are the subspaces in

Definition II.34.

Remark II.41. The deformations (I.1) and (I.2) are filtered algebras.

We are now ready to define an associated graded algebra of a filtered algebra.

Definition II.42. The associated graded algebra of a filtered algebra A is given by

gr(A) =
⊕
i∈N

Fi(A) / Fi−1(A),

with multiplication induced by the multiplication on A.

Remark II.43. If A is a graded algebra, then gr(A) ∼= A.
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CHAPTER III

HOMOLOGICAL ALGEBRA

The goal of this chapter is to define Hochschild cohomology, which we will use in

Chapter V to show that the deformations obtained in Chapter IV are nontrivial. For

this purpose, in Section A, we give a, by far nonexhaustive, review of some basic

concepts from homological algebra. For further details, we refer the reader to [21].

Section B introduces the notion of Hochschild cohomology of an algebra and shows

how to determine it using the bar resolution. Hochschild cocycles are described in

Section C and Hochschild coboundaries are discussed in Section D. The main ideas

of Hochschild cohomology can be found in [22] and [13].

A. Free Resolutions and the Functor Ext

In this short section, we recall the definition of a free resolution of a module over a

ring. Then we construct the functor Ext, which will be used to define Hochschild

cohomology in the next section.

Let R be a ring.

Definition III.1. Let M be an R-module. A free R-resolution of M is an exact

sequence of R-module homomorphisms

· · · δ3−→ P2
δ2−→ P1

δ1−→ P0
ε−→M → 0,

i.e. Im(δi+1) = Ker(δi) for all i ≥ 0 with δ0 = ε, where Pi is a free R-module for all

i ≥ 0.

Using a free resolution, we can define the functor Ext as follows:
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Definition III.2. Let M,N be two R-modules and let

· · · δ3−→ P2
δ2−→ P1

δ1−→ P0
ε−→M → 0

be a freeR-resolution ofM . Applying HomR(−, N) and dropping the term HomR(M,N),

we obtain the sequence

0→ HomR(P0, N)
δ∗1−→ HomR(P1, N)

δ∗2−→ HomR(P2, N)
δ∗3−→ · · ·

which may no longer be exact. The maps δ∗i are given by δ∗i (f) = f ◦ δi for all i ≥ 1,

and δ∗0 is the zero map. It can be shown that δ∗i+1 ◦ δ∗i = 0. Then ExtiR(M,N) is

defined as the following quotient of vector spaces:

ExtiR(M,N) = Ker(δ∗i+1) / Im(δ∗i )

and Ext•R(M,N) is defined as

Ext•R(M,N) =
⊕
i≥0

ExtiR(M,N).

Remark III.3. It may be shown that this definition does not depend on the choice

of resolution. Moreover, it is enough to have a resolution by projective modules. For

a detailed discussion, we refer the reader to Section 3.2 in [21].

B. Hochschild Cohomology

In this section, we define the Hochschild cohomology of an algebra over a field. Let A

be a k-algebra. Recall from Example II.4 the definition of the opposite algebra Aop

of A. Let Ae = A⊗Aop. Then A is a left Ae-module (or equivalently, an A-bimodule

under multiplication) via

(a⊗ b)(c) = acb for all a⊗ b ∈ Ae, c ∈ A. (III.4)
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Notice that for n ≥ 2, A⊗n can be given the structure of a left Ae-module by extend-

ing (III.4), namely if a⊗ b ∈ Ae and a1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ an ∈ A⊗n, then

(a⊗ b)(a1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ an) = a a1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ an b. (III.5)

Definition III.6. Let M be a left Ae-module. The Hochschild cohomology of A is

defined as

HH•(A,M) = Ext•Ae(A,M).

If M = A, then we denote HH•(A,A) simply by HH•(A).

It is possible to find the Hochschild cohomology of A by considering the free

Ae-resolution of A, which is given by

· · · δ3−→ A⊗4 δ2−→ A⊗3 δ1−→ Ae
m−→ A→ 0, (III.7)

where m is the multiplication in A and the maps δi are defined as

δi(a0 ⊗ a1 ⊗ · · · ⊗ ai+1) =
i∑

j=0

(−1)ja0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai+1. (III.8)

This resolution is known as the bar resolution of A. Applying HomAe(−, A) and

dropping the term HomAe(A,A), we obtain

0→ HomAe(Ae, A)
δ∗1−→ HomAe(A⊗3, A)

δ∗2−→ HomAe(A⊗4, A)
δ∗3−→ · · ·

where δ∗i (f) = f ◦ δi for i ≥ 1 and f ∈ HomAe(A⊗(i+1), A). Then

HHi(A) = Ker(δ∗i+1) / Im(δ∗i ) and HH•(A) =
⊕
i≥0

HHi(A). (III.9)

Remark III.10. When G is finite, the Hochschild cohomology of S(V )#G was com-

puted in [11] and [19]. If G is finite and acts diagonally on V , then the Hochschild

cohomology ring of Sq(V )#G is described in [31]. This last result will be used in
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Chapter V.

C. Hochschild Cocycles

Using the bar resolution (III.7) of A, we will define Hochschild cocycles. Let us begin

by introducing Hochschild 1-cocycles. Let f ∈ HomAe(A⊗3, A). It is straightforward

to check that the map

HomAe(A⊗3, A)→ Homk(A,A)

h 7→ (a 7→ h(1⊗ a⊗ 1))

is an isomorphism of vector spaces. Thus, we may identify f with a k-linear map

from A to A. By definition, if f ∈ Ker(δ∗2), then

0 = δ∗2(f)(a⊗ b⊗ c⊗ d) = (f ◦ δ2)(a⊗ b⊗ c⊗ d) for all a, b, c, d ∈ A.

Since δ∗2(f) ∈ HomAe(A⊗4, A) and it is possible to check that the map

HomAe(A⊗4, A)→ Homk(A⊗2, A)

h 7→ ((a⊗ b) 7→ h(1⊗ a⊗ b⊗ 1))

induces an isomorphism of vector spaces, δ∗2(f) may be identified with an element of

Homk(A⊗2, A). Since f ∈ Ker(δ∗2), f must then satisfy

(f ◦ δ2)(1⊗ b⊗ c⊗ 1) = 0 for all b, c ∈ A.
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By (III.8) and since f is a module morphism, we get that

0 = (f ◦ δ2)(1⊗ b⊗ c⊗ 1) = f(b⊗ c⊗ 1− 1⊗ bc⊗ 1 + 1⊗ b⊗ c)

= f(b⊗ c⊗ 1)− f(1⊗ bc⊗ 1) + f(1⊗ b⊗ c)

= b f(1⊗ c⊗ 1)− f(1⊗ bc⊗ 1) + f(1⊗ b⊗ 1) c

Therefore, an element f ∈ Ker(δ∗2) can be identified with a linear map A → A that

satisfies

a f(b)− f(ab) + f(a) b = 0 for all a, b ∈ A. (III.11)

Such a map is called a Hochschild 1-cocycle.

Before moving on to Hochschild 2-cocycles, let us state the relation between

Hochschild 1-cocycles and derivations. Recall the definition of derivations and skew

derivations introduced in Definition II.32. Let f be a Hochschild 1-cocycle. Then no-

tice that (III.11) is precisely what defines a derivation. Therefore, f can be identified

with a derivation.

Similarly, we can realize skew derivations by changing the action (III.4) of Ae on

A using an automorphism φ. Let us explain this in more detail. To be more precise,

let us denote by φA the Ae-module that has A as the underlying vector space but

with the action

(a⊗ b)(c) = φ(a) cb for all a⊗ b ∈ Ae, c ∈ φA. (III.12)

Let us now show that under this new action, a Hochschild 1-cocycle with image in φA

can be identified with a 1, φ-skew derivation. First, recall the bar resolution (III.7)

of A. Apply HomAe(−, φA) and drop the term HomAe(A, φA). Denote the induced

maps by δ∗i,φ. Then f ∈ Ker(δ∗2,φ) implies that

f(b⊗ c⊗ 1)− f(1⊗ bc⊗ 1) + f(1⊗ b⊗ c) = 0 for all b, c ∈ φA.
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Using the actions (III.12) and (III.5), we obtain

f(b⊗ c⊗ 1) = f((b⊗ 1) (1⊗ c⊗ 1))

= (b⊗ 1) f(1⊗ c⊗ 1)

= φ(b) f(1⊗ c⊗ 1) 1

= φ(b) f(1⊗ c⊗ 1)

and

f(1⊗ b⊗ c) = f((1⊗ c) (1⊗ b⊗ 1))

= (1⊗ c) f(1⊗ b⊗ 1)

= φ(1) f(1⊗ b⊗ 1) c

= 1 f(1⊗ b⊗ 1) c

= f(1⊗ b⊗ 1) c.

Thus,

φ(b) f(1⊗ c⊗ 1)− f(1⊗ bc⊗ 1) + f(1⊗ b⊗ 1) c = 0.

Since we have seen that HomAe(A⊗3, A) is isomorphic to Homk(A,A), f may be

identified with a 1, φ-skew derivation.

In a similar fashion, it is possible to show that if we set the action of Ae on A to

be

(a⊗ b)(c) = ac φ(b) for all a⊗ b ∈ Ae, c ∈ Aφ,

where Aφ denotes the Ae-module that has A as the underlying vector space but with

this new action, then a Hochschild 1-cocycle with image in Aφ is a φ, 1-skew derivation.

Therefore, both derivations and skew derivations are Hochschild 1-cocycles.

To define Hochschild 2-cocycles, let us again consider the bar resolution (III.7)
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of A. Let f ∈ Ker(δ∗3). By a similar argument as before, we can think of f as being

a bilinear map from A× A to A that satisfies

a f(b, c)− f(ab, c) + f(a, bc)− f(a, b) c = 0 for all a, b, c ∈ A. (III.13)

Such a map is called a Hochschild 2-cocycle.

Similarly, a Hochschild 3-cocycle is a trilinear map f : A×A×A→ A such that

a f(b, c, d)− f(ab, c, d) + f(a, bc, d)− f(a, b, cd) + f(a, b, c) d = 0 (III.14)

for all a, b, c, d ∈ A. An analogous description for Hochschild i-cocycles (i ≥ 4) can

be given. For the sake of brevity, we skip the details.

D. Hochschild Coboundaries

Using the bar resolution (III.7) of A, we will now define Hochschild coboundaries.

Let us begin by introducing Hochschild 1-coboundaries. Let g ∈ HomAe(Ae, A). It is

straightforward to check that the map

Homk(k, A)→ HomAe(Ae, A)

h 7→ (a⊗ b 7→ a h(1) b)

is an isomorphism of vector spaces. Thus, g may be identified with a k-linear map

from k to A. By definition, if f ∈ Im(δ∗1), then there exists g ∈ HomAe(Ae, A) such
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that δ∗1(g) = f . Let a ∈ A. Then

f(1⊗ a⊗ 1) = δ∗1(g)(1⊗ a⊗ 1)

= (g ◦ δ1)(1⊗ a⊗ 1)

= g(a⊗ 1− 1⊗ a)

= g(a⊗ 1)− g(1⊗ a)

= a g(1⊗ 1)− g(1⊗ 1) a

= a g(1)− g(1) a,

where, in the last equality, we have used the isomorphism between HomAe(Ae, A) and

Homk(k, A). Denote g(1) by b. Then we may conclude that f may be identified with

a linear map A→ A that satisfies

f(a) = ab− ba for all a ∈ A. (III.15)

A Hochschild 1-cocycle that satisfies such a condition is called a Hochschild 1-coboundary.

To define Hochschild 2-coboundaries, let us again consider the bar resolution (III.7)

of A. By definition, if f ∈ Im(δ∗2), then there exists g ∈ HomAe(A⊗3, A) such that

δ∗2(g) = f . By a similar argument as before, we can think of f as being a bilinear

map from A× A to A and g as a linear map from A to A, which satisfy

f(a, b) = a g(b)− g(ab) + g(a) b for all a, b ∈ A. (III.16)

A Hochschild 2-cocycle that satisfies such a condition is called a Hochschild 2-coboundary.

Similarly, a Hochschild 3-cocycle f is a Hochschild 3-coboundary if there exists a

map g : A× A→ A such that

f(a, b, c) = a g(b, c)− g(ab, c) + g(a, bc)− g(a, b) c for all a, b, c ∈ A. (III.17)
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In an analogous fashion, Hochschild i-coboundaries (i ≥ 4) can be defined.

Remark III.18. Recall the Hochschild cohomology (III.9) of A obtained by using

the bar resolution of A. Notice that HHi(A) = Ker(δ∗i+1) / Im(δ∗i ) may be rephrased

as follows:

HHi(A) = {Hochschild i-cocycles} / {Hochschild i-coboundaries}.
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CHAPTER IV

DEFORMATIONS

This chapter is the core of this dissertation. In Section A, we define a deformation

of an algebra and briefly discuss the difficulties that arise when trying to find all

possible deformations of a given algebra. We end this section by introducing universal

deformation formulas. Section B describes a motivational example of a deformation

of the smash product algebra of the quantum symmetric algebra of a vector space

with a group. To the best of our knowledge, this is the first known example of such a

deformation in which the new relations in the deformed algebra involve elements of the

original vector space. We also present a generalization of the motivational example,

which in turn generates numerous new examples of deformations of Sq(V )#G. In

Section C, we generalize the results of Section B by finding the necessary and sufficient

conditions that give Sq(V )#G the structure of an Hq-module algebra, under some

hypotheses.

A. Preliminaries

Here we present the definition of a deformation of an algebra, some examples, and

a step-by-step construction to find a deformation. In this section, we also introduce

universal deformation formulas. The basics of algebraic deformation theory can be

found in [14], [15] and [17].

Definition IV.1. Let t be an indeterminate. A formal deformation of a k-algebra

A is an associative algebra A[[t]] over the formal power series ring k[[t]] with multi-

plication

a ∗ b = ab+ µ1(a⊗ b) t+ µ2(a⊗ b) t2 + . . .
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for all a, b ∈ A, where ab denotes the multiplication in the original algebra A and the

maps µi : A⊗ A→ A are k-linear extended to be k[[t]]-linear.

Remark IV.2. In the literature, the map µ1 is sometimes referred to as the infinites-

imal of the deformation. See, for example, [15] and [17].

From now on, we will use the terms formal deformation and deformation inter-

changeably. Notice that a linear map from A⊗A to A can be identified with a bilinear

map from A × A to A. Thus, the element µi(a ⊗ b) will also be denoted by µi(a, b)

for all a, b ∈ A.

To illustrate Definition IV.1, consider the following two examples of deformations:

Example IV.3. The quantum plane

Cq[x, y] = C〈x, y | yx = qxy〉

is a specialization of a deformation of the algebra

A = C[x, y] = C〈x, y | yx = xy〉.

To see this, it is sufficient to define

µi(x, x) = µi(y, y) = µi(x, y) = 0 and µi(y, x) =
1

i!
xy.

Then x ∗ y = xy and

y ∗ x = xy + t xy +
1

2!
t2 xy +

1

3!
t3 xy + · · · = exp(t) xy.

Specializing to t = t0 ∈ C and setting q = exp(t0) yields the new algebra Cq[x, y].

Example IV.4. The Weyl algebra

W = C〈x, y | xy − yx = 1〉
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is a specialization of a deformation of the algebra

A = C[x, y] = C〈x, y | yx = xy〉.

To see this, it again suffices to define

µi(x, x) = µi(y, y) = µi(x, y) = 0 and µi(y, x) =


−1, for i = 1,

0, otherwise.

Then

x ∗ y = xy and y ∗ x = xy − t.

Specializing to t = 1 yields the new algebra W .

Given an algebra A, a natural question that arises is to determine all possible

deformations of A. By Definition IV.1, we may restate this problem as follows: Find

all sequences {µi} such that the corresponding map ∗ is associative on A[[t]], i.e.

a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ A[[t]].

This associativity condition allows us to match coefficients of tn for n ∈ N, which

in turn gives conditions that the maps µi must satisfy. For instance, matching the

coefficients of the constant term tells us that A must be associative, which is already

given. Next, comparing the coefficients of t, we obtain that µ1 must satisfy

a µ1(b, c)− µ1(ab, c) + µ1(a, bc)− µ1(a, b) c = 0,

that is µ1 must be a Hochschild 2-cocycle (compare to (III.13)). In general, matching

the coefficients of tn yields the following condition:

n∑
i=0

µi(µn−i(a, b), c) =
n∑
i=0

µi(a, µn−i(b, c)),
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where µ0 denotes the multiplication in A. This expression can be rewritten as

µn(a, b) c+
n−1∑
i=1

µi(µn−i(a, b), c) + µn(ab, c) =

a µn(b, c) +
n−1∑
i=1

µi(a, µn−i(b, c)) + µn(a, bc).

Rearranging the terms, we obtain

n−1∑
i=1

(
µi(µn−i(a, b), c)−µi(a, µn−i(b, c))

)
= a µn(b, c)−µn(ab, c)+µn(a, bc)−µn(a, b) c.

(IV.5)

To simplify notation, define γn to be the left hand side of (IV.5), that is

γn(a, b, c) =
n−1∑
i=1

(
µi(µn−i(a, b), c)− µi(a, µn−i(b, c))

)
.

Notice that by (IV.5), γn is a Hochschild 3-coboundary via µn and hence a Hochschild

3-cocycle. Recall that Hochschild 3-cocycles and Hochschild 3-coboundaries were

defined in (III.14) and (III.17), respectively.

The fact that the maps γn are Hochschild 3-coboundaries motivates a recursive

procedure to find the maps µi. The first step of this process is as follows: Suppose

µ1 is a Hochschild 2-cocycle. Then we have

γ2(a, b, c) = µ1(µ1(a, b), c)−µ1(a, µ1(b, c)) = a µ2(b, c)−µ2(ab, c)+µ2(a, bc)−µ2(a, b) c,

that is γ2 must be a Hochschild 3-coboundary via µ2. So γ2 is the obstruction to

finding µ2.

Therefore, a step-by-step construction to find a deformation is as follows:

• Pick µ1 such that µ1 is a Hochschild 2-cocycle and γ2 is a Hochschild 3-coboundary.

• For n ≥ 2, pick µn such that γn is a Hochschild 3-coboundary via µn and γn+1

is a Hochschild 3-coboundary.
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Thus, trying to find all deformations of a given algebra is a very difficult process, if

at all possible. In fact, this is a potentially infinite procedure. For this reason, many

authors, such as Guccione et al. [20] and Witherspoon [37], concentrate their efforts

in the study of deformations of an algebra coming from an action of a Hopf algebra.

Giaquinto and Zhang [18] developed the theory of universal deformation formu-

las. Here we define a universal deformation formula based on a bialgebra.

Definition IV.6. A universal deformation formula based on a bialgebra B is an

element F ∈ (B ⊗B)[[t]] of the form

F = 1B ⊗ 1B + t F1 + t2 F2 + . . .

where Fi ∈ B ⊗B, satisfying the following three conditions:

(ε⊗ idB) (F ) = 1⊗ 1B,

(idB ⊗ ε) (F ) = 1B ⊗ 1,

[ (∆⊗ idB) (F ) ] (F ⊗ 1B) = [ (idB ⊗∆) (F ) ] (1B ⊗ F ).

Such a formula is universal in the sense that it applies to any B-module algebra

A to yield a deformation of A (see Theorem 1.3 in [18] for a detailed proof). In

particular, m◦F is the multiplication in the deformed algebra of A, where m denotes

the multiplication in A.

Let us recall the Hopf algebra Hq introduced in Subsection II.B.1. Witherspoon

proved in [37] that

expq(t D1 ⊗D2) =


∑n−1

i=0
1

(i)q !
(tD1 ⊗D2)i, if q is a primitive nth root of unity,∑∞

i=0
1

(i)q !
(tD1 ⊗D2)i, if q = 1 or q is not a root of unity,

is a universal deformation formula based on Hq. Therefore, for every Hq-module



35

algebra A,

m ◦ expq(t D1 ⊗D2) (IV.7)

yields a formal deformation of A, where m denotes the multiplication in A.

B. A Motivational Example

The example described in this section is, to the best of our knowledge, the first known

example of a deformation of Sq(V )#G in which the new relations in the deformed

algebra involve not only group elements and the indeterminate, but also elements of

V (compare to (I.1) and (I.2)).

Let q ∈ C be a primitive nth root of unity for n ≥ 2. Let {w1, w2, w3} denote a

basis of a C-vector space V . Recall the definition of Sq(V ) introduced in Chapter I.

Set q12 = q13 = q and q23 = 1. Let G = 〈σ1, σ2 | σn1 = σn2 = 1, σ1σ2 = σ2σ1〉 be a

group acting on Sq(V ) via

σ1(w1) = qw1, σ1(w2) = w2, σ1(w3) = qw3,

σ2(w1) = w1, σ2(w2) = qw2, σ2(w3) = qw3.

Define the functions χi : G→ C× by

g(wi) = χi(g) wi for all g ∈ G, i = 1, 2, 3.

In particular, χ1(σ1) = q and χ1(σ2) = 1.
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Define an action of Hq on the generators of Sq(V ) and on G by

D1(w1) = σ2, D2(w1) = 0, σ(w1) = q w1,

D1(w2) = 0, D2(w2) = w3 σ1 σ
−1
2 , σ(w2) = w2,

D1(w3) = 0, D2(w3) = 0, σ(w3) = w3,

D1(g) = 0, D2(g) = 0, σ(g) = χ1(g−1) g.

Then extend this action of Hq to all of Sq(V )#G under the following conditions:

D1(ab) = D1(a) σ(b) + a D1(b),

D2(ab) = D2(a) b+ σ(a) D2(b),

σ(ab) = σ(a) σ(b),

for all a, b ∈ Sq(V )#G.

Remark IV.8. The extension conditions follow from the definition of the coproduct

in Hq as stated in Subsection II.B.1. This is done so as to obtain an Hq-module

algebra, which is shown to be true in the upcoming discussion.

Recall the definition of the quantum integers introduced in (II.20).

Proposition IV.9. Let {wi1 wj2 wm3 g | i, j,m ∈ N, g ∈ G} denote a basis of

Sq(V )#G. Then assuming it is well-defined, the extension of the action of Hq on

Sq(V ) and G to all of Sq(V )#G is given by the following formulas:

D1(wi1 w
j
2 w

m
3 g) = (i)q q

j+m χ1(g−1) wi−1
1 wj2 w

m
3 σ2 g,

D2(wi1 w
j
2 w

m
3 g) = (j)q−1 qi wi1 w

j−1
2 wm+1

3 σ1 σ
−1
2 g,

σ(wi1 w
j
2 w

m
3 g) = qi χ1(g−1) wi1 w

j
2 w

m
3 g,

where a negative exponent of w` (` = 1, 2, 3) is interpreted to be 0.
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Proof. Since

σ1(w1) = qw1, σ1(w2) = w2, σ1(w3) = qw3,

we get

σ1(wi1) = qi wi1, σ1(wj2) = wj2, σ1(wm3 ) = qm wm3 .

Thus,

σ1(wi1 w
j
2 w

m
3 ) = qi+m wi1 w

j
2 w

m
3 .

Similarly,

σ2(w1) = w1, σ2(w2) = qw2, σ2(w3) = qw3,

give

σ2(wi1) = wi1, σ2(wj2) = qj wj2, σ2(wm3 ) = qm wm3 .

Hence,

σ2(wi1 w
j
2 w

m
3 ) = qj+m wi1 w

j
2 w

m
3 .

In a similar way,

σ(w1) = qw1, σ(w2) = w2, σ(w3) = w3,

yield

σ(wi1) = qi wi1, σ(wj2) = wj2, σ(wm3 ) = wm3 .

Since

σ(g) = χ1(g−1) g for all g ∈ G,

we have

σ(wi1 w
j
2 w

m
3 g) = qi χ1(g−1) wi1 w

j
2 w

m
3 g.

Since D1(w1) = σ2 and D1(ab) = D1(a) σ(b) + a D1(b) for all a, b ∈ Sq(V )#G,
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it can be shown by induction that

D1(wi1) = (i)q w
i−1
1 σ2.

Since D1(w2) = D1(w3) = 0, we have that D1(wj2) = D1(wm3 ) = 0. Thus, we get

D1(wi1 w
j
2) = (i)q q

j wi−1
1 wj2 σ2,

and

D1(wi1 w
j
2 w

m
3 ) = (i)q q

j+m wi−1
1 wj2 w

m
3 σ2.

Since

D1(g) = 0 for all g ∈ G,

we obtain

D1(wi1 w
j
2 w

m
3 g) = (i)q q

j+m χ1(g−1) wi−1
1 wj2 w

m
3 σ2 g.

Since D2(w2) = w3 σ1 σ
−1
2 and D2(ab) = D2(a) b+ σ(a) D2(b) for all

a, b ∈ Sq(V )#G, it can be shown by induction that

D2(wj2) = (j)q−1 wj−1
2 w3 σ1 σ

−1
2 .

Since D2(w1) = D2(w3) = 0, we have that D2(wi1) = D2(wm3 ) = 0. Thus, we get

D2(wi1 w
j
2) = (j)q−1 qi wi1 w

j−1
2 w3 σ1 σ

−1
2 ,

and

D2(wi1 w
j
2 w

m
3 ) = (j)q−1 qi wi1 w

j−1
2 wm+1

3 σ1 σ
−1
2 .

Since

D2(g) = 0 for all g ∈ G,
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we obtain

D2(wi1 w
j
2 w

m
3 g) = (j)q−1 qi wi1 w

j−1
2 wm+1

3 σ1 σ
−1
2 g.

Let us recall that Hopf module algebras were introduced in Definition II.27.

Proposition IV.10. Sq(V )#G is an Hq-module algebra.

Proof. Since the maps σ,D1 and D2 are defined on the generators of Sq(V ) and on

G, and then extended to all of Sq(V )#G, it is necessary to check what happens when

an element of Sq(V )#G has more than one expression in terms of the generators. As

long as the relations of Sq(V )#G are preserved by σ,D1 and D2, each map will act

as a well-defined linear operator on Sq(V )#G. To get an action of the whole Hopf

algebra Hq on Sq(V )#G, we need to check that the relations of Hq are preserved,

so that we do get a well-defined action of each element of Hq on Sq(V )#G. Then

Sq(V )#G is an Hq-module. Next, the action of σ,D1 and D2 on a product is as it

should be, by definition. Finally, σ(1) = 1 and D1(1) = D2(1) = 0 follow from the

extension conditions. Therefore, it is enough to check the following:

• The relations of Hq are preserved by the generators of Sq(V )#G, that is the

relations

? D1D2 = D2D1,

? qσDi = Diσ for i = 1, 2,

? Dn
1 = Dn

2 = 0 if q is a primitive nth root of unity,

are preserved by each basis element wi1 w
j
2 w

m
3 g.

• The relations of Sq(V )#G are preserved by the generators of Hq, that is the

relations
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? w1w2 = qw2w1, w1w3 = qw3w1, w2w3 = w3w2,

? gwi = g(wi)g for i = 1, 2, 3, g ∈ G,

are preserved by σ, D1 and D2.

For the sake of brevity, we omit these calculations.

Remark IV.11. By construction, σ is an automorphism of Sq(V )#G. By Re-

mark II.24 and Example II.33, we may conclude that D1 acts as a σ, 1-skew derivation

and D2 acts as a 1, σ-skew derivation of Sq(V )#G.

As a consequence of Proposition IV.10, if we set, for instance, q = −1 (and hence

n = 2), then by (IV.7), we get that

m◦expq(tD1⊗D2) = m◦

(
n−1∑
i=0

1

(i)q!
(tD1 ⊗D2)i

)
= m◦(id⊗ id+tD1⊗D2) (IV.12)

yields a deformation of Sq(V )#G.

Proposition IV.13. If q = −1, then the deformation of Sq(V )#G given by (IV.12)

is

(T (V )#G)[[t]] / (w1w2 + w2w1 + tw3σ1, w1w3 + w3w1, w2w3 − w3w2).

Proof. Let us denote by D the deformation of Sq(V )#G obtained by defining the mul-

tiplication on (Sq(V )#G)[[t]] by (IV.12). To find the new relations in the deformed
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algebra D, consider, for example,

w1 ∗ w2 = (m ◦ (id⊗ id + t D1 ⊗D2)) (w1 ⊗ w2)

= m (w1 ⊗ w2) +m (t (D1 ⊗D2) (w1 ⊗ w2))

= w1 w2 +m (t (D1(w1)⊗D2(w2)))

= w1 w2 +m (t (σ2 ⊗ w3 σ1 σ
−1
2 ))

= w1 w2 + t σ2 w3 σ1 σ
−1
2

= w1 w2 − t w3 σ1.

Similarly,

w2 ∗ w1 = (m ◦ (id⊗ id + t D1 ⊗D2)) (w2 ⊗ w1)

= m (w2 ⊗ w1) +m (t (D1 ⊗D2) (w2 ⊗ w1))

= w2 w1 +m (t (D1(w2)⊗D2(w1)))

= w2 w1.

Thus,

w1 ∗ w2 + w2 ∗ w1 = w1 w2 + w2 w1 − t w3 σ1 = −t w3 σ1,

since w1w2 = −w2w1 in the original algebra. Dropping the ∗ notation, we get that

the new relation in D is

w1w2 + w2w1 = −tw3σ1,

as desired. Similar calculations show that in the deformed algebra D, the following

relations also hold:

w1w3 = −w3w1 and w2w3 = w3w2.
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Define an algebra homomorphism

ϕ : (T (V )#G)[[t]]→ D

wi 7→ wi

g 7→ g.

By construction, the map ϕ is surjective since wi and g are in the image of ϕ and

these elements generate D by an inductive argument. To see this, recall that by

definition, D is (Sq(V )#G)[[t]] as a vector space. As a free k[[t]]-module, D has a

free generating set {wα1 wβ2 w
γ
3 g | α, β, γ are nonnegative integers}. It is possible to

show by induction on the degree α+ β + γ of wα1 w
β
2 w

γ
3 g that this element is in the

image of ϕ.

Let I denote the ideal of (T (V )#G)[[t]] generated by the relations

w1w2 + w2w1 + tw3σ1, w1w3 + w3w1, w2w3 − w3w2.

The calculations presented above show that I ⊆ ker(ϕ). Note that (T (V )#G)[[t]] / I

is a filtered algebra, due to the nature of the elements of I. To be more precise, recall

that in Example II.39, we saw that T (V )#G is a filtered algebra. Then by setting

the degree of the indeterminate t to be 0, (T (V )#G)[[t]] is also filtered. To show

that the filtration passes to the quotient, it suffices to notice that, in the notation of

Example II.39, w1w2 + w2w1 ∈ S2 and w3σ1 ∈ S1 ⊂ S2.

By an induction argument on the degree, it is possible to show that the ele-

ments of the form wα1 wβ2 wγ3 g, where α, β and γ are nonnegative integers, span

(T (V )#G)[[t]] / I as a free k[[t]]-module. Thus, the dimension of the associated

graded algebra of (T (V )#G)[[t]] / I in each degree n is at most the number of ele-

ments of the form wα1 w
β
2 w

γ
3 g with α+ β + γ = n. Recall that the associated graded
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algebra was introduced in Definition II.42. On the other hand, since I ⊆ ker(ϕ), the

map

(T (V )#G)[[t]] / I −→ (T (V )#G)[[t]] / ker(ϕ)

is surjective. Thus, the dimension of the associated graded algebra of (T (V )#G)[[t]] / I

in each degree n is at least the dimension of the associated graded algebra of

(T (V )#G)[[t]] / ker(ϕ) in degree n. Since (T (V )#G)[[t]] / ker(ϕ) is isomorphic to D

and we know that the elements of the form wα1 w
β
2 w

γ
3 g form a basis of D, it follows

that the deformation is precisely (T (V )#G)[[t]] / I.

As advertised, the vector space element w3 appears in the new relations multiplied

by the indeterminate t and the group element σ1. Thus, restricting to (T (V )#G)[t]

and specializing to t = 1, this deformation involves relations of type

wiwj − qijwjwi −
∑
g∈G

wm ag(wi, wj) g for some m.

Notice that these relations differ from those used to define the braided Cherednik

algebras (I.2) by the presence of wm.

Remark IV.14. The arguments presented in the proof of Proposition IV.13 can be

generalized to any primitive nth root of unity q for n ≥ 2. For example, set n = 3.

Then by (IV.7), we get that

m ◦ expq(t D1 ⊗D2) = m ◦
(

id⊗ id + t D1 ⊗D2 +
1

1 + q
(t2 D2

1 ⊗D2
2)

)
(IV.15)

yields a deformation of Sq(V )#G. In this case, the deformation can be found to be

(T (V )#G)[[t]] / (w1w2 + w2w1 − qtw3σ1, w1w3 + w3w1, w2w3 − w3w2). (IV.16)

It is sufficient to notice that D2
i (wj) = 0 for i, j = 1, 2.
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Remark IV.17. Notice that the deformation (IV.16) of Sq(V )#G is a graded defor-

mation in the sense of Braverman and Gaitsgory [4]. To see this, we assign degree 1

to the indeterminate t and to the vector space elements wi, and degree 0 to the group

elements g. In this way, each of the relations obtained are homogeneous of degree 2.

Therefore, the quotient is graded.

Remark IV.18. This example can be generalized to higher dimensions as follows:

Let q be a primitive nth root of unity (n ≥ 2) and let {w1, . . . , wk} denote a basis of

a C-vector space V . Set q1j = q for j = 2, . . . , k, and qij = 1 for i, j = 2, . . . , k. Let

G = 〈σ1, σ2 | σn1 = σn2 = 1, σ1σ2 = σ2σ1〉 be a group acting on Sq(V ) via

σ1(w1) = qw1, σ2(w1) = w1,

σ1(w2) = w2, σ2(w2) = qw2,

σ1(w3) = qw3, σ2(w3) = qw3,

...
...

σ1(wk) = qwk, σ2(wk) = qwk.

Define the functions χi : G→ C× by

g(wi) = χi(g) wi for all g ∈ G, i = 1, . . . , k.

Define an action of Hq on the generators of Sq(V ) and on G as follows:
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Let α1, α2, . . . , αk−2, β1, β2, . . . , βk−2 ∈ N. Then define

D1(w1) = wα1n
3 wα2n

4 · · ·wαk−2 n
k σ2, D2(w1) = 0,

D1(w2) = 0, D2(w2) = wβ1n+1
3 wβ2n4 · · ·wβk−2 n

k σ1 σ
−1
2 ,

D1(w3) = 0, D2(w3) = 0,

...
...

D1(wk) = 0, D2(wk) = 0,

D1(g) = 0, D2(g) = 0,

and

σ(w1) = qw1,

σ(w2) = w2,

σ(w3) = w3,

...

σ(wk) = wk,

σ(g) = χ1(g−1) g.

If we extend the action of Hq to all of Sq(V )#G under the same conditions as

before and denote a basis of Sq(V )#G by {wi11 wi22 . . . w
ik
k g | i1, . . . , ik ∈ N, g ∈ G},

then we obtain the following formulas:

D1(wi11 wi22 . . . w
ik
k g) = (i1)q q

i2+···+ik χ1(g−1) wi1−1
1 wi22 wi3+α1n

3 . . . w
ik+αk−2 n
k σ2 g,

D2(wi11 wi22 . . . w
ik
k g) = (i2)q−1 qi1 wi11 wi2−1

2 wi3+β1n+1
3 wi4+β2n

4 . . . w
ik+βk−2 n
k σ1 σ

−1
2 g,

σ(wi11 wi22 . . . w
ik
k g) = qi1 χ1(g−1) wi11 wi22 . . . w

ik
k g.

It is possible to show that Sq(V )#G is an Hq-module algebra in this case as well.
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Thus, again by (IV.7), m ◦ expq(t D1 ⊗D2) gives a deformation of Sq(V )#G.

If q = −1, then as before, m◦ (id⊗ id+ t D1⊗D2) yields a deformation which, in

this case, can be found to be the quotient of (T (V )#G)[[t]] by an ideal that contains

the following relations:

w1w2 +w2w1 + t (−1)(β1+···+βk−2)n w
(α1+β1)n+1
3 w

(α2+β2)n
4 · · ·w(αk−2+βk−2)n

k σ1, (IV.19)

w1wj + wjw1 for j = 3, . . . , k,

wiwj − wjwi for i, j = 2, . . . , k.

The proof of this statement is analogous to the proof of Proposition IV.13. For the

sake of brevity, we skip the details. Notice that in this case we do not obtain a graded

deformation in the sense of Braverman and Gaitsgory [4] unless α1 = · · · = αk−2 =

β1 = · · · = βk−2 = 0.

C. The General Case

Let us present some generalizations of the results obtained in [20] and [37] to the case

of Sq(V )#G. We provide the necessary and sufficient conditions for Sq(V )#G to have

the structure of an Hq-module algebra under some assumptions. As a consequence,

by applying (IV.7), we obtain more explicit examples of deformations.

1. Hq-module Algebra Structures on Arbitrary Algebras

Let A be a k-algebra and let σ,D1, D2 : A → A be arbitrary k-linear maps. Recall

that a module was introduced in Definition II.26. By abuse of notation, we identify

σ, D1 and D2 with the generators of Hq by the same name. Then A can be given

the structure of an Hq-module via a (necessarily unique) k-linear map Hq ⊗ A → A
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if and only if the maps σ, D1 and D2 satisfy the following conditions:

σ is a bijective map, (IV.20a)

D1D2 = D2D1, (IV.20b)

qσDi = Diσ for i = 1, 2, (IV.20c)

if q is a primitive nth root of unity, then Dn
1 = Dn

2 = 0. (IV.20d)

Remark IV.21. To see why conditions (IV.20) are necessary and sufficient, notice

that if we are given maps σ, D1 and D2 as linear operators from A to A, there is only

one possible way that we can extend this action to all the elements of Hq since σ, D1

and D2 generate Hq. So if such an extension exists, it is unique. The only question

then is whether such an action is well-defined, that is whether it exists. Since we

start with actions of σ, D1 and D2 on A, we would need to check the relations of Hq,

which are precisely conditions (IV.20). Only then would we know that our original

choices of linear maps extend to give a well-defined map Hq ⊗ A→ A.

Given σ,D1 and D2 such that (IV.20) holds, the following result determines the

conditions that these maps must satisfy so that A becomes an Hq-module algebra via

the map Hq ⊗ A→ A.

Theorem IV.22. Let σ,D1, D2 : A → A be k-linear maps satisfying (IV.20). Then

A is an Hq-module algebra via the map Hq ⊗ A→ A if and only if

σ(ab) = σ(a) σ(b) for all a, b ∈ A, (IV.23a)

D1(ab) = D1(a) σ(b) + a D1(b) for all a, b ∈ A, (IV.23b)

D2(ab) = D2(a) b+ σ(a) D2(b) for all a, b ∈ A. (IV.23c)

Proof. By definition, to show that A is an Hq-module algebra, we need to check the
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relations of A, the relations of Hq, and the condition (II.28). The relations of A

need not be checked since σ, D1 and D2 are well-defined maps from A to A, which

means they automatically must preserve the relations of A. The relations of Hq are

precisely items (IV.20). The condition (II.28) is equivalent to items (IV.23) since σ,

D1 and D2 generate Hq and ∆ is an algebra homomorphism, so all the elements of

Hq satisfy (II.28).

Remark IV.24. This result is a specialization of Theorem 2.4 in [20] with α being

the identity map on A.

2. Hq-module Algebra Structures on Smash Products

Let V be a k-vector space with basis {w1, . . . , wk}. Let G be a group acting linearly

on V . Assume that the action of G on V is diagonal with respect to the basis

{w1, . . . , wk}. Then there exist maps χi : G→ k× such that

g(wi) = χi(g) wi for all g ∈ G, i = 1, . . . , k.

Extend the action of G on V to Sq(V ) by algebra automorphisms.

Theorem IV.25. Let σ,D1, D2 : V ⊕ kG → Sq(V )#G be k-linear maps. Suppose

there exists a group homomorphism ξ : G→ k× such that

σ(g) = ξ(g) g for all g ∈ G.

Then σ,D1, D2 extend to give Sq(V )#G the structure of an Hq-module algebra if and

only if for all g ∈ G, ` = 1, 2, i, j = 1, . . . , k, the following conditions hold:

σ : V → V is a bijective kG-linear map, (IV.26a)

D1D2(wi) = D2D1(wi), (IV.26b)
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D1D2(g) = D2D1(g), (IV.26c)

qσD`(wi) = D`σ(wi), (IV.26d)

qσD`(g) = ξ(g) D`(g), (IV.26e)

if q is a primitive nth root of unity, then Dn
1 = Dn

2 = 0, (IV.26f)

D`(wiwj) = D`(qijwjwi), (IV.26g)

σ(wiwj) = σ(qijwjwi), (IV.26h)

D`(g(wi)g) = D`(gwi). (IV.26i)

Proof. Notice that V⊕kG embeds into Sq(V )#G, so in order to apply Theorem IV.22,

first we need to extend the maps σ, D1 and D2 from V ⊕ kG to all of Sq(V )#G by

requiring conditions IV.23 to hold. In order to obtain well-defined k-linear maps

from Sq(V )#G to Sq(V )#G, we need to check that the relations of Sq(V )#G are

satisfied by the generators of Hq. These are precisely conditions (IV.26g), (IV.26h)

and (IV.26i). Notice that σ automatically preserves the relation g(wi)g = gwi since

by assumption,

g(wi) = χi(g) wi and σ(g) = ξ(g) g for all g ∈ G, i = 1, . . . , k,

and by (IV.26a), σ : V → V commutes with the action of G, that is

σ(g(wi)) = g(σ(wi)) for all g ∈ G, i = 1, . . . , k.
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To be more precise, consider

σ(g(wi)g) = σ(χi(g) wi g)

= χi(g) σ(wi g)

= χi(g) σ(wi) σ(g)

= χi(g) σ(wi) ξ(g) g

= χi(g) ξ(g) σ(wi) g,

and

σ(gwi) = σ(g) σ(wi)

= ξ(g) g σ(wi)

= ξ(g) g(σ(wi)) g

= ξ(g) σ(g(wi)) g

= ξ(g) σ(χi(g) wi) g

= ξ(g) χi(g) σ(wi) g.

Next, we need to make sure that the relations of Hq hold, that is items (IV.20). Notice

that (IV.20a) is equivalent to (IV.26a) since σ is bijective on kG by its definition.

Moreover, (IV.20d) is precisely (IV.26f). Since it is enough to show that the relations

of Hq are satisfied by the generators of Sq(V )#G, it follows that (IV.20b) is equivalent

to (IV.26b) and (IV.26c), and (IV.20c) is equivalent to (IV.26d) and (IV.26e).

Remark IV.27. This result was obtained for the case of S(V )#G in [20]. Thus,

Theorem IV.25 is a generalization of Theorem 3.5 in [20] to Sq(V )#G with α being

the identity map on Sq(V )#G, s the twist map, χα(g) = 1 and χς(g) = χ1(g−1) for

all g ∈ G.
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3. A Special Case of Hq-module Algebra Structures on Smash Products

Let V be a k-vector space with basis {w1, . . . , wk} and let G be a group acting

diagonally on V . As before, the maps χi : G→ k× are given by

g(wi) = χi(g) wi for all g ∈ G, i = 1, . . . , k.

Theorem IV.28. Let σ,D1, D2 : V ⊕ kG → Sq(V )#G be k-linear maps. Assume

that the action of σ on V is diagonal with respect to the basis {w1, . . . , wk}. Let

λi(σ) ∈ k× be defined by

σ(wi) = λi(σ) wi for all i = 1, . . . , k.

Suppose there exists a group homomorphism ξ : G→ k× such that

σ(g) = ξ(g) g for all g ∈ G.

Choose P1, P2 ∈ Sq(V ) such that there are scalars qPi,wj
satisfying the following equa-

tion:

Pi wj = qPi,wj
wj Pi for all i 6= j.

Assume that

D1(w1) = P1 g1, D1(wi) = 0 for all i 6= 1, D1(g) = 0 for all g ∈ G,

D2(w2) = P2 g2, D2(wi) = 0 for all i 6= 2, D2(g) = 0 for all g ∈ G,

with g1, g2 ∈ G. Then there is an Hq-module algebra structure on Sq(V )#G, for

which σ,D1, D2 act as the above chosen maps, if and only if

qP1,wi
= q1i λ

−1
i (σ) χi(g

−1
1 ) for all i 6= 1, (IV.29a)

qP2,wi
= q2i λi(σ) χi(g

−1
2 ) for all i 6= 2, (IV.29b)
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g1 and g2 belong to the center of G, (IV.29c)

g(P1) = χ1(g) ξ(g) P1 for all g ∈ G, (IV.29d)

g(P2) = χ2(g) ξ(g−1) P2 for all g ∈ G, (IV.29e)

P1 ∈ ker(D2) and P2 ∈ ker(D1), (IV.29f)

σ(Pi) = q−1 λi(σ) ξ(g−1
i ) Pi for i = 1, 2, (IV.29g)

if q is a primitive nth root of unity, then Dn
1 = Dn

2 = 0. (IV.29h)

Proof. Notice that condition (IV.29h) is exactly item (IV.26f). Since σ(wi) = λi(σ)wi

for all i = 1, . . . , k, where λi(σ) ∈ k×, it follows that σ : V → V is bijective. Since,

in addition, g(wi) = χi(g)wi for all g ∈ G, i = 1, . . . , k, we have that σ : V → V is

a kG-linear map. Thus, item (IV.26a) is satisfied. Also note that condition (IV.26h)

is satisfied by the assumption that σ(wi) = λi(σ)wi for all i = 1, . . . , k. Since by

assumption D1(g) = D2(g) = 0 for all g ∈ G, items (IV.26c) and (IV.26e) hold.

We claim that conditions (IV.29a) and (IV.29b) are equivalent to item (IV.26g).

For i 6= 1,

D1(w1 wi) = D1(w1) σ(wi) + w1 D1(wi)

= D1(w1) σ(wi)

= P1 g1 λi(σ) wi

= λi(σ) P1 g1(wi) g1

= λi(σ) P1 χi(g1) wi g1

= λi(σ) χi(g1) P1 wi g1
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and

D1(q1i wi w1) = q1i D1(wi) σ(w1) + q1i wi D1(w1)

= q1i wi D1(w1)

= q1i wi P1 g1

= q1i q
−1
P1,wi

P1 wi g1

Therefore, D1(w1 wi) = D1(q1i wi w1) is equivalent to

qP1,wi
= q1i λ

−1
i (σ) χi(g

−1
1 ) for all i 6= 1.

Similarly, for i 6= 2,

D2(w2 wi) = D2(w2) wi + σ(w2) D2(wi)

= D2(w2) wi

= P2 g2 wi

= P2 g2(wi) g2

= P2 χi(g2) wi g2

= χi(g2) P2 wi g2

and

D2(q2i wi w2) = q2i D2(wi) w2 + q2i σ(wi) D2(w2)

= q2i σ(wi) D2(w2)

= q2i λi(σ) wi P2 g2

= q2i λi(σ) q−1
P2,wi

P2 wi g2
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Therefore, D2(w2 wi) = D2(q2i wi w2) is equivalent to

qP2,wi
= q2i λi(σ) χi(g

−1
2 ) for all i 6= 2.

We claim that conditions (IV.29c), (IV.29d) and (IV.29e) are equivalent to

item (IV.26i). Since D1(g) = 0 for all g ∈ G, we have

D1(g(wi) g) = D1(g(wi)) σ(g) + g(wi) D1(g)

= D1(g(wi)) σ(g)

= D1(χi(g) wi) ξ(g) g

= χi(g) ξ(g) D1(wi) g

and

D1(g wi) = D1(g) σ(wi) + g D1(wi)

= g D1(wi)

Thus, it is enough to show that

χi(g) ξ(g) D1(wi) g = g D1(wi)

holds for all g ∈ G, i = 1, . . . , k, if and only if conditions (IV.29c) and (IV.29d) are

satisfied.

There are two possible cases, namely i = 1 or i 6= 1. If i = 1, then

χ1(g) ξ(g) D1(w1) g = g D1(w1)

simplifies to

χ1(g) ξ(g) P1 g1 g = g P1 g1.
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This is equivalent to

χ1(g) ξ(g) P1 g1 g = g(P1) g g1,

which holds if and only if g1 belongs to the center of G and g(P1) = χ1(g) ξ(g) P1 for

all g ∈ G. If i 6= 1, then D1(wi) = 0 so both sides of the equation are equal to zero.

Similarly, since D2(g) = 0 for all g ∈ G, we have

D2(g(wi) g) = D2(g(wi)) g + σ(g(wi)) D2(g)

= D2(g(wi)) g

= D2(χi(g) wi) g

= χi(g) D2(wi) g

and

D2(g wi) = D2(g) wi + σ(g) D2(wi)

= σ(g) D2(wi)

= ξ(g) g D2(wi)

Thus, it is enough to show that

χi(g) D2(wi) g = ξ(g) g D2(wi)

holds for all g ∈ G, i = 1, . . . , k, if and only if conditions (IV.29c) and (IV.29e) are

satisfied.

Again, there are two possible cases, namely i = 2 or i 6= 2. If i = 2, then

χ2(g) D2(w2) g = ξ(g) g D2(w2)

simplifies to

χ2(g) P2 g2 g = ξ(g) g P2 g2.
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This is equivalent to

ξ(g−1) χ2(g) P2 g2 g = g(P2) g g2,

which holds if and only if g2 belongs to the center of G and g(P2) = ξ(g−1) χ2(g) P2

for all g ∈ G. If i 6= 2, then D2(wi) = 0 so both sides of the equation are equal to

zero.

We claim that condition (IV.29f) is equivalent to item (IV.26b). To see this,

notice that D1D2(wi) = D2D1(wi) is trivially satisfied for wi ∈ ker(D1) ∩ ker(D2).

Since D1D2(w1) = 0 and

D2D1(w1) = D2(P1 g1) = D2(P1) g1 + σ(P1) D2(g1) = D2(P1) g1,

we have that D1D2(w1) = D2D1(w1) holds if and only if P1 ∈ ker(D2).

Similarly, since D2D1(w2) = 0 and

D1D2(w2) = D1(P2 g2) = D1(P2) σ(g2) + P2 D1(g2) = D1(P2) σ(g2),

we have that D1D2(w2) = D2D1(w2) holds if and only if P2 ∈ ker(D1).

We claim that condition (IV.29g) is equivalent to item (IV.26d). To see this,

consider the following: For i = 1, 2, we have

Diσ(wi) = Di(λi(σ) wi)

= λi(σ) Di(wi)

= λi(σ) Pi gi
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and

qσDi(wi) = q σ(Pi gi)

= q σ(Pi) σ(gi)

= q σ(Pi) ξ(gi) gi

= q ξ(gi) σ(Pi) gi

Therefore, Diσ(wi) = qσDi(wi) holds if and only if σ(Pi) = q−1 λi(σ) ξ(g−1
i ) Pi for

i = 1, 2. On the other hand, for i 6= 1, 2, we have D1(wi) = 0 = D2(wi) so both sides

of the equation

Djσ(wi) = qσDj(wi) for j = 1, 2, i = 1, . . . , k,

are zero.

Remark IV.30. The idea behind this result comes from [20], which deals with the

case of S(V )#G. Thus, Theorem IV.29 is a generalization of Theorem 3.6 in [20] to

Sq(V )#G with f(g, h) = 1 for all g, h ∈ G, λ1g = χ1(g), λ2g = χ2(g) for all g ∈ G,

ν1 = 1, and ν2 = 1, but with new assumptions on σ, P1 and P2.

Remark IV.31. If we set

k = 3, P1 = 1, P2 = w3, g1 = σ2, g2 = σ1 σ
−1
2 ,

λ1(σ) = q, λ2(σ) = λ3(σ) = 1,

qP1,w2 = qP1,w3 = qP2,w3 = 1, qP2,w1 = q−1,

then we can see that we can apply Theorem IV.28 to the motivational example pre-

sented in Section IV.B. We may also apply Theorem IV.28 to the generalization of
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the motivational example constructed in Remark IV.18 if we set

P1 = wα1n
3 wα2n

4 · · ·wαk−2n
k , P2 = wβ1n+1

3 wβ2n4 · · ·wβk−2n
k , g1 = σ2, g2 = σ1 σ

−1
2 ,

λ1(σ) = q, λi(σ) = 1 for i = 2, . . . , k,

qP1,wi
= 1 for i = 2, . . . , k,

qP2,w1 = q−(β1n+1+β2n+···+βk−2n), qP2,wi
= 1 for i = 3, . . . , k.

Recall the multiplication in the deformed algebra given in Definition IV.1. If,

in the setting of Theorem IV.28, we want to find, for instance, an expression for the

map µ1, then we can proceed as follows: By (IV.7), we have that m◦ expq(t D1⊗D2)

gives a deformation of Sq(V )#G, where m is the multiplication in Sq(V )#G. As a

consequence,

µ1 = m ◦ (D1 ⊗D2). (IV.32)

Remark IV.33. The assumptions made in Theorem IV.25 and Theorem IV.28 are

mainly for simplifying purposes. We believe that it might be possible to prove these

same results in a more general setting. This is a subject for future research.
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CHAPTER V

NONTRIVIALITY OF THE DEFORMATIONS

Once we have found a formal deformation of an algebra, it may turn out that this

deformation is trivial, in the sense that it is isomorphic to the formal power series

ring with coefficients in the original algebra. To verify that we have indeed obtained

a new object, we must prove that there does not exist such an isomorphism, which

may be difficult to do directly. Using Hochschild cohomology makes this easier to

show.

The main goal of this chapter is to prove that the deformations of Sq(V )#G

obtained in Chapter IV are not isomorphic to (Sq(V )#G)[[t]]. We begin by studying

the connection between algebraic deformation theory and Hochschild cohomology in

Section A. In Section B, we give the precise characterization of the infinitesimal of

the deformations that result from Theorem IV.28 and (IV.7). As we will see, this

characterization suffices to prove the nontriviality of the resulting deformations.

A. Deformations and Hochschild Cohomology

The deformations of any algebra are intimately related to its Hochschild cohomology.

According to [17], Gerstenhaber’s works [13] and [14] marked the beginning of the

study of the connection between Hochschild cohomology and algebraic deformation

theory. He showed that for an algebra A, the space HHi(A) with i ≤ 3 has a natural

interpretation related to the maps µi and the obstructions γi. As we have seen in

Section IV.A, the map µ1 is a Hochschild 2-cocycle and the obstructions γi to the

existence of the rest of the maps µi are Hochschild 3-cocycles.

This topic is an area of active research. For instance, the relation between (quan-

tum) Drinfeld Hecke algebras and Hochschild cohomology is discussed in [34] and [32].
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Roughly speaking, quantum Drinfeld Hecke algebras are generalizations of Drinfeld

Hecke algebras in which polynomial rings are replaced by quantum polynomial rings.

Recall that Drinfeld Hecke algebras were introduced in Chapter I. For a precise

definition of a quantum Drinfeld Hecke algebra, we refer the reader to [32] and [28].

Recall that in Section IV.A, we concluded that the map µ1, used to define a

deformation, is a Hochschild 2-cocycle. If we can prove that the Hochschild cocycle

µ1 represents a nonzero element in the Hochschild cohomology ring, i.e. it is not a

coboundary (see Remark III.18), then this automatically implies that the deformation

is nontrivial. Let us explain this in more detail. Assume that the deformation of an

algebra A is trivial. Then we will show that µ1 is a coboundary. Denote by D

the deformed algebra. If the deformation is trivial, then there exists a k[[t]]-algebra

isomorphism ϕ : D → A[[t]] given by

ϕ(a) = a+ ϕ1(a) t+ ϕ2(a) t2 + . . .

for each a ∈ A (see Section 4 in [17] for further details). Then

ϕ(a ∗ b) = ϕ(a) ϕ(b) for all a, b ∈ D.

The left hand side gives

ϕ(a ∗ b) = ϕ(ab+ µ1(a, b) t+ µ2(a, b) t2 + . . . )

= ϕ(ab) + ϕ(µ1(a, b)) t+ ϕ(µ2(a, b)) t2 + . . .

= ab+ ϕ1(ab) t+ ϕ2(ab) t2 + · · ·+ µ1(a, b) t+ ϕ1(µ1(a, b)) t2 + . . .
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The right hand side simplifies to

ϕ(a) ϕ(b) = (a+ ϕ1(a) t+ . . . ) (b+ ϕ1(b) t+ . . . )

= ab+ ϕ1(a) b t+ a ϕ1(b) t+ . . .

If we consider the coefficients of t, we obtain

ϕ1(ab) + µ1(a, b) = ϕ1(a) b+ a ϕ1(b),

which can be rewritten as

µ1(a, b) = ϕ1(a) b− ϕ1(ab) + a ϕ1(b).

That is, µ1 is a coboundary. Therefore, we have shown that if µ1 is not a coboundary,

then the deformation is nontrivial.

B. The Precise Characterization of the Infinitesimal

For the rest of this chapter, we will work in the setting of Subsection IV.C.3. We will

assume that all the conditions necessary for Theorem IV.28 to hold are fulfilled. We

will also assume that the group G is finite and that P1 and P2 are elements of the

subalgebra of Sq(V ) generated by {w3, . . . , wk}. Notice that the examples presented

in Section IV B satisfy these assumptions.

Recall that at the end of Chapter IV, we found µ1 in the setting of Theorem IV.28

(see (IV.32)). In this section, we will give a direct verification that in this case µ1

is indeed a Hochschild 2-cocycle by identifying which Hochschild 2-cocycle µ1 is in

relation to a known calculation of the Hochschild cohomology ring of Sq(V )#G.

Finally, we will prove that this Hochschild 2-cocycle is nonzero in the Hochschild

cohomology ring. As a consequence, the deformations found using Theorem IV.28
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and (IV.7) are nontrivial.

In Remark IV.11, we showed that D1 is a σ, 1-skew derivation, and D2 is a 1, σ-

skew derivation of Sq(V )#G. Thus, by the discussion in Section III.C, D1 and D2 are

Hochschild 1-cocycles for (Sq(V )#G)σ and σ(Sq(V )#G), respectively. Let us show

that the infinitesimal µ1, defined in (IV.32), is a Hochschild 2-cocycle for Sq(V )#G

by verifying that µ1 satisfies (III.13), that is

a µ1(b, c) + µ1(a, bc) = µ1(ab, c) + µ1(a, b) c for all a, b, c ∈ Sq(V )#G.

The left hand side is given by

a µ1(b, c) + µ1(a, bc) = a D1(b) D2(c) +D1(a) D2(bc)

= a D1(b) D2(c) +D1(a) D2(b) c+D1(a) σ(b) D2(c)

and the right hand side is

µ1(ab, c) + µ1(a, b) c = D1(ab) D2(c) +D1(a) D2(b) c

= D1(a) σ(b) D2(c) + a D1(b) D2(c) +D1(a) D2(b) c

Thus, this proves the claim.

Let us introduce some notation. First, recall that we are working on a k-

vector space V with basis {w1, . . . , wk}. Denote by V ∗ its dual vector space and

by {w∗1, . . . , w∗k} the corresponding dual basis, i.e.

w∗i (wj) =


1, if i = j,

0, otherwise.

Let Nk denote the set of all k-tuples of elements from N. For any α ∈ Nk, the length
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|α| of α is defined as

|α| =
k∑
i=1

αi.

Define wα = wα1
1 · · ·w

αk
k for all α ∈ Nk. Finally, whenever A is a set with an action

of G, we will denote by AG the elements of A that are invariant under the action of

G.

Let q = (qij) as in Chapter I. The quantum exterior algebra of V is defined as

∧
q(V ) = T (V ) / (wiwj + qijwjwi | 1 ≤ i, j ≤ k),

where T (V ) denotes the tensor algebra of V . If qij = 1 for all i, j, then we obtain the

exterior algebra
∧

(V ). Denote the multiplication in
∧

q(V ) by ∧. For any β ∈ {0, 1}k,

let w∧β denote the vector wj1∧· · ·∧wjm ∈
∧m(V ), which is defined bym = |β|, βj` = 1

for all ` = 1, . . . ,m, and j1 < · · · < jm.

The following Hochschild cohomology was computed in [31]:

HH2(Sq(V ), Sq(V )#G) ∼=
⊕
g∈G

⊕
β∈{0,1}k
|β|=2

⊕
α∈Nk

α−β∈Cg

spank{(wα#g)⊗ (w∗)∧β} (V.1)

as a subspace of Sq(V )#G⊗
∧

q−1(V ∗), where Cg is defined to be

Cg =

{
γ ∈ (N ∪ {−1})k

∣∣∣∣ for every i = 1, . . . , k,
k∏
j=1

q
γj
ij = χi(g) or γi = −1

}
(V.2)

for g ∈ G. By Remark III.18, the following result shows that P1 g1 P2 g2 ⊗ w∗1 ∧ w∗2

is a Hochschild 2-cocycle. Later we will show that in fact P1 g1 P2 g2 ⊗ w∗1 ∧ w∗2 may

be identified with our Hochschild 2-cocycle µ1 defined in (IV.32).

Proposition V.3. The element P1 g1 P2 g2⊗w∗1∧w∗2 is a representative of an element

of HH2(Sq(V )#G).
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Proof. By Theorem 4.7 in [31], it suffices to show that P1 g1 P2 g2 ⊗ w∗1 ∧ w∗2 is

a representative of an element of HH2(Sq(V ), Sq(V )#G) and is invariant under the

action of G. For the first part, consider the following simple calculation: By (IV.29e),

we have that

P1 g1 P2 g2 = (P1#g1) (P2#g2)

= P1 g1(P2) # g1 g2

= P1 ξ(g
−1
1 ) χ2(g1) P2 # g1 g2

= ξ(g−1
1 ) χ2(g1) P1 P2 # g1 g2.

Thus, set g = g1 g2 in (V.2). The elements P1 and P2 are linear combinations of

monomials of the form wρ11 wρ22 · · ·w
ρk
k and wδ11 wδ22 · · ·w

δk
k , respectively, for some

ρ`, δ` ∈ N, ` = 1, . . . , k. However, since any calculations can be done term-by-term,

it suffices to work with just the monomials. Thus, we have

P1 P2 = wρ11 · · ·w
ρk
k wδ11 · · ·w

δk
k .

Set α = (ρ1 + δ1, . . . , ρk + δk) and β = (1, 1, 0, . . . , 0) in (V.1). To show that

P1 g1 P2 g2 ⊗ w∗1 ∧ w∗2 ∈ HH2(Sq(V ), Sq(V )#G), we need to prove that α − β ∈ Cg

with g = g1 g2, where

α− β = (ρ1 + δ1, . . . , ρk + δk)− (1, 1, 0, . . . , 0)

= (ρ1 + δ1 − 1, ρ2 + δ2 − 1, ρ3 + δ3, . . . , ρk + δk).

That is, we want to show that for every i = 1, . . . , k, the following holds:

qρ1+δ1−1
i1 qρ2+δ2−1

i2 qρ3+δ3
i3 · · · qρk+δk

ik = χi(g1) χi(g2) or γi = −1.

Notice that when i = 1, 2, ρi = δi = 0, and therefore, γi = −1. Otherwise, consider
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the following:

P1 P2 wi = wρ11 · · ·w
ρk
k wδ11 · · ·w

δk
k wi

=

(
k∏
j=1

q
δj
ji

)
wρ11 · · ·w

ρk
k wi w

δ1
1 · · ·w

δk
k

=

(
k∏
j=1

q
ρj
ji

)(
k∏
j=1

q
δj
ji

)
wi w

ρ1
1 · · ·w

ρk
k wδ11 · · ·w

δk
k

=

(
k∏
j=1

q
ρj+δj
ji

)
wi P1 P2.

By (IV.29a) and (IV.29b), we also have that for i 6= 1, 2,

P1 P2 wi = P1 qP2,wi
wi P2

= P1 q2i λi(σ) χi(g
−1
2 ) wi P2

= q2i λi(σ) χi(g
−1
2 ) P1 wi P2

= q2i λi(σ) χi(g
−1
2 ) qP1,wi

wi P1 P2

= q2i λi(σ) χi(g
−1
2 ) q1i λ

−1
i (σ) χi(g

−1
1 ) wi P1 P2

= q1i q2i χi(g
−1
1 ) χi(g

−1
2 ) wi P1 P2.

Therefore,
k∏
j=1

q
ρj+δj
ji = q1i q2i χi(g

−1
1 ) χi(g

−1
2 ).

Or equivalently,

q−1
i1 q−1

i2

(
k∏
j=1

q
ρj+δj
ij

)
= χi(g1) χi(g2) for i 6= 1, 2,

which is exactly what we wanted to show.

For the second part, to prove that P1 g1 P2 g2 ⊗ w∗1 ∧ w∗2 is invariant under the
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action of G, consider the following calculation:

g(P1 g1 P2 g2 ⊗ w∗1 ∧ w∗2) =

g(P1) g1 g(P2) g2 ⊗ g(w∗1) ∧ g(w∗2) =

χ1(g) ξ(g) P1 g1 χ2(g) ξ(g−1) P2 g2 ⊗ χ−1
1 (g) w∗1 ∧ χ−1

2 (g) w∗2 =

P1 g1 P2 g2 ⊗ w∗1 ∧ w∗2

for all g ∈ G, where we used (IV.29d), (IV.29e) and

g(w∗i ) = χ−1
i (g) w∗i .

Let us introduce the quantum Koszul resolution of Sq(V ), which we will need in

what follows. For each g ∈ G, (Sq(V ))g is a left (Sq(V ))e-module via the action

(a⊗ b)(cg) = ac g(b) g for all a, b, c ∈ Sq(V ), g ∈ G.

The following is a free (Sq(V ))e-resolution of Sq(V ):

· · · −→ (Sq(V ))e ⊗
∧2

q(V )
d2−→ (Sq(V ))e ⊗

∧1
q(V )

d1−→ (Sq(V ))e
mult−→ Sq(V ) −→ 0,

where

dm(1⊗2 ⊗ wj1 ∧ · · · ∧ wjm) =

m∑
i=1

(−1)i+1

[(
i∏

s=1

qjs,ji

)
wji ⊗ 1−

(
m∏
s=i

qji,js

)
⊗ wji

]
⊗wj1∧· · ·∧wji−1

∧wji+1
∧· · ·∧wjm

whenever 1 ≤ j1 < · · · < jm ≤ k. We refer the reader to [36] for more details on this

construction.

In [32], chain maps Ψi are introduced between the bar resolution and the quan-

tum Koszul resolution of Sq(V ). Recall that the bar resolution was introduced in



67

Section III.B. In particular, we have the map

Ψ2 : (Sq(V ))⊗4 −→ (Sq(V ))e ⊗
∧2

q(V )

such that

Ψ2(1⊗ wi ⊗ wj ⊗ 1) =


1⊗ 1⊗ wi ∧ wj, for 1 ≤ i < j ≤ k,

0, for i ≥ j.

(V.4)

We will also need the following two maps:

R2 : Homk

(
(Sq(V ))⊗2, Sq(V )#G

)
−→ Homk

(
(Sq(V ))⊗2, Sq(V )#G

)G
R2(γ) =

1

|G|
∑
g∈G

g(γ)

and

θ∗2 : Homk

(
(Sq(V ))⊗2, Sq(V )#G

)G −→ Homk

(
(Sq(V )#G)⊗2, Sq(V )#G

)
θ∗2(γ)(ag ⊗ bh) = γ(a⊗ g(b)) gh.

As discussed in [32], since Ψ2 may not preserve the action of G, the map R2 ensures

G-invariance of the image. The map θ∗2 extends a function defined on (Sq(V ))⊗2 to a

function defined on (Sq(V )#G)⊗2.

By Theorem 3.5 in [32], the composition θ∗2 R2 Ψ∗2 induces an isomorphism(⊕
g∈G

HH2(Sq(V ), (Sq(V ))g)

)G

−→ HH2(Sq(V )#G).

As a consequence, we get that if κ ∈ (Sq(V )#G)⊗
∧2

q−1(V ∗), then

[θ∗2R2Ψ∗2(κ)](wi⊗wj) =
1

|G|
∑
g∈G

g(κ(Ψ2(1⊗g−1(wi)⊗g−1(wj)⊗1))) for i < j. (V.5)

The following proposition is an explicit description of µ1.
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Proposition V.6. The map µ1 can be identified with P1 g1 P2 g2 ⊗ w∗1 ∧ w∗2.

Proof. Set κ = P1g1P2g2 ⊗ w∗1 ∧ w∗2 in (V.5). Then we have that

[θ∗2R2Ψ∗2(P1g1P2g2 ⊗ w∗1 ∧ w∗2)](wi ⊗ wj) =

1

|G|
∑
g∈G

g
(
P1g1P2g2(w∗1 ∧ w∗2)

(
Ψ2

(
1⊗ g−1 (wi)⊗ g−1 (wj)⊗ 1

)))
.

By (V.4), we may simplify this expression as follows:

1

|G|
∑
g∈G

g
(
P1g1P2g2(w∗1 ∧ w∗2)

(
1⊗ 1⊗ g−1 (wi) ∧ g−1 (wj)

))
.

Since g−1(wi) = χ−1
i (g) wi and applying (IV.29e), this becomes

1

|G|
∑
g∈G

ξ(g−1
1 ) χ2(g1) g

(
P1P2#g1g2(w∗1 ∧ w∗2)

(
1⊗ 1⊗ χ−1

i (g) wi ∧ χ−1
j (g) wj

))
.

By linearity, we get

1

|G|
ξ(g−1

1 ) χ2(g1)
∑
g∈G

χ−1
i (g) χ−1

j (g) g (P1P2#g1g2(w∗1 ∧ w∗2) (1⊗ 1⊗ wi ∧ wj)) .

If we assume that i < j, then

(w∗1 ∧ w∗2)(wi ∧ wj) =


1, if i = 1 and j = 2,

0, otherwise.

Thus, letting i = 1 and j = 2, the above expression becomes

1

|G|
ξ(g−1

1 ) χ2(g1)
∑
g∈G

χ−1
1 (g) χ−1

2 (g) g(P1P2#g1g2) =

1

|G|
ξ(g−1

1 ) χ2(g1)
∑
g∈G

χ−1
1 (g) χ−1

2 (g) g(P1) g(P2)#g1g2 =

1

|G|
ξ(g−1

1 ) χ2(g1)
∑
g∈G

χ−1
1 (g) χ−1

2 (g) χ1(g) ξ(g) P1 χ2(g) ξ(g−1) P2#g1g2
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by (IV.29d) and (IV.29e). Simplifying, we obtain

ξ(g−1
1 ) χ2(g1) P1 P2#g1g2 =

P1 g1 P2 g2.

Therefore, we have shown that

[θ∗2R2Ψ∗2(P1g1P2g2 ⊗ w∗1 ∧ w∗2)](wi ⊗ wj) =


P1 g1 P2 g2, if i = 1 and j = 2,

0, otherwise.

On the other hand, since µ1 = m ◦ (D1 ⊗D2), we have that

µ1(wi ⊗ wj) = D1(wi) D2(wj) =


P1 g1 P2 g2, if i = 1 and j = 2,

0, otherwise.

Therefore, µ1 can be identified with P1 g1 P2 g2 ⊗ w∗1 ∧ w∗2.

Since P1, g1, P2, g2, w1 and w2 are nonzero, we know that P1 g1 P2 g2 ⊗w∗1 ∧w∗2

is a nonzero Hochschild 2-cocycle. Therefore, we have obtained the following:

Theorem V.7. When G is finite and P1 and P2 are elements of the subalgebra of

Sq(V ) generated by {w3, . . . , wk}, all the deformations that result from Theorem IV.28

and (IV.7) are nontrivial.
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CHAPTER VI

CONCLUSION

In this dissertation, we have discussed deformations of an algebra. For the case when

the deformations arise from an action of the Hopf algebra Hq, introduced in Chap-

ter II, we were able to provide necessary and sufficient conditions for Sq(V )#G to

have the structure of an Hq-module algebra under some assumptions (Chapter IV).

Using Hochschild cohomology, we showed in Chapter V that a large class of the pre-

viously obtained deformations are nontrivial. A particularly relevant example of this

theory was presented in Section IV.B, where we constructed a class of deformations

of Sq(V )#G in which the new relations in the deformed algebra involve elements of

the original vector space.

The techniques and ideas developed in this dissertation have enabled us to not

only find new examples of deformations but also show that there exist deformations

that are not graded in the sense of Braverman and Gaitsgory [4] (see Remark IV.18).

This is particularly relevant since much has been done in geometric settings, such

as deformations of functions on manifolds [27] and algebraic varieties [26]. However,

less is known on deformations of noncommutative algebras, such as smash product

algebras.

A dissertation cannot be complete until it provides an overview of possible ex-

tensions of the presented work. Some future directions of research include:

• It would be interesting to extend the obtained results to a wider variety of ob-

jects. For instance, we could try to obtain the same results for a different Hopf

algebra. Our first approach to solve this question is to construct a larger Hopf al-

gebra that contains Hq as a Hopf subalgebra. Then the same universal deforma-

tion formula (IV.7) would still apply since the expression only involves D1 and
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D2. For example, under the additional assumption that I = (Dn
1 , D

n
2 , σ

n − 1),

Hq sits inside the larger finite dimensional quantum group uq(sl2)⊗ uq(sl2).

• Another interesting extension of these results might be the following: Besides

S(V )#G and Sq(V )#G, are there any other objects that could be given an

Hq-module algebra structure? In this case, we would probably start by looking

at quotients of Sq(V ) of the following form: Fix positive integers N1, . . . , Nk

and consider the finite dimensional algebra Sq(V ) / (wN1
1 , . . . , wNk

k ). Then is it

possible to give (Sq(V ) / (wN1
1 , . . . , wNk

k )) # G the structure of an Hq-module

algebra? The quotient Sq(V ) / (wN1
1 , . . . , wNk

k ) has been studied for instance

in [29].

• One important open question in algebraic deformation theory is the following:

For a given algebra, does every Hochschild 2-cocycle that is unobstructed (i.e.

the corresponding Hochschild 3-cocycle is a coboundary) lift to a deformation?

A positive answer for the case of a polynomial algebra follows from [26]. How-

ever, the answer is still unknown for the case of S(V )#G and, more generally,

Sq(V )#G. Constructing more examples of such deformations will give some

insight on how to answer this question.

• It is known that for any algebra A, if HH2(A) = 0 then A has no nontrivial

deformations (see, for example, [17]). The converse is known to be false in the

case when A is the universal enveloping algebra of a Lie algebra [33] and when

A is any algebra and char(k) = p with p a prime [16]. However, the answer is

still unknown for the case when A is any algebra and char(k) = 0.
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année: 1955/56.

[6] I. Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann.

of Math. (2), 141 (1) (1995) 191–216.
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