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ABSTRACT 

 

Fitness Effects of Colonization Time of Chrysomya rufifacies and Cochliomyia 

macellaria, and their Response to Intra- and Inter-specific Eggs and Egg-Associated 

Microbes. (May 2012) 

Adrienne Leane Brundage, B.S., Cal Poly San Luis Obispo; 

M.S., San Jose State University 

Chair of Advisory Committee: Dr. Jeffery K. Tomberlin 

 

 Chrysomya rufifacies and Cochliomyia macellaria are two medically and 

forensically important necrophagous flies that dominate ephemeral resources in the 

southern US. Since its introduction in 1981, Ch. rufifacies has become established 

throughout the New World due to its larvae being facultative predators. Through this 

research I examined the interaction between the native, primary colonizer C. macellaria 

and the invasive, secondary colonizer Ch. rufifacies and elucidated the olfactory 

mechanisms used to locate, colonize, and exploit ephemeral resources. This work used 

competition experiments, olfactometer experiments, and high-throughput sequencing to 

investigate the effects of priority colonization of ephemeral resources on both species, 

the olfactory mechanisms employed by gravid females to locate a resource, and the 

effects of egg-associated volatiles on those females.  

 Results from competition experiments indicated that priority sequence 

significantly affected the fitness of both C. macellaria and Ch. rufifacies. Regulation of 
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colonization time is not chiefly governed by resource age, as previously thought, but is 

affected by colonization of the resource by conspecific and heterospecific individuals. 

Colonizing adults may use cues from early colonizers to assess resource quality. These 

cues may be derived from the physiology of the eggs, the 31-39 species of bacteria I 

determined are present on the egg chorion, or some combination of both. Design of these 

experiments facilitated the development of techniques to surface-sterilize Calliphoridae 

eggs, analyze behavior of adults in a dual choice olfactometer, and associate adult 

response to conspecific and heterospecific eggs with environmental cues that ultimately 

affect larval fitness.  
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

 Nutrients cycle through the ecosystem via two major pathways: grazing and the 

detritus food chain (Cornaby 1974).  Herbivores only consume a small portion of the 

above ground primary production. Decomposers, detritivores, or necrophages consume 

the balance, including the carcasses of members of higher tropic levels (Whitford 1986). 

Nutrients enter the decomposer subsystem via leaf, seed and fruit drop, animal 

defecation, and vertebrate and invertebrate death (carrion).  These ephemeral patches are 

discrete, undivided habitat resources with short durational stability (Beaver 1984) 

Necrophagous bacteria, fungi and animals release the nutrients from the dead material 

back into the ecosystem (Seastedt 1984), and these organisms are therefore an important 

part of energy flow throughout the bionetwork. Carrion has been studied extensively as 

an ephemeral habitat (Beaver 1977, Byrd 1998), as it supports a diverse community of 

necrophagous insects due to its status as a high quality nutrient source (Parmenter and 

Lamarra 1991).  

 Arthropods regulate the carrion decomposition pathway (Parmenter and Lamarra 

1991) by advancing decomposition and recycling bound nutrients back into the system 

(Barot et al. 2007).  In the absence of arthropods, carrion decomposition rates are 

significantly slower than when arthropods are present (Parmenter and MacMahon 2009).  

____________ 
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For example, Parameter and Macmahon (2009) observed a 90% decrease in 

decomposition rates of carrion when arthropods were eliminated from the process than 

when arthropods were granted access. The arthropods primarily responsible for 

decomposition are members of the orders Diptera and Coleoptera. Of the approximately 

1,000 dipteran species in North America over 100 are associated with carrion (Catts and 

Haskell 2008). The sheer number of species coupled with their voracious consumption 

of decomposing animal tissue makes the Diptera the most important insect order in terms 

of carrion reduction (Cornaby 1974, Goff 1993, Catts and Haskell 2008).  

 Flies inhabit two separate tropic levels: that of primary consumer as adult, and that 

of decomposer as a larva.  Gravid adults are attracted to decomposing organisms, and 

lays eggs on or near the resource. Rapid decomposition of a high quality resource results 

in intense intraspecific and interspecific competition among dipteran larvae (Lang et al. 

2006). Such competition affects the participants. For example, interspecific competition 

between Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae) and Lucilia sericata 

(Meigen) (Diptera: Calliphoridae) resulted in decreased survivorship, adult size and 

fecundity of the inferior competitor (Kheirallah et al. 2007). This pattern tends to hold 

true across most carrion-breeding species: as larval numbers increase on a resource, 

adult size decreases (Lang et al. 2006). The implication of such results is that 

competitors for ephemeral resources should evolve mechanisms to avoid the detrimental 

effects of competition.     

 Blow flies (Diptera: Calliphoridae) are generally the first arthropods to colonize 

carrion (Byrd 1998).  While approximately 1,000 species in 150 genera are known 
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(Whitworth 2006), 10 carrion-inhabiting blow fly species are known in Texas 

(McAlpine 1981, Tenorio et al. 2003). Calliphora vicina (Robineau-Desvoidy) (Diptera: 

Calliphoridae) and Phormia regina (Meigen) (Diptera: Calliphoridae) colonize fresh 

remains during cool months in Texas (November through February ) (Tenorio et al. 

2003, Bucheli et al. 2009), while Chrysomya rufifacies (Macquart) (Diptera: 

Calliphoridae) and Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae) are the 

dominant colonizers of carrion during warm months (Tenorio et al. 2003).  

 Cochliomyia macellaria was first described in 1775 and is known as the secondary 

screwworm due to its ability to cause secondary myiasis (Baumgartner 1985). The 

metallic, green-blue adults are identifiable by three longitudinal stripes on the dorsal 

thorax and yellow genal dilation (Whitworth 2006). It is native to the New World 

temperate and tropic regions from Canada through Argentina (Whitworth 2006). It 

prefers warm environments (Byrd and Butler 1996) and under ideal conditions will 

disperse from southern to northern areas. (Whitworth 2006).  

 Developmental time and activity of this species is temperature dependent.  Eggs 

have a low temperature threshold of 10-12.50C while larvae pass through three instars 

and take 588 h at 150C to 170 h at 320C to complete development (Byrd and Butler 

1996). Adults mate between 3 and 18 d post eclosion, and females can oviposit up to 

eight egg masses on carrion over their lifetime (Baumgartner 1985).  It is considered 

hemi- to eusyanthropic depending on human population density (Baumgartner 1993). 

 Cochliomyia macellaria is considered a primary colonizer of carrion (Campobasso 

and Introna 2001). Campobasso (2001) determined C. macellaria to be the first to 
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colonize human remains in Tennessee during summer month. Similarly, Gruner et al. 

(2007) collected arriving adults minutes after pig carcass placement. Initial 

decomposition studies on human remains placed at the Forensic Anthropology Research 

Facility at Texas State University documented C. macellaria to be primary dipteran 

colonizer in the spring (Pechal, unpublished data.).  

 Cochliomyia macellaria populations have diminished in Brazil and Argentina 

(Reis et al. 1999), due to invasive Chrysomya species. Cochliomyia macellaria is an 

inferior competitor in the presence of Chrysomya putoria (Wiedemann) (Diptera: 

Calliphoridae) and Ch. rufifacies although coexistence between the species does occur 

(Reis et al. 1999). Rather than engage in scramble competition normally seen in blow 

flies (Rosa et al. 2006), Ch. rufifacies is facultatively predacious and uses C. macellaria 

larvae as an additional food source (Wells and Greenberg 1992b, Rosa et al. 2006). 

Cochliomyia macellaria attempts to avoid predation by either leaving the resource 

prematurely or burrowing into the resource (Wells and Greenberg 1994). 

 Chrysomya rufifacies was described in 1843 and is known as the hairy maggot 

blow fly due to characteristic fleshy protrusions on the larvae (Baumgartner 1993). 

Adults are metallic green-purple with pale gena (Whitworth 2006). This species is 

indigenous to the Old World (Roy and Siddons 1939), but has recently been introduced 

into several new world countries.  

 Chrysomya rufifacies second and third instar larvae are facultative predators and 

cannibals (Goodbrod 1990). In laboratory trials, Ch. rufifacies can switch from 

necrophagy to cannibalism and predation when confronted with limited resources 
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(Goodbrod 1990).  This ability allows Ch. rufifacies to continue development despite 

food depletion (Goodbrod 1990). Wells and Greenberg (1992a) confirmed the predatory 

ability of Ch. rufifacies in a pair-wise predation study with C. macellaria. Third instar 

Ch. rufifacies preyed on third and second instar C. macellaria larvae in 85% and 35% of 

the cases respectively (Wells and Greenberg 1992c). Shiao (2008) recorded similar 

results with third instar Ch. rufifacies feeding on Ch. megacephala. Watson (2005) 

observed this predatory behavior by larvae on carrion in Louisiana. Chrysomya 

rufifacies oviposited on the heads of carcasses despite previous oviposition of C. 

macellaria in the same region. Resulting C. macellaria larvae dispersed to peripheral 

areas of the carcass or left it all together (Watson 2005).  

 Chrysomya rufifacies exhibit monogenic reproduction. This phenomenon is rare 

for Diptera (Roy and Siddons 1939, Subramanian and Mohan 1980) and is determined 

by maternal genotype (Kirchhoff and Schroeren 1986). Adults mate between 2 and 10 ds 

after eclosion (Schmidt and Kunz 1985, Baumgartner 1993). Development of mature 

ovaries is dependent on the ingestion of a protein meal. Females lay between 210 and 

368 eggs per clutch (Schmidt and Kunz 1985). Developmental time of this species is 

dependent on temperature and perhaps latitude (Schmidt 1989, Byrd and Butler 1997). 

Eggs have a lower temperature threshold of 90C (Baumgartner 1993). Resulting larvae 

pass through three instars and take 600 to 200 h at 5 and 320C respectively to develop 

from egg to adult (Byrd and Butler 1997).  Adult flight activity has a minimum threshold 

of 130C (Baumgartner 1993), and live approximately 23-30 d (Schmidt and Kunz 1985). 

This species was thought to be active during warm weather (Baumgartner 1993). 
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However, researches recently collected adults during November in South Carolina with 

the temperature ranging from 8.20C to 12.80C (Cammack and Nelder 2010). 

 The hairy maggot can cause myiasis, the infestation of live animals with Diptera 

larvae (Byrd and Castner 2010). The first incidence of Ch. rufifacies myiasis reported in 

the United States was on a dog in 1983, and several cases on animals and humans in 

Brazil have been documented as well (Baumgartner 1985). Chrysomya rufifacies is able 

to cause sheep strike and is an important parasite of new born calves in wet areas of 

Hawaii (Wells and Greenberg 1992c).  The bulk of Ch. rufifacies interactions with 

vertebrate animals is on carrion, however, and the first maggots were discovered in the 

U.S. in 1981 on a dead cheeta (Baumgartner 1985).  

 In its native range, Ch. rufifacies is considered a secondary carrion fly (Fuller 

1934b, Chin 2007). Chin (2007) reported that in Malaysia, Ch. megacephala is the first 

fly to appear in a larval mass, but Ch. rufifacies will assume the dominant role within 48 

h. In areas where it is an introduced species, Ch. rufifacies reportedly behaves as a 

primary carrion fly (Chin 2007, Gruner et al. 2007).  

 Cochliomyia macellaria and Chrysomya rufifacies not only compete for resource, 

but interact as predator and prey (Lima and Dill 1990).  As previously discussed, Ch. 

rufifacies larvae will depredate C. macellaria larvae or drive them from carrion (Tenorio 

et al. 2003, Cammack and Nelder 2010). Baumgartner (1985) found that C. macellaria 

dominance diminished from over 89% of overall blow fly numbers in Peru to 0.2-4% of 

blow flies following the introduction of Chrysomya sp.  This observed dominance has 

prompted entomologists to predict that Ch. rufifacies will exclude C. macellaria from its 
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current, native habitats in North America (Wells and Greenberg 1992c, Baumgartner 

1993, Rosati 2007).  

 The mechanism by which C. macellaria and Ch. rufifacies locate potential food 

resource is largely unstudied. Certain fly species preferentially oviposit in the presence 

of conspecific and heterospecific egg masses. Browne et al. (1968) observed 80% more 

oviposition by Lucilia sericata (Meigen) (Diptera: Calliphoridae) in the presence of 

conspecific eggs (Browne 1958) ; while Rosati and Van Laerhoven (2010) determined 

that Phormia regina (Meigen) (Diptera: Calliphoridae) preferentially oviposited in the 

presence of L. sericata eggs. It is possible that C. macellaria and Ch. rufifacies exhibit 

the same oviposition behavior. 

 Pheromone deposition (Jiang et al. 2002), intraspecific aggregation (Woodcock et 

al. 2002), and phenological shifts (Fenton 1999) are some strategies allowing carrion 

flies to avoid competition. Competition inherent to the predator-prey interaction between 

Ch. rufifacies and C. macellaria on carrion (Wells and Greenberg 1992c) suggests C. 

macellaria would be selected for traits allowing them to avoid predation by Ch. 

rufifacies.. Cochliomyia macellaria might colonize carrion earlier, depart prior to, or 

avoid carrion already inhabited by Ch. rufifacies. Lam et al. (2007) determined muscid 

flies (Diptera: Muscidae), utilize cues released by bacteria as an oviposition attractant or 

deterrent, depending on bacterial density (Lam et al. 2007). Since C. macellaria and Ch. 

rufifacies are known necrophages, they have evolved in the presence of extensive 

bacterial communities. It is possible that C. macellaria use resource-associated bacteria 

to evaluate potential oviposition sites and predation risk. Conversely, Ch. rufifacies may 
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use similar cues to evaluate oviposition substrates and locate prey.  

 Bacteria are closely associated with eukaryotic organisms (Dale and Moran 2006). 

Bacteria exhibit different ecological roles with arthropods ranging from parasite to 

mutualist and commensalist. However, microbial effects on insects at both the species 

and community levels have been largely understudied (Weinert et al. 2007), although 

Janzen (1977) suggested microbial communities compete with macrobiotic organisms 

for transient resources (Janzen 1977). Recently, research has examined competition 

between the microbial and animal kingdoms (Deron et al. 2006), and direct mutualism in 

the form of endosymbionts (Nardi et al. 2002). Outside of parasitic context (Eddy 1975), 

there is little work on the inter-kingdom communication between prokaryotic and 

eukaryotic organisms as it relates to resource and habitat location, suitability, and 

colonization.  

 Bacteria are intimately associated with the decomposition of human remains 

(Perper 1993). Putrefaction of the remains by associated bacteria begins at death of the 

individual, resulting in the production of ammonia compounds and hydrocarbons 

(Fiedler 2003). Baumberger (1919) postulated that bacteria drive insect succession, and 

colonizing insects feed on bacteria as a primary nutritional source (Baumberger 1919). 

Fuller (1934a) dismissed the idea, stating that decomposition is greatly retarded by insect 

absence; therefore, insects are the primary driving force behind decomposition (Fuller 

1934b). Both researchers acknowledged that bacteria on carrion break down tissues, 

allowing for nutrient ingestion by colonizing Diptera (Baumberger 1919, Fuller 1934b).   

 Much more work has been done regarding the bacterial effect on attraction of blow 
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flies to hosts (Fuller 1934b, Browne 1965, Eddy 1975, Emmens 1982). Emmens (1982) 

determined Pseudomonas aeruginosa degrades wool and produces sulphurous 

compounds, which attract female Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). 

Browne (1965) noted L. cuprina increased oviposition in response to indole and 

ammonium carbonate, which are products of bacterial metabolism. Bovine blood 

inoculated with bacteria is significantly more attractive to the primary screwworm 

Cochliomyia homnivorax (Coquerell) (Diptera: Calliphoridae) than uninoculated blood 

(Eddy 1975, Chaudhury 2010).  

 Olfactory cues associated with bacteria induce oviposition in L. sericata 

(Ashworth and Wall 1994). Increased searching and flight times have been noted when 

females are presented with odors from decomposing meats (Wall 1994). Lucilia sericata 

oviposition is stimulated by the by-products of bacterial breakdown of keratin in wool 

(Heath and Appleton 2000). Oviposition behavior is activated by ammonium compounds 

and carbon dioxide, all of which originate with bacterial decomposition of the wool 

(Ashworth and Wall 1994). While several bacterial species may produce the same odors, 

it is apparent that the overall species composition of the microbial community on 

decomposing media greatly affects the attractiveness of the volatiles (Eismann 1988).  

 Bacteria also served as a source of nutrition for insects. House fly, Musca 

domestica (Linnaeus) (Diptera: Muscidae) larvae reared on media containing bacteria 

have greater survival and longevity than those on sterile resources (Schmidtmann and 

Martin 1992). These bacteria also provide growth factors such as sterols and vitamins to 

the larvae, and house fly larvae reared on sterile blood agar lacking B vitamins have 
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stunted growth (Brookes and Fraenkel 1958).  Bacteria have also been demonstrated to 

be essential for the growth of Musca autumnalis (De Geer) (Diptera: Muscidae) and 

Haematobia irritans (Linnaeus) (Diptera: Muscidae) (Schmidtmann and Martin 1992) 

which are also colonizers of decomposing material.  

 Bacteria are considered a major catalyst of insect succession on carrion 

(Baumberger 1919). Many calliphorid and muscid species use bacteria and their 

products as food (Brookes and Fraenkel 1958, Ahmad et al. 2006). Calliphoridae cue in 

on bacterial products to locate feeding and oviposition sites (Cragg 1955). Cochliomyia 

macellaria and Ch. rufifacies might therefore use bacteria to facilitate location, 

colonization, and digestion of a resource. 

 Elucidating bacteria-blow fly interactions has important implications for 

decomposition ecology and forensic entomology. Blow flies can arrive and colonize 

carrion within hours of death. This	
  colonization	
  starts	
  a	
  “biological	
  clock”	
  and	
  age-­‐

determination	
  of	
  the	
  developing	
  fly	
  larvae	
  can	
  be	
  used	
  as	
  the	
  basis	
  for	
  estimating	
  

how	
  long	
  that	
  carrion	
  has	
  been	
  exposed	
  to	
  insect	
  colonization. (Amendt et al. 2007, 

Byrd and Castner 2010).  Determining the amount of time the larvae have been on the 

remains can be used to estimate the period of insect activity (PIA) (Tomberlin et al. 

2011) which may, in turn, be correlated with time of death (Catts 1992, Byrd and 

Castner 2010), expressed as the post mortem interval (PMI) provided no delays in 

colonization (Catts and Haskell 2008, Byrd and Castner 2010, Villet et al. 2010). PIA 

and inferred PMI are critical pieces of information for death investigators (Villet et al. 

2010), and arthropods have been used globally for such determinations (Amendt et al. 
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2010). Over the past four decades, forensic entomological research has focused on 

macrobiotic and abiotic influences on the calliphorid life cycle.  Oviposition and larval 

development on scavenged (Campobasso 2001), buried (VanLaerhoven 2008), wrapped 

(Catts and Goff 1992), and burned (Pai et al. 2007) remains have been extensively 

studied., Few, however, have examined the role carrion-associated bacteria play in the 

colonization and consumption of decomposing resources by blow flies. Knowing this 

information could result in a more refined understanding of niche partitioning and 

succession patterns of competing blow flies on PIA estimates.  My research investigates 

the exploitation of habitats by two competitive and forensically important blow fly 

species in central Texas. Specifically, my work investigates determined; 1) the 

importance of colonization sequence in regards to C. macellaria and Ch. rufifacies on 

ephemeral resources; 2) the effect decomposition state of a resource on the attractancy 

and repellency of C. macellaria and Ch. rufifacies adults based on sex and ovarian 

status; 3) the inter- and intra-specific attraction or repellant properties of C. macellaria 

and Ch. rufifacies eggs of varying ages; and 4) if egg physiology or associated microbes 

are responsible for the observed inter- and intra-specific attraction.   
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EFFECTS OF TEMPORAL PRIORITY ON THE LIFE-HISTORY TRAITS OF 

TWO COMPETING BLOW FLY (DIPTERA: CALLIPHORIDAE) SPECIES ON 

CARRION 

                   CHAPTER II  

 

Introduction 

Patchy distribution of exploitable resources is widespread throughout nature, and 

interspecific competition for such patches is often intense. A temporal disparity between 

ecologically similar species may confer a competitive advantage to primary colonizers 

under exploitative competition circumstances. An early colonizer is relatively unaffected 

by the presence of later species, but resource depletion may be a detriment to later-

arriving conspecific or interspecific individuals (Bryant 1971, Beaver 1984, Shorrocks 

and Bingley 1994, Hodge 1996). Competitively inferior species exploiting resources 

before patch invasion by more competitively dominant species may survive and 

consequently persist in an environment (Schoener 1974, Hodge 1996). For example, 

offspring of Drosophila sp. (Diptera: Drosophilidae) arriving significantly earlier than 

ecologically similar species, had a 35% increase in survivorship, 22% decrease in 

developmental time, and 17% increase in adult size when compared with those resulting 

from adults arriving later (Hodge 1996). This “priority effect” (Alford and Wilbur 1985) 

has been documented in other systems such as fish (Geange and Stier 2009), crustaceans 

(Irving et al. 2007), and amphibians (Eitam et al. 2005). In each case, early-arriving 

species gained a fitness advantage by exploiting a patch before a competitor arrived.  

However, it has not been examined in detail for blow flies (Diptera: Calliphoridae).  
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Priority effect may be responsible for the coexistence of competing Calliphoridae 

on a carrion resource (Denno 1975, O'Flynn 1983, Schoenly 1992). Primary colonizers 

of carrion tend to exhibit efficient location and colonization of carrion, along with rapid 

feeding and growth while on the resource (Beaver 1984). These traits lead to carrion 

colonizers arriving at a patch early in the decomposition process and devouring the 

maximum resource possible before competitors arrive (Schoenly 1992). Secondary 

colonizers must contend with reduced nutrient value and high competitor diversity 

(Beaver 1984). Natural selection would seemingly therefore favor the earliest and most 

efficient colonizers of a carcass (Kneidel 1984a, Kneidel 1984b). Secondary colonizers 

of carrion require an advantage over those already in residence (Lane 1975).  Two 

common hypotheses about such an advantage are the insect must either be an inferior 

competitor when in direct competition with other species on a resource (Atkinson and 

Shorrocks 1981) or require the resource to be modified by early colonizers (Lang et al. 

2006).  

Central Texas has ten commonly occurring species of Calliphoridae (Diptera) 

that feed on decomposing animal tissue (Tenorio et al. 2003). Of these, Cochliomyia 

macellaria (Fabricius) and Chrysomya rufifacies (Macquart) are the most abundant 

species during the warm months of the year (Goddard 1988, Tenorio et al. 2003, Bucheli 

et al. 2009). Cochliomyia macellaria is native to the New World (Baumgartner 1993) 

with a distribution from southern Canada, throughout the United States, Mexico, Central 

America, and southwards to central Argentina. Cochliomyia macellaria is a primary 

colonizer of vertebrate carrion arriving early in the decomposition process (Tomberlin 
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and Adler 1998). Large collective egg masses may result in >1000 larvae per cm2 

maggot masses, which can quickly devour a cadaver (Laake et al. 1936, Reis et al. 1999, 

Slone and Gruner 2007, Oliveira and Vasconcelos 2010).  

Chrysomya rufifacies is native to Southeast Asia. It was introduced to Central 

America in 1977 (Baumgartner 1993), arrived in the United States by 1980 (Gagne 

1981), and has become well established across North America including southern 

Canada (Rosati 2007). Chrysomya rufifacies acts as a secondary colonizer (Bohart 1951, 

Norris 1959) arriving at a carcass one to two ds after death (Baumgartner 1993). Larvae 

are facultatively predaceous in the second and third instars (Fuller 1934b) on C. 

macellaria larvae (Baumgartner 1993). Researchers hypothesize that Ch. rufifacies 

exhibits predatory behaviors when food is scarce due to competition with other 

necrophagous blow flies (Norris 1965, Goodbrod 1990). This tendency has led 

researchers to hypothesize that Ch. rufifacies will dominate carrion patches and eradicate 

C. macellaria from North America (Wells and Greenberg 1992c, Baumgartner 1993). 

Secondary colonization could be a risky behavior for a carrion fly; it increases 

the likelihood that the resource will become unusable before exploitation by resulting 

offspring (Beaver 1984) and increases the risk of interspecific competition (So and 

Dudgeon 1990). Despite these possible risks, Chrysomya rufifacies continues to exhibit 

secondary colonization behavior, which implies an evolutionary benefit.     

Since C. macellaria and Ch. rufifacies exploit carrion as their primary resource, 

they are considered direct competitors (Kneidel 1984a, Baumgartner 1993, De Jong 

1997). Studies documented competition among carrion flies in the field (Denno 1975, 
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Denno et al. 1995, Archer and Elgar 2003) and in experimental caged populations 

illustrating some species regularly out compete others to the point of extinction (Hanski 

and Kuusela 1977).  However, these results do not completely apply to C. macellaria 

and Ch. rufifacies, since both species continue to persist. The objective of this study was 

to determine if Ch. rufifacies remains as a secondary colonizer due to competition 

avoidance or through required resource modification, and the effect of arrival times on 

survivorship, longevity, and fecundity of Ch. rufifacies and C. macellaria.   

 

Materials and Methods 

Adult Fly Colony. Laboratory colonies of C. macellaria and Ch. rufifacies larvae used 

in this study were initiated from flies collected in Brazos County, Texas, USA during 

spring and summer of 2009 and 2010. Larvae were reared on fresh bovine liver provided 

ad libitum in 3 L plastic containers in walk-in growth chamber at 27°C ± 1°C, 60% RH, 

and a 12:12 (L:D) photoperiod. Dispersing third instar larvae were transferred to 3 L 

containers with autoclaved sand (Town & Country Landscape Supply Co., Chicago, IL, 

USA) for pupation. Resulting adults were maintained in 300 cm3 cages (Bioquip 

Products, Rancho Dominguez, CA, USA) held in the growth chamber previously 

described. Granulated sugar (Imperial Sugar Co., Sugar Land, TX, USA), buttermilk 

powder (Saco foods Inc., Middleton, WI, USA), and water were provided ad libitum, 

and 20 g bovine liver was placed in the cage between 4 and 15 d post emergence for 4 h 

to induce oviposition as needed.  
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Experimental Design. Collected eggs were homogenized prior to placement in 

treatments and controls of this experiment. For mixed species treatments, 100 eggs of the 

pioneer species were introduced to 100 g of fresh bovine liver in a 20.5-cm x 34.5-cm x 

20.5 cm plastic tub with 1.5 L of sand. Eggs were transferred using a camel hair 

paintbrush. The competing species was introduced 0, 1, 2, 3, or 4 d after introduction of 

the pioneering species (Fig. 2.1). To ensure that results were not due to resource age, a 

pure culture of 200 eggs of each species was placed on liver aged 0, 1, 2, 3, or 4 d in the 

growth chamber under conditions previously described and retained in the same 

environment (Fig. 2.2). All treatments and controls were established on the same d.  All 

replicates were placed in the rearing room under the conditions previously described. 

Nine treatments and ten controls were established for this study. Each was replicated a 

minimum of three times over three generations.   



 

 

17 

 
Fig 2.1. Treatments for mixed species experiments. Pioneer species was placed on fresh (0 day old) 
liver, while competing species was placed simultaneously, or one day, two days, three days, or four 
days after pioneer species 
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Fig 2.2. Controls for effect of liver age on fitness. Pure cultures of larvae were placed on fresh (0 day 
old), one day old, two day old, three day old, or four day old liver.  
 
 

Fitness parameters evaluated for each species included survivorship, pupal 

weight, adult longevity, and egg production of resulting adults (Allen 2004). Containers 

were checked every 24 h for pupae, which were then collected from each container and 

weighed. In order to measure adult longevity, the first 20 pupae observed were placed 

individually in 30 ml clear plastic cups (Bio-Serv, Frenchtown, NJ, USA) with 5 g 

autoclaved sand, covered with breathable lids and returned to the growth chamber. 

Pupae were observed daily for eclosion. Resulting adults were fed 100 µl of 21% 

concentration sucrose syrup daily via pipette.  
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Remaining pupae from each treatment and control were placed in 300 cm3 cages 

(Bioquip Products, Rancho Dominguez, CA, USA) held in the growth chamber 

previously described. Resulting adults were provided granulated sugar, water and 

commercial buttermilk powder ad libitum. Colonies were presented with fresh bovine 

liver for 12 h per d, and resulting eggs were counted. Dead adults were removed from 

colonies and sexed. Total number of eggs produced by each colony was divided by total 

number of females present, for a mean number of eggs produced per female.  

Stastitical Analysis. All data were analyzed using MANOVA and Tukey’s HSD (P < 

0.05) using IBM SPSS Statistics 18 (SPSS Inc. 2010, Chicago, IL, USA). Data figures 

were created and managed in GraphPad Prism (GraphPad Software, Inc. La Jolla, CA, 

USA). 

 

Results 

Cochliomyia macellaria and Ch. rufifacies development and survivorship were 

not significantly affected by liver age when reared in pure culture. Survival to pupation 

for C. macellaria (F = 0.452; df = 4; P = 0.769) and Ch. rufifacies (F = 0.432; df = 4; P 

= 0.793) were not significantly different due to liver age. Survival to pupation was also 

not significantly different between species, meaning neither C. macellaria nor Ch. 

rufifacies has inherently higher survival rates (t = 0.742; df = 34; P = 0.462) (Fig. 2.3).  

Mean pupal weight for C. macellaria (F = 1.412; df = 4; P = 0.281) and Ch. rufifacies (F 

= 2.535; df = 4; P = 0.087) was also not significantly affected by liver age (Fig. 2.4). 

Chrysomya rufifacies pupae were significantly larger than C. macellaria pupae (t = 



 

 

20 

81.22; P < 0.0001), outweighing C. macellaria by an average 24% (Fig. 2.4). Adult 

longevity also showed with no significant differences for either C. macellaria (F = 

0.2051; df = 4; P = 0.0298) or Ch. rufifacies (F = 0.3349; df = 4; P = 0.8484) (Fig. 2.5). 

Cochliomyia macellaria adults, however, lived significantly longer (34.00 ds vs. 23.54 

ds) than Ch. rufifacies adults (t = 3.648; df = 25; P = 0.0012). Neither C. macellaria (F = 

0.2051; df = 4; P = 0.0298) or Ch. rufifacies (F = 0.3349; df = 4; P = 0.8484) showed 

significant differences in fecundity based on resource age; nor was there a significant 

difference in fecundity between the two species (t = 0.9768; df = 28; P = 0.1940) (Fig. 

2.6).  

Both C. macellaria and Ch. rufifacies fitness were affected by arrival time. 

Cochliomyia macellaria survival to pupation (F = 5.621; df = 2; P = 0.008) and mean 

pupal weight (F = 179.958; df = 2; P < 0.0001) were significantly higher when C. 

macellaria eggs were introduced prior to Ch. rufifacies colonization (Fig. 2.7). 

Chrysomya rufifacies had a significantly higher survival to pupation (F = 7.136; df = 2; 

P = 0.003), but lower mean pupal weight (F = 103.091; df = 2; P < 0.0001) when eggs 

were introduced after C. macellaria colonization than when introduced prior (Fig. 2.7). 

Neither C. macellaria (F = 2.820; df = 2; P = 0.062) nor Ch. rufifacies (F = 2.671; df = 

2; P = 0.070) showed significant changes in adult lifespan based on colonization time. 

Cochliomyia macellaria fecundity was significantly reduced when eggs were introduced 

after Ch. rufifacies (F = 4.393; df = 2; P = 0.024), unlike Ch. rufifacies  (F = 1.157; df = 

2; P = 0.331) (Fig. 2.7).  
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Fig 2.3. Percent larval survival to pupation (mean ±  SE) for C. macellaria (circle) and Ch. rufifacies 
(triangle) by resource age in days. Resource age did not significantly affect survival to pupation in 
either species.  

 



 

 

22 

 

Fig 2.4. Mean pupal weight (mean ±  SE) for C. macellaria (circle) and Ch. rufifacies (triangle) by 
resource age in days. Resource age did not significantly affect pupal weight in either species.  
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Fig 2.5. Adult longevity in days (mean ±  SE) for C. macellaria (circle) and Ch. rufifacies (triangle) by 
resource age in days. Resource age did not significantly affect pupal weight in either species.  
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Fig 2.6. Mean eggs per female (mean ±  SE) for C. macellaria (circle) and Ch. rufifacies (triangle) by 
resource age in days. Resource age did not significantly affect fecundity in either species.  
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Fig 2.7. Differences in (A) survival, (B) pupal weight, (C) longevity, and (D) fecundity (mean ±  SE) 
for C. macellaria (purple) and Ch. rufifacies (blue) according to arrival time. Species arrived either 
before or after competing species. * indicates significant (P ≤  0.05) differences between means.  
 
 

Cochliomyia macellaria survivorship, pupal weight, and fecundity were affected 

by when Ch. rufifacies colonized the resource (F = 1652.090; df = 8; P < 0.0001). 

Cochliomyia macellaria showed greater fitness when it was not sharing the resource 

with Ch. rufifacies larvae of similar age. When C. macellaria was the initial colonizer, 

its survival to pupation was not impacted when Ch. rufifacies arrived 4 d prior to (M = 

48.67; SD = 8.505), or 3 d (M = 66.00; SD = 0.00) or 4 d after (M = 87.5; SD = 17.68) it.  

However, Ch. rufifacies arrival 3 d (M = 40.67; SD = 18.77), 2 d (M = 0.25; SD = 0.50), 
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or 1 d (M = 3.25; SD = 3.948) prior to C. macellaria colonization resulted in significant 

decrease in C. macellaria survival. When Ch. rufifacies arrived simultaneously with 

(M=25.5; SD=9.678), 1 d (M=22.0; SD=14.73), or 2 d (M=29.33; SD=25.42) after C. 

macellaria colonization decreased C. macellaria survivorship (Fig. 2.8).  

Chrysomya rufifacies responded differently to colonization time. It showed 

significantly greater fitness when it did share the resource with C. macellaria larvae of 

similar age. Ch. rufifacies arriving 4 d prior to C. macellaria had significantly lower 

survival to pupation (M = 35.0; SD = 5.88). Chrysomya rufifacies arriving 1 d (M = 

86.75; SD = 9.069) after C. macellaria colonization had significantly higher survival 

rates than the corresponding control (M = 70.33; SD = 4.619). Chrysomya rufifacies 

exhibited its highest survivorship when it arrived 1 to 3 d after C. macellaria 

colonization (Fig. 2.9). All other arrival times did not significantly impact Ch. rufifacies 

survivorship (Fig. 2.9).  
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Fig 2.8. Cochliomyia macellaria survival to pupation (mean ±  SE) relative to Ch. rufifacies 
colonization. * indicates significant (P ≤  0.05) difference from control.  
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Fig 2.9. Chrysomya rufifacies survival to pupation (mean ±  SE) relative to Ch. rufifacies 
colonization. * indicates significant (P ≤  0.05) difference from control.  
 
 
 Pupal weight mirrored larval survivorship in C. macellaria. Significant 

differences in pupal weight due to Ch. rufifacies arrival time (F = 1652.090; df = 8; P < 

0.0001) were detected. Ch. rufifacies arriving 4 d (M = 0.043; SD = 0.005), 3 d (M = 

0.029; SD = 0.005), 2 d (M = 0.012; SD = 0.005), or 1 d (M = 0.034; SD = 0.012) prior 

to, or simultaneously with (M = 0.046; SD = 0.006) C. macellaria, resulted in lower C. 

macellaria pupal weight than those from the controls. Chrysomya rufifacies arrival 1 d 

(M = 0.049; SD = 0.005), 2 d (M = 0.054; SD = 0.0085), 3 d (M = 0.049; SD = 0.008), 

and 4 d (M = 0.049; SD = 0.0072) after C. macellaria colonization did not result in 
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lower C. macellaria pupal weights (Fig. 2.10). Chrysomya rufifacies again showed very 

different results, only exhibiting significantly lower pupal weights when arriving 3 d 

after C. macellaria (M = 0.05810; SD = 0.006601) (Fig. 2.11).  

Neither C. macellaria nor Ch. rufifacies showed significant differences in adult 

longevity due to Ch. rufifacies colonization time (Figs. 2.12 and 2.13). The only 

significant difference between treatments and controls was for C. macellaria pupae 

resulting from larvae that colonized 1 or 2 d after Ch. rufifacies did not eclose. This 

resulted in no adults for any of the treatments, and therefore a mean adult longevity of 0 

d (Fig. 2.12).  

 

Fig 2.10. Cochliomyia macellaria pupal weight (mean ±  SE) relative to Ch. rufifacies colonization.  
* indicates significant (P ≤  0.05) difference from control.  
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Fig 2.11. Chrysomya rufifacies pupal weight (mean ±  SE) relative to Ch. rufifacies colonization.  
* indicates significant (P ≤  0.05) difference from control.  
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Fig 2.12. Cochliomyia macellaria adult lifespan (mean ±  SE) relative to Ch. rufifacies colonization.  
* indicates significant (P ≤  0.05) difference from control.  
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Fig 2.13. Chrysomya rufifacies adult lifespan (mean ±  SE) relative to Ch. rufifacies colonization.  
* indicates significant (P ≤  0.05) difference from control.  
 
 

Egg production per female varied among treatments, but followed similar 

patterns to survivorship and pupal weight. Cochliomyia macellaria arriving 4 d (M =3 

59.5; SD = 139.5), 3 d (M = 290.7; SD = 503.4), 2 d (M = 262.8; SD=455.3) and 1 d (M 

= 3.84; SD=665.8) prior to Ch. rufifacies produced significantly fewer eggs per female 

than the corresponding controls. Those C. macellaria that arrived simultaneously with or 

after Ch. rufifacies had no significant difference in mean egg production when compared 

to controls (Fig. 2.14). Chrysomya rufifacies, however, had no significant difference in 

mean egg production per female when compared to controls (Fig. 2.15).  
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Fig 2.14. Cochliomyia macellaria eggs per female (mean ±  SE) relative to Ch. rufifacies colonization.  
* indicates significant (P ≤  0.05) difference from control.  
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Fig 2.15. Chrysomya rufifacies eggs per female (mean ±  SE) relative to Ch. rufifacies colonization.  
* indicates significant (P ≤  0.05) difference from control.  
 

 

Discussion 

Results from this study demonstrate a priority effect between Ch. rufifacies and 

C. macellaria, and imply that the predator-prey relationship between the two species 

may be more important than competition for food. Priority effect is known in 

Calliphoridae, as Hanski (1987) determined that carrion flies arriving first at a carcass 

dominated the resource, effectively preventing further colonization by later species 

(Hanski 1987).  Kneidel (1983) also demonstrated priority effects in carrion-breeding 

Diptera, finding that Megaselia scalaris (Loew) (Diptera: Phoridae) reduced secondary 
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colonizer diversity when it acted as a primary colonizer (Kneidel 1983).  Schoenly and 

Reid (1987) postulated facilitation of arthropod community change depended heavily 

upon primary colonizers, which altered the resource allowing location (Spivak et al. 

1991) and colonization by secondary species (Schoenly and Reid 1987). This implies 

that secondary species rely on the presence of primary colonizers to prepare the resource 

for their colonization resulting in higher fitness with increased survivorship of associated 

offspring. This study illustrated this concept utilizing the predator-prey model of Ch. 

rufifacies and C. macellaria.  

Ch. rufifacies has historically been considered a primary necrophage and a 

facultative predator (Goodbrod 1990, Baumgartner 1993, Rosa et al. 2006). It was 

assumed that predation began only when resource was scarce (Rosa et al. 2006), 

allowing Ch. rufifacies to survive even as a secondary colonizer on a depleted resource 

(Faria 2004). Results from this study, however, indicate otherwise. Chrysomya rufifacies 

larvae that were present on the resource concurrently with C. macellaria larvae had a 

significantly higher fitness than those that were on the resource before or after (Fig. 2.7). 

This is unexpected if it is assumed that Ch. rufifacies maintains secondary colonization 

status to avoid competition with primary colonizers. An inferior colonizer would show 

substantially decreased fitness when forced to directly compete with equivalent species 

(Hanski 1987). Since this was not the case, it appears that Ch. rufifacies is not delaying 

colonization to avoid competition.  

A second possibility for maintaining secondary colonizer status is the 

modification of resource by primary colonizers. The community of arthropods inhabiting 
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carrion early will change the resource (Schoenly and Reid 1987, Spivak et al. 1991), 

which may allow secondary colonizers to use the resource more efficiently. However, 

this experiment showed that Ch. rufifacies shows equal fitness on fresh and aged 

resource (Fig. 2.3 – 2.6). If Ch. rufifacies required modification of the resource to enable 

efficient nutrient intake, fresh resource should have caused a decline in fitness. Since this 

was not the case, it appears that resource modification is not the selective force behind 

Ch. rufifacies secondary colonization.  

While resource consumption was not directly measured, observations of the 

resource before and after colonization of both species showed that C. macellaria 

consumed most of its food resource prior to pupation. Chrysomya rufifacies, on the other 

hand, left substantial resource behind, yet still were able to successfully pupate and 

eclose. This behavior was observed even in pure cultures of Ch. rufifacies and those 

mixed with C. macellaria.  This difference in resource consumption, along with its 

maintenance as a secondary colonizer despite apparent selection against such behavior, 

implies that Ch. rufifacies is a facultative necrophage and a primary predator.  

The presence of Ch. rufifacies and not resource age (Fig. 2.4) impacted C. 

macellaria fitness (i.e., egg production/female). Cochliomyia macellaria was most fit 

when arriving 4 d before or after Ch. rufifacies (Fig. 2.7). Arriving 4 d prior allowed C. 

macellaria adequate time to reach the pupal stage prior to the onset of competition or 

potential predation by Ch. rufifacies. Arriving 4 d after allowed C. macellaria to inhabit 

the resource after Ch. rufifacies pupated. Either time frame enabled C. macellaria to 

inhabit “enemy-free” space with reduced competition for long enough to complete 



 

 

37 

development without compromising survivorship, pupal weight, longevity or fecundity. 

Close association with Ch. rufifacies was directly correlated to fitness decline in C. 

macellaria. Chrysomya rufifacies potentially began predation while C. macellaria larvae 

were still present forcing them to leave the resource before reaching the minimum viable 

weight necessary to successfully pupate. Cochliomyia macellaria larvae arriving within 

2 d after Ch. rufifacies exhibited the most dramatic decrease in survivorship, pupal 

weight, and adult longevity of all the treatments. The 2 d lead time allowed Ch. 

rufifacies to reach the predaceous second and third instars prior to C. macellaria 

oviposition (Wells and Greenberg 1992a, Byrd and Butler 1996, Sukontason et al. 2004). 

This resulted in a 98% reduction of C. macellaria on the resource; those few larvae that 

were able to make it to pupation were undersized in comparison to those from the 

controls and did not eclose (Fig. 2.5).  

Chrysomya rufifacies fitness was also impacted by the presence of C. macellaria. 

Chrysomya rufifacies colonizing 4 d prior to C. macellaria exhibited its lowest (35%) 

survivorship. This may be due to two reasons. First, the 4 d lead time allowed Ch. 

rufifacies to complete its larval stages before C. macellaria entered the patch, thus 

eliminating opportunities to predate on C. macellaria larvae. This temporal delay could 

increase the risk of cannibalism due to the lack of prey items (Goodbrod 1990) and 

explain the significantly lower survival rates. Second, first instar Ch. rufifacies are 

known to join interspecific larval masses (Baumgartner 1993). Since first instar Ch. 

rufifacies are unable to predate other larvae, this interspecific aggregation may facilitate 

efficient feeding on the resource, a hallmark of interspecific larval masses (Rivers et al. 
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2011). Chrysomya rufifacies colonization delay may have kept it from exploiting the 

interspecific maggot mass, thereby lowering feeding efficiency. This delay again raised 

the risk of Ch. rufifacies cannibalism and decreased survivorship.  

Fitness reduction in C. macellaria may also be attributed to non-consumptive 

effects induced by Ch. rufifacies. Predators influence prey populations by both directly 

consuming individuals (consumptive effects), and by altering prey behavior (non-

consumptive effects) (Peckarsky et al. 2008, Sih et al. 2010). Non-consumptive effects 

may impact prey physiology and in the long run have a greater consequence than being 

directly consumed (Dill et al. 2003). For example, Frankliniella occidentalis (Pergande) 

(Thysanoptera: Thripidae) exhibit a 25% decrease in developmental time when in the 

presence of Phytoseiulus persimilis (Athias-Henroit) (Acari: Phytoseiidae), a predatory 

mite, resulting in lower feeding rates, and smaller resulting adults (Walzer and 

Schausberger 2009) which could translate into fewer offspring produced. Cues released 

by predatory Ch. rufifacies could result in accelerated development of their larval prey 

(Aguiar-Coelho and Milward-de-Azevedo 1998) resulting in smaller adults and thus 

reducing C. macellaria adult size and fitness. Because Ch. rufifacies is predaceous in the 

second and third instars (Wells and Greenberg 1992a), early-colonizing C. macellaria 

only has a limited amount of time to reach critical weight before being potentially 

consumed. Those taking longer to reach the pre-pupal stage may be consumed, while 

those that exhibit shorter developmental times may have a greater chance of reaching 

adulthood. This process could cause a developmental shift in C. macellaria populations 
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that coexist with Ch. rufifacies, resulting in a significantly faster C. macellaria 

developmental time.  

Deciphering the ecological interactions between C. macellaria and Ch. rufifacies 

allows greater understanding of the impact of an introduced blow fly species on native 

blow flies in the Western Hemisphere, and the corresponding decomposition ecology of 

carrion.  These data are also important for forensic entomology. Estimates of the age of a 

carrion resource are extrapolated from estimates of the development time of the larvae 

collected from remains (Pruzan and Bush 1977) (Greenberg 1991). This method depends 

upon extensive knowledge of both the community of decomposers and the larval 

developmental rates of forensically important flies. A change in either of these 

parameters could result in inaccurate estimates of the period of insect activity (PIA) as 

related to the minimum postmortem interval (m-PMI).  

Cochliomyia macellaria is considered a primary colonizer of carrion and is 

therefore extensively used in forensic entomology in the US (Tenorio et al. 2003, 

Oliveira-Costa and Mello-Patiu 2004, Gomes et al. 2009). Life-history tables used to 

estimate larval age have been developed based on C. macellaria populations either naive 

to Ch. rufifacies predation (Byrd and Butler 1996), or not (Kirkpatrick and Olson 2007, 

Boatright and Tomberlin 2010). I have shown that C. macellaria development varies due 

to the presence or absence of Ch. rufifacies, which can result in error when estimating 

the PIA or m-PMI of the remains from which they were collected. Developmental data 

obtained from C. macellaria larvae reared without Ch. rufifacies may therefore be 

inaccurate when applied to cases in which both species occur.  
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In addition to the impact of Ch. rufifacies on C. macellaria, forensic 

entomologists need to understand the fitness impacts of delayed colonization incurred by 

Ch. rufifacies. Currently, larvae found inhabiting carrion are assumed to have arrived 

soon after death of the resource. However, the increased survivorship, longevity, and 

fecundity received by Ch. rufifacies colonizing 1 to 2 d after resource death and resulting 

predation of primary colonizers selects for delayed colonization. Given the ability of this 

species to predate upon other larvae in the maggot mass, it is a possibility that Ch. 

rufifacies may be the only species available for use during an investigation. Therefore, 

forensic entomologists should take into account the possibility of delayed oviposition 

and colonization by extending time of colonization estimations by 1 to 2 d.  

The obvious impact of arrival time on these two species of blow fly implies a 

mechanism of colonization regulation. Each species must have the ability to recognize a 

suitable resource, and colonize such a resource efficiently. An understanding of the 

mechanisms used by each species to identify proper colonization windows would help 

clarify successional patters in carrion insects, and allow for a deeper understanding of 

decomposition ecology.  
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CHAPTER III 

ATTRACTION OF COCHLIOMYIA MACELLARIA AND CHRYSOMYA 

RUFIFACIES TO FRESH AND PUTRID LIVER IN A DUAL CHOICE 

OLFACTOMETER 

 

Introduction 
 

Putrefaction of vertebrate remains is initiated at death (Campobasso 2001, 

Carvalho et al. 2001, Dekeirsschieter et al. 2010). This process results in the productions 

of volatile organic compounds (VOC) (Archer and Elgar 2003) that attract blow flies 

(Diptera: Calliphoridae) that feed on, and colonize, the resource (Browne 1960, Wallis 

1962). Concentration and makeup of these VOC influence blow fly attraction (Ashworth 

and Wall 1994).  Arthropod species arrival and colonization patterns are likely regulated 

partially by VOC emissions (von Hoermann et al. 2011).  

VOC concentrations change as carrion decomposes. Early decomposition is 

characterized by the emission of ethanol, 2-propanone, dimethyl disulfide, and methyl 

benzene (Statheropoulos et al. 2007), while advanced decomposition is characterized by 

dimethyl disulfide, toluene, hexane, and benzene (Statheropoulos et al. 2005). These 

substances are responsible for the characteristic odor of decomposition (VOC) and 

attract differing arthropods depending on concentration and mixture (von Hoermann et 

al. 2011). 

Behavioral responses of calliphorids to these VOC are regulated by their 

physiological (Browne 1993) status. Oviposition behavior by Calliphora vomitoria 
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(Linnaeus) (Diptera: Calliphoridae) is not exhibited by females with underdeveloped 

ovaries (Browne 1993). Ashworth and Wall (1995) found that Lucilia sericata with 

completely developed ovarioles increased searching activity when presented with liver 

odors (Ashworth and Wall 1995). Females that did not have fully developed ovarioles 

showed periods of suppressed activity, even when presented with high concentrations of 

liver odors (Ashworth and Wall 1995). Similarly, Wall (1994) found that gravid L. 

sericata, in comparison to those with partially developed ovaries, increased both the 

number and duration of flights towards carrion odor by 50%  

Protein depravation affects blow fly attraction to a resource (Ashworth and Wall 

1995, Aak et al. 2010). Differences in physiological state due to such deprevation may 

alter the response to olfactory cues (Ashworth and Wall 1995). For example, 

consumption of protein-rich material by anautogenous flies such as Phormia regina 

(Dethier 1961), Musca autumnalis (De Geer) (Diptera: Muscidae) (Van Geem and Broce 

1986), and Lucilia cuprina (Wiedemann) (Roberts 1974), declines as oocytes mature, 

yet gravid L. sericata showed a 60% increase in searching activity over non gravid flies 

when presented with liver odors (Ashworth and Wall 1995).  

Male adult blow flies have differing protein requirements from females, and 

therefore may not need to use decomposing resources as a feeding site. Lucilia cuprina 

males intake 50% less protein over their life time than females of the same species 

(Roberts 1974). Experiments with P. regina indicate that males are able to ingest enough 

protein by feeding on the fecal specs of protein-fed females (Dethier 1961). Males may 

therefore not respond to protein-derived odors in the same way as females. 
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 Cochliomyia macellaria (Fabricius) and Chrysomya rufifacies (Macquart) 

(Diptera: Calliphoridae) are common blow flies in the southern US and are associated 

with carrion. However, their arrival and colonization patterns on carrion are quite 

different (Fuller 1934b, Early and Goff 1986, Eberhardt and Elliot 2008, Biavati et al. 

2010). Cochliomyia macellaria acts as a primary colonizer, arriving at the carrion source 

within 24 h after its death (Ortiz and Tomberlin 2009), while Ch. rufifacies acts as a 

secondary colonizer arriving 24-48 h after death of the carrion (Fuller 1934b, Early and 

Goff 1986, Eberhardt and Elliot 2008, Cammack and Nelder 2010). Chrysomya 

rufifacies also is a facultative predator, feeding on only the carrion source and other 

larvae present (Baumgartner 1993, Faria 2004). Variation in arrival and colonization 

pattern of carrion indicates they utilize different, or variations within, sets of cues.  

The mechanisms governing C. macellaria and Ch. rufifacies arrival patterns are 

undetermined. These cues may be visual (Wallis 1962, Easton and Feir 1991, Collins 

1996, Gomes et al. 2007), auditory (Wertheim et al. 2005, Wicker-Thomas 2007), tactile 

(Eismann 1988, Easton and Feir 1991), or olfactory (Crombie 1944, Browne 1960, 

Gomes et al. 2007), or dependent on cues released by interspecifics or conspecifics 

inhabiting the resource (Judd 1992, Davies 1998, Diaz-Fleischer and Aluja 2003). I 

investigated the behavioral responses of C. macellaria and Ch. rufifacies of both sexes 

as related to their physiological states to resource varying in age in a Y-tube 

olfactometer to determine if VOCs from the resource served as a mechanism governing 

their response.  
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Materials and Methods 

Adult Fly Colony. Laboratory colonies of C. macellaria and Ch. rufifacies were 

initiated from specimens collected in Brazos County, Texas, USA during spring and 

summer of 2009 and 2010. Larvae were reared at a standard density of 100 larvae on 50 

g of fresh bovine liver in 3-L plastic containers. All rearing was done in a Rheem 

Environmental in walk-in growth chamber (Ashville, NC, USA) at 27°C ± 1°C, 60% 

RH, and a 12:12 (L:D) photoperiod. Dispersing third instar larvae were transferred to 3-

L containers with autoclaved sand (Town & Country Landscape Supply Co., Chicago, 

IL, USA) for pupation. Resulting adults were maintained in 300 cm3 cages (Bioquip 

Products, Rancho Dominguez, CA, USA) held in the growth chamber previously 

described. Granulated sugar (Imperial Sugar Co., Sugar Land, TX, USA), buttermilk 

powder (Saco foods Inc., Middleton, WI, USA), and water were provided ad libitum, 

and 20 g bovine liver was placed in the cage between 2 and 5 d post emergence for 8 h 

to induce ovarian development. 

Behavioral Bioassay. A dual choice olfactometer was used to evaluate the choice of 

calliphorid adults to fresh or aged resource. The olfactometer was comprised of three 

stacked 2.7 cm thick Teflon® sheets, covered by a removable sheet of glass (Fig. 3.1).  
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Fig 3.1. Schematic of the dual choice olfactometer indicating size in centimeters.  
 
 
 An intake port measuring 1.3 cm in diameter was located on the terminal end of each 

arm. An exhaust port measuring 1.7 cm in diameter was located at the terminal end of 

the stem. An additional 1.6 cm access port for introducing the flies to the olfactometer 

was located in the base of the olfactometer stem approximately 2.5 cm from the terminal 

end. Air was pulled through the olfactometer with a 50 mm USB powered computer 

cooling fan (5VDC Fan, Dc Fans, Thermal Management NMB Technologies 

Corporation, Chatsworth, CA, USA) mounted to the external surface of the outflow port 

at the terminal end of the stem.  Airflow through the olfactometer at the access port was 
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measured using an anemometer (Testo 435-1, Testo, Inc., Sparta, NJ, USA) and 

determined to be 0.5 m/sec. Preliminary runs sans resource were conducted with colony 

flies to ensure adequate wind speed and assure lighting, temperature, and ambient odors 

did not induce behavioral responses. These olfactometer integrity checks were replicated 

every three weeks throughout the experiment.  

Air pulled into the olfactometer was cleaned prior to entry by passing it through 

15 mm diameter, 14.5 cm long glass tubes containing activated charcoal (Aqua-Tech, 

Marineland Aquarium Products, Moorpark, CA, USA) and plugged with polyester filter 

floss (Aqua-Tech, Marineland Aquarium Products, Moorpark, CA, USA). These 

columns were attached to 15 cm x 15 cm x 12 cm plastic chambers (S.C. Johnson & 

Son, Inc., Racine, WI, USA), which held the treatments.  Chambers were attached to 

olfactometer arms with 7 cm Teflon® tubing, and chambers were replaced after the 

completion of each experiment. Chambers were assigned and used with a single 

treatment. Two fluorescent light tubes (60 W) served for overhead illumination. 

Temperature in the olfactometer room was approximately 24.0°C ± 2.0°C. 

Experimental Design. Approximately 5 g bovine liver was used as the treatment, as this 

amount is appropriate to stimulate oviposition and feeding by Calliphoridae (Ashworth 

and Wall 1995).  

Resource stock was kept at -20°C. Fresh resource was thawed to room 

temperature and used within 12 h of removal from freezer. Aged resource, which was 

taken from the same source as the fresh liver, was thawed to room temperature and 

incubated in a Rheem Environmental in walk-in growth chamber at 37°C for 24 h to 
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induce putrefaction.  

Behavioral response of C. macellaria and C. rufifacies to the two resources 

described was measured. Individual male, gravid and non-gravid females approximately 

7-d-old were examined for their response to the following paired treatments; a) fresh 

liver and a blank resource chamber (determine attraction and repellency); b) putrefied 

liver and a blank resource chamber (determine attraction and repellency); and c) fresh 

liver and putrefied liver (determine preference). 

Flies were collected from colony cages and placed individually in glass vials (2-

dram, 40 mm height x 17 mm diameter) for sexing prior to experiments. Flies were 

allowed to acclimate for approximately 30 min before their use in the olfactometer. The 

olfactometer was cleaned with 80% ethanol and allowed to air dry for 2 min before 

conducting an experiment. Treatment location in the olfactometer arms was rotated after 

each replicate of an experiment in order to rule out any bias for one side.  Individual flies 

were introduced into the olfactometer and observed for 5 min. First choice and total 

residence time in each arm was observed and analyzed using Odorifferous™ (Brundage 

Inc, Bryan, TX, USA). The software determines initial choice, and residence time for 

regions of the olfactometer. Flies were removed and killed after each test, and females 

were dissected to determine ovarian status. Ovarian status was assessed according to 

Avancini 1986 (Avancini 1986). All females that reached the latest stage of ovarian 

development were considered “gravid,” while those that had not reached this stage were 

considered “non-gravid.” Tests ran from 0800 to 1800 h. Flies which did not choose 

either arm of the olfactometer within the 5 min time span were removed from the data 
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set and replaced with a new fly observation. 

Statistical Analysis. Data on initial choice were analyzed using a Chi Square analysis 

with significance observed at the α = 0.05 level (SPSS 2010). Odifferous™ (Brundage 

Inc., Bryan, TX, USA) calculated the total time spent in any given region of the 

olfactometer, and these data were analyzed with SPSS 17 (SPSS 2010). A Wilcoxson-

Signed-Rank test and a Monte Carlo simulation were used to compare the proportion of 

time spent in each arm of the olfactometer. Data figures were created and managed in 

GraphPad Prism (GraphPad Software, Inc. La Jolla, CA, USA).  

 

Results 

First choice response data yielded predominately non-significant behavior 

responses by C. macellaria (Fig. 3.2). Females with gravid exposed to fresh liver vs. no 

resource did not exhibit a significant first choice for either treatment (χ2 = 0.50; df = 1; P 

= 0.48).  C. macellaria females with undeveloped ovaries had a significant first choice 

for the arm associated with fresh resource (χ2 = 7.0; df = 1; P  = 0.01) while males did 

not exhibit a significant first choice either treatment (χ2  = 0.03; df = 1; P = 0.86).  C. 

macellaria females with fully developed (χ2 = 0.56; df = 1; P = 0.47) or undeveloped 

ovaries (χ2 = 0.00; df = 1; P = 1.000), and males (χ2 = 1.72; df = 1;  P = 0.19) did not 

exhibit a significant first choice to putrefied liver or the no resource treatment. Neither 

C. macellaria females with fully developed (χ2 = 0.04; df = 1; P = 0.84) or undeveloped 

ovaries (χ2 = 0.00; df = 1; P = 1.00), or males (χ2 = 1.000; df = 1; P = 0.32) had 

significant first responses to putrefied or fresh resources when given this choice (Fig 
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3.2).  

Similar results were determined for first response of Ch. rufifacies. Females with 

gravid (χ2 = 0.31; df = 1; P = 0. 577); females with undeveloped ovaries (χ2 = 0.00; df = 

1; P=1.00); and males (χ2 = 0.15; df = 1; P=0.70) exposed to fresh resource vs. no 

resource exhibited a first choice not significantly different from random.  Chrysomya 

rufifacies gravid females trended towards choosing no resource over putrefied resource, 

but this difference was not significant (χ2 (1, N = 50) = 3.200; P = 0.074). Both gravid 

C. rufifacies (χ2 (1, N=50) = 0.860; P = 0.436), and males χ2 (1, N = 50) = 0.360; P = 

0.549) exhibited no significant first choice preference for either putrefied resource or no 

resource. Both gravid (χ2 (1, N = 50) = 3.571; P = 0.059) and non-gravid Ch. rufifacies 

(χ2 (1, N = 50) = 2.286; P = 0.131) trended towards a first choice preference of putrefied 

resource over fresh resource yet these differences were not significant. Ch. rufifacies 

males, however, showed significant first choice preference for putrefied resource over 

fresh (χ2 (1, N = 50) = 9.000; P = 0.004) (Fig. 3.2).  
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Fig 3.2. First response of proportions of 1) Cochliomyia macellaria and 2) Chrysomya rufifacies to A) 
fresh liver vs blank; B) putrefied liver vs blank; and C) putrefied liver vs fresh. * indicates responses 
significantly (P ≤  0.05) different from random.  
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Measuring residence time in the olfactometer arms corresponding to specific 

treatments was much more informative. Wilcoxson-Signed-Rank tests and subsequent 

Monte Carlo simulations indicated additional significant differences in fly response to 

treatments based on ovarian status (Fig. 3.3). Gravid C. macellaria (z = 37.61; P = 

0.027) and non-gravid C. macellaria (z  = 33.79; P = 0.015) spent significantly more 

time in areas associated with fresh liver over blanks, while males showed no significant 

difference in residence time (z = -0.992; P = 0.310). Neither gravid C. macellaria (z = -

0.776; P = 0.434), non-gravid C. macellaria (z = -1.292; P = 0.099), nor males (z = -

1.624; P = 0.055) exposed to putrefied resource vs. no resource showed any significant 

difference in residence time, although males and undeveloped females trended towards 

the no resource arm. Finally, neither gravid C. macellaria (z = -0.615; P = 0.537), non-

gravid C. macellaria (z = -0.907; P = 0.366), nor males (z =-0.342; P = 0.740) exposed 

to putrefied resource vs. fresh resource spent significantly great time in either arm (Fig. 

3.3).  

Chrysomya rufifacies gravid females (z = -1.932; P = 0.027) spent significantly 

more time in areas associated with fresh resource over no resource, while non-gravid 

females spent significantly more time (z = -2.089; P = 0.018) in areas associated with no 

resource over fresh resource. Chrysomya rufifacies males showed no significant 

difference in residence time between areas associated with fresh resource and those 

associated with no resource (z = -0.559; P = 0.573).  
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Chrysomya rufifacies gravid females (z = -1.784; P = 0.034) spent significantly 

more time in areas associated with putrefied resource vs. no resource. Neither Ch. 

rufifacies non-gravid females (z = -0.654; P = 0.520) or males (z = -0.787; P = 0.435) 

spent significantly more time in either areas associated with putrefied resource or areas 

associated with no resource.   Chrysomya rufifacies gravid females (z = -2.349; P = 

0.018) and males (z = -1.811; P = 0.035) spent significantly more time in areas 

associated with putrefied resource over those associated with fresh. Non-gravid Ch. 

rufifacies (z = 33.78; P = 0.054) showed no significant difference in residence time 

between areas associated with fresh resource and those associated with putrefied 

resource (Fig. 3.3).  

Discussion 

First response and residence time were recorded in these experiments with the 

response of flies varying depending on the variable measured. First response appears to 

be much less informative than residence time.  While significance was achieved in the 

first choice analyses of C. macellaria females and Ch. rufifacies males (Fig. 3.2), 

observed activity in the olfactometer indicated a need for acclamation to the 

environment before an “informed” choice could be made. First choice analysis confirms 

this observation, yielding nearly random first choice data in all but two experiments 

treatments. Most adults spent the initial 30 s of exposure in the olfactometer exploring 

the environment before resting in an area associated with particular bait.  Therefore, all 

discussion will be based on residence time responses. 

 



 

 

53 

 

Fig 3.3. Time in seconds (mean ±  SE) spent in either test or control arm for 1) Cochliomyia 
macellaria and 2) Chrysomya rufifacies to A) fresh liver (test) vs blank (control); B) putrefied liver 
(test) vs blank (control); and C) putrefied liver (test) vs fresh (control). * indicates significant (P ≤  
0.05)  difference in residence time.  
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As demonstrated in this study with C. macellaria and Ch. rufifacies, primary and 

secondary myiasis producers use differing semiochemicals to locate and colonize hosts 

(Aak et al. 2010). Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae), the 

primary screw worm, is attracted to solutions of indol, skatole, and phenol, all volatiles 

associated with bacterial decomposition (Grabbe and Turner 1973, Hammack and Holt 

1983). Similarly, L. cuprina and L. sericata females were significantly more attracted to 

sheep emitting volatiles such as indol and phenol than those that were not associated 

with such volatiles (Ashworth and Wall 1994). The results of these studies were 

replicated both in the lab (Grabbe and Turner 1973) and in the field (Ashworth and Wall 

1994), indicating the importance of semiochemicals as a mechanism governing attraction 

response of adult flies.  

Bacteria present on the resource most likely are the primary source of the 

semiochemicals utilized by blow flies to locate resources.  Cochliomyia homnivorax 

adults are attracted to bacterially infected blood, and exhibited a 77% increase in landing 

events on blood incubated for at least 48 h. After 96 h of incubation, however, attraction 

dropped by 67%, indicating a change in VOCs profile as bacteria aged (Chaudhury et al. 

2010). Similarly, decomposition of sheep wool by Pseudomonas aeruginosa results in 

the production of sulphurous compounds (Ashworth and Wall 1994) elicited the 

searching behavior by L. sericata  adults which continued until the compounds 

dissipated (Wall 1994). Sulfurous compounds are also highly attractive to many other 

calliphorid species (Gill and Penney 1979, Ashworth and Wall 1994) including those 

considered primarily colonizers of carrion (Aak et al. 2010). These compounds are most 
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prevalent during the early to mid-stages of decay (Statheropoulos et al. 2005) and are no 

longer detected during the concluding stages of decay (Vass 2002, Dekeirsschieter et al. 

2009).  

This ability to use VOCs to locate resources could explain the successional 

patterns observed for Diptera colonizing carrion. For instance, carrion in Hawaii 

attracts Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) during the fresh stages of 

decomposition, and Chrysomya megacephala (Fabricius) (Diptera: 

Calliphoridae) and Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) during 

bloat (Early and Goff 1986) Similarly, Chrysomya regalis (Robineau-Desvoidy) 

(Diptera: Calliphoridae) arrives during the fresh stage of decomposition, 

while Chrysomya abliceps (Wiedemann) (Diptera: Calliphoridae) arrives as the carrion 

is entering into bloat (Braack 1987). This disparity in arrival time indicates differing 

cues used by each species to locate appropriate resources for colonization resulting in 

greater offspring survivorship (Schoenly and Reid 1987, Greenberg 1991, Anderson and 

VanLaerhoven 1996, Archer and Elgar 2003, Battan Horenstein et al. 2010). C. 

macellaria females, both gravid and non-gravid, gave a positive response to fresh liver 

when presented alone. This result is not surprising as C. macellaria has been shown to 

be a primary colonizer in the US (Hall 1993, De Jong and Hoback 2006, Gruner et al. 

2007), Central America (Jiron 1981), and South America (Gomes et al. 2009, Battan 

Horenstein et al. 2010). One would therefore expect these flies to be attracted to resource 

in the early stages of decay. However, these results do not demonstrate acceptance of the 

resource as an oviposition site. 
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 Cochliomyia macellaria did not demonstrate a preference for fresh or putrid 

liver when given a choice.  Olfaction might not be an independent mechanism-regulating 

acceptance of a resource. Gomes et al. (2007) found that Ch. megacephala used vision in 

concert with olfaction to evaluate and accept a potential landing site. Laboratory tests 

showed a significant increase of 30% landing on high contrast landing sites versus 

patterned or low contrast landing sites (Gomes et al. 2007). Similarly, L. sericata 

attraction to high-contrast visual cues when associated with odors of liver increased by 

50% over either visual or olfactory cues alone (Wall and Fisher 2001). In addition to 

visual stimuli, calliphorids may use tactile stimuli to evaluate a potential oviposition 

source. In laboratory tests, P. regina females oviposited 70% more often when tactilely 

stimulated than those who were not (Wallis 1962).  This response is due to the presence 

of tactile sensilla on the tarsi and ovipositor (Wallis 1962). It is therefore possible that 

while olfaction may be an important mechanism in the acceptance of a resource for 

oviposition, scent may need to be compounded by additional stimuli before full 

acceptance is reached.  

Response of Ch. rufifacies females to the resources examined corresponded with 

ovarian status.  Gravid Ch. rufifacies were repelled when only provided putrefied liver as 

a choice. This is counter-intuitive, since Ch. rufifacies is a secondary colonizer, and 

shows significant levels of attraction to carrion in the later stages of decay. However, 

when given a choice between fresh and putrid liver, gravid Ch. rufifacies females spent 

more time in areas associated with putrid, rather than fresh, liver. Based on these results, 

the resource might only provide part of the stimulus necessary for females to exhibit 
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attraction as Ch. rufifacies larvae are facultative predators. (Baumgartner 1993). 

Therefore, Ch. rufifacies adults might respond to resources already infested with 

heterospecific larvae than resources without. 

Male C. macellaria and C. rufifacies did not show significant attraction to fresh 

or putrid liver, which may indicate that either males do not locate resources using 

olfaction, or they have little need to locate a large protein resource. Male blow flies 

require a protein meal in order to produce sperm (Aak and Knudsen 2011) although 

protein requirements are significantly less than females (Stoffolano et al. 1995). 

Stoffolano et al. (1995) found that protein-starved P. regina males were able to meet 

dietary needs by feeding on fecal specs of protein fed females. Therefore, while protein 

is necessary for proper male development, it is not needed in such quantities that carrion 

resource location is vital for their survivorship. Males may be attracted to carrion to 

locate a mate, however. Gruner et al. (2007) collected males arrived at carrion, but in 

smaller numbers than ovipositing females (< 3% of overall trap numbers). It does not 

appear that decomposition state of the resource is what attracts the males to a carrion 

resource. Either the males are attracted to carrion regardless of decomposition state, or 

they use another cue.  

 The mechanisms that govern the attraction to an oviposition resource by 

calliphorid flies need to be understood completely. This knowledge will lead to a deeper 

understanding of colonization mechanisms, which, in turn, may be applied to such 

diverse applications as forensic entomology and livestock pest management. Since 

calliphorids are important in both industries, the knowledge of oviposition preference 
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could lead to a better time of colonization estimation in cases of human death, 

mechanisms for control of myiasis producing flies in livestock, and the development of 

more attractive traps for monitoring fly populations.  
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CHAPTER IV 

ATTRACTION OF ADULT COCHLIOMYIA MACELLARIA AND CHRYSOMYA 

RUFIFACIES TO CONSPECIFIC AND HETEROSPECIFIC EGGS 

 

 

Introduction 

 Blow flies (Diptera: Calliphoridae) are generally the first arthropods to colonize 

vertebrate carrion (Byrd and Butler 1996).  Ten carrion-inhabiting blow fly species are 

known in Texas (McAlpine 1981, Tenorio et al. 2003). In most instances, Calliphora 

vicina (Robineau-Desvoidy) (Diptera: Calliphoridae) and Phormia regina (Meigen) 

(Diptera: Calliphoridae) colonize fresh remains during cool months (November through 

February )(Tenorio et al. 2003, Bucheli et al. 2009). Cochliomyia macellaria (Fabricius) 

(Diptera: Calliphoridae) and Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) 

are the dominant colonizers of carrion during warm months (Tenorio et al. 2003).  

Cochliomyia macellaria and Ch. rufifacies larvae exploit carrion, yet temporal 

variation occurs with adult arrival and oviposition on carrion (Fuller 1934b, Early and 

Goff 1986, Eberhardt and Elliot 2008, Biavati et al. 2010). Cochliomyia macellaria acts 

as a primary colonizer, arriving within 24 h after death (Ortiz and Tomberlin 2009, 

Biavati et al. 2010), while Ch. rufifacies acts as a secondary colonizer arriving 24-48 h 

after death (Fuller 1934b, Early and Goff 1986, Eberhardt and Elliot 2008, Cammack et 

al. 2010). Chrysomya rufifacies larvae are also facultatively predaceous (Fuller 1934b) 

on C. macellaria larvae (Baumgartner 1993).  Arrival time significantly affects the 

fitness of both species, as Ch. rufifacies are more fit if they arrive after C. macellaria, 
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while C. macellaria are more fit if they arrive before Ch. rufifacies (Brundage unpub).  

Variation in time of arrival and colonization indicates cues associated with 

carrion are used by C. macellaria and Ch. rufifacies to locate and assess resources.  

These cues may be visual (Wallis 1962, Easton and Feir 1991, Collins 1996, Gomes et 

al. 2007), auditory (Wertheim et al. 2005, Wicker-Thomas 2007), tactile (Eismann and 

Rice 1987, Easton and Feir 1991), or olfactory (Crombie 1944, Browne 1960, Gomes et 

al. 2007), and may emanate from the resource itself (Wall and Fisher 2001, Gomes et al. 

2007, Ortiz and Tomberlin 2009), or interspecifics or conspecifics inhabiting the 

resource (Judd 1992, Davies 1998, Diaz-Fleischer and Aluja 2003). Volatiles associated 

with ovipositing conspecific (Browne 1960) and interspecific females (Rosati and 

Laerhoven 2010) are also used to locate resources.  Lam et al. (2007) determined 

ovipositing Muscidae (Diptera) use conspecific egg-associated volatiles to assess 

oviposition sites. Muscids ovipositing in conjunction with conspecifics suffered lower 

levels of predation than those arriving later (Lam et al. 2007).  Similarly, Lucilia cuprina 

(Meigen) (Diptera: Calliphoridae) preferentially oviposit in the presence of other 

actively ovipositing females (Browne et al. 1968). This behavior results in maggot 

masses which may accelerate digestion of the resource and enhance larval feeding 

(Browne 1958).  

Volatiles from bacteria associated with blow fly larvae are also used by 

conspecific and intraspecific adults to assess suitability of a resource for 

oviposition(Ashworth and Wall 1994).  Lucilia sericata (Meignen) (Diptera: 

Calliphoridae) are attracted to Pseudomonas aeruginosa derived volatiles when 
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searching for oviposition sites. Similarly, calcium sulphide, calcium carbonate, and 

sodium sulphide all attract gravid L. sericata and L. cuprina, and are associated with 

larval bacteria (Ashworth and Wall 1994). I hypothesize C. macellaria and C. rufifacies 

respond to olfactory cues from conspecific and interspecific eggs and that microbes 

associated with the eggs serve as the primary mechanism.   

 

Materials and Methods 

Adult Fly Colony. Laboratory colonies of C. macellaria and Ch. rufifacies were 

initiated from specimens collected in Brazos County, Texas, USA during spring and 

summer of 2009 and 2010. Larvae were reared at a standard density of 100 larvae on 50 

g of fresh bovine liver in 3-L plastic containers. All rearing was done in a Rheem 

Environmental in walk-in growth chamber (Ashville, NC, USA) at 27°C ± 1°C, 60% 

RH, and a 12:12 (L:D) photoperiod. Dispersing third instar larvae were transferred to 3-

L containers with autoclaved sand (Town & Country Landscape Supply Co., Chicago, 

IL, USA) for pupation. Resulting adults were maintained in 300 cm3 cages (Bioquip 

Products, Rancho Dominguez, CA, USA) held in the growth chamber previously 

described. Granulated sugar (Imperial Sugar Co., Sugar Land, TX, USA), buttermilk 

powder (Saco foods Inc., Middleton, WI, USA), and water were provided ad libitum, 

and 20 g bovine liver was placed in the cage between 2 and 5 d post emergence for 8 h 

to induce ovarian development. 

Behavioral Bioassay. A dual choice olfactometer was used to evaluate the choice of 

calliphorid adults to fresh or aged liver. The olfactometer was comprised of three 
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stacked 2.7 cm thick sheets of solid Teflon®, covered by removable sheet glass (Fig. 

3.1).  The intake port on each arm measured 1.3 cm in diameter and was located at the 

terminal end. The exhaust port located at the terminal end of the stem measured 1.7 cm 

in diameter. A 1.6 cm access port for introducing the flies to the olfactometer was 

located in the base of the olfactometer approximately 2.5 cm from the terminal end. Air 

was pulled through the olfactometer with a 50 mm USB powered computer cooling fan 

(5VDC Fan, Dc Fans, Thermal Management NMB Technologies Corporation, 

Chatsworth, CA, USA) mounted to the external surface of the outflow port at the 

terminal end of the stem.  Airflow through the olfactometer at the access port was 

measured using an anemometer (Testo 435-1, Testo, Inc., Sparta, NJ, USA) to be 0.5 

m/sec (based on a 90 s average). Preliminary runs sans resource were conducted with 

colony flies to ensure adequate wind speed and assure lighting, temperature, and ambient 

odors did not induce behavioral responses. These "olfactometer integrity checks" were 

replicated throughout the experiment.  

Air flowed through 15 mm diameter, 14.5 cm long glass tubes containing 

activated charcoal (Aqua-Tech, Marineland Aquarium Products, Moorpark, CA, USA) 

and plugged with polyester filter floss (Aqua-Tech, Marineland Aquarium Products, 

Moorpark, CA, USA). The columns were attached to 15 cm x 15 cm x 12 cm plastic 

chambers (S.C. Johnson & Son, Inc., Racine, WI, USA), which were used to hold the 

treatments for all experiments.  Chambers were attached to olfactometer arms with 7 cm 

Teflon® tubing, and chambers were replaced after the completion of each experiment. 

Two fluorescent light tubes (60 W) served for overhead illumination. Temperature in the 
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olfactometer room was 24.0 ± 2.0°C. For all experiments, 50 males, 50 gravid females, 

and 50 non-gravid females were individually observed for five minutes to determine 

response to heterospecific and conspecific eggs of various ages. Twelve comparative 

experiments were performed for C. macellaria and Ch. rufifacies to conspecific and 

heterospecific eggs (Table 4.1). 

 
Table 4.1. Behavioral bioassay experiments. Each experiment recorded the initial 
response and the resident time of 50 males, 50 gravid females, and 50 non-gravid 
females for 5 min (experiments 1-12), or the initial response and resident time of 50 
gravid and 50 non-gravid females for 2 min (experiments 13-28). Experiments 1-12 
represent the initial behavioral assay experiments. Experiments 13-20 represent the 
surface sterilized egg behavioral assay experiments. Experiments 21-28 represent the 
surface microbe behavioral assay experiments.  
Experiment # Egg age Species of Egg Species of Adults 
1 < 3 h C. macellaria C. macellaria 
2 < 3 h Ch. rufifacies C. macellaria 
3 < 3 h C. macellaria Ch. rufifacies 
4 < 3 h Ch. rufifacies Ch. rufifacies 
5 3-6 h C. macellaria C. macellaria 
6 3-6 h Ch. rufifacies C. macellaria 
7 3-6 h C. macellaria Ch. rufifacies 
8 3-6 h Ch. rufifacies Ch. rufifacies 
9 6-9 h C. macellaria C. macellaria 
10 6-9 h Ch. rufifacies C. macellaria 
11 6-9 h C. macellaria Ch. rufifacies 
12 6-9 h Ch. rufifacies Ch. rufifacies 
13 Surface sterilized 

<3 h 
C. macellaria C. macellaria 

14 Surface sterilized 
<3 h 

Ch. rufifacies C. macellaria 

15 Surface sterilized 
<3 h 

C. macellaria Ch. rufifacies 

16 Surface sterilized 
<3 h 

Ch. rufifacies Ch. rufifacies 

17 Surface sterilized 
3-6 h 

C. macellaria C. macellaria 

18 Surface sterilized 
3-6 h 

Ch. rufifacies C. macellaria 
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Table 4.1, continued 
Experiment # Egg age Species of Egg Species of Adults 
19 Surface sterilized 

3-6 h 
C. macellaria Ch. rufifacies 

20 Surface sterilized 
3-6 h 

Ch. rufifacies Ch. rufifacies 

21 Microbes from 
eggs < 3 h 

C. macellaria C. macellaria 

22 Microbes from 
eggs < 3 h 

Ch. rufifacies C. macellaria 

23 Microbes from 
eggs < 3 h 

C. macellaria Ch. rufifacies 

24 Microbes from 
eggs < 3 h 

Ch. rufifacies Ch. rufifacies 

25 Microbes from 
eggs 3-6 h 

C. macellaria C. macellaria 

26 Microbes from 
eggs 3-6 h 

Ch. rufifacies C. macellaria 

27 Microbes from 
eggs 3-6 h 

C. macellaria Ch. rufifacies 

28 Microbes from 
eggs 3-6 h 

Ch. rufifacies Ch. rufifacies 

 

General Experimental Design. For both species, approximately 7-d-old flies were 

collected from colonies and placed individually in clean glass vials (2-dram, 40 mm 

height x 17 mm diameter) for sexing prior to experiments. The olfactometer was cleaned 

with 80% ethanol prior to the introduction of a specimen. Treatment location the 

olfactometer arms was rotated after each fly tested in order to rule out any bias for one 

side.  Individual flies were introduced into the olfactometer and observed for two 

minutes. First choice and total residence time in each arm was observed and analyzed 

using Odorifferous(TM)  (Brundage Inc, Bryan, TX, USA). The software determines initial 

choice, final choice and residence time for regions of the olfactometer. Flies were 

removed and killed after each test. Females were dissected and ovarian status recorded 
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following Avancini 1986 (Avancini 1986). Females with ovarioles that had not reached 

the maximum size were considered “non-gravid,” while those that had reached the 

maximum size were considered “gravid” and physiologically ready to oviposit. 

Experiments were conducted from 0800 to 1800 h.  

Egg Collection. Approximately 5000 eggs (0.5 g) on 1.0 g fresh bovine liver were used 

as the treatment for these experiments, while fresh liver alone served as the control. Pilot 

studies using the dual choice olfactometer confirmed the volatile capability of this egg 

mass. Eggs were collected from colonies by presenting flies with fresh bovine liver for 

one h. Using fresh liver as an oviposition resource allowed for the rapid collection of 

similarly aged eggs. Once eggs were collected, they were aged in a Rheem 

Environmental walk-in growth chamber 27°C.  

Response to Eggs of Various Ages. Behavioral response of C. macellaria and Ch. 

rufifacies to conspecific and heterospecific eggs of different ages was examined. Adult 

flies previously described were examined for their response to eggs aged: a) < 3 h; b) 3-6 

h; c) 6-9 h. The oldest time treatment was selected as it was closest to egg hatch (Byrd 

and Butler 1996, 1997).  

Response to Non-sterile and Sterile Eggs. Eggs < 3 h and 3-6 h old resulted in 

significant (P < 0.05) behavioral responses of adult blow flies in the previous 

experiment. Therefore, these age groups were used to determine if attraction was 

governed by egg respiration or associated microbes. Results from initial egg age 

experiments also indicated that 2-minute observations were sufficient to determine 

residence time in behavioral assays. Eggs of appropriate ages were surface sterilized and 
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presented to individual gravid and non-gravid females in the olfactometer. Eggs were 

surface sterilized after Brundage et al. (unpublished data). Sterilization treatments on 

both C. macellaria and Ch. rufifacies eggs indicated a 10-minute Lysol® soak yielded 

100% surface sterilization based on agar-based culture methods with 85% egg eclosion 

(Brundage, unpublished data).  

 Eggs were placed on a sterile Millipore 20 µm membrane filter (Millipore, 

Billerica, MA), and placed in a 25 mm stainless steel leur-lock filter holder (Millipore, 

Billerica, MA). The filter holder was attached to a sterile glass leur-lock syringe 

(Thermo Fisher Scientific, Waltham, MA), loaded with 20 ml Professional Lysol® 

Antibacterial All Purpose Cleaner Concentrate (undiluted) (Reckitt Benckiser. 

Parsippany, NJ). Ten ml Lysol® was washed through the filter, thereby submerging the 

eggs in disinfectant. Eggs were soaked for 10 min, and then rinsed in 20 ml sterile insect 

saline to remove residual Lysol®. Surface sterilized eggs were transferred to sterilized 15 

cm x 15 cm x 12 cm plastic chambers (S.C. Johnson & Son, Inc., Racine, WI, USA) 

(Table 4.1).  

Response to Surface Microbes. To determine if microbes and associated oviposition 

excretions were responsible for the behavioral response of the flies, eggs from the 

previous age categories identified were killed using a tissue homogenizer (Kinematica 

AG, Nurnberg, Germany).   

 In order to increase focus on microbes only associated with eggs, a sterile liver and 

agar mixture, adapted from Sherman 1995 (Sherman and Tran 1995) was used to collect 

eggs from colonies. Approximately 20 g fresh bovine liver was placed at 37°C in a 
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Rheem Environmental Chamber for 24 h to induce putrefaction. The putrefied liver was 

pureed and mixed with 20 g nutrient agar. The mixture was autoclaved and 30 ml 

aliquots were partitioned into sterile plastic cups (Bio-Serv, Frenchtown, NJ). 

Oviposition “troughs,” 5 mm long, 2 mm wide, and 5 mm deep were cut into the 

solidified mixture to provide arms for oviposition. Cups were presented to laboratory 

colonies for one h to collect the requisite 5000 eggs.  

 Eggs were aseptically removed and placed in sterile 25 ml centrifuge tubes 

(Thermo Fisher Scientific, Waltham, MA). Eggs were mixed with 9 ml sterile PBS and 

homogenized using a PolyTron handheld tissue homogenizer (Kinematica AG, 

Nurnberg, Germany). The resulting liquid was filtered through a sterile, low protein 

binding Millipore 0.22 µm membrane filter (Millipore, Billerica, MA) to collect any 

microbes and other substances associated with the eggs. The filter with collected 

microbes was transferred to a sterile plastic chamber as described above and used for 

behavioral assays as previously described.  

Quantification of Bacterial Diversity on Eggs Over Time. Results from the previously 

described experiments indicated microbes may serve as a mechanism governing blow fly 

attraction. In order to assess the microbial community associated with these eggs 

overtime, bacterial DNA was isolated from eggs representing each age group (< 3 h, 3-6 

h, and 6-9 h old) and associated bacteria was identified via 454 pyrosequencing.  

DNA Isolation. DNA from surface microbes was extracted from egg samples of each 

species and each egg age using a modified phenol extraction method. Eggs were 

aseptically collected as described above, and 0.01 g eggs of each age from each species 
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was placed in individual Fisherbrand microcentrifuge tubes (Thermo Fisher Scientific, 

Waltham, MA) and stored at -80°C. Eggs were thawed and crushed using Fisherbrand 

Pellet Pestles (Thermo Fisher Scientific, Waltham, MA). Crushed tissues were 

suspended in 567 ml TE buffer. 30 µl 10% SDS was added to the mixture, with 3 µl 

20mg/ml proteinase K, and 10 µl lysozyme. The mixture was incubated at 37 C for one 

h. 100 µl 5M NaCl was added, along with 80 µl CTAB/NaCL solution. Mixture was 

incubated for 10 min at 65°C. Equal volumes of chloroform and isoamyl alcohol were 

added, and the mixture centrifuged at 24,500 x g for 5 min. Supernatant was decanted 

into a fresh tube mixed with an equal volume of phenol, chloroform, and isoamyl 

alcohol. The mixture was centrifuged at 24,500 x g for 5 min. Supernatant was decanted 

into a fresh tube and 0.6 ml isoproponol was added. The tube was manually shaken to 

precipitate the nucleic acids, and then centrifuged at 4000 x g for 2 minutes. The pellet 

was transferred to a clean tube.   

Pyrosequencing. DNA products were subject to 454 pyrosequencing performed by 

Research and Testing Laboratory (Lubbock, TX), and analyzed on the Genome 

Sequencer FLX instrument using Titanium protocols and reagents (Roche, Indianapolis, 

IN) as described by Dowd et al. (Dowd et al. 2008).  

 Sequences were identified to their closest operational taxonomic units (OTUs) at a 

minimum of 80% identity using a naïve Bayesian classifier, the Ribosomal Database 

Project (RDP) curated by the Center for Microbial Ecology at Michigan State University 

(Wang et al. 2007). All sequences that did not match at the minimum of 80% identity 

were discarded and were assumed to be of poor quality or derived from unclassified 
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bacteria.  

Statistical Analysis. Data on initial choice were analyzed using a Chi Square analysis 

with significance observed at the α = 0.05 level. Odorifferous(TM) provided some basic 

calculations such as the total time spent in any given region of the olfactometer, and 

these data were inputted into SPSS 17 (SPSS 2010) for further analysis. A Wilcoxson-

Signed-Rank test and a Monte Carlo simulation were used to compare the proportion of 

time spent in each arm of the olfactometer. Data figures were created and managed in 

GraphPad Prism (GraphPad Software, Inc. La Jolla, CA, USA).  

 

Results 

Egg Age Behavioral Bioassay: Conspecific Response to Eggs < 3 h Old. Data for fly 

responses to fresh eggs (< 3 h old) yielded predominantly non-significant first choice 

response, with a few notable exceptions. Chrysomya rufifacies gravid females exposed 

to conspecific eggs were significantly attracted to the eggs over the control (χ2 = 5.488; 

df = 1; P = 0.019). Neither Ch. rufifacies non-gravid females (χ2 = 0.235; df = 1; P = 

0.628) nor males (χ2 = 1.280; df = 1; P = 0.258) were significantly attracted to either 

conspecific eggs or the control according to first choice data. Based on first choice, 

gravid C. macellaria did not significantly respond to conspecific fresh eggs (χ2 = 0.067; 

df = 1; P = 0.796), nor did non-gravid females (χ2 = 1.373; df = 1; P = 0.241) or males 

(χ2 = 0.831; df = 1; P = 0.362) (Fig. 4.1).   

 Wilcoxon-rank-sum tests and subsequent Monte Carlo simulations of residence 

time indicated additional significant differences in fly response to treatments based on 
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sex and ovarian status. Statistical tests also revealed some differences between first 

choice and residence time. Chrysomya rufifacies gravid females exposed to conspecific 

eggs spent significantly more time in olfactometer arms associated with eggs over the 

control (z  = -2.126; P = 0.016). Neither Ch. rufifacies non-gravid (z  = -0.369; P = 

0.352) nor males (z  = -0.014; P = 0.493) were significantly attracted to either 

conspecific eggs or the control. Cochliomyia macellaria adults presented with 

conspecific fresh eggs did not show significant residence time response for gravid 

females (z  = -0.897; P = 0.187) or males (z  = -0.521; P = 0.299), but non-gravid 

females (z  = -1.714; P = 0.044) spent significantly more time in arms associated with 

conspecific eggs (Fig. 4.1).   

 

Fig 4.1. Mean residence time (mean ±  SE) of adult flies presented with conspecific eggs < 3 h old in 
the dual choice olfactometer. * indicates significant (P ≤  0.05) difference in residence time.  
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Heterospecific Response to Eggs < 3 h Old. Chrysomya rufifacies adults presented 

with fresh C. macellaria eggs exhibited some significant first choice data. First choice 

results for gravid (χ2 = 3.125; df = 1; P = 0.077) and pre-gravid females (χ2 = 0.074; df = 

1; P = 0.785) were not significant, but response for males was significant for fresh 

heterospecific eggs (χ2 = 5.255; df = 1; P = 0.022). Cochliomyia macellaria adults 

presented with heterospecific eggs showed no significant first choice data gravid females 

(χ2 = 0.510; df = 1; P = 0.475), non-gravid females (χ2 = 0.065; df = 1; P = 0.799), or 

males (χ2 = 0.020; df = 1; P = 0.889) (Fig. 4.2).   

Chrysomya rufifacies adults presented with fresh C. macellaria eggs exhibited 

significant residence time responses. Gravid females (z = -2.368, P = 0.009) spent 

significantly more time in arms associated with heterospecific eggs, while non-gravid 

females (z = -1.337, P = 0.089) and males  (z = -1.531, P = 0.062) showed no 

significant difference in residence time.  Cochliomyia macellaria gravid presented with 

heterospecific eggs spent significantly more time in arms associated with controls over 

eggs (z = -3.838, P < 0.0001), while non-gravid females (z = -0.377, P = 0.362) and 

males (z = -1.047, P = 0.144) showed no significant difference in residence time (Fig. 

4.2). 
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Fig 4.2. Mean residence time (mean ±  SE) of adult flies presented with heterospecific eggs < 3 h old 
in the dual choice olfactometer. * indicates significant (P ≤  0.05) difference in residence time. 
 
 
Conspecific Response to Eggs 3-6 h Old. Adult response to conspecific eggs aged 3-6 

h yielded insignificant first choice response data. Chrysomya rufifacies adults exposed to 

conspecific eggs showed no significant attraction to the eggs or control for gravid 

females (χ2 = 0.074; df = 1; P = 0.785), non-gravid females (χ2 = 0.914; df = 1; P = 

0.339) or males (χ2 = 2.000; df = 1; P = 0.157).  Cochliomyia macellaria adults 

presented with conspecific eggs also did not show significant first choice response for 

gravid females (χ2 = 3.169; df = 1; P = 0.075), non-gravid females (χ2 = 0.111; df = 1; P 

= 0.739), or males (χ2 = 0.000; df = 1; P = 1.000) (Fig. 4.3).   

Wilcoxon-rank-sum tests and subsequent Monte Carlo simulations analyzing 

residence time data indicated one significant difference in fly response to treatments 
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based on sex and ovarian status. Gravid Ch. rufifacies females (z  = -0.211; P = 0.417), 

non-gravid females (z  = -0.195; P = 0.428) and males (z  = -1.374; P = 0.084) did not 

spend significantly more time in olfactometer arms associated with conspecific eggs 

over those associated with the control. Gravid C. macellaria adults (z  = -2.965; P = 

0.002) spent significantly more time in arms associated conspecific eggs than the 

control, while non-gravid females (z  = -0.395; P = 0.348) and males showed no 

significant residence time response (z  = -0.334; P = 0.367) (Fig. 4.3). 

 

Fig 4.3. Mean residence time (mean ±  SE) of adult flies presented with conspecific eggs 3-6 h old in 
the dual choice olfactometer. * indicates significant (P ≤  0.05) difference in residence time.  
 
 
Heterospecific Response to Eggs 3-6 h Old. Chrysomya rufifacies adults presented 

with C. macellaria eggs exhibited no significant first choice data for gravid females (χ2  

= 0.720; df = 1; P = 0.396), non-gravid females (χ2 = 1.250; df = 1; P = 0.264), or males 
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(χ2 = 0.860; df = 1; P = 0.354).  Gravid C. macellaria females presented with 

heterospecific eggs were significantly attracted to the control (χ2 = 6.480; df = 1; P = 

0.011), while non-gravid females (χ2 = 0.267; df = 1; P = 0.703) and males (χ2 = 0.080; 

df = 1; P = 0.777) showed no significant first choice (Fig. 4.4).  

Residence time analysis yielded gravid Ch. rufifacies spent significantly more 

time in arms associated with C. macellaria eggs (z  = -1.628; P = 0.049).  Non-gravid 

females (z  = -0.789; P = 0.209) and males (z  = -1.282; P = 0.099), however, both 

show no significant difference in residence time. Cochliomyia macellaria adults 

presented with heterospecific eggs showed no significant residence time data for gravid 

females (z  = -1.374, P = 0.084), non-gravid females (z  = -1.192; P = 0.122), or males 

(z  = -1.041; P = 0.148) (Fig. 4.4).  

 

Fig 4.4. Mean residence time (mean ±  SE) of adult flies presented with heterospecific eggs 3-6 h old 
in the dual choice olfactometer. * indicates significant (P ≤  0.05) difference in residence time. 
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Conspecific Response to Eggs 6-9 h Old. Eggs aged 6-9 h yielded all insignificant first 

choice responses. Chrysomya rufifacies adults exposed to conspecific eggs showed no 

significant attraction to the eggs and liver treatment over the liver alone for females with 

gravid females (χ2 = 0.080; df = 1; P = 0.777), non-gravid females (χ2 = 0.220; df = 1; P 

= 0.759) or males (χ2 = 0.818; df = 1; P = 0.462).  Cochliomyia macellaria adults 

presented with conspecific eggs also did not show significant first choice response for 

fully developed adults (χ2 = 0.926; df = 1; P = 0.447), non-gravid (χ2 = 0.563; df = 1; P 

= 0.544), or males (χ2 = 0.806; df = 1; P = 0.369) (Fig. 4.5).   

Wilcoxon-rank-sum tests and subsequent Monte Carlo simulations analyzing 

residence time data also did not indicate significant differences in fly response to 

treatments based on sex or ovarian status. Gravid Ch. rufifacies adults (z  = -0.064; P = 

0.472) and males (z = -0.160; P = 0.439) did not spend significantly more time in 

olfactometer arms associated with conspecific eggs over those associated with liver 

alone, while females with non-gravid ovaries (z  = -1.694; P = 0.041) spent more time in 

arms associated with conspecific eggs.  Gravid C. macellaria females (z  = -2.075; P = 

0.051), non-gravid females (z  = -1.89; P = 0.25) and males (z  = -1.14; P = 0.23) 

showed no significant residence time response (Fig. 4.5). 
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Fig 4.5. Mean residence time (mean ±  SE) of adult flies presented with conspecific eggs 6-9 h old in 
the dual choice olfactometer. * indicates significant (P ≤  0.05) difference in residence time.  
 
 
Heterospecific Response to Eggs 6-9 h Old. Chrysomya rufifacies adults presented 

with C. macellaria eggs exhibited no significant first choice data for fully developed 

females (χ2 = 1.29; df = 1; P = 0.26), non-gravid females (χ2 = 0.00; df = 1; P = 1.00), or 

males (χ2 = 0.00; df = 1; P = 1.00).  Cochliomyia macellaria adults presented with 

heterospecific eggs showed no significant first choice for developed females (χ2 = 0.93; 

df = 1; P = 0.37), non-gravid females (χ2 = 0.36; df = 1; P = 0.55) or males (χ2 = 0.08; P 

= 0.78) (Fig. 4.6).  

 Residence time data showed that Ch. rufifacies fully developed females (z  = -

1.81; P = 0.07), non-gravid females (z  = -0.253; P = 0.393), and males (z  = -0.93; P = 

0.18) showed no significant difference in residence time when presented with 
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heterospecific eggs. Cochliomyia macellaria adults presented with heterospecific eggs 

showed no significant residence time data for fully developed females (z  = -0.86; P = 

0.19), non-gravid females (z  = -0.08; P = 0.47), or males (z  = -0.18; P = 0.44) (Fig. 

4.6).  

 

Fig 4.6. Mean residence time (mean ±  SE) of adult flies presented with heterospecific eggs 6-9 h old 
in the dual choice olfactometer. * indicates significant (P ≤  0.05) difference in residence time. 
 
 
Conspecific Response to Surface-Sterilized Eggs < 3 h Old. Sterile fresh eggs (< 3 h 

old) yielded predominantly insignificant first choice response data, with one exception. 

Gravid Ch. rufifacies exposed to conspecific surface-sterilized eggs were not 

significantly attracted to the eggs over the control (χ2 = 2.57; df = 1; P = 0.11). Non-

gravid Ch. rufifacies, however, were significantly attracted to conspecific sterile eggs (χ2 

= 5.16; df = 1; P = 0.02) according to first choice data. Cochliomyia macellaria adults 
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presented with conspecific surface-sterilized fresh eggs did not show significant first 

choice response for either fully developed females (χ2 = 0.50; df = 1; P = 0.48) or non-

gravid females (χ2 = 3.60; df = 1; P = 0.06) (Fig. 4.7).  

Wilcoxon-rank-sum tests and subsequent Monte Carlo simulations analyzing 

residence time data indicated significant differences in fly response to treatments based 

on ovarian status. Gravid Ch. rufifacies (z  = -1.63; P = 0.05) and non-gravid (z  = -

2.82; P = 0.002) exposed to conspecific surface-sterilized eggs spent significantly more 

time in olfactometer arms associated with eggs. Cochliomyia macellaria adults presented 

with conspecific surface-sterilized fresh eggs did not show significant residence time 

response for fully developed adults (z = -0.76; P = 0.22), but non-gravid females (z  = -

2.27; P = 0.01) spent significantly more time in arms associated with the control over 

those associated with eggs (Fig. 4.7). 

Heterospecific Response to Surface-Sterilized Eggs < 3 h Old. Chrysomya rufifacies 

adults presented with surface-sterilized fresh C. macellaria eggs did not show significant 

first choice response for either fully developed females (χ2 = 3.27; df = 1; P = 0.07) or 

pre-gravid females (χ2 = 2.46; df = 1; P = 0.12). Cochliomyia macellaria adults 

presented with heterospecific eggs showed no significant first choice data for fully 

developed females (χ2 = 0.00; df = 1; P = 1.00) or non-gravid females (χ2 = 0.68; df = 1; 

P = 0.41) (Fig. 4.8).  
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Fig 4.7. Mean residence time (mean ±  SE) of adult flies presented with surface-steralized conspecific 
eggs < 3 h old in the dual choice olfactometer. * indicates significant (P ≤  0.05) difference in 
residence time.  
 
 
   Chrysomya rufifacies fully developed (z  = -3.93; P < 0.0001) and non-gravid 

females (z  = -1.76; P = 0.040) presented with surface-sterilized fresh C. macellaria 

eggs both spent significantly more time in arms associated with eggs over those 

associated with the control. Gravid C. macellaria presented with surface-sterilized 

heterospecific eggs spent significantly more time in arms associated with eggs (z  = -

2.26; P = 0.013) while non-gravid females showed no significant difference in residence 

time (z  = -1.24; P = 0.10) (Fig. 4.8).  
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Fig 4.8. Mean residence time (mean ±  SE) of adult flies presented with surface-sterilized 
heterospecific eggs < 3 h old in the dual choice olfactometer. * indicates significant (P ≤  0.05) 
difference in residence time.  
 
 
Conspecific Response to Surface-Sterilized Eggs 3-6 h Old. Surface-sterilized eggs 

aged 3-6 h yielded insignificant first choice response data for developed females, while 

non-gravid females yielded significant first choice data in response to heterospecific 

eggs. Gravid Ch. rufifacies (χ2 = 3.60; df = 1; P = 0.06) and non-gravid (χ2 (1, N = 50) = 

0.50; P = 0.48) exposed to conspecific surface-sterilized eggs were not significantly 

attracted to the eggs treatment over the control. Similarly, C. macellaria adults presented 

with conspecific surface-sterilized eggs did not show significant first choice response for 

either fully developed females (χ2 = 1.59; df = 1; P = 0.21) or non-gravid females (χ2 = 

0.53; df = 1; P = 0.47) (Fig. 4.9).  

 Wilcoxon-rank-sum tests and subsequent Monte Carlo simulations analyzing 
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residence time data indicated significant differences in fly response to surface-sterilized 

eggs based on ovarian status (Fig. 4.10). Gravid Ch. rufifacies  (z  = -2.17; P = 0.01) and 

non-gravid (z  = -1.78; P = 0.03) exposed to conspecific surface-sterilized eggs spent 

significantly more time in olfactometer arms associated with eggs. Cochliomyia 

macellaria adults presented with conspecific surface-sterilized fresh eggs did not show 

significant residence time response for either fully developed adults (z = -0.085; P = 

0.471) or non-gravid females (z  = -1.138; P = 0.129) (Fig. 4.9).   

 

 

Fig 4.9. Mean residence time (mean ±  SE) of adult flies presented with surface-sterilized conspecific 
eggs 3-6 h old in the dual choice olfactometer. * indicates significant (P ≤  0.05) difference in 
residence time.  
 
 
Heterospecific Response to Surface-Sterilized Eggs 3-6 h Old. Chrysomya rufifacies 

adults presented with surface-sterilized C. macellaria eggs did not show significant first 
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choice response for fully developed females (χ2 = 0.095; df = 1; P = 0.758), but non-

gravid females were significantly attracted to the eggs over the control (χ2 = 6.533; df = 

1; P = 0.011). Cochliomyia macellaria adults presented with heterospecific surface-

sterilized eggs showed no significant first choice data for fully developed females (χ2 = 

2.174; df = 1; P = 0.140), but non-gravid females were significantly attracted to the 

control over the surface-sterilized eggs (χ2  = 5.77; df = 1; P = 0.02) (Fig. 4.10).  

Chrysomya rufifacies fully developed females presented with surface-sterilized 

fresh C. macellaria eggs showed no significant difference in residence time (z  = -0.63, 

P = 0.261), but pre-gravid females spent significantly more time in arms associated with 

eggs over those associated with the control (z  = -2.23; P = 0.01). Gravid C. macellaria 

(z  = -3.52; P < 0.0001) and non-gravid (z  = -2.165; P = 0.01) presented with surface-

sterilized heterospecific eggs spent significantly more time in arms associated with the 

control over those associated with eggs (Fig. 4.10).  

Conspecific Response to Microbial Isolates from Eggs < 3 h Old. Microbial isolates 

from fresh eggs (< 3 h old) yielded predominantly non-significant first choice response 

data, with one exception. Gravid Ch. rufifacies adults (χ2 = 1.09; df = 1; P = 0.30) and 

non-gravid (χ2 = 0.88; df = 1; P = 0.35) exposed to conspecific microbes were not 

significantly attracted to the microbes over the control.  Cochliomyia macellaria adults 

presented with conspecific microbes did not show significant first choice response for 

either gravid females (χ2 = 2.941; df = 1; P = 0.07) or non-gravid females (χ2 = 0.33; df 

= 1; P = 0.70) (Fig. 4.11).  
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Fig 4.10. Mean residence time (mean ±  SE) of adult flies presented with surface-sterilized 
heterospecific eggs 3-6 h old in the dual choice olfactometer. * indicates significant (P ≤  0.05) 
difference in residence time.  
 
 
 Wilcoxon-rank-sum tests and subsequent Monte Carlo simulations analyzing 

residence time data indicated significant differences in fly response to microbes based on 

ovarian status (Fig. 4.12). Gravid Chrysomya rufifacies females exposed to conspecific 

microbes spent significantly more time in olfactometer arms associated with microbes 

over the control (z  = -1.74; P = 0.04). Non-gravid females, however, spent significantly 

more time in arms associated with the control over those associated with conspecific 

microbes (z  = -2.51; P = 0.01). Cochliomyia macellaria adults presented with 

conspecific microbes did not show significant residence time response for gravid adults 

(z = -1.54; P = 0.06), but non-gravid females (z  = -2.21; P = 0.01) spent significantly 

more time in areas associated with microbes over the control (Fig. 4.11). 
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Fig 4.11. Mean residence time (mean ±  SE) of adult flies presented with microbes from conspecific 
eggs < 3 h old in the dual choice olfactometer. * indicates significant (P ≤  0.05) difference in 
residence time.  
 
 
Heterospecific Response to Microbial Isolates from Eggs < 3 h Old. Gravid Ch. 

rufifacies were significantly attracted to heterospecific microbes from fresh eggs  (χ2 = 

27.92; df = 1; P < 0.0001).  Non-gravid females, however, were not significantly 

attracted to the microbes (χ2 = 0.12; df = 1; P = 0.73). Gravid females (χ2 = 0.86; df = 1; 

P = 0.36) or non-gravid females (χ2 = 0.95; df = 1; P = 0.33) did not show a significant 

first choice to heterospecific microbes (Fig. 4.12).  

   Chrysomya rufifacies gravid females presented with heterospecific microbes 

spent significantly more time in areas associated with those microbes (z  = -6.91; P < 



 

 

85 

0.0001), while non-gravid females showed no significant difference in residence time (z  

= -0.61; P = 0.28). Cochliomyia macellaria gravid females presented with 

heterospecific microbes spent significantly more time in areas associated with microbes 

(z  = -2.48; P = 0.01), while non-gravid females showed no significant difference in 

residence time (z  = -0.84; P = 0.20) (Fig. 4.12).  

 

 

Fig 4.12. Mean residence time (mean ±  SE) of adult flies presented with microbes from 
heterospecific eggs < 3 h old  in the dual choice olfactometer. * indicates significant (P ≤  0.05) 
difference in residence time.  
 
 
Conspecific Response to Microbial Isolates from Eggs 3-6 h Old. Microbial isolates 

from eggs aged 3-6 h yielded significant first choice response data based on ovarian 
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status. Chrysomya rufifacies gravid females were significantly attracted to conspecific 

microbes (χ2 = 3.90; df = 1; P = 0.05), while non-gravid females were not significantly 

attracted to conspecific microbes over the control (χ2 = 2.29; df = 1; P = 0.13).  

Conversely, gravid C. macellaria females were not significantly attracted to conspecific 

microbes (χ2 = 0.13; df = 1; P = 0.72), while non-gravid females were significantly 

attracted to conspecific microbes over the control (χ2 = 7.20; df = 1; P = 0.01) (Fig. 

4.13).  

Wilcoxon-rank-sum tests and subsequent Monte Carlo simulations of residence 

time data indicated significant differences in fly response to treatments based on ovarian 

status (Fig. 4.14). Chrysomya rufifacies gravid (z  = -2.57; P = 0.01) and non-gravid 

females (z  = -2.32; P = 0.02) exposed to conspecific microbes spent significantly more 

time in olfactometer areas associated with the control over arms associated with 

microbes. Cochliomyia macellaria gravid (z = -0.03; P = 0.98) or non-gravid females (z  

= -2.79; P = 0.07) presented with conspecific microbes did not show significant 

residence time response (Fig. 4.13).  
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Fig 4.13. Mean residence time (mean ±  SE) of adult flies presented with microbes from conspecific 
eggs 3-6 h old  in the dual choice olfactometer. * indicates significant (P ≤  0.05) difference in 
residence time.  
 
 
Heterospecific Response to Microbial Isolates from Eggs 3-6 h Old. Chrysomya 

rufifacies adults presented with microbes from C. macellaria eggs did not show 

significant first choice response for either gravid (χ2 (1, N = 50) = 0.333, P = 0.564) or 

non-gravid females (χ2 = 0.36; df = 1; P = 0.55). Similarly, C. macellaria adults 

presented with heterospecific microbes showed no significant first choice data for gravid 

(χ2 = 0.12; df = 1; P = 0.73) or non-gravid females (χ2 = 0.60; df = 1; P = 0.44) (Fig. 

4.14).  

  Chrysomya rufifacies gravid (z  = -0.48; P = 0.64) and non-gravid females (z  = 
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-2.00; df = 1; P = 0.20) presented with heterospecific microbes showed no significant 

difference in residence time. Finally, C. macellaria gravid (z  = -0.05; P = 0.96) and 

non-gravid females (z  = -0.00; P = 1.00) presented with heterospecific microbes 

showed no significant resident time response  (Fig. 4.14).  

 

 

Fig 4.14. Mean residence time (mean ±  SE) of adult flies presented with microbes from 
heterospecific eggs 3-6 h old  in the dual choice olfactometer. * indicates significant (P ≤  0.05) 
difference in residence time.  
 
 
Relative Abundance of Bacterial Genera on Cochliomyia macellaria Eggs. Sixty-

eight bacterial genera (exhibiting a ≥ 95% similarity with reference samples) were 

detected on all egg stages of C. macellaria (Table B2). The total number of bacterial 

genera detected on eggs < 3 h old was 39; on eggs 3-6 h old was 37; and on eggs 6-9 h 
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old was 29. The highest percentage of bacterial genera found on eggs < 3 h old was 

Lactobacillus sp. (26.45%), followed by Vagococcus sp. (16.53%), Morganella sp 

(9.71%), Carnobacterium sp. (9.13%), Providencia sp. (4.76%), Pseudochrobatrum sp. 

(4.22%), Leuconostoc sp. (3.36%), and Enterococcus (1.98%). All other species made 

up < 1% of the relative bacterial abundance each (Fig. 4.15). Bacterial genera that were 

not identified were categorized as “Unclassified,” and comprised 17.57% of the species 

found on eggs < 3 h old.   

 

 

 

Fig 4.15. Relative abundance of bacterial genera by egg age on Cochliomyia macellaria eggs < 3 h 
old. Values below 1% were grouped as “Other” with total value of 6.57%.  
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The highest percentage of bacterial genera found on eggs 3-6 h old was Escherichia sp. 

(17.38%), followed by Lactobacillus sp. (10.91%), Kurthia sp. (8.31%), Staphylococcus 

sp. (7.63%), Providencia sp. (7.18%), Lactococcus sp. (1.30%), and Yaniella sp. 

(1.66%). Unclassified bacteria made up 37.90% of the species found on eggs 3-6 h old. 

All other species made up < 1% of the relative bacterial abundance each (Fig. 4.16).  

 

Fig 4.16. Relative abundance of bacterial genera by egg age on Cochliomyia macellaria eggs 3-6 h 
old. Values below 1% were grouped as “Other” with total value of 12.44%.  
 

The highest percentage of bacterial genera found on eggs 6-9 h old was Lactobacillus sp. 

(54.81%), followed by Carnobacterium sp. (12.89%), Vagococcus sp. (6.52%), 

Leuconostoc sp. (3.78%), and Providencia sp. (1.83%). Unclassified bacteria made up 
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13.62% of the species found on eggs 6-9 h old. All other species made up < 1% of the 

relative bacterial abundance each (Fig. 4.17).  

 

Fig 4.17. Relative abundance of bacterial genera by egg age on Cochliomyia macellaria eggs 6-9 h 
old. Values below 1% were grouped as “Other” with total value of 7.59%.  
 
 
Relative Abundance of Bacterial Genera on Chrysomya rufifacies Eggs. Total 

number of bacterial genera detected on eggs < 3 h old was 30; on eggs 3-6 h old was 19; 

and on eggs 6-9 h old was 26.  The highest percentage of bacteria found on eggs < 3 h 

old was Lactobacillus sp. (45.69%), followed by Vagococcus sp. (19.05%), Lactococcus 

sp. (12.57%), Staphylococcus sp. (2.22%), Delftia sp.  (2.00%), and Sphingobacterium 

sp. (1.15%). All other species made up < 1% of the relative bacterial abundance each 
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(Fig. 4.18). Bacterial genera that were unable to be identified by pyrosequencing 

methods were categorized as “Unclassified,” and made up 12.48% of the species found 

on eggs < 3 h old.   

 

Fig 4.18. Relative abundance of bacterial genera by egg age on Chrysomya rufifacies eggs < 3 h old. 
Values below 1% were grouped as “Other” with total value of 5.53%.  
 
 
The highest percentage of bacterial genera found on eggs 3-6 h old was Lactococcus sp. 

(42.07%), followed by Lactobacillus sp (23.83%), Myroides sp. (15.99%), Vagococcus 

sp. (4.86%), Providencia sp. (1.09%), and Staphylococcus sp. (1.03%). Unclassified 

bacteria made up 7.66% of the species found on eggs 3-6 h old. All other species made 

up < 1% of the relative bacterial abundance each (Fig. 4.19).  
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Fig 4.19. Relative abundance of bacterial genera by egg age on Chrysomya rufifacies eggs 3-6 h old. 
Values below 1% were grouped as “Other” with total value of 3.75%.  
 
 
The highest percentage of bacterial genera found on eggs 6-9 h old was Lactococcus sp. 

(48.35%), followed by Lactobacillus sp. (15.35%), Vagococcus sp. (9.57%), 

Providencia sp. (4.75%), Staphylococcus sp. (3.37%), Ignatzschineria sp. (1.89%), and 

Morganella sp. (1.19%). Unclassified bacteria made up 11.42% of the species found on 

eggs 6-9 h old. All other species made up < 1% of the relative bacterial abundance each 

(Fig. 4.20). 
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Fig 4.20. Relative abundance of bacterial genera by egg age on Chrysomya rufifacies eggs 6-9 h old. 
Values below 1% were grouped as “Other” with total value of 3.75%.  
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Discussion 

First response and residence time were recorded in these experiments. First 

response appears to be much less informative than residence time.  While significance 

was achieved in the first choice analyses of primarily Ch. rufifacies adults, observed 

activity in the olfactometer indicated a need for acclamation to the environment before 

an “informed” choice could be made. Comparison of first choice and residence time data 

confirms these observations, showing insignificant first choice responses and significant 

residence time responses in most of the experiments. Most adults spent the initial 30 s of 

exposure in the olfactometer exploring the environment before resting in an area 

associated with particular bait.  Therefore, all discussion will be based on residence time 

responses. 

Response to Egg Age. The age of both C. macellaria and Ch. rufifacies eggs influenced 

adult attraction, which was compounded by the physiological state and the sex of the 

adult. Chrysomya rufifacies tended to be attracted to both conspecfic and heterospecific 

eggs, while C. macellaria tended to be attracted to only conspecific eggs. Chrysomya 

rufifacies appeared to be more attracted to heterospecific eggs as they aged, rather than 

conspecific eggs. This may be due to the tendency of Ch. rufifacies to become 

cannibalistic in maggot masses. While group larval feeding may impart some benefit 

upon members of the maggot mass in the form of increased exodigestion efficacy 

(Fenton 1999, Rivers et al. 2011), the threat of cannibalism may select for maggot 

masses of similar aged larvae, rather than masses formed of larvae of varying ages. This 

pattern of adult regulation of cannibalistic larvae was observed in muscids by Lam et al. 
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(2007).  Musca domestica (Linnaeus) (Diptera: Muscidae) females respond to 

conspecific, egg-assoicated cues that initially induce conspecific oviposition, and then 

inhibit oviposition after 24 h. This induction/inhibition evolution results in larval masses 

of similar ages, and protects younger larvae from cannabalism. The evolvoing cue in the 

muscid system is bacterial in origin, and eminates from bacteria found on the chorion of 

muscid eggs (Lam et al. 2007). It is not surprising, therefore, that Ch. rufifacies responds 

to conspecific eggs and egg-assoicated bacteria in a similar way.  

 Cochliomyia macellaria adults were attracted to conspecific eggs, but only as 

they reached 3-6 h old. This trend appeared to continue as C. macellaria eggs aged 6-9 

h, and while significance at the 0.05 level was not technically reached (P = 0.051), the 

responses approached significance and may simply have failed to reach statistically 

significant levels due to low statistical power. This is counter intuitive, as field and lab 

observations reveal that C. macellaria oviposit in large groups (Brundage, unpublished), 

and therefore gravid females should be attracted to conspecific eggs of all ages.   

Olfactory responses to semiochemicals are an important part of the suite of behaviors 

(tactile, visual, olfactory, and thermal) resulting in blow flies exploiting resources (Hall 

1995, Chapman 2003) However, olfaction may simply result in the activation of 

searching or oviposition behavior (Chapman 2003), and further stimuli are required to 

continue the behavior. Additionally, virgin female calliphorids are more reluctant to 

oviposit than mated females (Crystal 1967), and might therefore be responsive to odors 

attracting mated females to ovipositional sites (Hammack 1987) despite gravid status. It 

is possible that C. macellaria requires additional sensory input for attractancy, and that 
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the mating status of the females significantly affects olfactory response. This work 

illustrates conspecific egg attractancy that changes over time, but does not completely 

explain field observations.  

Response to Surface-Sterilized Eggs. Analysis of fly response to egg-age experiments 

indicated that residence time in the olfactometer more informative than first choice 

response and residence time “choice” was made within 2 min of introduction into the 

olfactometer neck. Additionally, in order to allow greater efficiency, only the response 

of gravid females was recorded for the remaining experiments. Neither C. macellaria 

nor Ch. rufifacies females significantly responded to conspecific or heterospecific eggs 

6-9 h old. Therefore, the remainder of this discussion focuses on gravid female flies 

exposed to eggs < 3 h or eggs 3-6 h old in the olfactometer for 2 min.  

 Response of gravid females of both species to eggs was reduced when the eggs 

were sterilized. Egg-associated microbes are known attractants in some fly species. Lam 

et al. (2007) found that gravid muscid flies were positively attracted to microbes cultured 

from the surface of conspecific eggs, although he did not identify which microbes were 

responsible for this attractancy. Lam’s study showed that M. domestica laid 75% more 

eggs on oviposition sites dosed with egg-associated microbes over those without egg-

assoicated microbes (Lam et al. 2007). This response in a species closely related to 

Calliphoridae, along with the reduced attractancy found in this experiment suggests that 

egg-assoicated microbes or their semiochemicals (message-bearing chemicals) are used 

as an oviposition cue.  

The change in attraction and repellency of both fresh and aged eggs to gravid 
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adults due to surface-sterilization implies that surface-associated substances have an 

effect on adult behavior. During oviposition, eggs are laid in groups or clutches on the 

oviposition medium. The clutches are covered with a layer of glycoprotein that may 

prevent dehydration, and adheres the egg clutch to the substratum (Peterson 1991). The 

external surface of fly eggs are contaminated with bacteria (Mohd Masari et al. 2005), 

and this glycoprotein layer may be responsible for the adhesion of bacteria to the egg 

surface. While the glycoprotein layer itself or other unknown substances deposited 

during oviposition may be responsible for the observed patterns of adult attraction, the 

known attraction of microbial volatiles to adult Calliphoridae is a more likely 

explanation.  

Microbes Associated with Eggs. Much more work has been done regarding the 

bacterial effect on attraction of blow flies to hosts (Fuller 1934a, Browne 1960, Eddy 

1975, Emmens 1982). Emmens (1982) found Pseudomonas sp. degrades wool and 

produces sulphurous compounds, which attract female Lucilia cuprina (Wiedemann) 

(Diptera: Calliphoridae). Browne (1958) noted Lucilia cuprina increased oviposition in 

response to indole and ammonium carbonate, which are products of bacterial 

metabolism. Bovine blood inoculated with bacteria is significantly more attractive to the 

primary screwworm Cochliomyia homnivorax (Coquerell) (Diptera: Calliphoridae) than 

uninoculated blood (Eddy 1975, Chaudhury et al. 2010).  

 The change in microbial community may explain the change in attractancy 

behavior as eggs age. Both Ch. rufifacies and C. macellaria fresh eggs are dominated by 

Lactobacillus sp. As the eggs age to 3-6 h, Lactococcus takes over as the dominant 
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species on Ch. rufifacies eggs, while Escherichia takes over as the dominant species on 

C. macellaria. This change in dominance may be affecting the attractancy of Ch. 

rufifacies adults to eggs as they age. Chrysomya rufifacies is attracted to both 

conspecific and heterospecific fresh eggs, and Lactobacillus is the dominant species of 

bacterium found on those aged eggs. The females remain attracted to C. macellaria eggs 

as they age to 3-6 h, but lose the attractancy to conspecific eggs. Conspecific eggs 

become dominated by Lactocococcus sp. during the 3-6 h range. It may be that 

Lactococcus is a repellant for Ch. rufifacies.  

Cochliomyia macellaria show no such obvious patterns in their attractancy when 

compared to microbial change. Attraction to eggs in C. macellaria may be governed by a 

complex system of volatiles emanating from the egg itself, or from a combination of the 

bacterial community and the developing embryo. Investigation into the volatile 

production of both C. macellaria and Ch. rufifacies eggs and associated microbes is 

necessary to determine the extent to which these volatiles govern attractancy and 

repellency in C. macellaria.  

 While Lactobacillus and Lactococcus represent the dominant species on all eggs, 

and may therefore influcence adult behavior, this does not mean they are the only, or 

even the primary, species responsible for behavioral responses in Calliphoridae. In order 

to truly determine the effect of particular bacteria and bacterial community change on 

adult behavior, further work is necessary. Adult Ch. rufifacies and C. macellaria should 

both be presented with pure cultures of bacterial species, along with communities of 

bacterial species found on the eggs. The response of the adults to these treatments would 
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shed light on the actual affect bacterial volatiles have on the oviposition behavior of both 

species.  

Conclusion. Eggs appear to be a major mediating factor in the oviposition timing of 

both Ch. rufifacies and C. macellaria. The attractancy changes over time, which implies 

the ability of ovipositing adults to assess egg age and mediate behavior in response to 

these cues. Additionally, the major sources of attractancy cues appear to be derived from 

egg-assoicated bacteria, which undergo substantial community change as the eggs age. 

Further, each species may be using these cues to differentiate between conspecific and 

heterospecific eggs, thereby directly affecting offspring fitness.  
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CHAPTER V 

METHODS FOR EXTERNAL DISINFECTION OF BLOW FLY EGGS PRIOR 

TO USE IN WOUND DEBRIDEMENT THERAPY 

 

Introduction 
 

Maggot debridement therapy (MDT) is the use of necrophagic fly larvae to 

remove necrotic tissue and disinfect wounds (Sherman et al. 2000, Benbow 2006). This 

method efficiently removes devitalized tissue without damaging healthy cells (Vistnes 

1981), while decreasing the bacterial load (Lerch 2003, Bexfield et al. 2008) and 

promoting tissue regeneration in chronic wounds (Livingston 1932).  With the increase 

in antibiotic resistant strains of bacteria (Jaklic et al. 2008), MDT has enjoyed a upsurge 

in usage to augment conventional medical treatments all over the world (Sherman et al. 

2000).  

The use of biosurgical maggots spans centuries (Baer 1931, Mohd Masari et al. 

2005). Mayan Indians cultivated these maggots to treat chronic wounds (Weil et al. 

1933), while both the chief surgeon to Henri III and Napoleon’s Surgeon-in-Chief used 

these “little surgeons” to prevent infection on the battlefield (Hobson 1931, Sherman et 

al. 2000). Work on the process in the early 20th century highlighted the necessity of 

surface sterilized larvae to prevent the introduction of pathogens into choric wounds 

(Baer 1931). Patients treated with unsterilized larvae had a 50% chance of contracting 

secondary infections (Baer 1931). Sterilization of the eggs and maggots prior to use 

reduced the likelihood of these infections occurring and led to the recommendation of 
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larval surface disinfection (Baer 1931).  

Lucilia sericata (Meigen) (Diptera: Calliphoridae) is currently the primary 

necrophagic species used in MDT (Baer 1931, Weil et al. 1933, Sherman et al. 2000, 

Bexfield et al. 2008). Lucilia sericata larvae do not feed on healthy granulated tissue and 

are ideal for therapeutic uses (Weil et al. 1933). However, other blow fly species have 

been used throughout history, including Lucilia cuprina (Baer 1931, Fine 1934), Lucilia 

Caesar (Linnaeus)  (Fine 1934) Phormia regina (Meigen) (Horn et al. 1976), Calliphora 

vicina (Robineau-Desvoidy) (Teich 1986), Chrysomya rufifacies (Macquart) (Sherman 

et al. 2000), and Protophormia terraenovae (Robineau-Desvoidy) (Diptera: 

Calliphoridae) (Sherman et al. 2000). Cochliomyia macellaria (Fabricius) and 

Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) are currently being 

investigated for efficacy as MDT agents (Fonsem, personal communication). 

Unfortunately, some of these species result in facultative myiasis and might not be 

appropriate for MDT. 

Effective MDT relies on adequate aseptic technique to prevent the introduction 

of detrimental or pathogenic bacteria into wounds (Baer 1931).  Practitioners of MDT 

tod prefer egg disinfection rather than maggot disinfection due to the higher rate of 

surface sterilization (Connell 1981, Sherman et al. 2000) and the higher survivorship of 

resulting larvae (Sherman et al. 2000).  The external surface of fly eggs are contaminated 

with bacteria (Mohd Masari et al. 2005), resulting in newly hatched larvae becoming 

inoculated as well (Mackerras 1933a).  Fine (1934) achieved an 80% sterilization rate 

using 10% Formalin immersion, and reported problems with sterilizing all instars of 
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maggots, (Fine 1934). Mohd Masari et al. (2005) reported similar results using 70% 

ethanol (EtOH) rinse and UV exposure, finding that surface sterilized maggots 

maintained sterility for only 24 h and had a survival rate of 20% (Mohd Masari et al. 

2005).  Comparatively, Connell (1981) determined surface sterilization of eggs resulted 

in contamination free eggs for 48 h after sterilization with a hatch rate of 75-90% 

(Connell 1981).  

Studies on surface sterilization of dipteran eggs have been reported (Baer 1931, 

Simmons 1934, Connell 1980, Mohd Masari et al. 2005). However, measurement of the 

efficacy of different disinfection techniques in combination with the viability of the 

resulting eggs is lacking. Most reports detail the ultimate result of surface sterilization 

(Baer 1931, Mohd Masari et al. 2005) without quantifying the initial bacterial load of the 

eggs. Others report on the efficacy of sterilization without reporting the ultimate egg 

viability (Simmons 1934, Figueroa et al. 2007).  To truly understand the effect of 

disinfectants on surface sterilization of dipteran eggs, the initial bacterial load must be 

taken into account along with the hatch rate of disinfected eggs.  

A wide variety of methods used to sterilize dipteran eggs have been reported. 

Mercuric chloride (Baer 1931, Mackerras 1933b), Formalin (Simmons 1934), 

formaldehyde (H2CO) (Horn et al. 1976, Mumcuoglu et al. 2001, Jaklic et al. 2008), 

Lysol® (Sherman and Tran 1995, Sherman 1996), 5% sodium hypochlorite (NaOCl) 

(Clorox® Bleach) (Mumcuoglu et al. 2001), ethanol (EtOH) (Brookes 1961), UV light 

(Mohd Masari et al. 2005), benzalkonium chloride (ADBAC) (Connell 1981) and 1% 

NaOCl (Teich 1986) are examples of techniques employed.  The wide diversity of 
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chemicals used, and the sparse reporting of efficiency in conjunction with the subsequent 

hatch rate compelled the need to validate and standardize a procedure for future MDT 

practice.  

  The present study investigated egg disinfectant techniques previously reported in 

the scientific literature, which demonstrated efficient sterilization (≥80%) (Greenberg 

1970, Sherman 1996) and (if reported) high hatch rates (≥70%) (Simmons 1934, 

Greenberg 1970, Connell 1981). These methods were tested on four species of 

Calliphoridae: Cochliomyia macellaria, Chrysomya rufifacies, Lucilia sericata, and 

Lucilia cuprina.  

 

Material and Methods 

Adult Fly Colony. Laboratory colonies of Ch. rufifacies and C. macellaria used in this 

study were collected in Brazos County, Texas area during spring and summer of 2009 

and 2010, and were maintained by Adrienne Brundage (Texas A&M University, College 

Station, TX). L. sericata and L. cuprina were originally isolated from carrion in Los 

Angeles County, California, and were maintained by Dr. Aaron Tarone (Texas A&M 

University, College Station, TX). Fly larvae were reared on 50 g of bovine liver in 950 

ml glass jars (Ball Corporation, Broomfield, CO) covered with 125 mm x 125 mm 

square Wypall™ L40 wipers (Kimberly-Clark, Irving, TX) tops and held at 270C  ± 10C, 

60% RH, and a 12:12 (L:D) photoperiod. Adult flies were maintained in 299 cm3 

aluminum cages (Bioquip Products, Rancho Dominques, CA) and provided reverse 

osmosis (RO) water and sugar ad libitum. Bovine liver was provided as a protein meal 
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two ds after eclosion. Eggs were obtained for experiments by placing 10 g of fresh 

bovine liver as an oviposition medium in appropriate fly colonies for 3 h. After which 

eggs were physically removed from the oviposition medium and deagglutinated before 

sterilization. 

Deagglutination of Eggs. Deagglutination was performed on all eggs prior to treatments 

to ensure maximum treatment efficiency (Simmons 1934). Freshly laid eggs were 

removed from the oviposition medium and placed on 25 cm2 wet, black, fine mesh cloth. 

A paper towel moistened with RO H2O was folded over the cloth and allowed to sit for 

five min. Eggs were physically manipulated with a 10 mm synthetic fiber paintbrush 

(Loew-Cornell, Rye, NY) to facilitate separation  

Immersion Fatality. Ability of each fly species to tolerate immersion in water was 

determined by a series of egg immersion experiments. Eggs of each species were tested 

for their ability to tolerate immersion in RO H2O for 1, 3, 5, 7, and 10 min. Treatments 

consisted of 35 samples of 10 deagglutinated eggs each.  Deagglutinated eggs that were 

not immersed in water were used as a control.  Each sample was placed on a 35 mm2 

black cloth square, and the cloth folded into quarters to form a packet to prevent 

displacement of eggs while under water. Each sample was immersed in 10 ml RO for the 

appropriate amount of time then removed, drained on paper towels, and placed on 10 ml 

tryptic soy agar (TSA; Difco, Sparks, MD) in a sterile 30 ml plastic cup (Bio-Serv, 

Frenchtown, NJ) at 27°C.  After 24 h incubation, the hatch rate was determined. The 

species most sensitive to immersion was utilized as the sentinel species to determine the 

efficacy of the disinfection techniques.   
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Disinfecting Agents. Ten treatments from the literature were tested based on their 

reported high sterilization efficiency and hatch rate.  Two techniques, immersion or rinse 

was used (as defined below). Immersions utilized 5 or 10 % formalin for 5 min; 3% 

Lysol® for 5 or 10 min; 5% H2CO for 5 min; and 5% NaOCl followed by 5% H2CO for 

5 min each.  Rinses utilized 10 cc 70% EtOH; 30 cc 1% NaOCl.  Combinations included 

ADBAC immersion for 10 min followed by 10 cc 70% ethanol rinse; and 95% EtOH 

evaporation for 5 min followed by SorGon® immersion for 5 min. Both 95% EtOH and 

70% EtOH were diluted to working concentrations with sterile dH2O.  SporGon® and 

Lysol® were used in the commercially available formulations. 

Each treatment consisted of 10 samples of 10 eggs per sample. Eggs were placed 

on a sterile 13 mm, 20 µm nylon membrane filter (GE Osmonics, Minnetonka, MN) and 

enclosed within a sterile 13 mm polycarbonate luer-lock filter holder (Cole-Parmer, 

Court Vernon Hills, IL). For immersion treatments, 5 ml of the appropriate disinfectant 

was loaded into a sterile 10 ml polypropylene luer-lock syringe (Chemglass, Vineland, 

NJ), and a volume of 2.5 ml was gently filtered to fill the filter holder with disinfectant. 

The eggs were thus immersed in the disinfectant within the filter and incubated at room 

temperature for the appropriate time, and then the full volume was gently evacuated 

through the filter. For rinse treatments, 10 cc of the disinfectant was loaded into the 

sterile luer-lock syringe, and immediately evacuated through the filter at a rate of 0.5 cc 

per second.  After each immersion or rinse treatment, 20 cc of sterile Pringle’s insect 

saline  (mM concentration in deionized water: NaCl 154, KCl 2.68, CaCl2 1.8, L-glucose 

22.2) (Pringle 1938) was filtered through the apparatus to rinse the eggs of residual 
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disinfectant. To collect a sample of the bacteria present on the external egg surface 

(PRE-wash), deagglutinated eggs were immersed in 2 ml of tryptic soy broth (TSB; 

Difco, Sparks, MD) at room temperature for 3 min. Eggs were removed and observed for 

hatch rate. PRE-wash bacterial load, in CFU (colony forming units), was determined by 

serial dilution onto blood agar plates and incubation at 37°C for 18 h. 

For each disinfection protocol, the residual bacteria remaining after treatment 

(POST-wash) was sampled by incubating the treated eggs in 2 ml of TSB at room 

temperature for 3 min. The eggs were then removed and the bacterial load was 

enumerated by serial dilution onto blood agar plates (BVA Scientific, San Antonio, TX) 

followed by incubation for 18-24 h at 37°C. An aliquot of PRE-wash and POST-wash 

TSB was enriched by overnight incubation at 37°C, to ensure bacterial detection below 

the plating threshold of ~10 CFU. These enrichments were plated on blood agar and 

incubated for 18-24 h at 37°C.  Following each disinfection and POST-wash protocol, 

eggs were placed in 30 ml clear plastic cups (Bio-Serv, Frenchtown, NJ) containing 10 

ml TSA and incubated at 27°C.  The egg hatch rate was determined after 24 h. 

To visualize the effect of treatment protocols on the egg chorion, additional egg 

samples were subjected to treatment protocols and stained to visualize the chorion. Ten 

eggs were placed on filters and treated in conjunction with other egg samples, but did 

not undergo PRE- or POST-wash treatments. These eggs were stained with potassium 

permanganate following Sukontason et al. (2004). Eggs were transferred into a glass 

petri dish using a small camel hairbrush and covered with 10 µl one percent potassium 

permanganate solution (Thermo Fisher Scientific Inc., Waltham, MA). Eggs were 
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soaked in this solution for one minute, after which excess potassium permanganate 

solution was removed using filter paper. Eggs were then dehydrated by passing them 

through 15, 70, 95% and absolute alcohol (each solution for one minute) and transferred 

into three drops of slide mounting medium (60% resin in xylene) (Bioquip Products, 

Rancho Dominques, CA). A cover slip was placed over the eggs, and each mounted, 

stained egg was examined under a light microscope.  

Agitation Treatments. After initial disinfection treatments were analyzed, three 

treatments reported to be effective in other venues (Teich 1986, Sherman 1996, Crippen 

2006) were selected for their potential as a surface disinfectant given an environment, 

which separated eggs to allow improved surface contact. Agitation or additional rinsing 

of the eggs was added to help mitigate the effects of agglutination during the disinfection 

process, which was common during NaOCl, EtOH, and SporGon treatments. This 

agglutination may lower access of the chemical to the entire surface area of all eggs. The 

treatments selected were SporGon®, 1% NaOCl, and 3% Lysol®.  Either rinse or 

agitation in sterile insect saline was used as a control, as this insect saline neither 

significantly lowers the amount of bacterial contamination on eggs surfaces, nor lowers 

the total eclosion.  

Each treatment consisted of 10 samples, with 10 eggs per sample and placed on 

filters as described above. For agitation treatments, 5 ml of appropriate disinfectant was 

loaded into a sterile luer-lock syringe, and 2.5 ml was forced through the filter. This 

action filled the filter holder and assured contact of the disinfectant with the eggs.  

Syringes and filters were then placed onto a Roto Shake-Genie (Scientific Industries, 
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Bohemia, NY, USA) at 10 RPM for 5 min.  After, excess liquid was evacuated through 

the filter and discarded. For additional rinse treatments, three rinses of 10 cc of 

disinfectant was loaded into a sterile luer-lock syringe, and strained through the filter at a 

rate of 0.5 cc per second. After each treatment, 20 cc of sterile insect saline was loaded 

into a sterile luer-lock syringe and eggs were rinsed to remove residual disinfectant.  

Additional Species Examined. Two treatments, disinfection by Lysol® 10 min soak and 

H2CO, were chosen for analysis on the eggs of three additional species, Ch. rufifacies, L. 

sericata and C. macellaria. Treatment selection was based on, 1) results from initial and 

agitation treatments giving the highest rates of disinfection and egg hatch; and 2) 

common usage by a majority of commercial sterile maggot producing labs (Sherman, 

personal communication) as a preferred surface sterilization treatment.  

Experimental Design and Statistics. Each experiment was replicated three times.  Data 

to determine immersion fatality were analyzed using ANOVA and Tukey’s HSD in 

SPSS 17 (SPSS Inc. 2010, Chicago, IL, USA).  

 

Results 

Immersion Fatality. Chrysomya rufifacies immersed for one minute (M = 91.21%, SD 

= 11.19), three minutes (M = 92.37%, SD = 7.77), five minutes (M = 91.17%, SD = 

12.19), seven minutes (M = 92.66%, SD = 9.45) and ten minutes (M = 88.75%, SD = 

15.68) showed no significant difference in percent of eggs hatch from control eggs (M = 

92.29%, SD = 9.882) (P = 0.134).  Lucilia sericata eggs immersed for one minute (M = 

48.41%, SD 23.45), three minutes (M = 48.97%, SD = 27.44), five minutes (M = 
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49.14%, SD = 28.65), seven minutes (M = 52.17%, SD = 9.45) and ten minutes (M = 

49.90%, SD = 27.79) also showed no significant difference in percent of eggs hatch from 

control eggs (M = 47.31%, SD = 23.45) (P = 0.8823). Cochliomyia macellaria exhibited 

a significantly lower (P < 0.0001) hatch rate than controls (M = 95.89%, SD = 9.93) only 

after a 10-minute immersion (M = 91.78%, SD = 13.27).  Lucilia cuprina also exhibited 

a significantly lower (P < 0.0001) hatch rate than controls (M = 89.66%, SD = 11.07) 

after a five minute (M = 75.24%, SD = 29.34), seven minute (M = 74.38%, SD = 25.50) 

and ten minute (M = 76.30%, SD = 27.14) immersion.  Because of the sensitivity to 

immersion demonstrated by L. cuprina, and the goal to develop an external disinfection 

procedure useful for all of the listed species, L. cuprina was utilized as a sentinel species 

to evaluate the various disinfectant treatments.  (Fig. 5.1).  

Lucilia cuprina Disinfection. A comparison of external disinfection protocols 

demonstrated large variation in treatment efficacy, yet all protocols significantly lowered 

(P < 0.0001) the mean number of CFU present on egg surfaces when compared to the 

PRE-wash (M CFU: 5332, SEM: 2.76) (Table 5.1).  
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Fig 5.1. Percent egg survival after immersion in sterile RO water for 0 (control), 1, 3, 5, 7, or 10 minutes. 
Four species were tested for survival: Chrysomya rufifacies, Cochliomyia macellaria, Lucilia sericata, and 
Lucilia cuprina. * indicates significant (P ≤ 0.05) differences from control.  Luicila cuprina eggs were 
more sensitive to immersion than other species. 
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Fig 5.1 continued 
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Table 5.1. Comparison of the efficacy of surface disinfection protocols on Lucilia 
cuprina (Diptera: Calliphoridae) egg (n = 30) 

Treatments Mean CFU ±  SE Enrichment 
(% Clean eggs ±  SE) 

PRE-Wash 5332 ± 2.76 0 
5% Formalin 987 ± 2.92 3.33 ±0.11 
10% Formalin 126.34 ± 0.89 43.33 ± 0.82 
3% Lysol, 5 minute immersion 15.31 ± 0.43 83.33 ± 0.28 
3% Lysol, 10 minute immersion 0.00 ± 0.00 100 ± 0.00 
Bleach + H2CO 20.48 ± 0.36 73.33 ± 0.69 
H2CO 47.64 ± 0.68 66.67 ± 1.01 
70% ETOH 515.72 ± 2.67 56.67 ± 0.74 
1:50 Dilute bleach 85.89 ± 0.76 70.00 ± 0.55 
Benzalkonium chloride 41.94 ± 0.95 33.33 ± 1.05 
95% ETOH + SporGon 198.76 ± 2.49 23.33 ± 0.59 
 

External disinfection using 5% formalin was the least efficacious of all 

treatments (M CFU = 987, SD 15.97) (Fig 5.2), resulting in only 3.33% of the samples 

yielding no residual bacteria after 24 h enrichment (Fig 5.3).  Increasing the formalin to 

10% decreased surface bacteria by 87% (M = 126.3, SD = 4.891) (Fig 5.2), and resulted 

in 43.33% of the samples harboring no residual bacteria after 24 h enrichment (Fig 5.3). 

Treatment with 70% EtOH was the second least effective treatment (M = 515.70 CFU, 

SD 14.62) (Fig 5.2), with only 53.33% of the samples yielding no residual bacteria after 

24 h enrichment (Fig 5.3). Treatment with 95% EtOH followed by SporGon® immersion 

resulted in the third least-efficient method of surface disinfection (M CFU= 198.76, SD 

= 13.64) (Fig 5.2), and only 23% of the samples yielded no residual bacteria after 24 h 

enrichment (Fig 5.3).  H2CO immersion resulted in 63.33% of the samples yielding no 

residual bacteria after 24 h enrichment (Fig 5.3), and lowering the mean CFU by 99.67% 
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when compared to untreated controls (M = 47.64, SD = 3.73) (Fig 5.2).  The addition of 

a prewash of bleach to the H2CO treatment lowered the mean CFU an additional 53.33% 

(M = 20.48, SD = 1.94) (Fig 5.2) and resulted in 73.33% of the samples yielding no 

residual bacteria after 24 h enrichment (Fig 5.3).  Diluting the bleach to 1% and applying 

it in a rinse increased mean CFU by 76.16% when compared to the bleach and H2CO 

treatment (M = 85.89, SD = 4.19) (Fig 5.2) while resulting in 70.00% of the samples 

harboring no residual bacteria after 24 h enrichment (Fig 5.3). ADBAC performed 

similarly to H2CO immersion (M = 41.94, SD = 5.18) (Fig 5.2) but only 33% of the 

samples yielded no residual bacteria after 24 h enrichment (Fig 5.3). Lysol® immersion 

yielded the highest disinfection efficacy over all.  Immersion for 5 min was the second-

most efficient disinfection method (M = 15.31; SD 2.34) (Fig 5.2), with 83% of the 

samples yielding no residual bacteria after 24 h enrichment (Fig 5.3). Increasing the 

Lysol® immersion time to 10 min increased the efficacy of surface disinfection (M = 0; 

SD = 0) (Fig 5.2); however 24 h enrichment of the samples showed only 96.67% of the 

samples harbored no residual bacteria (Fig. 5.3).  
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Fig 5.2.  Geomean number of bacteria present on Lucilia cuprina egg surface (N = 30) post surface-
sterilization determined by 24 h culture at 37 °C on blood agar. * indicates significant difference from  
PRE-wash mean CFU.  
 
 

 
Fig 5.3. Percent of samples positive for bacteria after surface sterilization and 24 h enrichment in TSB at 
37 °C. * indicates significant difference from PRE-wash mean positive samples.  
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Lucilia cuprina Egg Eclosion. The mean egg eclosion for untreated L. cuprina eggs was 

83.23% (Fig 5.4). Two treatments significantly (P < 0.0001) lowered the eclosion rates:  

immersion in H2CO or in bleach and H2CO.  The mean eclosion was reduced to 59.84% 

(P = 0.0018) and 50.08% (P = 0.0006) following H2CO or bleach and H2CO immersion, 

respectively. No other treatments significantly decreased eclosion (Fig 5.4).  

 

 
Fig 5.4. Mean number of eggs that successfully eclosed after surface-sterilization.  * indicates significant 
difference from control egg eclosion 
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Agitation Treatments. The addition of agitation or additional rinsing with disinfectants 

significantly increased the disinfection rate (F = 16; df = 9; P < 0.0001), but 

unfortunately, significantly lowered the eclosion rate (F = 9.595; df = 9; P < 0.0001) 

(Fig. 5.5).  Agitation in SporGon®, dilute bleach or Lysol® for 5 min disinfected 47, 6.67 

and 66.67% of the samples, respectively. Additional SporGon®
, dilute bleach or Lysol® 

rinses disinfected 37%, 13.33 and 60% of the samples, respectively. Agitation in insect 

saline agitation did not affect the disinfection of the eggs, while additional insect saline 

rinses disinfected 3% of the samples (Fig 5.5).   

 

Fig 5.5. Results of surface-sterilization protocols with the addition of agitation or rinse on Lucilia 
cuprina eggs (N = 30) percent of samples positive for bacteria after surface sterilization and 24 h 
enrichment in TSB at 37 °C. * indicates significant difference from PRE-wash mean positive 
samples.  
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Agitation in SporGon®, dilute bleach or Lysol® lowered eclosion percentages to 

57, 59 and 57%, respectively.  Additional SporGon®, dilute bleach or Lysol® rinses 

resulted in 58, 61 and 50% eclosion, respectively.  The mean eclosion for insect saline 

treated eggs was 83%. Agitation in insect saline resulted in 47% eclosion and additional 

insect saline rinses yielded 68% eclosion. All agitation and rinse treatments significantly 

lowered eclosion rates (F = 9.595; df = 9; P < 0.0001) (Fig. 5.6).  

 

Fig 5.6. Results of surface-sterilization protocols with the addition of agitation or rinse on mean number 
of Lucilia cuprina eggs (N = 30) that successfully eclosed after treatment protocols. * indicates significant 
difference from control egg eclosion.  
 

Additional Species Tests. Analysis of initial disinfection protocols and agitation 

treatments showed that the 10 min immersion in Lysol® yielded the highest disinfection 
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rates coupled with the highest mean eclosion rates. However, a survey of entomology 

labs revealed that H2CO is the most commonly disinfectant used for surface sterilization 

of blow fly eggs (Sherman, personal communication). The efficacy of these two 

treatments was tested on three additional species: Ch. rufifacies, C. macellaria, and L. 

sericata. PRE-wash analysis showed that each species carried a significantly different 

bacterial load (F = 7230000; df = 2; P< 0.0001). Chrysomya rufifacies carried the 

highest mean initial bacterial load, followed by C. macellaria, and finally L. sericata 

(Fig. 5.7).  

 

Fig 5.7. Initial bacterial load of Ch. rufifacies, C. macellaria, and L. sericata determined by 24 h 
culture at 37 °C on blood agar.  
 
 
 POST-wash enrichments showed significant differences in disinfection rates 

between species and treatments (F = 7230000; df = 8; P < 0.0001). Tukey post hoc 

showed that immersion in Lysol® for 10 minute significantly lowered percent of samples 
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harboring residual bacteria after 24 h enrichment for Ch. rufifacies (M = 0; SD = 0) C. 

macellaria (M = 0; SD = 0), and L. sericata (M = 20.00; SD = 40.68). Post hoc tests 

showed that H2CO was not as effective as Lysol®, however. H2CO significantly percent 

of samples harboring residual bacteria after 24 h enrichment for C. macellaria (M = 

73.33; SD = 44.98) and L. sericata (M = 43.33; SD = 50.40), but did not for Ch. 

rufifacies (M = 83.33; SD = 27.90) (Fig 5.8).  

Fig 5.8 Results of surface-sterilzation protocols on Chrysomya rufifacies, Cochliomyia macellaria, and 
Lucilia sericata.  Percent of samples positive for bacteria after surface sterilization and 24 h enrichment 
in TSB at  37 °C, * indicates significant difference from PRE-wash mean positive samples.  
 
 

Lysol® and H2CO treatments significantly (P < 0.0001) affected eclosion rate for 

Ch. rufifacies and L. sericata, but did not affect eclosion rates of C. macellaria.  Mean 

eclosion for untreated Ch. rufifacies eggs was 91.22%, for C. macellaria eggs was 
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87.50%, and for L. sericata eggs was 70.90% (Fig. 5.9).  Immersion in Lysol® for 10 

minute lowered eclosion percentages of Ch. rufifacies by 27.65%, and L. sericata by 

11.15%. Cochliomyia macellaria eclosion rates were not affected by the treatment.  

H2CO treatment lowered Ch. rufifacies egg eclosion by 14.47%. Lucilia sericata and C. 

macellaria eclosion rates were unaffected by the treatment (Fig. 5.9).  

 

Fig 5.9.Results of surface-sterilzation protocols on Chrysomya rufifacies, Cochliomyia macellaria, and 
Lucilia sericata: on mean number of eggs that successfully ecosed. * indicates significant difference from  
control egg eclosion.  

 

Chorion visualization with potassium permanganate revealed the effect of each 

treatment on the outer surface of the eggs. Both untreated and saline rinsed eggs 

maintained an intact chorion, as did all treatments save the bleach and H2CO immersion. 
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The chorion appeared completely removed by this treatment, although the vitelline 

membrane appeared to be intact (Fig. 5.10).  

 
 

        
            

        Untreated           Saline rinsed  
 
 

     
   
                   5% Formalin                     10% Formalin 
 
 
Fig 5.10 Visualization of Lucilia cuprina eggs before and surface-sterilization after treatments. Eggs 
were stained with potassium permanganate to differentiate the (A) chorion from the (B) vittellin 
membrane. Lack of stain on bleach treatments indicates removal of chorion by bleach.  
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5 minute Lysol Immersion                     10 minute Lysol Immersion 
            

           
 

H2CO                    Bleach and H2CO 
 

           
   

    1:50 Bleach rinse             Benzalkonium Chloride 
 

Fig 5.10 continued 
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       70% Ethanol     95% Ethanol and SporGon 
 
 
Fig 5.10 continued 
 

 

Discussion 

 The use of biosurgical maggots in debridement therapy is increasing partially due 

to the development of antimicrobial resistance in bacteria (Sherman et al. 2000, Jaklic et 

al. 2008). Because of the habitats in which flies breed, the use of larvae for medical 

proposes necessitates the surface sterilization of fly eggs prior to rearing for use as 

biosurgical maggots (Baer 1931, Sherman et al. 2000). Neglecting to do so risks the 

introduction of potentially detrimental bacteria into an already wounded individual, 

which may lead to secondary infection and death (Baer 1931).  

 Previous studies have reported on the surface sterilization of blow fly eggs (Baer 

1931, Greenberg 1970, Connell 1981, Sherman and Tran 1995, Wollina 2000, Figueroa 

et al. 2007). However, validation of these methods on medically important species was 

either not presented, or the effect of the sterilization methods on hatch rates was not 
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investigated.  In this study, the efficacy of disinfection treatments previously or currently 

used in the production of medical maggots to remove culturable, aerobic bacteria from 

the external surface of L. cuprina were assessed in conjunction with the subsequent 

hatch rates of the disinfected eggs. Lucilia cuprina was selected as a sentinel species due 

to its high sensitivity to immersion in liquid. The resulting most effective treatment was 

then tested on three additional medically important species, Ch. rufifacies, C. 

macellaria, and L. sericata; along with the most common protocol current used in MDT 

labs commercially producing medical maggots  

 The amount of bacteria carried by the eggs of the four species ranged from 3.44 x 

104 to 12.99 x 104 CFU/ml. Bacterial load is subject to many factors, such as oviposition 

medium (Banjo et al. 2006, Costello et al. 2009, Barnes and Gennard 2011), moisture 

(O'Keefe and Schorsch 1954, Rejmankova et al. 2000), ambient temperature 

(Rejmankova et al. 2000, Zavarzin 2008), fecal-spots (Lerch 2003, Dillon and Dillon 

2004), and oviposition fluids associated with egg deposition (Lam et al. 2007, Lam et al. 

2009). Given the variation in bacterial load, the use of a large sample size is necessary 

for disinfection efficacy studies.  

 Currently, H2CO in used as the primary disinfectant for blow fly eggs in 

laboratories producing biosurgical maggots (Sherman et al. 2000, Figueroa et al. 2007, 

Gericke and Pitz 2008, Jaklic et al. 2008).  This study found that the efficacy of 

disinfection by H2CO was significantly lower than other treatments and led to fewer 

eggs eclosing in most species.  H2CO treatments were most effective on L. sericata than 

other species, possibly indicating a community of bacteria inhabiting the chorion that is 
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more susceptible to H2CO. Additionally, L. sericata eggs were not as easily killed by 

H2CO as other species.  

 In an effort to increase the effectiveness of H2CO disinfection treatments, 

immersion of the eggs in bleach prior to H2CO immersion was performed (Mumcuoglu 

et al. 2001). Bleach is commonly used as a sterilization agent (Rutala 1996) and should 

therefore adequately disinfect bacterially contaminated surfaces. However, bleach is also 

known to remove the chorion from eggs (Connell 1981) and retard embryological 

development (Connell 1981). In this study, a pre-wash with bleach increased the 

disinfection efficacy of H2CO without significantly lowering hatch rates. However, even 

with the addition of a pre-wash with bleach, near 100% disinfection was not reached, 

and the eclosion rates were significantly lower than controls, which precludes this 

treatment from being efficient for large-scale egg sterilization.  

 Since H2CO is an inherently volatile and dangerous substance, some 

investigators elected to use formalin, a commercial form of dilute H2CO mixed with a 

stabilizer (Simmons 1934).  While this formulation of H2CO allows for long-term 

storage of the disinfecting agent, and is considered a safer alternative, it did not 

adequately disinfect the egg surface.  Evaluation by bacterial enrichment post 5 and 10% 

formalin treatment showed that nearly 96.67 and 56.67%, respectively, of the treated 

eggs harbored some bacteria; while only 36.67% of H2CO treated eggs harbored 

bacteria. This lowered disinfection efficacy may have been due to the smaller amount of 

H2CO present in formalin formulations.  
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 In an effort to reduce the chorion removal due to bleach treatments, Teich (1986) 

diluted the bleach 1:50 and washed the solution over the eggs, but did not quantify the 

surface disinfection rates (Teich 1986). Evaluation of results in this study showed that 

continuous rinsing coupled with the disinfection of the NaOCl resulted in moderate 

disinfection, and a very high eclosion rate. This may be due to the limited exposure the 

chorion had to the bleach. Since the eggs were bathed in a dilute bleach solution, the 

bleach may not have had time to remove the chorion as seen in full-strength bleach 

soaks. This would account for the high eclosion rate. However, dilute bleach did not 

disinfect the surface of the eggs adequately, lowering mean CFU at the same rate as 

formalin and H2CO.  

 ADBAC is used as a disinfecting agent for water baths in laboratories (Rutala 

1996), and should therefore have the capacity to disinfect surfaces. This treatment 

significantly lowered initial bacterial load on egg surfaces, yet 24 h enrichment for 

bacteria showed 70% of the eggs still harboring residual bacteria on the egg surface (Fig. 

5.2). This indicates that the majority of culturable bacteria are initially killed, but that the 

surface of the eggs is not completely sterilized.  

 EtOH is used in many situations as a sterilization mechanism (Rutala 1996), and 

has been used to surface disinfect blow fly eggs prior to MDT (Brookes 1961). In our 

study, 70% EtOH was one of the least efficient disinfecting agents tested, but it had low 

toxicity to egg eclosion.  Despite significantly lowering bacterial load on egg surfaces 

below control levels, it left significantly more bacteria on the eggs than all other 

treatments, except 5% formalin, which demonstrated a similar lack of disinfection 
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efficacy.  This may have been due to the limited amount of time the ethanol spent in 

contact with bacterial contaminants. A longer ethanol soak may increase the efficacy of 

this treatment, but may also affect egg mortality.  

 The addition of SporGon® to the ETOH rinse was based on surface sterilization 

of beetles (Crippen 2006). SporGon® is a commercial formula designed to kill spore-

forming bacteria, and surface sterilize lab equipment.  This treatment was effective for 

the surface sterilization of beetles, leading to near 100% sterilization of contaminating 

bacteria (Crippen 2006).  This treatment did not significantly lower the eclosion rate of 

treated eggs, but it also did not completely disinfect the egg surfacing, leaving 

substantial residual bacteria behind that emerged after 24 h incubation.  SporGon® does 

not include a surfactant in its formulation; therefore it may be unable to access the entire 

surface of a clumped clutch of eggs. This hypothesis led to the addition of agitation to 

the treatment protocol to separate the agglutinated eggs. Agitation increased the 

disinfection efficacy of SporGon® by 20%, but unfortunately it also decreased the 

eclosion rate by 15%.  Agitation alone was found to decrease eclosion rate by 21%.  So 

SporGon® may be ineffectual for egg sterilization due to a lack in its formulation of 

compounds to deagglutinate the eggs, resulting in the inability to access bacteria 

insulated within egg clutches.  However, we found that agitation of the eggs during 

disinfection is also not recommended due to their apparent sensitivity to this type of 

manipulation. 

 Lysol® immersions resulted in the highest disinfection efficacy coupled with the 

best egg eclosion rates. Five-minute immersion in Lysol® resulted in an 80% reduction 
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of bacterial contaminants, with only 20% of the samples showing residual bacteria after 

24 h enrichment, and an eclosion rate not significantly different from untreated eggs. 

Lysol® immersion for 10 min resulted in 97% disinfection egg samples; only one of the 

30 samples yielded residual bacteria after 24 h incubation. This treatment’s eclosion 

rates were also not significantly different from controls. This treatment yielded the 

highest rate of surface disinfection of the eggs, and the accompanying high eclosion rate 

makes this treatment the most effective of those tested.  

 The 10 minute immersion in Lysol® was compared to the commonly used 5 min 

immersion in H2CO on three additional species.   H2CO did not significantly reduce 

surface bacteria on Ch. rufifacies eggs, but lowered the bacteria on C. macellaria eggs 

by 20%, and on L. sericata eggs by 60%. The 10 minute immersion in Lysol® resulted in 

100% disinfection of both Ch. rufifacies and C. macellaria eggs, and a reduction of 

bacteria on L. sericata of 80%. Egg eclosion remained high for all three species under 

both treatments, although Ch. rufifacies eclosion was reduced by 30% after the Lysol® 

immersion.  The combination of high disinfection rates along with high eclosion rates 

makes a 10-min Lysol® immersion the most efficacious surface disinfection for four 

species of biosurgical maggots.  

 During oviposition, eggs are laid in groups or clutches on the oviposition 

medium. The clutches are covered with a layer of glycoprotein that may prevent 

dehydration, and adheres the egg clutch to the substratum (Peterson 1991). This 

glycoprotein layer may be responsible for the adhesion of bacteria to the egg surface.  

Inadequate deagglutination of the egg clutches prior to disinfection results in poor 
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surface sterilization (Sherman 1996). The failure of several of our treatments may be due 

to the inadequate deagglutination of egg clutches, and the subsequent protection of 

bacteria within glycoprotein layers. Historically, egg clutches were deagglutinated using 

NaOCl (Weil et al. 1933, Connell 1981, Sherman 1996), which resulted in chorion 

removal and decreased egg eclosion (Connell 1981). The physical deagglutination used 

in this experiment attempted to maximize both egg disinfection and egg eclosion. It may 

be that not chemically removing the deposited glycoprotein from the egg clutches 

prevented some of the disinfectants from reaching trapped bacteria, thereby allowing for 

continued contamination. Lysol® is formulated with a commercial surfactant, which 

breaks down the glycoprotein without damaging underlying tissues. This formulation 

possibly enabled the disinfectant to reach the bacterial contaminants while still allowing 

for adequate egg eclosion after surface sterilization.  

 The cultivation of medical maggots can be a time intensive process.  Although it 

is possible that eggs harbor bacterial organisms internally (Sherman et al. 2000), when 

preparing larvae for medicinal uses, surface disinfection of the eggs is crucial to a 

positive therapeutic outcome.  Insufficiently surface sterilized eggs can contaminate 

wounds and lead to secondary infection (Weil et al. 1933).  Several previous studies 

used protocols that purportedly disinfected the surface of eggs (Glaser 1938, Horn et al. 

1976, Sherman 1996, Mohd Masari et al. 2005); however, data validating the efficacy of 

the described techniques, and the impact of such techniques on egg eclosion was not 

sufficiently presented. This study assessed the efficacy of previously described and 

newly developed methods to disinfect the external surface of Calliphoridae eggs.  The 
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goal of this study was to develop a protocol that maximized surface disinfection of the 

eggs and minimized toxicity resulting in reduced eclosion.  It is important to commercial 

endeavors to have a protocol producing a high yield of useable biosurgical larvae.  A 10 

min immersion in Lysol® removed culturable, aerobic bacteria from 97% of the external 

surface of three species of Calliphoridae eggs, while allowing for high rates of egg 

eclosion.  
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CHAPTER VI 

GENERAL CONCLUSION 

 These experiments were designed to investigate the mechanisms involved with 

colonization of an ephemeral resource by two forensically important flies, Chryosmya 

rufifacies (Macquart) and Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae). 

Given the biology and ecology of these species, elucidation of these mechanisms 

included analysis of arrival time effects on each species; effects of decomposition state 

of the resource; and effects of prior conspecific and heterospecific colonization of the 

resource on oviposition behavior. The results of these experiments have yielded some 

interesting facts about the behavior of these two species, and revealed a possible inter-

kingdom signaling mechanism that deserves further investigation. 

 This research demonstrated a priority effect between Ch. rufifacies and C. 

macellaria, and implied that the predator-prey relationship between the two species may 

be more important than competition for food. The development of C. macellaria was 

impacted by the variation in arrival on a resource between itself and Ch. rufifacies 

arrival on a resource.  These results demonstrate that arrival sequence significantly 

affects the fitness of both Ch. rufifacies and C. macellaria.   Early colonization may 

allow the competitively weaker C. macellaria to persist in a community, while delaying 

colonization after C. macellaria appears to benefit Ch. rufifacies. Selection for such 

traits may explain how C. macellaria is able to persist in the environment despite intense 

predation pressure, while Ch. rufifacies is able to persist in the environment despite the 

risky behavior of secondary colonization.  
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 The observed priority effect between Ch. rufifacies and C. macellaria indicated the 

use of ovipositional cues to mediate colonization of a resource. Resource age was a 

natural next step in the investigation, as necrophagous flies tend to colonize 

decomposing resources over time, and may therefore require the resource to be in a 

particular state of decay. The positive response of C. macellaria to both fresh and 

putrefied resource and the negative response of Ch. rufifacies to putrefied resource 

indicated that resource state alone was not enough to induce oviposition behaviors.  

These results led to questions about what input is necessary for oviposition on a 

resource, and how those inputs change over time.  

 Since resource age did not completely explain the observed patterns of 

colonization of C. macellaria and Ch. rufifacies, this work focused on the group 

oviposition aspect of colonization in an attempt to discover why possible competitors 

would oviposit in large groups. the work of Lam et al. (2007) indicated that attractancy 

to eggs changes as the eggs age in muscids (Diptera: Muscidae), and it was probable that 

calliphorids followed the same patterns. Therefore, egg age was used as a basis for 

comparing changing conspecific and heterospecific attractancy for C. macellaria and 

Ch. rufifacies. The results from initial egg attractancy experiments drove the remainder 

of the research.  

 Attractancy to both conspecific and heterospecific eggs changed based on egg age 

and physiological state of adults. Chrysomya rufifacies was attracted to both conspecific 

and heterospecific eggs when they were fresh, but switched to only being attracted to 

heterospecific eggs as they aged over 3 h. Only non-gravid females showed any 
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attractancy to the eggs as they approached eclosion. Cochliomyia macellaria were 

attracted to conspecific eggs and repelled from heterospecific eggs until the eggs neared 

eclosion, when only the males showed any preference. These data indicate that there is 

something about the eggs themselves that allows adults to judge the age of the egg clutch 

and adjust behavior to maximize offspring fitness. Since Ch. rufifacies is looking for 

prey items, it is logical that the ovipositing adults are attracted to prey eggs until those 

eggs reach a certain developmental stage. After that developmental stage, the Ch. 

rufifacies larvae run the risk of missing the predatory window and would have to revert 

to necrophagous feeding or cannibalism. Cochliomyia macellaria, on the other hand, 

seem to avoid the predator species, indicating that selection has occurred in the few 

years since Ch. rufifacies was introduced to this country. The attraction to conspecific 

eggs by C. macellaria also indicates a selection for group oviposition, which implies that 

offspring will be more fit if feeding in a mass. The lack of attraction as the eggs age, 

however, indicates that C. macellaria adults may be taking steps to avoid intraspecific 

competition, and give the larvae maximum advantage by allowing them to compete only 

with similarly aged larvae. These larvae would seemingly feed at the same rate, while 

older larvae would have the advantage of consuming more resource more quickly.  

 Based on these results, egg physiology itself, or shifts in bacterial communities 

found on the surface of the eggs might be the mechanisms governing fly attraction. 

Chrysomya rufifacies showed attraction to surface sterilized eggs, implying the use of 

carbon dioxide as an attractant. This result lends credence to the idea that Ch. rufifacies 

may be a primary predator and a secondary necrophage, else the volatiles governing 



 

 

135 

attraction would be more associated with decomposing tissue as opposed to living 

organisms. Little attraction was found to surface sterilized eggs in C. macellaria, which 

indicates that bacterial attraction may hold the key to oviposition behaviors.  

 Attractancy to microbes in both species varied. High throughput sequencing of 

egg-associated bacteria revealed that C. macellaria eggs carry 39 genera, while Ch. 

rufifacies carry 31 genera. The bacterial community associated with the eggs changes 

over time and may affect adult behavior. Chrysomya rufifacies show varying levels of 

attraction to bacteria associated both with conspecific and heterospecific eggs, and this 

attraction coupled with the attraction to physiological processes of the surface-sterilized 

eggs goes a long way in explaining the attractancy patterns observed by this species. 

Cochliomyia macellaria, however, showed no clear patterns of attraction to microbes. 

This indicates the need for greater analysis of the volatiles produced by individual 

bacterial species, and their interactions on the egg surfaces. This information, coupled 

with information about olfactory cues emitted from potential oviposition sites should 

help elucidate the attraction of C. macellaria to oviposit.  

 This research also refined the methods used to analyze Calliphoridae response to 

odors in a dual choice olfactometer, and validated methods of surface sterilization of 

blow fly eggs. Residence time was found to be a more powerful technique when coupled 

with Monte Carlo simulation in analyzing the behavior of adult flies in the olfactometer. 

This technique allowed for significant responses where trends were initially observed.. It 

also took into account the physiological state of the females, as ovarian status and 

protein meals are known to affect behaviors in regards to resource location and 
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utilization. The data gathered during the olfactometer experiments allowed for 

refinement of olfactometer technique, and generated questions regarding other possible 

physiological factors that may affect response to odors.  

 Surface sterilization of eggs is an often-used lab technique that has seldom been 

validated. This work looked the most common methods of blow fly disinfection, and 

validated both the efficacy of the treatment protocols and the effect of the treatments on 

the egg chorion and eclosion rate. Lysol® was found to the most effective surface-

sterilization treatment, although its efficacy depended upon the species of egg being 

disinfected. This indicates a variation among species in the bacterial contaminants and 

perhaps the substances deposited by ovipositing females.  

 The mechanisms that govern the attraction to an oviposition site by calliphorid 

flies need to be understood completely. This knowledge will lead to a greater 

understanding of colonization mechanisms, which, in turn, may be applied to such 

diverse applications as forensic entomology and livestock pest management. Since 

calliphorids are important in both industries, the knowledge of oviposition preference 

could also lead to a better time of colonization estimation in cases of human death, 

mechanisms for control of myiasis producing flies in livestock, and the development of 

more efficient traps for monitoring fly populations.  

 Given the results of my research, future experiments should endeavor to explore 

both the ecology and behavior of Ch. rufifacies and C. macellaria as competitors and 

possible predators and prey on a resource, along with the effect of bacteria in governing 

the arrival and duration of these two species. Since Ch. rufifacies is significantly more fit 
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in the presence of C. macellaria, the effect on the larval duration of each species should 

be investigated, as this has immediate practical importance in forensic entomology. 

Currently, life-history data sets available are for single species. No studies have 

examined their development when together. The fitness effects of intraspecific 

competition should also be analyzed to determine how these selective pressures have 

shaped the colonization patterns and interactions of these two species. An analysis of 

effects of carbon dioxide on the attractancy of both species should also be looked at, to 

determine if respiration has any bearing on colonization patterns for either fly. The 

bacterial species found on the eggs should be compared with those normally found on 

decomposing remains to determine if any similarities or differences are present, and 

perhaps elucidate the reason for the presence of these species on fly eggs. The origin of 

the bacteria may also shed light on how these species interact with their environment, 

and how bacteria interact with the flies. Further investigation of surface-sterilization 

procedures is also necessary to fully understand what products effectively disinfect 

insect eggs, and what causes the variation among the treatments. Knowledge of this 

variation may allow for the more effective control of medically important species and 

the use of those species in a medically important manner. Finally, the change in bacterial 

communities on the fly eggs may open a novel avenue of egg age estimation, a subject 

important in forensics.  

 

 

 



 

 

138 

 
REFERENCES 

 
Aak, A., and G. K. Knudsen. 2011. Sex differences in olfaction-mediated visual acuity 

in blowflies and its consequences for gender-specific trapping. Entomologia 
Experimentalis et Applicata 139: 25-34. 

Aak, A., G. K. Knudsen, and A. Soleng. 2010. Wind tunnel behavioural response and 
field trapping of the blowfly Calliphora vicina. Medical and Veterinary 
Entomology 24: 250-257. 

Aguiar-Coelho, V. M., and E. M. V. Milward-de-Azevedo. 1998. Combined rearing 
of Cochliomyia macellaria (Fabr.), Chrysomya megacephala (Fabr.) and 
Chrysomya albiceps (Wied.) (Diptera: Calliphoridae) under laboratory 
conditions. Journal of Applied Entomology 122: 551-554. 

Ahmad, A., A. Broce, and L. Zurek. 2006. Evaluation of significance of bacteria in 
larval development of Cochliomyia macellaria (Diptera: Calliphoridae). Journal 
of Medical Entomology 43: 1129-1133. 

Alford, R. A., and H. M. Wilbur. 1985. Priority effects in experimental pond 
communities: competition between Bufo and Rana. Ecology 66: 1097-1105. 

Allen, M. L. 2004. Postlarval fitness of transgenic strains of Cochliomyia hominivorax 
(Diptera: Calliphoridae). Journal of Economic Entomology 97: 1181-1185. 

Amendt, J., R. Zehner, D. G. Johnson, and J. Wells. 2010. Future trends in forensic 
entomology, pp. 353-368. In J. Amendt, M.L. Goff, C.P. Campobasso, and M. 
Grassberger (eds.), Current Concepts in Forensic Entomology. Springer 
Netherlands. 

Amendt, J., C. P. Campobasso, E. Gaudry, C. Reiter, H. N. LeBlanc, and M. J. R. 
Hall. 2007. Best practice in forensic entomology--standards and guidelines. 
International Journal of Legal Medicine 121: 90-104. 



 

 

139 

Anderson, G. S., and S. L. VanLaerhoven. 1996. Initial studies on insect succession 
on carrion in southwestern British Columbia. Journal of Forensic Sciences 41: 
617-625. 

Archer, M. S., and M. A. Elgar. 2003. Female breeding-site preferences and larval 
feeding strategies of carrion-breeding Calliphoridae and Sarcophagidae 
(Diptera): a quantitative analysis. Australian Journal of Zoology 51: 165-174. 

Ashworth, J. R., and R. Wall. 1994. Responses of the sheep blowflies Lucilia sericata 
and L. cuprina to odour and the development of semiochemical baits. Medical 
and Veterinary Entomology 8: 303-309. 

Ashworth, J. R., and R. Wall. 1995. Effects of ovarian development and protein 
deprivation on the activity and locomotor responses of the blowfly Lucilia 
sericata to liver odour. Physiological Entomology 20: 281-285. 

Atkinson, W. D., and B. Shorrocks. 1981. Competition on a divided and ephemeral 
resource: a simulation model. Journal of Animal Ecology 50: 461-471. 

Avancini, R. M. P. 1986. Oogenesis in Chrysomya putoria (Wiedemann) (Diptera: 
Calliphoridae). International Journal of Insect Morphology & Embryology 15: 
375-384. 

Baer, W. S. 1931. The treatment of chronic osteomyelitis with the maggot (larva of the 
blow fly) Journal of Bone Joint Surgery 13: 438-475. 

Banjo, A. D., O. A. Lawal, and O. I. Akintola. 2006. Bacteria and fungi associated 
with Lucilia cuprina (sheep blowfly) larvae. Research Journal of Agriculture and 
Biological Sciences 2: 358-364. 

Barnes, K. M., and D. E. Gennard. 2011. The effect of bacterially-dense environments 
on the development and immune defences of the blowfly Lucilia sericata. 
Physiological Entomology 36: 96-100. 

Barot, S., A. Ugolini, and F. B. Brikci. 2007. Nutrient cycling efficiency explains the 
long-term effect of ecosystem engineers on primary production. Functional 
Ecology 21: 1-10. 



 

 

140 

Battan Horenstein, M., A. Xavier Linhares, B. Rosso De Ferradas, and D. Garcia. 
2010. Decomposition and dipteran succession in pig carrion in central Argentina: 
ecological aspects and their importance in forensic science. Medical and 
Veterinary Entomology 24: 16-25. 

Baumberger, J. P. 1919. A nutritional study of insects, with special references to 
microorganisms and their substrata. Journal of Experimental Zoology 28: 1-81. 

Baumgartner, D. L. 1985. Distribution and medical ecology of the blow flies (Diptera: 
Calliphoridae) of Peru. Annals of the Entomological Society of America 78: 565-
587. 

Baumgartner, D. L. 1993. Review of Chrysomya rufifacies (Diptera: Calliphoridae). 
Journal of Medical Entomology 30: 338-352. 

Beaver, R. A. 1977. Non-equilibrium `island' communities: diptera breeding in dead 
snails. Journal of Animal Ecology 46: 783-798. 

Beaver, R. A. 1984. Insect exploitation of ephemeral habitats. South Pacific Journal of 
Natural Sciences 6: 3-47. 

Benbow, M. 2006. Debridement of non-healing wounds. Practice Nurse 31: 26-30. 

Bexfield, A., A. E. Bond, E. C. Roberts, E. Dudley, Y. Nigam, S. Thomas, R. P. 
Newton, and N. A. Ratcliffe. 2008. The antibacterial activity against MRSA 
strains and other bacteria of a <500Da fraction from maggot 
excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes and 
Infection 10: 325-333. 

Biavati, G. M., F. H. d. A. Santana, and J. R. Pujol-Luz. 2010. A checklist of 
Calliphoridae blowflies (Insecta: Diptera) associated with a pig carrion in central 
Brazil. Journal of Forensic Sciences 55: 1603-1606. 

Boatright, S. A., and J. K. Tomberlin. 2010. Effects of temperature and tissue type on 
the development of Cochliomyia macellaria (Diptera: Calliphoridae). Journal of 
Medical Entomology 47: 917-923. 



 

 

141 

Bohart, G. E. 1951. Filth-inhabiting flies of Guam. Bernice P Bishop Museum Bulletin 
204: 1-146. 

Braack, L. E. O. 1987. Community dynamics of carrion-attendant arthropods in tropical 
African woodland. Oecologia 72: 402-409. 

Brookes, V. J. 1961. Partial purification of a proteolytic enzyme from an insect, 
Phormia regina. Biochimica et Biophysica Acta 46: 13-21. 

Brookes, V. J., and G. Fraenkel. 1958. The nutrition of the larva of the housefly, 
Musca domestica L. Physiological Zoology 31: 208-223. 

Browne, L. B. 1958. The choice of communal oviposition sites by the Australian sheep 
blowfly Lucilia cuprina. Australian Journal of Zoology 6: 241-246. 

Browne, L. B. 1960. The role of olfaction in the stimulation of oviposition in the 
blowfly, Phorima regina. Journal of Insect Physiology 5: 16-22. 

Browne, L. B. 1965. An analysis of the ovipositional responses of the blowfly Lucilia 
cuprina to ammonium carbonate and indole. Journal of Insect Physiology 11: 
1131-1143. 

Browne, L. B. 1993. Physiologically induced changes in resource-oriented behavior. 
Annual Review of Entomology 38: 1-23. 

Browne, L. B., R. J. Bartell, and H. H. Shorey. 1968. Pheromone-mediated behaviour 
leading to group oviposition in the blowfly Lucilia cuprina. Journal of Insect 
Physiology 15: 1003-1014. 

Bryant, E. 1971. The effect of temporal advantage on competition between two strains 
of the housefly. Researches on Population Ecology 13: 55-66. 

Bucheli, S. R., J. A. Bytheway, S. M. Pustilnik, and J. Florence. 2009. Insect 
successional pattern of a corpse in cooler months of subtropical southeastern 
Texas. Journal of Forensic Sciences 54: 452-455. 



 

 

142 

Byrd, J. H. 1998. Temperature dependent development and computer modeling of 
Insect Growth: its application to forensic entomology. PhD, University of 
Florida. 

Byrd, J. H., and J. F. Butler. 1996. Effects of temperature on Cochliomyia macellaria 
(Diptera: Calliphoridae) development. Journal of Medical Entomology 33: 901-
905. 

Byrd, J. H., and J. F. Butler. 1997. Effects of temperature on Chrysomya rufifacies 
(Diptera: Calliphoridae) development. Journal of Medical Entomology 34: 353-
358. 

Byrd, J. H., and J. L. Castner. 2010. Forensic Entomology the Utility of Arthropods in 
Legal Investigations,  2nd ed. Tayler & Francis, Boca Raton. 

Cammack, J. A., and M. P. Nelder. 2010. Cool-weather activity of the forensically 
important hairy maggot blow fly Chrysomya rufifacies (Macquart) (Diptera: 
Calliphoridae) on carrion in upstate South Carolina, United States. Forensic 
Science International 195: 139-133. 

Cammack, J. A., P. H. Adler, J. K. Tomberlin, Y. Arai, and W. C. Bridges, Jr. 
2010. Influence of parasitism and soil compaction on pupation of the green bottle 
fly, Lucilia sericata. Entomologia Experimentalis et Applicata 136: 134-141. 

Campobasso, C. P. 2001. Factors affecting decomposition and Diptera colonization. 
Forensic Science International 120: 18-27. 

Campobasso, C. P., and F. Introna. 2001. The forensic entomologist in the context of 
the forensic pathologist's role. Forensic Science International 120: 132-139. 

Carvalho, L., P. Thyssen, A. Linhares, and F. Palhares. 2001. A checklist of 
arthropods associated with pig carrion and human corpses in Southeastern Brazil. 
Journal of Forensic Sciences 46: 604-608. 

Catts, E. P. 1992. Problems in estimating the postmortem interval in death 
investigations. Journal of Agricultural Entomology 9: 245-255. 



 

 

143 

Catts, E. P., and M. L. Goff. 1992. Forensic entomology in criminal investigations. 
Annual Review of Entomology 37: 253-272. 

Catts, E. P., and N. H. Haskell. 2008. Entomology and Death: A Procedural Guide,  2nd 
ed. Joyce's Print Shop, Inc., Clemson, SC. 

Chapman, R. F. 2003. Chemoecology of Insect Eggs and Egg Deposition. 
Physiological Entomology 28: 154-154. 

Chaudhury, M. F. 2010. Volatiles emitted from eight wound-isolated bacteria 
differentially attract gravid screwworms (Diptera: Calliphoridae) to oviposit. 
Journal of Medical Entomology 47: 349-354. 

Chaudhury, M. F., S. R. Skoda, A. Sagel, and J. B. Welch. 2010. Volatiles emitted 
from eight wound-isolated bacteria differentially attract gravid screwworms 
(Diptera: Calliphoridae) to oviposit. Journal of Medical Entomology 47: 349-
354. 

Chin, H. C. 2007. A preliminary study of insect succession on a pig carcass in a palm 
oil plantation in Malaysia. Tropical Biomedicine 24: 23-27. 

Collins, R. D. 1996. Enhancement of resource finding efficiency by visual stimuli in 
Musca domestica (Diptera: Muscidae). Journal of the Kansas Entomological 
Society 69: 204-207. 

Connell, J. H. 1980. Diversity and the coevolution of competitors, or the ghost of 
competition past Oikos 35: 131-138. 

Connell, T. D. 1981. A new technique for surface sterilization of insect eggs. Journal of 
the Kansas Entomological Society 54: 124-128. 

Cornaby, B. W. 1974. Carrion reduction by animals in contrasting tropical habitats. 
BioTropica 6: 51-63. 



 

 

144 

Costello, E. K., C. L. Lauber, M. Hamady, N. Fierer, J. I. Gordon, and R. Knight. 
2009. Bacterial community variation in human body habitats across space and 
time. Science 326: 1694-1697. 

Cragg, J. B. 1955. The natural history of sheep blowflies in Britain. Annals of Applied 
Biology 42: 197-207. 

Crippen, T. L. 2006. External surface disinfection of the lesser mealworm (Coleoptera: 
Tenebrionidae). Journal of Medical Entomology 43: 916-923. 

Crombie, A. C. 1944. On the measurement and modification of the olfactory responses 
of blowflies. Journal of Experimental Biology 20: 159-166. 

Crystal, M. M. 1967. Reproductive behavior of laboratory-reared screw-worm flies 
(Diptera: Calliphoridae) Journal of Medical Entomology 4: 443-450. 

Dale, C., and N. A. Moran. 2006. Molecular interactions between bacterial symbionts 
and their hosts. Cell 126: 453-465. 

Davies, L. 1998. Delayed egg production and a possible group effect in the blowfly 
Calliphora vicina. Medical and Veterinary Entomology 12: 339-344. 

De Jong, G. D. 1997. Additional county records and a correction to the checklist of the 
Calliphoridae (Diptera) of Colorado, with a new state record for Chrysomya 
rufifacies. Journal of the Kansas Entomological Society 70: 47-51. 

De Jong, G. D., and W. W. Hoback. 2006. Effect of investigator disturbance in 
experimental forensic entomology: succession and community composition. 
Medical and Veterinary Entomology 20: 248-258. 

Dekeirsschieter, J., F. Verheggen, and E. Haubruge. 2010. The use of carrion beetles 
in forensic entomology: life cycle of two species of Silphids. 20th International 
Symposium on the Forensic Sciences of the Australian and New Zealand 
Forensic Science Society. 



 

 

145 

Dekeirsschieter, J., F. J. Verheggen, M. Gohy, F. Hubrecht, L. Bourguignon, G. 
Lognay, and E. Haubruge. 2009. Cadaveric volatile organic compounds 
released by decaying pig carcasses (Sus domesticus L.) in different biotypes. 
Forensic Science International 189: 46-53. 

Denno, R. F. 1975. Niche relationships of a guild of necrophagous flies. Annals of the 
Entomological Society of America 68: 741-754. 

Denno, R. F., M. S. McClure, and J. R. Ott. 1995. Interspecific interactions in 
phytophagous insects: competition reexamined and resurrected. Annual Review 
of Entomology 40: 297-331 

Deron, E. B., J. D. Parker, C. B. Woodson, H. J. Mills, J. Kubanek, P. A. Sobecky, 
and M. E. Hay. 2006. Chemically mediated competition between  icrobes and 
animals: microbes as consumers in food webs. Ecology 87: 2821-2831. 

Dethier, V. G. 1961. Behavioral aspects of protein ingestion by the blowfly Phormia 
regina Meigen. Biological Bulletin 121: 456-470. 

Diaz-Fleischer, F., and M. Aluja. 2003. Influence of conspecific presence, experience, 
and host quality on oviposition behavior and clutch size determination in 
Anastrepha ludens (Diptera: Tephritidae). Journal of Insect Behavior 16: 537-
554. 

Dill, L. M., M. R. Heithaus, and C. J. Walters. 2003. Behaviorally mediated indirect 
interactions in marine communities and their conservation implications Ecology 
84: 1151-1157. 

Dillon, R. J., and V. M. Dillon. 2004. The gut bacteria of insects: nonpathogenic 
interactions. Annual Review of Entomology 49: 71-92. 

Dowd, S., Y. Sun, P. Secor, D. Rhoads, B. Wolcott, G. James, and R. Wolcott. 2008. 
Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, 
and full ribosome shotgun sequencing. BMC Microbiology 8: 43-44 



 

 

146 

Early, M., and M. L. Goff. 1986. Arthorpod succession patterns in exposed carrion on 
the island of Oahu, Hawaiian-Islands, USA. Journal of Medical Entomology 23: 
520-531. 

Easton, C., and D. Feir. 1991. Factors affecting the ovipositoin of Phaenicia sericata 
(Meigen) (Diptera: Calliphoridae). Journal of the Kansas Entomological Society 
64: 287-294. 

Eberhardt, T. L., and D. A. Elliot. 2008. A preliminary investigation of insect 
colonisation and succession on remains in New Zealand. Forensic Science 
International 176: 217-223. 

Eddy, G. W. 1975. Response of adult screwworm (Diptera-Calliphoridae) to bacteria 
incubated bovine blood in olfactometer and oviposition tests. Journal of Medical 
Entomology 12: 379-381. 

Eismann, C. H. 1988. Upwind flight by gravid Australian sheep blowflies, Lucilia 
cuprina (Wiedemann) (Diptera: Calliphoridae), in response to stimuli from 
sheep. Bulletin of Entomological Research 78: 273-279. 

Eismann, C. H., and M. J. Rice. 1987. The origin of sheep blowfly Lucilia cuprina 
(Wiedemann) (Diptera: Calliphoridae), attractants in media infested with larvae. 
Bulletin of Entomological Research 77: 287-294. 

Eitam, A., L. Blaustein, and M. Mangel. 2005. Density and intercohort priority effects 
on larval Salamandra salamandra in temporary pools. Oecologia 146: 36-42. 

Emmens, R. L. 1982. The role of bacterial odors in oviposition by Lucilia cuprina 
(Wiedmann) (Diptera: Calliphoridae), the Australian sheep blowfly. Bulletin of 
Entomological Research 72: 367-375. 

Faria, L. D. 2004. Larval predation on different instars in blowfly populations. Brazilian 
Archives of Biology and Technology 47: 887-894. 

Fenton, A. 1999. The effects of oviposition aggregation on the incidence of sheep 
blowfly strike. Veterinary Parasitology 83: 137-150. 



 

 

147 

Fiedler, S. 2003. Decomposition of buried corpses, with special reference to the 
formation of adipocere. Naturwissenschaften 90: 291-300. 

Figueroa, L., J. Flores, and S. Rodriguez. 2007. A culture method for Lucilia sericata 
fly larvae for use in maggot therapy. Sociedad Chilena de Parasitologia 62: 79-
82. 

Fine, A. 1934. Maggot therapy - technique and clinical application. Journal of Bone and 
Joint Surgery 16: 572-582. 

Fuller, M. E. 1934a. Sheep blowfly investigations--some field tests of baits treated with 
sodium sulphide. Journal of the Council for Scientific and Industrial Research, 
Australia 7: 147-149. 

Fuller, M. E. 1934b. The insect inhabitants of carrion : a study in animal ecology / by 
Mary E. Fuller,  Council for Scientific and Industrial Research, Melbourne. 

Gagne, R. J. 1981. Chrysomya sp., Old World blow flies (Diptera: Calliphoridae), 
recently established in the Americas. Bulletin of the Entomological Society of 
America 27: 21-22. 

Geange, S. W., and A. C. Stier. 2009. Order of arrival affects competition in two reef 
fishes. Ecology 90: 2868-2878. 

Gericke, A., and S. Pitz. 2008. Maggot therapy for periocular skin graft failure in the 
immunocompromised patient. British Journal of Ophthalmology 92: 860-861. 

Gill, C. O., and N. Penney. 1979. Survival of bacteria in carcasses. Applied 
Environmental Microbiology 37: 667-669. 

Glaser, R. W. 1938. A Method for the Sterile Culture of Houseflies. The Journal of 
Parasitology 24: 177-179. 

Goddard, J. 1988. Blow fly bait preferences and seasonal activity in Bexar County, 
Texas. Southwestern Entomologist 13: 131-135. 



 

 

148 

Goff, M. L. 1993. Estimation of post-mortem interval using arthropods’ development 
and successional patterns. Forensic Science Reivew 5: 81-94. 

Gomes, L., G. Gomes, and I. C. Desuo. 2009. A preliminary study of insect fauna on 
pig carcasses located in sugarcane in winter in southeastern Brazil. Medical & 
Veterinary Entomology 23: 155-159. 

Gomes, L., G. Gomes, F. E. Casarin. 2007. Visual and olfactory factors interaction in 
resource-location by the blowfly, Chrysomya megacephala (Fabricius) (Diptera: 
Calliphoridae), in natural conditions. Neotropical Entomology 36: 633-639. 

Goodbrod, J. R. 1990. Effects of larval populaion-density on rates of devlopment and 
interactions between two species of Chrysomya (Diptera, Calliphoridae) in 
laboratory culture. Journal of Medical Entomology 27: 338-343. 

Grabbe, R. P., and J. P. Turner. 1973. Screwworm attractants: isolation and 
identification of organic compounds from bacterially inoculated and incubated 
blood. . Folia Entomologica Mexicana 25: 120-121. 

Greenberg, B. 1970. Sterilizing procedures and agents, antibiotics and inhibitors in 
mass rearing of insects. Bulletin of the Entomological Society of America 16: 31-
36. 

Greenberg, B. 1991. Flies as forensic indicators. Journal of Medical Entomology 28: 
565-577. 

Gruner, S. V., D. H. Slone, and J. L. Capinera. 2007. Forensically important 
Calliphoridae (Diptera) associated with pig carrion in rural north-central Florida. 
Journal of Medical Entomology 44: 509-515. 

Hall, M. J. M. 1995. Trapping the flies that cause myiasis: their responses to host-
stimuli. Annals of Tropical Medicine and Parasitology 89: 333-357. 

Hall, R. D. 1993. Length of time after death - effect on attraction and oviposition or 
larviposition of midsummer blow flies (Diptera, Calliphoridae) and flesh flies 
(Diptera, Sarcophagidae) of medicolegal Importance in Missouri Annals of the 
Entomological Society of America 86: 589-593. 



 

 

149 

Hammack, L. 1987. Reproductive factors affecting responses of the screwworm fly, 
Cochliomyia hominivorax (Diptera: Calliphoridae), to an attractant of bacterial 
origin. Annals of the Entomological Society of America 80: 775-780. 

Hammack, L., and G. G. Holt. 1983. Responses of gravid screwworm flies, 
Cochliomyia hominivorax , to whole wounds, wound fluid, and a standard blood 
attractant in olfactometer tests. Journal of Chemical Ecology 9: 913-922. 

Hanski, I. 1987. Carrion fly community dynamics: patchiness, seasonality and 
coexistence. Ecological Entomology 12: 257-266. 

Hanski, I., and S. Kuusela. 1977. An experiment on competition and diversity in the 
carrion fly community. Annales Entomologici Fennici 43: 108-115. 

Heath, A. C. G., and C. Appleton. 2000. Small vertebrate carrion and its use by 
blowflies (Callphoridae) causing ovine myiasis (flystrike) in New Zealand. New 
Zealand Entomologist 22: 81-87. 

Hobson, R. P. R. 1931. On an enzyme from blow-fly larvae [Lucilia sericata] which 
digests collagen in alkaline solution. The Biochemical Journal 25: 1458-1463. 

Hodge, S. 1996. Effects of temporal priority on interspecific interactions and community 
development. Oikos 76: 350-358. 

Horn, K. L., A. H. Cobb, Jr, and G. A. Gates. 1976. Maggot therapy for subacute 
mastoiditis. Archives of Otolaryngology - Head & Neck Surgery 102: 377-379. 

Irving, A. D., J. E. Tanner, and B. K. McDonald. 2007. Priority effects on faunal 
assemblages within artificial seagrass. Journal of Experimental Marine Biology 
and Ecology 340: 40-49. 

Jaklic, D., A. Lapanje, K. Zupancic, D. Smrke, and N. Gunde-Cimerman. 2008. 
Selective antimicrobial activity of maggots against pathogenic bacteria. Journal 
of Medical Microbiology 57: 617-625. 



 

 

150 

Janzen, D. H. 1977. Why Fruits Rot, Seeds Mold, and Meat Spoils. The American 
Naturalist 111: 691-713. 

Jiang, Y., C.-l. Lei, C.-y. Niu, Y.-l. Fang, C. Xiao, and Z.-n. Zhang. 2002. 
Semiochemicals from ovaries of gravid females attract ovipositing female 
houseflies, Musca domestica. Journal of Insect Physiology 48: 945-950. 

Jiron, L. F. 1981. Insect succession in the decomposition of a mammal in Costa Rica 
Journal of the New York Entomological Society 89: 158-165. 

Judd, G. J. R. 1992. Agregated oviposition in Delia antiqua (Meigen) -  A case for 
mediation by semiochemicals Journal of Chemical Ecology 18: 621-635. 

Kheirallah, A. M., T. I. Tantawi, A. H. Aly, and Z. A. El-Moaty. 2007. Competitive 
interaction between larvae of Lucilia sericata (Meigen) and Chrysomya albiceps 
(Wiedemann) (Diptera: Calliphoridae). Pakistan Journal of Biological Sciences 
10: 1001-1010. 

Kirchhoff, C., and V. Schroeren. 1986. Monogenic reproduction allows comparison of 
protein patterns of female and male predetermined ovaries and embryos in 
Chrysomya rufifacies (Diptera: Calliphoridae). Comparative Biochemistry and 
Physiology 85B: 693-699. 

Kirkpatrick, R. S., and J. K. Olson. 2007. Nocturnal light and temperature influences 
on necrophagous, carrion-associating blow fly species (Diptera: Calliphoridae) of 
forensic importance in Central Texas. Southwestern Entomologist 32: 31-36. 

Kneidel, K. A. 1983. Fugitive species and priority during colonization in carrion-
breeding Diptera communities. Ecological Entomology 8: 163-169. 

Kneidel, K. A. 1984a. Competition and disturbance in communities of carrion-breeding 
Diptera. Journal of Animal Ecology 53: 849-865. 

Kneidel, K. A. 1984b. Influence of carcass taxon and size on species composition of 
carrion-breeding Diptera. American Midland Naturalist 111: 57-63. 



 

 

151 

Laake, E. W., E. C. Cushing, and H. E. Parish. 1936. Biology of the primary screw 
worm fly, Cochliomyia americana, and a comparison of its stages with those of 
C. macellaria. Washington: U.S. Dept. of Agriculture 500: 1-23. 

Lam, K., C. Geisreiter, and G. Gries. 2009. Ovipositing female house flies provision 
offspring larvae with bacterial food. Entomologia Experimentalis et Applicata 
133: 292-295. 

Lam, K., D. Babor, B. Duthie, E. M. Babor, M. Moore, and G. Gries. 2007. 
Proliferating bacterial symbionts on house fly eggs affect oviposition behaviour 
of adult flies. Animal Behaviour 74: 81-92. 

Lane, R. P. 1975. Investigation into blowfly (Diptera: Calliphoridae) succession on 
corpses. Journal of Natural History 9: 581-588. 

Lang, M. D., G. R. Allen, and B. J. Horton. 2006. Blowfly succession from possum 
(Trichosurus vulpecula) carrion in a sheep-farming zone. Medical & Veterinary 
Entomology 20: 445-452. 

Lerch, K. 2003. Bacteria ingestion by blowfly larvae: an in vitro study. Dermatology 
207: 362-366. 

Lima, S. L., and L. M. Dill. 1990. Behavioral decisions made under the risk of 
predation: a review and prospectus. Canadian Journal of Zoology 68: 619-640. 

Livingston, S. K. 1932. The treatment of chronic osteomyelitis - with special reference 
to the use of the maggot active principle. Journal of the American Medical 
Association 98: 1143-1149. 

Mackerras, M. J. 1933a. Observations on the life-histories, nutritional requirements 
and fecundity of blowflies. Bulletin of Entomological Research 24: 353-362. 

Mackerras, M. J. 1933b. Observations on the nutrition of maggots of Australian blow-
flies. Journal of Experimental Biology 10: 237-246. 



 

 

152 

McAlpine, J. F. 1981. Manual of Nearctic Diptera:  vol. 1.  Research Branch, 
Agriculture Canada, Ottawa. 

 
Mohd Masari, S., W. Nazni, H. Lee, T. Rogayah, and S. Subramaniam. 2005. 

Sterilisation of Lucilia cuprina Wiedemann maggots used in therapy of 
intractable wounds. Tropical Biomedicine 22: 185-189. 

Mumcuoglu, K. Y., J. Miller, M. Mumcuoglu, M. Friger, and M. Tarshis. 2001. 
Destruction of bacteria in the digestive tract of the maggot of Lucilia sericata 
(Diptera: Calliphoridae). Journal of Medical Entomology 38: 161-166. 

Nardi, J. B., R. I. Mackie, and J. O. Dawson. 2002. Could microbial symbionts of 
arthropod guts contribute significantly to nitrogen fixation in terrestrial 
ecosystems? Journal of Insect Physiology 48: 751. 

Norris, K. R. 1959. The ecology of sheep blowflies in Australia. Monograph of  
Biology 8: 514-544. 

Norris, K. R. 1965. The Binomics of Blowflies. Annual Review of Entomology 10: 47-
68. 

O'Flynn, M. A. 1983. The Succession and Rate of Development of Blowflies in Carrion 
in Southern Queensland and the Application of These Data to Forensic 
Entomology. Journal Austrailian Entomological Society 22: 137-148. 

O'Keefe, W. B., and C. B. Schorsch. 1954. Studies on some enteric bacteria associated 
with flies. Medical Technicians Bulletin 5: 15-17. 

Oliveira, T. C., and S. D. Vasconcelos. 2010. Insects (Diptera) associated with 
cadavers at the Institute of Legal Medicine in Pernambuco, Brazil: Implications 
for forensic entomology. Forensic Science International 198: 97-93. 

Oliveira-Costa, J., and C. A. d. Mello-Patiu. 2004. Application of forensic 
entomology to estimate of the postmortem interval (PMI) in homicide 
investigations by the Rio de Janeiro police department in Brazil. Aggrawal's 
Internet Journal of Forensic Medicine and Toxicology 5: 40-44. 



 

 

153 

Ortiz, F. I., and J. K. Tomberlin. 2009. Effects of resource age and sterilization on the 
attraction of Cochliomyia macellaria (Fabricius) and Chrysomya rufifacies 
(Macquart). Proceedings of the American Academy of Forensic Sciences 15: 
271-272. 

Pai, C.-Y., M.-C. Jien, L.-H. Li, Y.-Y. Cheng, and C.-H. Yang. 2007. Application of 
forensic entomology to postmortem interval determination of a burned human 
corpse: a homicide case report from southern Taiwan. Journal of the Formosan 
Medical Association 106: 792-798. 

Parmenter, R. R., and V. A. Lamarra. 1991. Nutrient cycling in a freshwater marsh: 
the decomposition of fish and waterfowl carrion. Limnology and Oceanography 
36: 976-987. 

Parmenter, R. R., and J. A. MacMahon. 2009. Carrion decomposition and nutrient 
cycling in a semiarid shrub-steppe ecosystem. Ecological Monographs 79: 637-
662. 

Peckarsky, B. L., P. A. Abrams, D. I. Bolnick, L. M. Dill, J. H. Grabowski, B. 
Luttbeg, J. L. Orrock, S. D. Peacor, E. L. Preisser, O. J. Schmitz, and G. C. 
Trussell. 2008. Revisiting the Classics: Considering nonconsumptive effects in 
textbook examples of predator prey interactions Ecology 89: 2416-2425. 

Perper, J. A. 1993. Time of Death and Changes After Death. In W. U. Spitz (ed.), 
Medicolegal Investigation of Death: Guidelines for the Application of Pathology 
to Crime Investigation, 3rd ed. Charles C Thomas, Springfield, Il. 

Peterson, R. D. 1991. Chorionic structure of the egg of the screwworm, Cochliomyia 
hominivorax (Diptera: Calliphoridae). Journal of Medical Entomology 28: 152-
160. 

Pringle, J. W. S. 1938. Proprioception In Insects. Journal of Experimental Biology 15: 
101-113. 

Pruzan, A., and G. Bush. 1977. Genotypic differences in larval olfactory discrimination 
in two Drosophila melanogaster strains. Behavior Genetics 7: 457-464. 



 

 

154 

Reis, S. F. d., D. J. v. Zube, and W. A. C. Godoy. 1999. Larval aggregation and 
competition for food in experimental populations of Chrysomya putoria (Wied.) 
and Cochliomyia macellaria (F.) (Diptera: Calliphoridae). Journal of Applied 
Entomology 123: 485-489. 

Rejmankova, E., A. Harbin-Ireland, and M. Lege. 2000. Bacterial abundance in 
larval habitats of four species of Anopheles (Diptera: Culicidae) in Belize, 
Central America. Journal of Vector Ecology 25: 229-238. 

Rivers, D. B., C. Thompson, and R. Brogan. 2011. Physiological trade-offs of forming 
maggot masses by necrophagous flies on vertebrate carrion. Bulletin of 
Entomological Research 101: 1-13. 

Roberts, J. A. 1974. Ingestion of sugar, protein and water by adult Lucilia cuprina 
(Wied) (Diptera: Calliphoridae) Bulletin of Entomological Research 64: 81-88. 

Rosa, G. S., L. R. d. Carvalho, S. F. D. Reis, and W. A. C. Godoy. 2006. The 
dynamics of intraguild predation in Chrysomya albiceps Wied. (Diptera: 
Calliphoridae): interactions between instars and species under different 
abundances of food. Neotropical Entomology 35: 775-780. 

Rosati, J. Y. 2007. New record of Chrysomya rufifacies (Diptera: Calliphoridae) in 
Canada: predicted range expansion and potential effects on native species. 
Canadian Entomologist 139: 670-677. 

Rosati, J. Y., and S. L. V. Laerhoven. 2010. Colonizaiton behavior of forensically 
important blow fly species: implication for postmortem interval estimations. 
Proceedings of the American Acadmey of Forensic Sciences XVI: 310-311. 

Roy, D. N., and L. B. Siddons. 1939. On the life history and bionomics of Chrysomyia 
rufifacies Macq. (Order Diptera, Family Calliphoridae). Parasitology 31: 442-
447. 

Rutala, W. A. 1996. APIC guideline for selection and use of disinfectants. American 
Journal of Infection Control 24: 313-342. 



 

 

155 

Schmidt, C. D. 1989. Comparison of production of larvae of Chrysomya rufifacies 
(Macquart) Diptera, Calliphoridae in meat and in a gelled medium Southwestern 
Entomologist 14: 67-70. 

Schmidt, C. D., and S. E. Kunz. 1985. Reproduction of Chrysomya rufifacies 
(Macquart) in the laboratory. The Southwestern Entomologist 10: 163-166. 

Schmidtmann, E. T., and P. A. W. Martin. 1992. Relationship between selected 
bacteria and the growth of immature house flies, Musca domestica, in an axenic 
test system. Journal of Medical Entomology 29: 232-235. 

Schoener, T. W. 1974. Resource partitioning in ecological communities. Science 185: 
27-39. 

Schoenly, K. 1992. A statistical analysis of successional patterns in carrion-arthropod 
assemblages: implications for forensic entomology and determination of the 
postmortem interval. Journal of Forensic Sciences 37: 1489-1513. 

Schoenly, K., and W. Reid. 1987. Dynamics of heterotrophic succession in carrion 
arthropod assemblages: discrete seres or a continuum of change? Oecologia 73: 
192-202. 

Seastedt, T. R. 1984. The role of microarthropods in decomposition and mineralization 
process. Annual Review of Entomology 29: 25-46. 

Sherman, R. A. 1996. Low-cost, low-maintenance rearing of maggots in hospitals, 
clinics, and schools. American Journal of Tropical Medicine and Hygiene 54: 38-
41. 

Sherman, R. A., and J. M. Tran. 1995. A simple, sterile food source for rearing the 
larvae of Lucilia sericata (Diptera: Calliphoridae). Medical and Veterinary 
Entomology 9: 393-398. 

Sherman, R. A., M. J. R. Hall, and S. Thomas. 2000. Medicinal maggots: an ancient 
remedy for some contemporary afflictions. Annual Review of Entomology 45: 
55-81. 



 

 

156 

Shiao, S. F. 2008. Larval competition of Chrysomya megacephala and Chrysomya 
rufifacies (Diptera : Calliphoridae): Behavior and ecological studies of two blow 
fly species of forensic significance. Journal of Medical Entomology 45: 785-799. 

Shorrocks, B., and M. Bingley. 1994. Priority effects and species coexistence: 
experiments with fungal-breeding Drosophila. Journal of Animal Ecology 63: 
799-806. 

Sih, A., D. I. Bolnick, B. Luttbeg, J. L. Orrock, S. D. Peacor, L. M. Pintor, E. 
Preisser, J. S. Rehage, and J. R. Vonesh. 2010. Predator-prey naivete, 
antipredator behavior, and the ecology of predator invasions. Oikos 119: 610-
621. 

Simmons, S. W. 1934. Sterilization of blowfly eggs: In the culture of surgical maggots 
for use in the treatment of pyogenic infections. The American Journal of Surgery 
25: 140-147. 

Slone, D. H., and S. V. Gruner. 2007. Thermoregulation in larval aggregations of 
carrion-feeding blow flies (Diptera: Calliphoridae). Journal of Medical 
Entomology 44: 516-523. 

Smith, W. 1990. Fresh Prince of Bel-Air. Jive Records 

So, P.-M., and D. Dudgeon. 1990. Interspecific competition among larvae of 
Hemipyrellia ligurriens (Calliphoridae) and Boettcherisca formosensis 
(Sarcophagidae) (Diptera). Researches on Population Ecology 32: 337-348. 

Spivak, M., D. Conlon, and W. J. Bell. 1991. Wind-guided landing and search 
behavior in fleshflies and blowflies exploiting a resource patch (Diptera: 
Sarcophagidae, Calliphoridae). Annual Review of Entomology 84: 447-452. 

SPSS. 2010. SPSS for Windows, release 17.0.1 computer program, version 17.0. SPSS, 
Chicago, IL.  

Statheropoulos, M., C. Spiliopoulou, and A. Agapiou. 2005. A study of volatile 
organic compounds evolved from the decaying human body. Forensic Science 
International 153: 147-155. 



 

 

157 

Statheropoulos, M., A. Agapiou, C. Spiliopoulou, G. C. Pallis, and E. Sianos. 2007. 
Environmental aspects of VOCs evolved in the early stages of human 
decomposition. Science of the Total Environment 385: 221-223. 

Stoffolano, J. G., M.-F. Li, J. A. Sutton, and C.-M. Yin. 1995. Faeces feeding by adult 
Phormia regina (Diptera: Calliphoridae): impact on reproduction. Medical and 
Veterinary Entomology 9: 388-392. 

Subramanian, H., and K. R. Mohan. 1980. Biology of the blow flies Chrysomya 
megacephala, Chrysomya rufifacies, and Lucilia cuprina. Journal of Veterinary 
Science 11: 252-261. 

Sukontason, K., K. L. Sukontason, S. Piangjai, N. Boonchu, H. Kurahashi, M. 
Hope, and J. K. Olson. 2004. Identification of forensically important fly eggs 
using a potassium permanganate staining technique. Micron 35: 391-395. 

Teich, S. 1986. Maggot Therapy for Severe Skin Infections Southern Medical Journal 
79: 1153-1155. 

Tenorio, F. M., J. K. Olson, and C. J. Coates. 2003. Decomposition studies, with a 
catalog and descriptions of forensically important blow flies (Diptera: 
Calliphoridae) in Central Texas. Southwestern Entomologist 28: 37-45. 

Tomberlin, J. K., and P. H. Adler. 1998. Seasonal colonization and decomposition of 
rat carrion in water and on land in an open field in South Carolina. Journal of 
Medical Entomology 35: 704-709. 

Van Geem, T., and A.B. Broce. 1986. Fluctuations in the protein and carbohydrate 
content of the crop correlated to periodicities in ovarian development of the 
female face fly (Diptera: Muscidae). Annual Review of Entomology. 79: 1-6  

Tomberlin, J. K., R. Mohr, M. E. Benbow, A. M. Tarone, and S. Van Laerhoven. 
2011. A roadmap for bridging basic and applied research in forensic entomology. 
Annual Review of Entomology 56: 401-421. 

VanLaerhoven, S. L. 2008. Blind validation of postmortem interval estimation using 
developmental rates of blow flies. Forensic Science International 180: 76-80. 



 

 

158 

Vass, A. A. 2002. Decomposition chemistry of human remains: A new methodology for 
determining the postmortem interval. Journal of Forensic Sciences 47: 542-553. 

Villet, M. H., C. S. Richards, and J. M. Midgley. 2010. Contemporary precision, bias 
and accuracy of minimum post-mortem intervals estimated using development of 
carrion-feeding insects, pp. 109-137. In J. Amendt, M.L. Goff, C.P. Campobasso, 
and M. Grassberger (eds.), Current Concepts in Forensic Entomology. Springer 
Netherlands. 

Vistnes, L. M. L. 1981. Proteolytic activity of blowfly larvae secretions in experimental 
burns. Surgery 90: 835-841. 

von Hoermann, C., J. Ruther, S. Reibe, B. Madea, and M. Ayasse. 2011. The 
importance of carcass volatiles as attractants for the hide beetle Dermestes 
maculatus (De Geer). Forensic Science International 212: 173-179. 

Wall, R. 1994. Responses of the sheep blowfly Lucilia sericata to carrion odor and 
carbion dioxide Entomologia Experimentalis et Applicata 73: 239-246. 

Wall, R., and P. Fisher. 2001. Visual and olfactory cue interaction in resource-location 
by the blowfly, Lucilia sericata. Physiological Entomology 26: 212-218. 

Wallis, D. I. 1962. Olfactory stimuli and oviposition in the Blowfly, Phormia Regina 
Meigen. Journal of Experimental Biology 39: 603-615. 

Walzer, A., and P. Schausberger. 2009. Non-consumptive effects of predatory mites 
on thrips and its host plant. Oikos 118: 934-940. 

Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian 
classifier for rapid assignment of rRNA sequences into the new bacterial 
taxonomy. Applied and Environmental Microbiology 73: 5261-5267. 

Watson, E. J. 2005. Insect succession and decomposition of wildlife carcasses during 
fall and winter in Louisiana. Journal of Medical Entomology 42: 193-203. 



 

 

159 

Weil, G. C., R. J. Simon, and W. R. Sweadner. 1933. A biological, bacteriological and 
clinical study of larval or maggot therapy in the treatment of acute and chronic 
pyogenic infections. The American Journal of Surgery 19: 36-48. 

Weinert, L. A., M. C. Tinsley, M. Temperley, and F. M. Jiggins. 2007. Are we 
underestimating the diversity and incidence of insect bacterial symbionts? A case 
study in ladybird beetles. Biological Letters 3: 678-681. 

Wells, J. D., and B. Greenberg. 1992a. Rates of predation by Chrysomya rufifacies 
(Macquart) on Cochliomyia macellaria (Fabr.) (Diptera: Calliphoridae) in the 
laboratory: effect of predator and prey development. Pan-Pacific Entomologist 
68: 12-14. 

Wells, J. D., and B. Greenberg. 1992b. Laboratory Interaction Between Introduced 
Chrysomya rufifacies and Native Cohliomyia macellaria (Diptera: 
Calliphoridae). Environmental Entomology 21: 640-645. 

Wells, J. D., and B. Greenberg. 1992c. Interaction between Chrysomya rufifacies and 
Cochliomyia macellaria (Diptera: Calliphoridae): the possible consequences of 
an invasion. Bulletin of Entomological Research 82: 133-137. 

Wells, J. D., and B. Greenberg. 1994. Resource use by an introduced and native 
carrion flies. Oecologia 99: 181-187. 

Wertheim, B., E.-J. A. van Baalen, M. Dicke, and L. E. M. Vet. 2005. Pheromone-
mediate aggregation in nonsocial arthropods:  an evolutionary ecological 
perspective. Annual Review of Entomology 50: 321-346. 

Whitford, W. G. 1986. Rainfall and decomposition in the Chihuahuan desert. Oecologia 
68: 512-515. 

Whitworth, T. 2006. Keys to the genera and species of blow flies (Diptera: 
Calliphoridae) of America North of Mexico. Proceedings of the Entomological 
Society of Washington 108: 689-725. 

Wicker-Thomas, C. 2007. Pheromonal communication involved in courtship behavior 
in Diptera. Journal of Insect Physiology 53: 1089-1100. 



 

 

160 

Wollina, U. U. 2000. Biosurgery in wound healing--the renaissance of maggot therapy. 
Journal of the European Academy of Dermatology and Venereology 14: 285-
289. 

Woodcock, B. A., A. D. Watt, and S. R. Leather. 2002. Aggregation, habitat quality 
and coexistence: a case study on carrion fly communities in slug cadavers. 
Journal of Animal Ecology 71: 131-140. 

Zavarzin, G. A. 2008. A planet of bacteria. Herald of the Russian Academy of Sciences 
78: 144-151. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

161 

 
 
 
 
 
 

APPENDIX A 

 

ATTRACTION OF ADULT C. MACELLARIA AND CH. RUFIFACIES TO 

CONSPECIFIC AND HETEROSPECIFC EGGS, FIRST CHOICE DUAL 

CHOICE OLFACTOMETER DATA 

 
 
 

Description of data 
 

 These data represent the first choice responses of adult C. macellaria and Ch. 

rufifacies that were collected concurrently with the residence time data (Chapter IV), and 

analyzed with Chi Square. These data were not included with the data set for Chapter IV 

as the residence time data was deemed more informative.  
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APPENDIX B 

 

COMPLETE PYROSEQUENCING DATA FROM CHRYSOMYA RUFIFAICES 

AND COCHOLIOMYA MACELLARIA EGG ASSOICATED MICROBES 

 
 
 

Description of data 
 

 These data are all the bacteria identified from C. macellaria and Ch. rufifacies 

eggs aged < 3 h, 3-6 h, and 6-9 h using 454 pyrosequencing as described in Chapter IV. 

Table B1 lists the relative abundance of all identified genera associated with all ages of 

eggs, while tables B2 and B3 describe the species classified as “other” (i.e. genera 

representing < 1% of relative abundance) as described in Chapter IV.  
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Table B1. Relative abundance of bacterial genera identified using 454 pyrosequencing 
from all egg ages of both C. macellaria and Ch. rufifacies. 
C. macellaria egg-associated 
bacterial genera 

Relative 
abundance 
(%) 

Ch. rufifacies egg-
associated bacterial 
genera 

Relative 
abundance 
(%) 

Lactobacillus 31.66% Lactococcus 34.56% 
Unclassified  22.17% Lactobacillus 27.83% 
Vagococcus 8.51% Vagococcus 11.63% 
Carnobacterium 7.79% Unclassified 10.84% 
Escherichia/Shigella 5.08% Myroides 4.29% 
Providencia 4.46% Providencia 2.49% 
Morganella 3.87% Staphylococcus 2.40% 
Staphylococcus 2.66% Ignatzschineria 1.03% 
Leuconostoc 2.52% Sphingobacterium 0.88% 
Kurthia 2.43% Delftia 0.83% 
Pseudochrobactrum 1.59% Morgenella 0.71% 
Enterococcus 1.12% Enterococcus 0.61% 
Lactococcus 0.80% Carnobacterium 0.15% 
Buttiauxella 0.56% Leuconostoc 0.15% 
Proteus 0.56% Proteus 0.15% 
Yaniella 0.50% Bacteroides 0.14% 
Hafnia 0.33% Comamonas 0.14% 
Brevundimonas 0.26% Pseudochrobactrum 0.14% 
Bacteroides 0.25% Raoultella 0.14% 
Acinetobacter 0.24% Chryseobacterium 0.11% 
Corynebacterium 0.22% Serratia 0.11% 
Clostridium 0.21% Microbacterium 0.09% 
Brochothrix 0.20% Azospirillum 0.08% 
Ignatzschineria 0.17% Propionibacterium 0.08% 
Salinicoccus 0.17% Leucobacter 0.05% 
Streptococcus 0.17% Acinetobacter 0.03% 
Wohlfahrtiimonas 0.17% Dysgonomonas 0.03% 
Jeotgalicoccus 0.16% Hafnia 0.03% 
Myroides 0.13% Kocuria 0.03% 
Devosia 0.10% Polaromonas 0.03% 
Alistipes 0.07% Pseudorhodoferax 0.03% 
Aeromonas 0.05% Bradyrhizobium 0.02% 
Macrococcus 0.05% Clostridium 0.02% 
Sphingobacterium 0.05% Dorea 0.02% 
Sphingomonas 0.05% Escherichia/Shigella 0.02% 
Alloiococcus 0.04% Faecalibacterium 0.02% 
Pseudomonas 0.04% Methylobacterium 0.02% 
Ureibacillus 0.04% Nitrobacter 0.02% 
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Anaerococcus 0.03% Pelomonas 0.02% 
Brevibacterium 0.03% Pseudomonas 0.02% 
Paracoccus 0.03% Pseudonocardia 0.02% 
Propionibacterium 0.03% Sphingomonas 0.02% 
Raoultella 0.03% Streptococcus 0.02% 
Roseomonas 0.03% Veillonella 0.02% 
Serratia 0.03% Yaniella 0.02% 
TM7_genera_incertae_sedis 0.03%   
Ulvibacter 0.03%   
Weissella 0.03%   
Abiotrophia 0.01%   
Alcaligenes 0.01%   
Anaerobacter 0.01%   
Azospirillum 0.01%   
Blastomonas 0.01%   
Brachybacterium 0.01%   
Bradyrhizobium 0.01%   
Chryseobacterium 0.01%   
Coprobacillus 0.01%   
Dysgonomonas 0.01%   
Facklamia 0.01%   
Faecalibacterium 0.01%   
Fastidiosipila 0.01%   
Kaistia 0.01%   
Methylobacterium 0.01%   
Perlucidibaca 0.01%   
Porphyromonas 0.01%   
Schlegelella 0.01%   
Sphingopyxis 0.01%   
Sporacetigenium 0.01%   
Variovorax 0.01%   
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Table B2. Relative abundance of bacterial genera on Cochliomyia macellaria eggs as identified 
by 454 pyrosequencing.  
Genera on < 3 h 
eggs 

Relative 
Abundanc
e (%) 

Genera on 3-6 h eggs Relative 
Abundanc
e (%) 

Genera on 6-9 h 
eggs 

Relative 
Abundace 
(%) 

Lactobacillus 32.25% Escherichia/Shigella 17.38%  Lactobacillus 54.81% 
Unclassified  11.83% Lactobacillus 10.91%  Carnobacterium 12.89% 
Vagococcus 11.83% Kurthia 8.31%  Vagococcus 6.52% 
Morganella 11.13% Staphylococcus 7.63%  Leuconostoc 3.78% 
Carnobacterium 5.81% Providencia 7.18%  Providencia 1.83% 
Other 0.04% Yaniella 1.66% Other 20.18% 
Providencia 4.09% Lactococcus 1.30%  Unclassified 13.62% 
Pseudochrobactru
m 2.42% Other 7.72%  Enterococcus 0.88% 
Leuconostoc 1.06% Unclassified 37.90%  Morganella 0.88% 
Enterococcus 0.00% Vagococcus 0.90%  Staphylococcus 0.80% 
Buttiauxella 0.00% Proteus 0.76%  Buttiauxella 0.72% 
Proteus 0.92% Clostridium 0.72%  Lactococcus 0.53% 
Brevundimonas 0.88% Salinicoccus 0.58%  Brochothrix 0.42% 
Hafnia 0.84% Jeotgalicoccus 0.54%  Bacteroides 0.38% 
Lactococcus 0.79% Ignatzschineria 0.49%  Corynebacterium 0.31% 
Staphylococcus 0.53% Acinetobacter 0.45%  Hafnia 0.23% 
Wohlfahrtiimonas 0.53% Myroides 0.45%  Alistipes 0.19% 
Corynebacterium 0.26% Streptococcus 0.45%  Proteus 0.19% 

Devosia 0.26% Bacteroides 0.40% 

 
Pseudochrobactru
m 0.15% 

Acinetobacter 0.22% Enterococcus 0.31%  Acinetobacter 0.11% 
Brochothrix 0.18% Aeromonas 0.18%  Alloiococcus 0.11% 
Pseudomonas 0.13% Macrococcus 0.18%  Streptococcus 0.11% 
Ignatzschineria 0.09% Carnobacterium 0.13%  Ureibacillus 0.11% 
Paracoccus 0.09% Corynebacterium 0.13%  Anaerococcus 0.08% 
Sphingobacterium 0.09% Morganella 0.13%  Devosia 0.08% 
Sphingomonas 0.09% Brevibacterium 0.09%  Sphingomonas 0.08% 
TM7_genera_ince
rtae_sedis 0.09% Raoultella 0.09%  Propionibacterium 0.04% 
Abiotrophia 0.04% Roseomonas 0.09%  Schlegelella 0.04% 
Alcaligenes 0.04% Serratia 0.09%  Sphingopyxis 0.04% 
Azospirillum 0.04% Sphingobacterium 0.09%  Weissella 0.04% 
Blastomonas 0.04% Ulvibacter 0.09%  Wohlfahrtiimonas 0.04% 
Bradyrhizobium 0.04% Anaerobacter 0.04%   
Chryseobacterium 0.04% Brachybacterium 0.04%   
Faecalibacterium 0.04% Coprobacillus 0.04%   
Fastidiosipila 0.04% Dysgonomonas 0.04%   
Kaistia 0.04% Facklamia 0.04%   
Methylobacterium 0.04% Porphyromonas 0.04%   
Perlucidibaca 0.04% Propionibacterium 0.04%   
Variovorax 0.04% Sporacetigenium 0.04%   
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Weissella 0.04%     
Yersinia 0.04%     
 

Table B3. Relative abundance of bacterial genera on Chrysomya rufifacies eggs as identified by 
454 pyrosequencing.  
Genera on < 3 h 
eggs 

Relative 
Abundan
ce (%) 

Genera on 3-6 h 
eggs 

Relative 
Abundan
ce (%) 

Genera on 6-9 h 
eggs 

Relative 
Abundace 
(%) 

Lactobacillus 45.69% Lactococcus 42.07%  Lactococcus 76.84% 
Vagococcus 19.05% Lactobacillus 23.83%  Lactobacillus 24.40% 
Other 17.32% Myroides 15.99% Unclassified 18.15% 
Lactococcus 12.57% Other 11.12%  Vagococcus 15.20% 
Unclassified 12.48% Unclassified 7.66% Other 13.68% 
Staphylococcus 2.22% Vagococcus 4.86%  Providencia 7.54% 
Delftia 2.00% Providencia 1.09%  Staphylococcus 5.36% 
Sphingobacterium 1.15% Staphylococcus 1.03%  Ignatzschineria 3.01% 
Providencia 0.80% Ignatzschineria 0.79%  Morganella 1.89% 
Myroides 0.80% Morgenella 0.73%  Sphingobacterium 1.53% 
Enterococcus 0.67% Proteus 0.49%  Enterococcus 1.41% 
Leuconostoc 0.44% Sphingobacterium 0.36%  Comamonas 0.53% 

Carnobacterium 0.44% Bacteroides 0.30% 

 
Pseudochrobactru
m 0.53% 

Propionibacteriu
m 0.22% Delftia 0.24%  Chryseobacterium 0.41% 
Microbacterium 0.22% Serratia 0.18%  Raoultella 0.41% 
Ignatzschineria 0.18% Acinetobacter 0.06%  Delftia 0.35% 
Morganella 0.13% Bradyrhizobium 0.06%  Azospirillum 0.29% 
Bacteroides 0.13% Dysgonomonas 0.06%  Serratia 0.24% 
Raoultella 0.09% Enterococcus 0.06%  Leucobacter 0.18% 
Pseudorhodoferax 0.09% Hafnia 0.06%  Myroides 0.12% 
Proteus 0.09% Streptococcus 0.06%  Polaromonas 0.12% 
Kocuria 0.09%    Acinetobacter 0.06% 
Veillonella 0.04%    Bacteroides 0.06% 
Pseudonocardia 0.04%    Clostridium 0.06% 
Pseudomonas 0.04%    Microbacterium 0.06% 
Pelomonas 0.04%    Nitrobacter 0.06% 
Methylobacterium 0.04%    Sphingomonas 0.06% 
Hafnia 0.04%    Yaniella 0.06% 
Faecalibacterium 0.04%     
Escherichia/Shigel
la 0.04%     
Dysgonomonas 0.04%     
Dorea 0.04%     
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