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ABSTRACT 

 

Changes in Gene Expression of Goat Developing Testes and Sperm During Breeding 

and Non-breeding Season. (May 2012) 

Azure Nicole Faucette, B.S., Tuskegee University; M.S. Tuskegee University  

Chair of Advisory Committee: Dr. David W. Forrest 

 

 Testicular function is fundamental to male fertility, since testicular cells act in 

collaboration with each other to signal sex differentiation, the initiation of puberty and 

spermatogenesis. Complications that can be influenced by many factors will affect 

sperm number, morphology, motility, chromatin quality and acrosomal integrity. The 

purpose of these studies was to analyze the changes in gene expression in the developing 

testes and analyze the seasonal changes in gene products in sperm of mature bucks. In 

the first experiment, testes were harvested from five Alpine bucks at 0, 2, 4, 6, and 8 

months of age. Northern and in situ hybridization indicated that the largest change in 

gene expression occurred during the first 4 months of goat testes development. Sex 

determining region Y-box 9 (SOX9) and Heat Shock protein A8 (HSPA8) peaked at 2 

months of age, and were expressed in Sertoli cells and spermatogonium, respectively. At 

4 months, expression of Stimulated by Retinoic Acid gene 8 (STRA8), Protamine1 

(PRM1) and Outer Dense Fiber protein 2 (ODF2) was strongly up-regulated in early and 

maturing germ cells, respectively. In the second experiment, RNA from ejaculated 

spermatozoa collected from mature Alpine bucks in peak (October) and non-peak (April) 

breeding season were analyzed on a 4 x 44K Agilent bovine microarray. One thousand 
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three hundred and eighteen gene products were differentially expressed 2-fold or more 

(p ≤ 0.05 ) in mature goat sperm collected October and April. To eliminate the likelihood 

of false positives, the cut off was set to fold change of 3 or more at p  ≤  0.01 which 

narrowed the list of genes to 50 transcripts. Real time PCR results confirmed the 

expression of Sperm Adhesion Molecule 1 (SPAM1) in April, and the expression of 

Glycerol kinase 2(GK2) and Myc Binding Protein 2 (MYCBP2) in October. Based on 

the results from both experiments, it can be concluded that: SOX9 and HSPA8 

expression play an important role in tubular formation and germ cell maintenance; two 

months after SOX9 and HSPA8 expression, genes that are associated with 

spermatogenesis initiation and completion are upregulated; and validation of the 

seasonal changes in sperm mRNA levels may provide additional insight to testicular 

events as they relate to breeding and non-breeding season.  
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CHAPTER I 

INTRODUCTION  

 

Semen evaluation is an important component when estimating the potential 

capacity of a male for breeding. In the livestock industry, fertile males are an investment 

that impact the revenue generated by a herd. In order to access a male‟s breeding 

potential, producers use the Breeding Soundness Exam (BSE), which is used to make an 

assessment of testicular/epididymal function, help to identify clear cut cases of sub- and 

infertility (Rodriguez-Martinez, 2006). Results from the BSE will group males in 3 

categories: satisfactory, unsatisfactory or questionable/undetermined. One of the main 

components of the evaluation is the quality of the semen, which includes normal 

morphology, progressive motility and absence of foreign cells such as immune or 

epithelial cells (Ott and Memon, 1979; Baker, 1980; Hafez and Hafez, 2000; Rodriguez- 

Martinez, 2006). A mature Alpine buck would need the scrotal circumference to be 34-

35 cm, an ejaculate that has 1.5 ml semen volume with a concentration of 2-5 

billion/sperm ml, greater than 50% progressive motility, and less than 10 % abnormal 

sperm in order to pass a goat BSE (Ott and Memon, 1979; Baker, 1980; Hafez and 

Hafez, 2000). Although the BSE has proven to be a useful tool for predicting the 

breeding potential of a male with unknown fertility, results are too general because 

sperm can undergo other changes both pre-and post-spermatogenesis that may impact 

fertility.  

____________ 

This dissertation follows the style of Journal of Animal Science.  
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In order to achieve a more accurate estimate of male fertility, more sensitive 

assays could evaluate mitochondrial, and membrane and DNA integrity, which will 

provide information about sperm motility and chromatin compaction, respectively.  

Assay that access mitochondrial integrity are variable (Rodriguez-Martinez, 2006), and 

assisted reproductive technologies techniques have been used to overcome problems 

with sperm motility. In regards to plasma membrane and DNA integrity, it is harder to 

overcome. There are several protocols that are used to evaluate the sperm plasma 

membrane which include utilizing dyes and fluorescence to determine the percentage of 

live/dead cells or whether or not the sperm have undergone capacitation, and proportion 

of cells outside the general population (COMPαt) or DNA fragment index (DFI) 

quantifies the percentage of spermatozoa with denatured DNA (Rodriguez-Martinez, 

2003; Rodriguez-Martinez, 2006). Even with all these advances with the assessment of 

fertility, there are still unanswered questions. 

In the livestock industry, the ability to produce offspring is essential for the 

continuous production of milk, fiber and meat (Shelton, 1979). The number of goat 

operations in the U.S. as of 2010 remains unchanged, but the total number of goats has 

decreased by 1% (NASS, 2010 a, b). In order to increase herd production, more detailed 

information concerning the basic biology of goat reproduction is needed. So, the 

working hypothesis of the current study is that genes involved in spermatogenesis may 

be a useful predictor for male fertility. Experiments were designed to achieve the 

following two objectives: 1) describe the histomorphology of the developing buck testis 

and time the expression of genes associated with tubule formation; and 2) characterize 
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specific mRNAs in the buck ejaculate that can be linked to sperm quality, and may be 

useful as potential markers for fertility. 
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CHAPTER II 

LITERATURE REVIEW 

 

Goat Reproduction: Overview 

 Reproduction plays a vital role in livestock production. Shelton (1978) noted that 

in livestock production, milk, fiber and meat rely on the ability of an animal to 

reproduce. This influences the current and future number of replacement animals for the 

herd. Between 1985 and 2006, U.S. goat population has doubled, which has been 

attributed to the change in demographic (Solaiman, 2007). However in the past 5 years, 

U.S. goat population has dropped 1% (NASS, 2011b); therefore, in order to increase 

herd production, one would have to understand the basic biology behind goat 

reproduction. 

 Overall, goats are among the most fertile and prolific domesticated animals with 

conception rates ranging from 90-98% (Bliss et al., 1992; Holtz, 2005).  The average 

size of a litter is 1.5 kids, and may vary between breeds, season and environmental 

conditions. Comparing the domesticated ruminants, goats and sheep are more 

reproductively comparable than cattle due to their size, reproductive anatomy and 

physiology (Hafez and Hafez, 2000; Ensminger and Parker, 2002). Does reach puberty 

around 7 to 10 months of age (breed specific) or at an optimal weight of 80% of mature 

wt, however, bucks reach puberty at around 4 to 6 months of age (Bliss, 1992; Hafez and 

Hafez, 2000). Goats reared in temperate areas are more seasonal than those closer to the 

equator; however, this statement applies more to the doe than the buck because sperm 
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production and testicular size as well as libido decline rather than cease during the non-

breeding season. 

Spermatogenesis 

Spermatogenesis is the process in which an immature germ cell undergoes 

mitosis, meiosis and differentiation to ultimately end up as an elongated spermatid. This 

process occurs within the seminiferous tubule of the testes (O‟Donnell et al. 2001, 

Senger, 2003).  In the seminiferous tubules, spermatogonia are in close contact with 

Sertoli cells, which separates them from the lumen of the testis via tight junctions 

forming the blood-testis barrier. Spermatogonia are classified as either A,  A2, A3, A4, I 

or B. Spermatogonia A must undergo numerous mitotic divisions that enable them to 

replenish germ cell population and produce spermatogonia B, which are recruited and 

transported adluminally to become a 1º spermatocyte (Senger, 2003). The primary 

spermatocytes begin the stages of meiosis. During prophase of the first meiotic division, 

primary spermatocytes experience nuclear changes. Secondary spermatocytes are 

yielded after the first meiotic division and are difficult to find histologically due to the 

rapid recruitment that results in a haploid round spermatid (O‟Donnell et al. 2001; 

Senger, 2003). Round spermatids undergo a cascade of steps to eventually mature into 

elongated spermatids. This differentiation process is known as spermiogenesis. It 

involves the formation and development of the acrosome and flagellum, replacement of 

histones by protamines, reshaping and elongation of the nucleus and incomplete 

removal of the cytoplasm. At this point, the elongated spermatid is no longer 

transcriptionally functional. 
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The elongated spermatid with a cytoplasmic droplet is released from the Sertoli 

cell into the tubulus contortus. Ultimately, spermatozoa end up in the epididymus. The 

epididymus has multiple functions: 1) absorption of retes fluid, 2) sperm transport, 3) 

elimination of defective gametes, and 4) sperm maturation and storage (Senger, 2003, 

Sullivan et al., 2005). The epididymus is divided into 3 segments: caput, corpus and 

caudal. Transport through these sections is critical for maturation of spermatozoa. Retes 

fluid is absorbed in the caput segment where non-motile, non-fertile spermatozoa with 

low disulfide links are found. In the corpus segment, spermatozoa begin to show signs 

of motility and fertility (oocyte binding capability) and moderate to high degrees of 

disulfide links. The caudal segment is very important for storage and final maturation of 

sperm; in addition, spermatozoa gain fertilizing capability, showing high degrees of 

disulfide linkage. During transit, the cytoplasmic droplets begin to move from the 

proximal region to mid-tail and are ultimately absorbed by the caudal epididymus.  

Testicular Development 

 In mammals, the initial steps of testis development have been linked to the 

activity of a gene located on the Y-chromosome (Jacobe and Strong, 1959; Ford et al., 

1959; Welsons and Russell, 1959). This gene was initially known as the testes 

determining factor/gene (TDY), but was later renamed the sex determining region on the 

Y-chromosome (SRY). SRY is expressed in supporting cell precursors in the genital 

ridge and triggers differentiation along the Sertoli cell pathway (Lovell-Badge and 

Robertson, 1990; Cupp and Skinner, 2005). Lovell-Badge and Robertson (1990) used 

chimeric mice to look for mutations that would alter the sex determining pathway. They 
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reported that mice lacking Sry gene followed the female pathway of sex differentiation; 

conversely, XX mice that carried the Sry gene developed male genitalia. It was thought 

that in the mouse the Sry gene was expressed throughout development, from somatic cell 

differentiation to adult germ cells in the testes. This theory was hard to prove since after 

the initial SRY expression there is a sharp decline until SRY is no longer expressed 

(Hacker et al., 1995), which lead to the hypothesis that the Sry gene triggers other genes 

in the Sertoli cell but is not required for maintenance of testes differentiation.  

 One of the genes found downstream of SRY is SRY-like HMG (High Mobility 

Group) box-containing gene-9 (SOX9). The SOX9 gene is responsible for campomelic 

dysplasia (CD) in humans. Patients with CD are characterized by having both skeletal 

malformations and gonadal sex reversal, because of which the latter suggests that the 

gene plays a critical role in testes formation (Foster et al., 1994; Wagner et al.; 1994). 

The expression of SOX9 is upregulated shortly after SRY expression and it coincides 

with Sertoli cell development (Marshal and Harley, 2000). The role of SRY in sex 

differentiation is only linked to mammalian testes development; however, SOX9 is a 

major sex determining factor in reptilian, amphibian and avian species (Takase et al., 

2000; Pask et al., 2002; Swain and Lovell-Badger, 1999). 

 Along with Steroidogenic factor-1 (SF-1) and Wilms tumor gene-1(WT-1), 

SOX9 activates Anti-Müllerian hormone (AMH) gene in the Sertoli cell (Marshal and 

Harley, 2000). The AMH is a transforming growth factor-β like glycoprotein hormone 

that causes regression of the Müllerian ducts. DeSanta Barbara et al. (1998) 

demonstrated that SOX9, through the Wnt canonical pathway, binds to the AMH 
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promoter and SF-1 and WT-1 synergizes AMH activation. However, SOX9 activates 

genes other than AMH for male sex differentiation because Amh knockouts (KO) have a 

psuedohermaphrodite phenotype (Marshall and Harley, 2000). In addition to Müllerian 

duct regression, Sox9 signals extracellular matrix protein formation. Barrionuevo and 

Scherer (2010) reported that the ablation of Sox9 at embryonic day 14 (E14) leads to late 

onset of sterility at 5 months in mice that is characterized by the down regulation of 

desert hedge-hog (Dhh) and Amh. The incomplete Sox9 KO, with Sox8 
-/-

, caused 

degeneration during seminiferous tubule formation (Chaboisser et al., 2004; 

Barrionueveo et al., 2009). These studies show that SOX9, along with other genes, is 

necessary for the initiation of testes development and its continuous expression is needed 

for proper seminiferous tubule formation. 

Genes Important in Testicular Development and Spermatogenesis 

Heat Shock Protein A8 (HSPA8) 

 Heat shock proteins (HSP) are a specific set of highly conserved proteins that are 

produced by both prokaryotic and eukaryotic cells in response to environmental and 

physiological stressors. These proteins are classified into families according to their 

molecular weight that include HSP100, HSP90, HSP70, HSP60, and HSP27. Past 

research on the protective ability of the HSP, have focused on their chaperoning of the 

facilitation of protein folding and assembly, and stabilizer of damaged proteins (Matwee 

et al., 2001). However, Beere (2004) focused on the anti-apoptotic role HSP and 

discovered that their mechanism of action is not consistent with their chaperoning 

ability. 
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 The HSP70 family of proteins consists of at least 8 different members that are 

ATP-dependent molecular chaperones (Eddy, 1999; Powers et al., 2008; Tzankov et al., 

2008). Two members of the HSP70 proteins are products of genes expressed specifically 

during spermatogenesis: HSP70-2 (meiosis specific) and HSPA8 (post meiotic; Dix et 

al., 1996; Eddy, 1999).  The HSPA8 gene has been linked to cancer (humans; Powers et 

al., 2008; Nirdé et al., 2010), coronary heart disease (human; He at al., 2010) and 

fertility (rodents; Krawczyl et al., 1988; Maekawa et al., 1989). Despite what the name 

suggest, HSPA8 is not a heat inducible HSP which suggests that HSPA8 may have a role 

is preventing apoptosis during spermatogenesis. Krawczyl et al. (1988) observed high 

levels of HspA8 during stages associated with the late pachytene spermatocytes, and 

decreased in stages associated with spermatid elongation. 

Stimulated by Retinoic Acid Gene 8 (STRA8) 

 Vitamins, as cofactors, are a critical component of metabolic pathways. Vitamin 

A is a fat soluble vitamin that is not readily synthesized by goats, and deficiencies result 

in respiratory, digestive and reproductive abnormalities (Hart, 2008). Although there are 

no studies which look at deficiency of vitamin A and retinoid (inactive metabolite) 

intake on the development of the goat testis, there have been multiple studies using mice 

and rats as a model for deficiency and excess of vitamin A effect on reproductive 

function. 

 The active metabolite of vitamin A, retinoic acid (RA), plays a vital role in 

normal fetal development, pattern formation, cell proliferation and differentiation, and 

apoptosis (Zhou et al.; 2008).  In the testis, RA operates through the nuclear retinoic acid 
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receptors (RARs) that can be found in the 3 cell types of the testis (Sertoli, pre-elongated 

spermatid and Leydig cells; Livera et al., 2002). Deficiency in RA has been 

characterized by degenerated germ cells because of the inability of RA to signal mitosis 

and apoptosis via RARα, which can be seen in RARα KO mice (Akmal et al, 1997; 

Boulogne et al., 1999; Dufour et al., 1999; Vernet et al., 2006). Conversely, this can be 

recovered by giving vitamin A or retinol injections (Thompson et al, 1964) and high 

doses of RA (Van Pelt and de Rooij, 1991).  

 The sex specific timing of meiotic initiation through STRA8 (stimulated by 

retinoic acid gene 8) is regulated by RA. Oulad-Abdelghani et al. (1996) isolated Stra8 

in P19 embryonal carcinoma cells which is induced by all trans and 9-cis retinoic acid. 

They also observed that during mouse embryogenesis Stra8 is restricted in the male 

gamete but later it is restricted to the pre-meiotic germ cells in the adults. Zhou et al. 

(2008) noted that peak expression of Stra8 is at the onset of meiosis with the highest 

levels of both mRNA and protein in preleptotene/early leptotene spermatocytes. The 

increase in RA accelerates Stra8 protein expression in preleptotene spermatocytes with 

5-bromo-2-deoxyuridine incorporation, thus indicating synchrony in premeiotic DNA 

replication. Mice with a Stra8-null mutation undergo premeiotic DNA replication, 

display cytological features for the initiation of recombination and express numerous 

meiotic genes; however, there is a prolonged asynapsis and heterosynapsis that are 

important for chromosomal pairing (Mark et al., 2008).  Therefore, the presence of 

STRA8 is important for the cellular preparation and DNA stability to commit 

spermatocytes to commence meiosis. 
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Protamine-1 (PRM1) 

Round spermatids undergo a cascade of steps to eventually mature into elongated 

spermatids. One of the major changes is the exchange of histones with protamines. 

Protamines are small, positively charged proteins that condense sperm chromatin by 

forming disulfide bonds between the protamine‟s cysteine residues (Carrell and Liu, 

2001). Histones are easily hyperacetylated and ubiquinated, which both aid in histone 

replacement with protamine (Dadoune, 2003; Carrell et al., 2007). Protamines are the 

last to appear in the mature spermatid nuclei. They provide a torus shape structure, 

which allows for a more dynamic nucleus and protection against nucleases (Brewer et 

al., 1999). The affect of protamines on fertility have been widely studied in human on 

both the protein and mRNA level. The most common problem occurs when there is 

insufficient protamine 1 (PRM1) and protamine 2 (PRM2) levels. Aoki et al. (2006b) 

suggested that abnormal protein synthesis is associated with defects in the translational 

regulation of protamine caused by mRNA retention; thus, causing an abnormal ratio of 

PRM1/PRM2. This ratio varies among species; however in most mammals, the ideal 

ratio equals 1 (Carrell and Liu, 2001). Infertility in some men has been attributed to a 

diminished level of PRM2. Abnormal PRM2 production significantly affects oocyte 

penetration rates, morphology and progressive motility (Carrell and Liu, 2001; Aoki et 

al., 2006a).  A  review by Oliva (2006) indicated that mouse models designed to express 

the Prm1 gene prematurely or in excess resulted in early condensation of chromatin, 

abnormal morphology and the incomplete processing of Prm2 resulting in histone 

retention.  Zhang et al. (2006) reported that infertile men have a significantly higher 



 12 

proportion of histone H2B to protamine than fertile men suggesting that histone 

retention is common among infertile men. In the bull, PRM2 is transcribed and 

translated in low levels; moreover, there are numerous point mutations which reduce
 
the 

affinity of PRM2 to DNA (Maier et al., 1990). Therefore one can infer that in bovine, 

PRM2 is functionally deficient resulting in bovine PRM1 being more prevalent due to 

the amount of arginine residues allowing for a higher affinity to DNA (Brewer et al., 

2003).  

Outer Dense Fiber Protein 2 (ODF2) 

After the DNA condensation occurs, the round spermatid continues to 

differentiate even more by a process known as spermiogenesis (previously described). 

Formation of the flagellum involves migration of the centrioles. The centrioles serve as a 

nucleation site for development of the axonemal microtubules which comprise the 

central core of the sperm flagellum (Xu et al., 2008). There is a recruitment of 

flagella/cilliary assembly proteins by the centrioles. The prominent component of the 

sperm tail is the outer dense fibers (ODF), which is unique to spermatozoa (Hoyer-

Fender et al., 1998; Salmon et al. 2006; Hüber et al., 2008).  Highly conserved among 

species of vertebrate and invertebrates, ODF2 protein is composed of ~560 amino acids 

with 2 leucine zipper motifs that interact heterozygously with ODF-1 or homozygously 

with another ODF2 protein (Donker et al., 2004). ODF2 was first described as the major 

protein in the mammalian sperm tail (Hoyer-Fender et al., 1998).  Though it is the major 

protein, it is not directly associated with motility, but is involved in the elasticity and 

stability of the sperm tail (Salmon et al., 2006). Haidl et al. (1991) implicated that tail 
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abnormalities in sperm of teratozoospermic men are associated with abnormal 

development of ODF2. In the developing germ cell, the ODF2 transcripts have been 

isolated in the postmeiotic spermatids (Hoyer-Fender et al., 1998; Horowitz et al., 2005). 

Ing et al. (2004) found ODF2 transcripts were highly expressed in the “light” or 

spermatogenic testicular tissue colt. When there is a depletion of ODF2, mother 

centrioles lack their appendages and are unable to generate primary cilia (Ishikawa et al., 

2005). Low expression of the ODF2 gene in adult tissue suggests that ODF2 is a 

widespread component of the centrosome (Nakagawa et al., 2001). Salmon et al. (2006) 

attempted a homozygous knockouts (KO) murine model for Odf2, but they were unable 

to recover any pups (homozygous lethal). These results suggest that ODF2 is essential 

for early embryo development.  

Tests for Fertility 

 Semen evaluation is an important component when estimating the potential 

capacity of a male for breeding. In  livestock production, diagnostic tools, such as the 

BSE, are used to make an assessment of testicular/epididymal function, help to identify 

clear cut cases of sub- and infertility, and in the case of AI or IVF, the degree of 

normalcy before processing (Rodriguez-Martinez, 2006). The main component of the 

evaluation is the quality of the semen, which includes normal morphology, progressive 

motility and absence of foreign cells such as immune or epithelial cells (Ott and Memon, 

1979; Baker, 1980; Hafez and Hafez, 2000; Rodriguez- Martinez, 2006). Based on the 

BSE results, the males will be categorized as satisfactory, unsatisfactory or 

questionable/undetermined. In the case of the mature Alpine buck, it is ideal for the 
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scrotal circumference to be 34-35 cm, 1.5 ml volume with a concentration of 2-5 

billion/ml, >50% progressive motility, and less than 10 % abnormal sperm (Ott and 

Memon, 1979; Baker, 1980; Hafez and Hafez, 2000). By setting the threshold for 

„fertile‟ males, the BSE has proven to be a useful tool for predicting the breeding 

potential of a male with unknown fertility. Despite its usefulness, the BSE evaluation is 

too general because sperm can undergo other changes both pre-and post spermatogenesis 

that may impact fertility. 

 In order to get a more accurate estimate of male fertility, more sensitive assays 

would evaluate mitochondrial, membrane and DNA integrity.  Mitochondria function 

and integrity of spermatozoa is essential for sperm motility; however, there is variability 

in establishing the relationship between the function and integrity of mitochondria 

(Rodriguez-Martinez, 2006).   Artificial Reproductive Technologies (ART) techniques 

can be employed to overcome problems with sperm motility (i.e. Intracytoplasmic 

Sperm Injection or ICSI). Though motility is important, the stability of both plasma 

membrane and DNA integrity are harder to overcome. There are several protocols that 

are used to evaluate the sperm plasma membrane. The protocols utilize dyes and 

fluorescence to determine the percentage of live/dead cells, or whether or not the sperm 

has undergone capacitation. Normal sperm have highly condensed chromatin that is due 

to the association of DNA with protamine. The condensation of chromatin is essential to 

early embryonic development. The proportion of cells outside the general population 

(COMPαt) or DNA fragment index (DFI) quantifies the percentage of spermatozoa with 

denatured DNA (Rodriguez-Martinez, 2003; Rodriguez-Martinez, 2006).  
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Sperm mRNA 

Amann and Hammerstedt (1993) proposed that there were multiple factors that 

influence male fertility. As stated before, the process of predicting male fertility in the 

field only covered obvious problems. Throughout the years, laboratory tests have been 

developed which are more sensitive in identifying sub- and infertile males. Even these 

tests/assays have not answered all the questions involving male fertility.  

Pessot et al. (1989) stained rat testis section with RNAse-colloidal gold and 

revealed a high density of gold particles in the nucleus of elongated spermatid and fully 

differentiated testicular and epididymal spermatozoa. In addition, electrophoresis 

identified RNA molecules that ranged from tRNA to 5.8S and 5S rRNA. Since there was 

no labeling of the mitochondrial sheath, this ruled out that the RNA was not 

mitochondrial derived. Their findings initiated the ongoing hypothesis that the sperm 

contribute more than paternal DNA to embryo development.  

Over the past decade, it has been hypothesized that male- derived transcripts are 

essential to characterizing male infertility. Since spermatozoa are transcriptionally 

inactive, the current working hypothesis is that the transcripts present are remnants of 

stored mRNAs from post meiotically active genes that can potentially give rise to 

proteins that are likely associated with sperm quality and important to the first steps of 

embryogenesis (Ostermeier et al., 2002; Ostermeier et al., 2004; Ostermeier et al., 2005; 

Martin and Krawetz, 2005; Carreau et al., 2007; Nanassy et al.; 2008). Specific mRNAs 

have been identified in human ejaculated sperm which have been linked with sperm 

quality and are important to embryonic development. Ostermeier et al. (2002), using 
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microarrays, was able to identify 2780 and 3281 cDNAs from single and pooled 

ejaculate. They concluded that the transcripts are left-over from spermatogenesis, and 

are important in classifying sperm health and important in embryogenesis (Ostermeier et 

al., 2002).  Zhao et al. (2006) used serial analysis of gene expression (SAGE), and found 

2459 and 2712 unique tags from individual and pooled sperm samples where 54 were 

novel to sperm health.  Transcripts such as PRM1, Aromatase, nitric oxide synthase 

(eNOS and nNOS), PLC-zeta have been linked to infertile men with low sperm motility 

and non-obstructive azospermia (Lambard et al., 2004; Carreau et al., 2007; Lalancette 

et al. 2008a).  

Because of the works done using mRNA as a potential non-invasive diagnostic 

tool, there has been interest in using this method to identify livestock sires with low non-

return rates.  Gilbert et al. (2007) looked at the difference between spermatid and 

spermatozoa transcript and found that they share over 900 mRNA transcripts. The same 

group noticed that fractionated sperm showed differences in genes associated with sperm 

motility (Bissonnette et al. 2009). Lalancette et al. (2008b) looked at the difference in 

transcripts found in bovine sperm that may be associated with non-return rate. They 

found the high fertile group had 29% transcripts associated with function (metabolism, 

and cell signaling) while the low fertile group only had 10% transcripts. In porcine, 

Yang et al. (2009) identified a broad spectrum of mRNA that correlated with transcript 

found in humans and bovine. To analyze the importance of select transcripts, Kempisty 

et al. (2008) found that sperm (porcine) introduced 3transcripts (clusterin, PRM1 and 

PRM2) to the oocytes which, upon fertilization, were present in the zygote and 2-cell 



 17 

stage embryo. The use of mRNAs as potential markers for fertility appears feasible 

because studies suggest that sperm transport mRNAs that are necessary for successful 

fertilization (Kempisty et al.; 2008).  
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CHAPTER III 

DIFFERENTIAL EXPRESSION OF GENES EXPRESSED IN THE CAPRINE 

TESTES DURING POSTNATAL DEVELOPMENT 

 

Introduction 

 Testicular development is a complex process that requires the appropriate 

specification, proliferation and maturation of both testicular somatic and germ cells. 

Postnatal development marks the onset of seminiferous tubule formation and is 

characterized by mitotic division of the Sertoli and germ cells (Carmon and Green, 1952; 

Ren et al. 2009). In the ram (Carmon and Green, 1952) and buck (Nishimura et al., 

2000), spermatocytes and other mature sperm cells become apparent around the ages of 

3 and 4 months of age which corresponds with the onset of puberty.  

 Due to changes in the demographics of the U.S., the goat has become an animal 

of economical importance. Male reproductive literature is scarce, and the few articles 

available mainly relate to seminiferous tubule cycle (Bilaspuri and Guraya, 1984; França 

et al., 1999); changes in sperm nuclear proteins (Courten and Loir,1981); testis 

development and sexual behavior (Nishimura et al., 2000), and Sertoli cell efficiency 

(Leal at al., 2004). However, little is known about the genes involved in buck testicular 

development. Therefore, the objective of this study was to describe the histomorphology 

of the developing buck testis and time the expression of genes associated with tubule 

formation. 
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Materials and Methods 

Animal and sample preparations  

 Twenty-five Alpine buck kids from the International Goat Research Center 

(Prairie View A&M University, Prairie View, TX) were castrated by a standard IACUC 

approved method. Castration occurred at 0, 2, 4, 6, and 8 months of age (n=5 each 

stage). Testes were separated from the epididymis and cut midsagittally. Sections from 

the right testis were minced, snap-frozen in liquid nitrogen and stored at -80˚C, and a 1 

cm cube was placed in a 50-ml volume of 4% paraformaldehyde (PAF) fixative for 24 

hr, washed in 70% ethanol (EtOH) and stored at 4˚C in 70% EtOH until paraffin 

embedding.  Samples were used for northern blot analysis and in situ hybridization. All 

animal procedures were approved by the Prairie View A&M University Animal Care 

and Use Committee. 

RNA isolation  

Total RNA was isolated from testis samples collected from bucks, ages 0, 2, 4, 6 

and 8 months, using Tripure Isolation Reagent (Roche, Mannheim, Germany) according 

to manufacturer‟s recommendations. To determine the concentration, 2 μl of total RNA 

was subjected, in duplicate, to a NanoDrop-1000 spectrophotometer (NanoDrop 

Technologies, Inc., Wilmington, DE). 

Cloning of PRM1, STRA8, and SOX9 from goat testes 

To make probes for protamine 1(PRM1), Stimulated by Retinoic Acid Gene 8 

(STRA8) and SRY box containing 9 (SOX9) mRNA, 2 μg of mRNA from two bucks 

(ages 0 and 8 months) were reverse transcribed with Superscript II (Invitrogen, San 
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Diego, California) and random octomer primers. Two sets of primers were designed 

from Bos taurus cDNA sequences for PRM1, STRA8 and SOX9 (Genbank accession 

numbers BC108207, NM_182489, and AF278703, respectively, see table 1 for primers). 

In addition, the T7 promoter site was added to the second reverse primer. The second set 

of primers used for amplification was nested inside the first set. The generated cDNAs 

were cloned using the TA Cloning® Kit protocol (Invitrogen). Plasmids were purified 

using Qiagen Plasmid Purification kit (Qiagen technologies, Valencia, California). The 

goat PRM1, STRA8 and SOX9 cloned cDNAs were sequenced, and sequences were 

submitted to GenBank (accession numbers HM773246, HM773245 and HM773244, 

respectively).  

Northern blot analysis  

Total testes RNA (8μg) was denatured, subjected to electrophoresis on a 1.2% 

agarose gels and transferred to nitrocellulose membranes. RNA Millennium Markers 

(Ambion, Austin, Texas) were run alongside the samples. The blots were hybridized 

with radiolabeled anti-sense cRNA probes produced by in vitro transcription with [
32

P]-

UTP (3000 Ci/mmol; New England Nuclear, Boston, Massachusetts).  The cDNA 

templates for PRM1, STRA8 and SOX9 probes were linearized with EcoR1 and 

amplified using the second set of PCR primers (table 1).The Outer Dense Fiber of Sperm 

Tail (ODF2), and Heat Shock Protein A8 (HSPA8) constructs were linearized as 

follows. Rat ODF2 plasmid (pBluescriptII vector; GenBank accession number U62821) 

was linearized with Nco1 and transcribed with T7 RNA polymerase; and bovine HSPA8 

(pBluescriptII vector; GenBank accession number NM_174345) was linearized Sty1 and 
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transcribed with T3 RNA polymerase. After washing, hybridization signals were 

detected by exposing the blots to a PhosphoImager screen and visualized using a 

Typhoon 8600 variable mode imager (Molecular Dynamics, Piscataway, New Jersey). 

In situ hybridization analysis  

The mRNAs for PRM1, STRA8, SOX9, HSPA8, and ODF2 were localized on 

serial cross sections from the right testis of goat buck kids (ages 0, 2, 4, 6 and 8 months) 

by in situ hybridization. Tissue sections were hybridized with radiolabeled anti-sense or 

sense cRNA probes generated using in vitro transcription with [α-
35

S] UTP (1250 

Ci/mmol, New England Nuclear). After hybridization, washing and RNAse A digestion, 

slides were coated with photographic emulsion (Eastman Kodak, Rochester, New York) 

and developed  after 1.5-6 weeks at 4ºCwith Kodak D-19 developer.  Sections were 

counterstained with Harris hematoxylin (Sigma-Aldrich, St. Louis, Missouri), 

dehydrated and protected with coverslips. Digital photomicrographs of in situ 

hybridization were evaluated using a Nikon Eclipse 80i microscope (Nikon Instruments, 

Inc., Melville, New York), which was interfaced with a Nikon digital camera and Nikon 

Software. 

Statistics 

 Data were analyzed as a complete random design, using the ANOVA procedure 

in SAS (SAS Institute, Inc., Cary NC.). Quantitative data were reported in case of 

significant differences (p < 0.05) in gene expression between the age groups, Tukey‟s 

was applied. 
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Results 

Development of the goat testis  

The mean paired testis wt by buck age is graphically shown in Figure 1. Though 

there was a change in testes weight over time, mean paired testis weight did not differ 

between 0 and 2 months of age (p >  0.05).  After 2 months, there was rapid increase (p 

< 0.05) in paired testicular weight. There  was no difference between paired testis weight 

of 4 and 8 month old buck kids; however, 6 month old buck kids had significantly (p < 

0.05) heavier paired testis weights. 

 In relation to age, the histological structures of the testis were noticeably 

different (Figure 2).  At 0 month of age, seminiferous tubules were small in diameter, 

contained no lumen and contained a single layer of Sertoli and germ cell nuclei. Another 

cell type observed in the seminiferous tubules was a testicular macrophage. Some 

macrophages appear larger than others suggesting that they are actively removing 

damaged cells from the seminiferous tubules. The 2 month old seminiferous tubules are 

larger because of the increase in Sertoli and germ cell number. During the ages of 4, 6 

and 8 months, fully formed seminiferous tubules are present. This was characterized by 

the presence of spermatocytes, round and elongated spermatids and spermatozoa in the 

lumen. 
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Figure 2. Hematoxylin and eosin staining of developing goat testis. (A)Testis of a 

0 month old kid. Major cell types present in the seminiferous tubules are Sertoli 

and germ cells; however, there are few testicular macrophages (→) that are 

characterized by their irregular nuclear shape and dark nuclear staining. (B) Testis 

of a 2 month old kid.  Cell types present in the seminiferous tubules are similar to 

that of the 0 month old; however, tubules have become larger and there is an 

increase in vascularization.  (C, D, and E) Buck kids ages 4, 6 and 8 months of 

age, respectively. Unlike the testis of 0 and 2 month old buck, the seminiferous 

tubules of the 4, 6, and 8 month old have a lumen; in addition, the tubules contain 

cells that represent the stages of spermatogenesis. All representative 

photomicrographs are shown at 10x objective and width of field (840μm).  
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Figure 2. Continued. 
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Northern blots confirm differential expression of SOX9, HSPA8, STRA8, PRM1 and 

ODF2  

Northern blots were used to confirm the differential expression of SOX9, 

HSPA8, STR8, PRM1, and ODF2 genes between developing buck testes. Representative 

Northern blots are depicted in Figure 3. Both SOX9 (3.9 kb) and HSPA8 (2.3 kb) 

mRNA concentration appear to be greater in bucks ages 0 and 2 month of age. The 

expression of SOX9 peaked (p < 0.05) at 2 months of age, but declined after (Table 2). 

This was probably due to the number of dividing germ cells increasing at 4 months of 

age. There was no significant difference between HSPA8 expression at 0 and 2 months 

of age. However, there was a significant (p<0.05) drop in expression of HSPA8 when 

comparing 0, 2 and 4 months to 8 month old bucks (Table 2). In contrast, STRA8 (1.8 

kb), PRM1 (580b) and ODF2 (2.5 kb) mRNAs had no hybridization signals during 0 and 

2 months of age, but showed strong expression in 4, 6, and 8 months of age (not shown).  
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In situ hybridization confirms and localizes differential by expressed genes in developing 

testis 

 Representative bright and dark field views of SOX9, HSPA8, STRA8, PRM1 

and ODF2 mRNAs are shown in Figures 4, 5, 6, 7, and 8, respectively. SOX9, HSPA8 

STRA8, PRM1 and ODF2 cDNA localization of goat mRNA in developing testis by in 

situ hybridization indicates a similar pattern as seen in northern blots. Hybridization 

signals for both SOX9 (Figure 4) and HSPA8 (Figure 5) mRNA appear stronger in 

younger animals due to the high concentration of Sertoli cells and spermatogonia in 

seminiferous tubules. In contrast, there were intense signals for STRA8 (Figure 6), 

PRM1 (Figure 7) and ODF2 (Figure 8) mRNAs in older animals indicating sexual 

maturity. In older animals, hybridization signal for STRA8 was located in both basal and 

adluminal compartments of the seminiferous tubule; however, there was a high 

concentration of granules in type B spermatogonia located in the basal compartment. 

Round and elongated spermatids and spermatozoa had intense hybridization signal for 

PRM1.  Hybridization signals for ODF2 were found in the adluminal compartment of 

the seminiferous tubules with intense signaling in the round and elongated spermatids 

and spermatozoa.  
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Figure 3. Representative Northern blot analysis of mRNA in developing goat 

testes ages 0, 2, 4, 6, and 8 months of age. mRNA was isolated from 

developing testis was hybridized with Sry like HMG box gene 9 (SOX9), 

heat shock protein A8 (HSPA8), stimulated by retinoic acid gene 8 

(STRA8), protamine (PRM1), and outer dense fiber (ODF2) mRNA on 

separate blots at 3.9 kb, 2.3kb, 1.18 kb, 580 b and 2.5 kb, respectively. 
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Figure 4. In situ hybridization analysis of SOX9 mRNA in goat testis. 

Corresponding bright-field and dark-field images from different Months 

(mo) of the age is shown. Representative sections for the various age groups 

were hybridized with radiolabeled sense cRNA probe (Sense) serves as a 

negative control. Scale bar represents 100 μM. 
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Figure 4. Continued. 



 33 

 

 

 

 

 

 

Figure 5. In situ hybridization analysis of HSPA8 mRNA in goat testis. 

Corresponding bright-field and dark-field images from different Months 

(mo) of the age is shown. Representative sections  for the various age groups 

were hybridized with radiolabeled sense cRNA probe (Sense) serves as a 

negative control. Scale bar represents 100 μM. 
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Figure 5. Continued. 
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Figure  6. In situ hybridization analysis of STRA8 mRNA in goat testis. 

Corresponding bright-field and dark-field images from different Months 

(mo) of the age is shown. Representative sections for the various age groups 

were hybridized with radiolabeled sense cRNA probe (Sense) serves as a 

negative control. Scale bar represents 100μM. 
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Figure 6. Continued. 
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Figure 7. In situ hybridization analysis of PRM1 mRNA in goat testis. 

Corresponding bright-field and dark-field images from different Months 

(mo) of the age is shown. Representative sections for the various age groups 

were hybridized with radiolabeled sense cRNA probe (Sense) serves as a 

negative control. Scale bar represents 100μM. 
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Figure 7. Continued. 
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Figure 8. In situ hybridization analysis of ODF2 mRNA in goat testis. 

Corresponding bright-field and dark-field images from different Months 

(mo) of the age is shown. Representative sections for the various age groups 

were hybridized with radiolabeled sense cRNA probe (Sense) serves as a 

negative control. Scale bar represents 100μM. 
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Figure 8. Continued. 
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Discussion 

 To our knowledge, this is the first report that associates the histomorphology of 

the developing testis with the timing of seminiferous tubule gene expression in the buck. 

Bucks were castrated at 0, 2, 4, 6 and 8 months of age. The results revealed that the 2 

month old testes weight was 8 times greater than 0 month old goats; in addition, testes 

weigh of 4 month olds were 5-times greater than 2 month old goats. Herrera-Alarcón et 

al. (2007) reported different results in the first 2 months (birth to 9 weeks of age) with 

rams where there was a slow increase in testis weight. However, they noticed a 5.4-fold 

increase in testicular weight between 2 and 4 months (9 to 12 weeks). Our results 

showed a significant difference between the testes weights of 4 and 6 months and 6 and 

8 months of age where 6 month old goats had larger testes. Implications from these 

results would seem that testes weight appeared to have met their capacity by 6 months, 

which is similar to what was previously reported by Schanbacher (1979) where there 

was an absence of additional increase in testicular size and spermatogenic function 

between 6-7 months and 13 – 14 months of age despite the increase in body weight after 

puberty. Though our experiment did not take into account the body weight of the bucks, 

it is well documented that body weight correlates to the onset of puberty and testicular 

function; however, after puberty is met, testicular development is influenced by 

photoperiod in seasonal animals (Schanbacher, 1979).  

 Communication between the somatic and germ cells within the testis is essential 

for proper development and function. There are a multitude of molecules and cells that 

are a part of this network where the silencing of one will lead to the abnormal organ 
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function. In this study, we targeted 5 genes (SOX9, HSPA8, STRA8, PRM1 and ODF2) 

that are expressed in cell types located in the seminiferous tubules. These genes have 

been studied in humans, rodents, bovine and equine; however, there is limited amount of 

information about their presence in the goat testis.  

 Sertoli cell marker, SOX9, is responsible for skeletal development, gonadal sex 

reversal and seminiferous cord formation (Foster et al., 1994; Wagner et al., 1994). 

SOX9 gene expression is upregulated shortly after SRY (sex determining region on the 

Y-chromosome) expression; moreover, it coincides with Sertoli cell development 

(Marshal and Harley, 2000). The role of SRY in sex differentiation is only linked to 

mammalian testes development; however, SOX9 is a major sex determining factor in 

reptilian, amphibian and avian species (Takase et al. 2000, Pask et al. 2002, Swain and 

Lovell-Badger, 1999). Barrionuevo and Scherer (2010) reported that the ablation of the 

Sox9gene at embryonic day 14 (E14) leads to late onset of sterility at 5 months in mice. 

After testis formation, Sox9 gradually declined and was weakly detectable in the 2-d old 

postnatal rat testis (Fröjdman et al 2000). Fröjdman et al. (2000) reported that 15-d old 

rats have a strong level of Sox9 protein in testes and the presence of Sox9 remains into 

adulthood. Our results show that the SOX9 genes expression was localized in the 

seminiferous tubules of developing testis. Northern blot results showed higher 

expression in bucks 0 and 2 months of age, which corresponds with the increase in 

tubule size. 

 The HSPA8 gene was previously reported as expressed in the late pachytene 

spermatocytes with decreasing expression in stages associated with spermatid elongation 
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in rodents (Krawczyl et al., 1988). In this study, the expression of the HSPA8 gene had 

similar Northern blot results to that of SOX9, where expression levels were higher in 

buck testes at 0 and 2 months of age than those that were 4, 6, and 8 months of age. 

Results from in situ hybridization revealed HSPA8 mRNA signal was strong in towards 

the basal compartment of the seminiferous tubules of 4, 6 and 8 month old bucks, where 

the primary cell types are type A and B spermatogonia. Moreover, HSP8A expression 

can be seen in 1º spermatocytes with little to no expression in later stages.   

Expression of STRA8, PRM1 and ODF2 genes are associated with cell that have 

committed to undergoing meiosis and spermiogenesis (Hoyer-Fender et al., 1998; 

Dadoune, 2003; Horowitz et al., 2005; Carrell et al., 2007; Mark et al., 2008). Zhou et al. 

(2008) noted that peak expression of the STRA8 gene was at the onset of meiosis with 

the highest levels of both mRNA and protein in preleptotene/early leptotene 

spermatocytes. Mice with a STRA8-null mutation undergo premeiotic DNA replication, 

display cytological features for the initiation of recombination and express numerous 

meiotic genes; however, there is a prolonged asynapsis and heterosynapsis that are 

important for chromosomal pairing (Mark et al., 2008).  Both northern blot and in situ 

data confirms the presence of STRA8 mRNA in older bucks. Caprine STRA8 mRNA 

signal strength was high throughout the seminiferous tubules in older bucks especially in 

areas where mature germ cells are located. During the transition into round spermatid, 

the exchange of histones for protamines is essential for sperm chromatin condensation 

(Carrell and Liu, 2001). PRM1 mRNA was expressed only in the testis of mature 

animals. Signal strength was localized to the adluminal compartment where round and 
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elongated spermatids are located. The prominent component of the sperm tail is the outer 

dense fibers (ODF), which is unique to the spermatozoa (Hoyer-Fender et al., 1998; 

Salmon et al. 2006; Hüber et al., 2008).  ODF2 was first described as the major protein 

in the mammalian sperm tail (Hoyer-Fender et al., 1998).  Though it is the major protein, 

it is not directly associated with motility, but is involved in the elasticity and stability of 

the sperm tail (Salmon et al., 2006). ODF2 mRNA was isolated in post meiotic 

spermatids and spermatozoa. These results imply that expression of STRA8, PRM1 and 

ODF2 genes are essential to the germ cell commitment to spermatogenesis. 

 Many genes that are important to testicular function have been identified by 

microarray (Yu et al. 2003; Ing et al.2004). This study focused on genes that have been 

previously studied and linked to male infertility. Results from the present study imply 

that expression of SOX9, HSPA8, STRA8, PRM1 and ODF2 genes may play an 

important role in testicular development and function. In conclusion, expression of these 

5 genes can be used as a useful tool (via biopsies) to access proper testicular 

development and as an indicator of spermatogenesis. Further studies are needed to 

compare seasonality and factors that will affect buck fertility.  

 

 

 

 

 

 



 45 

CHAPTER IV 

    SPERMATOZOAL RNA PROFILE OF MATURE BUCK (CAPRINE HIRCUS) 

SPERM COLLECTED DURING THE BREEDING AND NON-BREEDING SEASON 

 

Introduction 

Sperm assessment has been based on visual analysis, such as sperm count and 

motility, for diagnosing infertility in males. The benefits of this method are that it is 

easy, inexpensive and useful for onsite evaluation. However, in the case of idiopathic 

infertility, this method is obsolete and shows that there are still unanswered questions 

about the processes that are related to fertility.  

The mammalian process of producing a normal, motile spermatozoon is a 

complex process where the diploid spermatogonia needs to be capable of both self 

renewal and recruitment to undergo nuclear, cellular and structural modifications 

resulting in the haploid spermatozoa (Lele and Wolgemuth, 1998). During the early 

stages of spermatogenesis, there is a high level of transcriptional activity in the 

spermatocytes which is followed by a gradual decline and a short surge at the stage of 

round spermatid (Dadoune et al., 2004). It was also reported that there is a 

transcriptional shut off upon chromatin compaction and spermatid elongation 

(Grunewald et al., 2005). In addition as the spermatid elongates, it begins to shed its 

cytoplasmic droplet thus leading to the hypothesis that majority of the transcripts are 

removed with the cytoplasmic droplet, and any remnant mRNA present in the ejaculate 

are due to the retained cytoplasm or somatic cell contamination (Miller and Ostermeier, 
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2006). Earlier studies by Pessot et al. (1989) using RNase-colloidal gold and 

development of new techniques such as reverse transcription-polymerase chain reaction 

(RT-PCR) and microarray allow scientists to detect specific transcripts in human 

(Ostermeier et al., 2002), bovine (Lalancette et al., 2008) and rodent (Pessot et al., 1989) 

spermatozoa, which have been linked with sperm quality and are important to embryonic 

development. Therefore, the objective of the present study was to characterize specific 

mRNAs in buck ejaculate that can be linked to sperm quality, and if so, these mRNAs 

can be used as potential markers for fertility. 

Materials and Methods 

Animal and sample preparations  

Samples were collected from the Prairie View A&M University International 

Goat Research Facility (Prairie View, Texas) during October 2008 and April 2009 to 

signify peak and non-peak breeding season months, respectively. Semen was collected 

via electro ejaculation from eight Boer and Alpine bucks (n=8), age >1 year. All samples 

were cooled on ice and centrifuged at 1500 x g for 15 min at 4ºC. The seminal plasma 

was removed, and sperm pellets were frozen in liquid nitrogen and stored at -80ºC until 

later processing. 

RNA isolation  

Total RNA was isolated from sperm samples collected from goat bucks ages >1 

year of age using Tripure Isolation Reagent (Roche, Mannheim , Germany) according to 

manufactures recommendations. To determine the concentration, 2 μl of total RNA was 

subjected, in duplicate, to a NanoDrop-1000 spectrophotometer (NanoDrop 
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Technologies, Inc., Wilmington, DE). Five μg of total RNA was treated with DNAse. A 

master mix of 4µl of 5x1st Strand, 2µl of 0.1 M of DTT, 4µl RQ1 DNAse and 9.5µl 

DEPC-treated H2O was added to each sample. Samples were incubated for 30 min at 

37˚C. Then, the enzyme was heat-killed for 15 min at 70˚C and samples cooled on ice. 

Fifty µl of Depc-treated H2O and 70 µl of PCI (RNA grade Phenol: Chloroform: 

Isoamyl alcohol, 25: 24:1, vol:vol:vol) was added, vigorously vortexed and centrifuged 

for 4 min at RT. The PCI upper phase product was removed. Fifty µl of CI (Chloroform: 

Isoamyl alcohol, 29:1, vol:vol) was added to the CI upper phase product, vigorously 

vortexed and centrifuged for 4 min at RT. The upper phase was removed. RNA in the 

upperphase was precipitated with PPT (100% EtOH and sodium acetate (NaAc),) and 10 

µg/µl glycogen was overnight at -20˚C. Samples were centrifuged for 20 min at 4˚C. The 

supernatant was discarded, and the pellet washed in 70% EtOH. Samples were spun, 

supernatant discarded and the pellet was air-dried for 5 min. Pellets were reconstituted 

with NaCit. To determine the concentration, 2 µl of total RNA was subjected, in 

duplicate, to a NanoDrop-1000 spectrophotometer (NanoDrop Technologies, Inc. 

Wilmington, DE). Following each extraction and DNAse treatment, RNA was pooled 

and subjected to RT-PCR for protamine 1 (PRM1) gene where the primers flanked an 

intron. This was performed on RNA to check for genomic DNDA (gDNA) 

contamination.  

Microarrays  

Total RNA samples from goat sperm appeared to be of similar quality on 

Bioanalyzer 2100 as that reported by Ostermeier et al. (2002), Bergstrom Lucas (2009) 
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and Bissonnette et al. (2009). Amplified cDNA was generated using the TransPlex® 

Complete Whole Transcriptome Amplification kit (WTA2) protocol (Sigma-Aldrich, 

Inc.; St. Louis, Missouri). An input mass of 300 ng from total RNA derived from goat 

sperm collect in Oct and April was used in each reaction. QIAquick PCR Purification kit 

(Qiagen technologies, Valencia, California) was used to purify cDNA products, and 

yields were quantified by NanoDrop-1000 spectrophotometer (NanoDrop Technologies, 

Inc., Wilmington, DE). The Agilent Genomic DNA ULS Labeling kit (Agilent, Santa 

Clara, California) was used to chemically label 1.65μg of cDNA with ULS-Cy3 dye for 

30 min at 85ºC. Cy3-labeled samples were purified using Agilent KREApure columns 

(component of the Agilent Genomic DNA ULS Labeling kit). The purified cDNA 

samples were combined with Agilent 10X Blocking Agent and 2X Hi-RPM GE 

Hybridization Buffer (component of the Agilent Genomic DNA ULS Labeling kit). 

Before array hybridization, samples were denatured at 95ºC for 3 min, and Agilent-

CGHblock was added. Samples were hybridized to the Agilent Bovine Gene Expression 

4x 44K Microarrays (Agilent). Hybridization was carried out at 20 RPM at a 

temperature of 65ºC for 17 hr. Arrays were washed according to the procedures outlined 

in the Agilent One-Colored Microarray-Based Gene Expression Analysis manual 

(Agilent). Scanning and image analysis were performed using the Agilent Microarray 

Scanner. Featured Extraction Software (version 9.5) was used for data extraction from 

raw microarray image files. Differentially expressed genes between breeds and based on 

seasonality were identified with GeneSpring GX (v. 10, Agilent) software and detected 
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call were made by employing the Agilent default flag settings for Agilent One-Color 

microarray.  

Real time PCR preparation and analysis 

 Fifty ng of DNAse treated RNA was reverse-transcribed with random octomer 

primers and oligo dT primers. Samples and primers was heated at 65˚C for 5 min and 

cooled to RT. Then, a mixture of 5X 1
st
 strand buffer, 0.1 M DTT, RNAsin, 10 mM 

dNTP and Superscript II were added to the samples. Samples were incubated at 37˚C for 

1 hr and terminated at 90˚ for 5 min. cDNA was stored at -80˚ until further processed. 

For real-time PCR (qPCR), the ABI PRISM 7900 HT (Applied Biosystems, 

Foster City, CA) was used to quantify the expression of transcripts. The amplification 

reaction had a final volume of 15 µl which contained 14.5 µl of master mix (Power 

SYBR® Green Master Mix (Applied BioSystems, Roche, Branchburg, NJ), Ambion 

PCR grade H2O, and 3 μM of forward and reverse primers) and 0.5µl cDNA product 

from ejaculated sperm RNA. Primers for SPAM1, GK2 and MYCBP2  (Table 3) were 

generated to validate their change in expression during the course of both peak and non-

peak breeding seasons (Figure 2).  In addition, three candidate reference genes 

(glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 16S rRNA and protamine1 

(PRM1)) were used as normalizers. Mean CT values of each sample were transformed 

into raw, non normalized quantities. The expression data was analyzed using the 

geNorm algorithm (Vandesompele et al. 2002) which determines reference gene stability 

and produces a normalization factor based on the geometric mean of the expression 

levels. 
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Results  

 The purity of pooled samples was checked by RT-PCR using the PRM1 gene as 

a target to detect the presence of genomic DNA (gDNA) contamination (Figure 9). The 

presence of gDNA in samples would produce an amplicon of 340 bp (Lanes 2, 3, and 4). 

No gDNA contamination was detectable in samples collected during October and April 

in both Boer and Alpine goats. Since microarray studies require micrograms of RNA, 

Alpine sperm RNA collected during both October and April  

Figures 10 and 11 represent the quality of ejaculated buck sperm during the 

month of October and April. Sperm RNA profile was similar to that of bovine 

spermatozoa reported by Gilbert et al. (2007). In comparison to the standard, the RNA 

profile of goat sperm lack the presence of the two major peaks that correspond to 18S 

and 28S rRNA. The majority of the RNA appears short in length and fragmented. To 

recover loss from degradation and fragmentation, the formalin-fixed paraffin embedded 

(FFPE) tissue protocol was used for cDNA amplification and labeling for microarray 

analysis (Lucas and Lin, 2009) since RNA profile of sperm resembled that of FFPE 

tissue. 
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 Due to the lack of available caprine commercial microarrays, samples were 

hybridized to an Agilent bovine microarray containing 44k genes. Other studies have 

utilized cross-species hybridization (Gilbert et al., 2009). Of the 44k genes present,  

21,535 transcripts were detected above background. With initial cutoff set at fold change 

(FC) of 2 and p ≤ 0.05, 1, 318 genes appeared different between October and April. To 

eliminate the likelihood of false positives, the cut off was set to FC of 3 and p ≤ 0.01 

which narrowed the list of genes to 50 transcripts (Table 4).  

 For microarray validation, specific genes (sperm adhesion molecule1 (SPAM1), 

glycerol kinase 2 (GK2) and MYC binding protein 2 (MYCBP2)) were chosen based on 

the array expression profiles here and those previously reported in humans with 

teratospermia (www.ncbi.gov/geoprofiles). Microarray results revealed that SPAM1 

mRNA concentrations was 5.56 fold higher in April (p ≤ 0.01), while GK2 and 

MYCBP2 mRNA concentrations were 4.56 and 3.58, respectively, higher in October (p 

≤ 0.01). Real time primers were designed around the microarray probe sequence. The 

qtPCR confirmed the pattern of expression for all three genes, but due to variation 

between individual samples, differences were not significant at p < 0.05. 
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Figure 9. Verification of contamination in ejaculated sperm RNA preparations. 

Genomic contamination was verified by RT-PCR. Results from the sperm 

RNA extraction for gDNA contamination revealed an absence of gDNA in 

pooled sperm RNA. Lane M: ; 1: negative control; 2: 10 ng gDNA; 3: 1 ng 

gDNA; 4: 0.1 ng gDNA; 5: 100 ng pooled Boer sperm cDNA collected in 

October; 6: 100 ng pooled Alpine sperm cDNA collected in October; 7: 100 ng 

pooled Boer sperm cDNA collected in April; 8: 100 ng pooled Alpine sperm 

cDNA collected in April. 



 54 

 

Figure 10. Total RNA microelectrophoretic profile of sperm collected during 

October. (A) microelectrophoretic profile of sperm and (B) 200 ng standard; M, 

marker; FU, fluorescence; S, seconds. 
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Figure 11.  Total RNA microelectrophoretic profile of sperm collected during 

April. (A) microelectrophoretic profile of sperm and (B) 200 ng standard; M, 

marker; FU, fluorescence; S, seconds. 
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Table 4. Differentially expressed genes in buck sperm collected during April and     

October. Fold change is indicated at the left and is relative to genes expressed in April 

vs. October.* 

mRNA concentrations greater in April than October 

Enzyme and Inhibitors 

42.18 Aldehyde dehydrogenase 16 family, member A1 

 

Cytoskeleton and Adhesion Molecules 

5.56 Sperm Adhesion Molecule 1 

3.88 Wiskott-Aldrich Syndrome-like 

3.66 Similar to Pecanex-like 3 

 

Signaling Molecules 

4.34 Ubiquitin-conjugate  enzyme E2 D1 

3.37 Calcium Homeostasis modulator 2 

3.10 BMP and activin membrane bound inhibitor homolog 

  

Transport 

5.87 Similar to Nuclear RNA Export Factor 2 

  

Cell Cycle 

3.42 Centromere protein I 

  

Unknown function 

10.10 Similar to Uncharacterized protein KIAA0552 

3.12 Bos taurus chromosome 12 open reading frame 45 ortholog 

  

mRNA concentrations greater in October than April 

Enzymes and Inhibitors 

4.56 Glycerol Kinase 2 

4.26 Methyltransferase 5 Domain Containing 1 

3.58 Myc-binding Protein 2 

3.54 Aminoglycoside Phosphotransferase Domain Containing 1 

3.46 PREDICTED: Homo sapiens Phospholipid Scramblase family, member 5 

3.35 Similar to Beta-galactosamide alpha-2,6-sialytransferase 

3.17 Proteasome 26S subunit, non-ATPase 1 

3.15 Staphylococcal Nuclease and Tudor Domain Containing 1 

3.12 Ceramide kinase-like transcript variant 2 

3.11 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 2 

3.06 KN-252-lymph (lysine-(k) specific demethylase 1B) 

  

Cytoskeleton and Adhesion Molecules 

3.22 Engulfment and cell motility 2 
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Table 4. Continued. 

mRNA concentrations greater in October than April 

Signaling Molecules 

3.87 Mitogen-activated protein kinase kinase kinase 7 interacting protein 3 

3.76 RAS-GEF domain containing family member 1C 

3.68 Calcium/Calmodulin-dependent Protein Kinase ID-like 

3.45 Interleukin 1 receptor accessory protein-like 1 

3.40 Zinc Finger Protein 432 

3.37 Ephrin Receptor (EphA7 ) variant 

3.12 Enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A 

dehydrogenase 

3.06 M-phase phosphoprotein 6 

  

Transport 

5.61 Synaptogyrin 3 

4.99 Similar to Glutamate Receptor 6 isoform 1 precursor 

4.61 Similar to Probable Phospholipid-transporting ATPase IF 

4.16 Similar to Zinc transporter ZIF2 

3.39 Similar to GPI deacylase 

3.23 Exocyst complex component 5 

3.19 NADH dehydrogenase (ubiquinone) Fe-S protein 3 

3.14 Solute Carrier Family 37 (glycerol-6-phosphate transporter) membrane 4 

  

Cell Cycle 

3.56 Family with Sequence Similarity 65, Member B 

  

Unknown Function 

5.26 Unidentified transcripts on BTA2 position 41134753-41133427 

4.88 Bos taurus chromosome 12 open reading frame 29 ortholog 

4.03 Hypoxia Inducible Domain Family Member 1D 

3.46 Transmembrane protein 150C 

3.30 Transmembrane protein 144 

3.27 Unidentified transcript on BTA11 position 53896241-53898321 

3.16 Similar to Down syndrome cell adhesion molecule 

3.12 Olfactory receptor 16-like 

3.12 Similar to Reelin 

3.11 Similar to Coiled-coil domain containing 44 

  

*Differentially expressed genes (p<0.01) found in sperm collected from mature bucks 

during the months of April and October with an absolute Fold Change of 3.0 or higher. 
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Discussion 

 The long time theory is that the only contribution of sperm to the developing 

embryo is the paternal genome. Pessot et al. (1989) stained rat testis with RNAse-colloid 

gold and noticed that there was a high density of gold particles in the nucleus of 

elongated spermatids. Almost 30 years later, the topic of sperm containing RNA has 

been well documented (Ostermeier et al. 2002; Lalancette et al., 2008b; Garrido et al., 

2009). The goal of this study was to identify transcripts that are differentially expressed 

in goat sperm during peak (October) and non-peak (April) breeding season. To ensure 

that the collected sample represented sperm RNA, samples were analyzed via 

microelectrophoregraph which indicated no presence of intact rRNA from epithelial 

cells. Microelectrophoretic profile of sperm demonstrated that sperm lacks the two major 

rRNA (18S and 28S), which is consistent with the profiles of sperm taken from other 

species (Ostermeier et al., 2002; Grunewald et al, 2005; Gilbert et al. 2007).   

Since mature spermatozoa are translationally inactive, the 18S and 28S rRNAs should 

not be present because they are essential to protein assembly. Gur and Breitbart (2006) 

used RT-PCR to detect the presence of 18S rRNA in bovine spermatozoa; in addition, 

any translational activity is due to mitochondrial ribosomes while any cytoplasmic 

ribosomes are inactive. Therefore, any cytoplasmic rRNA in sperm would be detected in 

very low levels. 

 Sperm RNA are small in size which is not a confirmation of the absence of full 

length transcripts (Gilbert et al. 2007). Based on the microelectrophoregraph, sperm 

RNA appeared degraded. Gilbert et al. (2007) addressed the question on whether sperm 
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contained 5‟ or 3‟ degraded RNA. They found the presence of short 3‟ end RNA. Sperm 

RNA truncation made these samples difficult to analyze via normal microarray protocol. 

Agilent developed a protocol that optimizes the hybridization of truncated RNA to the 

array (Lucas and Lin 2009). 

 With this knowledge, the current research sought to examine the change in buck 

sperm transcripts as it relates to season. Sperm collected from mature Alpine ejaculates 

was analyzed on a 4 x44K Agilent bovine array produced 21,535 transcripts above 

background. From those genes, 1,318 genes had a fold change (FC) of 2 at p ≤ 0.05. 

Gilbert et al. (2007) found 1,117 transcripts in bovine spermatozoa transcript using 

human arrays. This amount is lower than what was found in this and previous studies 

(Ostermeier et al., 2002; Zhao et al. 2006) which does not account for low detection 

rates but rather higher stringency (p ≤ 0.05 vs. p ≤ 0.01). Though this is the first study 

whose purpose is to look at breeding season transcript variation in goat sperm, the 

number of detected transcripts is similar to previous studies of other species. 

For microarray validation, three genes (SPAM1, GK2, and MYCBP2) were 

chosen based altered expression levels found in males with teratozoospermia. Of the 

three genes, one (SPAM1) has been directly linked to fertility (Baba et al 2002, etc.). 

The expression of three genes was confirmed in mature bucks. The results for 

SPAM1gene expression being higher in April (non-peak season) were interesting. 

Highly conserved in mammals, SPAM1gene expression is not only localized in the testis 

and sperm cells, but have also been reported in the epididymus (Deng et al., 2000), 

accessory organs (Zhang et al., 2004), female reproductive tract (Zhang et al., 2003); 
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chondrocytes, synoviocytes and dermal fibroblasts (El Hajjaji et al. 2005). In the sperm, 

SPAM1 is the protein that allows for the interaction with the oocyte cumulus matrix and 

the secondary binding of the acrosome-reacted sperm to the zona pellucida (Hunnicutt et 

al 1995; Primakoff et al. 1985). Mice lacking the SPAM1 gene are fertile but have a 

reduced ability to disperse the cumulus mass (Baba et al., 2002). During 

spermatogenesis, the SPAM1 gene is expressed in the haploid cells. Zheng et al. (2001) 

revealed that both the mRNA and protein of SPAM1 is compartmentalized suggesting 

that SPAM2 is not evenly distributed among spermatids. Based on this knowledge, one 

would expect SPAM1 expression to be greater in the breeding season; since sperm 

quality and quantity decreases during the breeding season (Karaginnidis et al., 2000). It 

is plausible that the high level of SPAM1 during April was due to compensation for the 

decline in sperm numbers. Known for its regulation of glycerol uptake and metabolism, 

GK2 is a testis specific glycerol kinase. Though the expression of this gene has not been 

reported in sperm, high levels of the protein have been linked to asthenoospermia 

(Bharadwaj Siva et al., 2010). In the human, MYCBP2, an E3-ubiquitin ligase, is a 

regulator of DNA transcription. One can imply that the increased expression of GK2 and 

MYCBP2 genes during October is important in preparing the sperm for fertilization. 

From previous studies, microarrays have been utilized to identify differences in 

spermatozoal RNA of fertile and infertile bulls (Lalancette et al., 2008; Feugang et al., 

2010) and men (Lambard et al., 2004; Garrido et al., 2009).  Before determining the 

variation in spermatozoal transcriptome between fertile and infertile bucks, this study 

sought to address the difference in breeding season. The transcripts found represent 
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different cellular functions and biological processes that are occurring during 

spermatogenesis. And though this study did not look at fertility, it would prove 

interesting to subject the buck sperm to a Percoll gradient and analyze the different 

density fractions during the peak (October) and non-peak (April) breeding seasons. 

Overall, this study has provided a unique analysis of spermatozoal mRNA which in the 

future may help identify genes that cause male factor infertility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 62 

CHAPTER V 

SUMMARY AND CONCLUSION 

 

Summary 

 Detailed information about the genes associated with testicular growth, onset of 

puberty and spermatogenesis maybe the key to understanding male fertility. Clinical 

tests to screen for fertility include testis biopsies, analysis of sperm number, 

morphology, motility, chromatin quality and acrosomal integrity of semen. From testes 

development to spermatogenesis, there are multiple factors that have caused fluctuations 

in semen quality. To our knowledge, this is the first report that associates the 

histomorphology of the developing testis with the timing of seminiferous tubule gene 

expression in the buck; moreover, it is also the first to look at the seasonal changes in the 

sperm transcriptome.  

In the first experiment, bucks were castrated at 0, 2, 4, 6 and 8 months of age. In 

the developing testes, there was an 8-fold increase of weight in the first 2 months.  The 

5.4-fold change in weight between 2 and 4 months corresponds to the start of puberty 

(Herrera-Alarcón et al., 2007).There was an absence of additional increase after 6 month 

of age. Schanbacher (1979) reported that after 6 or 7 months change in testicular weight 

was influence by other factors such as photoperiod will cause changes in weight.  

 To correspond to the histological changes, five genes (SOX9, HSPA8, STRA8, 

PRM1 and ODF2) that are expressed in cell types located in the seminiferous tubules. 

Northern blot results showed high levels of SOX9 and HSPA8 being expressed during 0 
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and 2 months of age, which correspond to tubule formation and increase in Sertoli and 

germ cells. After 2 months, the expression of these two genes begins to decline but 

remains present well into adulthood. This phenomenon is similar to reports in rodents 

(Krawczyl et al., 1988; Fröjdman et al 2000). 

 An opposite result was seen with the expression of STRA8, PRM1 and ODF2, 

where there was no signal during the first 2 months of development. These three genes 

are associated with germ cell commitment to meiosis and spermiogenesis (Hoyer-Fender 

et al., 1998; Dadoune, 2003; Horowitz et al., 2005; Carrell et al., 2007; Mark et al., 

2008). The signal for STRA8 was high in cells that were committed to meiosis ( Zhou et 

al.,2008). Problems with this gene would cause prolonged asynapsis and heterosynapsis 

that are important for chromosomal pairing and continuous premeiotic DNA replication 

(Mark et al., 2008). The strongest of all signals was observed in cells expressing PRM1 

and ODF2.  

 In the second study, the objective was to identify transcript that are differentially 

expressed during breeding and non-breeding season. Studies have shown that the sperm 

transcriptome may provide insight to the event involved in spermatogenesis (Ostermeier 

et al., 2002). In order to ensure that samples represented sperm RNA, samples were 

subjected to microelectrophoregraph which reveal a profile similar to FFPE RNA.  From 

previous reports with bovine sperm, sperm RNA is truncated (Gilbert et al., 2007). By 

using the FFPE Agilent protocol, sperm cDNA array hybridization was optimized 

(Lucas and Lin 2009). One thousand three hundred and eighteen genes were above 

background (FC≥2; p≤0.05), which was similar to results previously been reported in 
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bovine (Gilbert et al., 2007) and humans (Ostermeier et al., 2002; Zhao et al. 2006). 

Though significance was not found, qPCR was able to confirm the expression of 

SPAM1 (April), GK2 (October) and MYCBP2 (October). 

Conclusion 

 There are a finite number of genes that interact with each other in order to make 

viable sperm capable of fertilizing the oocyte. This study sought to analyze genes that 

are expressed in the testes during specific stages of development and look at the seasonal 

transcriptome profile of ejaculated caprine sperm. Results from the study were 

comparable to that found in humans and rodents. In conclusion, findings from both 

studies provides a unique analysis of the developing testes and spermatogenesis, and 

through further studies aid in identifying genes that affect male fertility. 
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