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ABSTRACT

Discontinuous Galerkin Finite Element Method for the Nonlinear Hyperbolic

Problems with Entropy-Based Artificial Viscosity Stabilization. (May 2012 )

Valentin Nikolaevich Zingan, B.S.N.E., Moscow State Engineering Physics Institute

(MEPhI); M.S.N.E., Moscow State Engineering Physics Institute (MEPhI)

Co-Chairs of Committee: Dr. Jim E. Morel
Dr. Jean-Luc Guermond

This work develops a discontinuous Galerkin finite element discretization of non-

linear hyperbolic conservation equations with efficient and robust high order stabi-

lization built on an entropy-based artificial viscosity approximation.

The solutions of equations are represented by elementwise polynomials of an

arbitrary degree p > 0 which are continuous within each element but discontinuous

on the boundaries. The discretization of equations in time is done by means of high

order explicit Runge-Kutta methods identified with respective Butcher tableaux.

To stabilize a numerical solution in the vicinity of shock waves and simultane-

ously preserve the smooth parts from smearing, we add some reasonable amount of

artificial viscosity in accordance with the physical principle of entropy production

in the interior of shock waves. The viscosity coefficient is proportional to the lo-

cal size of the residual of an entropy equation and is bounded from above by the

first-order artificial viscosity defined by a local wave speed. Since the residual of an

entropy equation is supposed to be vanishingly small in smooth regions (of the order

of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity

is almost zero everywhere except the shocks, where it reaches the first-order upper

bound.
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One- and two-dimensional benchmark test cases are presented for nonlinear hy-

perbolic scalar conservation laws and the system of compressible Euler equations.

These tests demonstrate the satisfactory stability properties of the method and op-

timal convergence rates as well. All numerical solutions to the test problems agree

well with the reference solutions found in the literature.

We conclude that the new method developed in the present work is a valuable

alternative to currently existing techniques of viscous stabilization.
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1. INTRODUCTION

1.1 Motivation

Inviscid compressible shock-dominated flows in multi-dimensional gas dynamics

problems are modeled by nonlinear hyperbolic conservation laws whose solutions

exhibit a wide range of localized structures, such as shock waves, contact disconti-

nuities, and rarefaction waves. The most complex unsteady flows include multiple

interactions of these structures with each other as well as with different kinds of

bodies around which such flows exist. Some flows related to compressible turbu-

lence simulations, aeroacoustics, or detonation processes exhibit both shocks and

complicated smooth solution structures.

It is not an ordinary task to satisfactorily describe all possible characteristics of

these phenomena in terms of numerical solutions of the governing equations. The

accurate numerical resolution of the features of intricate flows necessitates the use

of higher-order numerical methods. Unfortunately, higher-order numerical methods

are known to produce spurious oscillations (Gibbs phenomenon) in the regions of

strong discontinuities, which can also affect the smooth parts of the solution. To

suppress these undesired effects, the most efficient methods rely at some point on

limiters whose development and implementation in two and three space dimensions

on unstructured meshes with an arbitrary polynomial degree is a highly nontrivial

task. The theoretical understanding of the stability and convergence of these nonlin-

ear methods is currently limited to uniform grids and scalar equations in one space

dimension [1–5]. A true two-dimensional non-oscillatory reconstruction which could

be applied to arbitrary unstructured meshes (without any additional post process-

ing) seems to be available only in the piecewise linear case [6], and extensions to the

higher degree polynomial reconstructions do not seem to be evident.

This dissertation follows the style of Journal of Computational Physics.
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In this thesis, we introduce the combination of a Discontinuous Galerkin Fi-

nite Element Method with an Entropy-Based Artificial Viscosity Approximation [7]

for the numerical solution of hyperbolic conservation laws. We avoid the use of

limiters and non-oscillatory reconstructions by adding a degenerate nonlinear dissi-

pation to the numerical discretization of the equation or system at hand. The new

approach is shown to be robust and to perform well by testing on a wide variety of

multi-dimensional benchmark problems including different types of hyperbolic scalar

conservation laws and the system of compressible Euler equations.

1.2 Background

1.2.1 Governing equations

The Euler equations are the set of Partial Differential Equations (PDE) governing

inviscid flows. The equations correspond to the Navier-Stokes equations with zero

viscosity and zero thermal conduction terms and describe the conservation of mass,

momentum, and total energy.

Although inviscid flows do not truly exist in nature, there are many practical flows

where the influence of transport phenomena, which give rise to both viscosity and

heat conduction, is small, and we can model the flow as being inviscid. Theoretically,

inviscid flow is approached in the limit as the Reynolds number Re→∞. However,

for practical problems, many flows with high but finite Re can be assumed to be

inviscid. For such flows, the influence of diffusion, friction, and thermal conduction

is limited to a very thin region adjacent to a body surface, a so-called boundary

layer, and the remainder of the flow outside this region is essentially inviscid. For

flows over slender bodies, such as airfoils, inviscid theory adequately predicts the

pressure distribution and lift on the body and gives a valid representation of the

streamlines and flow field away from the body. However, because friction (shear
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stress) is a major source of aerodynamic drag, inviscid theories by themselves cannot

adequately predict the total drag.

Another example related to the significant dissipation of momentum and energy is

the interior of strong shock waves, which is a very thin dissipative layer across which

the properties of flow change drastically. Because of large gradients in velocity and

temperature, the mechanisms of friction and thermal conduction are very strong in

this layer. These dissipative irreversible mechanisms always increase the entropy of

the fluid. However, the thickness of such a layer is of the order of the mean free

path of the molecules, which is approximately 10−5 cm. Therefore, for the majority

of practical problems, the detailed knowledge about the distribution of properties of

fluid within the interior of shock waves is insignificant. Instead, one can replace the

transient layer with a jump of all fields of flow, such as particles velocity, density,

pressure, etc.

The Euler equations can be applied to compressible as well as to incompressible

flow - using either an appropriate Equation of State (EoS) or assuming a constant

density and a velocity field with zero divergence, respectively. Although all flows, to

a greater or lesser extent, are compressible, it is always safe to assume the density to

be constant if the Mach number M < 0.3. On the other hand, high-speed flows (M

near or above 1) must be treated as compressible. For such flows, density can vary

over a wide range of magnitudes. Moreover, the compressibility of flow gives rise to

shock waves formation.

1.2.2 Higher-order numerical methods

Unfortunately, it is essentially impossible to solve the fundamental equations

governing fluid flow analytically, even with simplifying assumptions. Hence, one

must employ numerical methods to solve fluid flow problems, which generally involve

complex geometries and shapes. Simulation of flow around cars, airplanes, rockets,

birds, and supersonic jets are actual examples of such problems from real life.
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A Finite Volume Method (FVM) is the industry standard approach to Compu-

tational Fluid Dynamics (CFD) for inviscid compressible shock-dominated flows [8].

However, higher-order methods are not routinely used in the FVM community, de-

spite the significant growth in computational resources. Instead, second-order accu-

rate methods are the most prevalent. Higher-order spatial accuracy for the FVM is

typically achieved by non-oscillatory polynomial reconstructions of cell or nodal av-

erages. This creates expanded numerical stencils, which in turn complicate boundary

condition discretizations and adversely impact iterative algorithms.

To meet the modern-day requirements of accuracy, stability, and applicability to

real-world problems, we use a Discontinuous Galerkin Finite Element Method (DG

FEM or DG method) [9]. The DG FEM is often referred to as a hybrid method

since it combines features of both a Continuous Galerkin Finite Element Method

(CG FEM or CG method) and the FVM. Within each element, the solution is ap-

proximated by a polynomial of degree p ≥ 0 (as in CG FEM), while the continuity

conditions applied to the solution are relaxed at the boundaries of elements (as in

FVM), which necessitates the construction of interelement numerical fluxes. Theo-

retically, solutions may be obtained to an arbitrarily high order of accuracy.

While the DG FEM was proposed in the early 1970’s by Reed and Hill for the

neutron transport equation [10], it was not used for CFD simulations until the early

1990’s when it was first used to solve the Euler equations by Cockburn and Shu [11].

The solution of the Navier-Stokes equations with the DG method was first accom-

plished by Bassi and Rebay in 1997 [12]. As the method gained more attention in the

CFD research community, further advantages have come fairly rapidly. Researchers

are now using the DG method to perform simulations of a wide variety of flow

regimes. The method has been adapted to study compressible and incompressible,

steady and unsteady, as well as laminar and turbulent flows.

In addition to being arbitrarily high order accurate, the DG method also permits

the formulation of very compact numerical schemes. The compactness of the schemes
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stems from the fact that the solution within each element is kept independent of the

solutions in other elements, with interelement communication occurring only at the

boundaries of the adjacent elements. This characteristic, along with other properties,

makes this method extremely flexible in the sense of easily handling a wide variety of

element types and mesh topologies, and also allows a number of adaptive techniques

like h− or p− refinement or both [13–15].

1.2.3 Shock capturing

As mentioned above, shock waves are mathematically treated as discontinuities,

but it was quickly recognized that this representation of the phenomenon caused

problems for any higher-order numerical solution, because higher-order numerical

methods are known to produce spurious unphysical oscillations (Gibbs phenomenon)

in the regions of shocks. Discontinuities exist in the solutions of many hyperbolic

conservation laws. Shock and contact waves can manifest themselves in the solutions

of scalar equations, such as Burgers’ equation, or systems of equations, such as the

Euler equations. Numerical schemes designed to solve these PDEs must be able to

capture any discontinuity that might arise in the solution.

There have been a number of higher-order numerical schemes developed in the

CFD community to capture different kinds of discontinuities. The best known and

successful classes of such schemes are Total Variation Diminishing (TVD) and Es-

sentially Non-Oscillatory (ENO). Both classes of methods were primarily designed in

the FVM framework, and therefore, utilize higher degree polynomial reconstructions

as well as limiters to identify the so-called “trouble cells”, namely the cells which

might need the limiting procedure.
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TVD :

Consider a one-dimensional hyperbolic scalar conservation law:

∂tu+ ∂xf(u) = 0. (1.1)

The Total Variation (TV) of the solution u is defined to be:

TV (u) =

∫ ∣
∣
∣
∣

∂u

∂x

∣
∣
∣
∣
dx. (1.2)

The TV of a numerical approximation uh is the discrete analogue of (1.2):

TV (uh) =
∑

i

|uh,i+1 − uh,i| . (1.3)

A time dependent numerical method unh 7→ un+1
h is said to be TVD if:

TV (un+1
h ) ≤ TV (unh). (1.4)

Bounded TV in a scheme implies that no new local extrema are created - the values

of local minima do not decrease, and the values of local maxima do not increase.

In flow regions where the limiters are active, that is, in the “trouble cells”, TVD

methods reduce the degree of approximating polynomial to the piecewise constant

representation, leading to the solution which is TVD in the mean values of each cell.

This idea was first incorporated into the DG method by Cockburn and Shu. In their

work, they developed a DG scheme with Runge-Kutta time stepping and a slope

limiter based on the minmod operator [16–20].
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ENO :

The main disadvantage of the TVD methods is the first-order spatial accuracy in

the regions of discontinuities. To overcome that, schemes of the ENO class employ

multiple candidate stencils to choose the least oscillatory one, which then is used to

reconstruct a higher-order polynomial representation from a set of local cell averages

[21–23].

An improvement over the traditional ENO methods is the class of methods called

Weighted Essentially Non-Oscillatory (WENO) [24–26]. The basic idea is the follow-

ing: instead of using only one of the candidate stencils to form the reconstruction,

one uses a weighted combination of all of them. The choice of weights is based on

the local smoothness of the solution.

A few researchers have also applied the ENO/WENO methodology of shock captur-

ing schemes to the DG formulation [27, 28]. The general approach is to replace the

DG approximating polynomials in the “trouble cells” with the ENO/WENO recon-

structed polynomials, which maintain the original cell averages, have the same order

of accuracy as before, but are less oscillatory. This approach looks very promising in

combining the advantages of the ENO/WENO schemes and the DG method.

1.2.4 Artificial viscosities

The use of artificial viscosities to solve hyperbolic conservation laws has been pio-

neered by Neumann and Richtmyer [29], and has been popularized later by Smagorin-

sky [30] for Large Eddy Simulation (LES) purposes and by Ladyzhenskaya [31,32] for

theoretical purposes in the analysis of the Navier-Stokes equations. The early ver-

sions of artificial viscosities were overly dissipative. The interest for this technique

has faded over the years, especially in the DG FEM literature, where upwinding and

limiters have been shown to be efficient and to yield high order accuracy [9, 33–35].

Despite their indisputable success story, limiters have some disadvantages. For

instance, limiters may not be consistent in the steady-state limit, and thus may
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sometimes lead to difficulties when trying to use time marching schemes to reach

steady-state solutions [36, §3.5] and [37]. Furthermore, up to a few exceptions [34,

§3.4], slope limiting is essentially a one-dimensional concept that does not generalize

easily to unstructured meshes in two and three space dimensions. The theoretical

understanding of the stability and convergence properties of limiters is currently

restricted to uniform grids and scalar equations in one space dimension [1–5]. A true

two-dimensional non-oscillatory reconstruction which could be applied to arbitrary

unstructured meshes (without any additional post processing) seems to be available

only in the piecewise linear case [6], and extensions to the higher degree polynomial

reconstructions do not seem to be evident. For the reasons stated above, the interest

for artificial viscosities has recently been revived in the DG literature [36–40] and in

the CG literature as well [7, 41].

In the present work, we use the nonlinear artificial viscosity, which is proportional

to the local size of the residual of an entropy equation. For this reason, this nonlinear

artificial viscosity is called the entropy viscosity. The entropy equation itself holds

only in smooth flow regions, and becomes an inequality in shocks. Therefore, the

basic idea is that the entropy viscosity is large in strong shocks and small (of the

order of the truncation error) in the smooth parts of the flow. This simple idea is

mesh and approximation independent and can be applied to equations or physical

systems of equations that are supplemented with an auxiliary entropy inequality.

The use of a residual to construct an artificial viscosity is not a new idea. For

instance, several works rely on the residuals of conservation equations which then

are used to construct the so-called PDE-based artificial viscosity [39, 42]. However,

using the residuals of PDEs may be less robust than using the entropy residual. This

argument is based on the observation that consistency requires the residual of the

PDE to vanish in the distribution sense as the mesh size goes to zero, whereas the

very nature of entropy implies that the entropy residual converges to a Dirac measure

supported in shocks.
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Another immediate consequence of the choice of the entropy viscosity is that the

viscosity coefficient is proportional to the residual of an entropy equation, which is

known to be large in shocks and to be zero in contact discontinuities. As a result, this

strategy makes an automatic distinction between shocks and contact discontinuities,

and this subtle distinction cannot be made by the other artificial viscosity methods.

1.3 Thesis overview

The thesis is organized as follows: First we give a brief background on hyperbolic

scalar conservation laws and the system of compressible Euler equations in Chapter

II, where we will also mention some elementary aspects of equilibrium thermody-

namics. Then in Chapter III we discuss the main idea of stabilization of numerical

solutions to hyperbolic equations. In Chapter IV we give a general description of

the entropy-based artificial viscosity approximation in the framework of DG methods

for solving hyperbolic scalar conservation laws, and present computational results.

We discuss the extension of the method to compressible gas dynamics equations

and present computational results in Chapter V. We end the thesis with a chapter

relating to our conclusions.
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2. CONSERVATION LAWS

2.1 Hyperbolic scalar conservation laws

In this section we consider scalar conservation laws of hyperbolic type. Some

difficulties encountered with systems of hyperbolic equations are discussed here.

2.1.1 Integral and differential forms

To understand how conservation laws arise from physical principles, we will begin

by deriving the equation for conservation of mass in a d-dimensional gas dynamics

problem. Let δΩ ∈ R
d be an arbitrarily chosen open connected domain with the

boundary δΓ. Let t ∈ R+ be an arbitrary time. If u(x, t) and v(x, t) are the density

and velocity of the gas, respectively, then the vector function f(x, t) = u(x, t)v(x, t)

is the mass flux. The total mass of gas within δΩ at time t is defined as the integral

of the density:

m(t) =

∫

δΩ

u(x, t)dx. (2.1)

We assume that mass is neither created nor destroyed, then the mass in δΩ can

change only because of the gas flow across the boundary δΓ:

m(t+ dt) = m(t) +

inflow
︷ ︸︸ ︷[

−
∫

δΓ+

f(x, t) · dσdt
]

−

outflow
︷ ︸︸ ︷[∫

δΓ−

f(x, t) · dσdt
]

, (2.2)

where m(t + dt) is the total mass of gas within δΩ at time t + dt, δΓ+ and δΓ− are

the inflow and outflow portions of the boundary δΓ, respectively, and dσ = dσn(x)

is a vector area. The equation (2.2) can be modified to obtain the integral form of

the mass conservation law:

d

dt

∫

δΩ

u(x, t)dx+

∮

δΓ

f(x, t) · dσ = 0. (2.3)
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Another integral form of the same conservation law is obtained by integrating (2.3)

in time from any t1 to any t2 > t1:

∫

δΩ

u(x, t2)dx−
∫

δΩ

u(x, t1)dx+

∫ t2

t1

∮

δΓ

f(x, t) · dσdt = 0. (2.4)

To derive the differential form of mass conservation law, we must assume the differ-

entiability of functions u(x, t) and v(x, t). Then using:

∫

δΩ

u(x, t2)dx−
∫

δΩ

u(x, t1)dx =

∫ t2

t1

∫

δΩ

∂tu(x, t)dxdt (2.5)

and

∫ t2

t1

∮

δΓ

f(x, t) · dσdt =
∫ t2

t1

∫

δΩ

∇ · f(x, t)dxdt (2.6)

in (2.4) gives that for all δΩ ⊂ R
d and for all (t1 < t2) ∈ R+:

∫ t2

t1

∫

δΩ

[∂tu(x, t) +∇ · f(x, t)] dxdt = 0. (2.7)

Since the domain δΩ ⊂ R
d as well as times (t1 < t2) ∈ R+ are arbitrarily chosen, we

conclude that in fact the integrand in (2.7) must be identically zero for all x ∈ R
d

and for all t ∈ R+:

∂tu(x, t) +∇ · f(x, t) = 0 (2.8)

or

∂tu(x, t) +∇ · (u(x, t)v(x, t)) = 0, (2.9)

which is the desired differential form of the mass conservation law. Equation (2.8)

or (2.9) must be typically solved in conjunction with the equations for conservation

of momentum and total energy. These equations will be discussed later in Section

2.2 of the current chapter.

The derived conservation law can be solved in isolation only if the velocity v(x, t)

is known a priori or is known as a function of density u(x, t). If it is, then the mass
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flux f(x, t) is a function of density u(x, t) alone, say f(x, t) = f(u(x, t)), and the law

of conservation of mass becomes a hyperbolic scalar conservation law whose integral

and differential forms are given by:

d

dt

∫

δΩ

udx+

∮

δΓ

f(u) · dσ = 0, (2.10)

∫

δΩ

u(x, t2)dx−
∫

δΩ

u(x, t1)dx+

∫ t2

t1

∮

δΓ

f(u) · dσdt = 0, (2.11)

∂tu+∇ · f(u) = 0. (2.12)

To solve any of the equations (2.10)-(2.12), one must define appropriate initial and

boundary conditions.

Although such decoupling does not happen in gas dynamics, it can occur in other

applications where the same conservation law holds. For instance, it is possible for

modeling flows of chemicals in water, when the velocity of flowing water is known

from other sources. Another example is a traffic flow along a highway, where the

velocity of vehicles depends only on their local density on the road [43,44]. Moreover,

the hyperbolic scalar conservation law of the forms (2.10)-(2.12) serves as a solid basis

for studying systems of hyperbolic equations whose solutions exhibit discontinuities.

At the end of this section we formulate two problems which involve the differential

form (2.12) and hold in the classical sense only if the solution u is a differentiable

function. The Initial Value Problem (IVP) for the d-dimensional hyperbolic scalar

conservation law is defined as follows:







∂tu+∇ · f(u) = 0, (x, t) ∈ R
d × R+,

u(x, 0) = u0(x), x ∈ R
d.

(2.13)
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where u = u(x, t) : R
d × R+ → R is the solution, f(u) : R → R

d is a known

differentiable function of the solution u called the inviscid flux, and u0(x) is the

initial data which is also known. The Initial Boundary Value Problem (IBVP) is

defined as follows:







∂tu+∇ · f(u) = 0, (x, t) ∈ Ω× R+,

u(x, 0) = u0(x), x ∈ Ω.

(2.14)

where Ω ⊂ R
d is an open connected domain with the boundary Γ. The appropriate

choice of boundary conditions depends on the specific problem at hand and will be

discussed later in Chapter IV.

2.1.2 Diffusion

Consider the problem of propagating some small amount of a chemical or pollu-

tant in water, when the velocity of flowing water is a priori known. If this velocity

is identically zero everywhere throughout the domain of interest, then the equa-

tions (2.10)-(2.12) yield that the density of the chemical remains unchanged as time

evolves. This result does not reflect the physical reality observed in practice. We

expect molecular diffusion to occur as well as advection. Since the chemical is still

conserved, we can incorporate this effect into the derivation of the corresponded

conservation law:

m(t+ dt) = m(t)+

inflow
︷ ︸︸ ︷[

−
∫

δΓ+

f(x, t) · dσdt
]

−

outflow
︷ ︸︸ ︷[∫

δΓ−

f(x, t) · dσdt
]

+

inflow
︷ ︸︸ ︷[

−
∮

δΓ

J−(x, t) · dσdt
]

−

outflow
︷ ︸︸ ︷[∮

δΓ

J+(x, t) · dσdt
]

, (2.15)
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where J−(x, t) and J+(x, t) are the partial molecular currents and all notations now

relate to the properties of the chemical. The latter equation can be modified as:

d

dt

∫

δΩ

u(x, t)dx+

∮

δΓ

f(x, t) · dσ = −
∮

δΓ

J(x, t) · dσ, (2.16)

where J(x, t) = J+(x, t)+J−(x, t) is the molecular net current. Further modifications

of this equation along with the Fick’s law:

J(x, t) = −ǫ(x)∇u(x, t), (2.17)

where for all x ∈ R
d : ǫ(x) > 0 is the diffusion coefficient, will eventually lead to the

following PDE:

∂tu+∇ · f(u) = ∇ · (ǫ∇u). (2.18)

Equation (2.18) is the differential form of a scalar conservation law of parabolic

type. The major difference between equations (2.12) and (2.18) is that (2.18) always

has smooth unique solutions, even if the initial data is discontinuous. We can view

(2.12) as an approximation to (2.18) valid for very small ǫ, which however, play an

important role in the proper interpretation of possible discontinuities in the solution

of the equation (2.12).

2.1.3 Shock formation

The nonlinear hyperbolic conservation laws are known to produce discontinuities

in the solution, even if the initial data is smooth. To understand the mechanism of

shock wave formation, we consider a one-dimensional version of the IVP (2.13):







∂tu+ ∂xf(u) = 0, (x, t) ∈ R× R+,

u(x, 0) = u0(x), x ∈ R.

(2.19)
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If f(u) is a differentiable function of the solution u, then we can rewrite the first

equation of the IVP (2.19) in the following form:

∂tu+ f ′(u)∂xu = 0. (2.20)

We seek a curve x = x(t) in the (x, t)-plane, such that u(x(t), t) = const. The latter

requirement implies:

du(x(t), t)

dt
=
∂u(x(t), t)

∂t
+
∂u(x(t), t)

∂x(t)

dx(t)

dt
= 0. (2.21)

Comparing equations (2.20) and (2.21) yields that equation (2.21) holds only if:

dx(t)

dt
= f ′(u(x(t), t)). (2.22)

Taking into account that x(0) = ξ and that u(x(t), t) = u(x(0), 0) = u0(ξ) = const

by definition, we obtain the following Ordinary Differential Equation (ODE):

dx(t)

dt
= f ′(u0(ξ)), x(0) = ξ ∈ R, t ∈ R+. (2.23)

The solution of the ODE (2.23) is defined by:

x = ξ + f ′(u0(ξ))t (2.24)

and represents a characteristic of the PDE under discussion. Note, that
x− ξ
t

=

f ′(u0(ξ)) = f ′(u(x(t), t)) is the speed of the initial data propagation, which never

changes along the characteristic. In our case, this characteristic is a straight line in

the (x, t)-plane along which the solution u of the IVP (2.19) is a constant. For any

given pair (x, t) ∈ R×R+ we can solve the algebraic equation (2.24) for ξ and then:

u(x, t) = u0(ξ). (2.25)
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If f(u) is a linear function of u, such as in the case of linear transport equation,

for which f(u) = cu, then f ′(u) = const for all u and all straight lines from the family

of characteristics have the same slope and never cross each other. In this particular

case, u(x, t) = u0(x − ct) - all points of the initial profile u0(x) are traveling in the

space with the same speed c as shown in Figure 2.1.

Otherwise, if f(u) is a nonlinear function of u, such as for Burgers’ equation, for

which f(u) =
u2

2
, then f ′(u) 6= const for all u and some characteristics of the PDE

with different slopes may cross over, originating the formation of infinite gradients

of the function u (shock waves) and eventually yielding a solution analogous to a

breaking wave, see Figure 2.2.

Before the characteristics of a nonlinear hyperbolic PDE first cross, we can still

use (2.24) along with (2.25) to find the classical solution u of the IVP (2.19).

Fig. 2.1. Characteristics and solution for linear transport equation with c > 0.
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Fig. 2.2. Characteristics and solution for Burgers’ equation.

Let Tshock ∈ R+ be the time when characteristics first cross. Let us consider two

different characteristics whose origins are at vanishingly small distance ∆ξ from each

other:

x1 = ξ + f ′(u0(ξ))t, (2.26)

x2 = ξ +∆ξ + f ′(u0(ξ +∆ξ))t. (2.27)

If the two cross over at time t = T ∈ R+, then x1 = x2:

ξ + f ′(u0(ξ))T = ξ +∆ξ + f ′(u0(ξ +∆ξ))T, (2.28)

or

f ′(u0(ξ +∆ξ))− f ′(u0(ξ))

∆ξ
T = −1, (2.29)
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or

f ′(u0(ξ +∆ξ))− f ′(u0(ξ))

u0(ξ +∆ξ)− u0(ξ)
u0(ξ +∆ξ)− u0(ξ)

∆ξ
T = −1. (2.30)

As ∆ξ → 0:

f ′′(u0(ξ))u
′

0(ξ)T = −1 (2.31)

and

T =
−1

f ′′(u0(ξ))u′0(ξ)
. (2.32)

Finally:

Tshock =
−1

min
ξ∈R

[f ′′(u0(ξ))u
′

0(ξ)]
. (2.33)

To exclude the trivial cases, we assume that there exist u such that f ′′(u) 6= 0, and

that ∀ξ1 ∈ R, ∃ξ2 ∈ R such that u0(ξ1) 6= u0(ξ2). In other words, we do not consider

the cases when f(u) is a linear function of u or when the initial data u0(ξ) is a

constant function or both. Otherwise Tshock = ∞, which means that a shock wave

will never form. If f(u) is a convex function of u, such that f ′′(u) > 0 for all u,

then to form a shock wave, there must be points ξ where the slope of the initial

data u0(ξ) is negative. And vice versa - if f(u) is a concave function of u, such that

f ′′(u) < 0 for all u, then the initial data u0(ξ) must have points ξ where its slope is

positive. By minimization of the denominator in (2.32) we obtain the origin ξshock of

the characteristic which first crosses, and then the position xshock of this intersection:

xshock = ξshock + f ′(u0(ξshock))Tshock. (2.34)

The bottom line of this section is that one can use (2.24) along with (2.25)

to determine the classical solution u of the IVP (2.19) only for time t < Tshock.
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If Tshock = ∞, the classical solution is defined everywhere in the (x, t)-plane. If

Tshock = 0, the classical solution does not exist at all.

For time t ≥ Tshock the algebraic equation (2.24) may not have a unique solution.

It necessitates the multi-valued solutions to the IVP (2.19). These sorts of solutions

probably make sense in some contexts. However, in most practical situations it is

not physically reasonable. For example, the density of a gas cannot be multi-valued

at any spatial location. Therefore, we need to somehow define a nonclassical or

generalized solution of the equation or problem that represents physical reality.

2.1.4 Vanishing viscosity solution

One way to introduce a generalized solution of the hyperbolic scalar conservation

law (2.12) is to replace it with the equation of parabolic type (2.18) where ǫ > 0 is

a small constant parameter (diffusion or viscosity coefficient):

∂tu
ǫ +∇ · f(uǫ) = ǫ∆uǫ. (2.35)

This equation has a smooth unique solution uǫ for all time t > 0, for any set of initial

data, provided that ǫ > 0. If ǫ is extremely small, then we might expect the solution

uǫ of the parabolic equation (2.35) to be very close to the solution u of the hyperbolic

equation (2.12). Away from shock waves, ∆uǫ is bounded and the new term ǫ∆uǫ is

negligible. If a shock wave starts to form, the gradients of the solution uǫ of (2.35)

begin to blow up and the ǫ∆uǫ term becomes important. Figures 2.3 and 2.4 show

an example where the same piecewise linear initial data forms the solutions u and uǫ

to the one-dimensional inviscid and viscous Burgers’ equations, respectively.

Definition 2.1.1. A generalized solution u of the hyperbolic scalar conservation law

(2.12) is called admissible in vanishing viscosity sense or just a vanishing viscosity

solution if there is a sequence of smooth unique solutions uǫ of the parabolic equation

(2.35) which converges to u as ǫ→ 0.
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Fig. 2.3. Shock formation in inviscid Burgers’ equation.

Fig. 2.4. Solution to viscous Burgers’ equation for two different values of ǫ.



21

2.1.5 Weak solution

Another way to define a generalized solution of the inviscid equation (2.12) is

to go back to the more fundamental integral form (2.11), which does not require

the differentiability of the integrands, and say that u is a generalized solution of

the hyperbolic scalar conservation law (2.12) if the associated integral form (2.11) is

satisfied for all δΩ ⊂ R
d and for all (t1 < t2) ∈ R+.

There is another approach that results in a different integral formulation that is

often more convenient to work with. The basic idea is to take the PDE, multiply

by a smooth test function, integrate one or more times over some domain, and then

use integration by parts to move derivatives off the function u and onto the smooth

test function. The result is an integral equation involving fewer derivatives on u, and

hence requiring less smoothness.

In our case, we use test functions φ ∈ C1
0(R

d×R+). Here C
1
0 is the space of func-

tions that are continuously differentiable with compact support. The latter require-

ment means that φ is identically zero outside of some bounded domain. In particular,

the test functions φ vanish at infinity, i.e. φ |x∈∂Rd = 0 as well as φ |t=+∞ = 0.

If we multiply the equation (2.12) by a test function φ and then integrate over

space and time, we obtain:

∫

R+

∫

Rd

[φ∂tu+ φ∇ · f(u)] dxdt = 0. (2.36)

Integration by parts yields:

∫

R+

∫

Rd

[u∂tφ+ f(u) · ∇φ] dxdt+
∫

Rd

φ(x, 0)u0(x)dx = 0. (2.37)

Note that nearly all the boundary terms that normally arise through integration by

parts drop out. The remaining boundary term brings in the initial condition of the

PDE.
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Definition 2.1.2. A generalized solution u of the hyperbolic scalar conservation law

(2.12) is called a weak solution if the weak integral formulation (2.37) is satisfied for

all test functions φ ∈ C1
0(R

d × R+).

We should expect a direct connection between the fundamental integral form (2.11)

and the weak integral formulation (2.37). This can be achieved by considering special

test functions φ with the property that:

φ =







1 if (x, t) ∈ δΩ× [t1, t2],

0 if (x, t) /∈ δΩ⋃ δ∆× [t1 −∆, t2 +∆].

(2.38)

and with φ smooth in the intermediate strip of width ∆. It is not difficult to demon-

strate that the weak integral formulation (2.37) becomes the integral form (2.11)

as ∆ → 0. Therefore, any weak solution of the hyperbolic scalar conservation law

(2.12) also satisfies its original integral form.

2.1.6 One-dimensional Riemann problem as an example of nonuniqueness of a

weak solution

Unfortunately, weak solutions as well as solutions to the fundamental integral

form (2.11) are often not unique. We will demonstrate this fact by considering a

one-dimensional Riemann problem for the hyperbolic scalar conservation law (2.12)

with a convex inviscid flux f(u):







∂tu+ ∂xf(u) = 0, (x, t) ∈ R× R+,

u(x, 0) = u0(x), x ∈ R.

(2.39)
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where u0(x) is piecewise constant initial data with a single discontinuity:

u0(x) =







uL if x < 0,

uR if x > 0.

(2.40)

Obviously, there are no classical solutions to the IVP (2.39). If uL > uR, then at

any given time t, one will obtain a multi-valued “solution” for any spatial location

f ′(uR)t < x < f ′(uL)t. If uL < uR, then at any given time t, the “solution” is not

defined at all for all f ′(uL)t < x < f ′(uR)t. The form of a nonclassical or generalized

solution to the IVP (2.39) depends on the relation between uL and uR.

Case I : uL > uR :

In this case, the generalized solution is represented by a travelling shock wave as

shown in Figure 2.5 and has the following form:

u =







uL if x < st,

uR if x > st.

(2.41)

where s is the shock speed. Generally, s is a function of time t, but in the case of

the Riemann problem, we will show that s only depends on the left and right states.

Fig. 2.5. Shock wave.
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To find the shock speed s, we consider a one-dimensional version of the integral form

(2.11):

∀(x1 < x2) ∈ R and ∀(t1 < t2) ∈ R+ :
∫ x2

x1

u(x, t2)dx−
∫ x2

x1

u(x, t1)dx+

∫ t2

t1

f(u(x2, t))dt−
∫ t2

t1

f(u(x1, t))dt = 0, (2.42)

where x1 is the shock location at time t1 and x2 is the shock location at time t2,

see Figure 2.6. In accordance with this figure, equation (2.42) can be modified as

follows:

uL∆x− uR∆x+ f(uR)∆t− f(uL)∆t = 0 (2.43)

or

s =
∆x

∆t
=
f(uL)− f(uR)

uL − uR
=

[[f ]]

[[u]]
. (2.44)

The relation (2.44) between the shock speed s and the states uL and uR is called the

Rankine-Hugoniot jump condition. The generalized solution (2.41) along with the

jump condition (2.44) is unique. It is both the vanishing viscosity and weak solution,

and obviously satisfies the fundamental integral form (2.42).

Fig. 2.6. Shock path inside a rectangular region in (x, t)-plane.
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Case II : uL < uR :

Such relation between two pieces of the initial data necessitates the existence of

infinitely many weak solutions, which also satisfy the integral equation (2.42). One

of these is again (2.41) together with (2.44) in which the discontinuity propagates

with speed s as shown in Figure 2.7. Note that characteristics now go out of the

shock. However, this weak solution is not stable to perturbations - if the initial data

is smeared out slightly, or if a small amount of viscosity is added to the equation,

the weak solution changes completely. Another example of physically incorrect weak

solutions is any sort of piecewise linear connection between the left and right states,

which allows a finite number of discontinuities. The physically relevant generalized

solution is represented in Figure 2.8 by a weak solution in the form of the rarefaction

wave:

u =







uL if x < f ′(uL)t,

v(x, t) if f ′(uL)t ≤ x ≤ f ′(uR)t,

uR if x > f ′(uR)t.

(2.45)

where v(x, t) is the solution to f ′(v(x, t)) =
x

t
. This weak solution is stable to

perturbations of both the initial data and the equation itself and is in fact the

vanishing viscosity solution.

Fig. 2.7. Spurious or expansion shock.
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Fig. 2.8. Rarefaction wave.

2.1.7 Entropy conditions

We see that there might be many weak solutions to the hyperbolic scalar conser-

vation law (2.12). The existence of these spurious solutions is not merely a mathe-

matical curiosity. Under some circumstances nonphysical solutions of this type are

all too easily computed numerically, in spite of the fact that numerical methods

typically contain some numerical viscosity.

In order to effectively use the hyperbolic equations we should impose some ad-

ditional condition along with the differential equation in order to insure that the

problem has a unique weak solution that is physically correct. Often the condition

we want to impose is simply that the weak solution must be the vanishing viscosity

solution to the proper viscous equation. However, this condition is hard to work

with directly in the context of hyperbolic equations. Instead, other conditions have

been developed and can be applied directly to weak solutions of hyperbolic equa-

tions to check if they are physically admissible. Such conditions are called entropy

conditions. This name comes from gas dynamics, where the second law of thermo-

dynamics demands that the entropy of a system must be nondecreasing with time.

Across a physically admissible shock the entropy of the gas increases. Across a spu-

rious or expansion shock, however, the entropy of the gas would decrease, which is

not allowed. The entropy of a perfect gas can be computed as a simple function of
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the pressure and density, and the behavior of this function can be used to test a weak

solution for admissibility. For hyperbolic scalar equations it is possible to define a

function η(u) called an entropy function, which has similar diagnostic properties.

Similar to gas dynamics, we find that if the solution u of the hyperbolic scalar

conservation law (2.12) is smooth everywhere in R
d × R+, then the function η(u)

satisfies an additional differential equation:

∂tη(u) +∇ ·ψ(u) = 0 (2.46)

for some entropy flux ψ(u). Moreover, if η(u) and ψ(u) are differentiable functions

of the solution u, then we can rewrite (2.46) as:

η′(u)∂tu+ψ
′(u) · ∇u = 0. (2.47)

The hyperbolic equation (2.12) can be written as:

∂tu+ f ′(u) · ∇u = 0. (2.48)

Then multiplication of (2.48) by η′(u) and comparison with (2.47) yields:

ψ′(u) = η′(u)f ′(u). (2.49)

The equation (2.49) admits many solutions η(u) and ψ(u). For reasons that will be

seen below, we assume that the entropy function is convex, i.e. η′′(u) > 0 for all u.

If the solution u contains a discontinuity, then the manipulations performed above

are not valid everywhere in R
d×R+ space. Since we are interested in how the entropy

function η(u) behaves for the vanishing viscosity solution, we look at the related
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viscous or parabolic equation (2.35) with solution uǫ, and then let the viscosity go

to zero. Multiplication of (2.35) by η′(uǫ) yields:

η′(uǫ)∂tu
ǫ + η′(uǫ)∇ · f(uǫ) = η′(uǫ)ǫ∆uǫ (2.50)

or

∂tη(u
ǫ) +∇ ·ψ(uǫ) = ǫ∇ · (η′(uǫ)∇uǫ)− ǫη′′(uǫ)(∇uǫ)2. (2.51)

Integrating the last equation over an arbitrarily chosen open connected domain δΩ ∈
R

d with the boundary δΓ as well as in time from any t1 to any t2 > t1 gives:

∫ t2

t1

∫

δΩ

[∂tη(u
ǫ) +∇ ·ψ(uǫ)] dxdt = ǫ

∫ t2

t1

∫

δΩ

∇ · (η′(uǫ)∇uǫ)dxdt−

ǫ

∫ t2

t1

∫

δΩ

η′′(uǫ)(∇uǫ)2dxdt (2.52)

or

∫ t2

t1

∫

δΩ

[∂tη(u
ǫ) +∇ ·ψ(uǫ)] dxdt = ǫ

∫ t2

t1

∮

δΓ

η′(uǫ)∇uǫ · dσdt−

ǫ

∫ t2

t1

∫

δΩ

η′′(uǫ)(∇uǫ)2dxdt. (2.53)

As ǫ → 0, the first term on the right hand side of the last equation vanishes. This

is clearly true if u is at least continuous at the boundary δΓ for all t ∈ [t1, t2]. If u

is discontinuous at any spatial point x ∈ δΓ and at any time t ∈ [t1, t2], then the

first term vanishes anyway because the double integral is bounded. As ǫ → 0, the

second term vanishes only if u is at least continuous throughout the domain δΩ for all

t ∈ [t1, t2]. If there exist (x, t) ∈ δΩ× [t1, t2] such that u(x, t) is discontinuous, then
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the second term does not vanish but, since η(u) is convex, approaches a non-negative

limit. Therefore, as ǫ→ 0:

∫ t2

t1

∫

δΩ

[∂tη(u) +∇ ·ψ(u)] dxdt ≤ 0. (2.54)

Since the domain δΩ ⊂ R
d as well as times (t1 < t2) ∈ R+ are arbitrarily chosen,

we conclude that, at least formally, or more precisely - in vanishing viscosity sense,

that:

∂tη(u) +∇ ·ψ(u) ≤ 0 (2.55)

for all x ∈ R
d and for all t ∈ R+. We will later use the inequality (2.55) as a key

ingredient for development of the numerical schemes for solving hyperbolic scalar

conservation equations in Chapter IV. The weak integral formulation of the inequality

(2.55) is the following: for all non-negative test functions φ ∈ C1
0(R

d × R+) we find

that:

∫

R+

∫

Rd

[η(u)∂tφ+ψ(u) · ∇φ] dxdt+
∫

Rd

φ(x, 0)η(u0(x))dx ≥ 0. (2.56)

Definition 2.1.3. A weak solution u of the hyperbolic scalar conservation law (2.12)

is called an entropy admissible solution or just an entropy solution if the inequality

(2.56) is satisfied for all convex entropy functions η(u) and corresponding entropy

fluxes ψ(u).



30

Example :

Consider a one-dimensional Riemann problem (2.39)-(2.40) for Burgers’ equation for

which f(u) =
u2

2
and uL > uR. The physically relevant generalized solution for this

problem is a travelling shock wave with speed s =
uL + uR

2
. If we choose η(u) =

u2

2

(note that η′′(u) = 1 > 0), then ψ(u) =
u3

3
. If for a given (x, t) ∈ R × R+ the

function u is smooth, then:

∂tη(u) + ∂xψ(u) = ∂t

(
u2

2

)

+ ∂x

(
u3

3

)

=

u

(

∂tu+ ∂x

(
u2

2

))

= 0. (2.57)

Otherwise, if u has a discontinuity at that point, then the differential operations are

not valid anymore, and instead, we will integrate ∂tη(u)+∂xψ(u) over an infinitesmal

rectangle [x1, x2]× [t1, t2] which includes this space-time point:

∫ t2

t1

∫ x2

x1

[∂tη(u) + ∂xψ(u)] dxdt =

∫ x2

x1

η(u(x, t2))dx−
∫ x2

x1

η(u(x, t1))dx+

∫ t2

t1

ψ(u(x2, t))dt−
∫ t2

t1

ψ(u(x1, t))dt =

η(uL)∆x− η(uR)∆x+ ψ(uR)∆t− ψ(uL)∆t =

∆t (s(η(uL)− η(uR)) + ψ(uR)− ψ(uL)) =
∆t

12
(uR − uL)3 < 0. (2.58)

Hence, the solution is in fact the entropy solution. Besides that, the relation (2.58)

clearly indicates that the propagation of a rarefaction wave in the form of a shock

wave is not allowed.
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2.2 Foundations of fluid dynamics

2.2.1 Compressible Navier-Stokes equations

A general description of compressible flows is given by the system of compress-

ible Navier-Stokes equations, which play a fundamental role in understanding and

simulating compressible gases and fluids and are widely used in science and industry.

The compressible Navier-Stokes equations are derived under the assumption of

the continuum hypothesis and express conservation of mass, momentum, and total

energy for a fluid enclosed in an arbitrarily chosen open connected domain δΩ ∈ R
d

with the boundary δΓ over a finite time interval.

The conservation of mass states that the time rate of change of mass in δΩ must

be equal to the net mass flowing into δΩ through its boundary δΓ. The conservation

of momentum comes directly from Newton’s second law, which states that the time

rate of change of momentum in δΩ must be equal to the sum of all forces applied to

the fluid in δΩ. And finally the conservation of total energy states that total energy

of an isolated system remains constant.

We seek the density ρ, momentum m = ρu, where u is the velocity, and total

energy E =
m ·m
2ρ

+ ρe, where e is the internal energy per unit mass, as functions

of (x, t) ∈ R
d × R+. The compressible Navier-Stokes equations for U = (ρ,m, E)T

read:







∂tρ+∇ ·m = 0,

∂tm+∇ ·
(
1

ρ
m⊗m+ pI

)

= ∇ · (2µ∇su) +∇ · (λ∇ ·uI) + g,

∂tE +∇ ·
(
m

ρ
(E + p)

)

= ∇ · (2µ∇suu) +∇ · (λ∇ ·uu) +∇ · (κ∇T ) ,

U(x, 0) = U0(x).

(2.59)

where p is the pressure, T is the temperature, µ is the dynamic viscosity coefficient,

λ is the bulk viscosity coefficient, κ is the thermal conduction coefficient, g is a given
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external volume force, and ∇su =
1

2
(∇u+∇Tu) is the strain rate tensor. The initial

data U0(x) is supposed to be known. If the equations have to be solved on some

bounded domain, then we also need to include the appropriate types of boundary

conditions, such as inflow or outflow boundaries, slip or no-slip boundaries, and

others. These boundary conditions will be discussed later in Chapter V.

2.2.2 Viscosity and thermal conduction

The basic physical phenomena of viscosity and thermal conduction in a fluid

are due to the transport of momentum and energy via random molecular motion.

Each molecule in a fluid has momentum and energy, which it carries with it when it

moves from one location to another in space before colliding with another molecule.

The transport of molecular momentum gives rise to the macroscopic effect we call

viscosity, and the transport of molecular energy gives rise to the macroscopic effect

we call thermal conduction. This is why viscosity and thermal conduction are labeled

as transport phenomena. A study of these transport phenomena at the molecular

level is part of kinetic theory, which is beyond the scope of this work. Instead, we

simply state the macroscopic results of such molecular motion.

In general, both the dynamic and bulk viscosity coefficients depend on the ther-

modynamic state and properties of the fluid. For most normal situations, µ is a

constant or is a function of temperature only. A conventional relation for the tem-

perature variation of µ for air is given by Sutherland’s law µ ∼
√
T and the pressure

dependence is neglected.

To this day, the correct expression for the bulk viscosity coefficient λ is still

somewhat controversial. In 1845, George Stokes hypothesized that λ = −2

3
µ. The

kinetic theory found that λ must be nonzero if the kinetic energy of fluid molecules

can be transferred to internal degrees of freedom. The value of λ depends on the

characteristic time of the energy transfer and vanishes for monatomic fluids.
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The thermal conduction coefficient κ also depends primarily on the temperature,

because the results of elementary kinetic theory show that κ ∼ µ. All these simple

relationships are only approximate and do not hold at high temperatures. For any

detailed viscous flow calculation, one should consult the published literature for more

precise values of these coefficients.

2.2.3 Compressible Euler equations

For inviscid flows, both the dynamic and bulk viscosity coefficients as well as the

thermal conduction coefficient are zero, which corresponds to the compressible Euler

equations:







∂tρ+∇ ·m = 0,

∂tm+∇ ·
(
1

ρ
m⊗m+ pI

)

= g,

∂tE +∇ ·
(
m

ρ
(E + p)

)

= 0,

U(x, 0) = U0(x).

(2.60)

Such flows often exhibit a complex behavior of the solution, and may form differ-

ent types of localized structures including shock waves, contact discontinuities, and

rarefaction waves. Capturing these structures numerically is a highly nontrivial task.

The number of equations in the systems (2.59) and (2.60) is d+ 2. However, the

number of unknown functions including the pressure is d+3. It means that we need

to close the systems with an appropriate equation, which is called the Equation of

State (EoS) and links the pressure with other unknowns. The immense broadening

of theoretical understanding, experimental and measurement capabilities, and spe-

cialized technical applications have contributed to the large diversity of equations

of state that are presently available to describe compressible fluids. In the present
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work, we utilize the simplest possible model of a compressible fluid called a perfect

gas.

2.2.4 Equilibrium thermodynamics of a perfect gas

A hypothetical gas composed of a set of randomly-moving point particles that

exert no intermolecular forces is defined as a perfect gas. If at a given time t ∈ R+

the thermodynamic parameters of such a perfect gas do not vary over the entire

volume occupied by the gas, then the gas is said to be in a state of thermodynamic

equilibrium at time t. Equilibrium thermodynamics of perfect gases studies a wide

variety of processes by which gases pass through a sequence of states of thermody-

namic equilibrium. Hereinafter we assume the model of a perfect gas whose behavior

is subject to the equilibrium thermodynamics approach. Though this approach is

not perfect, it simplifies the analysis and study of the thermodynamic systems by

introducing lumped parameters, and often agrees well with experimental data.

We first introduce the Equation of State which determines the connection between

different thermodynamic parameters of a gas:

p = k
NT

V
, (2.61)

where p is the pressure, N is the total number of particles, T is the temperature,

V is the volume, and k = 1.381 · 10−23JK−1 is the Boltzmann constant. Since the

number of particles per unit volume is defined as n =
N

V
, the EoS (2.61) can be

written in the form:

p = knT. (2.62)

For a mix of perfect gases in a state of thermodynamic equilibrium the EoS (2.62)

is modified as follows:

p =
∑

i

pi =
∑

i

kniT, (2.63)
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where pi = kniT is the fractional pressure of the i-th gas. Given that N =
m

M
NA,

where m is the total mass, M is the molar mass, and NA = 6.022 · 1023mol−1 is

Avogadro’s number, that the specific gas constant is given by R =
kNA

M
, and that

the density is given by ρ =
m

V
, we define another useful form of the EoS for a perfect

gas:

p = RρT. (2.64)

Equation (2.64) is then used to construct the closure to the systems (2.59) and (2.60).

To do that, we first recall that the elementary kinetic theory of perfect monatomic

gases gives the following relation for the pressure:

p =
2

3
nǭ, (2.65)

where ǭ is the average kinetic energy per particle. Comparing the equations (2.62)

and (2.65) yields:

ǭ =
3

2
kT. (2.66)

Then we use some physical intuition to recognize that since the equation (2.66) is

derived for monatomic gases for which the number of translational degrees of freedom

per particle in three space dimensions is exactly 3, then
1

2
kT is associated with each

of these translational degrees of freedom. The logical extension to polyatomic gases

and the equipartition theorem yield:

ǭ =
i

2
kT, (2.67)

where i = itranslational + irotational + 2ivibrational is the total number of degrees of

freedom per polyatomic particle. Since there are no intermolecular forces in a perfect

gas, then the total internal energy of such a gas is defined as:

U =
m

M
NAǭ = m

i

2
RT. (2.68)
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And the internal energy per unit mass:

e =
U

m
=
i

2
RT. (2.69)

Combining the equations (2.64) and (2.69) yields:

p =
2

i
ρe. (2.70)

To define the microscopic property i in terms of macroscopic characteristics, we will

utilize the first law of equilibrium thermodynamics:

δQ = dU + pdV (2.71)

along with the definitions of heat capacity at constant volume:

CV =

(
δQ

dT

)

V

=

(
dU + pdV

dT

)

V

=
i

2
mR (2.72)

and heat capacity at constant pressure:

Cp =

(
δQ

dT

)

p

=

(
dU + pdV

dT

)

p

=
i+ 2

2
mR. (2.73)

Then introducing the adiabatic gas constant γ as:

γ =
Cp

CV

=
i+ 2

i
, (2.74)

we will find that:

i =
2

γ − 1
, (2.75)

and finally one more form of the EoS for a perfect gas reads:

p = (γ − 1)ρe. (2.76)
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The final form of the closure is obtained by expressing equation (2.76) in terms of

conservative variables relating to the systems of equations (2.59) and (2.60):

p = (γ − 1)

(

E − m ·m
2ρ

)

. (2.77)

We study the compressible Euler equations, i.e. the equations with zero viscosity

and thermal conduction terms. It means that any fluid particle participating in the

global flow modeled by these equations is adiabatically isolated (δQ = 0) from its

surroundings. Therefore, the fluid particles of a perfect gas whose motion is studied

can only undergo equilibrium compression or expansion with no heat transfer between

them. Then, according to the first law of equilibrium thermodynamics:

δQ = dU + pdV = 0. (2.78)

Using the equations (2.64) and (2.68) in (2.78) yields:

d

(

m
i

2
RT

)

+ pd

(

mR
T

p

)

= 0 (2.79)

or

i+ 2

2

dT

T
=
dp

p
. (2.80)

Taking into account equation (2.75) and that
da

a
= d ln a we have the following

relation:

d lnT
γ

γ−1 = d ln p (2.81)

or

∫

d lnT
γ

γ−1 =

∫

d ln p+ C, (2.82)
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where C is an arbitrary constant. Finally:

pT
γ

1−γ = C. (2.83)

It is not difficult to see, that:

pV γ = C or
p

ργ
= C (2.84)

as well as

TV γ−1 = C or
T

ργ−1
= C. (2.85)

Equations (2.83)-(2.85) reflect the relationship between thermodynamic parameters

of a perfect gas undergoing adiabatic compression or expansion.

2.2.5 Entropy

If we take the first law of equilibrium thermodynamics and divide it by the

equilibrium temperature T of the system, we obtain:

δQ

T
=
dU

T
+
pdV

T
. (2.86)

Using the equations (2.64) and (2.68) in (2.86) yields:

δQ

T
=

1

T
d

(

m
i

2
RT

)

+
p

T
d

(

mR
T

p

)

. (2.87)

From equation (2.64) we can also define T =
p

Rρ
, which modifies (2.87) as:

δQ

T
= m

i

2
R
ρ

p
d

(
p

ρ

)

+mRρd

(
1

ρ

)

. (2.88)
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Further modifications of the equation (2.88) along with i =
2

γ − 1
lead to the follow-

ing differential form:
δQ

T
= d

(
mR

γ − 1
ln

p

ργ

)

. (2.89)

The right hand side of this equation is a full differential. Hence, the left hand side

of the same equation must be a full differential of some function S, which is called

the entropy:
δQ

T
= dS (2.90)

with

S =
mR

γ − 1
ln

p

ργ
. (2.91)

If we consider a fluid particle of total mass m within a perfect gas, for which

the above derivations hold, then it is immediately seen from the equations (2.84)

and (2.91) that the entropy of the fluid particle undergoing adiabatic changes of its

volume remains constant and therefore
dS

dt
= 0. This result can be easily explained

(at least qualitatively) in the framework of statistical physics, where the entropy of

an equilibrium system is proportional to the logarithm of the number of possible

microscopic configurations of the individual molecules of the system (microstates)

which could give rise to the observed macroscopic state (macrostate) of the system.

The total number of microstates Γ̂ can be represented for example as:

Γ̂ = Γ̂RdΓ̂Md , (2.92)

where Γ̂Rd is the number of possible locations of molecules in the Euclidean space Rd

and Γ̂Md is the number of possible locations of molecules in the space of momentum

M
d. For adiabatic compression, for instance, the volume of the system decreases and

Γ̂Rd goes down. At the same time, the temperature of the system increases and Γ̂Md

goes up. As a result, these two trends cancel out and Γ̂ = const.
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As we have mentioned above, the full time rate of change of the entropy S of an

isolated fluid particle is zero, i.e.
dS

dt
= 0. On the other hand:

dS

dt
=
∂S

∂t
+

n∑

i=1

∂S

∂xi

∂xi
∂t

=
∂S

∂t
+ u · ∇S. (2.93)

Therefore:
∂S

∂t
+ u · ∇S = 0. (2.94)

Since we do not travel with the fluid particles in the framework of Eulerian gas

dynamics, we reexpress equation (2.94) in accordance with the continuum fluid as-

sumption. To achieve that, we first note that S = sV , where s is the entropy of a

fluid particle per unit volume. Then:

∂(sV )

∂t
+ u · ∇(sV ) = 0 (2.95)

or

∂s

∂t
+ u · ∇s+ s

1

V

(
∂V

∂t
+ u · ∇V

)

= 0. (2.96)

Recognizing that:
1

V

(
∂V

∂t
+ u · ∇V

)

=
1

V

dV

dt
(2.97)

and further that:
1

V

dV

dt
= ∇ ·u, (2.98)

we obtain the following equation:

∂ts+∇ · (us) = 0. (2.99)
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It has been shown, see for example [45], that the entropy S of a fluid particle can

only increase or jump to a higher value when the particle passes a shock:

∂S

∂t
+ u · ∇S > 0. (2.100)

Hence, in this case:

∂ts+∇ · (us) > 0. (2.101)

Eventually, we introduce the following inequality:

∂ts+∇ · (us) ≥ 0, (2.102)

where

s =
ρR

γ − 1
ln

p

ργ
. (2.103)

As it will be seen in Chapter V, that inequality plays the crucial role in further

discussion of numerical schemes which are based on the entropy production in the

interior of shock waves.
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3. THE IDEA OF NUMERICAL STABILIZATION AND ARTIFICIAL

VISCOSITIES

In this chapter we will introduce the so-called first-order artificial viscosity via

regularization of hyperbolic equations. Then we derive the criteria of stability and

monotonicity for certain primitive numerical schemes with subsequent extension to

more general cases. At the end of this chapter we will also give the preliminary recipe

for the entropy-based artificial viscosity construction but discuss it in further detail

in Chapter IV.

3.1 Finite difference approximation

Finite difference methods use the nodal values of a numerical solution uh to

approximate both time and space derivatives of an equation. This technique can be

represented by means of numerical stencils. By uh (xi, t
n) ≡ unh,i we denote a discrete

function uh at a spatial point xi at time tn. In our notation ∀n : τ = tn+1− tn and

∀i : h = xi+1 − xi.

3.1.1 Linear transport equation

Consider the following Initial Value Problem (IVP) for linear transport equation

in one space dimension:







∂tu+ c∂xu = 0, (x, t) ∈ R× R+,

u(x, 0) = u0(x), x ∈ R.

(3.1)

A solution to this problem is represented by:

u(x, t) = u0(x− ct), (3.2)
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and reflects the simple fact of propagation of the initial profile u0(x) along R with a

constant speed c, as for example in Figure 3.1. If the initial data u0(x) is smooth, then

(3.2) is a classical solution. Otherwise (3.2) is a nonclassical or generalized solution

which is both a vanishing viscosity and an entropy admissible weak solution.

Fig. 3.1. Solution to linear transport equation with c > 0.

Let us instead of dealing with the original or unperturbed linear transport equa-

tion in the IVP (3.1) consider a regularized or perturbed equation of the following

form:

∂tu+ c∂xu = ǫ∂xxu, (3.3)

and show the tight connection between a viscosity coefficient ǫ and the most well-

known finite difference schemes for numerically solving the original or unperturbed

linear transport equation.

We first need to discretize the regularized equation (3.3) in space and time. For

this purpose we employ the following centered difference scheme:

un+1
h,i − unh,i

τ
+ c

unh,i+1 − unh,i−1

2h
= ǫ

unh,i−1 − 2unh,i + unh,i+1

h2
(3.4)

or
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un+1
h,i =

τ

h

( c

2
+
ǫ

h

)

unh,i−1 +

(

1− 2ǫτ

h2

)

unh,i +
τ

h

(

− c
2
+
ǫ

h

)

unh,i+1. (3.5)

The scheme does not depend on the direction of flow and is identified by the numerical

stencil shown in Figure 3.2.

Fig. 3.2. CD numerical stencil.

Formula (3.5) provides an explicit algorithm for evolving the numerical solution uh

in time and has resulted from the first- and second-order approximations to the time

and space derivatives of the perturbed equation (3.3), respectively.

At the next stage of the current discussion we perform a von Neumann stability

analysis to determine within which range of variation of the viscosity coefficient ǫ

the centered difference scheme (3.5) is stable. The numerical solution uh can be

expanded in the orthonormal basis
{
eImx

}+∞

m=−∞
as follows:

uh =
+∞∑

m=−∞

Cm(t
n)eImxi , (3.6)

where Cm(t
n) is an m-th complex amplitude at time tn and I =

√
−1. Substituting

the expansion (3.6) into the formula (3.5) yields:

∀m : Cn+1
m =

G
︷ ︸︸ ︷((

1− 2ǫτ

h2

)

+
τ

h

( c

2
+
ǫ

h

)

e−Imh +
τ

h

(

− c
2
+
ǫ

h

)

eImh

)

Cn
m. (3.7)
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Using the Euler formula:

eIx = cos x+ I sin x (3.8)

simplifies (3.7) as:

∀m : Cn+1
m =

G
︷ ︸︸ ︷(

1− 2ǫτ

h2
(1− cosmh)− I cτ

h
sinmh

)

Cn
m. (3.9)

For stability one requires |G|2 ≤ 1. In our case, this requirement is equivalent to:

∀m : ǫ2 − h2

τ(1− cosmh)
ǫ+

c2h2

4

1 + cosmh

1− cosmh
≤ 0. (3.10)

It is not difficult to see that the roots of the corresponded quadratic equation are:

ǫ1 =
h2

4τ sin2 mh
2

(

1−
√
d
)

and ǫ2 =
h2

4τ sin2 mh
2

(

1 +
√
d
)

, (3.11)

where

d = 1−
(cτ

h

)2

sin2mh. (3.12)

Since the viscosity coefficient ǫ is assumed to be a real number, we require that d ≥ 0.

This requirement yields the following condition:

∣
∣
∣
cτ

h

∣
∣
∣ ≤ 1, (3.13)

where a =
∣
∣
∣
cτ

h

∣
∣
∣ is called the CFL number. Conditions of this type are named for

Courant, Friedrichs, and Lewy, and are referred to as CFL conditions. Using the

roots ǫ1 and ǫ2 of the corresponded quadratic equation, we can rewrite the inequality

(3.10) in the following form:
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∀m :







ǫ− h2

4τ

f1(mh)
︷ ︸︸ ︷

1−
√
d

sin2 mh
2














ǫ− h2

4τ

f2(mh)
︷ ︸︸ ︷

1 +
√
d

sin2 mh
2







≤ 0. (3.14)

To solve the above inequality, we first need to analyze the behavior of the functions

f1(mh) and f2(mh). The function f1(mh) =
1−
√
d

sin2 mh
2

is bounded on the interval

[0, 2π] from below and above:

∀mh ∈ [0, 2π] : f1(mh) ∈ [0, 2a2]. (3.15)

The function f2(mh) =
1 +
√
d

sin2 mh
2

is bounded on the interval [0, 2π] only from below:

∀mh ∈ [0, 2π] : f2(mh) ∈ [2,+∞]. (3.16)

We also note that:

∀mh ∈ [0, 2π] : f1(mh) ≤ f2(mh). (3.17)

These functions are plotted for a = 0.9 in Figure 3.3.

Fig. 3.3. Functions f1(mh) and f2(mh) with a = 0.9.
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The inequality (3.14) is equivalent to the following two separate systems of inequal-

ities:

∀m :







ǫ− h2

4τ

1−
√
d

sin2 mh
2

≤ 0,

ǫ− h2

4τ

1 +
√
d

sin2 mh
2

≥ 0.

or ∀m :







ǫ− h2

4τ

1−
√
d

sin2 mh
2

≥ 0,

ǫ− h2

4τ

1 +
√
d

sin2 mh
2

≤ 0.

(3.18)

It turns out that the left system of inequalities does not have a solution. It obvi-

ously follows from the condition (3.17). To find the solution of the right system of

inequalities, we can use the diagram depicted in Figure 3.4:

Fig. 3.4. Diagram.

from which it is easily seen that the centered difference scheme (3.5) for the regular-

ized linear transport equation (3.3) is conditionally stable with the following stability

conditions:

a ≤ 1 and
h2

2τ
a2 ≤ ǫ ≤ h2

2τ
. (3.19)

It is more convenient to determine the viscosity coefficient ǫ as follows:

ǫ = Cmaxh |f ′(u)| = Cmaxh |c| , (3.20)

where the range of variation of Cmax can be obtained from the stability conditions

(3.19). Indeed, the requirements:

Cmin
maxh |c| =

h2

2τ
a2 and Cmax

maxh |c| =
h2

2τ
(3.21)
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yield the new definition of the stability conditions (3.19):

a ≤ 1 and ǫ = Cmaxh |c| with Cmax ∈
[
a

2
,
1

2a

]

. (3.22)

Remark 3.1.1. We first observe that the viscosity coefficient ǫ vanishes as O(h)
when a grid size h goes to zero. Therefore, it is sometimes referred to as the first-

order artificial viscosity.

Remark 3.1.2. A von Neumann stability analysis itself does not use the informa-

tion about the smoothness of the initial profile. Therefore, the above derivations are

equally valid for both smooth and discontinuous sets of the initial data.

Remark 3.1.3. We also note that the centered difference scheme for the original or

unperturbed linear transport equation can be obtained by setting ǫ = 0 in the related

formula (3.5) and is unconditionally unstable since 0 <
a

2
h |c|.

Let us now check if the centered difference scheme (3.5) for the regularized linear

transport equation (3.3) under the stability conditions (3.22) is monotone. To do

that, we first note that a new computed value un+1
h,i defined by the formula (3.5) is

in fact a linear combination of the old computed values unh,i−1, u
n
h,i, and u

n
h,i+1. Then

we introduce the definition of a convex linear combination.

Definition 3.1.1. Given a finite number of points x1,x2, ...,xn in a real vector space

R
d, a convex linear combination of these points is a point of the form:

A1x1 + A2x2 + ...+ Anxn,

where the real numbers Ai satisfy Ai ≥ 0 and A1 + A2 + ...+ An = 1.

As a particular example, every convex linear combination of n real numbers x1, x2, ..., xn ∈
R lies between min

i=1,n
xi and max

i=1,n
xi. It is now clear that if the formula (3.5) represents
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a convex linear combination of unh,i−1, u
n
h,i, and u

n
h,i+1, then the new computed value

un+1
h,i lies between the minimum and maximum of the values computed at the pre-

vious time level tn and the centered difference scheme (3.5) is monotone. It is not

difficult to verify that the sum of all coefficients of the linear combination (3.5) is

exactly 1 and the requirement Ai ≥ 0 yields:

1

2
h |c| ≤ ǫ ≤ h2

2τ
(3.23)

or

ǫ = Cmaxh |c| with Cmax ∈
[
1

2
,
1

2a

]

. (3.24)

Compare the monotonicity condition (3.24) with the stability conditions (3.22)

and note that

[
1

2
,
1

2a

]

⊂
[
a

2
,
1

2a

]

and that
a

2
≤ 1

2
≤ 1

2a
.

Let us now summarize. The centered difference scheme (3.5) for the regularized

linear transport equation (3.3) is stable if:

a ≤ 1 and ǫ = Cmaxh |c| with Cmax ∈
[
a

2
,
1

2a

]

. (3.25)

The centered difference scheme (3.5) for the regularized linear transport equation

(3.3) is both stable and monotone if:

a ≤ 1 and ǫ = Cmaxh |c| with Cmax ∈
[
1

2
,
1

2a

]

. (3.26)

We now show three classical finite difference algorithms for numerical solving the

original or unperturbed linear transport equation. These numerical algorithms are

obtained from the centered difference scheme (3.5) by the following values of the
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first-order artificial viscosity: ǫ =
a

2
h |c| - Lax-Wendroff scheme, ǫ =

1

2
h |c| - upwind

scheme, and ǫ =
1

2a
h |c| - Lax−Friedrichs scheme.

Lax−Wendroff scheme :

The Lax-Wendroff scheme can be obtained from the centered difference formula (3.5)

by ǫ =
a

2
h |c| and is defined as follows:

un+1
h,i = unh,i −

1

2
a sgn(c)

(
unh,i+1 − unh,i−1

)
+

1

2
a2
(
unh,i−1 − 2unh,i + unh,i+1

)
, (3.27)

where sgn(c) =
c

|c| . As it is seen from the previous analysis - the scheme is stable

if a ≤ 1 but is not monotone. Interestingly, the Lax-Wendroff scheme was originally

derived for the unperturbed equation as a predictor-corrector method. In this method

we first compute the values u
n+ 1

2

h,i− 1

2

and u
n+ 1

2

h,i+ 1

2

at the mid-points:

u
n+ 1

2

h,i− 1

2

=

un

h,i− 1
2

︷ ︸︸ ︷

1

2

(
unh,i−1 + unh,i

)
−1

2
a sgn(c)

(
unh,i − unh,i−1

)
, (3.28)

u
n+ 1

2

h,i+ 1

2

=

un

h,i+1
2

︷ ︸︸ ︷

1

2

(
unh,i + unh,i+1

)
−1

2
a sgn(c)

(
unh,i+1 − unh,i

)
, (3.29)

and after that we write for the desired value un+1
h,i :

un+1
h,i = unh,i − a sgn(c)

(

u
n+ 1

2

h,i+ 1

2

− un+
1

2

h,i− 1

2

)

. (3.30)

Manipulating the above results will directly yield (3.27).
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Upwind scheme :

The upwind scheme can be obtained from the centered difference formula (3.5) by

setting ǫ =
1

2
h |c| and reads as:

un+1
h,i = unh,i−

1

2
a (sgn(c) + 1)

(
unh,i − unh,i−1

)
− 1

2
a (sgn(c)− 1)

(
unh,i+1 − unh,i

)
. (3.31)

The scheme is both stable and monotone if a ≤ 1. Note that formula (3.31) au-

tomatically chooses which part of the CD numerical stencil must be employed in

accordance with the direction of flow, see Figure 3.5.

Fig. 3.5. Upwind numerical stencils.

Lax− Friedrichs scheme :

The most diffusive scheme of this class of methods is known as the Lax−Friedrichs
scheme and corresponds to the centered difference formula (3.5) with ǫ =

1

2a
h |c|:

un+1
h,i =

1

2

(
unh,i−1 + unh,i+1

)
− 1

2
a sgn(c)

(
unh,i+1 − unh,i−1

)
. (3.32)

The scheme is both stable and monotone if a ≤ 1. The Lax−Friedrichs method

can be considered as a successful attempt to retrieve the pure centered difference

scheme for the unperturbed equation (see Remark 3.1.3.) by replacing unh,i term with

the average
1

2

(
unh,i−1 + unh,i+1

)
. The method is identified by the numerical stencil

depicted in Figure 3.6.
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Fig. 3.6. Lax−Friedrichs numerical stencil.

Examples :

The examples of numerical solutions to linear transport equation, in the context of

the current discussion, are shown in Figures 3.7 and 3.8. It is seen from Figure 3.7

that using the Lax-Wendroff artificial viscosity is more preferable for the transport

of smooth or regular initial conditions. Whereas the upwind artificial viscosity per-

forms better with discontinuities, see Figure 3.8. It can thus be understood that the

distribution of various amount of artificial viscosity between different parts of the

same numerical solution is probably the best strategy. Indeed, we add less viscosity

where the solution is smooth, thereby preserving the information from smearing, and

we add more viscosity to discontinuities to provide a monotone transition between

“before” and “after” state variables.

Remark 3.1.4. The Lax-Wendroff numerical solution in Figure 3.8 contains the

considerable overshoot that, however, does not much grow with time.
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Fig. 3.7. Linear transport of smooth data.

Fig. 3.8. Linear transport of discontinuous data.
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3.1.2 Extension to nonlinear scalar equations

The extension of the first-order artificial viscosity numerical stabilization tech-

nique to the nonlinear scalar equations is straightforward. Consider a nonlinear

scalar equation in one space dimension:

∂tu+ ∂xf(u) = 0. (3.33)

On the one hand, the centered difference spatial discretization of the original or

unperturbed equation generates unconditionally unstable numerical solutions, as for

instance, for inviscid nonlinear Burgers’ equation in Figure 3.9.

Fig. 3.9. CD-based numerical solution to inviscid nonlinear Burgers’
equation with no stabilization.

On the other hand, the most natural upwind scheme requires information on the

direction of flow at a spatial point xi at time tn, which itself is difficult to determine

in the case of nonlinear equations. To overcome these difficulties, we first regularize

the original equation:

∂tu+ ∂xf(u) = ∂x (ǫ(u)∂xu) , (3.34)
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and then apply the simplest centered difference scheme:

un+1
h,i − unh,i

τ
+
fn
h,i+1 − fn

h,i−1

2h
= (3.35)

1

2

(
ǫnh,i−1 + ǫnh,i

h2
unh,i−1 −

ǫnh,i−1 + 2ǫnh,i + ǫnh,i+1

h2
unh,i +

ǫnh,i + ǫnh,i+1

h2
unh,i+1

)

or

un+1
h,i = unh,i −

τ

2h

(
fn
h,i+1 − fn

h,i−1

)
+ (3.36)

τ

2

(
ǫnh,i−1 + ǫnh,i

h2
unh,i−1 −

ǫnh,i−1 + 2ǫnh,i + ǫnh,i+1

h2
unh,i +

ǫnh,i + ǫnh,i+1

h2
unh,i+1

)

along with the first-order artificial viscosity:

ǫnh,i ≡ ǫ
(
unh,i
)
= Cmaxh

∣
∣f ′
(
unh,i
)∣
∣ . (3.37)

Note that the numerical approximation to the derivative ∂x (ǫ(u)∂xu) is symmetrized

for better performance. The example of a numerical solution to inviscid nonlinear

Burgers’ equation is shown in Figure 3.10. Note that in this case, Cmax =
1

2
does

not correspond to the upwind difference scheme for the unperturbed equation and

that a new stability analysis is required to determine the acceptable range of Cmax.

From this perspective Cmax can be considered as a free or tunable parameter of the

numerical scheme which we define empirically.



56

Fig. 3.10. CD-based numerical solution to inviscid nonlinear Burg-

ers’ equation with stabilization

(

Cmax =
1

2

)

.

3.1.3 Extension to multi-dimensional grids

As usual we discretize the regularized PDE:

∂tu+∇ · f(u) = ∇ · (ǫ(u)∇u) (3.38)

by means of the centered difference scheme with the first-order artificial viscosity

defined as follows:

ǫnh,ijk ≡ ǫ
(
unh,ijk

)
= Cmaxh

∣
∣f ′
(
unh,ijk

)∣
∣ . (3.39)

3.1.4 Extension to nonuniform grids

Instead of h in formula (3.39) we should take the maximum local grid size associated

with the node ijk, i.e. h = max
l=1,2d

hijk,l.
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3.2 DG(0) approximation and numerical fluxes

In contrast to the finite difference approximation, the DG(0) or basic finite volume

approach deals with the cell averaged values ūnh,i of a numerical solution uh at time

tn and relies on the intercell numerical fluxes. In our notation ∀n : τ = tn+1 − tn

and ∀i : h = xi+ 1

2

− xi− 1

2

= xi+1 − xi, see Figure 3.11.

To demonstrate the stabilization capability of the first-order artificial viscosity in

the framework of DG(0) approximation, we first represent the regularized equation

in the following form:

∂tu+ ∂xf(u) = −∂xq, (3.40)

where

q = −ǫ(u)∂xu. (3.41)

Then we construct a grid:

Fig. 3.11. DG(0) grid.

and integrate the regularized equation (3.40) over space and time:

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

[∂tu+ ∂xf(u)] dxdt = −
∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

∂xqdxdt, (3.42)

or
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1

τ

ūn+1

h,i

︷ ︸︸ ︷


1

h

∫ x
i+1

2

x
i− 1

2

u
(
x, tn+1

)
dx



−1

τ

ūn
h,i

︷ ︸︸ ︷


1

h

∫ x
i+1

2

x
i− 1

2

u (x, tn) dx



+

1

h

fn

h,i+1
2

︷ ︸︸ ︷[

1

τ

∫ tn+1

tn
f
(

u
(

xi+ 1

2

, t
))

dt

]

−1

h

fn

h,i− 1
2

︷ ︸︸ ︷[

1

τ

∫ tn+1

tn
f
(

u
(

xi− 1

2

, t
))

dt

]

=

−1

h

qn
h,i+1

2
︷ ︸︸ ︷[

1

τ

∫ tn+1

tn
q
(

xi+ 1

2

, t
)

dt

]

+
1

h

qn
h,i− 1

2
︷ ︸︸ ︷[

1

τ

∫ tn+1

tn
q
(

xi− 1

2

, t
)

dt

]

, (3.43)

or

ūn+1
h,i − ūnh,i

τ
+
fn
h,i+ 1

2

− fn
h,i− 1

2

h
= −

qn
h,i+ 1

2

− qn
h,i− 1

2

h
, (3.44)

or

ūn+1
h,i = ūnh,i −

τ

h

(

fn
h,i+ 1

2

− fn
h,i− 1

2

)

− τ

h

(

qn
h,i+ 1

2

− qn
h,i− 1

2

)

. (3.45)

Here ūnh,i and ū
n+1
h,i are the averaged values of the numerical solution uh in cell i at

time tn and tn+1, respectively. We use a centered approximation to define the inviscid

numerical fluxes fn
h,i− 1

2

and fn
h,i+ 1

2

as:

fn
h,i− 1

2

≈ 1

2

(
fn
h,i−1 + fn

h,i

)
(3.46)

and

fn
h,i+ 1

2

≈ 1

2

(
fn
h,i + fn

h,i+1

)
. (3.47)
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To find an appropriate approximation to the viscous numerical fluxes qn
h,i− 1

2

and

qn
h,i+ 1

2

, let us integrate the discrete version of the equation (3.41):

qnh = −ǫnh∂xunh, (3.48)

where ǫnh =
{
ǭnh,i
}cells

i=1
and unh =

{
ūnh,i
}cells

i=1
as follows:

qn
h,i− 1

2
︷ ︸︸ ︷

1

h

∫ xi

xi−1

qnhdx = −1

h

∫ xi

xi−1

ǫnh∂xu
n
hdx (3.49)

and

qn
h,i+1

2
︷ ︸︸ ︷

1

h

∫ xi+1

xi

qnhdx = −1

h

∫ xi+1

xi

ǫnh∂xu
n
hdx. (3.50)

Taking into account the discontinuous nature of the piecewise constant numerical

solution uh at any arbitrary time tn, we can write these equations as:

qn
h,i− 1

2

= −1

h

∫ xi

xi−1

ǫnh
(
ūnh,i − ūnh,i−1

)
δ
(

x− xi− 1

2

)

dx (3.51)

and

qn
h,i+ 1

2

= −1

h

∫ xi+1

xi

ǫnh
(
ūnh,i+1 − ūnh,i

)
δ
(

x− xi+ 1

2

)

dx, (3.52)

which is identical to:

qn
h,i− 1

2

= −1

h
ǫn
h,i− 1

2

(
ūnh,i − ūnh,i−1

)
(3.53)

and

qn
h,i+ 1

2

= −1

h
ǫn
h,i+ 1

2

(
ūnh,i+1 − ūnh,i

)
. (3.54)

Using:

ǫn
h,i− 1

2

≈ 1

2

(
ǭnh,i−1 + ǭnh,i

)
(3.55)
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and

ǫn
h,i+ 1

2

≈ 1

2

(
ǭnh,i + ǭnh,i+1

)
(3.56)

eventually yields:

qn
h,i− 1

2

≈ −1

h

(
ǭnh,i−1 + ǭnh,i

2

)
(
ūnh,i − ūnh,i−1

)
(3.57)

and

qn
h,i+ 1

2

≈ −1

h

(
ǭnh,i + ǭnh,i+1

2

)
(
ūnh,i+1 − ūnh,i

)
. (3.58)

To unify the notation and summarize for the time being, let us slightly change

the above formulations. We first write the equations (3.44) or (3.45) in the following

form:

ūn+1
h,i − ūnh,i

τ
+
F̂ n
h,i− 1

2

+ F̂ n
h,i+ 1

2

h
= −

Q̂n
h,i− 1

2

+ Q̂n
h,i+ 1

2

h
(3.59)

or

ūn+1
h,i = ūnh,i −

τ

h

(

F̂ n
h,i− 1

2

+ F̂ n
h,i+ 1

2

)

− τ

h

(

Q̂n
h,i− 1

2

+ Q̂n
h,i+ 1

2

)

, (3.60)

then define the inviscid numerical fluxes F̂ n
h,i− 1

2

and F̂ n
h,i+ 1

2

as:

F̂ n
h,i− 1

2

≡ fn
h,i− 1

2

·ni− 1

2

≈ 1

2

(
fnh,i−1 + fnh,i

)
·ni− 1

2

(3.61)

and

F̂ n
h,i+ 1

2

≡ fn
h,i+ 1

2

·ni+ 1

2

≈ 1

2

(
fnh,i + fnh,i+1

)
·ni+ 1

2

, (3.62)

and viscous numerical fluxes Q̂n
h,i− 1

2

and Q̂n
h,i+ 1

2

as:

Q̂n
h,i− 1

2

≡ qn
h,i− 1

2

·ni− 1

2

≈ 1

2

(
qn
h,i−1 + qn

h,i

)
·ni− 1

2

+

1

h

(
ǭnh,i−1 + ǭnh,i

2

)
(
ūnh,i − ūnh,i−1

)
(3.63)
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and

Q̂n
h,i+ 1

2

≡ qn
h,i+ 1

2

·ni+ 1

2

≈ 1

2

(
qn
h,i + qn

h,i+1

)
·ni+ 1

2

+

1

h

(
ǭnh,i + ǭnh,i+1

2

)
(
ūnh,i − ūnh,i+1

)
, (3.64)

where ni− 1

2

= −i and ni+ 1

2

= +i, see Figure 3.11. Note that in the framework

of the DG(0) approximation, the first term in both equations (3.63) and (3.64) is

identically zero. Substituting both inviscid (3.61)-(3.62) and viscous (3.63)-(3.64)

numerical fluxes into the formulation (3.59) or (3.60) will exactly reproduce the

centered difference discretization (3.35) or (3.36) - with the only exception that

instead of nodal values unh,i one will have the cell averaged values ūnh,i of the numerical

solution uh at time tn. As usual:

ǭnh,i ≡ ǫ
(
ūnh,i
)
= Cmaxh

∣
∣f ′
(
ūnh,i
)∣
∣ . (3.65)

Remark 3.2.1. Note that the viscous numerical fluxes Q̂n
h,i− 1

2

and Q̂n
h,i+ 1

2

defined by

the equations (3.63) and (3.64) can be also represented as:

Q̂n
h,i− 1

2

≡ qn
h,i− 1

2

·ni− 1

2

≈ 1

2

(
qn
h,i−1 + qn

h,i

)
·ni− 1

2

+

max

(
ǭnh,i−1

h
,
ǭnh,i
h

)
(
ūnh,i − ūnh,i−1

)
(3.66)

and

Q̂n
h,i+ 1

2

≡ qn
h,i+ 1

2

·ni+ 1

2

≈ 1

2

(
qn
h,i + qn

h,i+1

)
·ni+ 1

2

+

max

(
ǭnh,i
h
,
ǭnh,i+1

h

)
(
ūnh,i − ūnh,i+1

)
. (3.67)
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Another useful observation that we would like to mention here is that the terms

including the jump of the numerical solution uh can be moved from the viscous

numerical flux definitions (3.63) and (3.64) to the inviscid numerical flux definitions

(3.61) and (3.62). In this case, we redefine the inviscid numerical fluxes F̂ n
h,i− 1

2

and

F̂ n
h,i+ 1

2

defined by the equations (3.61) and (3.62) as:

F̂ n
h,i− 1

2

≡ fn
h,i− 1

2

·ni− 1

2

≈ 1

2

(
fnh,i−1 + fnh,i

)
·ni− 1

2

+

1

h

(
ǭnh,i−1 + ǭnh,i

2

)
(
ūnh,i − ūnh,i−1

)
(3.68)

and

F̂ n
h,i+ 1

2

≡ fn
h,i+ 1

2

·ni+ 1

2

≈ 1

2

(
fnh,i + fnh,i+1

)
·ni+ 1

2

+

1

h

(
ǭnh,i + ǭnh,i+1

2

)
(
ūnh,i − ūnh,i+1

)
. (3.69)

Using formula (3.65) in equations (3.68) and (3.69) yields:

F̂ n
h,i− 1

2

≡ fn
h,i− 1

2

·ni− 1

2

≈ 1

2

(
fnh,i−1 + fnh,i

)
·ni− 1

2

+ (3.70)

Cmax

(∣
∣f ′
(
ūnh,i−1

)∣
∣+
∣
∣f ′
(
ūnh,i
)∣
∣

2

)

(
ūnh,i − ūnh,i−1

)

and

F̂ n
h,i+ 1

2

≡ fn
h,i+ 1

2

·ni+ 1

2

≈ 1

2

(
fnh,i + fnh,i+1

)
·ni+ 1

2

+ (3.71)

Cmax

(∣
∣f ′
(
ūnh,i
)∣
∣+
∣
∣f ′
(
ūnh,i+1

)∣
∣

2

)

(
ūnh,i − ūnh,i+1

)
.
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The viscous numerical fluxes Q̂n
h,i− 1

2

and Q̂n
h,i+ 1

2

defined by the equations (3.63) and

(3.64) now become:

Q̂n
h,i− 1

2

≡ qn
h,i− 1

2

·ni− 1

2

≈ 1

2

(
qn
h,i−1 + qn

h,i

)
·ni− 1

2

= 0←− for DG(0) (3.72)

and

Q̂n
h,i+ 1

2

≡ qn
h,i+ 1

2

·ni+ 1

2

≈ 1

2

(
qn
h,i + qn

h,i+1

)
·ni+ 1

2

= 0←− for DG(0) (3.73)

Remark 3.2.2. Note that the inviscid numerical fluxes F̂ n
h,i− 1

2

and F̂ n
h,i+ 1

2

defined by

the equations (3.70) and (3.71) can be also represented as:

F̂ n
h,i− 1

2

≡ fn
h,i− 1

2

·ni− 1

2

≈ 1

2

(
fnh,i−1 + fnh,i

)
·ni− 1

2

+ (3.74)

Cmax max
(∣
∣f ′
(
ūnh,i−1

)∣
∣ ,
∣
∣f ′
(
ūnh,i
)∣
∣
) (
ūnh,i − ūnh,i−1

)

and

F̂ n
h,i+ 1

2

≡ fn
h,i+ 1

2

·ni+ 1

2

≈ 1

2

(
fnh,i + fnh,i+1

)
·ni+ 1

2

+ (3.75)

Cmax max
(∣
∣f ′
(
ūnh,i
)∣
∣ ,
∣
∣f ′
(
ūnh,i+1

)∣
∣
) (
ūnh,i − ūnh,i+1

)
.

Remark 3.2.3. The inviscid numerical fluxes F̂ n
h,i− 1

2

and F̂ n
h,i+ 1

2

defined by the equa-

tions (3.74) and (3.75) are in fact the Lax-Friedrichs numerical fluxes.

Remark 3.2.4. Note that for the DG(0) approximation - the jump [[ūnh]] ∼ O(h),
which implies the extension to general DG(p) methods as [[unh]] ∼ O(hp+1).
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3.3 Entropy-based artificial viscosity

The concept of the entropy-based artificial viscosity implies the use of the residual

of an entropy equation to impose the appropriate dissipation to different (smooth

and discontinuous) parts of a numerical solution. To maintain the stability of the nu-

merical solution, the entropy viscosity is bounded by the first-order artificial viscosity

from above. Since the residual of an entropy equation is supposed to be vanishingly

small - of the order of the Local Truncation Error (LTE) in smooth regions and

arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except in

shocks, where it reaches the first-order upper bound.

It certainly does not make much sense to apply the above strategy to the numer-

ical schemes which have been previously considered in this chapter. These schemes

were actually discussed to develop some intuition of what will happen in Chapter IV.

For instance, the attempt to replace the first-order viscosity by the entropy viscosity

in centered difference formulas (3.5) or (3.36) will lead to loss of the stability of a

numerical solution because of the restrictions imposed on the viscosity coefficient ǫ.

The same is true in the case of the DG(0) approximation unless we stabilize both in-

viscid (3.70)-(3.71) and viscous (3.63)-(3.64) numerical fluxes, which, however, adds

too much viscosity, especially to shocks.

In the present work we employ higher-order DG methods along with higher-order

time integration schemes. In principle it accepts the use of edge stabilization terms

in both inviscid and viscous numerical flux definitions without significant overdissi-

pation, see Remark 3.2.4.

The entropy viscosity method can be formally constructed in a few steps:

• Given an entropy pair (η(u),ψ(u)), define the entropy residual:

Dh = ∂tη(uh) +∇ ·ψ(uh), (x, t) ∈ Ω× R+. (3.76)
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• Use this residual to define a viscosity, say ǫE:

ǫE = CEF+(Dh)
h2

‖η(uh)− η̄h‖L∞(Ω)

, (3.77)

where CE is a tunable constant, F+ is a positive functional that remains to be

specified, h ≡ h(x) is the local mesh size at x ∈ Ω, and η̄h =
1

‖Ω‖

∫

Ω

η(uh)dx is

the space-averaged value of the entropy. Since Dh is expected to oscillate, and

this is especially true in shocks where Dh approximates a Dirac measure, the

simplest functional that one can use to avoid negative values of Dh is F+(Dh) =

|Dh|. Introducing the scaling coefficient h2 together with the normalizing term

‖η(uh)− η̄h‖L∞(Ω) gives to ǫE the dimension of a viscosity.

• Introduce an upper bound to the entropy viscosity:

ǫmax = Cmaxhmax
∆x

|f ′ (uh)| , (3.78)

where ∆x is some neighborhood of x.

• Define the entropy viscosity:

ǫ = min (ǫE, ǫmax) . (3.79)

In order to further describe the entropy viscosity method, we have to specify the

numerical discretization. Implementation details depend on the numerical approxi-

mation. Implementation of the method for DG finite elements is described hereafter.

The above method is simple to implement, but simplicity has a price and the

price paid here is the introduction of two tunable constants CE and Cmax. In practice

these two constants are tuned by testing the method on a coarse grid. For any given

problem, the tuning is done quickly once and for all on a coarse mesh.
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Remark 3.3.1. The idea of using the entropy to design numerical methods for non-

linear conservation equations is not new. For instance, it is shown in [46, 47] that

the entropy production can be used as a posteriori error indicator and therefore is

useful for adaptive strategies.

Remark 3.3.2. Using a residual to construct a viscosity is not a new idea. For

example, the residual of the conservation equation itself can be employed, see [39,42].

Although the residual of the conservation equation is a good error indicator, it is far

less robust than the entropy residual. The reason is that consistency requires the

equation residual vanishes as a grid size h goes to zero, whereas the entropy residual

converges to a Dirac measure supported in shocks.
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4. DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD AND

ENTROPY-BASED ARTIFICIAL VISCOSITY APPROXIMATION FOR

SOLVING HYPERBOLIC SCALAR CONSERVATION LAWS

4.1 Introduction

This chapter provides a detailed description of a discontinuous Galerkin spatial

discretization technique with an embedded entropy-based artificial viscosity approx-

imation to obtain stable and accurate numerical solutions to different types of hy-

perbolic scalar conservation equations. We will also discuss the procedure of explicit

integration in time which we apply to spatially semi-discrete forms. The chapter

ends up with considering one- and two-dimensional numerical tests which clearly

demonstrate the satisfactory stability properties of the method and optimal conver-

gence rates as well. The extension to compressible gas dynamics equations will be

discussed later in Chapter V.

4.2 Preface

The hyperbolic scalar conservation equations themselves are frequently used to

model a number of physically important phenomena, as for example inviscid nonlin-

ear Burgers’ equation - probably the simplest model equation which has been widely

used to study shock waves propagation, acoustic transmission, and traffic flow. The

reader is referred to Fletcher [48] for some of the phenomena that can be exactly or

approximately modeled by this equation. Beyond this fact these relatively simple

equations can also inherit some particular nonlinear features of the general systems

of equations - and therefore can be considered as a good experimental platform for

development, implementation, and testing of the numerical schemes for systems of

hyperbolic conservation laws.
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To make the last statement more clear, let us consider the system of compressible

Euler equations in one space dimension:







∂tρ+ ∂x (ρu) = 0,

∂t (ρu) + ∂x (ρu
2 + p) = 0,

∂tE + ∂x (u (E + p)) = 0.

(4.1)

Let us now make the first assumption that the temperature of the flow is constant,

i.e. T = T0. Therefore, the Equation of State becomes p = RρT0 and we do not

need the energy conservation equation. In this case, we will be left with the mass

and momentum conservation equations only:







∂tρ+ ∂x (ρu) = 0,

∂t (ρu) + ∂x (ρu
2 + p) = 0,

p = RρT0.

(4.2)

Expanding the momentum conservation equation, we can write:

u∂tρ+ ρ∂tu+ u∂x (ρu) + ρu∂xu+ ∂xp = 0. (4.3)

Using the mass conservation equation, we can simplify the above equation as:

∂tu+ u∂xu+
1

ρ
∂xp = 0. (4.4)

To isolate the convection process from the acoustic signal propagation, let us now

make the second assumption that the pressure is constant throughout the entire

domain and so the pressure gradient term disappears, yielding:

∂tu+ u∂xu = 0. (4.5)
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The same equation in conservative form reads:

∂tu+ ∂x

(
u2

2

)

= 0, (4.6)

which is an inviscid nonlinear Burgers’ equation in one space dimension. The equa-

tion (4.6) captures the non-linearity of the convection terms of the original system

(4.1), and is often used to test the numerical schemes before proceeding with the

system of compressible Euler equations. Note that in multi-dimensional case the

equation (4.6) becomes:

∂tu+∇ ·
(
u2

2
e

)

= 0, (4.7)

where the components ei of the vector e are defined as {ei}di=1 = 1.

Another potentially useful equation which we employ to test the linear propa-

gation of both smooth and discontinuous initial conditions is the linear transport

equation, which in one space dimension is defined as follows:

∂tu+ c∂xu = 0 (4.8)

or

∂tu+ ∂x (cu) = 0, (4.9)

where c is some constant speed of propagation. Note that in multi-dimensional case

the equation (4.9) becomes:

∂tu+∇ · (βu) = 0, (4.10)

where β = β (x) is a smooth vector field.

Both Burgers’ and linear transport equations may be solved analytically, which

makes them a valuable tool to measure the convergence properties of the numerical

methods.
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4.3 Model problem

We consider the DG method for spatial discretization of the following model

problem:







∂tu+∇ · f(u) = 0, (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω.

(4.11)

where u = u(x, t) : R
d × R+ → R is the solution, f(u) : R → R

d is a known

differentiable function of the solution u called the inviscid flux, u0(x) : Rd → R is

the initial data which is also known, Ω ⊂ R
d is an open connected domain with the

boundary Γ, and (0, T ] ∈ R+ is a time interval.

This Initial Boundary Value Problem for the multi-dimensional hyperbolic scalar

conservation law (2.12) has been previously introduced in Chapter II, see equation

(2.14), and is supposed to be equipped with the appropriate boundary conditions

on Γ. For the sake of simplicity we assume that an appropriate boundary function

g is prescribed on the boundary Γ. That can be done either by using the periodic

boundary conditions or by assuming that the initial data u0(x) is compactly sup-

ported and we are interested in the solution u before the domain of dependence of

u0(x) reaches the boundary of the domain Ω.

We regularize the IBVP (4.11) as follows:







∂tu+∇ · f(u) = −∇ ·q, (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω.

(4.12)

where q ≡ q (µ,∇u) = −µ∇u is the viscous flux and µ ≡ µ(u) is the artificial

viscosity whose construction will be later based on the residual of the following

entropy inequality:
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∂tη(u) +∇ ·ψ(u) ≤ 0, (4.13)

where (η(u),ψ(u)) is a given entropy pair.

4.4 Discretization in space

For practical computations we first need to discretize the regularized model prob-

lem (4.12) in space. For this purpose, we consider the DG finite element discretiza-

tion. We begin by introducing a mesh.

4.4.1 Mesh and some notation

We discretize the domain of interest Ω into the set Th of disjoint elements K such

that
⋃

K∈Th

K̄ = Ω̄. Here, K̄ = K∪∂K where ∂K is the boundary ofK, Ω̄ = Ω∪Γ, and

h denotes the piecewise constant mesh function defined by h |K ≡ hK = diam(K) for

all K ∈ Th. An element K is assumed to be either a polygon (we use quadrilaterals)

in two space dimensions or a polyhedron (we use hexahedrons) in three space dimen-

sions. We assume the shape regularity of the mesh Th, meaning that if ρK is the

diameter of the largest ball inscribed in K, then the ratio max
K∈Th

hK
ρK

is finite, i.e. the

elements are not too flat. For all K ∈ Th the collection of elements in Th adjacent

to K is denoted by ∆K . We assume that the mesh Th is locally quasi-uniform in the

sense that the quantity max
K∈Th

hK
min

K′∈∆K

hK′

is finite, i.e. all the elements adjacent to K

have a diameter of the order hK .

Let us suppose that each K ∈ Th is an image of a fixed reference element K̂,

that is, K = σK(K̂) for all K ∈ Th. Here, we only consider the case when K̂ is the

open unit hypercube in R
d. The mapping σK of the reference element K̂ to the real

element K ∈ Th is assumed to be bijective and smooth. For the elements K which
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are located in the interior of the domain Ω, such that the intersection ∂K∩Γ = ∅, the
mapping σK is represented by a d-linear function. For the elements on the boundary

Γ, such that the intersection ∂K ∩ Γ 6= ∅, the mapping relied on the polynomials of

higher degree might be required.

On the reference element K̂ we define the space Q̂p of polynomials of degree p ≥ 0

as follows:

Q̂p = span

{
d∏

i=1

x̂ωi

i : 0 ≤ ωi ≤ p

}

. (4.14)

Any polynomial function q̂ ≡ q̂(x̂) ∈ Q̂p of the degree p ≥ 0 can be represented on

the reference element K̂ through the values q̂i ≡ q̂(x̂i) at the support points x̂i ∈ K̂
and the respective basis functions Φ̂i(x̂) associated with each of these support points:

q̂ =
Ns∑

i=1

q̂iΦ̂i(x̂), (4.15)

where Ns = (p + 1)d is the number of support points. The concrete appearance of
{
Φ̂i(x̂)

}Ns

i=1
depends on the number of dimensions of the reference element K̂ as well

as the polynomial degree p.

Now, we introduce the finite element space Vp
h consisting of discontinuous scalar-

valued polynomial functions vh of degree p ≥ 0:

Vp
h =

{

vh ∈ L2(Ω) : vh,K ◦ σK ∈ Q̂p

}

. (4.16)

For each element K ∈ Th the following representation holds:

vh =
Ns∑

i=1

vh,iΦi(x), (4.17)

where vh,i ≡ vh(xi) are the values of vh at the support points xi ∈ K and Φi(x) are

the associated basis functions which are compactly supported on K.
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Note that:

vh =
Ns∑

i=1

vh,iΦi(x) =
Ns∑

i=1

vh,iΦi(σK(x̂)) =
Ns∑

i=1

vh,iΦ̂i(x̂). (4.18)

In particular, a d-linear mapping of the reference element K̂ to the real element

K ∈ Th can be defined as follows:

x =
Nv∑

v=1

xvΦ̂v(x̂), (4.19)

where v is the index of the mapped vertex, Nv = 2d is the number of vertices on the

d-dimensional hypercube, and xv is the coordinate vector of the vertex v on the real

element K ∈ Th.

For each K ∈ Th and each x ∈ ∂K we denote by v+h,∂K the interior trace of vh on

∂K and by v−h,∂K the exterior trace of vh on ∂K. Actually, the inner trace v+h,∂K of vh

on ∂K is taken from within the element K. And the outer trace v−h,∂K of vh on ∂K

is defined from within the neighboring element K ′. If x ∈ ∂K ∩ Γ, then v−h,∂K = g

with g be an appropriate boundary function.

Figure 4.1 shows some examples of meshes which we used in our computations,

and biquadratic (Q2) quadrilateral elements with the support points are depicted in

Figure 4.2.

4.4.2 Standard DG formulation

To devise the discontinuous Galerkin method, we first derive a weak formulation

of the regularized model problem (4.12). We multiply the first equation of the reg-

ularized IBVP (4.12) by an arbitrary smooth weight function v and then integrate

the result over an arbitrary element K ∈ Th:

∫

K

v∂tudx+

∫

K

v∇ · f(u)dx+

∫

K

v∇ ·qdx = 0. (4.20)
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Fig. 4.1. Square and circular meshes.

Fig. 4.2. Q2 quadrilateral elements.
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The integration by parts yields:

∫

K

v∂tudx+

∫

K

∇ · (vf(u)) dx−
∫

K

∇v · f(u)dx+
∫

K

∇ · (vq) dx−
∫

K

∇v ·qdx = 0. (4.21)

The application of Gauss-Ostrogradski formula gives:

∫

K

v∂tudx+

∮

∂K

vf(u) ·n∂Kdσ −
∫

K

∇v · f(u)dx+
∮

∂K

vq ·n∂Kdσ −
∫

K

∇v ·qdx = 0, (4.22)

where n∂K is an outward unit normal vector to the boundary ∂K. To obtain a

discrete form of the weak formulation (4.22), we replace the smooth weight function

v with its analogue vh ∈ Vp
h and the analytical solution u with a numerical solution

uh ∈ Vp
h:

∫

K

vh∂tuhdx+

∮

∂K

vhf(uh) ·n∂Kdσ −
∫

K

∇vh · f(uh)dx+
∮

∂K

vhqh ·n∂Kdσ −
∫

K

∇vh ·qhdx = 0, (4.23)

where qh ≡ q (µh,∇uh) = −µh∇uh and µh = µ(uh). Since the numerical solution uh

is allowed to be discontinuous across the boundaries of all elements, the dot prod-

ucts f(uh) ·n∂K and qh ·n∂K are not uniquely defined on ∂K. Hence, we uniquely

define them by replacing the physical flux functions f(uh) ·n∂K and qh ·n∂K by the

numerical flux functions F̂h,∂K and Q̂h,∂K , respectively.

Eventually, we formulate a very compact numerical scheme of an arbitrarily high

order of accuracy for which the numerical solution uh ∈ Vp
h within each element

K ∈ Th is kept independent of the numerical solutions in other elements from Th,

with interelement communication occurring only via numerical flux functions at the

boundaries of the adjacent elements. This scheme is called the discontinuous Galerkin
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finite element method of degree p, or DG(p) method in short, and can be formulated

as follows:

∀K ∈ Th find uh ∈ Vp
h such that ∀vh ∈ Vp

h :

∫

K

vh∂tuhdx+

∮

∂K

vhF̂h,∂Kdσ −
∫

K

∇vh · f(uh)dx+
∮

∂K

vhQ̂h,∂Kdσ −
∫

K

∇vh ·qhdx = 0. (4.24)

The inviscid numerical flux F̂h,∂K basically depends on the inner trace u+h,∂K of

uh on ∂K and the outer trace u−h,∂K of uh on ∂K as well as the outward unit normal

vector n∂K to the boundary ∂K:

F̂h,∂K = F̂h,∂K

(
u+h,∂K , u

−

h,∂K ,n∂K

)
. (4.25)

The viscous numerical flux Q̂h,∂K , in addition to that, also depends on µ+
h,∂K∇u+h,∂K

and µ−

h,∂K∇u−h,∂K :

Q̂h,∂K = Q̂h,∂K

(
u+h,∂K , u

−

h,∂K , µ
+
h,∂K∇u+h,∂K , µ−

h,∂K∇u−h,∂K ,n∂K

)
. (4.26)

4.4.3 Numerical fluxes

Inviscid fluxes :

The inviscid numerical flux F̂h,∂K( · , · , · ) must be both consistent with the respective

physical flux f( · ) ·n∂K and conservative. It means that:

• ∀K ∈ Th the inviscid numerical flux F̂h,∂K( · , · , · ) is consistent with the phys-

ical flux f( · ) ·n∂K , meaning that:

F̂h,∂K(v, v,n∂K) = f(v) ·n∂K . (4.27)
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• ∀K ∈ Th the inviscid numerical flux F̂h,∂K( · , · , · ) is conservative, i.e. given

any two adjacent elements K ∈ Th and K ′ ∈ ∆K ⊂ Th, at each point x ∈
∂K ∩ ∂K ′, taking into account that n∂K′ = −n∂K , we have that:

F̂h,∂K(u, v,n∂K) = −F̂h,∂K(v, u,−n∂K). (4.28)

There exist several types of inviscid numerical fluxes satisfying these two conditions.

Among them - the Godunov, Osher, Lax-Friedrichs, Roe numerical fluxes [49] and

others. As an example, here we consider two similar inviscid numerical fluxes, namely

the Lax-Friedrichs numerical flux and JLG numerical flux [50].

The Lax-Friedrichs numerical flux F̂ LF
h,∂K has been previously introduced in the

framework of DG(0) approximation, see Chapter III and equations (3.74) and (3.75),

and is now defined as follows:

F̂ LF
h,∂K =

1

2

(
f(u+h,∂K) + f(u−h,∂K)

)
·n∂K + ωα∂K

(
u+h,∂K − u−h,∂K

)
(4.29)

or

F̂ LF
h,∂K =

{{
f(uh)

}}

∂K
·n∂K + ωα∂K [[uh]]∂K . (4.30)

The JLG numerical flux F̂ JLG
h,∂K can be written in the following form:

F̂ JLG
h,∂K = f

(

u+h,∂K + u−h,∂K
2

)

·n∂K + ωα∂K

(
u+h,∂K − u−h,∂K

)
(4.31)

or

F̂ JLG
h,∂K = f

({{
uh
}}

∂K

)
·n∂K + ωα∂K [[uh]]∂K . (4.32)

Here, we use
{{
·
}}

∂K
to denote the average on ∂K which serves for consistency

purposes and [[ · ]]∂K to denote the jump on ∂K which is added for stabilization of

both inviscid numerical fluxes. The parameter ω is typically 0 or
1

2
and the value
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of α∂K is defined as the maximum propagation speed associated with the whole

boundary ∂K of the element K:

α∂K = ‖ |f ′(uh) ·n∂K | ‖L∞(K∪∆K), (4.33)

where ‖ · ‖L∞(K∪∆K) means the maximum on the elementK and all elements adjacent

to K, see Figure 4.3.

Remark 4.4.1. The definition (4.33) of α∂K can be slightly changed to associate

only one value of α∂K with each j-th part of the boundary ∂K, see Figure 4.4:

αj
∂K = ‖ |f ′(uh) ·n∂K | ‖L∞(K∪Kj). (4.34)

The both definitions are similar and we did not observe any significant difference in

the results.

Remark 4.4.2. We note that the dependence of both Lax-Friedrichs and JLG in-

viscid numerical fluxes upon α∂K makes them a function of not only the immediate

internal u+h,∂K and external u−h,∂K states of the numerical solution uh, but implies the

local dependence within some neighborhood of the element K. However, for the sake

of simplicity we hold the form F̂h,∂K

(
u+h,∂K , u

−

h,∂K ,n∂K

)
.

Remark 4.4.3. Note that in the particular case of linear transport equation, f(u) =

βu, using ω =
1

2
and (4.33) in either (4.29)-(4.30) or (4.31)-(4.32) is equivalent to

using the upwind numerical flux, since:

F̂h,∂K =
1

2

(
βu+h,∂K + βu−h,∂K

)
·n∂K +

1

2
|β ·n∂K |

(
u+h,∂K − u−h,∂K

)
=







u+h,∂Kβ ·n∂K if β ·n∂K ≥ 0,

u−h,∂Kβ ·n∂K if β ·n∂K ≤ 0.

(4.35)
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Fig. 4.3. Stencil for α∂K .

Fig. 4.4. Stencil for αj
∂K .
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Viscous fluxes :

In a spirit of Chapter III, see equations (3.66) and (3.67), we define the viscous

numerical flux Q̂h,∂K as follows:

Q̂h,∂K =
1

2

(
q
(
µ+
h,∂K ,∇u+h,∂K

)
+ q

(
µ−

h,∂K ,∇u−h,∂K
))
·n∂K +

δβ∂K
(
u+h,∂K − u−h,∂K

)
(4.36)

or

Q̂h,∂K =
{{
q(µh,∇uh)

}}

∂K
·n∂K + δβ∂K [[uh]]∂K . (4.37)

The parameter δ is typically 0 or 1 and the value of β∂K is defined as the maximum

relative artificial viscosity associated with the whole boundary ∂K of the element K:

β∂K =
∥
∥
∥
µh

h

∥
∥
∥
L∞(K∪∆K)

. (4.38)

Remark 4.4.4. Similar to the formulation (4.34) for αj
∂K, the definition (4.38) can

be also slightly changed as:

βj
∂K =

∥
∥
∥
µh

h

∥
∥
∥
L∞(K∪Kj)

. (4.39)

Note that the viscous numerical flux Q̂h,∂K defined by the equations (4.36) or (4.37)

is both consistent with the respective physical flux qh ·n∂K and conservative.

Remark 4.4.5. We note that the discontinuous Galerkin finite element methods are

similar to finite volume schemes, especially in the use of numerical fluxes. In fact,

the basic finite volume schemes exactly correspond to the DG(0) method, i.e. to

the discontinuous Galerkin method using a piecewise constant representation of the

numerical solution uh. Consequently, the DG(p) methods with p > 0 can be treated

as the natural generalization of finite volume schemes to methods of higher order of

accuracy.
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4.5 Discretization in time

In this section we will describe the time integration procedure which we apply

to the discontinuous Galerkin finite element discretization (4.24) of the regularized

model problem (4.12). For the time discretization of (4.24) we first introduce some

notation. By 0 < t0 < t1 < t2 < ... < tN = T we define a partition of the time

interval (0, T ] with time stepping τn = tn+1 − tn where n = 0, ..., N − 1. By unh ∈ Vp
h

we denote a discrete function uh ∈ Vp
h at time tn.

If ζK ∈ N+ is a local numbering of degrees of freedom within an element K ∈ Th,

then a weight function vh ∈ Vp
h can be defined in the following form:

vh =
∑

i∈ζK

vh,iΦi(x). (4.40)

Since
{
vh,i
}

i∈ζK
∈ R are arbitrarily chosen, we obtain the following system of PDEs:

∀K ∈ Th find uh ∈ Vp
h such that ∀i ∈ ζK :

∫

K

Φi(x)∂tuhdx+

∮

∂K

Φi(x)F̂h,∂Kdσ −
∫

K

∇Φi(x) · f(uh)dx+
∮

∂K

Φi(x)Q̂h,∂Kdσ −
∫

K

∇Φi(x) ·qhdx = 0. (4.41)

In fact, the basis functions
{
Φi(x)

}

i∈ζK
∈ Vp

h form a complete set of functions in the

sense that any polynomial form ah ∈ Vp
h can be represented as a linear combination

of these functions. Thereby, for each element K ∈ Th the equations (4.41) are

simply equivalent to the requirement of the regularized PDE residual minimization

by making the projection of this residual onto all basis functions be equal to 0.

Taking into account that for each K ∈ Th:

uh =
∑

j∈ζK

uh,j(t)Φj(x), (4.42)
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we formulate the following system of Ordinary Differential Equations (ODE) with

respect to the nodal unknown values
{{
uh,j(t)

}

j∈ζK

}

K∈Th

:

∀K ∈ Th find
{
uh,j(t)

}

j∈ζK
such that ∀i ∈ ζK :

∑

j∈ζK

∫

K

Φi(x)Φj(x)dx ·
d

dt
uh,j(t) =

∫

K

∇Φi(x) · f(uh)dx+

∫

K

∇Φi(x) ·qhdx−
∮

∂K

Φi(x)F̂h,∂Kdσ −
∮

∂K

Φi(x)Q̂h,∂Kdσ. (4.43)

The system (4.43) can be written globally on the whole triangulation Th in the

matrix-vector form as follows:

M
d

dt
uh = Rh, (4.44)

where M is the mass matrix of the system, uh is the time-dependent vector of all

nodal unknowns, and Rh is the vector of all right hand sides of the equations (4.43).

It is clear that Rh is a functional of the numerical solution, its derivatives, and the

artificial viscosity as well, and does not explicitly depend on time. However, for a

brief discussion on explicit Runge-Kutta methods we will use one of the following

two forms: Rh (t,uh) or Rh (t,uh,µh).

Since for each K ∈ Th the basis functions
{
Φi(x)

}

i∈ζK
∈ Vp

h are compactly

supported on K, the mass matrix M of the system of ODEs is a block-diagonal

matrix consisting of blocks MK corresponding to respective K ∈ Th. The entries of

such blocks are defined by:

MK,ij =

∫

K

Φi(x)Φj(x)dx. (4.45)

Each of these blocks can be inverted by using, for example, the Gauss–Jordan elimi-

nation [51]. If the mesh Th is globally uniform, then all the blocks MK have exactly
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the same content. The structures of the mass matrix M and the inverse mass matrix

M
−1 are schematically shown below and hold for any fully explicit time integration

scheme:

M =











M1 0 . . . 0

0 M2 . . . 0
...

...
. . .

...

0 0 . . . MNK











M
−1 =











M
−1
1 0 . . . 0

0 M
−1
2 . . . 0

...
...

. . .
...

0 0 . . . M
−1
NK











(4.46)

where NK is the number of elements forming the triangulation Th.

To discretize the system of ODEs (4.44) in time, we employ explicit Runge-Kutta

algorithms. Generally, the explicit Runge-Kutta methods take the following form:

un+1
h = un

h + τn

S∑

m=1

bmkm, (4.47)

where:

k1 = M
−1Rh (t

n,un
h ), (4.48)

k2 = M
−1Rh (t

n + c2τn,u
n
h + a21k1 ),

k3 = M
−1Rh (t

n + c3τn,u
n
h + a31k1 + a32k2 ),

...

kS = M
−1Rh (t

n + cSτn,u
n
h + aS1k1 + aS2k2 + aS3k3 + ...+ aS,S−1kS−1 ).

The methods of this class are each identified by the respective Butcher tableau (after

John C. Butcher), which puts the coefficients of the method in a table as follows, see

Table 4.1 below.
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Table 4.1

General Butcher tableau.

0
c2 a21
c3 a31 a32
. . . .
cS aS1 aS2 aS3 ... aS,S−1

b1 b2 b3 ... bS−1 bS

The estimation of a time step τn is based on the CFL condition. If the elements

composing Th are not too flat, then the following estimate is correct:

τn = min
K∈Th

τn,K

︷ ︸︸ ︷(

CFL
hK

|f ′ (unh)|L∞(K)

)

. (4.49)

For instance, the Butcher tableaux corresponding to the explicit Runge-Kutta meth-

ods RK3 and RK4 are presented as shown in Table 4.2.

Table 4.2

Explicit RK3 (left) and RK4 (right) Butcher tableaux.

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

We have not noticed significant differences in behavior of the entropy viscosity meth-

ods when using either explicit RK3 or RK4, besides the fact that RK4 is more ac-

curate than RK3 on problems with smooth solutions.
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4.6 Inclusion of the entropy-based artificial viscosity

The right hand side of the system of ODEs in the form of equations (4.43) or

(4.44) includes the viscous fluxes qh and Q̂h,∂K with embedded and still unknown

artificial viscosity µh. The construction of µh can be directly performed within the

Runge-Kutta methods and shown schematically as follows:

• at the outset

– Use un−1
h and un

h to find µn
h

• stage No. 1

– u1
h = un

h

– µ1
h = µn

h

– k1 = M
−1Rh (t

n,u1
h,µ

1
h)

• stage No. 2

– u2
h = u1

h + a21k1

– Use u1
h and u2

h to find µ2
h

– k2 = M
−1Rh (t

n + c2τn,u
2
h,µ

2
h)

• stage No. 3

– u3
h = u1

h + a31k1 + a32k2

– Use u1
h and u3

h to find µ3
h

– k3 = M
−1Rh (t

n + c3τn,u
3
h,µ

3
h)

• · · ·

• stage No. S

– uS
h = u1

h + aS1k1 + aS2k2 + aS3k3 + ...+ aS,S−1kS−1
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– Use u1
h and uS

h to find µS
h

– kS = M
−1Rh

(
tn + cSτn,u

S
h ,µ

S
h

)

• at the end

– un+1
h = un

h + τn

S∑

m=1

bmkm

In the present work, the entropy viscosity is defined as a piecewise constant

function over the domain Ω, meaning that only one value of the entropy viscosity is

assigned to each element K ∈ Th at time tk ∈ (0, T ], where the upper index k might

mean either a time level n or a Runge-Kutta stage s between two time levels n and

n+ 1.

Let us consider two different sets of a numerical solution uh, namely ua
h and ub>a

h

at time ta and tb>a, respectively. For example, a = n − 1 and b = n or a = 1 and

b = s with s = 2, ..., S, see the scheme at the beginning of this section.

Then, based on the data ua
h and ub

h, the construction of the entropy viscosity field

µb
h can be done in a few steps. So, for each element K ∈ Th we do the following:

• Given an entropy pair (η(u),ψ(u)), compute the entropy residual Db
h,K,q at all

quadrature points xq ∈ K at time tb:

Db
h,K,q = ∂tη

b
h,K,q +∇ ·ψb

h,K,q. (4.50)

The equation (4.50) can be discretized in time by means of, for example, the

second-order Crank-Nicholson scheme:

Db
h,K,q =

ηbh,K,q − ηah,K,q

tb − ta +
1

2

(
∇ ·ψa

h,K,q +∇ ·ψb
h,K,q

)
. (4.51)

• Compute the jump of the entropy flux J b
h,∂K,g at all quadrature points xg ∈ ∂K

at time tb:

J b
h,∂K,g =

(

ψ
b,+
h,∂K,g −ψb,−

h,∂K,g

)

·n∂K,g. (4.52)
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• Define the maximum, say Rb
h,K associated with element K at time tb:

Rb
h,K = max

q,g

(
hK
∣
∣Db

h,K,q

∣
∣ ,
∣
∣J b

h,∂K,g

∣
∣
)
. (4.53)

• Use this maximum to define a viscosity, say µb
h,K,E associated with element K

at time tb:

µb
h,K,E = CE

hK

max
q∈K∈Th

∣
∣ηbh,K,q − η̄bh

∣
∣
Rb

h,K , (4.54)

where CE is a tunable constant, hK is a diameter of element K, max
q∈K∈Th

| · |
is taken over all quadrature points that can be possibly found in the entire

triangulation Th, and η̄
b
h =

1

‖Ω‖

∫

Ω

η
(
uh
(
x, tb

))
dx is the space-averaged value

of the entropy computed at time tb.

• Introduce an entropy viscosity upper bound µb
h,K,max associated with element

K at time tb:

µb
h,K,max = CmaxhK max

q∈K

∣
∣f ′
(
ubh,K,q

)∣
∣ . (4.55)

• Define the entropy viscosity µb
h,K associated with element K at time tb:

µb
h,K = min

(
µb
h,K,E , µ

b
h,K,max

)
. (4.56)

• Use
{
µb
h,K

}

K∈Th
along with other data to march in time.

Remark 4.6.1. Note that µb
h,K,E ∼ O(h4) is the higher-order artificial viscosity

that we add to the regions where the solution is smooth, and µb
h,K,max

∼ O(h) is the

first-order artificial viscosity which fits the shocks.

Remark 4.6.2. Instead of using Crank-Nicholson formula (4.51), other explicit

methods, for instance, BDF-like multistep methods might be employed.
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4.7 Numerical tests

We illustrate the capability of the above technique by solving various types of

hyperbolic scalar conservation equations in one and two space dimensions. The two-

dimensional problems are solved by using the deal.II finite element library.

Deal.II is a C++ program library targeted at the computational solution of partial

differential equations using adaptive finite elements. The main aim of deal.II is

to enable rapid development of modern finite element codes, using among other

aspects adaptive meshes and a wide array of tools classes often used in finite element

programs. For more details about the deal.II finite element library, see, for example,

[52, 53].

4.7.1 One-dimensional tests

Linear transport equation with smooth data :

We consider the linear transport problem:







∂tu+ ∂xu = 0 , (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x) = sin (2πx) , x ∈ Ω.

(4.57)

with periodic boundary conditions. The entropy pair (η, ψ) =

(
u2

2
,
u2

2

)

and param-

eters of the computation are gathered in Table 4.3.

Table 4.3

1D linear transport equation with smooth data. Parameters.

Ω (0, 1) ω 0.5
T 1.0 δ 0 or 1
RK 4 CE 1.0
CFL 0.5 Cmax 0.5/p
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The numerical solution is computed up to time T = 1 on various uniform meshes

for polynomial degrees 1, 2, and 3. The errors measured in the L1- and L2-norms at

time T = 1 are reported in Tables 4.4, 4.5, and 4.6. The observed convergence rates

are 2, 3, and 4 for both norms, respectively. The method gives optimal convergence

orders in one space dimension.

The graphs of the P3 numerical solution with 100 elements and related entropy

viscosity at time T = 1 are shown in Figure 4.5. Note that since the solution

is completely smooth, then µE ∼ CEO(h4) ∼ 10−10 everywhere, whereas µmax ∼
CmaxO(h) ∼ 10−4. Therefore, the entropy viscosity field is exclusively composed of

µE which is very close to 0. The maxima of the entropy viscosity graph correspond

to the largest slopes on the graph of the numerical solution, and minima - to the

zero slopes.

Table 4.4

1D linear transport equation with smooth data. Convergence test for P1.

cells dofs h L
1-error R1 L

2-error R2

5 10 2e-01 6.355e-01 - 6.951e-01 -

10 20 1e-01 5.325e-01 0.26 5.917e-01 0.23

20 40 5e-02 2.276e-01 1.23 2.573e-01 1.20

40 80 2.5e-02 3.725e-02 2.61 4.276e-02 2.59

80 160 1.25e-02 5.198e-03 2.84 6.023e-03 2.83

160 320 6.25e-03 5.155e-04 3.33 6.097e-04 3.30

320 640 3.125e-03 6.864e-05 2.91 8.338e-05 2.87

640 1280 1.5625e-03 9.741e-06 2.82 1.262e-05 2.73

1280 2560 7.8125e-04 1.631e-06 2.58 2.248e-06 2.49

2560 5120 3.90625e-04 3.435e-07 2.25 4.712e-07 2.25

5120 10240 1.953125e-04 8.068e-08 2.09 1.090e-07 2.11

10240 20480 9.765625e-05 1.977e-08 2.03 2.710e-08 2.01
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Table 4.5

1D linear transport equation with smooth data. Convergence test for P2.

cells dofs h L
1-error R1 L

2-error R2

5 15 2e-01 5.570e-01 - 6.159e-01 -

10 30 1e-01 2.854e-01 0.97 3.217e-01 0.94

20 60 5e-02 1.771e-02 4.01 2.026e-02 3.99

40 120 2.5e-02 8.131e-04 4.45 8.920e-04 4.51

80 240 1.25e-02 7.221e-05 3.49 8.117e-05 3.46

160 480 6.25e-03 7.442e-06 3.28 8.367e-06 3.28

320 960 3.125e-03 8.357e-07 3.16 9.433e-07 3.15

640 1920 1.5625e-03 9.859e-08 3.08 1.117e-07 3.08

1280 3840 7.8125e-04 1.196e-08 3.04 1.359e-08 3.04

2560 7680 3.90625e-04 1.483e-09 3.01 1.687e-09 3.01

Table 4.6

1D linear transport equation with smooth data. Convergence test for P3.

cells dofs h L
1-error R1 L

2-error R2

5 20 2e-01 4.610e-01 - 5.121e-01 -

10 40 1e-01 2.405e-01 0.94 2.678e-01 0.94

20 80 5e-02 3.817e-02 2.66 4.319e-02 2.63

40 160 2.5e-02 5.457e-04 6.13 6.347e-04 6.09

80 320 1.25e-02 2.850e-05 4.26 3.247e-05 4.29

160 640 6.25e-03 1.496e-06 4.25 2.026e-06 4.00

320 1280 3.125e-03 9.021e-08 4.05 1.279e-07 3.98

640 2560 1.5625e-03 5.554e-09 4.02 8.050e-09 3.99

1280 5120 7.8125e-04 3.502e-10 3.99 5.036e-10 4.00
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Fig. 4.5. 1D linear transport equation with smooth data. Initial
data, P3 solution, and entropy viscosity at time T = 1.
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Linear transport equation with discontinuous data :

We now evaluate the performance of the method with nonsmooth data. We consider

again the linear transport problem (4.57) with periodic boundary conditions, but

this time the initial data is defined as follows:

u0(x) =







1 if 0.25 ≤ x ≤ 0.75,

0 otherwise.

(4.58)

The entropy pair (η, ψ) =

(
u2

2
,
u2

2

)

and parameters of the computation are given

in Table 4.7.

Table 4.7

1D linear transport equation with discontinuous data. Parameters.

Ω (0, 1) ω 0.5
T 1.0 δ 0 or 1
RK 4 CE 1.0
CFL 0.5 Cmax 0.5/p

The numerical solution is computed up to time T = 1 on various uniform meshes

for polynomial degrees 1,...,5. The L1- and L2-norms of the error are computed and

along with the respective convergence rates are reported in Tables 4.8, 4.9, 4.10, 4.11,

and 4.12. As the polynomial degree p increases, the convergence rates in the L1- and

L2-norms approach 1 and 0.5 and are compatible with the theoretical estimates
p+ 1

2

p+1

and 1
2

p+ 1

2

p+1
, respectively. The higher the polynomial degree the more accurate the

method. This test shows that higher-order methods perform better than lower-order

methods even on nonsmooth solutions. This statement is reinforced by looking at

Figure 4.6, where we show the L1-norm of the error at time T = 1 as a function of

the total number of degrees of freedom for P1,...,P5 approximations. For any given

number of degrees of freedom the error is a decreasing function of the polynomial
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degree p. Note that the P3, P4, and P5 errors almost coincide because the accuracy

is limited to fourth-order by our using RK4.

Table 4.8

1D linear transport equation with discontinuous data. Convergence test for P1.

cells dofs h L
1-error R1 L

2-error R2

5 10 2e-01 4.709e-01 - 4.807e-01 -

10 20 1e-01 3.539e-01 0.41 4.009e-01 0.26

20 40 5e-02 1.860e-01 0.93 2.447e-01 0.71

40 80 2.5e-02 1.022e-01 0.87 1.757e-01 0.48

80 160 1.25e-02 6.142e-02 0.73 1.365e-01 0.36

160 320 6.25e-03 3.632e-02 0.76 1.048e-01 0.38

320 640 3.125e-03 2.142e-02 0.76 8.029e-02 0.38

640 1280 1.5625e-03 1.259e-02 0.77 6.132e-02 0.39

1280 2560 7.8125e-04 7.427e-03 0.76 4.711e-02 0.38

Table 4.9

1D linear transport equation with discontinuous data. Convergence test for P2.

cells dofs h L
1-error R1 L

2-error R2

5 15 2e-01 3.985e-01 - 4.550e-01 -

10 30 1e-01 2.041e-01 0.97 2.574e-01 0.82

20 60 5e-02 1.005e-01 1.02 1.759e-01 0.55

40 120 2.5e-02 5.693e-02 0.82 1.319e-01 0.42

80 240 1.25e-02 3.233e-02 0.82 9.911e-02 0.41

160 480 6.25e-03 1.846e-02 0.81 7.440e-02 0.41

320 960 3.125e-03 1.047e-02 0.82 5.557e-02 0.42

640 1920 1.5625e-03 5.916e-03 0.82 4.152e-02 0.42

1280 3840 7.8125e-04 3.351e-03 0.82 3.113e-02 0.42
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Table 4.10

1D linear transport equation with discontinuous data. Convergence test for P3.

cells dofs h L
1-error R1 L

2-error R2

5 20 2e-01 2.570e-01 - 2.812e-01 -

10 40 1e-01 1.194e-01 1.11 1.717e-01 0.71

20 80 5e-02 6.217e-02 0.94 1.156e-01 0.57

40 160 2.5e-02 3.535e-02 0.82 8.407e-02 0.46

80 320 1.25e-02 1.941e-02 0.87 6.138e-02 0.45

160 640 6.25e-03 1.066e-02 0.87 4.515e-02 0.45

320 1280 3.125e-03 5.867e-03 0.86 3.338e-02 0.44

640 2560 1.5625e-03 3.239e-03 0.87 2.453e-02 0.45

1280 5120 7.8125e-04 1.770e-03 0.87 1.801e-02 0.45

Table 4.11

1D linear transport equation with discontinuous data. Convergence test for P4.

cells dofs h L
1-error R1 L

2-error R2

5 25 2e-01 2.297e-01 - 2.667e-01 -

10 50 1e-01 1.068e-01 1.11 1.550e-01 0.78

20 100 5e-02 5.683e-02 0.91 1.065e-01 0.54

40 200 2.5e-02 3.211e-02 0.82 7.702e-02 0.47

80 400 1.25e-02 1.706e-02 0.91 5.672e-02 0.45

160 800 6.25e-03 9.095e-03 0.91 4.092e-02 0.47

320 1600 3.125e-03 4.827e-03 0.91 2.951e-02 0.47

640 3200 1.5625e-03 2.580e-03 0.90 2.131e-02 0.47

1280 5400 7.8125e-04 1.373e-03 0.91 1.548e-02 0.46

Table 4.12

1D linear transport equation with discontinuous data. Convergence test for P5.

cells dofs h L
1-error R1 L

2-error R2

5 30 2e-01 2.001e-01 - 2.518e-01 -

10 60 1e-01 9.117e-02 1.13 1.430e-01 0.82

20 120 5e-02 4.734e-02 0.95 1.002e-01 0.51

40 240 2.5e-02 2.465e-02 0.94 7.213e-02 0.47

80 480 1.25e-02 1.290e-02 0.93 5.258e-02 0.46

160 960 6.25e-03 6.747e-03 0.94 3.766e-02 0.48

320 1920 3.125e-03 3.514e-03 0.94 2.719e-02 0.47

640 3840 1.5625e-03 1.831e-03 0.94 1.954e-02 0.48

1280 7680 7.8125e-04 9.559e-04 0.94 1.404e-02 0.48
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Fig. 4.6. 1D linear transport equation with discontinuous data.
L1-norm of the error at time T = 1 vs No. of dofs for P1,...,P5

polynomials.
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The graphs of P5 numerical solution with 100 elements and associated entropy

viscosity at time T = 1 are shown in Figure 4.7. Note that the entropy viscosity field

concentrates on discontinuities.

Fig. 4.7. 1D linear transport equation with discontinuous data.
Initial data, P5 solution, and entropy viscosity at time T = 1.

Burgers′ equation :

Consider the following IBVP:







∂tu+ ∂x

(
u2

2

)

= 0 , (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x) = sin (2πx) , x ∈ Ω.

(4.59)

with periodic boundary conditions. The method of characteristics can be involved

to solve this problem analytically, see Chapter II. We use the entropy pair (η, ψ) =
(
u2

2
,
u3

3

)

, and computational parameters are defined in Table 4.13.
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Table 4.13

1D Burgers’ equation. Parameters.

Ω (0, 1) ω 0.5
T 0.25 δ 0 or 1
RK 4 CE 1.0
CFL 0.5 Cmax 0.5/p

The numerical solution is computed up to time T = 0.25 when the stationary

shock is fully developed. We compute the L1- and L2-norms of the error and the

corresponding convergence rates at time T = 0.25 on various uniform meshes for the

P1, P2, and P3 approximations. For more details, the reader is referred to the Tables

4.14, 4.15, and 4.16, respectively. We observe that the convergence rates in the L1-

and L2-norms are 1 and 0.5, respectively and independently of the polynomial degree

of the approximation.

Table 4.14

1D Burgers’ equation. Convergence test for P1.

cells dofs h L
1-error R1 L

2-error R2

5 10 2e-01 2.617e-01 - 3.722e-01 -

10 20 1e-01 1.483e-01 0.82 2.811e-01 0.41

20 40 5e-02 7.247e-02 1.03 1.910e-01 0.56

40 80 2.5e-02 3.339e-02 1.12 1.313e-01 0.54

80 160 1.25e-02 1.603e-02 1.06 9.160e-02 0.52

160 320 6.25e-03 7.944e-03 1.01 6.460e-02 0.50

320 640 3.125e-03 3.959e-03 1.01 4.565e-02 0.50
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Table 4.15

1D Burgers’ equation. Convergence test for P2.

cells dofs h L
1-error R1 L

2-error R2

5 15 2e-01 1.242e-01 - 2.623e-01 -

10 30 1e-01 5.058e-02 1.30 1.567e-01 0.74

20 60 5e-02 2.409e-02 1.07 1.056e-01 0.57

40 120 2.5e-02 1.191e-02 1.02 7.405e-02 0.51

80 240 1.25e-02 5.922e-03 1.01 5.219e-02 0.51

160 480 6.25e-03 2.957e-03 1.00 3.688e-02 0.50

320 960 3.125e-03 1.478e-03 1.00 2.608e-02 0.50

Table 4.16

1D Burgers’ equation. Convergence test for P3.

cells dofs h L
1-error R1 L

2-error R2

5 20 2e-01 6.621e-02 - 1.698e-01 -

10 40 1e-01 3.201e-02 1.05 1.040e-01 0.71

20 80 5e-02 1.609e-02 0.99 7.327e-02 0.51

40 160 2.5e-02 7.988e-03 1.01 5.182e-02 0.50

80 320 1.25e-02 3.983e-03 1.00 3.664e-02 0.50

160 640 6.25e-03 1.991e-03 1.00 2.591e-02 0.50

320 1280 3.125e-03 9.953e-04 1.00 1.832e-02 0.50
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The numerical solution based on the P3 approximation and artificial stabilizing

viscosity at time T = 0.25 are shown in Figure 4.8. The number of elements used

here is 320. The entropy viscosity field is highly concentrated on the shock.

Fig. 4.8. 1D Burgers’ equation. Initial data, P3 solution, and loga-
rithm of entropy viscosity at time T = 0.25.

Nonconvex problem :

To demonstrate the capability of the method to solve nonlinear scalar conservation

equations with nonconvex fluxes, we consider the following Riemann problem:







∂tu+ ∂xf(u) = 0 , (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x) , x ∈ Ω.

(4.60)

where

f(u) =







1
4
u(1− u) if u ≤ 0.5,

1
2
u(u− 1) + 3

16
if u > 0.5.

(4.61)
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with the initial data defined as follows:

u0(x) =







0 if x ≤ 0.35,

1 if x > 0.35.

(4.62)

Note that both f(u) and f ′(u) are continuous functions whereas f ′′(u) = −1

2
< 0 if

u ≤ 0.5 and f ′′(u) = 1 > 0 if u > 0.5. The BC’s are u(0, t) = 0 and u(1, t) = 1.

The problem (4.60)-(4.62) and many similar problems are known to produce

numerical solutions converging to physically incorrect or entropy violating solutions.

The reason is that in the case of nonconvex inviscid fluxes, one entropy pair is not

enough to guarantee that an entropy inequality holds for all possible entropy pairs.

For this computation we define an entropy function as η(u) =

(

u− 1

2

)2

, we

employ P3 approximation with 320 elements, and use parameters shown in Table

4.17.

Table 4.17

1D nonconvex problem. Parameters.

Ω (0, 1) ω 0.5
T 1.0 δ 0 or 1
RK 4 CE 1.0
CFL 0.5 Cmax 0.25/p

The physically relevant solution to the problem above at time T = 1 consists of a

shock wave, located at x =
5
√
6− 3

20
, followed by a rarefaction wave. The numerical

solution generated by the entropy viscosity method is shown in Figure 4.9 and exactly

captures the behavior of the correct solution at time T = 1.
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Fig. 4.9. 1D nonconvex problem. Initial data, P3 solution, and
entropy viscosity at time T = 1.

4.7.2 Two-dimensional tests

Linear transport equation with smooth data :

The linear transport problem in two space dimensions reads:







∂tu+∇ · (βu) = 0 , (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x) , x ∈ Ω.

(4.63)

where β = 2π(−y, x) is a smooth vector field and Ω =
{
x ∈ R

2 : |x| < 1
}

is a

circular domain of interest. Note that ∇ ·β = 0 and the boundary Γ of the domain

Ω is a characteristics boundary, meaning that β ·n|Γ = 0. The initial data is smooth

and defined as follows:

u0(x) =
1

2

(

1− tanh

(

|x− r0|2
a20

− 1

))

, (4.64)
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where a0 = 0.3 and r0 = (0.4, 0). The example of a numerical solution at time T = 1

using the Q2 approximation with 81920 elements or equivalently 81920 · 9 = 737280

dofs, is shown in Figure 4.10. The corresponding entropy viscosity field with µ ∼
µE ∼ CEO(h4) ∼ 10−8 − 10−9 is represented in Figure 4.11.

Fig. 4.10. 2D linear transport equation with smooth data. Q2

solution at time T = 1.

Fig. 4.11. 2D linear transport equation with smooth data. Entropy
viscosity at time T = 1.
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Two convergence tests are done by using Q2 discontinuous Galerkin finite ele-

ments on various grids. The boundary approximation utilizes the piecewise graphs

of cubic polynomials to approximate the true boundary Γ of the domain Ω. In the

first series of tests we use the upwind inviscid numerical fluxes with ω =
1

2
, and in

the second test we use the centered fluxes with ω = 0. In both cases we take δ = 1 in

the definition of the viscous numerical fluxes. The other computational parameters

are set up in Table 4.18.

Table 4.18

2D linear transport equation with smooth data. Parameters.

Ω unit circle in R
2 CFL 0.25

T 1.0 CE 0.5
RK 4 Cmax 0.1/p

The goal of these tests is to evaluate the importance of the parameter ω in the defini-

tion of the inviscid numerical fluxes when a smooth data is linearly transported. The

errors measured in the L1- and L2-norms at time T = 1 together with the respective

convergence orders are reported in Tables 4.19 and 4.20.

Table 4.19

2D linear transport equation with smooth data. Convergence test for
Q2 approximation with upwind fluxes.

dofs h L
1-error R1 L

2-error R2

180 0.2929 2.685e-01 - 2.482e-01 -

720 0.1768 6.570e-02 2.03 7.464e-02 1.73

2880 0.0937 8.774e-03 2.90 1.162e-02 2.68

11520 0.0496 7.655e-04 3.52 1.137e-03 3.35

46080 0.0252 5.721e-05 3.74 1.132e-04 3.33

184320 0.0128 5.699e-06 3.33 1.685e-05 2.81

737280 0.0064 7.101e-07 3.01 2.261e-06 2.90
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Table 4.20

2D linear transport equation with smooth data. Convergence test for
Q2 approximation with centered fluxes.

dofs h L
1-error R1 L

2-error R2

180 0.2929 2.633e-01 - 2.415e-01 -

720 0.1768 9.589e-02 1.46 9.972e-02 1.28

2880 0.0937 1.895e-02 2.34 2.299e-02 2.12

11520 0.0496 2.036e-03 3.22 2.469e-03 3.22

46080 0.0252 1.895e-04 3.43 1.961e-04 3.65

184320 0.0128 1.826e-05 3.38 1.604e-05 3.61

It is remarkable that the convergence rate is 3 irrespective of the definition of the

flux. Nonetheless, the upwind fluxes result in better accuracy by about a factor of 5.

Burgers′ equation :

One more benchmark problem which we consider here is a Riemann problem for

two-dimensional inviscid Burgers’ equation:







∂tu+∇ ·
(
u2

2
e

)

= 0 , (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x) , x ∈ Ω.

(4.65)

where the components ei of the vector e are defined as {ei}2i=1 = 1 and Ω =
{
x ∈

R
2 : 0 < x < 1 and 0 < y < 1

}
is a unit square in R

2. The above equation is

subject to the following initial condition:

u0(x) =







+0.5 if x < 0.5 and y < 0.5,

−0.2 if x < 0.5 and y > 0.5,

+0.8 if x > 0.5 and y < 0.5,

−1.0 if x > 0.5 and y > 0.5.

(4.66)
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The entropy pair that we choose for this problem is (η,ψ) =

(
u2

2
,
u3

3
e

)

and the

parameters for this computation are given in Table 4.21.

Table 4.21

2D Burgers’ equation. Parameters.

Ω unit square in R
2 ω 0.5

T 0.5 δ 0 or 1
RK 4 CE 1.0
CFL 0.25 Cmax 0.25/p

The solution is computed at time T = 0.5 to facilitate comparisons with [6, 54].

The exact solution to this problem for t > 0 is given in [55]. We compute the L1-

and L2-norms of the error and the corresponding convergence rates at time T = 0.5

on various uniform meshes composed of squares. The results for Q1, Q2, and Q3

approximations are shown in Tables 4.22, 4.23, and 4.24, respectively. Similar to

the one-dimensional case, we observe that the convergence rates in the L1- and L2-

norms are 1 and 0.5, respectively and independently of the polynomial degree of the

approximation.

Table 4.22

2D Burgers’ equation. Convergence test for Q1.

cycle cells dofs h L
1-error L

2-error

1 4 16 0.5000 5.845e-01 - 6.527e-01 -

2 16 64 0.2500 2.788e-01 1.07 3.782e-01 0.79

3 64 256 0.1250 1.127e-01 1.31 2.328e-01 0.70

4 256 1024 0.0625 6.415e-02 0.81 1.762e-01 0.40

5 1024 4096 0.0312 3.174e-02 1.02 1.248e-01 0.50

6 4096 16384 0.0156 1.697e-02 0.90 9.238e-02 0.43

7 16384 65536 0.0078 8.506e-03 1.00 6.678e-02 0.47
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Table 4.23

2D Burgers’ equation. Convergence test for Q2.

cycle cells dofs h L
1-error L

2-error

1 4 36 0.5000 4.843e-01 - 5.596e-01 -

2 16 144 0.2500 1.500e-01 1.69 2.601e-01 1.11

3 64 576 0.1250 7.441e-02 1.01 1.911e-01 0.44

4 256 2304 0.0625 3.702e-02 1.01 1.370e-01 0.48

5 1024 9216 0.0312 1.948e-02 0.93 1.010e-01 0.44

6 4096 36864 0.0156 9.718e-03 1.00 7.157e-02 0.50

7 16384 147456 0.0078 5.118e-03 0.93 5.308e-02 0.43

Table 4.24

2D Burgers’ equation. Convergence test for Q3.

cycle cells dofs h L
1-error L

2-error

1 4 64 0.5000 4.510e-01 - 5.126e-01 -

2 16 256 0.2500 1.237e-01 1.87 2.332e-01 1.14

3 64 1024 0.1250 5.628e-02 1.14 1.638e-01 0.51

4 256 4096 0.0625 2.945e-02 0.93 1.223e-01 0.42

5 1024 16384 0.0312 1.445e-02 1.03 8.728e-02 0.49

6 4096 65536 0.0156 7.618e-03 0.92 6.395e-02 0.45

7 16384 262144 0.0078 3.731e-03 1.03 4.527e-02 0.50

The graph of the Q3 numerical solution at time T = 0.5 is shown in the left

panel in Figure 4.12 and the entropy viscosity field is shown in the right panel. The

entropy viscosity focuses on the shock as anticipated. The boundary conditions for

this test simulate a transparent boundary and imposed on the boundary Γ weakly

via the DG numerical fluxes.

KPP rotating wave :

The last benchmark problem which we consider in the context of the current chapter

is a so-called KPP (Kurganov-Petrov-Popov) rotating wave problem:







∂tu+∇ · (sin u, cos u)T = 0 , (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x) , x ∈ Ω.

(4.67)
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Fig. 4.12. 2D Burgers’ equation. Q3 solution and entropy viscosity
at time T = 0.5.

where the discontinuous initial data is defined as follows:

u0(x) =







3.5π if x2 + y2 < 1,

.25π otherwise.

(4.68)

The local velocity is f ′(u) = (cosu,− sin u)T. This test was proposed in [56] and

is challenging to many higher-order numerical schemes because the solution has a

two-dimensional composite wave structure. For example centered-upwind schemes

based on WENO5, Minmod 2, and SuperBee reconstructions fail in this test case,

see [56] for more details.

The entropy pair for this problem is (η,ψ) =

(
u2

2
, (u sin u+ cos u, u cos u− sin u)T

)

and parameters of the computation are given in Table 4.25.

The initial data is shown in Figure 4.13. The Q2 entropy viscosity solution built

on 48 = 65536 elements and associated entropy viscosity field are depicted in Figures
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Table 4.25

2D KPP rotating wave. Parameters.

Ω (−2, 2)× (−2.5, 1.5) ω 0.5
T 1 δ 0 or 1
RK 4 CE 5.0
CFL 0.2 Cmax 0.5/p

4.14 and 4.15, respectively. The solution shows the expected rotating composite wave

structure. As expected, dissipation is only added in the shock region.

Fig. 4.13. 2D KPP rotating wave. Initial data.
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Fig. 4.14. 2D KPP rotating wave. Q2 solution at time T = 1.

Fig. 4.15. 2D KPP rotating wave. Entropy viscosity trace at time T = 1.



110

4.8 Conclusion

The method which we have explored in this chapter performs very well on all test

problems specially designed for assessment of efficiency and robustness of numerical

algorithms for hyperbolic scalar conservation equations. As we know, many of these

equations accept analytical solutions (in closed form or not), which allows researchers

to perform informative convergence tests. The convergence orders measured in these

tests in both the L1- and L2-norms of the error apparently approach the optimal

thresholds predicted theoretically. The excellent results obtained for scalar equations

justify the extension of the entropy viscosity method to gas dynamics problems.
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5. EXTENSION OF THE METHOD TO COMPRESSIBLE GAS DYNAMICS

EQUATIONS

5.1 Introduction

In the last chapter of this dissertation we discuss the application of the DG

spatial discretization technique in the framework of the entropy viscosity method

to the system of compressible Euler equations. This chapter provides the natural

extension of the method described in Chapter IV to the more general case of a

system of nonlinear hyperbolic conservation laws supplemented with an auxiliary

entropy inequality. At the end of the chapter we consider several benchmark test

cases in one and two space dimensions which agree well with the reference solutions

found in the literature.

5.2 Regularization of Euler equations

We write the original system of compressible Euler equations in the following

conservative form:







∂tc+∇ · [f(c)] = 0, (x, t) ∈ Ω× (0, T ],

c(x, 0) = c0(x), x ∈ Ω.

(5.1)

where c =








ρ

m

E








is a vector of conserved variables, f(c) =









m

1

ρ
m⊗m+ pI

m

ρ
(E + p)









is

a vector of inviscid fluxes, Ω ⊂ R
d is an open connected domain with the boundary

Γ, (0, T ] ∈ R+ is a time interval, and c0(x) is the initial data which is known. Here,

m⊗m and I are symmetric tensors of rank 2 whose entries are (m⊗m)ij = mimj

and Iij = δij , respectively, and indices i and j represent coordinate axes and vary
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from 1 to d. Since pressure p is supposed to be another unknown, we use the Equation

of State for a perfect gas to express the pressure p through the density of a gas ρ,

momentum m, and total energy E as follows:

p = (γ − 1)

(

E − m ·m
2ρ

)

. (5.2)

To solve the Euler equations, one must equip the system (5.1) with the appro-

priate boundary conditions on Γ. In the framework of DG methods the boundary

conditions of different types are commonly imposed implicitly via respective numer-

ical fluxes. For instance, we use implicit inflow, outflow, or transparent boundary

conditions, whereas the slip boundary condition u ·n|Γ = 0 is applied to a solution

vector c explicitly within each Runge-Kutta iteration.

An additional entropy inequality introduced in Chapter II reads:

∂ts+∇ · (us) ≥ 0, (5.3)

where u =
m

ρ
is a particles velocity vector field and s is an entropy function which

we previously defined as:

s =
ρR

γ − 1
ln

p

ργ
. (5.4)

Conforming to the technique discussed in Chapter IV, we regularize the original

system of equations (5.1) and write it as follows:







∂tc+∇ · [f(c)] = −∇ · [q] , (x, t) ∈ Ω× (0, T ],

c(x, 0) = c0(x), x ∈ Ω.

(5.5)
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where q is a vector of artificial viscous fluxes taken from the right hand side of the

system of Navier-Stokes equations and defined in the following manner:

q =








−ν∇ρ
−µ∇su

−µ∇suu− κ∇T







. (5.6)

Here,∇su is a symmetric tensor of rank 2 with the entries (∇su)ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)

,

ν is a diffusion viscosity, µ is a dynamic viscosity, and κ is a thermal viscosity. All

these viscosities are artificial and will be further defined, based on the entropy in-

equality (5.3). The new variable - temperature T is obtained from the same Equation

of State for a perfect gas:

T =
γ − 1

R

(
E

ρ
− m ·m

2ρ2

)

. (5.7)

The regularized system of PDEs (5.5) is closed by the relations (5.2) and (5.7). We

first need to discretize it in space.

5.3 Discretization in space

The spatial discretization of equations (5.5) goes along the same line as we dis-

cussed in Chapter IV relating to hyperbolic scalar conservation laws. The only differ-

ence is that instead of one unknown per node, we now have d+2 unknown values of

a numerical solution, namely: density ρ, all components of momentum {mi}di=1, and

total energy E. We use the same mesh notation and functional spaces as previously

defined, and write each individual PDE of the system (5.5) in the following form:

∂tc+∇ · fc = −∇ ·qc , (x, t) ∈ Ω× (0, T ], (5.8)
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where c means one of the following: density ρ, or a component of momentum mi, or

total energy E. If c = ρ, then fρ = m and qρ = −ν∇ρ. If c = mi, then fmi
can be

obtained as follows:

fm1
=








1
ρ
m2

1 + p

1
ρ
m2m1

1
ρ
m3m1








, fm2
=








1
ρ
m1m2

1
ρ
m2

2 + p

1
ρ
m3m2








, fm3
=








1
ρ
m1m3

1
ρ
m2m3

1
ρ
m2

3 + p








, (5.9)

and respective viscous fluxes qmi
read:

qm1
= −µ

2








2∂u1

∂x1

∂u2

∂x1
+ ∂u1

∂x2

∂u3

∂x1
+ ∂u1

∂x3








, qm2
= −µ

2








∂u1

∂x2
+ ∂u2

∂x1

2∂u2

∂x2

∂u3

∂x2
+ ∂u2

∂x3








,

qm3
= −µ

2








∂u1

∂x3
+ ∂u3

∂x1

∂u2

∂x3
+ ∂u3

∂x2

2∂u3

∂x3







. (5.10)

If c = E, then fE =
m

ρ
(E + p) and respective viscous flux qE is defined in the

following form:

qE = qEµ
+ qET

where qEµ
= −µ∇suu and qET

= −κ∇T. (5.11)

Eventually, the discontinuous Galerkin finite element method of degree p > 0 can

be formulated for each individual equation of the system (5.5) as follows:

∀K ∈ Th find ch ∈ Vp
h such that ∀vc,h ∈ Vp

h :

∫

K

vc,h∂tchdx+

∮

∂K

vc,hF̂c,h,∂Kdσ −
∫

K

∇vc,h · fc,hdx+
∮

∂K

vc,hQ̂c,h,∂Kdσ −
∫

K

∇vc,h ·qc,hdx = 0. (5.12)
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We next say a few words about numerical fluxes F̂c,h,∂K and Q̂c,h,∂K which we use in

the DG formulation above.

5.3.1 Inviscid numerical fluxes

The definitions of the Lax-Friedrichs inviscid numerical fluxes are given below:

Density :

F̂ρ,h,∂K =
1

2

(
f+ρ,h,∂K + f−ρ,h,∂K

)
·n∂K + ωα∂K

(
ρ+h,∂K − ρ−h,∂K

)
. (5.13)

A component of momentum :

F̂mi,h,∂K =
1

2

(
f+mi,h,∂K

+ f−mi,h,∂K

)
·n∂K + ωα∂K

(
m+

i,h,∂K −m−

i,h,∂K

)
. (5.14)

Total energy :

F̂E,h,∂K =
1

2

(
f+E,h,∂K + f−E,h,∂K

)
·n∂K + ωα∂K

(
E+

h,∂K − E−

h,∂K

)
. (5.15)

The parameter ω is typically
1

2
and the value of α∂K was defined in Chapter IV as

the maximum propagation speed associated with the whole boundary ∂K (or with

any of its parts):

α∂K = ‖ |uh ·n∂K |+
√

γRTh ‖L∞(K∪∆K), (5.16)



116

where uh ·n∂K is a projection of speed of particles uh onto the direction defined by

n∂K and
√
γRTh is a speed of sound.

5.3.2 Viscous numerical fluxes

We define the viscous numerical fluxes as follows:

Density :

Q̂ρ,h,∂K =
1

2

(
q+
ρ,h,∂K + q−

ρ,h,∂K

)
·n∂K + δβρ,∂K

(
ρ+h,∂K − ρ−h,∂K

)
, (5.17)

where

βρ,∂K =
∥
∥
∥
νh
h

∥
∥
∥
L∞(K∪∆K)

. (5.18)

A component of momentum :

Q̂mi,h,∂K =
1

2

(
q+
mi,h,∂K

+ q−

mi,h,∂K

)
·n∂K + δβmi,∂K

(
u+i,h,∂K − u−i,h,∂K

)
, (5.19)

where

βmi,∂K =
∥
∥
∥
µh

h

∥
∥
∥
L∞(K∪∆K)

. (5.20)
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Total energy. Viscosity dependence :

Q̂Eµ,h,∂K =
1

2

(

q+
Eµ,h,∂K

+ q−

Eµ,h,∂K

)

·n∂K + δβEµ,∂K

(

E+
h,∂K

ρ+h,∂K
−
E−

h,∂K

ρ−h,∂K

)

, (5.21)

where

βEµ,∂K =
∥
∥
∥
µh

h

∥
∥
∥
L∞(K∪∆K)

. (5.22)

Total energy. Temperature dependence :

Q̂ET ,h,∂K =
1

2

(
q+
ET ,h,∂K + q−

ET ,h,∂K

)
·n∂K + δβET ,∂K

(
T+
h,∂K − T−

h,∂K

)
, (5.23)

where

βET ,∂K =
∥
∥
∥
κh
h

∥
∥
∥
L∞(K∪∆K)

. (5.24)

All of the numerical fluxes listed above are both consistent with the respective phys-

ical fluxes and conservative. Parameter δ can be chosen to be either 0 or 1.

5.4 Discretization in time

The time discretization procedure which we apply to spatially semi-discrete forms

(5.12) is quite similar to that employed in Chapter IV. Substitution of the following

expressions:

vc,h =
∑

i∈ζc,K

vc,h,iΦi(x) (5.25)

and
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ch =
∑

j∈ζc,K

ch,j(t)Φj(x) (5.26)

into (5.12), where ζc,K ∈ N+ is a local numbering of degrees of freedom within an

element K ∈ Th assigned to a component ch, yields the following system of ODEs:

∀K ∈ Th find
{
ch,j(t)

}

j∈ζc,K
such that ∀i ∈ ζc,K :

∑

j∈ζc,K

∫

K

Φi(x)Φj(x)dx ·
d

dt
ch,j(t) =

∫

K

∇Φi(x) · fc,hdx+

∫

K

∇Φi(x) ·qc,hdx−
∮

∂K

Φi(x)F̂c,h,∂Kdσ −
∮

∂K

Φi(x)Q̂c,h,∂Kdσ. (5.27)

The matrix-vector form of the system is defined as follows:

M
d

dt
ch = Rh. (5.28)

To solve the system (5.28), we use the explicit Runge-Kutta methods as described

in Chapter IV with a time step τn defined by the following CFL condition:

τn = min
K∈Th

τn,K

︷ ︸︸ ︷(

CFL
hK

‖ |un
h|+

√
γRT n

h ‖L∞(K)

)

, (5.29)

where un
h and

√
γRT n

h are the speed of particles and speed of sound at time tn,

respectively. Since we now have d+2 components of a numerical solution per DoF, it

means that we pass through each elementK ∈ Th exactly d+2 times while assembling

the mass matrix M and the right hand side Rh. Therefore, each particular block MK

of the block-diagonal mass matrix M is itself a block-diagonal matrix consisting of

d+ 2 sub-blocks. Inverting of such sub-blocks and blocks as well as the whole mass

matrix M is straightforward.
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5.5 Artificial viscosities

Construction of the entropy viscosity fields νh, µh, and κh is essentially based

on the entropy inequality (5.3). Given numerical solutions cah at time ta and cb>a
h at

time tb>a, the construction of artificial viscosities proceeds as follows:

• Compute the entropy residual Db
h,K,q at all quadrature points xq ∈ K at time

tb:

Db
h,K,q = ∂ts

b
h,K,q +∇ ·

(
ub
h,K,qs

b
h,K,q

)
. (5.30)

For practical computations we replace the equation (5.30) with a discrete ana-

logue:

Db
h,K,q =

sbh,K,q − sah,K,q

tb − ta +
1

2

(
∇ ·

(
ua
h,K,qs

a
h,K,q

)
+∇ ·

(
ub
h,K,qs

b
h,K,q

))
. (5.31)

• Compute the jump of the entropy flux J b
h,∂K,g at all quadrature points xg ∈ ∂K

at time tb:

J b
h,∂K,g =

(

u
b,+
h,∂K,gs

b,+
h,∂K,g − u

b,−
h,∂K,gs

b,−
h,∂K,g

)

·n∂K,g. (5.32)

• Define the maximum, say Rb
h,K associated with element K at time tb:

Rb
h,K = max

q,g

(
hK
∣
∣Db

h,K,q

∣
∣ ,
∣
∣J b

h,∂K,g

∣
∣
)
. (5.33)

• Use this maximum to define a dynamic viscosity, say µb
h,K,E associated with

element K at time tb:

µb
h,K,E = CE

hK max
q∈K

ρbh,K,q

max
q∈K∈Th

∣
∣sbh,K,q − s̄bh

∣
∣
Rb

h,K , (5.34)
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where CE is a tunable constant, hK is a diameter of element K, max
q∈K∈Th

| · |
is taken over all quadrature points that can be possibly found in the entire

triangulation Th, and s̄
b
h =

1

‖Ω‖

∫

Ω

sh
(
x, tb

)
dx is the space-averaged value of

the entropy computed at time tb.

• Introduce an entropy dynamic viscosity upper bound µb
h,K,max associated with

element K at time tb:

µb
h,K,max = CmaxhK max

q∈K
ρbh,K,q max

q∈K

(∣
∣ub

h,K,q

∣
∣+
√

γRT b
h,K,q

)

. (5.35)

• Define the entropy dynamic viscosity µb
h,K associated with element K at time

tb:

µb
h,K = min

(
µb
h,K,E , µ

b
h,K,max

)
. (5.36)

• Define the entropy diffusion viscosity νbh,K and entropy thermal viscosity κbh,K

associated with element K at time tb as follows:

νbh,K =
Pρ

max
q∈K

ρbh,K,q

µb
h,K , κbh,K =

γPT

γ − 1
µb
h,K , (5.37)

where Pρ = O(1) and PT = O(1) are two tunable Prandtl numbers for density

ρ and temperature T , respectively. Our experience is that using Pρ ∈ [0, 1
4
]

and PT ∈ [0, 1
4
] works well in most cases.

• Use the entropy viscosity fields
{
νbh,K

}

K∈Th
,
{
µb
h,K

}

K∈Th
, and

{
κbh,K

}

K∈Th
to-

gether with solution data to reach the next time level.

Formulas (5.37) are derived using the definition of the Prandtl number. Originally

the Prandtl number was introduced as the ratio of momentum diffusivity to thermal

diffusivity:

Pr = viscous diffusion rate

thermal diffusion rate
=

kinematic viscosity

thermal diffusivity
=

µ/ρ

κ/ (ρcp)
=
cpµ

κ
. (5.38)
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Since for a perfect gas:

cp =
Cp

m
=
i+ 2

2
R =

γ

γ − 1
R, (5.39)

then:

κ =
γ

γ − 1

R

Pr µ. (5.40)

Designating
R

Pr as PT yields the second formula in (5.37). Introducing Pρ as:

Pρ =
viscous diffusion rate

mass diffusion rate
=

kinematic viscosity

mass diffusivity
=
µ/ρ

ν
, (5.41)

we obtain the first formula in (5.37).

5.6 Numerical tests

We demonstrate the performance of the method by solving several benchmark

test problems in one and two space dimensions. The two-dimensional problems are

solved using the deal.II finite element library.

5.6.1 One-dimensional tests

We now consider three classical one-dimensional Riemann problems taken from

[49]. These tests are also used to illustrate some typical wave patterns resulting from

the solution of the Riemann problems. Test 1 is a modified version of Sod’s problem

[57]. This is a very mild test and its solution consists of a left sonic rarefaction wave,

a right travelling contact discontinuity, and a right travelling shock wave. This test

is useful for assessing the ability of numerical methods to capture the correct entropy

admissible solution. Test 2 is a very severe test problem which is designed to assess

the robustness and accuracy of numerical methods. This test is actually the left

half of the blast wave problem of Woodward and Colella [58]. The solution contains
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a left rarefaction wave, a contact surface, and a strong shock wave of shock Mach

number 198. Test 3 is also a very challenging problem associated with the collision of

two strong shocks and its solution consists of three strong discontinuities travelling

to the right: a very slow travelling left shock wave, a contact discontinuity, and a

right shock wave. Table 5.1 shows the left (x < x0) and right (x > x0) constant

states for all three tests in terms of primitive variables. The computational domain

is Ω = (0, 1) and the final time of the computation is denoted by T . We take γ = 1.4

for the adiabatic gas constant in all these tests. The computations are done using

Table 5.1

Data for one-dimensional Riemann problems.

Test T x0 ρl ul pl ρr ur pr

1 0.200 0.300 1.000 0.750 1.000 0.125 0.000 0.100
2 0.012 0.500 1.000 0.000 1000 1.000 0.000 0.010
3 0.035 0.400 5.99924 19.5975 460.894 5.99242 -6.19633 46.095

P3 discontinuous finite elements on a uniform mesh composed of 200 cells and the

time stepping is performed with explicit RK4. The computational parameters are

reported in Table 5.2. The results for each test case are shown in Figures 5.1, 5.2,

Table 5.2

Entropy viscosity parameters for one-dimensional Riemann problems.

Test CFL ω δ CE Cmax Pρ PT

1 0.33 0.5 1.0 1.0 0.30/p 0.15 0.15
2 0.33 0.5 1.0 1.0 0.40/p 0.15 0.15
3 0.33 0.5 1.0 1.0 0.45/p 0.15 0.15

and 5.3. We observe that the results are non-oscillatory even though we used cubic

finite elements. We have verified that the computed numerical solutions are in fact

the entropy admissible solutions.
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Fig. 5.1. 1D Riemann problem for Euler equations. Test 1. P3

solution at time T = 0.2.
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Fig. 5.2. 1D Riemann problem for Euler equations. Test 2. P3

solution at time T = 0.012.
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Fig. 5.3. 1D Riemann problem for Euler equations. Test 3. P3

solution at time T = 0.035.
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Figures 5.4, 5.5, and 5.6 show the graphs of density and the related entropy-based

artificial dynamic viscosity field. The dynamic viscosity is mainly focused on shocks

as expected. We also observe small peaks of viscosity in the regions of contact

discontinuities.

Fig. 5.4. 1D Riemann problem for Euler equations. Test 1. Density
and dynamic viscosity at time T = 0.2.

Fig. 5.5. 1D Riemann problem for Euler equations. Test 2. Density
and dynamic viscosity at time T = 0.012.
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Fig. 5.6. 1D Riemann problem for Euler equations. Test 3. Density
and dynamic viscosity at time T = 0.035.

5.6.2 Two-dimensional tests

The method is now tested in two space dimensions on three classical benchmark

problems.

Riemann problem :

We consider the Riemann problem No. 12, see [59]. It is a two-dimensional problem

developing both fine structures of the solution and complex localized structures in-

cluding shock waves and contact discontinuities as well. The computational domain

is Ω = (0, 1)2 and the final time of the computation is T = 0.2. The adiabatic gas

constant is γ = 1.4 and the initial data is defined as follows:

ρ = 4/5, u = (0, 0), p = 1, x ∈ (0.0, 0.5); y ∈ (0.0, 0.5),

ρ = 1, u = (3/
√
17, 0), p = 1, x ∈ (0.0, 0.5); y ∈ (0.5, 1.0),
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ρ = 1, u = (0, 3/
√
17), p = 1, x ∈ (0.5, 1.0); y ∈ (0.0, 0.5),

ρ = 17/32, u = (0, 0), p = 2/5, x ∈ (0.5, 1.0); y ∈ (0.5, 1.0).
(5.42)

The control parameters of the entropy viscosity method are ω = 0.5, δ = 1.0,

CE = 1.0, Cmax = 0.5/p, Pρ = 0.25, and PT = 0.25. The time stepping is imple-

mented using RK4 with CFL = 0.25. The computations are done with Q1, Q2, and

Q3 discontinuous finite elements on a uniform grid composed of 47 = 16384 quad-

rangular cells. The total number of scalar degrees of freedom for the Q1, Q2, and

Q3 approximations are 65536, 147456, and 262144, respectively, i.e. 16384 · (p+ 1)2.

The transparent boundary conditions for this test problem are imposed implicitly on

Γ using the DG numerical fluxes.

We show in Figure 5.7 the density fields at time T = 0.2 for the Q1 and Q2

approximations. The Q3 density along with respective dynamic viscosity field at time

T = 0.2 are shown in Figure 5.8. The results compare well with those from [59, 60].

The shock waves and the fine structures that develop behind them are very well

described. The method behaves well as the polynomial degree p of the approximation

increases. The dynamic viscosity field is sharply concentrated on the shocks. Figure

5.8 reveals some weak instability of the contact surfaces, also known as the Kelvin–

Helmholtz instability.

Mach 3 supersonic flow over a forward− facing step :

We now focus our attention on the flow past a forward-facing step in a wind tunnel

at Mach 3. This benchmark test has been proposed in [61] and has been popularized

by Woodward and Colella’s extensive study [58]. The geometry of the computational

domain Ω is shown in Figure 5.9 and the initial data along with inflow boundary

conditions are specified in terms of primitive variables as follows:
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Fig. 5.7. Riemann problem No. 12 for Euler equations. Q1 (left)
and Q2 (right) density fields at time T = 0.2.

Fig. 5.8. Riemann problem No. 12 for Euler equations. Q3 density
(left) and dynamic viscosity (right) at time T = 0.2.
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(ρ,u, p)T(x, y, 0)

(ρ,u, p)T(0, y, t)






= (1.4, (3.0, 0.0), 1.0)T (5.43)

The outflow boundary at x = 3 is free and slip boundary conditions u ·n = 0 are

specified on the solid walls of the tunnel, n being an outward unit normal vector to

the boundary Γ of domain Ω.

Fig. 5.9. Mach 3 problem for Euler equations. Geometry of domain.

The corner of the step is a singular point in the flow. Using the DG approximation

implies three degrees of freedom to be assigned to that particular point, see Figure

5.9. DoF “b” is supposed to be a free stream point with no restrictions applied

from the boundaries, whereas DoFs “a” and “c” logically belong to the vertical and

horizontal walls of the wind tunnel, respectively. We have observed that better

results are obtained by assigning the numerical solution computed at DoF “b” to

DoFs “a” and “c”.

We solve this problem by using Q1 discontinuous finite elements and an adaptive

mesh refinement strategy available in the deal.II library.
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The local Kelly error indicator for the density [62] is employed in this computation:

η2K = hK

∮

∂K

[[∇ρh ·n]]2 dσ, (5.44)

and we limit the number of refinement levels to 7. This error indicator tries to

approximate the error per cell by integration of the jump of the gradient of the

solution along the faces of each cell. It gives good indications for mesh refinement,

but the error estimate is not to be trusted. For higher order trial spaces the integrals

computed here tend to zero faster than the error itself, thus ruling out the values as

actual error estimators.

The refining and coarsening are done so that 30% of the cells with the largest error

indicators are refined, whereas 10% of the cells with the smallest error indicators are

coarsened. Mesh adaption is done at every time step. The control parameters of the

entropy viscosity method are ω = 0.5, δ = 1.0, CE = 1.0, Cmax = 0.5/p, Pρ = 0.05,

and PT = 0.1. The time stepping is performed using RK4 with CFL = 0.25.

The graphs of density and associated dynamic viscosity fields at time T = 4 are

shown in Figures 5.10 and 5.11, respectively. The mesh obtained at time T = 4 is

shown in Figure 5.12. This solution agrees, at least in the ”visual norm”, with other

reference solutions that can be found in the literature. The contact discontinuity

emerging from the three-shocks interaction point is presented in the simulation and

is captured satisfactorily, considering the small number of elements (25500) used

in this computation. We observe a spurious Mach stem at the bottom wall of the

tunnel. This artifact is due to the entropy layer produced at the bottom wall by

the corner singularity. The phenomenon is well explained in [34, p.217]. It can be

removed either by applying special boundary conditions for the cells close to the

corner to avoid the effect from the singularity or by aggressive refining the mesh at

the corner. Another approach could be to round off the nonphysically sharp corner

and allow adaptive mesh refinement to follow the smooth structure of the rounded

corner.
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Fig. 5.10. Mach 3 problem for Euler equations. Q1 density at time T = 4.

Fig. 5.11. Mach 3 problem for Euler equations. Dynamic viscosity
field at time T = 4.

Fig. 5.12. Mach 3 problem for Euler equations. Adaptive mesh at time T = 4.
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Circular explosion on a square mesh :

We finish the series of numerical examples by considering a circular explosion in

two space dimensions. This numerical test has been proposed in [49] and centres

around the production of an unstable contact layer. The computational domain is

Ω = (0, 1)2 and the final time of the computation is T = 0.25. The adiabatic gas

constant is γ = 1.4 and the initial data is shown in Figure 5.13.

Fig. 5.13. Circular explosion. Initial data.

The boundaries at x = 0 and y = 0 are symmetric and the boundaries at x = 1 and

y = 1 are transparent. We use the following control parameters: ω = 0.5, δ = 1.0,

CE = 1.0, Cmax = 0.5/p, Pρ = 0.1, and PT = 0.1. The time stepping is implemented

using RK4 with CFL = 0.20. The computation involves Q1 discontinuous finite

elements on an adaptive grid with approximately 17000 cells at the end. We show

numerical density and entropy dynamic viscosity fields in Figures 5.14 and 5.15,

respectively. Figure 5.16 shows three-dimensional image of density.
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Fig. 5.14. Circular explosion. Q1 density at time T = 0.25.

Fig. 5.15. Circular explosion. Dynamic viscosity field at time T = 0.25.
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Fig. 5.16. Circular explosion. 3D image of Q1 density at time T = 0.25.
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6. CONCLUSIONS

We have developed and implemented a cutting-edge numerical technique which

combines higher-order discontinuous Galerkin finite element methods with an effi-

cient and robust high order shock-capturing and stabilization procedure based upon

the entropy-based artificial viscosity approximation. The new method can be suc-

cessfully applied to a broad class of time-dependent nonlinear hyperbolic problems

supplemented with an auxiliary entropy inequality. The arbitrarily order accuracy of

DG spatial discretizations together with reliable and precise time integration schemes

enable resolution of the small-scale features of most complex unsteady flows. Due

to the “intelligent” distribution of artificial viscosity between smooth and discon-

tinuous flow regions, the new technique keeps the fine structures of smooth flows

essentially untouched and simultaneously provides sharp and stable modulations of

the numerical solution across discontinuities.

The implementation of the method is relatively simple on unstructured grids with

arbitrary polynomial DG approximations. Flux or slope limiting procedures in the so-

called “trouble cells” are avoided in the presence of stabilizing artificial viscosity. This

characteristic, along with other favorable properties, makes this method extremely

flexible in the sense of easily handling a wide variety of element types and mesh

topologies as well as a number of adaptive techniques.

The method we have developed extends the entropy viscosity approach in a more

systematic way into the discontinuous Galerkin finite element framework. The in-

terelement jumps of the entropy flux are added to the definition of artificial viscosity,

which makes the entropy viscosity field more concentrated across discontinuities. Our

construction of DG inviscid numerical fluxes differs slightly from that associated with

standard versions of the DG method, while our construction of DG viscous numerical

fluxes differs significantly. The JLG numerical fluxes (after Jean-Luc Guermond) [50]

have been introduced.
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Our technique has been shown to perform well on many benchmark test problems.

While performing calculations not presented here, we have observed that the DG

version of the entropy viscosity method is at least as efficient as CG and spectral

element versions on the same class of problems. Since DG methods are routinely used

for radiative transfer calculations in the high energy density physics regime [63], the

use of DG finite elements provides a natural setting for coupling the hydrodynamics

and radiation transport equations.

The overall performance of our method leads us to conclude that it is a very

valuable alternative to existing techniques for solving the Euler equations and other

systems of nonlinear hyperbolic conservation laws.
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