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ABSTRACT 

 

Application of Entropy Theory in Hydrologic Analysis and Simulation.  

(May 2012) 

Zengchao Hao, B.S., China Agricultural University, China; 

M.S., Tsinghua University, China 

Chair of Advisory Committee: Dr. Vijay P. Singh 

 

 The dissertation focuses on the application of entropy theory in hydrologic 

analysis and simulation, namely, rainfall analysis, streamflow simulation and drought 

analysis. 

The extreme value distribution has been employed for modeling extreme rainfall 

values. Based on the analysis of changes in the frequency distribution of annual rainfall 

maxima in Texas with the changes in duration, climate zone and distance from the sea, 

an entropy-based distribution is proposed as an alternative distribution for modeling 

extreme rainfall values. The performance of the entropy based distribution is validated 

by comparing with the commonly used generalized extreme value (GEV) distribution 

based on synthetic and observed data and is shown to be preferable for extreme rainfall 

values with high skewness.  

An entropy based method is proposed for single-site monthly streamflow 

simulation. An entropy-copula method is also proposed to simplify the entropy based 

method and preserve the inter-annual dependence of monthly streamflow. Both methods 
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are shown to preserve statistics, such as mean, standard deviation, skenwess and lag-one 

correlation, well for monthly streamflow in the Colorado River basin. The entropy and 

entropy-copula methods are also extended for multi-site annual streamflow simulation at 

four stations in the Colorado River basin. Simulation results show that both methods 

preserve the mean, standard deviation and skewness equally well but differ in preserving 

the dependence structure (e.g., Pearson linear correlation).  

An entropy based method is proposed for constructing the joint distribution of 

drought variables with different marginal distributions and is applied for drought 

analysis based on monthly streamflow of Brazos River at Waco, Texas. Coupling the 

entropy theory and copula theory, an entropy-copula method is also proposed for 

constructing the joint distribution for drought analysis, which is illustrated with a case 

study based on the Parmer drought severity index (PDSI) data in Climate Division 5 in 

Texas. 
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CHAPTER I 

INTRODUCTION  

 

Characterization of hydrologic events, such as rainfall, streamflow and drought, 

is needed for water resources planning and management. Due to the stochastic nature of 

hydrologic phenomena, stochastic methods are commonly used. For rainfall analysis, a 

proper distribution is generally needed to investigate statistical properties of rainfall 

quantiles and extrapolate beyond the available data for engineering purposes. For 

streamflow simulation, synthetic streamflow with statistical properties similar to those 

historical streamflows are required for evaluation of alternative designs and policies 

against the range of sequences that are likely to occur in the future. A joint distribution 

with different marginal distributions is generally needed to characterize the correlation 

between drought variables and distribution property of individual drought variables to 

analyze return periods corresponding to some occurrence levels of drought events. 

A proper characterization of hydrologic events necessitates the consideration of 

uncertainty in the estimation from limited observations. Entropy theory defines a 

measure of uncertainty or information and thus provides a proper way to characterize 

hydrologic events with stochastic nature. Application of entropy theory to rainfall 

analysis, streamflow simulation and drought analysis constitutes the objective of this 

study.  

Rainfall frequency analysis is needed for the construction of intensity-duration-  

____________ 
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frequency (IDF) curves which are used for engineering design of drainage systems,  

culverts, roadways and parking lots. Extreme values, such as the annual rainfall maxima, 

are generally used for frequency analysis. The generalized extreme value (GEV) 

distribution, which is based on the extreme value theory, has been commonly used for 

modeling extreme rainfall in different states. However, there are a variety of studies for 

extreme rainfall analysis in which other distributions have often been employed. 

Extreme rainfall exhibits different properties for different durations and in different 

regions. The question is: what is the effect of time duration, climate zone and the 

distance from the Gulf of Mexico on the frequency distribution of annual rainfall 

maxima? In this study, the State of Texas was selected as the study area and we try to 

answer these three questions to provide an insight into the analysis of extreme rainfall.  

In chapter II, the change in the form of the annual rainfall maximum frequency 

distribution with changes in time duration, climate zone, and distance from the Gulf of 

Mexico is investigated. An entropy based distribution is then proposed to model the 

annual rainfall maxima. The performance of the proposed method is compared with the 

commonly used GEV distribution based on the synthetic data and real observations.  

Streamflow is a component of a variety of hydrologic analysis, such as the 

reservoir planning and operation. Since historical streamflow does not allow for the 

evaluation of alternative designs and policies against the range of sequences that are 

likely to occur in the future, synthetic streamflow data are useful in water resources 

studies. It is desired that synthetic streamflow is similar to historical streamflow and 

preserves moment statistics (such as mean, standard deviation, and skewness), and 
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dependence structure (such as lag-one correlation). For traditional methods, the Gaussian 

assumption is generally needed for parametric methods in which transformation 

techniques are employed.  However, some problems arise, such as the generation of 

negative values due to the Gaussian assumption and the bias in simulated statistics due 

to the transformation techniques. In addition, the lag-one correlation (or Pearson 

product-moment correlation coefficient) only measures the linear dependence of random 

variables, which may not be adequate in reality. Moreover, some unusual features, such 

as the bimodality, may exist in the probability density function of streamflow data. It is 

difficult for the commonly used parametric approach to represent these features. Though 

the mixed distribution can be used to resolve the bimodality, bias in the statistics of 

streamflow may occur.  

In Chapter III, an entropy based method is proposed for monthly streamflow 

simulation. With the joint distribution of monthly streamflows of two adjacent months 

derived using the entropy theory, monthly streamflow is then generated by sequential 

sampling from the conditional distribution. The proposed entropy-based method does not 

rely on the assumption of the marginal distributions to be normal and data 

transformation is not needed. Therefore, issues with the data transformation existing in 

the commonly used parametric approaches can be avoided. This method can be extended 

to model more statistics of the underlying streamflow data if needed. The disadvantage 

of the entropy based method is that the method will be computationally cumbersome 

when more statistics need to be modeled. 
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In Chapter IV, an entropy-copula method is proposed for single-site monthly 

streamflow simulation in which the joint distribution is constructed using the copula 

theory with the marginal distribution derived using the entropy theory. The entropy-

copula method simplifies the entropy method for monthly streamflow simulation in that 

less number of parameters needs to be estimated simultaneously. Furthermore, the 

entropy-copula method is also capable of modeling the nonlinear dependence of 

streamflow between different months due to the copula component.  The proposed 

entropy-copula method is also extended with an aggregated variable to guide the 

sequential simulation to improve the preservation of high-order correlation and preserve 

the inter-annual dependence of monthly streamflow.  

In Chapter V, both the entropy method and entropy-copula methods are extended 

to higher dimension for multi-site annual streamflow simulation. The difference between 

two methods lies in modeling the dependence structure of streamflow. For the entropy 

method, the joint constraints are used for modeling the dependence while the copula is 

used for modeling the dependence for the entropy-copula method. Application of the 

proposed method based on annual streamflow from four stations in Colorado River basin 

illustrates the effectiveness and difference of the entropy method and entropy-copula 

method for streamflow simulation. 

Drought analysis is important for water resources planning and management. A 

drought event can be characterized with certain properties, such as duration and severity. 

Drought duration and severity, assumed as random variables, have been commonly used 

for drought analysis and a traditional way for characterizing drought is fitting an 
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empirical distribution to drought duration and severity. The joint distribution is needed 

to model the correlation between drought variables. Traditional joint distributions that 

have been applied for drought analysis generally assume that the marginal distribution is 

of the same type.  The copula method has been employed extensively for modeling 

drought duration and severity with the attractive property that the marginal distribution 

can be of different forms. However, the marginal distributions are often derived by 

empirically fitting to the data.  

In Chapter VI, an entropy based distribution is proposed for constructing the joint 

distribution of drought variable. The feature of the proposed entropy-based distribution 

is that the marginal distributions can be of different forms. The advantage of the 

proposed method is the marginal distribution can be derived with whatever is known 

from observations and is not restricted by the empirical forms of distributions. 

In Chapter VII, an entropy-copula method is proposed for constructing a joint 

distribution for drought analysis. Flexible distribution forms can be derived with the 

entropy method and the commonly used distributions can also be derived as special 

cases of the entropy based distribution. A variety of copulas have been proposed that are 

capable of modeling different dependence structures. The joint distribution constructed 

with the copula method with the marginal distributions derived from the entropy theory 

is expected to be capable of modeling drought variables separately and jointly.  

The general conclusions of this study are covered in Chapter VIII. 
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CHAPTER II 

ENTROPY BASED METHOD 

FOR RAINFALL ANALYSIS 

 

2.1 Introduction 

 Rainfall frequency analysis is used for constructing intensity-duration-frequency 

(IDF) curves which are needed for a range of hydrologic designs, including drainage 

systems, culverts, roadways, parking lots, runways, and so on. Extreme rainfall values, 

such as annual rainfall maxima, are of interest in modeling floods and quantifying the 

effect of climate change. From the fitted distribution, statistical properties of extreme 

rainfall values can be investigated and extrapolated beyond the available data for 

engineering purposes. 

The generalized extreme value (GEV) distribution is one of the frequently 

employed probability distributions for modeling and characterizing extreme values. 

Derived from the extreme value theory, it is a three-parameter distribution encompassing 

three classes of distributions, namely, Gumbel, Frechet and Weibull. This distribution 

has been used for extreme rainfall frequency analysis in different areas of the world. 

Schaefer [1990] used the GEV distribution for frequency analysis of annual rainfall 

maxima of durations of 2 h, 6 h and 24 h for the state of Washington. Huff and Angel 

[1992] selected the GEV distribution to model the distribution of annual rainfall maxima 

for durations from 5 minutes to 10 days in mid-western United States. Parrett [1997] 

also used the GEV distribution to construct dimensionless frequency curves of annual 
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rainfall maxima of durations of 2 h, 6 h and 24 h within each region in Montana. Using 

the L-moment ratio diagram, Asquith [1998] determined that the GEV distribution was 

an appropriate distribution for modeling the distribution of annual maxima for durations 

from 1 to 7 days. Alila [1999] showed that the annual rainfall extremes for durations 

from 5 minutes to 24 hours in Canada were better described by the GEV distribution 

than other distributions, such as the generalized logistic (GLO), Pearson type 3 (P3) and 

EV1 distributions.  

Extreme rainfall exhibits different properties for different durations in different 

regions. Analysis of rainfall characteristics is important for choosing a suitable rainfall 

distribution and consequently estimating rainfall quantiles. Therefore, the objective of 

this study is to investigate the change in the form of the annual rainfall maxima 

frequency distribution with changes in time duration, climate zone, and distance from 

the Gulf of Mexico; and then derive an entropy-based distribution that is sufficiently 

flexible for characterizing rainfall distributions for different durations in different 

climatic regions or at different distances from the sea. The performance of the proposed 

entropy based distribution is assessed using synthetic data through Monte Carlo 

simulation and real observations and is shown to be a promising alternative distribution 

to the commonly used GEV distribution for modeling extreme rainfall values, especially 

for observations with high skewness. 

The study is organized as follows. In section 2.2, the change in form of empirical 

distribution of annual rainfall maxima is investigated. Using the entropy theory, a 

generalized distribution is derived in section 2.3 and the performance of this distribution 
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is assessed by comparing with the GEV distribution in Section 2.4. After the application 

of the proposed entropy based distribution in section 2.5, conclusions are given in 

section 2.6. 

2.2 Empirical frequency distribution 

2.2.1 Study area  

 

 

 

 

Figure 2. 1 Regions of climate zones in Texas ([Larkin and Bomar, 1983]). 

 

 

 

The area selected for this study is the state of Texas (longitude: 93° 31' W to 

106° 38' W, latitude: 25° 50' N to 36° 30' N). The climate of Texas is strongly influenced 

by physical features including the Gulf of Mexico. The passage of frontal systems from 

northwest and the moist air moving inland from the Gulf of Mexico are the two 

competing influences that dominate the climate of Texas while proximity to the coast is 
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the most important factor that determines the regional climatic differences in Texas 

[North et al., 1995]. 

There are three major types of climate in Texas which are classified as 

Continental, Mountain and Modified Marine with no clearly distinguishable boundaries, 

while the modified marine zone is further classified into four “subtropical” zones 

[Larkin and Bomar, 1983; Narasimhan et al., 2008], as shown in Figure 2. 1.The 

Mountain climate is dominant in several mountains of the Trans-Pecos region and is not 

included in this study. The different climate zones of the Continental and Modified 

Marine climate are abbreviated as Continental Steppe (CS), Subtropical Arid (SA), 

Subtropical Humid (SH), Sub-tropical Sub-Humid (SSH) and Sub-Tropical Steppe zone 

(SST). In addition, the U.S. National Weather Service divided Texas into 10 climate 

divisions (including Upper Coast, East Texas, High Plain, Trans-Pecos and so on ) 

which are used accordingly in this study. 

2.2.2 Data description 

Data for 15-minute, hourly, and daily duration for National Weather Service 

(NWS) stations, as shown in Figure 2. 2, were obtained from the National Climatic Data 

Center (http://www.ncdc.noaa.gov).  The 15 and 45-minute annual maxima were 

compiled from the 15-minute data. Likewise, the rainfall data for different hourly 

durations (1-hour and 12-hour) and daily durations (1-day, 7-day and 30-day) were 

compiled from hourly and daily data, respectively. Annual rainfall maxima data were 

then obtained from these rainfall data for different durations.   

http://www.ncdc.noaa.gov/
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Figure 2. 2 Rainfall stations used in this study. 

 

 

 

2.2.3 Change in distribution form with time duration 

Histograms of annual rainfall maxima of different durations were prepared for all 

raingage stations used in this study and those for a sample station (411956) are shown in 

Figure 2. 3. It was observed that frequency distributions for short durations were more 

skewed with sharp peaks but tended to be less skewed with increase in the duration. For 

example, annual rainfall maxima data for station 411956 had a skewness value of 2.7 for 

15-minute data but 1.1 for 30-day data (not shown).  
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Figure 2. 3 Histograms and probability density functions of rainfall data of 

different durations (for station 411956 in the Subtropical Humid (SH) climate 

zone). 

 

 

 

To further show this characteristic, the boxplot of skewness values for 40 

datasets of different durations is demonstrated in Figure 2. 4. For example, the 75 

percentile of skewness of the 15 minute duration was around 3.2 while that for the 30-

day duration was 1.2. This is partly because for short duration like 15 minutes, a large 

amount of rainfall may occur within a short time in certain cases exhibiting large 

skewness while for long durations, like 30 days, the data is averaged and thus it exhibits 

less skewness.  
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Figure 2. 4 Skewness of annual rainfall maxima of different durations (40 datasets 

for each duration). 

 

 

 

2.2.4 Change in distribution form with climatic zone 

Subtropical humid zone (SH) 

The subtropical humid (SH) zone lies in the eastern part of Texas which is 

mostly noted for warm summers [Larkin and Bomar, 1983]. Ten stations were selected 

for the study. This zone includes most parts of Upper Coast and East Texas division. 

There are four rainfall generating mechanisms that exist in the Upper Coast area, leading 

to varying patterns from year to year as one or more of these controls change: in May the 



 

 

13 

typical thunderstorm pattern is expected slightly inland while the  belt of maximum 

activity is along the coast by July; in September tropical disturbances  can cause very 

heavy rains for some years, while in December frontal activity affects the region 

[National Fibers Information Center, 1987]. The East Texas division is characterized by 

a fairly uniform seasonal rainfall with slight maxima occurring in May and December 

and there is little variation in the weather in the summer season, because the influence of 

the Gulf of Mexico is dominant [ National Fibers Information Center, 1987]. The most 

widespread and lengthy precipitation periods in East Texas during spring and autumn 

occur when the cold air forms a barrier, forcing the overriding moist Gulf air to be 

deflected upward where it cools and condenses [Carr, 1967]. 

For two stations 411956 and 410569, the histograms are shown in Figure 2. 5 (a) 

and (b) for 12-hour annual rainfall maxima. It can be seen that frequency distributions 

are smooth for the data of this duration. This region is along the coast and the rainfall 

pattern is affected by the Gulf of Mexico. Since the proximity to the coast is the most 

determining factor for regional climate differences [North et al., 1995], the reason for 

this frequency distribution pattern may be due to the moderating moisture from the Gulf 

of Mexico.  

Subtropical sub-humid zone (SSH) 

The subtropical sub-humid (SSH) zone is located in the central part of Texas 

which is characterized by hot summers and dry winters [Larkin and Bomar, 1983]. No 

clear pattern was discernible from the frequency distribution of several stations in this 

climate zone.  
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Figure 2. 5 Histograms and probability density functions of 12-hour rainfall data of 

different climate zones. 

 

 

 

Continental steppe zone (CS) 

The continental steppe (CS) zone lies in the northwestern part of Texas and 

includes the regions similar to the High Plain division. The rainfall amount increases 

steadily through spring and reaches a maximum in May or June, while the thunderstorm 

activity is also on the rise during the spring season [National Fibers Information Center, 

1987]. In this region, summer is the wet season and thunderstorms are numerous in June 

and July but begin to decrease in August. Two stations 414098 and 415411 were used 

for analysis and the histograms for 12-hour annual rainfall maxima are shown in Figure 
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2. 5 (c) and (d). The frequency distributions in this part are relatively sharp, compared 

with those from the SH climate zone. The reason may be that the maximum rainfall 

mainly comes from the thunderstorms during the summer season. 

Subtropical Arid zone (SA) 

The subtropical arid zone lies in the extreme western part of Texas and includes 

the region similar to the Trans-Pecos division. The basin and plateau region of the Trans-

Pecos features a subtropical arid climate, which is marked by summertime rainfall 

anomalies of the mountain relief [Larkin and Bomar, 1983]. Rainfall reaches its 

maximum in July and in summer, where the rain comes mainly from thunderstorms, 

often affected by local topography [National Fibers Information Center,1987]. In the 

Trans-Pecos region, the biggest percentage of rainfall occurring in this area is due to 

convective showers and thundershower activity, while the thundershower activity is the 

primary contributor of rainfall during late summer and early autumn months [Carr, 

1967]. Two stations 416893 and 412797 were selected for analysis and the histograms 

for the 12-hour annual rainfall maxima are shown in Figure 2. 5 (e) and (f). The 

frequency distributions were relatively sharp compared with those from the SH climate 

zone.  The reason for the variation of rainfall may be that the heavy rainfall in SA is 

mainly produced due to the convective shower and thundershower activity. 

Subtropical steppe zone  (SST) 

From the mid-Rio Grande Valley to the Pecos Valley, the broad swath of Texas 

has a subtropical Steppe (SST) climate and is typified by semi-arid to arid conditions 
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[Larkin and Bomar, 1983]. No clear pattern of frequency distributions in this zone was 

found from the data of several stations.  

In general, frequency distributions for regions in extremely northern and western 

parts (or the CS and SA climate zones) were sharp; however, those for the regions in the 

southeast near the Gulf Mexico (or the SH climate zones) were rather smooth. In 

general, frequency distributions became smoother from northwest to southeast. Although 

only a few of the possible mechanisms of rainfall in each region were investigated, the 

analysis provided an insight into the reason for the specific rainfall frequency 

distribution pattern in each climate region. 

2.2.5 Influence of the distance from the sea (or the Gulf of Mexico)  

The Gulf of Mexico is particularly important for the climate of Texas, as it 

provides the source of moisture and modulates the average seasonal and diurnal cycles, 

particularly in the coastal regions [North et al., 1995]. In general, the average annual 

rainfall decreases with increasing distance from the Gulf of Mexico.  

To assess the effect of the Gulf of Mexico on the distribution of annual rainfall 

maxima, 20 stations were selected and divided into two groups each with 10 stations 

according to the distance from the Gulf of Mexico.  The histograms of 12-hour 

maximum rainfall for four sample stations are shown in Figure 2. 6. It can be seen that 

the frequency distributions in group II (more than 250 miles away from the Gulf) are not 

as smooth as those in group I (within 60 miles from the Gulf), which are located along 

the coast. The smoothness of frequency distributions in Group I is partly due to the 

closeness of rainfall stations to the Gulf of Mexico. The effect of Gulf of Mexico is 
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reduced with the distance and the topology factor may also play an important role for the 

rainfall generating mechanism. The frequency distribution pattern for the two stations in 

Group II may be due to the mixed effect of the Gulf of Mexico and topology.   
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Figure 2. 6 Histograms and probability density functions of 12-hour rainfall data of 

different distances from the Gulf of Mexico (414309, 60 miles; 412015, 20 miles; 

411698, 480 miles; 412621, 450 miles ). 

 

 

 

It is clear that the probability distribution varies with time duration, climate zone 

and distance from the sea (or Gulf of Mexico). The question arises if a probability 
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distribution that can accommodate the effect of these factors. This is addressed in what 

follows.  

2.3 Annual maximum rainfall distribution using entropy theory  

2.3.1 Derivation of distribution 

Let the annual maximum rainfall for a given duration be represented as a 

continuous random variable X є [a, b] with a probability density function (PDF), f(x). 

For f(x), the Shannon entropy E can be defined as [Shannon, 1948; Shannon and 

Weaver, 1949]: 


b

a
dxxfxfE )(ln)(

   
(2.1) 

where x is a value of random variable X with lower limit a and upper limit b. Jaynes 

[1957]  developed the principle of maximum entropy (POME) which states that the 

probability density function should be selected among all the distributions with the 

maximum entropy subjected the given constraints. The constraints can be expressed in 

general form as: 

)()()( r

b

a

r gEdxxfxg    r=1; 2,…, m (2.2) 

where the function gr(x) in equation (2.2) is the known function with g0(x)=1; E(gr) is the 

r-th expected value obtained from observations with g0=1; m is the number of 

constraints.  

The maximum entropy based probability density function can then be obtained 

by maximizing the entropy in equation (2.1), subject to equations (2.2) using the method 

of Lagrange multipliers, as [Kesavan and Kapur, 1992]: 
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where λr (r=0, 1,…, m) are the Lagrange multipliers.  

2.3.2 Maximum entropy distribution with moments as constraints 

Moments can be used for the reconstruction of density based on maximum 

entropy [Mead and Papanicolaou, 1984]. With the first four moments as constraints, the 

maximum entropy-based probability density function (denoted as ENT4) defined on the 

interval [a, b], with the function g(x) in equation (2.2) expressed as gi(x)=x
i
 (i=1, 2, 3 and 

4) , can be expressed as: 

)exp()( 4
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   (2.4) 

In this study, the lower bound of the interval a is set to be zero, while the upper 

bound b was set to be 20 times the observed maximum value. Since higher moments are 

involved in this distribution, a relatively large datasets would be needed for the accuracy 

of the moment estimation. 

With the first four moments as constraints, the skewness, kurtosis and multiple 

modes can be included in the resulting maximum entropy-based distribution [Zellner and 

Highfield, 1988]. Each maximum of the polynomial inside the exponential corresponds 

to one mode and thus the multiple modes may exist in the maximum distribution [Smith, 

1993]. Matz [1978] developed a new algorithm for the maximum likelihood estimate of 

this distribution and showed its good performance in characterizing features of empirical 

distributions, including the bi-modal. Comparing this distribution with the Pearson 

distribution, Zellner and Highfield [1988] showed that it was comparable with the 
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Pearson distribution while provided a better fit for small sample size, especially at the 

tails. Smith [1993] used the maximum entropy-based distribution with moments as 

constraints for decision analysis to construct the distribution of value lottery and showed 

the distribution with first four moments as constraints performed well.  

In this study, the entropy based distribution in equation (2.4) was proposed as an 

alternative for modeling extreme rainfall values. In addition, the entropy distribution 

with the first three moments as constraint was also selected as the candidate for 

modeling extreme rainfall values. From equation (2.3), this distribution with three 

parameters (denoted as ENT3) can be expressed as:  

)exp()( 3

3

2

210 xxxxf  
   (2.5) 

2.3.3 Estimation of parameters  

The Lagrange multipliers of equation (2.4) has to be determined using equations 

(2.2) where E(gr)(r=1, 2, 3, 4) are the expectation of the first four non-central moments. 

Generally the analytical solution does not exist and the numerical estimation of the 

Lagrange multipliers is needed.  To that end, one can maximize the function [Mead and 

Papanicolaou, 1984; Wu, 2003]: 
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The maximization can be achieved by employing Newton’s method. Starting 

from some initial value λ(0), one can solve for Lagrange parameters by updating λ(1) 

through the equation given below: 
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where the gradient Г is expressed as: 
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and H is the Hessian matrix whose elements are expressed as: 
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2.4 Model evaluation  

2.4.1 Performance measure 

To quantify the performance of the proposed distribution in modeling the 

extreme rainfall quantiles, the root mean square error (RMSE) was used defined as: 
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(2.10) 

where n is the length of the observed data; oi are the observed quantile; xi are the 

estimated quantile from the fitted distribution corresponding to the empirical non-

exceedance probabilities estimated from the plotting position formula. In this study, the 

Gringorten plotting position formula is used defined as [Gringorten, 1963]: 
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where i is the rank of the observed values and n is the length of the observed data.  
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2.4.2 Synthetic data from known distribution 

Monte Carlo experiments were first carried out to compare the quantiles 

estimated from the GEV, ENT4 and ENT3 distributions. Two Monte Carlo simulations 

were conducted with random numbers generated from the known GEV and lognormal 

distributions. Random numbers of three different lengths (namely, 40, 70 and 100) were 

generated, which were used to approximate the record length of the 15-minutes, hourly 

and daily rainfall data in this study. For the first simulation (S1), the quantiles 

corresponding to different return periods (T = 5, 10, 25, 50, 100, 200 years) were first 

assessed with the random number generated from the GEV distribution. For the second 

simulation (S2), the quantiles corresponding to relatively long return period (T=100 and 

200 years) from the three distributions were assessed with the synthetic data generated 

from log-normal distribution with different skewness values.  

Random number from Generalized Extreme Value distribution (GEV) 

The generalized extreme value (GEV) distribution has been applied extensively 

in hydrology for extreme rainfall analysis. Its probability density function is defined as:  
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(2.12) 

where k, σ and u are the shape, scale and location parameter. In this study, the MATLAB 

function gevfit was used for the parameter estimation of the GEV distribution with 

maximum likelihood method. 
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Figure 2. 7 Parent distributions for Monte Carlo simulation. (a) GEV distribution; 

(b) Lognormal distribution with different skewness (s). 

 

 

 

1000 datasets of random numbers with different sample sizes (n=40, 70, 100) 

were generated from this parent distribution.  The GEV, ENT4 and ENT3 distributions 

were then fitted to these datasets and the quantiles corresponding to different return 

periods were obtained. Parameters (k, σ , u) of the parent distribution were assigned as 

(0.3,0.3,1.2) and the probability density function is shown in Figure 2. 7 

The median and the RMSE values of the estimated quantiles for simulation S1 are 

shown in Table 2. 1. From the median values, it can be seen that for short return periods 

(T ≤ 50 years), the median values from the ENT4 and GEV distributions were close to 
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each other for each sample size. For example, for sample size n=100, the median values 

from GEV and ENT4 for return period 50 years were 3.42 and 3.40,  respectively, while 

the observed value was 3.42.   

 

 

 

Table 2. 1 Median of estimated quantiles with random numbers generated from the 

GEV distribution. 

Sample size Return Period 

(years) 5 10 25 50 100 200 

Observation 1.77 2.16 2.81 3.42 4.18 5.10 

n=40 GEV 1.75 2.14 2.76 3.35 4.11 5.04 

ENT4 1.74 2.09 2.80 3.36 3.57 3.69 

ENT3 1.97 2.22 2.49 2.67 2.83 2.98 

n=70 GEV 1.76 2.16 2.78 3.37 4.09 5.03 

ENT4 1.74 2.08 2.77 3.42 3.86 4.05 

ENT3 1.99 2.25 2.54 2.72 2.89 3.04 

n=100 GEV 1.76 2.15 2.80 3.42 4.16 5.06 

ENT4 1.75 2.07 2.71 3.40 4.21 4.42 

ENT3 2.02 2.30 2.60 2.79 2.96 3.12 

 

 

 

The RMSE values of the estimated quantiles for simulation S1 are shown in Table 

2. 2. Generally the RMSE values of the ENT4 distribution were slightly larger than those 

of the GEV distribution, however, these results were acceptable. For the quantiles 

corresponding to the relatively long return periods (100 and 200 years), the median 

quantile from the ENT4 distribution is slightly underestimated, while that from the GEV 

distribution was close to the true value. This is not unexpected, since the random 

numbers were generated from the GEV distribution and then the GEV distribution was 

fitted. Generally ENT4 modeled the data generated from the GEV distribution well, 
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especially when the sample size was relatively large. The ENT3 distribution also 

estimated the quantiles relatively well for short periods (T ≤ 25 years), while it did not 

model the quantiles well corresponding to relatively long return periods (T ≥ 50 years).  

 

 

 

 

Table 2. 2 RMSE of estimated quantiles with random numbers generated from the 

GEV distribution. 

Sample size Distribution Return Period (years) 

5 10 25 50 100 200 

n=40 GEV 0.14 0.25 0.55 0.96 1.64 2.73 

ENT4 0.15 0.28 0.77 1.70 1.74 2.00 

ENT3 0.38 0.47 0.66 0.95 1.43 2.12 
n=70 GEV 0.10 0.19 0.40 0.69 1.15 1.86 

ENT4 0.12 0.22 0.52 1.02 2.28 2.38 

ENT3 0.35 0.41 0.59 0.91 1.45 2.36 
n=100 GEV 0.09 0.16 0.34 0.57 0.93 1.46 

ENT4 0.11 0.18 0.42 0.97 2.67 2.74 

ENT3 0.36 0.44 0.62 0.90 1.37 2.05 

 

 

 

Random number from log-normal distribution 

The probability density function of the log-normal distribution can be expressed 

as: 
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where u is the mean in the log-scale and σ
2
 is the  variance in the real scale. The 

skewness coefficient s is related with the variance σ
2
 as s=[exp(σ

2
)+2][exp(σ

2
-2)]

0.5
. In 



 

 

26 

this study, the MATLAB function lognfit was used for the parameter estimation of the 

log-normal distribution with maximum likelihood method. 

 

 

 

Table 2. 3 Median of estimated quantiles with random numbers generated from the 

log-normal distribution with different skewness (k). 

Sample Size Skewness k=1 k=2 k=2.5 k=3 

Quantile x100 x200 x100 x200 x100 x200 x100 x200 

Observation 2.80 3.03 4.87 5.59 5.99 7.03 7.13 8.53 

n=40 GEV 2.73 2.95 5.12 6.02 6.48 7.94 7.84 10.00 

ENT 2.61 2.72 4.34 4.54 5.15 5.39 5.93 6.21 

ENT3 2.44 2.55 3.85 4.11 4.62 4.97 5.35 5.81 

n=70 GEV 2.77 2.99 5.07 5.98 6.57 8.09 8.25 10.57 

ENT 2.69 2.83 4.60 4.88 5.58 5.91 6.83 7.26 

ENT3 2.46 2.58 3.88 4.14 4.75 5.12 5.78 6.30 

n=100 GEV 2.80 3.01 5.13 6.08 6.60 8.14 8.34 10.66 

ENT 2.74 2.88 4.77 5.05 5.92 6.30 7.19 7.70 

ENT3 2.48 2.59 3.90 4.17 4.81 5.21 5.85 6.42 

 

 

 

1000 datasets of random numbers with different sample sizes (n=40, 70 and 100) 

with different skewness 1, 2 , 2.5 and 3 were generated from log-normal distribution and 

used for comparison. Parameter u is assigned as 0.3 while the standard deviations 

corresponding to different skeweness values were assigned as 0.31, 0.55, 0.64 and 0.72, 

respectively. The PDFs for the parent distributions with these parameters are shown in 

Figure 2. 7 (b). The objective of this simulation was to show the performance of these 

distributions in modeling data with different skewness.  The median and RMSE values 

of the estimated quantiles for return period 100 and 200 years (denoted as x100 and x200) 

corresponding to non-exceedance probability 0.99 and 0.995 are shown in Table 2. 3 and 

Table 2. 4.  
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Table 2. 4 RMSE of estimated quantiles with random numbers generated from the 

log-normal distribution with different skewness (k). 

Sample Size Distribution k=1 k=2 k=2.5 k=3 

x100 x200 x100 x200 x100 x200 x100 x200 

n=40 GEV 0.45 0.61 1.80 2.82 2.65 4.37 3.95 6.83 

ENT 0.43 0.51 1.41 1.64 1.92 2.30 2.62 3.14 

ENT3 0.41 0.52 1.23 1.64 1.71 2.34 2.43 3.28 

n=70 GEV 0.32 0.43 1.18 1.79 1.92 3.06 3.05 5.13 

ENT 0.36 0.45 1.26 1.44 1.95 2.22 2.75 3.00 

ENT3 0.36 0.47 1.09 1.51 1.52 2.12 1.93 2.77 

n=100 GEV 0.25 0.33 0.95 1.43 1.63 2.60 2.41 4.02 

ENT 0.30 0.39 1.19 1.38 1.69 1.96 2.70 3.03 

ENT3 0.35 0.46 1.03 1.45 1.36 1.95 1.69 2.57 

 

 

 

For the case with skewness k=1, the median quantiles from the ENT4 distribution 

was not as close to the observed values as from the GEV distribution. However, the 

difference of the estimated median from GEV and ENT4 was relatively small, especially 

for relatively large sample sizes. For example, for n=100, the median values from GEV 

and ENT4 were 2.80 and 2.74 with the observed value being 2.80. Generally the RMSE 

values of the two distributions were close to each other. For example, the RMSE of GEV 

and ENT4 for x200 were 0.43 and 0.45, respectively, for n=70. The performance of ENT4 

is improved with the increase of sample size. Generally the performance of ENT4 and 

GEV were comparable in this case. 

For skewness values of k=2 and 2.5, the median values from GEV were 

overestimated while those from ENT4 were slightly underestimated. When the sample 

size was relatively small (n=40), the GEV distribution performs slightly better than the 

ENT4 distribution for the median values. However, the RMSE value from the GEV is 
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higher than the ENT4 distribution. When the sample size was relatively large (n=100), 

the ENT4 distribution generally performed better than the GEV distribution for the 

median value, while their performance was comparable for the RMSE values.  For 

example, for the case with k=2.5 and sample size n=100, the median values from GEV 

and ENT4 corresponding to the 100 year return period were 6.60 and 5.92 while the true 

value was 5.99. The corresponding RMSE values for GEV and ENT4 were, respectively, 

1.63 and 1.69, which are comparable. The performance of the ENT4 distribution 

improved with the increase of sample size.  

For the skewness k=3, the median value estimated from GEV was overestimated 

significantly, while ENT4 still performed relatively well for estimating quantiles, 

especially when the sample size was relatively large. For example, the true quantile 

corresponding to the 100 year return period was 7.13, while the quantiles from GEV and 

ENT4 with sample size (n=70) were 8.25 and 6.83, respectively. The corresponding 

RMSE values were 3.05 and 2.75, indicating that ENT4 performed relatively better.  

Though the RMSE values from ENT3 distribution was comparable with the 

ENT4 distribution and sometimes even smaller than ENT4 distribution, generally the 

median value from ENT3 was underestimated significantly for each sample size with 

different skewness. These results showed that generally ENT3 did not perform as well as 

the GEV and ENT4 distributions and was not suitable for modeling extreme values. 

Summary 

The Month Carlo simulation S1 showed that generally the ENT4 distribution was 

comparable to the GEV distribution in modeling extreme rainfall values.  Since the GEV 
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distribution has been extensively applied for modeling extreme values, the results from 

the first simulation S1 showed that the ENT4 distribution would also be a candidate for 

modeling the extreme values. The Monte Carlo simulation S2 showed that the 

performance of the ENT4 distribution was comparable with GEV for low skewness , 

especially when the sample sizes were relatively large (n ≥ 70).  When the skewness was 

relatively high ( k ≥ 2), the ENT4 distribution performed relatively better than the GEV 

distribution for estimating quantiles corresponding to relatively long return periods, 

especially when the sample size was large. Botero and Francés [2010] also found that 

the GEV distribution led to large errors for quantile estimation corresponding to long 

return periods for high skewness.  

Synthetic data from other distributions (e.g., gamma distribution) were also used 

for comparison and generally similar results were obtained (not presented). Thus it can 

be concluded from the Monte Carlo simulation that generally the ENT4 distribution 

provided an alternative to the commonly used GEV distribution and should be preferable 

for observations with higher skewness. The ENT3 distribution was not suitable for 

modeling extreme values.  

2.4.3 Real rainfall data from observation 

To further compare the performance of the GEV distribution and ENT4 

distribution, the observed rainfall data from 40 stations for different time duration (15-

min, 45-min, 1-hour, 12-hour, 1-day, 7-day and 30-day) were also used. The two 

distributions were compared based on empirical and theoretical quantiles according to 

the RMSE measure. The number of stations for each distribution performing the best 
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(with the least RMSE) is shown in Table 2. 5. For all durations, the ENT4 distribution 

performed the best for the largest number of stations. For example, for the annual 

rainfall maxima of the 12-hour duration, the ENT4 distribution performed the best for 36 

stations according to RMSE. From these results, it can be seen that the ENT4 

distribution would be a good candidate for modeling annual rainfall maxima. 

 

 

 

Table 2. 5 Number of stations with the minimum RMSE from each distribution. 

Duration ENT GEV ENT3 

15-minute 33 7 0 

45-minute 36 3 1 

1-hour 36 4 0 

12-hour 36 4 0 

1-day 33 7 0 

7-day 32 8 0 

30-day 32 8 0 

 

 

 

2.5 Application of the entropy based distribution 

The entropy-based distribution was used to fit the rainfall data in section 2.2, as 

shown in Figure 2. 3, Figure 2. 5 and Figure 2. 6, together with the empirical histograms 

as shown in the previous section. These figures show that the entropy-based distribution 

(ENT4) fitted the empirical histograms well for the rainfall data of different durations, 

climate zones and different distances from the Gulf. 

The GEV distribution was also applied here for further comparison with the 

ENT4 distribution. For each duration (15-min, 45-min, 1-hour, 12-hour, 1-day, 7-day 

and 30-day), 10 stations were used in each climate zone (except that for the SA climate 
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zone, 6 stations were used for 15-minute and 45-minute duration due to data limitation). 

The number of stations that ENT4 or GEV performed better in different climate zones is 

shown in Table 2. 6. Taking the result in the CS climate zone as an example, the ENT4 

distribution performed better for all durations for at least 8 out of 10 datasets.  

 

 

 

Table 2. 6 Number of stations with the minimum RMSE for different climate zones 

and durations. 

Duration 

 
CS SA

a
 SH 

ENT GEV ENT GEV ENT GEV 

15-minute 9 1 4 2 10 0 

45-minutes 10 0 6 0 9 1 

1-hour 9 1 9 1 10 0 

12-hour 9 1 10 0 8 2 

1-day 8 2 7 3 9 1 

7-day 8 2 8 2 7 3 

30-day 8 2 8 2 7 3 
a 

For SA climate region of 15 and 45-minute data, only 6 stations are selected due to data limitation 

 

 

 

The ENT4 distribution was also compared with the GEV distribution for 

different distances from the sea (Group I and Group II) with 10 stations in each group. 

There were not enough stations with a relatively long record of 15 minutes data in Group 

I and thus only the hourly (1-hour and 12-hour) and daily data (1-day, 7-day and 30-day) 

were used for comparison. The number of cases that ENT4 performed better than GEV 

for the two groups is shown in Table 2. 7. It can be seen that generally the ENT4 

distribution performed better than the GEV distribution. Taking the 1 hour data as an 
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example, the ENT4 distribution had less RMSE for 10 and 8 cases for Groups I and II, 

respectively. 

 

 

 

Table 2. 7 Number of stations with the minimum RMSE for different distances 

from the sea and durations. 

Duration Group I Group II 

1-hour 10 8 

12-hour 5 9 

1-day 9 9 

7-day 9 9 

30-day 10 9 

 

 

 

The annual maximum rainfall distribution can then be employed for the 

construction of intensity-duration-frequency (IDF) curves [Singh, 1992], which is 

defined as a relationship of rainfall intensity occurring over a certain duration d with 

different return periods. The hourly annual rainfall data for station 418583 were used to 

construct the IDF curves, as shown in Figure 2. 8. The empirical return period (TE) was 

obtained from the Gringorten plotting position formula as TE=1/(1-P), where P is the 

nonexceedance probability. The empirical return period were also plotted on the IDF 

curves. Note that the accuracy of the empirical return period for the highest-ranked peak 

flows is limited [Stedinger, 1993; Beckers and Alila, 2004]. Generally the return period 

from the IDF curves fitted the empirical return period well. For example, for the return 

period 20 years, the theoretical rainfall quantile from the ENT4 distribution was 4.6 inch 

while the observed quantile was 4.8 inch. 
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Figure 2. 8 IDF curves for different durations (for station 418583). 

 

 

 

2.6 Conclusion 

Frequency characteristics of annual rainfall maxima from different stations in 

Texas are analyzed. Results show that frequency distributions of annual rainfall maxima 

are highly skewed for short durations, like 15 min, and tend to be smoothed when the 

duration is relatively long. The distributions also show different patterns across different 

regions. In northern and western parts, like the CS and SA climate zones, distributions 

are sharp; however, they are relatively smooth in the southeast, like the SH climate zone. 

The possible reason is that in the CS and SA climate zones, heavy rainfall is mainly 
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produced by thunderstorms, while in the SH climate zone, the moisture from the Gulf of 

Mexico is the moderating factor. For the other climate zones, no clear pattern is found, 

which may be due to the mixed effect of different rainfall mechanisms. The frequency 

distribution of rainfall near the Gulf of Mexico is smoother than that far away from the 

Gulf. The reason may be that the Gulf of Mexico serves as the moisture source.  

An entropy based distribution is proposed for frequency analysis of annual 

rainfall maxima. Monte Carlo simulation based on the synthetic data from different 

distributions shows that the ENT4 distribution is comparable with the GEV distribution 

and is preferable for the datasets with high skewness. Furthermore, the ENT4 

distribution performs better for most cases than the GEV distribution in the general 

performance of modeling the quantiles based on the observed rainfall data. These results 

from the synthetic data and real observations show that the ENT4 distribution is a good 

candidate to model the annual rainfall maxima of different time scales across Texas.  

The ENT4 distribution is applied to the frequency distribution of annual rainfall 

maxima of different durations, climate zones and distances from the sea, and results 

show that the ENT4 distribution fits the empirical densities well. Further comparison 

between the ENT4 and GEV distributions shows that ENT4 performs better than GEV 

for different durations, climate zones and distances from the sea though the distribution 

pattern changes. Application of the proposed method for rainfall analysis is illustrated 

with the construction of IDF curves based on rainfall data of one sample station. 

Analysis of the changing patterns of rainfall distribution with time duration, climate zone 
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and distance from the Gulf of Mexico sheds some light on the analysis of rainfall of 

different durations in Texas. 
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CHAPTER III 

ENTROPY BASED METHOD FOR 

SINGLE-SITE MONTHLY STREAMFLOW SIMULATION* 

 

3.1 Introduction 

Streamflow simulation plays an important role in water resources planning and 

management. The key requirement for streamflow simulation is that synthetic 

streamflow sequences preserve key statistical properties of the historical record, such as 

mean, standard deviation, skewness, and lag correlations. A number of models for 

streamflow simulation have been proposed and these models can be classified into two 

groups:  parametric and non-parametric.    

A commonly used parametric model for synthetic streamflow generation is the 

autoregressive moving average (ARMA) model [Lettenmaier and Burges, 1977; Hipel 

and McLeod, 1978; Hipel et al., 1979; Salas and Delleur, 1980; Loucks et al., 1981; 

Vogel and Stedinger, 1988; Savic et al., 1989], which is quite flexible and can be used 

for annual as well as seasonal streamflow simulation. The ARMA model is based on the 

Gaussian assumption which is not usually satisfied by streamflow data. An alternative to 

the ARMA model for simulating seasonal streamflow is the disaggregation model which 

has been widely applied [Valencia and Schaake, 1973; Mejia and Rousselle, 1976]. For 

____________ 

*Reprinted with permission from “Single-site monthly streamflow simulation using 

entropy theory” by Hao, Z. and V. P. Singh (2011), Water Resources Research, 47, 

W09528, doi:10.1029/2010WR010208, Copyright [2011] by American Geophysical 

Union. 
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the disaggregation model, annual or aggregated streamflow is generated with an 

appropriate model and then the generated streamflow is disaggregated to obtain monthly 

or seasonal streamflow. The disaggregation model ensures the sum of low time scale 

streamflow values (e.g., monthly) adds up to high time scale streamflow values (e.g., 

yearly), but has many parameters that need to be estimated. To reduce the number of 

parameters, several parsimonious models have been proposed, such as condensed 

disaggregation model [Stedinger et al., 1985; Grygier and Stedinger, 1988] and stepwise 

disaggregation model [Santos and Salas, 1992].  Koutsoyiannis and Maneta [1996] 

proposed a simple disaggregation model that combines models of lower scale (e.g., 

monthly) and higher scale (e.g., yearly) with the accurate adjusting procedure.  

 Parametric models generally require the assumption regarding the marginal 

distribution of underlying streamflow data. However, the Gaussian assumption usually 

made may not hold in reality. Therefore, transformation techniques to render the data to 

be normal are often applied, which in turn give rise to several potential drawbacks. First, 

some bias of the statistical properties in the original domain may be caused when data is 

simulated in the transformed domain. Second, negative values may be generated. Third, 

non-Gaussian features, such as skewness and bimodal, cannot be captured and 

reproduced efficiently [Prairie et al., 2006]. The autoregressive model with gamma 

distribution has been proposed to avoid the data transformation [Fernandez and Salas, 

1990] , though the bimodal property cannot be reproduced.  Furthermore, it is hard for a 

usual parametric model to capture the nonlinear relationships that may be observed in 

the historical record [Salas and Lee, 2010].  
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An attractive alternative is nonparametric models  and Lall [1995] provided a 

review of the application of non-parametric models in hydrology.  Nonparametric 

models are often based on bootstrap techniques or kernel density estimation and they 

avoid model selection, minimize (or avoid) parameter estimation, and do not make any 

assumption about the probability distribution. Lall and Sharma [1996] proposed a 

nearest neighbor bootstrap method for re-sampling monthly streamflow, while 

probabilistically preserving the dependence structure. To reproduce the serial correlation 

of historical data,  Vogel and Shallcross [1996] suggested the moving block bootstrap 

(MBB) by resampling the observed time series in approximately independent blocks, 

and compared the method with parametric methods for generating annual streamflow 

series. Sharma et al. [1997] proposed a nonparametric method for monthly streamflow 

simulation applying the conditional density function with Gaussian kernel, and Sharma 

and O'Neill [2002] extended that method to impose a long-term dependence in the 

simulated streamflow by incorporating an aggregated variable (denoted as NPL model). 

Salas and Lee [2010] developed a nonparametric method using the K-Nearest Neighbor 

(KNN) resampling technique with gamma kernel perturbation that can generate data 

different from the historical record for single site seasonal streamflow simulation. For 

this method, two approaches, one with the aggregate variable (denoted as KGKA model) 

and another with the pilot variable (denoted as the KGKP model), were developed to 

preserve the annual variability. 

Nonparametric methods have also been applied for seasonal streamflow 

simulation with disaggregation approach. Tarboton et al. [1998] developed a 
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nonparametric disaggregation model for simulation based on the conditional distribution 

obtained by a kernel density estimation method. To address the issue of inefficiency of 

kernel density estimation method in higher dimensions,  Prairie et al. [2007] applied a 

fast KNN based bootstrap approach to construct and simulate from the conditional 

distribution.  Lee et al. [2010] proposed a space-time disaggregation model based on 

KNN coupled with a genetic algorithm that can overcome the shortcomings of the 

models proposed by Prairie et al. [2007] and  Koutsoyiannis and Manetas [1996]. Based 

on KNN re-sampling, Nowak et al. [2010]  proposed a space-time disaggregation 

algorithm for disaggregating annual flow to daily flows at different sites.  

To simulate streamflow, an assumption about the marginal distribution is often 

made, especially for parametric models. However, many streamflow records cannot be 

characterized by commonly assumed probability distributions [Sharma and O'Neill, 

2002]. The ability to preserve the cross boundary relation (e.g., the correlation between 

the last season of the previous year and the first season of the current year) and the 

generation of negative values are two issues that emerge for both parametric and 

nonparametric models [ Lee et al., 2010].  To address the first issue, Mejia and Rousselle 

[1976] made a modification to link past and present values being disaggregated. A 

practical way to address this problem is to start the generation from a season where the 

correlation is small. However, this does not work when all correlations between seasons 

are high.  The issue of negative values arises due to the use of normal transformation in 

parametric models and the application of the Gaussian kernel in nonparametric models. 
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Generally, negative values generated during simulation can be disregarded. However, 

this solution may not be appropriate when too many negative values are generated. 

This study proposes a new model for simulating monthly streamflow at a single 

site which is capable of preserving key statistics, such as mean, standard deviation, 

skewness and lag-one correlation. The model is based on entropy theory, wherein a 

probability distribution function (PDF) is derived without the assumption of normality or 

the use of a normal transformation. Moreover, the model can preserve the cross-

correlation and avoids generation of negative values. It can also be extended to 

incorporate higher-order moments and more lag correlations if needed. With the 

specified statistical properties, such as mean, standard deviation, skewness, and lag-one 

correlation as constraints, the joint probability density function of streamflow of two 

adjacent months is constructed by maximizing entropy, and the conditional density 

function is derived from the joint PDF, from which streamflow can be generated .  

The paper is organized as follows. Describing the framework of the method in 

section 3.2, the proposed method is tested using a synthetic example with known 

underlying model in section 3.3, followed by an application to the Colorado River basin 

for streamflow simulation in section 3.4. Conclusions along with a summary of the main 

features of the proposed method are given in section 3.5. 

3.2 Method 

The first step in the streamflow simulation is the derivation of joint and 

conditional probability density functions of streamflow. The derivation involves the 

expression of the joint Shannon entropy, specification of constraints based on the 



 

 

41 

statistics to be preserved, maximization of the entropy subject to the specified 

constraints, and determination of the Lagrange multipliers. Then the monthly streamflow 

is simulated from the conditional distribution sequentially. 

 3.2.1 Shannon entropy 

For a bivariate case involving two continuous random variables X and Y or random 

vector (X , Y) with joint probability density function f(x, y) defined over the space [a, b]× 

[c, d], the Shannon entropy can be defined as: 

  
d

c

b

a
dxdyyxfyxfE ),(ln),(  (3.1) 

3.2.2 Specification of constraints 

For streamflow simulation, it is desired to preserve such statistics as mean, 

standard deviation, skewness and lag-one correlation. These statistics can be regarded as 

constraints for deriving the distribution of streamflow. Then, sampling from the 

distribution can be expected to preserve these required statistics. The mean, standard 

deviation, and skewness of streamflows can be determined through the first three 

moments. In order to preserve the correlation between streamflows of two adjacent 

months (say, January and February), the joint PDF of the continuous random vector (X, 

Y) is needed for which constraints in general form can be stated as: 
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where x and y are streamflow values of adjacent months; gi(x, y) (or gi) is a known 

function of random vector (X, Y), which can be specified as g0=1, g1=x , g2=x
2
, g3=x

3
, 

g4= y, g5=y
2
, g6= y

3
 and g7=xy for the proposed constraints; E(gi)  is the expected value 

of the function gi(x, y) (e.g., if g1(x, y)=x, then E(x) is the mean of X) estimated from the 

historical record; E(x) and E(y
i-3

) are the first to third non-central moments of random 

variables X and Y, respectively; E(xy) is the expectation of XY and m is the number of 

constraints (m=7 in this case). The constraint in equation (3.3) assures that the 

integration of the probability density function over the whole interval should be unity, 

which is often termed as the “normalization condition” or the “total probability 

theorem.”  

 3.2.3 Maximization of entropy and derivation of probability distributions 

According to the principle of maximum entropy , formulated by Jaynes [1957], 

the least biased probability distribution will be the one that maximizes the Shannon 

entropy subject to the given constraints.  To derive the joint PDF of streamflows of two 

adjacent months (say, January and February), the entropy given by equation (3.1) is 

maximized, subject to the constraints given by equation (3.3)-(3.6). The maximization 

can be performed using the method of Lagrange multipliers.  
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Denoting the Lagrange multipliers for the joint PDF of January and February 

streamflows as Ф1,2=[λ0, λ1,…, λ7], where λ0, λ1,…, λ7 are the Lagrange multipliers, the 

Lagrangian function L, using equation (3.2) can be expressed as [Kapur, 1989]: 
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Differentiating L with respect to f and setting the derivative to zero, the 

maximum entropy-based joint probability density function is obtained with 

representation of gi(x, y) by their specific values as [Kesavan and Kapur, 1992]: 
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(3.8) 

Substituting equation (3.8) in the “normalization condition” in equation (3.3), 

one can obtain the zeroth Lagrangre multiplier λ0 as a function of other Lagrange 

multipliers as: 
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(3.9) 

The joint PDF given by equation (3.8) has unknown Lagrange multipliers, λi (i= 

1,…, 7),  that need to be determined.     

For monthly streamflow simulation, 12 joint density functions with random 

vector (Xt,n, Yt,n) have to be estimated from the historical data, where t is the year and  n 

(n=1, 2, …, 12) is the month. For the joint distribution of December and January 

streamflows, the random vector has to be replaced by (Xt-1,12, Yt,1) to preserve the cross-



 

 

44 

correlation between streamflow in December of the previous year (Xt-1,12) and that in 

January of the current year (Yt,1). 

The marginal density function for X can be obtained by integrating the joint PDF 

f(x, y) given by equation (3.8) over Y as:  
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The conditional density function of Y given X=x can now be obtained as:  

 




d

c
dyxyyyy

xyyyy

xf

yxf
xyf

)exp(

)exp(

)(

),(
)(

7

3

6

2

54

7

3

6

2

54





 

(3.11) 

The conditional cumulative distribution function FY|X(y|x) of Y given X=x can be 

written as: 


y
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(3.12) 

3.2.4 Parameter estimation 

The Lagrange multipliers contained in equation (3.8) are now determined. 

Substitution of equation (3.8) in equation (3.2) results in a set of nonlinear equations 

whose solution results in the Lagrange multipliers: 
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In general, an analytical solution for obtaining the Lagrange multipliers (for m > 

2) does not exist and numerical solution is the only resort. It has been shown that the 
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problem of solving the set of nonlinear equations is equivalent to finding the minimum 

of a convex function Γ expressed as [Mead and Papanicolaou, 1984; Kapur, 1989]: 
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The Newton-Raphson method can be applied to achieve the minimization of the 

convex function yielding the Lagrange multipliers λ=[λ0, λ1,…, λ7]’ as follows.  Starting 

from some initial value λ(0), one updates λ(1) using the equation: 
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H
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where the gradient of the convex function is expressed as: 
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and the Hessian matrix H  is expressed as: 
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where elements Hi,j (i, j=1, 2,…, 7) of the Hessian matrix are expressed as: 
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where cov(gi, gi)=var(gi) and H
-1

  is the inverse of Hessian matrix H. In this study, the 

MATLAB function fminsearch was used to obtain the minimum of equation (3.14) and 

hence the Lagrange multipliers. 

For the generation of monthly streamflow, 12 joint PDFs of streamflows of two 

adjacent months are needed and the corresponding Lagrange multiplier sets (Ф1,2, 

Ф2,3,…, Ф12,1 )  of each joint PDF  have to be estimated.  Each Lagrange multiplier in 

the joint PDF in equation (3.8) is related to one statistic that is to be preserved. For 

instance, in parameters Ф1, 2=[λ0, λ1,…,λ7] of the joint PDF of streamflow of January and 

February, λ1 , λ2 and λ3 relate to the mean, standard deviation and skewness of the 

January streamflow, λ4 , λ5 and λ6  relate to the mean, standard deviation and skewness of 

the February streamflow,  and  λ7  is the parameter relating to the lag-one correlation of 

streamflows of two adjacent months. Likewise, parameters Ф2,3 of the joint PDF of 

streamflow of February and March relate to the required statistics for the February and 

March streamflows and so on.  If more statistics (e.g., kurtosis) need to be preserved, 

one can incorporate the corresponding Lagrange multipliers in the joint PDF. Thus, the 

entropy-based formulation is quite flexible and can be extended to incorporate more 

statistical properties, if needed.  

3.2.5 Generation   

There are several techniques that can be employed for the generation of random 

values from the bivariate distribution, such as the conditional distribution method, the 

transformation method, the acceptance/rejection method, and the composition method 

[Johnson, 1987; Balakrishnan and Lai, 2009].  In order to sample from the continuous 
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joint PDF f(x, y) to obtain the random values of (X, Y), the conditional distribution 

method was employed in this study. For the generation of streamflow while preserving 

the correlation between adjacent months, streamflow values of one month can be 

generated from the conditional distribution given the streamflow value of its previous 

month. When the method is applied to the generation of monthly data of each year, 12 

conditional distributions have to be used sequentially. To illustrate this method, it is 

assumed that the simulation starts from January and n year data is to be generated. Let 

xt,s denote streamflow for month s of year t (s=1, 2,…,12, t=1, 2,…, n). The step by step 

simulation procedure for generating random values of each month can now be 

summarized as: 

(1) Generate a random vector (x1,1, x1,2) from the joint density function given by 

equation (3.8) with parameters Ф1,2 . The random values x1,1 and x1,2 are the 

January and February streamflows of the first year.  

(2) With the initial value x1,2 generated in step (1), one can generate the March 

streamflow of the first year x1,3 from the conditional cumulative distribution 

function in equation (3.12) with parameters Ф2,3. To that end, generate a uniform 

distributed random value w1 between [0, 1] which can be done with the use of 

random number generator function rand in MATLAB. This w1 value can be 

considered to be the conditional cumulative probability corresponding to a 

specific value x1,3, given the initial value x1,2. This can be expressed with 

equation (3.12) as: 

                 12,131 )( wxxF ,XY


 



 

 

48 

Then, x1,3 can be generated by solving the above equation. Similarly, monthly 

streamflows x1,4 ,..., x1,12  can be generated while parameters Ф3,4, …, Ф11,12 are used 

sequentially. Then monthly streamflow of the first year can be generated. 

(3) With x1,12 (December streamflow of the first year) generated in step (2), x2,1 

(January streamflow of the second year) can be generated with the parameter 

Ф12,1 similarly. In this manner, monthly streamflow of the second year, x2,1 ,…, 

x2,12  , can be generated. 

(4) Repeat step (3) until monthly streamflow of the nth year is generated.  

 In the above steps, numerical integration is performed to generate random values 

from the inverse (conditional) cumulative distribution.  

3.3 Test with synthetic data 

In order to test the performance of the proposed method to approximate the 

density function of the known model and reproduce the statistics of samples from it, the 

bivariate gamma distribution was selected. The gamma marginal distribution of a 

random variable z with scale parameter β and shape parameter γ is defined as: 
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(3.17) 

 The five-parameter bivariate gamma distribution f(x,y) by Smith et al. [1982] can 

be expressed as: 
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(3.18) 

where β1 and β2 are the scale parameters; γ1 and γ2 are the shape parameters ; 

η=ρ(γ2/γ1)0.5, where ρ is the correlation coefficient between x and y. Parameters of the 

bivariate gamma distribution were specified as: β1=1, γ1=6, β2 =5, γ2 =9  and ρ=0.25.  

 

 

 

 

Figure 3. 1 Maximum entropy-based marginal PDFs and gamma marginal PDFs 

for variables X and Y. 
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One sample consisting of 3000 data pairs was drawn from the bivariate gamma 

distribution, which is regarded as the calibration sample for fitting and evaluating the 

entropy-based method. To quantify the performance of the proposed method in 

approximating the marginal and bivariate gamma PDFs, the root mean square error 

(RMSE) was computed as: 


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n

i

ii ps
n

RMSE
1

2)(
1

   

(3.19) 

where n is the length of the data, si and pi (i=1,…, n) are the maximum entropy-

based probability densities of equations (3.8) and (3.10) and densities from the marginal 

and bivariate gamma distribution of equation (3.17) and (3.18) corresponding to the i
th

 

value. 

The maximum entropy-based marginal PDFs of random variable X and Y in 

equation (3.10) estimated from the calibration sample together with the gamma marginal 

PDFs in equation (3.17) were plotted, as shown in Figure 3. 1. As can be seen the 

maximum entropy-based density of X was virtually indistinguishable from that of the 

gamma density of X. Generally the maximum entropy-based density approximates the 

gamma density of Y relatively well, though some discrepancies exist. The RMSE values 

between the maximum entropy-based density and gamma density were 0.062 for 

variable X and 0.14 for variable Y, respectively. Thus, the maximum entropy-based 

marginal PDFs estimated from the calibration sample can approximate the gamma 

marginal PDFs relatively well. 
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Figure 3. 2 Comparison of maximum entropy-based joint distribution and bivariate 

gamma distribution. (a) Contours of maximum entropy-based joint PDF and 

bivariate gamma PDF; (b) Comparison of generated data pairs with the calibration 

sample. 

 

 

 

Contours of the maximum entropy-based joint PDF in equation (3.8) estimated 

from the calibration sample and the underlying bivariate gamma PDF in equation (3.18) 

were plotted, as shown in Figure 3. 2 (a). The contour lines of the maximum entropy-

based PDF approximate those of the underlying gamma PDF relatively well. The RMSE 

value between the maximum entropy-based joint density and underlying bivariate 

gamma density was 0.74. A bivariate sample with 500 data pairs was generated and is 

shown together with the calibration sample in Figure 3. 2 (b). It is seen that generally the 
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spreading pattern of the generated data pairs matches that of the calibration sample well.   

This shows that the proposed method approximated the underlying bivariate gamma 

PDF relatively well.  

 

 

 

 

Figure 3. 3 Boxplots of statistics of the calibration sample and generated data pairs. 

(Mn, Sd and Sk represent the mean, standard deviation and skewness. Corr 

represents the correlation. Star marks represent statistics of the calibration 

sample.) 

 

 

 

100 bivariate samples each consisting of 3000 data pairs were generated from the 

maximum entropy-based joint PDF in equation (3.8) estimated from the calibration 
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sample. Statistics of generated data pairs and the calibration sample were compared 

using box plots, including the mean, standard deviation, skewness and lag-one 

correlation.  The central mark of the box is the median and the end lines of the box 

represent 25th and 75th percentiles. The whiskers are the maximum and minimum 

values of the simulated statistics. A wide box plot signifies large variability. When a 

statistic falls in the box plot, the performance is considered to be good [Prairie et al., 

2007; Nowak et al., 2010; Salas and Lee, 2010]. Statistics of the generated data pairs and 

the calibration sample were compared with box plots as shown in Figure 3. 3. All 

statistics fell in the box plots and this showed that the proposed method can preserve the 

mean, standard deviation, skewness and lag-one correlation well.  

3.4 Application  

The entropy-based method was applied to monthly streamflow at 10 sites in the 

Colorado River basin from 1906-2003 [Lee and salas, 2006]. These data can be found at 

the website: http://www.usbr.gov/lc/region/g4000/NaturalFlow/previous.html. Without 

loss of generality, the monthly streamflow data was scaled to [0, 1] for computational 

convenience. For the original data (OD) of each month with maximum value MX and 

minimum value MN, the scaled data (SD) of each month was expressed as: SD=[OD-(1-

d)MN)]/[(1+d)MX-(1-d)MN],where d is a scale parameter, which was selected as 0.05 

in this study.  With the use of constraints in equations (3.3) to (3.6), parameters (Ф1,2, 

Ф2,3, … ,Ф12,1 ) of each joint PDF in equation (3.8) were first estimated. Then, the 

conditional distribution was derived from the known joint PDF using equations (3.8) and 

(3.10). Thereafter, samples were drawn sequentially using the procedure outlined in 

http://www.usbr.gov/lc/region/g4000/NaturalFlow/previous.html
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Section 3.5 and then transformed back to the original domain. From the scaling 

expression, the values of 0 and 1 in the scaled domain corresponded to the (1-d)MN and 

(1+d)MX in the original domain and thus the values outside the observed streamflow 

range can be generated. 

Simulation results were satisfactory for all stations,  as shown for the station, 

Lees Ferry, Arizona, on the Colorado River (U.S. Geological Survey station number 

09380000), which has been used in earlier studies [Prairie et al., 2006; Salas and Lee, 

2010]. 100 flow sequences, each of 100 and 400 years long, termed as S1 and S2, 

respectively, were generated to test the proposed method. Statistics of generated and 

historical data, including the mean, standard deviation, skewness, lag-one correlation, 

maximum and minimum values, were compared using box plots.  Furthermore, other 

statistics pertaining to low values reflecting drought conditions, such as maximum 

drought length, maximum drought amount, maximum surplus length, maximum surplus 

amount, and storage capacity, were also compared for generated and historical data. 

The box plots was used to measure the performance of the proposed method and 

the performance was considered to be good when a statistic fell in the box as described 

in the previous section. To quantify the performance of the entropy-based method, 

absolute error (AE) and relative error (RE) of the simulated statistics were computed as 

AE=Sm-Xo and RE=(Sm-Xo)/Xo, where Sm is the median of simulated statistic for the 

generated data, and Xo is the statistic for the historical data.  
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3.4.1 Validation of Marginal PDF and joint PDF 

Maximum entropy-based marginal PDFs and empirical histograms of scaled 

streamflows were constructed and compared, as shown for two sample months of May 

and June in Figure 3. 4. Note that the marginal entropy based PDF in equation (3.10) of 

streamflow of a specific month, say May, can either be derived from the joint density 

function of April and May streamflow with parameter Ф4,5 (denoted as f5,45) or from the 

joint density function of May and June streamflows with parameter Ф5,6 (denoted as 

f5,56). Though the PDF of May streamflows can be derived from different joint 

distributions with different Lagrange multipliers, densities f5,45 and f5,56 should be close to 

each other, which is verified in Figure 3. 4.  

 

 

 

 

Figure 3. 4 Maximum entropy-based marginal PDFs and empirical histograms for 

scaled May and June streamflow (f5,45: marginal PDF for May streamflow with 

parameter Ф4,5 ; f5,56 : marginal PDF for May streamflow with parameter Ф5,6 ; f6,67, 

marginal PDF for June streamflow with parameter Ф6,7). 
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The probability density function of the May streamflow was bimodal, which has 

been shown by Prairie et al. [2006]. The maximum entropy-based PDFs fitted the 

empirical histograms relatively well, except that the bimodality in the density of the 

scaled May streamflow could not be resolved. Contours of maximum entropy-based and 

empirical joint densities are shown in Figure 3. 5 (a, b). The historical data spread along 

the contours as seen in Figure 3. 5 (a).  The maximum entropy-based joint densities 

matched the empirical densities well for most parts as shown in Figure 3. 5 (b). For 

example, the maximum entropy-based joint density values near the empirical contour 

line with a density of 2 were 1.5, 2 and 2.6. 

 

 

 

 

Figure 3. 5 Contours of the maximum entropy-based PDF of the scaled May and 

June streamflow. (a) historical data plotted as stars; (b) empirical joint PDFs 

plotted as points. 
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3.4.2 Monthly mean, standard deviation, skewness and lag-one correlation  

Statistics of generated and historical data for all months of simulation S1 were 

computed, as shown in Figure 3. 6. The median values of simulated mean, standard 

deviation, skewness and lag-one correlation were close to those of the historical data. All 

statistics of mean, standard deviation, skewness and lag-one correlation fell in the box 

plots, indicating the goodness of the entropy-based method.   

 

 

 

 

Figure 3. 6 Boxplots of mean, standard deviation, skewness and lag-one correlation 

of generated and historical data for simulation S1. (Continuou lines with star marks 

for each month represent statistics of the historical data.) 
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Figure 3. 7 Absolute errors of mean, standard deviation, skewness and lag-one 

correlation for simulation S1. 

 

 

 

The absolute error and relative error for each statistic were calculated, as shown 

in Figure 3. 7 and Table 3. 1. Even though the absolute error was relatively large for 

several months, like that for the mean of May and standard deviation of June, as seen 

from Figure 3. 7 , the result was satisfactory based on the relative error in Table 3. 1. The 

relative error of mean, standard deviation and lag-one correlation was lower than 5% and 

that of skewness was lower than 10% for all months. The relative error of simulated 

skewness was relatively high and was not preserved as well as other statistics. The lag-

one correlation between the December streamflow of the previous year and the January 
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streamflow of the current year was also preserved well, as seen from Table 3. 1 in that the 

relative error was -0.5%.  

 

 

 

Table 3. 1 Relative error (%) of statistics for each month for simulation S1. (Units for the 

mean and standard deviation are in cubic meter per second (cms).) 

        Month 

 

Statistics  1 2 3 4 5 6 7 8 9 10 11 12 

Mean 0.52 0.17 0.08 -0.16 0.58 0.41 -0.21 -0.35 0.46 -0.46 0.16 -0.17 

Standard 

Deviation -3.04 -1.31 -0.90 -0.59 -0.07 -1.67 -1.59 -1.06 -1.18 -0.91 -1.23 -1.89 

Skewness -5.07 -1.27 -4.57 -1.58 -6.03 -6.60 -6.65 -6.63 -7.30 -3.12 -6.36 -6.86 

Lag-one 

Correlation  -0.46 -0.96 0.60 -2.49 2.18 0.08 -0.74 -0.30 0.78 1.59 -0.89 -1.06 

 

 

 

Salas and Lee [2010] showed that nonparametric model with the long-term 

dependence (NPL) model underestimated the skewness throughout the year and 

overestimated the standard deviation for wet months, while the K-Nearest Neighbor 

(KNN) resampling technique with gamma kernel perturbation with the aggregate 

variable (KGKA) and the pilot variable (KGKP) underestimated lag-one correlation. 

Since all these statistics were preserved well and no underestimation or overestimation 

existed, the entropy-based method performed better in preserving the four statistics.  

Statistics of generated and historical data for all months of simulation S2 are 

shown in Figure 3. 8. It is seen that all statistics fell in the box plots, indicating 

satisfactory model performance for simulation S2. In addition, the box plots became 

narrower and thus the variability of simulated statistics was reduced, as shown in Figure 

3. 8. 
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Figure 3. 8 Boxplots of mean, standard deviation, skewness and lag-one correlation 

of generated and historical data for simulation S2. (Continuous lines with star 

marks for each month represent statistics of the historical data.) 

 

 

 

Specifically, comparison of statistics of the generated and historical data of 

selected months, January and May, for simulation S1 and S2 with different percentiles is 

shown in Table 3. 2. For the simulation of skewness of the May streamflow, 25th, 50th 

and 75th percentiles of simulated skewness were 0.15, 0.24, 0.36 in simulation S1 and 

0.19, 0.24, 0.31 in simulation S2, respectively. The interquartile range (distance between 

25th percentile and 75th percentile) is 0.12 in simulation S2 which was smaller than 0.21 

in simulation S1.  
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Table 3. 2 Comparison of statistics of generated and observed streamflow of 

January and May for simulation S1 and S2. (Units for the mean and standard 

deviation are in cubic meter per second (cms).) 

Month Statistics Simulation S1 Simulation S2 Percentile Observation  

January Mean 165 166 25th 167 

167 168 50th 167 

170 169 75th 167 
Standard Deviation 33 35 25th 37 

36 36 50th 37 

38 37 75th 37 
Skewness 0.39 0.51 25th 0.57 

0.58 0.58 50th 0.57 

0.69 0.64 75th 0.57 
Lag-one Correlation 0.63 0.66 25th 0.70 

0.68 0.69 50th 0.70 

0.72 0.71 75th 0.70 
May Mean 1408 1416 25th 1433 

1437 1436 50th 1433 

1472 1454 75th 1433 
Standard Deviation 512 523 25th 539 

538 540 50th 539 

560 548 75th 539 
Skewness 0.15 0.19 25th 0.24 

0.24 0.24 50th 0.24 

0.36 0.31 75th 0.24 
Lag-one Correlation 0.55 0.58 25th 0.59 

0.59 0.60 50th 0.59 

 

 

 

Generally, the median values of statistics of simulated data matched those of 

historical data well when the length of generated annual streamflow was longer than 100 

and simulation of these statistics could be further improved by generating a longer 

record. Nevertheless, for a streamflow record with a length of annual streamflow around 
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100, the proposed method satisfactorily preserved the mean, standard deviation, 

skewness and lag-one correlation.  

 

 

 

 

Figure 3. 9 Boxplots of maximum and minimum values of generated and historical 

data for simulation S1 and S2. (Continuous lines with star marks for each month 

represent historical data.) 

 

 

 

3.4.3 Monthly maximum and minimum values  

The maximum and minimum values of generated data and historical data for all 

months of simulation S1 and S2 were obtained, as shown in Figure 3. 9 . There was no 

significant overestimation or underestimation of the maximum and minimum values for 

most months of simulation S1. However, for many months of simulation S2, the 
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maximum values were overestimated and the minimum values were underestimated. The 

value of scale parameter d affects the generated maximum and minimum values and 

when d equates zero the generated values are bounded by the observed maximum and 

minimum values. In both simulation S1 and S2, no negative values were generated.  

Salas and Lee [2010] showed that the nonparametric NPL model preserved the 

maximum values well, although the minimum values were underestimated, whereas both 

the KGGA and KGKP models preserved the maximum and minimum values well. Since 

the overestimation of maximum values and underestimation of minimum values 

occurred when a relatively long record of annual streamflow were generated, the 

proposed method did not perform as well.  

3.4.4 Extension to higher-order moments 

The entropy-based method can be extended to incorporate higher-order moments 

and more lag correlations, if needed. For example, in order to preserve kurtosis in the 

simulation, two Lagrange multipliers associated with the fourth non-central moments of 

variables X and Y would be added in equation (3.2). Then, streamflow would be 

generated based on the corresponding conditional distribution as illustrated in section 

3.5. Although the preservation of the kurtosis may not be essential and the sample 

instability problems with the estimation of higher moments may exist [Fiering, 1967], 

one simulation of this extension demonstrated the performance of the proposed method. 

Comparison of simulated kurtosis between the proposed method and the extended 

method for 100 sequences with 400 years of annual streamflow generated in each 
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sequence, as shown in Figure 3. 10 (a, b), showed that the kurtosis was preserved better 

when the fourth moment was also incorporated as a constraint.   

 

 

 

 

Figure 3. 10 Boxplots of kurtosis of historical and generated data. (a) proposed 

method; (b) extended method.  

 

 

 

3.4.5 Drought, surplus and storage statistics 

Box plots of the drought, surplus and storage statistics (ratio of generated over 

historical) were constructed for simulation S1 and S2 and only the result for simulation S2 

is presented as shown in Figure 3. 11. The water demand level was selected as a fraction 

of the historical mean and in this study it was selected as 0.7, 0.8, 0.9 and 1.0. For 
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simulation S2, as shown in Figure 3. 11, the maximum deficit length and amount for the 

water demand level 1.0 were overestimated somewhat, but in general these statistics 

were preserved well. However, for simulation S1 these statistics were not preserved as 

well.  

 

 

 

 

Figure 3. 11 Boxplots of ratio of drought, surplus and storage capacity statistics 

(Max Def Leng, maximum deficit length; Max Def Amt, maximum deficit amount; 

Max Sur Leng, maximum surplus length; Max Sur Amt, maximum surplus 

amount). 
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3.5 Conclusion 

A new model, based on entropy theory, for single-site monthly streamflow 

simulation is developed. Streamflow data is generated by sampling from the conditional 

distribution derived from the joint probability density function of streamflow of two 

adjacent months. The entropy-based model is applied to 10 sites in the Colorado River 

basin and results indicate that it satisfactorily preserves mean, standard deviation, 

skewness and lag-one correlation. Streamflow outside the observed streamflow range 

can be generated, though overestimation of the maximum values and underestimation of 

minimum values can occur when a relatively long record of annual streamflows is 

generated. Generally, drought, surplus and storage statistics can be preserved well with 

the generation of a relatively long record. 

The advantage of the proposed method is that no assumption is made about the 

marginal distribution of the historical data. Therefore, the method can be applied to non-

normal streamflow and the transformation of streamflow to be normal is not needed. In 

addition, it can preserve the cross-correlation between streamflow in December (or last 

season) of the previous year and that in January (or first season) of the current year and 

avoid negative values in the generation. Further, if more statistical characteristics (e.g., 

kurtosis and more lag correlations) are needed to be preserved, the entropy-based 

method can also be applied by incorporating these statistics as constraints. The 

disadvantage of the method is that it will be computationally cumbersome when more 

statistics are to be preserved and determination of more Lagrange multipliers is involved. 

This would be the case if the method were applied to multi-site streamflow simulation, 
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since statistics of streamflow at different stations would be used as constraints and 

integration in higher dimension will be involved in the determination of more Lagrange 

multipliers and streamflow simulation.  However, this should not be an insurmountable 

difficultly, given the available numerical tools and computer progress. In addition, the 

bimodality that may exist in the empirical probability density function cannot yet be 

resolved with the proposed model. 
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CHAPTER IV 

ENTROPY-COPULA METHOD FOR 

SINGLE-SITE MONTHLY STREAMFLOW SIMULATION 

 

4.1 Introduction 

For steamflow simulation, it is desired that synthetic streamflow is similar to 

historical streamflow and preserves moment statistics (such as mean, standard deviation, 

and skewness), and dependence structure (such as lag-one correlation).  

The preservation of inter-annual statistics is one of the difficulties in streamflow 

simulation. The inter-annual statistics are important for the simulation of long wet and 

dry periods that are critical for drought management and planning [Sivakumar and 

Berndtsson, 2010]. Generally a lag-one seasonal model is not sufficient for the 

preservation of the inter-annual statistic. Sharma and O'Neill [2002] proposed a 

nonparametric approach for monthly streamflow simulation that is capable of preserving 

the inter-annual dependence by using an aggregate variable as a conditional variable in 

the simulation. Salas and Lee [2010] proposed two approaches based on the K-Nearest 

Neighbor resampling techniques that are capable of preserving annual variability by 

introducing an aggregate variable and pilot variable.  

In addition, the lag-one correlation (or Pearson product-moment correlation 

coefficient) only measures the linear dependence of random variables, which may not be 

adequate in reality. Some nonlinear dependence is also desirable to characterize the 

dependence of streamflow. Generally it is difficult for the conventional parametric 
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approaches to represent the nonlinear dependence. The bimodality is one of the “unusual 

features” that may exist in the probability density function of streamflow data that is 

difficult for the conventional parametric approach to represent [Sharma and O'Neill, 

2002]. Though the mixed distribution can be used to resolve the bimodality, bias in the 

statistics of streamflow may occur. The nonparametric approaches are generally needed 

to model the nonlinear dependence and resolve the bimodality in the probability density 

function of streamflow. 

The entropy-based streamflow distribution can be derived from the moments and 

thus the sampling from the resulting distribution is expected to preserve these moment 

statistics.  Hao and Singh [2011]applied the entropy theory for the single site monthly 

streamflow simulation that is capable of preserving mean, standard deviation, skewness 

(and kurtosis if needed).  However, the model requires specification of constraints for 

the statistics to be preserved and that leads to as many Lagrange multipliers as statistics 

that need to be estimated which may be tedious. The copula based joint distribution can 

be applied to model the dependence of streamflow.  Lee and Salas [2011] proposed the 

copula method for annual streamflow simulation. Therefore, combining the concepts of 

entropy and copula, an entropy-copula method is proposed for streamflow simulation in 

which the joint distribution is constructed using the copula method, where the marginal 

distributions are constructed using the entropy method. In this method, less parameters 

are needed to be estimated as compared with the method proposed by  Hao and Singh 

[2011]. The entropy based marginal distributions do not rely on the Gaussian assumption 

and are able to model the asymmetry property of the streamflow without data 
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transformation. The entropy-based method also has the potential ability to resolve 

bimodality. Furthermore, the proposed method is able to model the nonlinear 

dependence of streamflow due to the inclusion of the copula component. The entropy-

copula method can be extended to preserve the inte-annual dependence. Application in 

the Colorado River basin illustrates the effectiveness of the proposed method for 

monthly streamflow simulation. 

4.2 Method 

4.2.1 Entropy theory and marginal distribution 

Using the principle of maximum entropy proposed by Jaynes [1957] with the 

first four moments as constraints, the maximum entropy-based probability density 

function defined on the interval [a, b] can be obtained as: 

  4
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210exp)( xxxxxf  
 (4.1) 

where λi, i=0,1,…, 4, are the Lagrange multipliers. The cumulative distribution function 

(CDF) of the maximum entropy-based distribution in equation (4.1) can be expressed as: 

 dttfxF
x

a
X  )()(  (4.2) 

The Lagrange multipliers in equation (4.1) can be determined in terms of the 

specified constraints using the method presented [Hao and Singh, 2011]. For streamflow 

simulation, the preservation of mean, standard deviation, and skewness of monthly 

streamflow is needed. If the mean, standard deviation, and skewness (or the first three 

moments) are used as constraints for deriving the distribution of streamflow of each 

month, then samples from the distribution can be expected to preserve these statistics.  
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Certain monthly streamflows exhibit bimodality, and  studies have shown that the 

maximum entropy-based distribution  in equation (4.1) can model the bimodality [Matz, 

1978]. The fourth moment (related to kurtosis) was also used to derive the distribution. 

Thus, the distribution in equation (4.1) can be employed to generate streamflow that 

preserves the mean, standard deviation, skewness and kurtosis. In addition, it also 

possesses the potential ability to resolve the bimodality. 

4.2.2 Copula concept and joint distribution 

For the continuous random vector (X,Y ) with marginal cumulative distribution 

functions (CDF) FX(x) and FY(y), respectively, the bivariate probability distribution of 

random vector (X,Y) can be expressed with its marginal CDFs and the copula C as 

[Nelsen, 2006; Salvadori, 2007]: 

     ;,);(),(),( vuCyFxFCyYxXP YX   (4.3) 

Copula C with the parameter θ represents the dependence structure linking the 

marginal distributions and maps the two marginal distributions into the joint distribution 

as [0,1]
2
→[0,1]. The conditional distribution can be derived from the copula in equation 

(4.3). Let U= FX(x) with u denoting a realization of random variable U and V=FY(y) with 

v denoting a realization of random variable V.  The conditional distribution can be 

defined as: 
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Four commonly used copula, namely Clayton, Frank, Gumbel and Gaussian, are 

listed in Table 4. 1. These copulas are capable of modeling random variables with 
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different dependence structures.  For example, random variables from both the Gaussian 

copula and Frank copula exhibit symmetric dependence, while those from the Clayton 

copula exhibits asymmetric dependence strong in the left tail and weak in the right tail 

[Trivedi and Zimmer, 2005].  

 

 

 

Table 4. 1 Copulas with associated parameter space and Kendall’s tau. 
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The parameter of the copula θ in equation (4.3) has to be estimated. Utilizing the 

relationship of the copula parameter with some association measure (e.g., Kendall’s tau, 

as shown in Table 4. 1, the parameter θ can be obtained through the association measure 

estimated from the observation. The exact maximum likelihood (EML) method and the 

inference functions for marginal (IFM) are two other methods that can be used for 

parameter estimation [Joe, 1997]. For the EML method, the likelihood including 

parameters of the marginal distributions and those of the copula can be maximized to 

estimate the parameters simultaneously. For the IFM method, parameters of the marginal 

distributions and those of the copula can be split, while the respective maximum 
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likelihood functions can be estimated separately. In this study, parameters of the copula 

were estimated using the IMF method in this study 

4.2.3 Entropy-Copula method  

The maximum entropy-based distribution in equation (4.1) can be used to 

preserve moment statistics (e.g., mean, standard deviation, skewness and kurtosis). The 

copula-based joint distribution in equation (4.3) can be used to model the dependence 

structure (e.g., lag-one correlation) between streamflows of two adjacent months. 

Therefore, samples from the copula based joint distribution in equation (4.3) (or the 

conditional distribution in equation (4.4))with the maximum entropy based marginal 

distribution FX(x) and FY(y) in equation (4.2) can be expected to preserve the mean, 

standard deviation, skewness, kurtosis and lag-one correlation. Moreover, an important 

feature of the copula-based joint distribution is that it can model the nonlinear 

dependence of streamflows. The proposed method incorporates the entropy and copula 

concepts (denoted as EC method) and is used for monthly streamflow simulation 

hereafter.  

The conditional distribution can be employed for the generation of random 

values from the joint distribution [Johnson, 1987; Joe, 1997]. For two adjacent months 

(say, January and February), the February streamflow can be generated from the 

conditional distribution in equation (4.4) given the January streamflow. Totally 12 

conditional distributions have to be used sequentially to generate monthly streamflows. 

The cumulative distributions Fj and Fj-1 [corresponding to v and u in equation (4.4)] of  

streamflows of month j and j-1 are needed for the generation of streamflow of month j. 
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Let xt,s be the streamflow for month s of the year t (s=1, 2…, 12, t=1, 2…, n). The 

simulation steps are summarized as follows: 

(1) Generate a uniform random value u1,1 between [0, 1], which can be considered as 

the cumulative probability corresponding to a specific value of x, say x1,1 

(January streamflow of the first year). Then one obtains x1,1 from the inverse 

cumulative probability distribution function as: x1,1=F1
-1 

(u1,1), where F1 is the 

cumulative distribution of the January streamflow.  

(2) Generate another uniform distributed random value w between [0, 1], which is 

considered to be the conditional cumulative probability corresponding to a 

specific value x2,1 (the February streamflow of the first year) with cumulative 

probability u2,1, given the initial value x1,1.  Then, one obtains: w=C2|1(u2,1|u1,1) 

from equation (4.4). u2,1  can be obtained as: u2,1=C
-1

2|1(w) and then x2,1 can be 

solved from: x2,1=F2
-1 

(u2,1) accordingly, where F2 is the cumulative distribution 

of the February streamflow. 

(3) Repeat step (2) above until x12,1 (the December streamflow of the first year) is 

generated. Thus, monthly streamflows of the first year are generated. 

(4) With the generated x12,1 , x1,2 (the January streamflow of the second year) can be 

generated with step (2) and similarly streamflows of other months of the second 

year x3,2, x4,2,…, x12,2 can be generated. 

(5) Repeat step (4) until x12,n is generated. 
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4.2.4 Extended Entropy-Copula method  

The proposed entropy-copula method (denoted as EEC method) can be extended 

to preserve the  inter-annual statistics by introducing an aggregate variable in the 

conditional distribution similar to the framework developed by Sharma and O'Neill 

[2002]. For monthly streamflow denoted as X1, X2,…, X12, X13, X14,…, Xn, where X1, 

X2,…, X12 are the monthly streamflows of the first year and so on, an aggregated 

streamflow can be defined as the summation of the previous m monthly streamflows 

(m=12 in this study):  

 


 
m

i

jtt XZ
1

1

 
(4.5) 

Denoting streamflows of two adjacent months as Xt, Xt-1 and the corresponding 

aggregate variable as Zt-1 with the cumulative distribution functions F(Xt-1) , F(Xt) and 

G(Zt-1) respectively, the joint distribution of the random vector (Zt-1, Xt-1 , Xt) can be 

expressed by the copula method as:  

 );,,(),,( 3211111 vvvCxXxXzZP tttttt    (4.6) 

where α is the parameter that can be a scalar or vector depending on the copula family; 

v1,v2, and v3 are the realizations of the random variables V1=G(Zt-1) , V2=F(Xt-1) and 

V3=F(Xt).The conditional distribution of monthly streamflow Xt  given the previous 

monthly streamflow Xt-1 and the aggregated streamflow Zt-1 can be expressed as:  
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The cumulative distribution Fr, Fr-1 and Gr-1 [corresponding to v3, v2 and v1 in 

equation (4.7)] where Fr (or Fr-1) and Gr-1 are the CDFs of the monthly streamflow and 

the corresponding aggregate streamflow, are needed for the generation of streamflow of 

month r. The procedure for generating monthly streamflow by the EEC method is now 

summarized as follows: 

(1) Assign random values to Zt-1 and Xt-1. Compute the corresponding cumulative 

probabilities Gt-1 (zt-1) (denoted as v1) and Ft-1 (xt-1) (denoted as v2). 

(2) Generate a uniform random value η between [0, 1], which is considered to be 

the conditional cumulative probability corresponding to a specific value xt, 

given the initial value zt-1 and xt-1 (or v1 and v2). From equation (4.7), one 

obtains: C3|1,2(v3|v1,v2)= η. The cumulative probability Ft(xt) (denoted as v3) 

can be obtained as: v3=C
-1

3|1,2(η) and then xt can be obtained as: xt=Ft
-1

(v3). 

(3) Increase time step t and update the random values of Xt-1 and Zt-1. 

(4) Repeat steps (1)-(3) until the required length of monthly streamflow is 

generated. 

4.3 Application 

Monthly streamflow of the Colorado River at Lees Ferry, Arizona from 1906-

2003 was used for the application of the proposed method. More detail about the datasets 

are given by Hao and Singh [2011]. 100 flow sequences with 100 years of streamflow in 

each sequence were generated to assess the performance of the proposed method. The 

basic statistics (mean, standard deviation, skewness, lag-one correlation, maximum and 

minimum values), higher-order correlation and inter-annual statistics from generated 
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data were compared with those from the historical data using the box plots. The 

performance was considered to be good when a statistic fell in the box plot. 
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Figure 4. 1 Empirical and theoretical distribution for May streamflow. 

(a)Empirical histogram and theoretical PDF; (b) Empirical and theoretical CDF. 

 

 

 

4.3.1 Marginal PDF  

Maximum entropy-based marginal distributions for each month were compared 

with empirical histograms and the cumulative distributions estimated from the 

Gringorten plotting position formula. The empirical histograms and the theoretical 
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entropy-based PDFs for May and September streamflow were shown in Figure 4. 1 and 

Figure 4. 2, respectively. It can be seen that the entropy-based PDF fitted the empirical 

histogram well and theoretical CDF also fitted the empirical CDF well. Note that the 

skewness of September streamflow is relatively high (1.96). These results showed that 

the maximum entropy-based marginal distribution modeled the underlying streamflow 

well, even though high skewness was involved.  
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Figure 4. 2 Empirical and theoretical distribution for September streamflow. 

(a)Empirical histogram and theoretical PDF; (b) Empirical and theoretical CDF. 
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The bimodality in the PDF of the May streamflow, which has been found in 

several studies [Prairie et al., 2006], was not resolved with the PDF in equation (4.1). 

However, this can be overcome when more moments are used to derive the maximum 

entropy-based distribution (not presented). 

4.3.2 Copula selection 

The Clayton, Frank, Gumbel and Gaussian copula were selected to construct the 

joint distribution. The suitability of different copulas was assessed with graphical 

method and goodness of fit test. 

Graphical method 

For the random samples X=(x1, x2,…, xn) and Y=(y1, y2,…, yn), the pseudo-

observations U=(u1, u2,…, un) and V=(v1, v2,…, vn) can be obtained as Ui=Ri/(n+1)  and 

Vi=Si/(n+1), i=1, 2,…, n, where Ri and Si are the ranks of the random samples X and Y, 

respectively. 

The empirical copula C(ui,vi), i=1, 2,…, n, can be defined with the pseudo-

observations  U and V as: 
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(4.8) 

The empirical Kendall distribution Kn  of the empirical copula  wi=C(ui, vi) can 

be defined as: 
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For the continuous random vector (X, Y ) with marginal cumulative distribution 

functions (CDF) FX(x) and FY(y), the theoretical Kendall distribution function Kɵ(w) can 

be defined as: 

      wVUCPyFxFCPwK YX  ,)(),()(   (4.10) 
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Figure 4. 3 K-Plot of different copulas for May-June streamflow pairs. 

 

 

 

The graphical method is based on the comparison of the empirical distribution 

Kn(w) in equation (4.9) and the fitted distribution Kɵ(w) in equation (4.10) (or K-Plot). 
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The K-plot for the streamflow pairs of May-June and October-November are shown in 

Figure 4. 3 and Figure 4. 4. Generally there is not a single copula that fit the empirical 

copula better than other copulas for all streamflow pairs. It can be seen that the Frank 

copula seems to fit the empirical distribution better for most part then other copulas from 

Figure 4. 3 while the Gaussian copula seems to perform better from Figure 4. 4. 
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Figure 4. 4 K-Plot of different copulas for October-November streamflow pairs. 

 

 

 

Goodness of fit test 

The formal goodness of fit test was used to determine whether a specific copula 

is suitable to model the dependence structure of underlying data. The Cramér—von 
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Mises statistic (Sn) and Kolmogorov-Smirnov statistic (Tn) were used for the goodness of 

fit test for the four copulas [Genest et al., 2006; Genest and Favre, 2007; Genest et al., 

2007]. These statistics Sn and Tn are the variants of those proposed by Wang and Wells 

[2000] and are based on the process: 

  )()()( wKwKnnwn
n

Κ
 (4.11) 

where Kn(w) and Kɵn(w)  are the empirical and theoretical probability distributions 

defined in equation (4.9) and (4.10). These two statistics are defined as: 
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The p-values of statistics (Sn and Tn ) at the 5% significance level based on a run 

of 5000 samples were obtained using the parametric bootstrap procedure [Genest et al., 

2006]. The results for the statistic Sn and the associated p-value are shown in Table 4. 2. 

The very low p-value (<5%) in Table 4. 2 signified that the null hypothesis the copula 

was a valid model should be rejected. Take the streamflow pairs of July-August for 

example. The Clayton and Gumble copulas were rejected since the p-values were lower 

than 5% while the Frank and Gaussian copulas were valid models. The number of 

streamflow pairs that a copula was rejected for the Clayton, Frank, Gumbel and 

Gaussian was 6, 4, 6 and 2, respectively.  
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Table 4. 2 Statistics Sn and associated p-values for different streamflow pairs. 

Copula  Sn and 

p-value 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-1 

Clayton Sn 0.25 0.19 0.09 0.06 0.13 0.11 0.15 0.44 0.17 0.22 0.29 0.15 

p-value 
0.01 0.05 0.32 0.65 0.13 0.09 0.03 0.00 0.04 0.01 0.00 0.10 

Frank Sn 0.05 0.08 0.33 0.25 0.06 0.07 0.08 0.12 0.11 0.07 0.13 0.15 

p-value 
0.72 0.31 0.00 0.00 0.45 0.16 0.13 0.05 0.07 0.30 0.03 0.01 

Gumbel Sn 0.06 0.22 0.51 0.54 0.21 0.14 0.19 0.11 0.16 0.08 0.06 0.10 

p-value 
0.64 0.02 0.00 0.00 0.01 0.01 0.00 0.15 0.04 0.30 0.52 0.13 

Gaussian Sn 0.06 0.12 0.22 0.30 0.04 0.04 0.07 0.14 0.08 0.03 0.08 0.08 

p-value 
0.69 0.15 0.01 0.00 0.83 0.62 0.24 0.06 0.35 0.94 0.24 0.24 

 

 

 

The results for the statistic Tn and the associated p-value are shown in Table 4. 3. 

The number of month pairs of rejecting the copula was 6, 2, 4 and 2, respectively. 

Generally there was not a single copula that is valid for modeling all streamflow pairs. 

The Gaussian copula seems to preforms slightly better than other copulas from the 

number of rejections. 

 

 

 

Table 4. 3 Statistics Tn and associated p-values for different streamflow pairs. 

Copula  Tn and 

p- value 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-1 

Clayton Tn 1.06 0.92 0.70 0.56 0.87 0.83 0.96 1.30 1.12 1.10 1.39 0.88 

p-value 
0.03 0.12 0.47 0.80 0.15 0.11 0.04 0.00 0.01 0.02 0.00 0.15 

Frank Tn 0.56 0.73 1.22 1.09 0.67 0.64 0.62 0.74 0.74 0.66 0.80 0.84 

p-value 
0.75 0.26 0.00 0.00 0.39 0.25 0.37 0.22 0.22 0.36 0.08 0.05 

Gumbel Tn 0.52 1.03 1.52 1.34 0.79 0.82 0.94 0.77 0.86 0.65 0.56 0.65 

p-value 
0.88 0.04 0.00 0.00 0.22 0.06 0.02 0.25 0.11 0.46 0.71 0.45 

Gaussian Tn 0.63 0.86 1.10 1.10 0.51 0.56 0.62 0.71 0.74 0.47 0.68 0.65 

p-value 
0.61 0.15 0.01 0.01 0.89 0.61 0.47 0.37 0.30 0.93 0.35 0.44 
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A practical way for the simulation of the monthly streamflow may be to choose 

different copulas in modeling different streamflow pairs. In this study, the Gaussian 

copula was selected hereinafter for the illustration of the proposed entropy-copula 

method for monthly streamflow simulation. The entropy-copula (EC) method and 

extended entropy-copula (EEC) method with the Gaussian copula were denoted as ECG 

and EECG method. 
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Figure 4. 5 Comparison of observed monthly streamflow and a sequence of 

generated monthly streamflow. (Unites for streamflow are in cubic meters per 

second (cms).) 

 



 

 

85 

4.3.3 Variability of streamflow  

The variability of the generated streamflow was first compared with the historical 

streamflow. The plot for observed streamflow and a sequence of simulated monthly 

streamflow for 98 years from the ECG method is shown in Figure 4. 5. Generally the 

variability of generated streamflow is similar to that of the observed streamflow. The 

maximum and minimum values of simulated streamflow matched that of observed 

streamflow. Similar results were obtained from the generated streamflow from the 

EECG method (not shown). 

4.3.4 Basic statistics 

The observed statistics and the median values of the generated basic statistics 

from the ECG method are shown in Figure 4. 6. The relative error (RE) is also used for 

assessing the performance, which is defined as RE = (Sm – Xo)/Xo, where Sm is the 

median of simulated statistic and Xo is the observed statistic. The relative error for each 

statistic, including the mean (Mn), standard deviation (Sd), skewness (Sk), lag-one 

correlation (L1), maximum values (Max) and minimum values (Min) , is shown in Table 

4. 4. 

The ECG method performed well in preserving the mean, standard deviation, and 

skewness, since all the statistics fell in the box plot. The RE for mean and standard 

deviation was under 5% and that for skewness was under 10% for all months. Generally 

the lag-one correlation was preserved well, though for certain months, such as October 

(with RE 14.4%), the observed statistics did not fall in the box.  
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Figure 4. 6 Boxplots of basic statistics of generated and historical monthly 

streamflow from the ECG method. 

 

 

 

Table 4. 4 Relative error (%) for simulated statistics of each month. 

statistics 1 2 3 4 5 6 7 8 9 10 11 12 
Mn 

-0.2 -0.2 0.1 0.5 -0.2 -0.1 -0.1 -0.6 -0.5 -0.4 -0.3 -0.5 
Sd -1.6 -2.2 -1.0 -2.0 -0.7 -1.9 -1.1 -1.3 -1.4 -1.8 -3.9 -3.8 
Sk -0.8 -5.8 -5.7 -4.3 1.8 -4.5 1.7 -2.4 -4.5 -3.3 -2.3 -5.9 
L1  

-7.0 -3.0 12.0 13.7 7.0 4.3 2.3 3.8 -1.8 14.4 -0.9 -10.2 
Max -2.2 -1.5 -0.6 -3.3 -2.7 -2.9 3.5 -6.1 -6.4 -10.3 -3.6 -3.2 
Min 4.2 -2.9 1.4 -18.3 8.3 0.9 -16.9 -2.1 -23.4 -18.4 38.0 1.4 
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Figure 4. 7 Boxplots of basic statistics of generated and historical annual 

streamflow from two methods. (a) ECG method; (b) EECG method. ( Mn, Sd, 

Sk,Lag-1, Max and Min represent the mean, standard deviation, skewness, lag-one 

correlation, maximum and minimum values, respectively. Unites for Mn, Sd, Max 

and Min are in 10
3
 cms.) 

 

 

 

The maximum and minimum values were generally preserved well for most 

months (with RE under 5% and 20% for maximum and minimum values for most 

months), though over-estimation or under-estimation for certain months occurred. 

Results of the EECG method in preserving these statistics of each month were similar to 

those from the ECG method and thus are not shown. 
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To assess the performance in the preservation of these statistics at the annual 

level, the annual streamflow is obtained by adding the generated monthly streamflow for 

each year. Generated and observed basic statistics of annual streamflow from the ECG 

and EECG methods are shown in Figure 4. 7. The mean and standard deviation were 

preserved well by both methods.  Neither ECG nor EECG method preserved the 

skewness well. However, the two methods differed significantly in preserving the lag-

one correlation. The EECG method preserved the lag-one correlation well, while the 

ECG method did not perform as well. For the preservation of maximum and minimum 

values, the ECG and EECG performed relatively well, though some overestimation 

occurred in the maximum values. 

4.3.5 Higher-order correlation 

Sharma and O'Neill [2002] proposed a nonparametric method for monthly 

streamflow simulation for preserving long-term dependence (denoted as NPL) and 

showed that the NPL model improved higher-order correlation of monthly streamflows. 

To assess the performance of the proposed ECG and EECG method in preserving the 

long-term dependence, a relatively higher order correlation (lag-four in this study) was 

selected for comparison. Boxplots of lag-four correlations of observed and generated and 

monthly streamflow from the ECG and EECG methods are shown in Figure 4. 8. In 

general the ECG method did not preserve these higher order correlations well. This is 

not unexpected, since only lag-one correlation was included in the ECG method. 

Generally the median values of generated statistics were closer to the observed statistics 

for the EECG method than those for the ECG method, as seen in Figure 4. 8 (b). Thus, 
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the preservation of the higher order correlation can be improved by EECG method, 

although the higher order correlation was not included directly. 
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Figure 4. 8 Boxplots of lag-four correlation of generated and historical monthly 

streamflow from two methods. (a)ECG method; (b) EECG method. 

 

 

 

4.3.6 Inter-annual statistics 

The inter-annual dependence between the streamflows of seasonal and annual 

timescales was also assessed for the EECG method. Box plots of lag-one and lag-four 

correlation between streamflow of a specific month (seasonal time scale) and 
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streamflows of the previous 12 months (annual time scale) of the generated and 

historical data are shown in Figure 4. 9 (a) and (b). It is seen that the lag-one correlation 

was preserved well for all months except for February, as expected from the structure of 

the EECG model. The lag-four correlation, although not directly included, was also 

preserved well as shown in Figure 4. 9(b).  
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Figure 4. 9 Boxplots of inter-annual dependence of generated and historical 

monthly streamflow from the EECG method. (a) lag-one; (b) lag-four. 
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4.4 Conclusion 

An entropy-copula method is proposed for single-site monthly streamflow 

simulation and is shown to preserve statistics of monthly streamflow well. The mean and 

standard deviation of the generated streamflow at the annual scale can also be preserved 

well. The extended entropy-copula method is shown to preserve inter-annual dependence 

well and improve the higher-order correlation of monthly streamflow. The preservation 

of the lag-one correlation at the annual scale can also be improved by the extended 

method. The marginal distribution derived with the entropy theory with the first four 

moments as constraints is capable of modeling the complex properties (such as high 

skewness) of the underlying streamflow data.  

The possible limitation of the entropy-copula method may be that many 

Lagrange multipliers may be needed for modeling certain properties (e.g., multi-mode in 

the distribution) of the underlying data. The entropy-copula framework can be applied 

and extended to higher dimensions for hydrologic modeling or simulation with the 

copula to model the dependence structure and entropy-based marginal distributions to 

model the underlying data in the univariate case. 
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CHAPTER V 

MULTI-SITE ANNUAL STREAMFLOW SIMULATION  

WITH ENTROPY AND COPULA METHODS 

 

5.1 Introduction 

For streamflow simulation in a river basin, it is desired that statistical properties 

of streamflow at an individual site and dependence properties of streamflow among 

different sites are preserved. The autoregressive moving average (ARMA) framework 

has been commonly used for multi-site streamflow simulation, in which the streamflow 

series are converted to a sequence of normally distributed random variables [Loucks et 

al., 1981]. The general model for the streamflow simualtion at n sites for any season t 

with lag-one correlation can be expressed as [Matalas, 1967; Finzi et al., 1975; Salas 

and Delleur, 1980]: 

 BAZZ tt  1  (5.1) 

where Zt=[Z
1

t,…, Z
n
t,]

T
 and Zt-1 =[Z

1
t-1,…, Z

n
t-1]

T
 are the vectors of standardized flows 

(e.g., annual) with length n as the number of sites; Ɛt=[ Ɛ
1

t,…, Ɛ
n

t]
T
 is the vector of 

normal random variables that are independent of Z; A and B are the parametric matrices 

expressed as: 
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where the elements ai,j or bi,j specify the temporal and spatial dependence. The multisite 

streamflow of different seasons can be generated sequentially with the increase of t by 

using equation (5.1).  

Parametric and nonparametric disaggregation methods have also been used for 

multi-site streamflow simulation. A parametric model for temporal disaggregation of 

annual to monthly streamflow for n sites can be expressed as [Valencia and Schaake, 

1973; Loucks et al., 1981]: 

 ttt DVCYX                                                                              (5.2) 

where Yt =[Y
1

t, …, Y
n

t]
T
 is the vector of the aggregated streamflow (annual) in the year t; 

Xt=[X
1

1,t ,…, X
1

s,t, …, X
n

1,t, …, X
n

s,t]
T
  is  the vector of the disaggregated streamflow 

(seasonal) for the season s (s ≤  m) in the year t; Vt =[V
1

t,…, V
n

mt]
T
  is a vector of nm  

normal random variables; C and D are the matrices expressed as: 
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where the elements ci,j or di,j specify the dependence of the aggregated and 

disaggregated streamflows. This method was first developed by Valencia and Schaake 

[1973] and then modified to reduce parameters [Mejia and Rousselle, 1976; Santos and 

Salas, 1992]. Likewise, the spatial disaggregation of the key station streamflow 

(aggregated streamflow) to the substation streamflow (disaggregated streamflow) can 

also be carried out with the model in equation (5.2). 
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The nonparametric model for disaggregation is based on the kernel density 

estimate or re-sampling techniques.  A typical characteristic of the nonparametric model 

is that it does not make assumptions about the dependence structure or probability 

density function of the underlying data. For nonparametric disaggregation, streamflow 

simulation is cast as a sampling from the conditional probability density function 

[Tarboton et al., 1998]: 

  dXZXfZXfZXf ),(/),()(
 (5.3) 

where X is the disaggregated variable (monthly or tributary streamflow); Z is the 

aggregate variable (annual or main streamflow); and f(X, Z) is the joint probability 

density function that can be obtained from the kernel density estimation. To overcome 

the difficulty that the simulation in higher dimension is inefficient and cumbersome for 

the kernel method,  Prairie et al. [2007] developed a nonparametric disaggregation 

method with K-Nearest Neighbor based bootstrap for streamflow simulation from the 

conditional distribution. Lee et al.  [2010]  proposed another nonparametric space-time 

disaggregation method that further improves the method by Prairie et al. [2007] .  

Srinivas and Srinivasan [2005] proposed a hybrid moving block bootstrap method for 

multi-site streamflow simulation that incorporates the properties of parametric and 

nonparametric method. In this method, the parametric model (e.g., autoregressive model) 

is fitted to the data and then the residuals are resampled with block bootstrapping.   

Recently, a number of new approaches were proposed for streamflow simulation. 

Nowak et al. [2011] proposed a wavelet auto-regressive method for multi-site annual 

streamflow simulation that is capable of capturing spectral and distributional properties 
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of the streamflow data.  Hao and Singh [2011] introduced the entropy theory for single-

site monthly streamflow simulation, in which the required statistics are used as 

constraints to derive the joint distribution with the entropy theory. The copula theory has 

been used extensively in hydrology to model the joint distribution of hydrologic 

variables. Lee and Salas [2011] proposed the copula method for annual streamflow 

simulation of the Nile River in which the joint distribution of streamflow is derived with 

the copula. Hao and Singh [2012] proposed an entropy-copula method for single site 

monthly streamflow simulation of the Colorado River at Lees Ferry, Arizona , in which 

the joint distribution is constructed using the copula method with the marginal 

distributions derived using the entropy method.  

This study extends the entropy method and entropy-copula method for multi-site 

annual streamflow simulation. The joint distributions of annual streamflow at different 

sites are constructed with the entropy method and the entropy-copula method and then 

annual streamflow at different sites is generated from the conditional distribution. The 

proposed methods are applied to the annual streamflow simulation of four sites in 

Colorado River basin and the performance of the two methods in preserving the statistics 

of annual streamflow are compared. 

5.2 Method 

5.2.1 Entropy method 

For continuous random variables X1 and X2 with joint probability density 

function f(x1, x2) defined over the space [a, b]×[c, d], the Shannon entropy can be 

defined as [Shannon, 1948; Shannon and Weaver, 1949]: 
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(5.4) 

According to the principle of maximum entropy [Jaynes, 1957], the joint probability 

density function f(x1, x2) with the maximum entropy should be selected subject to the 

constraints (or known information). 

Hao and Singh [2011] proposed the entropy method for single-site monthly 

streamflow simulation in which the joint distribution f(x1, x2) of monthly streamflow of 

adjacent months is derived using the principle of maximum entropy. The statistics to be 

preserved can be used as constraints to derive the joint distribution f(x1, x2). This method 

can also be used for streamflow simulation at two sites. For preserving the moment 

statistics (mean, standard deviation, and skewness), the first three moments of X and Y 

can be used as constraints while the cross product XY can be used as a constraint for 

preserving the lag-one correlation. The fourth moment can also be used as the constraint 

to characterize the distribution property of the underlying data. The general form of the 

constraints can be specified as: 

   
d

c
i

b

a
i gEdxdxxxfxxg )(),(),( 212121

  i=0, 1, 2,…, m                                           (5.5) 

where gi(x1, x2) is a function of random vector (X, Y); E(gi) is the expected value of the 

function gi(x1, x2). The maximum entropy distribution f(x1, x2) can then be obtained by 

maximizing the entropy in equation (5.4) subject to the constraints in equation (5.5)  as 

[Kesavan and Kapur, 1992]: 
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where λ and w (λm) are the Lagrange multipliers corresponding to the marginal and joint 

constraints, respectively; m is the number of constraints (m=9 for the bivariate case).  

The zeroth Lagrangre multiplier λ0 can be expressed as a function of other 

Lagrange multipliers as: 
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(5.7) 

From the joint distribution in equation (5.6), the marginal distribution of random 

variable X1 and X2 can be derived as: 
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The conditional distribution f(x2|x1) can then be derived accordingly as: 
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The annual streamflow of two sites can then be generated sequentially from the 

conditional density function in equation (5.9).  

The entropy method can be extended for multi-site streamflow simulation. 

Denote the joint distribution of annual streamflow at sites 1, 2 and 3 as f(x1, x2, x3) 
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defined on the interval [a, b]× [c, d]×[e, f]. The entropy E  ́of the joint distribution f(x1, 

x2, x3) can be defined as: 

 321321321 ),,(ln),,(' dxdxdxxxxfxxxfE
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(5.10) 

The first three moments are used as separate constraints to preserve the mean, 

standard deviation and skewenss of steamflow at each site. The joint constraints can be 

specified as the cross product between any two random variables (namely X1X2, X1X3 

and X2X3). The maximum entropy based distribution f(x1, x2, x3) can be derived with the 

separate and joint constraints by maximizing the entropy in equation (5.10) expressed as: 
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where λ and w are the Lagrange multipliers corresponding to the separate and joint 

constraints, respectively. The conditional distribution f(x3|x1, x2) , which can be used for 

generation of the streamflow at site 3 given the streamflow at site 1 and 2, can be 

derived from equation (5.11) as: 
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(5.12) 

Similarly, the joint distribution streamflow at n sites (X1, X2,…, Xn) can be 

expressed as: 
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The conditional distribution f(xn|x1, x2,…, xn-1), which can be used for generation 

of streamflow at site n (Xn) given the streamflow at other n-1 sites (X1, X2,…, Xn-1), can 

be derived as 
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   (5.14) 

5.2.2 Entropy-copula method  

For continuous random variables X and Y with the cumulative distribution 

functions (CDF) FX(x) and FY(y), the bivariate probability distribution function can be 

expressed with copula C as [Nelsen, 2006; Salvadori, 2007]: 

);,(),( vuCyYxXP     (5.15) 

where u and v are realizations of the random variables U= FX(x) and V=FY(y); θ is the 

copula parameter that measures the dependence between marginals. The copula C maps 

the two marginal distributions into the joint distribution as [0,1]
2
→[0,1].  A number of 

copula families have been developed, such as the elliptical copula (Gaussian and t), 

Archimedean copula (Clayton, Gumbel, Frank and Ali-Mikhail-Haq) and other copula 

families [Nelsen, 2006]. The conditional distribution can be obtained from the joint 

distribution in equation (5.15) as: 
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Hao and Singh [2012] proposed the entropy-copula for single site monthly 

streamflow simulation with the marginal distribution derived with entropy method. In 
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this study, the first four moments can be used as constraints to derive the entropy-based 

marginal distribution expressed as: 
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The monthly streamflow is then generated sequentially by using equation (5.16) 

with the entropy-based distribution as the marginal distribution (5.17). The mean, 

standard deviation, and skewness can be expected to be preserved with the marginal 

distribution in equation (5.17). 

The entropy-copula method can also be extended for the simulation of annual 

streamflow at multi-sites. The joint distribution of annual streamflow at sites 1, 2 and 3 

with a copula C can be expressed as: 
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where F1(x1), F2(x2), and F3(x3) are the cumulative distribution of annual streamflow at 

site 1, 2 and 3; α is the parameter of the copula. 

The conditional distribution of X3 given X1 and X2 which can be used for the 

generation of the streamflow at site 3 given that from site 1 and site 2, can be derived as: 
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where v1, v2, and v3 are the realizations of the random variables V1=F1(x1), V2=F2(x2), 

and V3=F3(x3). Similarly, the joint distribution for the simulation of streamflow at n sites 

(X1, X2,…, Xn) can be expressed with copula C as: 

 );(),...,(),(),...,,( 221121 nnn xFxFxFCXXXF     
(5.20) 
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where Fn(xn) is the cumulative distribution function estimated from the entropy method 

of the annual streamflow at sites n; β is the parameter of the copula. 

A specific copula has to be employed to construct the multivariate distribution in 

equation (5.15), (5.16), (5.18) and (5.20). The Gaussian copula has the property that it is 

easily extended to higher dimension [Clemen and Reilly, 1999; Schölzel and Friederichs, 

2008]. The multivariate Gaussian copula is therefore used here to illustrate the 

application of the proposed method for annual streamflow simulation. 

The Gaussian copula with marginal CDFs U1, U2,…, Un can be defined as: 
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where Ф is the CDF of  the standard normal distribution function and Фn is the CDF of  a 

multivariate normal distribution function with mean 0 and  n ×n covariance matrix ∑ 

whose i, j entry is corr(Ф
-1

 (ui), Ф
-1

 (uj)). The multi-variate cumulative distribution of the 

annual streamflow data at n sites can then be expressed as: 
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where F1(x1), F2(x2),…, Fn(xn) are the cumulative distribution of X1, X2,…, Xn estimated 

from the entropy based marginal density function in equation (5.17). 

5.2.3 Comparison of two methods 

For multi-site streamflow simulation, the cross correlation between annual 

streamflow of different site has to be preserved, apart from the preservation of individual 

statistics of each site. Accordingly, the joint distribution in higher dimension is needed 

for the entropy method and entropy-copula method. In the entropy method, all these 

required statistics can be used as constraints to derive the maximum entropy joint 
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distribution in higher dimension and then used for streamflow simulation. In the copula 

method, a copula in higher dimension is used, while the entropy based distribution in 

equation (5.17) can be used as marginal distributions. 

The entropy method and entropy-copula method are similar in modeling the 

streamflow at a single site. In other words, the first four moments are used as constraints 

to derive the marginal or joint distribution. The difference between the entropy method 

and entropy-copula method for annual streamflow simulation lies in modeling the 

dependence structure of streamflow at different sites. For the entropy method, the joint 

constraints in the form of XiXj (1 ≤ i< j ≤ n), are used to characterize the dependence 

with the random variables. In the entropy-copula method, the copula C (F1, F2,…, Fn) is 

used to model the dependence with the cumulative distribution function of random 

variables. 

5.2.4 Simulation methodology 

Suppose the stations from upstream to downstream are denoted as 1, 2,…, n with 

the corresponding annual streamflow donoted as X1, X2,…, Xn. The generation of multi-

site annual streamflow can be performed based on the conditional distribution (or the 

joint distribution). Both  the entropy and entropy-copula method can be used for the 

construction of  the joint distribution P(X1, X2), P(X1, X2, X3), …, P(X1, X2,…, Xn) 

(likewise for  P(X2|X1), P(X3|X1, X2), …, and P(Xn|X1, X2,…, Xn-1) for the simulation of 

X2, X3 and Xn, respectively. The simulation methodology can be summarized as follows: 
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(1)  Initialize the annual streamflow at site 1 in the first year, i.e., x
1
1, by 

sampling from the marginal distribution F1(x) or assigning random values from the 

historical record. 

 (2)  Generate the annual streamflow at site 2 in the first year, i.e., x
2
1, with the 

conditional distribution P(X2|X1). Generate annual streamflow at site 3 in the first year, 

i.e., x
3
1 with the conditional distribution P(X3|X1, X2). Similarly, annual streamflow at 

site n in the first year, i.e.,x
n

1, can be generated with the conditional distribution P(Xn|X1, 

X2,…, Xn-1) with the previously generated x
1

1, x
2

1,…, x
n-1

1.  

(3)  With steps (1) and (2), annual streamflow in other years at each site until the 

required length n can be generated. 

5.3 Application 

5.3.1 Data description 

The annual streamflow from 1906-2003 of four stations in Colorado River basin, 

namely sites 21 (Paria River at Lees Ferry, AZ), 22 (Little Colorado River near 

Cameron, AZ), 24 (Virgin River at Littlefield, AZ), and 27 (Bill Williams River below 

Alamo Dam, AZ) are used for the illustration of the proposed method. The positions of 

these sites are illustrated in Figure 5. 1 and the annual streamflow at each site can be 

downloaded from the website 

(http://www.usbr.gov/lc/region/g4000/NaturalFlow/previous.html).  

The mean, standard deviation, skewness, auto-correlation, maximum and 

minimum values of the annual streamflow at each site are listed in Table 5. 1. The 

autocorrelation of annual streamflow at each site is relatively low (≤ 0.13) and thus this 

http://www.usbr.gov/lc/region/g4000/NaturalFlow/previous.html
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statistics is not taken into account in the simulation. The preservation of statistics of each 

site (such as mean, standard deviation, and skewness) and cross-correlation between 

different sites for annual streamflow is required for simulation.  

 

 

 

 
Figure 5. 1 Illustration of four stations in Colorado River basin. 

 

 

 

Table 5. 1 Statistics of annual streamflow at four sites. 

Statistics Station 1 Station 2 Station 3 Station 4 

Mean 0.80 7.19 7.23 3.98 

Standard deviation 0.31 4.76 3.88 4.76 

Skewness 1.29 1.62 1.43 2.46 

Autocorrelation 0.11 0.03 0.13 0.10 

Maximum value 1.88 25.13 19.80 27.42 

Minimum value 0.35 0.66 2.86 0.05 

 

 

 

In this study, both the entropy method and the entropy-copula method were used 

for the multi-site annual streamflow simulation at these four sites. For computational 

convenience, the annual streamflow data were scaled to the interval (0, 1) before 

parameter estimation for the entropy method. For the original annual streamflow data 
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(OD) of each station with maximum value MX and minimum value MN, the scaled 

annual streamflow data (SD) of each station was expressed as: SD = [(OD-MN)]/[(1+ 

d)MX-(1-d)MN], where d is a scale parameter. The scale parameter d (=0.05 in this 

study) relates to the maximum and minimum value and is for the generation of 

streamflow values beyond the observaiton. For the entropy-copula method, the scaled 

data were also used for comparison with the entropy method. The generated streamflow 

was than rescaled to its original domain after generation.  

5.3.2 Performance measure 

One hundred sequences of annual streaflow with the similar length as the 

historical record (98 years) are generated. Basic statistics of annual streamflow at an 

individual site, including the mean, standard deviation, skewness, maximum and 

minimum values, and dependence structure between different sites from the generated 

sequences are compared with those from historical records. Box plots are used to display 

the generated and simulated statistics. The performance of the proposed method is 

judged to be good when a statistic falls within the boxplot. 

Three measures are used for characterization of the dependence structure of 

streamflows of different sites, namely, the Pearson correlation coefficient, Spearsman’s 

Rho and Kendall’s Tau. For the spatial correlation of streamflow between different sites, 

these three kinds of correlation are used for comparison. The Pearson correlation 

coefficient has been traditionally used for measuring the dependence structure of 

streamflows [Sharma et al., 1997; Prairie et al., 2007; Lee et al., 2010; Nowak et al., 
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2010; Salas and Lee, 2010]. For continuous random variables X and Y, the sample 

estimate of the Pearson correlation coefficient ρxy can be defined as: 
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where E(X), E(Y) and E(X
2
), E(Y

2
) are the mean and variance of random variables X and 

Y; E(XY) is the expectation of the cross product of  random variable X and Y. The 

Pearson correlation coefficient measures the linear dependence of two random variables.  

The Spearman’s Rho is defined in a similar way as the Pearson correlation 

coefficient but use the rank of the observations instead. For the observed streamflow 

pairs (Xi, Yi), i=1, 2,…, n, define Ri as the rank of Xi and Si as the rank of Yi. The 

Spearman’s Rho can be defined as [Genest and Favre, 2007]: 
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The Kendall’s tau is defined as [Genest and Favre, 2007]: 
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where Pn and Qn are the concordant and discordant pairs of observations.  The pairs of 

observations (xi, yi) and (xj, yj) are said to be concordant if (xi-yi)(xi-yi)>0 while are said 

to be discordant if (xi-yi)(xi-yi)<0. 
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Figure 5. 2 Marginal PDF of the annual streamflow at site 1 from entropy method 

and entropy-copula method. 

 

 

 

5.3.3 Marginal and Joint PDF 

The probability density function (PDF) was first assessed. The marginal PDFs of 

annual streamflow at site 1 from the entropy method in equation (5.8) and entropy-
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copula method in equation (5.17) are shown in  Figure 5. 2. It can be seen that the PDFs 

from both method are indistinguishable, both of which fitted the histogram well. This 

can be interpreted in that the marginal PDF in equation (5.8) derived from the joint 

distribution is also characterized by the first four moments, which is similar to the PDF 

derived directly from the first four moments in equation (5.17).  

 

 

 

Table 5. 2 Goodness of fit test for statistics Sn and Tn with associated p values for 

different streamflow pairs. 

Streamflow  

Pairs 1-2 1-3 1-4 2-3 2-4 3-4 

Sn 0.05 0.16 0.75 0.59 0.97 0.74 

p-value 0.05 0.17 0.77 0.65 1.01 0.62 

Tn 0.12 0.14 0.10 0.81 0.94 0.16 

p-value 0.09 0.13 0.25 0.83 0.90 0.11 

 

 

 

The goodness of fit test was conducted for assessing the validity of the Gaussian 

copula for the entropy-copula method. The Cramér—von Mises statistic (Sn) and 

Kolmogorov-Smirnov statistics (Tn ) were computed and the associated p-values based 

on a run of 2000 samples were obtained using the parametric bootstrap procedure 

[Genest et al., 2006; Genest and Favre, 2007], as shown  in Table 5. 2. The p-values 

from Sn and Tn are higher than 5% for all streamflow pairs. All the p-values are higher 

than 5% from the statistics Tn. It can be seen that generally the Gaussian copula is a valid 

model for constructing the joint distributions for different streamflow pairs. 
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Figure 5. 3 Scatter plot of observed streamflow (star) and generated streamflow 

from entropy method (open circle) and entropy-copuala method (dot). 

 

 

 

The scatter plot was used to compare observed streamflow and generated 

streamflow. For the annual streamflow at site 1, site 2 and site 3, the joint distribution in 

equation (5.11) by the entropy method or equation (5.18) by the entropy-copula method 

is needed and the corresponding conditional distribution can be used for streamflow 

generation. Three sequences of 100 annual streamflow pairs from site 1, site 2 and site 3 

were generated. The scatter plot of the generated streamflow pairs for the three stations 

compared with observed streamflow pairs are shown in Figure 5. 3.  Generally the 
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spread pattern of the generated streamfllow pairs from both methods matches the 

observed streamflow pairs well.  
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Figure 5. 4 Boxplots of mean, standard deviation and skewness of annual 

streamflow from entropy method and entropy-copula method. (The unit for mean 

and standard deviation is cubic meter per second.) 

 

 

 

5.3.4 At-site properties 

The mean, standard deviation and skewness of streamflow at each site with the 

entropy method and the entropy-copula method are shown in Figure 5. 4 . No significant 

difference is found in the preservation of these statistics. All these statistics fell in the 

boxes and both methods preserved the statistics well.  The relative error (RE), defined as 
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RE = (Sm – Xo)/Xo, where Sm is the median of simulated statistic and Xo is the observed 

statistic of annual streamflow, for each site is shown in Table 5. 3 for the entropy 

method and entropy-copula method. The relative error (absolute value) of mean and 

standard deviation of four sites was below 5% and skewness was below 10% for both 

methods.  The relative error of the mean, standard deviation, and skewness of the 

statistics from the two methods was comparable. 

 

 

 

Table 5. 3 Relative error (%) of statistics generated from entropy method and 

entropy-copula method. 

Method Statistics Station 1 Station 2 Station 3 Station 4 

Entropy method Mean 0.1 0.0 -0.3 -2.9 

Standard deviation -1.1 -2.4 -3.2 -4.4 

Skewness -1.4 -5.0 -1.5 -7.6 

Maximum 0.8 2.0 -1.9 -10.2 

Minimum -0.5 34.7 -2.7 40.5 

Entropy-copula  

method 

 

Mean -0.8 -2.3 -0.8 -2.2 

Standard deviation -0.7 -3.5 -0.7 -0.1 

Skewness -1.4 -6.0 -2.2 -5.0 

Maximum 0.1 0.6 -1.5 -6.4 

Minimum -0.9 29.7 -2.3 40.4 

 

 

 

The maximum and minimum values for the entropy and entropy-copula method 

are shown in Figure 5. 5.  It can be seen from the boxplot that generally all these 

statistics were preserved well, though the minimum values were rather underestimated 

for the entropy-copula method. The relative error for the generated maximum and 

minimum values are also shown in Table 5. 3. For the maximum values, the relative 

errors (absolute value) were under 15% for both the entropy and entropy-copula method. 
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The relative errors for the minimum values were relatively large compared with other 

statistics. For example, the relative errors (absolute value) of generated minimum values 

for site 4 were 40.5% and 40.4%, respectively. The reason may be that the observed 

minimum values are relatively small which will cause a large relative error. The median 

values of the generated minimum values were 0.07 and 0.07 for the entropy and entropy-

copula methods, while the observed minimum value was 0.05. From the median of 

generated minimum values, the minimum values were also preserved relatively well. 
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Figure 5. 5 Boxplots of maximum and minimum values of annual streamflow from 

entropy method and entropy-copula method. (The unit for maximum and 

minimum is cubic meter per second.) 
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5.3.5 Multi-site properties 

The cross correlation between different sites from the entropy method and 

entropy-copula method is shown in Figure 5. 6. It can be seen that the observed Pearson 

correlation falls in the box for all streamflow pairs and thus the Pearson correlation of 

annual streamflow among different sites can be preserved well by the entropy method. 

For the entropy-copula method, the observed Pearson correlation falls in the box for all 

streamflow pairs except for that between site 1 and site 4.  
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Figure 5. 6 Boxplots of Pearson, Keandall, and Spearman correlations of annual 

streamflow pairs from entropy method and entropy-copula method. (The symbol i-j 

(1≤i<j≤4) represents the annual streamflow pairs of station i and j.) 
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Table 5. 4 Relative error (%) of different dependence measure from entropy 

method and entropy-copula method. 

Method Dependence 

Measure 
Streamflow pairs 

1-2 1-3 1-4 2-3 2-4 3-4 

Entropy 

Method 

Pearson 1.3 1.0 5.6 -0.5 0.8 -5.5 

Kendall -29.2 -46.9 -14.3 -38.0 -43.7 -49.7 

Spearman -26.9 -44.4 -13.3 -36.4 -40.2 -47.5 

Entropy- 

Copula  

Method 

Pearson -3.4 17.9 -26.9 2.9 -8.3 -6.5 

Kendall 7.5 6.2 7.4 1.4 -3.6 -5.5 

Spearman 10.8 5.9 5.6 -0.8 -0.7 -5.0 

 

 

 

The relative error is shown in Table 5. 4. The relative error (absolute value) is 

within the range 0.5%-5.6% for all streamflow pairs by the entropy method.  The relative 

error (absolute value) is within the range 2.9%-26.9% for all streamflow pairs by the 

entropy-copula method. Thus the entropy method outperforms the entropy-copula 

method in preserving the Pearson correlation.  The reason is that the cross correlation of 

random variables X and Y (annual steamflow) is modeled directly with the entropy 

method. From the definition of the Pearson correlation in equation (5.23), when the 

sample estimation of E(X), E(Y), E(X
2
) and E(Y

2
) were used as separate constraints in the 

form of the first two moments and E(XY) is used as the joint constraint, the pearson 

correlation can be modelled derectly and is expected to be preserved well, while the 

cross correlation is modeled by the copula through the CDF of the random variables X 

and Y with the entropy-copula method.   

It should be noted that the Pearson correlation coefficient used here is a measure 

of linear correlation following the traditional approach for streamflow simulation. The 

linear correlation may not be sufficient for characterizing the dependence property. 
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Though the entropy-copula method does not preserve as well as the entropy method in 

terms of the Pearson correlation, this does not mean that the entropy-copula does not 

perform as well in modeling streamflow at different sites. The copula method also 

enables the characterization of nonlinear dependence properties with different copula 

fucntions.  

To further compare the performance in preserving the nonlinear dependence of 

these two methods, the Kendall and Spearman correlations were also used for 

comparison. The generated and observed Kendal and Spearman correlations between 

different sites are shown in Figure 5. 6. The performance of these two methods differs 

significantly in preserving the dependence. For the entropy method, these two 

correlations were not preserved well. The relative error (absolute value) for the Kendal 

and Spearman correlaiton is within the range 13.3%-49.7%.  For the entropy-copula 

method, all these correlations were preserved well, since all the observed statistics fell in 

the boxes.  The relative error (absolute value) for the Kendal and Spearman correlaiton is 

within the range 0.7%-10.8%. These results showed that the entropy-copula 

outperformed the entropy method in preserving the Kendall and Spearman correlation 

(nonlinear dependence). 

5.4 Conclusion 

The entropy method and entropy-copula method are proposed for the multi-site 

annual streamflow simulation at different sites. Both methods are capable of preserving 

mean, standard deviation and skewness well. The relative error (absolute values) of 

mean and standard deviation was below 5% and that of skewness was below 10% for 
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both methods.  The entropy method preserves the Pearson correlation well for all 

streamflow pairs, while the entropy-copula preserves the Pearson correlation well for all 

streamflow pairs except for that between site 1 and site 4.  The relative error (absolute 

value) for the Pearson correlation is within the range 0.5%-5.6% and 2.9%-26.9% for the 

entropy method and entropy copula method, respectively, and the entropy method 

outperforms the entropy-copula method in preserving the Pearson correlation. The 

entropy method does not preserve the Kendall and Spearman correlation well, while the 

entropy-copula preserves these correlations well. The relative error (absolute value) is 

within the range 13.3%-49.7% and 0.7%-10.8% for the entropy method and entropy-

copula method, respectively and the entropy-copula method outperforms the entropy 

method in preserving Kendall and Spearman correlation. 

The advantage of the entropy method is that the required statistics can be used as 

constraints to derive the joint distribution and then the random samples generated from 

the corresponding conditional distribution can preserve these statistics. However, as 

many parameters as the required statistics need to be estimated. This method would be 

complicated when a large number of statistics needs to be preserved. The advantage of 

the entropy-copula method is that it is simpler in terms of parameter estimation, since 

only a few parameters need to be modeled simultaneously. In addition, different copulas 

can be used to construct the joint distribution and thus a variety of dependence structures 

can be modeled.  
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CHAPTER VI 

ENTROPY BASED METHOD  

FOR DROUGHT ANALYSIS 

 

6.1 Introduction  

Drought analysis is important for water resources planning and management. 

Yevjevich [1967] used the run theory to define a drought as a sequence of cumulative 

intervals where water supply remains below water demand. This enables the 

characterization of a drought event with certain drought properties, such as duration and 

severity. These properties, assumed as random variables, have been commonly used for 

analyzing droughts.  

The probabilistic characterization of drought based on drought duration and 

severity, either separately or jointly, is needed for drought analysis and a traditional way 

is to fit a probability density function.  The drought duration can be modeled by a 

geometric distribution [Kendall and Dracup, 1992; Mathier et al., 1992] when it is 

treated as a discrete random variable or by an exponential distribution when it is treated 

as a continuous random variable [Zelenhasi  and Salvai, 1987].  The gamma distribution 

is generally used to describe drought severity. However, the correlation between drought 

duration and severity cannot be characterized by univariate analysis and alternative 

multivariate approaches have, therefore, been used to model the correlation between 

drought variables [González and Valdés, 2003; Salas et al., 2005; Kim et al., 2006; 

Shiau, 2006; Nadarajah, 2007; Nadarajah, 2009].  
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A number of bivariate distributions have been proposed to characterize the joint 

behavior of drought duration and severity. These distributions have considered the same 

marginal distributions of  drought duration and severity, for example, the bivariate 

Pareto distribution [Nadarajah, 2009].  However, this type of distribution may not work, 

since in reality the drought duration and severity may have different marginal 

distributions. To address this issue, the copula method has been applied to construct joint  

distributions with different marginal distributions [Shiau, 2006; Shiau et al., 2007], but 

the marginal distributions need to be derived which is often done empirically. The joint 

distribution can also be constructed from the product of conditional distribution of 

drought severity given drought duration and marginal distribution of drought duration 

[Shiau and Shen, 2001].  Furthermore, nonparametric methods have also been proposed 

for bivariate drought analysis [Kim et al., 2003; Kim et al., 2006]. 

The objective of this paper is to propose an alternative method, based on the 

entropy theory, for constructing a bivariate distribution of drought duration and severity. 

The advantage of this method is that the marginal distributions can be of different forms 

and can be derived based on the given information. The proposed method is applied to 

monthly streamflow of Brazos River at Waco, Texas, for drought analysis.  

6.2 Method 

The method for deriving an entropy-based bivariate distribution entails: (1) 

defining the Shannon entropy for univariate and bivariate cases, (2) defining given 

information in terms of constraints, (3) maximizing entropy using the method of 
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Lagrange multipliers and deriving the probability density functions (PDFs), and (4) 

determination of the Lagrange multipliers.  

6.2.1 Univariate and bivariate entropy  

For continuous random variables X and Y with a joint PDF f(x, y) defined over 

the space [a, b]× [c, d], the marginal distribution for random variable X can be obtained 

by integrating the joint PDF f(x, y) over Y as: 


d

c
dyyxfxf ),()(

   
(6.1) 

Similarly, the marginal distribution for random variable Y can be obtained as: 


b

a
dxyxfyf ),()(

   
(6.2) 

Generally the expression for the marginal distribution cannot be expressed 

explicitly and numerical solution is needed. 

For continuous random variables X and Y with a joint PDF f(x, y) defined over 

the space [a, b] [c, d], the bivariate Shannon entropy H can be defined as: 

 
d

c

b

a
dxdyyxfyxfH ),(ln),(    (6.3) 

The objective is to derive the PDFs f(x), f(y) and joint PDF f(x, y) with entropy 

theory. 

6.2.2 Constraints 

It has been shown that many of the commonly used distributions can be derived 

using entropy theory with different constraints [Singh, 1998]. For example, the 

exponential distribution can be obtained with the constraint in the form of mean, while 

the gamma distribution can be obtained with the constraints in the form of mean and 
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logarithmic mean. For the bivariate case, the bivariate normal distribution can be 

obtained when the first two moments of each variable and the product of the two 

variables are specified as constraints [Kapur, 1989]. Thus, the entropy-based distribution 

possesses a flexible form and provides an alternative way to derive a bivariate 

distribution of underlying data by choosing appropriate constraints to accommodate 

different marginal distribution forms. 

For the bivariate case with random vector (X, Y) with a probability density 

function f(x, y), the constraints can be specified as: 

  
d

c
i

b

a
i gEdydxyxfyxg )(),(),(     i=0,1, 2,…, m                               (6.4) 

where gi(x, y) is a known function of random vector (X, Y) with g0(x, y)=1; E(gi) is the 

expected value of the function gi(x,y); and m is the number of constraints.  

To derive the joint density function f(x,y) of drought duration (denoted as random 

variable X) and drought severity (denoted as random variable Y), the  constraints in 

equation (6.4) need to be specified separately and jointly. The first constraint is the unity 

constraint that ensures the integration of the probability density function equals one. This 

constraint corresponds to equation (6.4) for the case i=0 and can be expressed as: 

  
d

c

b

a
dydxyxf 1),(     i=0,1, 2,…, m (6.5) 

The joint constraint characterizing the dependence structure between the two 

variables X and Y can be specified as: 

  
d

c

b

a
xyEdydxyxxyf )(),(     i=0,1, 2,…, m (6.6) 
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Except for the unity constraint in equation (6.5) and the joint constraint in 

equation (6.6), separate constraints for random variables X and Y need to be specified to 

derive the joint distribution. Two sets of separate constraints are specified in this study to 

illustrate the proposed method. To preserve the parsimonious property, only one 

constraint (with one Lagrange parameter) is used for drought duration and two 

constraints (with two Lagrange parameters) are used for drought severity. 

As stated previously, the exponential distribution can be derived with the 

constraint of mean, while the gamma distribution can be derived with the constraints of 

mean and logarithm mean.  This implies that the mean and logarithm mean of the 

underlying random variable would be good candidates as constraints. For the first set of 

separate constraints, it is assumed that the mean is specified as a constraint for random 

variable X (drought duration) and the mean and logarithm mean are specified as 

constraints for random variable Y (drought severity) expressed as: 

  
d

c

b

a
xEdydxyxxf )(),(      (6.7) 

)(),( yEdydxyxyf
d

c

b

a        (6.8) 
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d

c

b

a
yEdydxyxyf )(ln),(ln    (6.9) 

Constraints expressed by equations (6.5)-(6.9) constitute one set of constraints 

and will correspond to a joint distribution denoted as ME1. 

On the other hand, Pearson's product-moment correlation coefficient has been 

used to measure the linear dependence which involves the second order moments. The 
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expectations of the second order moment of drought duration and severity were thus 

selected for the second sets of separate constraints expressed as: 

  
d

c

b

a
xEdydxyxfx )(),( 22

     (6.10) 

  
d

c

b

a
yEdydxyxfy )(),( 22

     (6.11) 

In addition, the logarithm mean of random variable Y in equation (6.9) is retained 

as another separate constraint for drought severity. Constraints expressed by equations 

(6.5), (6.6) and (6.9)-(6.11) constitute another set of constraints and will correspond to a 

jont distribution denoted as ME2. 

6.2.3 Maximization of entropy  

The principle of maximum entropy was proposed by Jaynes [1957] which states 

that the probability density function should be selected among all the distributions with 

the maximum entropy subject to specified constraints. Thus, the joint PDF can be 

obtained by maximizing the entropy given by equation (6.3), subject to the constraints 

given by equation (6.4), which can be done using the method of Lagrange multipliers. 

Denoting the Lagrange multipliers as λ0, λ1,…, λm, the Lagrangian function L with 

equations (6.3) and (6.4) can be expressed as [Kapur, 1989]:     

   

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)(),(),(),(ln),(       (6.12) 

The maximum entropy-based joint probability density function is obtained by 

differentiating L in equation (6.12) with respect to f and setting the derivative to zero as 

[Kesavan and Kapur, 1992]: 
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
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i     i=0, 1, 2,…, m                               (6.13) 

Each Lagrange multipliers in equation (6.13) is related to each constraint. In real 

applications, different constraints in equation (6.4) can be chosen and thus different joint 

distributions from equation (6.13) can be obtained. The suitable joint distribution can be 

selected according to certain performance measures based on the observations and thus 

employed for drought analysis.  

With the constraints in equations (6.5) to (6.9), the maximum entropy-based joint 

probability density function (denoted as ME1) can be expressed as: 

 xyyyxyxf 43210 lnexp),(        (6.14) 

Likewise, the maximum entropy-based joint distribution (denoted as ME2) based 

on the unity constraint in equation (6.5), joint constraints in equation (6.6) and separate 

constraints in equations (6.9), (6.10) and (6.11) can then be expressed as: 

 xyyyxyxf 43

2

2

2

10 lnexp),(        (6.15) 

The marginal distribution for random variable X (drought duration) can be 

obtained by integrating the joint PDF f(x, y) either for ME1 in equation (6.14) or ME2 in 

equation (6.15) over Y (drought severity) as expressed in equation (6.1). Similarly, the 

marginal distribution for random variable Y (drought severity) can be obtained as 

expressed in equation (6.2). 

An interesting property of the marginal distributions in equation (6.1) and (6.2) 

obtained from the joint distribution ME1 or ME2 for drought duration and severity is 

that the distribution forms of random variable X and Y can be different. What is more, 
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the marginal distribution can differ from the commonly used distributions, such as 

exponential or gamma, thus providing more flexible distribution to characterize random 

variable X or Y. 

6.2.4 Determination of Lagrange multipliers 

Generally, the analytical solution for obtaining the Lagrange multipliers in 

equation (6.13) does not exist for the bivariate case and therefore a numerical solution is 

needed. For the maximum entropy-based bivariate distribution in equation (6.13), the 

Lagrange multipliers can be obtained by minimizing the convex function Γ expressed as 

[Mead and Papanicolaou, 1984; Kapur, 1989]: 
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6.3 Application  

6.3.1 Data 

Monthly streamflow data of Brazos River at Waco, TX (USGS 08096500) for the 

period from January 1941 to December 2009 was used for drought analysis. The mean 

streamflow of each month was used as the truncation level to define the drought event. 

Drought duration was defined as the number of consecutive months during which 

streamflow was below the truncation level, while drought severity was defined as the 

cumulative difference between the truncation level and observed streamflow within the 

corresponding drought duration.  
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Figure 6. 1 Scatterplot of observed data and generated data from ME1 and ME2 

distributions. 

 

 

 

The scatter plot of observed data shows strong dependence between drought 

duration and severity as shown in Figure 6. 1. This indicates that a bivariate distribution 

is needed to characterize the dependence between drought duration and severity for 

drought analysis. 

6.3.2 Comparison of ME1 and ME2 

The root mean square error (RMSE) is used here to assess the performance of the 

entropy based distribution defined as: 
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where n is the number of observed values; xi and oi are, respectively, the theoretical and 

empirical cumulative probability.  
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Figure 6. 2 Comparison of empirical and theoretical probability for drought 

duration and severity. 

 

 

 

Two maximum entropy-based joint density functions (ME1 and ME2) in 

equation (6.14) and (6.15) were obtained with different constraints. The performances of 
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the distributions (marginal and joint distributions) were assessed based on drought data 

defined previously.  Empirical histograms of drought duration and severity data were 

first compared with the theoretical probability density functions defined by equations 

(6.1) and (6.2) for ME1 and ME2. Results showed that generally the theoretical PDFs 

fitted the empirical histograms well (not presented here). In addition, theoretical 

cumulative probabilities for drought duration and severity from ME1 and ME2 also 

fitted the empirical cumulative probabilities estimated from the Gringorten’s plotting 

position formula well (not presented here). These results shown that both the marginal 

distributions from ME1 and ME2 modeled drought duration and severity well. 

The joint distributions from ME1 and ME2 were then compared. The empirical 

joint cumulative probability corresponding to the combination of drought duration and 

severity obtained using the approach proposed by Yue et al. [1999] was compared with 

the theoretical joint cumulative probabilities from ME1 and ME2 as shown in Figure 6. 2 

The RMSE values of the joint probability for ME1 and ME2 were 0.090 and 0.060, 

respectively. It can be seen that the theoretical cumulative probabilities from ME2 fitted 

the empirical values well, better than ME1. Furthermore, a large number of data 

generated from the two maximum entropy-based joint density functions (ME1 and ME2) 

were compared with observed data to assess the performance of modeling the 

dependence structure. For this study, a set of 100 random vectors was generated from 

each distribution and a scatter plot of generated and observed data is also shown in  

Figure 6. 1. It can be seen that generally the pattern of spread of generated data from 

ME2 matched that of the observed data. However, the generated data from ME1 did not 
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reproduce the dependence structure satisfactorily. The correlation coefficients of the 

generated data from ME1 and ME2 were 0.14 and 0.93, respectively, whereas for the 

observed value it was 0.97. More data were generated from each distribution to assess 

the performance of the two distributions and similar results were obtained. These results 

showed that the ME2 distribution was suitable for modeling the dependence structure 

between drought duration and severity of this dataset and was used hereafter for further 

analysis and application.  
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Figure 6. 3 Empirical histograms and marginal PDFs from entropy-based ME2, 

exponential and gamma distributions. 
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6.3.3 Drought analysis 

The exponential distribution is commonly used for modeling drought duration, 

while the gamma distribution is commonly used for modeling drought severity. These 

two distributions were also used for comparison with the marginal distributions derived 

from ME2 distribution. Empirical histograms and marginal distributions of drought 

duration with equation (6.1) and of drought severity with equation (6.2) are shown in 

Figure 6. 3 . The PDFs of the exponential distribution for drought duration and gamma 

distribution for drought severity are also shown in Figure 6. 3. The PDFs from the 

entropy-based distribution captured the general pattern of empirical histograms.  In 

addition, the PDF curves from the entropy-based distributions were close to those from 

exponential and gamma distributions, though some discrepancies existed. 

The empirical cumulative probabilities estimated from Gringorten’s plotting 

position formula and theoretical cumulative probabilities are shown in Figure 6. 4. In 

general theoretical probabilities fitted empirical probabilities well. For drought duration, 

the entropy-based distribution and exponential distribution were close in the left part 

(duration d < 8 months) while in the right part (duration d > 8 months) the entropy based 

distribution seemed to fit better. The RMSE values of the probabilities estimated from 

the entropy-based distribution and exponential distribution were 0.059 and 0.058, 

respectively, which were very close to each other.  For drought severity, some 

underestimation existed for the entropy-based distribution on the left part (s <1.5×10
4
 

cfs·month) and gamma distribution fitted the empirical probability better. In the middle 

part (1.5×10
4
 cfs·month < s < 3×10

4
 cfs·month), the entropy-based distribution seemed 
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to fit the empirical probability distribution better.  The RMSE values of the probabilities 

estimated from the entropy-based distribution and gamma distribution were 0.067 and 

0.043, respectively, indicating that gamma distribution performed slightly better.  
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Figure 6. 4 Empirical probabilities and theoretical probabilities from entropy-

based ME2, exponential and gamma distributions. 

 

 

 

 The Kolmogorov-Smirnov (K-S) test was used to further assess the goodness-of-

fit of the entropy-based cumulative distribution functions to model drought duration and 

severity data. Critical values for duration and severity data at a 5% significance level 
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were 0.26 and 0.46, indicating the hypothesis of the entropy-based distribution to model 

drought duration and severity data could not be rejected.  

Visual and quantitative comparison, together with the results from the 

exponential and gamma distributions, showed that generally the marginal distribution 

from the ME2 distribution modeled the drought duration and severity relatively well. 

Based on the satisfactory results of ME2 distribution in modeling the dependence 

structure, the proposed ME2 distribution was then applied for drought analysis.  

The return period for drought duration D greater than or equal to a certain value d 

and for drought severity S greater or equal to a certain value s can be defined as [Shiau, 

2003; Shiau, 2006]: 
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(6.18) 

where E(L) is the expected drought interval time that can be estimated from observed 

drought data; TD , TS  are the return periods of drought duration and drought severity, 

respectively; PD(D ≥ d) and PS(S ≥ s) are the exceedance probabilities of drought 

duration and drought severity that can be estimated from equations (6.1) and (6.2), 

respectively. The joint return period of drought duration and severity can be defined by 

the drought duration and severity exceeding specific values. Specifically, the joint return 

period TDS of drought duration  D ≥ d and severity S ≥ s can be defined as [Shiau, 2003; 

Shiau, 2006]: 
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where P(D ≥ d, S ≥ s) is the exceedance probability of drought duration and severity that 

can be obtained from the joint density function in equation (6.15). The conditional return 

periods are also needed to assess the risk of water resources systems. The conditional 

return period TD|S ≥s for drought duration given drought severity exceeding a certain value 

can be defined as [Shiau, 2003; Shiau, 2006]: 

),(
 T s  ≥ S|D

sSdDP
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     (6.20) 

Similarly, the conditional return period TS|D ≥d for drought severity given drought 

duration exceeding a certain value can be defined as [Shiau, 2003; Shiau, 2006]: 
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Table 6. 1 Return period of drought duration and severity. 

Return period 

(Year) 

Drought duration 

(Month) 

Drought severity 

(10
4
cfs month) 

2 6.9 1.0 

5 14.1 2.1 

10 19.0 2.9 

20 23.4 3.5 

50 28.5 4.3 

100 32.0 4.8 

 

 

 

The univariate return periods of 2, 5, 10, 20, 50 and 100 years defined by 

separate drought duration and severity were shown in Table 6. 1. For example, the 

drought duration for the 100 year return period was around 32 months and the drought 
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severity for the 100 year return period was around 4.8×10
4
 cfs·month. The joint return 

periods defined by equation (6.19) for different duration and severity values are shown 

in Figure 6. 5. Taking the drought during 2005-2007 as an example, this drought lasted 

for 19 months with a severity 3.0×10
4
 cfs·month. The univariate return periods were 

10.0 years and 11. 9 years. The joint return period estimated from equation (6.19) was 

12.7 years. The result from the joint distribution gave a relatively longer return period 

than that from either drought duration or severity separately.   

 

 

 

2

5

5

1
0

1010

2
0

2020

5
0

505050
1
0

0

1
0
0

100100100

1
5

0

1
5
0

150150150

Drought Duration (month)

D
ro

u
g

h
t 
S

e
v
e

ri
ty

 (
1

04
c
fs

 m
o

n
th

)

5 10 15 20 25 30 35 40

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 

Figure 6. 5 Contours of joint return period (years) of drought duration and severity 

from entropy-based ME2 distribution. 
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The conditional return periods are shown in Figure 6. 6. For example, given 

drought severity s ≥ 1.5×10
4
 cfs month, the conditional return period of the drought 

duration exceeding 25 months was around 100 years. 
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Figure 6. 6 Conditional return periods of drought duration and severity from 

entropy-based ME2 distribution. 

 

 

 

6.4 Conclusion 

An alternative method, based on entropy theory, is proposed for constructing the 

joint distribution of drought duration and severity. Separate and joint constraints of 
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drought duration and severity can be specified to derive the joint distribution using the 

principle of maximum entropy and marginal distributions can be derived from the joint 

distribution. The advantage of the proposed method is that it is flexible to incorporate 

different forms of marginal distributions of drought duration and severity. In this study, 

two entropy-based joint distributions are derived with different sets of constraints, both 

of which lead to different marginal distribution forms. One joint distribution is selected 

for the drought data defined by monthly streamflow of Brazos River at Waco, Texas. 

The theoretical joint probability from the entropy-based joint distribution fits the 

empirical probability well with an RMSE value of 0.06. The spread pattern of generated 

drought data from the entropy-based joint distribution also matches that of the observed 

drought data well. Generally the entropy-based joint distribution is capable of modeling 

drought duration and severity well.  This entropy-based joint distribution is then used to 

derive the 2, 5, 10, 20, 50 and 100 year return periods for drought duration and severity. 

For a 100 year return period, the drought duration and drought severity are obtained as 

32 months and 4.8×10
4 
cfs·month, respectively. Also it is found the conditional return 

period of the drought duration exceeding 25 months is around 100 years, given drought 

severity s ≥ 1.5×10
4
 cfs month. 
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CHAPTER VII 

ENTROPY-COPULA METHOD FOR 

DROUGHT ANALYSIS 

 

7.1 Introduction 

A number of drought indices, such as the Palmer drought severity index (PDSI) 

[Palmer, 1965] , standard precipitation index (SPI) [McKee et al., 1993] and water 

deficit [Dracup et al., 1980], have been proposed to characterize droughts.  A joint 

distribution is then required to characterize the correlation between drought duration and 

severity based on different drought indices. 

The copula method has been extensively employed to construct joint 

distributions for drought analysis with different forms of marginal distributions. Shiau 

[2006] applied the copula method for bivariate drought analysis defined by the 

standardized precipitation index (SPI), and Shiau et al. [2007] investigated hydrologic 

droughts based on monthly streamflow in Yellow River, China. Shiau and Modarres 

[2009] used the copula method for the bivariate drought analysis in Iran with drought 

defined by the standardized precipitation index (SPI). Song and Singh [2010] used a 

trivariate copula to construct the joint distribution of drought duration, severity and inter-

arrival time for drought analysis based on the streamflow data from Wei River basin, 

China.  

The copula method has the ability to construct a joint distribution for drought 

analysis with different marginal distributions. However, when selecting marginal 
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distributions, generally commonly used distributions are used. This study proposes an 

entropy-copula method for deriving marginal distributions using entropy theory and then 

deriving a joint distribution for drought analysis using the copula method. The advantage 

of using entropy theory is that marginal distributions can be derived based on whatever 

information is available and one does not need to be restricted by the distribution forms 

that are commonly used. Furthermore, commonly used distributions can be derived as 

special cases of the entropy based distributions. In this study, an entropy-based marginal 

distribution with the first three moments is proposed and evaluated through comparison 

with other distributions. Results based on three types of datasets showed the entropy-

based marginal distributions performed better in certain cases and can be used as 

candidate distributions for modeling drought variables. Application of the proposed 

entropy-copula method for constructing the joint distribution for drought analysis is 

illustrated with a case study based on Palmer drought severity index (PDSI) data of 

Climate Division 5 in Texas.  

7.2 Entropy-copula method 

7.2.1 Entropy-based marginal distribution 

The entropy of a continuous random variable X on the interval [a, b] can be 

defined as [Shannon, 1948]: 


b

a

dxxfxfH )(ln)(     i=0, 1,…, m (7.1) 

where f(x) is the probability density function (PDF) of the random variable X. According 

to the principle of maximum entropy developed by Jaynes [1957] , the probability 
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density function should be selected among all the distributions that maximize the 

entropy subject to given constraints (or known information).  For a set of observations xi 

(i=1, 2,…, n) of the random variable X, the known information from the observation is 

not the probability density function (PDF) f(x) but the expectation of the function f(x) (or 

constraints).  

The general form of the constraints can be specified as: 

)()()( r

b

a

r gEdxxfxg    (7.2) 

where gr(x) is the known function with g0(x)=1; E(gr) is the r-th expected value obtained 

from observations with g0=1; and m is the number of constraints. When there are a 

variety of distributions that may be consistent with the specified constraints in equation 

(7.2), the principle of maximum entropy provides a way to select the one with maximum 

entropy. The maximum entropy-based probability density function can be obtained by 

maximizing the entropy in equation (7.1), subject to equations (7.2), using the method of 

Lagrange multipliers as [Kesavan and Kapur, 1992]: 

)]()...()(exp[)( 22110 xgxgxgxf mm 
  

(7.3) 

 

where λi, i=0, 1, 2, …, m are the Lagrange multipliers, which can be estimated with the 

Newton -Raphson algorithm [Kapur, 1989]. The cumulative distribution function, G(x), 

can be derived accordingly as: 
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The commonly used distributions, such as exponential, gamma and normal, can 

be derived with different forms of constraints in equation (7.2) and the resulting 

maximum entropy distribution in equation (7.3) incorporates these distributions as 

special cases. For example, when the mean is used as a constraint, the entropy-based 

distribution is the exponential distribution. Similarly, when the mean and logarithm 

mean are used as constraints, the entropy-based distribution is the gamma distribution. 

Moreover, other forms of distributions that are not commonly used can also be derived 

using the entropy theory. Thus, the entropy based distribution in equation (7.3) provides 

flexible forms of marginal distributions. 

The maximum entropy distribution in equation (7.3) is regarded as the least 

biased estimation of the PDF based on the given information or the maximally 

noncommittal to the missing information [Jaynes,1957]. Instead of selecting an 

empirical distribution by fitting to observations, the entropy-based distribution provides 

a way to make inferences of the underlying distribution with the use of constraints (or 

known information) derived from observations. For example, the selection of gamma 

distribution for modeling the datasets in the traditional approach can be interpreted as 

using the mean and logarithm mean as constraints to characterize the data.  

Often observations of hydrologic variables are characterized by moment 

statistics, such as mean, standard deviation, and skewness. When the probability 

distribution of observations is inferred from these statistics of the underlying data, the 

maximum entropy based distribution can be constructed using these statistics as 

constraints. The maximum entropy-based distribution with certain moments as 



 

 

140 

constraints has been used to model the probability density function of data [Mead and 

Papanicolaou, 1984; Wu, 2003; Gotovac et al., 2010].  A special case is that when the 

first two moments (or mean and standard deviation) are used as constraints, the 

maximum entropy-based distribution is the normal distribution. When the first three 

moments are employed as constraints expressed as: 
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the maximum entropy-based distribution can be expressed as: 

)exp()( 3

3

2

210 xxxxf    
(7.9) 

 

From the statistical meaning of the first three moments, it is expected that the 

entropy-based distribution f(x) in equation (7.9) characterizes the central tendency 

(mean), variability (standard deviation) and asymmetric property (skewness) of the data. 

The performance of this entropy based distribution (denoted as ENT) will be assessed in 

the following section. 
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7.2.2 Entropy-based marginal distribution 

Sklar [1959] formulated the concept of copula for constructing multivariate 

distributions from univariate distributions that can be of different forms. For continuous 

random variables X and Y with their univariate distributions denoted FX(x) and FY(y), the 

bivariate probability distribution can be expressed with copula C as: 

))(),((),(, yFxFCyxF YXYX 
  

(7.10) 

 

The joint distribution relies on copula C which is unique if FX(x) and FY(y) are 

continuous. Different copula families have been defined, such as the Archimedean and 

elliptical, which are discussed by Nelsen [2006] and Joe [1997]. A number of marginal 

distributions, such as exponential, gamma and weibull distribution, have been used to 

construct joint distributions with equation (7.10) for drought analysis. When FX(x) and 

FY(y) are specified as commonly used distribution, equation (7.10) yields the joint 

distribution of random variables X and Y, which is the typical way the copula method is 

used.  

With the entropy-based distribution as marginal distribution, the entropy-copula 

based joint distribution can be expressed from equations (7.4) and (7.10) as: 

))(),((),(, yGxGCyxF YXYX 
  

(7.11) 

 

Since the entropy-based distribution GX(x) or GY(y) incorporates commonly used 

distributions as special cases, the entropy-copula based joint distribution in equation 

(7.11) can be regarded as a general framework for constructing a joint distribution.  With 
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the flexible forms of GX(x) (or GY(y)) to model the marginal property and a number of 

copula families C to model the dependence structure, it is expected that the joint 

distribution in equation (7.11) is capable of modeling the underlying data separately and 

jointly. An extension of the proposed method to higher dimension is straightforward. 

7.3 Method assessment 

7.3.1 Data description 

Three drought indices, Palmer drought severity index (PDSI), standard 

precipitation index (SPI) and streamflow deficits, are selected in this study for the 

evaluation of the proposed entropy based distribution in equation (7.9). The first and 

second types of datasets are the monthly PDSI and SPI data from January 1895 to 

December 2010 from 10 Climate Divisions in Texas, which can be obtained from the 

website: http://www.ncdc.noaa.gov/oa/climate/onlineprod/drought/xmgr.html. The third 

dataset is monthly streamflow from 14 stations on Colorado River in Texas. 

7.3.2 Performance measures 

Two measures are used to evaluate the performance of the proposed entropy-

based (ENT) distribution. The quantiles corresponding to different return periods (or 

cumulative probability) estimated from the fitted distribution is generally needed in 

frequency analysis to assess the risk of drought occurrence. The root mean square error 

(RMSE) of quantiles was used here to assess the performance of ENT distribution 

defined as:  





n

i

ii oqy
n

RMSE
1

2)(
1

  

(7.12) 

 



 

 

143 

where n is the number of observed values; yi and oqi are the quantiles estimated from the 

entropy-based distribution and observed quantiles corresponding to the empirical 

probabilities. In this study, the Gringorten plotting position formula was used to estimate 

the empirical cumulative (non-exceedance) probability which is expressed as 

[Gringorten, 1963]: 
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(7.13) 

 

where Pi is the empirical probability for the i
th

 ordered observation from a record of 

length n.  

The information-based measure, Akaike Information Criterion (AIC), developed 

by Akaike [1974] was also used for identifying the appropriate distribution defined as: 

      2N+)-2log(=AIC L  (7.14) 

where L is the maximum likelihood of the model and N is the number of fitted 

parameters. The appropriate model is the one with the minimum AIC value. 

7.3.3 Comparison 

There are a variety of distributions that can be used as marginal distributions for 

modeling drought variables. In this study, the Gamma and Weibull distributions were 

selected as candidates as marginal distributions. The performance of the proposed 

entropy-based distribution was compared with these two distributions and a specific 

distribution was considered to perform best when it had minimum RMSE or AIC values. 

The number of cases that the ENT distribution performed best based on RMSE or AIC 

are shown in Table 7. 1 . 
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Table 7. 1 Number of cases of ENT distribution with the best performance for 

different types of datasets. 

Data Measure Drought duraiton Drought severity 

RMSE AIC RMSE AIC 

PDSI 

(Total: 10) 

ENT 10 4 9 3 

Gamma 0 6 0 0 

Weibull 0 0 1 7 

SPI 

(Total: 10) 

ENT 8 0 8 2 

Gamma 1 10 2 6 

Weibull 1 0 0 2 

Streamflow 

(Total: 14) 

ENT 14 9 12 7 

Gamma 0 5 0 1 

Weibull 0 0 2 6 

 

 

 

Drought Variables from PDSI data 

Palmer [1965] developed the PDSI as a measure of drought severity that 

incorporated precipitation, temperature and soil moisture. PDSI is among the most 

widely used drought indices for assessing a long term meteorological drought. It is a 

standardized measure with PDSI value larger than 4 representing extremely wet and less 

than -4 representing extreme drought. A drought event is defined when the PDSI is 

continuously negative. 

For the PDSI data, the ENT distribution outperformed other two distributions for 

drought duration and severity based on the RMSE of quantiles.  For example, for 

drought duration, the ENT distribution performed best for all 10 cases.  Based on the 

AIC measure, the ENT distribution performed the best for 4 cases for drought duration 

and 3 for drought severity of the 10 datasets. These results show that the proposed 

entropy based distribution would be a good candidate in modeling drought properties of 

the PDSI data. 
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Drought Variables from SPI data 

Standard Precipitation Index (SPI) is a probability drought index developed by 

McKee et al. [1993] based solely on precipitation information . The key feature of PSI is 

that drought can be measured at different time scales and thus both short-term and long-

term droughts can be characterized. SPI is also a standardized measure with negative 

values for drought condition and positive values for wet condition. An SPI value larger 

than 2 represents extremely wet, whereas SPI value less than -2 represents extremely 

dry. A drought event is defined when the SPI is continuously negative. 

The performance of the entropy based distribution for 1-month SPI data is also 

shown in Table 7. 1 . The ENT distribution performed well for modeling quantiles for 

SPI data. For example, ENT performed best for 8 out of 10 cases for drought severity.  

However, the ENT distribution did not perform as well based on the AIC values, since 

ENT distribution performed the best only for 0 and 2 cases for drought duration and 

severity, respectively.  These results showed that the ENT distribution did not perform 

well for drought duration data based on SPI indices, while still was a good candidate for 

modeling drought severity of SPI data. 

Drought variables from streamflow data 

Streamflow deficit is one of the fundamental issues in water resources systems 

and is also used in this study. Streamflow drought was defined in terms of streamflow 

deficit from a certain truncation level and has been employed for drought analysis in a 

number of studies [Zelenhasi  and Salvai, 1987; Song and Singh, 2010]. In this study, 
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monthly mean streamflow was used as the truncation level to define drought duration 

and severity. 
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Figure 7. 1 Monthly PDSI data of Climate Division 5 in Texas. 

 

 

 

From drought severity of streamflow datasets, ENT performed the best for 14 

and 12 cases for drought duration and severity based on the RMSE measure. The ENT 

distribution performed best for 9 and 7 cases for drought duration and severity for all 14 

cases based on the AIC values. Thus, generally the ENT distribution was found to be a 
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good candidate for modeling drought defined in terms of water deficit from streamflow 

data. 

7.4 Case study 

Monthly PDSI data from January 1895 to December 2009 of Climate Division 5, 

Texas, which is shown in Figure 7. 1, were used for illustrating the application of the 

proposed entropy-copula method for drought analysis. It was observed that PDSI was 

below zero for a relatively long time in the 1950s. This drought event occurred from 

August 1950 to September 1957 with drought duration of 86 months and severity of 

262.6 from the PDSI data. The catastrophic drought in Texas in the 1950s was by far the 

worst in recorded history not only due to its intensity and coverage but also its 

persistence [Lowry and Engineers, 1959; Riggio et al., 1987]. From the PDSI data in this 

study, this drought event was also observed as the most severe one. Another drought is 

observed from January 1998 to December 2003 with drought duration of 72 months and 

severity of 196.8. These two drought events during the 1950s and 1998-2003 were 

selected for this study.  

 

 

 

Table 7. 2 RMSE and AIC values of different distributions for the case study. 

Drought variable Measure 

 
Distributions 

ENT Gamma Weibull 

Drought duration RMSE 0.20     0.59     0.52 

AIC 171.06  175.94  175.31 

Drought severity RMSE 0.09  0.19   0.16 

AIC -117.63  -102.78  -112.11 
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7.4.1 Marginal distribution 

The proposed ENT distribution, Gamma distribution and Weibull distribution 

were selected as candidates for marginal distributions. The performance of these 

distributions in modeling the underlying data was compared based on RMSE or AIC. 

Results from these two measures for these distributions are shown in Table 7. 2 
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Figure 7. 2 Empirical histograms and entropy based-probability density function. 

 

 

 

The ENT distribution outperformed other two distributions for drought duration 

and likewise for drought severity. For example, the AIC value for drought severity for 

the ENT distribution was -117.63, while that for gamma and Weibull distribution was -

102.78 and -112.11, respectively. Thus the ENT distribution was selected for modeling 

drought duration and severity from the PDSI data. Empirical histograms and probability 

density functions (PDF) for drought duration and severity are shown in Figure 7. 2 . 
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Generally theoretical PDFs fitted the empirical histograms well. The cumulative 

probability estimated from the entropy based distribution and that from the empirical 

plotting position formula are shown in Figure 7. 3 . These results showed that the 

entropy-based distribution was satisfactory for modeling drought duration and severity. 
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Figure 7. 3 Empirical and entropy-based cumulative distribution function. 

 

 

 

7.4.2 Entropy-copula based joint distribution 

The entropy-based marginal distributions in equation (7.9) were used for 

constructing the entropy-copula based joint distribution in equation (7.11). Three 

copulas from the Archimedian family, namely Clayton, Frank, and Gumbel, were 

selected to construct the joint distribution for comparison. The inference function for 

marginal (IFM) method was used to estimate the copula parameter in which parameters 
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of the marginal distribution and joint distribution were split [Joe, 1997]. The parameter 

of the copula were estimated with maximum likelihood method whereas the copula is 

selected based on the AIC values. In this study, the Gumbel copula had minimum AIC 

values and thus was selected to construct the joint distribution. 
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Figure 7. 4 Comparison of empirical and theoretical joint probability distributions. 

 

 

 

For the drought duration and severity pairs (d1, s1), (d2, s2),.., (dm, sm), the 

empirical joint cumulative (non-exceedance) probability can be expressed as [Yue et al., 

1999]: 
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(7.15) 

where m is the length of the observation; and nij is the number of occurrences of the pair 

(di, si ) for di  ≤  dk, si  ≤ sk for 1 ≤ i ≤ k. For the observed drought duration and severity 

pairs, the theoretical joint probability can be computed through equation (7.11).  

Comparison of empirical and theoretical joint probability distributions is shown 

in Figure 7. 4. Generally the theoretical probability distribution fitted the empirical 

distribution well and thus the entropy-copula based joint distribution was capable of 

modeling drought duration and severity jointly well. 

 

 

 

Table 7. 3 Univariate return period for drought duration and severity. 

Return period 

(years) 

Drought duration 

(months) Drought severity 

2 2.2 2.6 

5 11.5 14.3 

10 21.0 27.5 

20 33.6 57.0 

50 54.8 175.9 

100 70.8 213.6 

 

 

 
7.4.3 Drought analysis 

A common approach to drought analysis is based on fitting distributions to 

drought variables and then analyzing return periods corresponding to some occurrence 

levels of drought events. The univariate return period for drought duration D and for 

drought severity S can be defined as [Shiau et al., 2007]: 
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where TD and TS  are the univariate return periods for drought duration D and drought 

severity S, respectively; E(L) is the mean drought interval time; GD(d) and GS(s) are the 

cumulative distributions of drought duration and drought severity, respectively. The 

univariate return periods for drought duration and severity for the return period 2, 5, 10, 

20, 50 and 100 years are shown in Table 7. 3.  

The empirical return period can also be obtained with equation (7.16) with the 

cumulative probability estimated from the plotting position formula in equation (7.13).  

For the drought of the 1950s, the theoretical return period was 223 years from drought 

duration and 765 years from drought severity. From observations, the empirical return 

period was 206 years, which is close to the theoretical one estimated from drought 

duration while it differed greatly from that estimated from drought severity.  

The empirical return period for the drought 1950s was obtained from equation 

(7.13) with the rank of the observed values. Though the accuracy of the empirical return 

period with the highest-rank was low [Stedinger, 1993; Beckers and Alila, 2004], it is 

given hereafter for reference. For the drought during the year 1998-2003, the return 

period was 106 years from drought duration and 69 years from drought severity. The 

empirical return period for this drought event was 74 years, which is close to the 

theoretical value estimated from drought severity.   

The joint return period of drought duration and severity can be defined for the 

case when drought duration or severity exceeds specific values (D ≥ d or S ≥ s) (denoted 
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as Type I joint return period) or the case when both drought duration and severity exceed 

specific values (D ≥ d and S ≥ s) (denoted as Type II joint return period). The two return 

periods are expressed as: 
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(7.18) 

where FDS(d, s) is the joint cumulative probability that can be obtained from equation 

(7.11).  
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Figure 7. 5 Comparison of theoretical and empirical type I joint return period. 
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For the observed drought duration and severity pairs, the theoretical joint return 

period can be obtained from equation (7.17) with the corresponding joint probability 

estimated from equation (7.11), while the empirical joint return period can also be 

obtained with the empirical probability estimated from equation (7.15), as shown in  

Figure 7. 5.  Generally the theoretical joint return period for the observed drought 

duration and severity pairs fitted the empirical one well. For example, the theoretical 

joint return period during the year 1998-2003 was 66.3 years, which is close to the 

theoretical return period of 74.0 years.  
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Figure 7. 6 Type I joint return period of drought duration and severity. 
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The theoretical joint return period for different combinations of drought duration 

and severity estimated from equation (7.17) is shown in Figure 7. 6.  Certain empirical 

return periods (> 12 years) are also superimposed on Figure 7. 6 for comparison with 

contour of the return period. It can be seen that the empirical return period values are 

close to the theoretical values on the nearest contour lines.  For the extreme drought 

during the year 1950s, the corresponding theoretical return period was 222 years, which 

is close to the empirical return period 206 years. Similarly, the empirical return period 

74.0 years corresponding to observed drought during the year 1998-2003 is near the 

contour line with return period 70 years.  
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Figure 7. 7 Type II joint return period of drought duration and severity. 
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The joint return period for different combinations of drought duration and 

severity estimated from equation (7.18) was also computed, as shown in Figure 7. 7. For 

the drought in the 1950s, the return period obtained from the proposed method was 770 

years, while for the drought during the year 1998-2003, the joint return period was 113 

years. Note these return periods are larger than those estimated from drought duration 

and severity separately. 

The conditional return period TD|S ≥s for drought duration given drought severity 

exceeding a certain threshold s can be defined as [Shiau, 2003; Shiau, 2006]: 
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Similarly, the conditional return period for drought severity given drought 

duration exceeding a certain threshold d can be defined as: 
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(7.20) 

The conditional return period of drought duration given drought severity and 

drought severity given drought duration is shown in Figure 7. 8.  For example, the 

drought duration corresponding to the conditional return period 100 years was 30 

months given s > 20. These results can help assess the risk of drought occurrence for 

water resources planning and management.  
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Figure 7. 8 Conditional return period for drought duration given drought severity 

and drought severity given drought duration. 

 

 

 

7.5 Conclusion 

The proposed entropy-copula method can be regarded as a general framework for 

constructing joint distributions. The advantage of the proposed method is that it provides 

more flexible marginal distributions which can be derived from the principle of 

maximum entropy with different constraints.  The following conclusions can be drawn 

from this study: 

(1) An entropy-based distribution based on the first three moments is found to be 

a good candidate for modeling drought variables through comparison with other 

distributions for three different types of datasets. 
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(2)  Based on the PDSI data in Climate Division 5 in Texas, the proposed 

entropy-copula method is shown to model drought duration and severity separately and 

jointly well.  

(3) For the drought during the 1950s in Texas, the return period is estimated as 

223 years from drought duration and 765 from drought severity. The joint return periods 

obtained from equation (7.17) and (7.18) are around 222 and 770 years, respectively. 

(4) For the drought during 1998-2003 in Texas, the return period is estimated as 

106 years from drought duration and 69.0 from drought severity. The joint return periods 

obtained from equation (7.17) and (7.18) are 66 and 113 years, respectively. 
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CHAPTER VIII 

CONCLUSION 

 

The research presented in this study focuses on the application of entropy theory 

in hydrologic analysis and simulation consisting of rainfall analysis, streamflow 

simulation and drought analysis. The effect of time duration, climate zone and the 

distance from the Gulf of Mexico on the frequency distribution of annual rainfall 

maxima is analyzed and an entropy based distribution is proposed to model extreme 

rainfall values for rainfall analysis. The entropy and entropy-copula methods are 

proposed for monthly streamflow simulation that is capable of preserving the statistics of 

historical streamflow. These two methods are also extended for multi-site annual 

streamflow simulation. For drought analysis, the entropy method and entropy-copula 

method are also developed for constructing the joint distribution for drought variables.  

The following conclusions are drawn from this study. 

8.1 Rainfall analysis 

(1) The frequency distributions of annual rainfall maxima are highly skewed for 

short durations, like 15 min, but tend to be smoothed when the duration is 

relatively long.  

(2) The rainfall distributions show different patterns across different regions. In 

northern and western parts, like the CS and SA climate zones, distributions 

are sharp; however, they are relatively smooth in the southeast, like the SH 

climate zone.  
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(3) The frequency distribution of rainfall near the Gulf of Mexico is smoother 

than that far away from the Gulf.  

(4) Using the Monte Carlo simulation, the entropy based distribution with the 

first four moments as constraints (ENT4) is shown to be comparable with the 

commonly used generalized extreme value (GEV) distribution and is 

preferable for the datasets with high skewness. 

(5) The ENT4 distribution is shown to be a good candidate to model annual 

rainfall maxima of different time duration, climate zones, and distances from 

the Gulf of Mexico across Texas.  

8.2 Streamflow simulation 

(1) The entropy based method for single-site monthly streamflow simulation 

is shown to be capable of satisfactorily preserving the basic statistics 

(including mean, standard deviation, skewness, maximum values, 

minimum values) and lag-one correlation of historical streamflow, 

based on monthly streamflow in the Colorado River basin.  

(2) The advantage of the entropy based method is that no assumption is made 

about the marginal distribution of historical data and data 

transformation is not needed. The proposed method can be extended to 

preserve more statistical characteristics (e.g., kurtosis and more lag 

correlations) while it will be computationally cumbersome when more 

statistics are to be preserved. 
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(3) The entropy-copula method for the single-site monthly streamflow 

simulation is shown to preserve the basic statistics and lag-one 

correlation well. Furthermore, the nonlinear dependence can also be 

preserved due to the copula component.  

(4) The extended entropy-copula method is shown to improve the 

preservation of the lag-one correlation at the annual scale, higher-order 

correlation and inter-annual statistics.  

(5) The entropy method and entropy-copula method are extended for the 

multi-site annual streamflow simulation and shown to preserve the 

mean, standard deviation and skewness well based on annual 

streamflow simulation at four sites in the Colorado River basin.  

(6) The entropy method preserves the (linear) Pearson correlation of 

streamflow between different sites well for all cases, while the 

entropy-copula method does not perform as well for certain sites. 

However, the entropy-copula method outperforms the entropy method 

in preserving the Kendall and Spearman correlation. 

8.3 Drought analysis 

(1) The joint distribution constructed from the entropy method is shown to be 

capable of modeling drought variables based on the drought data of monthly 

streamflow of Brazos River at Waco, Texas. Different forms of marginal 

distributions can be obtained depending on the constraints.  
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(2) An entropy based distribution with the first three moments as constraints is 

shown to be a good candidate for modeling drought variables based on three 

different datasets. 

(3)  The entropy-copula method for constructing the joint distribution can be 

regarded as a general framework for drought analysis and is shown to be 

suitable for modeling the drought properties based on the Parmer drought 

severity index (PDSI) data in Climate Division 5 in Texas.  

(4) For two drought events during the 1950s and during 1998-2003 in Texas, the 

return periods estimated from drought duration and severity separately and 

jointly are obtained.  
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