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ABSTRACT 

 

Nutritional Contribution of Phytoplankton to the Pacific White Shrimp Litopenaeus 

vannamei. (May 2012) 

Dagoberto Raul Sanchez Corrales, B.S., Ricardo Palma University; M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Delbert Gatlin III 
           Dr. Addison L. Lawrence 

 

The goal of this study was to characterize the nutritional contribution of microalgae to 

white-legged shrimp and optimize fish meal (FM) and fish oil (FO) inclusion levels in 

their diets in the presence of microalgae. Phytoplankton composition was first 

determined in a typical Peruvian intensive commercial shrimp farm and in a semi-closed 

greenhouse-covered reservoir. A predominance of 76.3% cyanobacteria was observed 

for most of 9 months in all shrimp ponds. However, with the fertilization program in a 

reservoir tank, 60.7% diatoms and 22.8% cyanobacteria predominated. Thus, with the 

imposed fertilization regimen, the microalgae composition was manipulated to be 

different than that in commercial shrimp ponds. The microalgae composition was then 

evaluated along with different dietary levels of FM and squid meal (SM) in a feeding 

trial to evaluate the potential of phytoplankton to reduce FM and SM levels in shrimp 

feeds. Six diets were formulated to contain either 5, 10 or 20% SM combined with either 

6.5 or 12% FM. Dietary effects on growth and survival were compared in a "clear-water 

system" (CWS) and a "green-water system" (GWS). Results suggest that 6.5% FM and 

5% SM can be used as a cost-effective combination in feeds for shrimp. 
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The effects of different dietary levels of FO and soybean lecithin (LT) on shrimp 

growth in CWS and GWS were evaluated in another feeding trial to determine if dietary 

phospholipids and phytoplankton increase the availability of essential fatty acids (EFAs) 

to shrimp. Six diets were formulated to contain 1, 2 or 3% FO combined with either 1 or 

4% LT. Shrimp fed diets containing 1% LT and 1% FO in both systems had significantly 

lower weight gain and higher feed conversion ratio. Cephalothorax lipids and 

phospholipids were higher in shrimp fed diets containing 4% LT. Inclusion of 4% LT 

increased the availability of EFAs, and could contribute to reduce the FO in shrimp 

diets. The contribution of phytoplankton to shrimp weight gain, varied from 38.8 to 

60.6%. 

This study demonstrated that cost-effective diets could be formulated with 

reduced inclusion levels of FM and FO considering the contribution of microalgae to the 

nutrition of shrimp. 
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CHAPTER I 

INTRODUCTION 

 

World production of farmed shrimp has grown 16% per year, since 1984. In 2009, 

shrimp aquaculture yields were estimated at 3.1 million metric tons (MMT) with total 

farmed shrimp landings valued at US$ 12.9 billion (FAO 2011). Until 2001, black tiger 

shrimp, Penaeus monodon, was the main species cultured comprising 70% of world 

production (FAO 2008). Widespread catastrophic disease in combination with the lack 

of a genetic improvement program to address disease resistance and improved growth 

motivated many Asian countries such as China, Thailand, Vietnam and Indonesia to 

begin culturing the Pacific white shrimp, Litopenaeus vannamei. In 2003, the production 

of L. vannamei exceeded black tiger shrimp by 309,172 MT (59% of world production - 

FAO 2011) and it is projected that for 2013, this species will represent about 72% of 

world production (Valderrama & Anderson 2011). 

The formulation of cost-effective diets is the goal of all animal production 

industries. This is especially true for marine shrimp aquaculture, where phytoplankton 

play an important role in providing the base of the aquatic food chain for coastal 

production (Leber & Pruder 1988; Moss & Pruder 1995; Otoshi, Montgomery, Look & 

Moss 2001; Michele, Melony, Stuart, Sandy, Peter & Nigel 2004). P. monodon requires 

a higher protein level in its diet than L. vannamei (36–42% compared to 23–35%; 

____________ 

This dissertation follows the style of Aquaculture Research. 
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because it is assumed to obtain most of its nutrients from higher trophic levels, and 

domesticated L. vannamei more effectively utilizes proteins from plant origin (Gaxiola, 

Brito, Maldonado, Jimenez-Yan, Guzman, Leticia, Brito, Luis & Cuzon 2006), which 

results generally in lower feed costs. 

White shrimp, Litopenaeus vannamei, is cultured in extensive, semi-intensive, 

and intensive systems (Frias-Espericueta, Harfush-Melendez & Paez-Osuna 2000). 

According to Tacon, Hasan & Subasinghe (2006) in 1999, 82% of the world shrimp 

farms used extensive and semi-intensive pond-based grow-out culture systems. 

Microalgae which comprise important parts of the natural productivity in the various 

aquatic systems play a vital role in the rearing of aquatic animals (Muller-Feuga 2000). 

These microalgae also play an important role in the dynamics, (i.e., water quality, 

dissolved oxygen, ammonia, alkalinity and pH) of all shrimp pond systems. In extensive 

and semi-intensive pond-based culture systems (from 500 to ~6,000 kg ha-1 crop-1), 

microalgae typically contribute greater to the food supply than in intensive culture 

systems (~7,000 to ~40,000 kg ha-1 crop-1). Thus, with the higher shrimp biomass 

present in intensive systems there is a requirement for greater amounts of compounded 

feed with a higher nutrient density and aeration for optimal shrimp growth (D’Abramo & 

Conklin 1995). However, if the phytoplankton levels are limiting in shrimp pond 

production systems, it will have a negative effect on the quality of the culture water, due 

to the fact that the oxygen and carbon dioxide balance in the water column cannot be 

maintained. Furthermore, the lack of shading will increase the benthic algae levels. 

Thus, phytoplankton play a crucial role in shrimp ponds (Castille & Lawrence 1989; 
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Lawrence & Houston 1993; Tacon 1996) as it not only contributes nutrients but also 

stabilizes the culture system thereby optimizing production costs. 

The value of microalgae to the nutrition of white shrimp in aquaculture has been 

documented to be substantial, and thus it is critical to more specifically determine the 

contribution of various essential nutrients from natural productivity to optimize diet 

formulas for shrimp (Tacon, Cody, Conquest, Divakaran, Forster & Decamp 2002; Ju, 

Forster & Dominy 2009). Microalgae species can vary significantly in their nutritional 

value and this may also change under different culture conditions (Enright, Newkirk, 

Craigie & Castell 1986; Brown, Jeffrey, Volkman & Dunstan 1997). Protein, 

carbohydrate, lipids, minerals and vitamins make up 90 – 95% of the dry weight of an 

algal cell (Brown, Jeffrey & Garland 1989). Microalgae grown to late-logarithmic 

growth phase typically contain 30 to 40% protein, 10 to 20% lipid and 5 to 15% 

carbohydrate (Brown et al. 1997; Renaud, Thinh & Parry 1999). The optimum 

nutritional value of microalgae, as aquaculture feed species, is very much influenced by 

the fatty acid composition of the lipids (Langdon & Walcock 1981; Chu & Webb 1984; 

Enright et al. 1986; Dunstan, Volkman, Jeffrey & Barret 1996) and, to a lesser extent, by 

the amino acid composition of the proteins (Enright et al. 1986; Brown & Jeffrey 1992) 

and the composition of the carbohydrates (Brown & Jeffrey 1992). 

Shrimp aquaculture requires the use of artificial feeds in commercial pond 

production to supplement nutrients obtained by shrimp from natural productivity.  

Presently, 75 to 80% of all farmed shrimp are grown on commercial feeds (Deutsch, 

Gräslund, Folke, Troell, Huitric, Kautsky & Lebel 2007) and it is proposed that 
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commercial feeds will soon replace farm-made feeds in most shrimp farming (Tacon 

2002). Marine fish meals are often utilized as a major protein source in these diets 

because they have high protein content, a suitable amino acid profile (particularly lysine 

and methionine), a desirable fatty acid ( fatty acids) and phospholipids profile, as well 

as adequate mineral and vitamin levels, acceptable palatability, digestibility and even 

unknown nutritional factors (Tacon & Akiyama 1997; Sudaryono, Tsvetnenko & Evans 

1999; Paripatananont, Boonyaratpalin, Pengseng & Chotipuntu 2001; Zaldivar 2002; 

Forster, Dominy, Obaldo & Tacon 2003; Yu 2003; Samocha, Davis, Saoud & DeBault 

2004; Alvarez, Hernandez-Llamas, Galindo, Fraga, García & Villareal 2007). The levels 

of fish meal inclusion in commercial diets for shrimp have been reported to vary from 

10% to 50% (Lim & Dominy 1990; Akiyama & Dominy 1991; Tacon 1993; Tacon & 

Barg 1998). Tacon (2004) reported a range of fish meal use for marine shrimp diets of 

25 to 50% for starter feeds and 15 to 35% on grower feeds, establishing a use average of 

26% (Tacon 2002), depending on factors such as protein quality, digestibility, 

percentage of protein in the diet, culture system, species of shrimp, animal husbandry 

methodology and percent contribution of natural productivity. 

Increased demand for aquaculture feeds and relatively stable fish meal (FM) and 

fish oil (FO) production has led to its high demand, unreliable quality and a steady 

increase in price. It is estimated (Tacon & Metian 2008) that in 2006 the aquaculture 

sector consumed 3.72 MMT of FM and 0.83 MMT of FO, or the equivalent of 16.6 

MMT of small pelagic forage fish (using a wet fish to FM processing yield of 22.5% and 

a wet fish to FO processing yield of 5%) with an overall ratio of wild fisheries inputs to 
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farmed fish outputs (fish-in to fish-out ratio) of 0.70. Moreover, coupled with the current 

estimated use of 5 to 7 MMT of trash fish as a direct food source for farmed fish, it is 

estimated that the aquaculture sector consumed the equivalent of 20–25 MMT of fish as 

feed in 2003 for the total production of about 30 MMT of farmed finfish and crustaceans 

(fed finfish and crustaceans 22.79 MMT and filter feeding finfish 7.04 MMT). This 

means that aquaculture has used up to 88.5% of the world’s FO and 68.2% of the 

world’s FM (Tacon & Forster 2001; Tacon & Barg 2001; Tacon & Metian 2008). This 

situation in the FM market despite high demand could lead to unpredictable aquaculture 

growth. Thus, research efforts are imperative, to identify and develop sustainable 

alternative sources of protein for aquatic diets, decreasing the inclusion levels of FM in 

shrimp feeds used for the commercial production of shrimp. This objective needs to be 

achieved in the short term, in order to assure a sustainable growth of the shrimp farming 

industry. 

Due to the fact that increased production of sustainable FM and FO from natural 

sources seems unlikely and that according to Tacon & Metian (2008), 1.4 kg of wild fish 

(pelagic, wet-weight basis) is used to produce 1 kg of shrimp (e.g., FCR = 1.7, 4.5 kg 

pelagic fish = 1 kg FM, 18.5% FM inclusion rate), the aquaculture feed industry needs to 

gradually reduce the dependency on wild FM and FO and to develop new sources of 

marine protein and oil. Thus, it is imperative to develop viable commercially sustainable 

alternative protein sources to supply the growing aquafeeds industry (Lim & Dominy 

1990; D’Abramo & Lovell 1991; Tacon 1993; Tidwell, Webster, Yancey & D’Abramo 
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1993; D’Abramo & Conklin 1995; Sudaryono, Hoxey, Kailis & Evans 1995; Naylor, 

Hardy, Bureau, Chiu, Elliott, Farrell, Forster, Gatlin, Goldburg, Hua & Nichols 2009). 

The general goal of this study was to evaluate the contribution of phytoplankton 

to the nutrition of the Pacific white shrimp Litopenaeus vannamei, reared in Tumbes, 

Peru, replacing FM and FO with sustainable cost-effective alternative sources. 

The specific objectives of the present study were: 1) to monitor primary 

productivity (phytoplankton composition) levels as a proxy for natural productivity in a 

typical Peruvian semi-closed intensive commercial farm in Tumbes; 2) to compare the 

findings with data from traditional marine aquaculture ponds; 3) to characterize the 

dynamics of the microalgae community and biomass through the measure of Secchi 

depth, dominant genera determination and chlorophyll composition in a controlled 

system; 4) to determine the weight gain and survival of Litopenaeus vannamei with 

different dietary levels of FM and squid meal in indoor tanks with and without 

microalgae and measure the relative contribution of microalgae; 5) to determine if the 

dietary PLs increase the availability of EFAs, and 6) evaluate if phytoplankton 

contributes to the dietary requirements of PLs and EFAs, optimizing FO inclusion levels 

in commercial shrimp diets. 
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CHAPTER II 

CHARACTERIZATION OF THE PHYTOPLANKTON COMMUNITY IN A 

WHITE SHRIMP SEMI-CLOSED INTENSIVE SYSTEM AND A CONTROLLED 

ENVIRONMENT IN TUMBES, PERU 

 

Introduction 

Phytoplankton is a nutrient source for numerous aquacultured species, providing them 

with various nutrients including essential vitamins and polyunsaturated fatty acids 

(Muller-Feuga 2000). The role of phytoplankton as the primary trophic level of the 

aquatic food chain for coastal commercial pond production of marine shrimp has been 

well established (De Pauw & Persoone 1988; Paerl & Tucker 1995). These microalgae 

also significantly affect water quality, especially dissolved oxygen and pH, of shrimp 

pond systems (McIntosh, Fitzimmons, Collins & Stephens 2006; Velasquez, Cabrera, 

Rosas & Troccoli 2007). Phytoplankton plays a crucial role in extensive, semi-intensive 

and intensive commercial shrimp ponds (Castille & Lawrence 1989; Lawrence & 

Houston 1993; Tacon 1996). In extensive and semi-intensive pond-based grow-out 

culture systems (from 500 to 6,000 kg ha-1 crop-1), water quality and food supply are 

more affected by the presence of microalgae than in intensive culture systems (7,000 – 

34,000 kg ha-1 crop-1) (Hunter, Pruder & Wyban 1987). This is largely due to the fact 

that in these systems the higher biomass requires greater amounts of supplemental feed 

and, as a result, pond management is substantially different (e.g., aerators to maintain 

required dissolved oxygen levels). However, in intensive systems, if there is a lack of 
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phytoplankton, benthic algae will grow, having also a negative effect on the quality of 

the culture water. This is largely due to the fact that the oxygen, carbon dioxide and 

nitrogen balance in the water column cannot be maintained (Briggs & Funge-Smith 

1994). Furthermore, aeration demand increases and large rations of nutritionally 

complete feed are required, causing potential economic losses, as production costs 

increase (Kuban, Lawrence & Wilkenfield 1985). 

Intensive shrimp pond systems in Tumbes, Peru, culture the white-legged shrimp, 

Litopenaeus vannamei. It is also the major species used for aquaculture in the rest of the 

western hemisphere. Culture ponds are typically high-density polyethylene (HDPE)-

lined and lack bottom soil contact with water. Water is generally treated with chlorine in 

the pond before stocking, thus there is a limited amount of phytoplankton in the water 

column of the ponds. Unlike earthen ponds, secondary productivity is not very 

significant. Further, the contribution of natural productivity to the dietary requirements 

of shrimp decreases as the shrimp biomass per square meter increases in the pond. The 

objective of this study was to determine phytoplankton species and levels in a semi-

closed intensive shrimp farm in Tumbes, Peru and compare it to a controlled system 

enclosed in the same farm. This research will provide information to understand the 

dynamics of microalgae in the water column and optimize management protocols in 

intensive shrimp ponds. 
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Materials and Methods 

Research site 

Research for this study was conducted at the semi-closed intensive shrimp farm, 

LATIMAR, and the Aquatic Experimental Center (AEC) of Alicorp in Tumbes, on the 

northern Pacific coast of Peru (latitude 3°27’33.22”S, longitude 80°19’54.13”W – 3msl). 

This farm stocks the white-legged shrimp (Litopenaeus vannamei) and is a typical 

Peruvian semi-closed intensive commercial farm, comprised of 12 high-density 

polyethylene (HDPE) lined, sediment-free, greenhouse enclosed, square and rectangular 

shaped, 1-ha ponds (Fig. 2.1). 

Prior to stocking, ponds were filled with water pumped from the “El Venado” 

estuary. This water was subsequently chlorinated (hypochloric acid) in order to eliminate 

all possible pathogens from the seawater added to the ponds. This procedure also 

eliminated the phytoplankton and zooplankton in the seawater.  Pond water was aerated 

for 24 h in order to dissipate chlorine prior to stocking ponds at a density of 85 

postlarvae per square meter (PL 10 – 12). Ponds were greenhouse-enclosed, maintaining 

water temperature at 29 – 33 °C. Ponds had rounded corners and were 1.2-m deep, 

containing a central drain for siphoning of organic material, uneaten feed, dead natural 

productivity and animal waste produced during the production phase.  Aeration and 

circulation was provided by 17 paddle wheel aerators at a rate of 34 hp per ha. Shrimp 

were fed a commercial 40% crude protein (CP) 2.5 x 5 mm feed (Nicovita®, Alicorp, 

Lima, Peru) for the first 30 days of culture, then a 35% CP feed (Nicovita®, Alicorp, 

Lima, Peru) for the next 60 days and finished with a 30% CP feed (Nicovita®, Alicorp, 
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Lima, Peru). Feed was broadcast four times per day (0700, 1100, 1500, and 1900 h). The 

feeding rate was 0.2 - 0.5 g of feed per shrimp per day depending upon size of shrimp 

and consumption rate as determined by six sampling trays per pond. Samples comprised 

3 - 4% of the total feed broadcast per ration and were collected from the trays after 2 h. 

Pond fertilization was undertaken with an initial dose of 200 kg/ha of 

commercial organic fertilizer. This was followed by 50 kg/ha each day for three 

consecutive days using Nutrilake® a commercial inorganic fertilizer containing 15% 

nitrogen as N-NO
3
, 6% phosphorus as P

2
O

5
, 23.2% sodium, 3.5% silicate as SiO

2
, 

0.35% boron, 0.15% magnesium, 0.08% sulfur and 0.37% potassium, for establishment 

of a phytoplankton bloom prior to stocking. Molasses carbohydrate was balanced with 

feed nitrogen during the first 21 days after stocking to maintain in water a C/N ratio of 

ten.  After 21 days, 120 - 150 kg of molasses-1 ha-1 d-1 was added to the pond water until 

harvest. If pond water levels of cyanobacteria exceeded 200,000 c mL-1, the dose of 

molasses was increased to 300 kg ha-1 d-1. If levels of cyanobacteria continued to remain 

high, 200 kg ha-1 calcium hydroxide was added to the pond water and/or fresh well water 

was added to ponds at an exchange rate of 10 - 15% per day. Water exchange in all 

ponds typically averaged 10% per day over the 9-month production season. 

Description of reservoir system 

The AEC reservoir system, located within LATIMAR (Fig. 2.1), consisted of six 

wooden, HDPE-lined, sediment-free, greenhouse-enclosed tanks (volume: 28.27 m3). 

Tanks contained water extracted from the “El Venado” estuary, used as a water source 

by LATIMAR, and aerated by a 2-hp blower. In order to standardize measurements and 
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characterize the microalgae community of the system, one of the reservoirs was provided 

with continuous light from four evenly-distributed groups of ten fluorescent lights (36 

W, 2,500 lx at 40 cm over the water surface). This regime was adopted to enhance 

growth of microalgae. 

Characterization of phytoplankton in ponds 

Weekly samples of phytoplankton were taken from the ponds from November 2006 to 

July 2007. Samples were collected at 12:00 hours from a depth of 30 cm using 1-L 

plastic bottles. Subsamples (~150-mL) were preserved by adding 2 mL of Lugol’s 

solution (Throndsen 1978). Cells were allowed to settle for 10 h and subsequently 

processed for taxonomic and cell count analysis using an improved Neubauer 

hemocytometer at 600x magnification. Methodology for cell counts followed that of 

Venrick (1978). Malca's (1997) manual was used to separate microalgae into taxonomic 

divisions for subsequent data analysis. In addition, water temperature, dissolved oxygen 

(DO), pH and nitrite (NO2-N) were monitored for all 12 ponds twice daily and within a 

1-h period at 06:00 and 18:00 h using a YSI 85® meter (Yellow Spring Instruments, 

Yellow Springs, Ohio, USA), a YSI pH10 Ecosense® pen-style meter and by preparing a 

10-mL sample for photometric analysis using a YSI 9000® photometer. Salinity was 

measured by refractometer for each pond on a weekly basis. 
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Figure 2.1 Diagram of the semi-closed intensive shrimp farm (LATIMAR) and the Aquatic Experimental Station (AES) in 
Tumbes, Peru. Image is drawn approximately to scale. 
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Characterization of phytoplankton in the reservoir tank 

The experiment in the reservoir tank occurred from 15 March to 9 May 2008 (total of 56 

d). Water initially pumped from the estuary “El Venado”, was used to fill the reservoir 

tank to a depth of 100 cm (28,270 L). The following day, hydroxyl chloride was added 

yielding a chlorine level of 4 ppm. Water was then aerated for 24 h to allow for 

evaporation of chlorine. Concentrations of nitrogen and phosphorus were determined the 

first day of evaluation (three days post-filling) using a YSI 9000® photometer. Water 

was then fertilized to yield a N/P and Si/N ratio of 15 and 1.25, respectively. 

Fertilization with inorganic nutrients occurred at noon using Nutrilake® (as above) and 

sodium silicate Nutricil® (23% silicate). Also, 30 g of ground 35% crude protein 

(Nicovita®, Alicorp, Lima, Peru) commercial feed (5.6% nitrogen, 0.85% phosphorus 

wt:wt) and 30 g of commercial organic fertilizer (Nicovita®, Alicorp, Lima, Peru: 2.1% 

nitrogen and  0.65% phosphorus wt:wt) were added. The commercial organic fertilizer 

consisted of a mixture of wheat middlings and defatted soybean meal. It was also added 

daily, and served as a source of carbon, nitrogen and phosphorus in order to maintain 

continuous organic nutrients in the water for the algal community. After seven days, 

addition of Nutrilake® and triple super phosphate was suspended. Nutricil® was 

continuously added at a rate of 140 g d-1 (the equivalent of 50 kg ha-1 d-1) and ground 

commercial diet and organic fertilizer were maintained at the same 30 g per day rate for 

the entire experimental period in order to stimulate the growth of diatoms and avoid 

predominance of cyanobacteria. At day 21 and 46 (8 April 2008 and 3 May 2008), 50% 

of the reservoir water (14,000 L) was exchanged with non-chlorinated estuarine water. 



 

 

14 

14 

During water exchange, levels of nitrogen and phosphorus were determined in order to 

maintain the ratios of N/P and Si/N at 15 and 1.25, respectively. Again, after these two 

water exchanges and after seven days of fertilization, Nutrilake® and triple super 

phosphate were suspended and Nutricil® was added at a rate of 140 g d-1 (the equivalent 

of 50 kg ha-1 d-1). Ground commercial feed and organic fertilizer were also each added at 

a rate of 30 g per day.  Water quality factors were monitored in a similar manner as 

reported above. In addition, Secchi disc depth (Walker et al. 2007) and luminosity  

(Milwaukee® SM 700 Lx light meter) were determined daily at noon. 

Phytoplankton identification, cell counts and chlorophyll analysis were also 

determined daily. A 1-L water sample was collected at noon at a depth of 30 cm from 

the reservoir tank, and preserved by addition of Lugol’s solution (Throndsen 1978).  

After allowing for settling, taxonomic and cell count analysis were conducted.  

Microalgae counts were undertaken as described above. Analysis of chlorophylls a, b 

and c was by the method of Strickland & Parsons (1972) using the spectrophotometric 

equations from Jeffrey & Humphrey (1975). 

Results 

Characterization of phytoplankton in ponds 

Water temperature (C), DO (mg L-1), pH and salinity (g L-1) during the months sampled 

were statistically different (P<0.05) among the 12 ponds (Table 2.1). However, NO2-N 

(mg L-1) was not statically different among the 12 ponds. Water temperature, DO and pH 

were statistically (P<0.05) higher during the afternoon readings. DO levels ranged in the 

morning from 0.6 mg L-1 in pond 12 to 8.1 mg L-1 in pond ten and in the afternoon from 
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Table 2.1 Water quality parameters of study ponds. Numbers in parenthesis are SD of the means. n= 378 for temperature, DO and pH and 17 for 

nitrite and salinity 

Pond       Temperature       Dissolved oxygen  pH   NO2-N              Salinity 

        (°C)   (mg L-1)      (mg L-1)    (g L-1) 

Mean Min. Max.    Mean     Min.  Max.    Mean     Min. Max.   Mean  Min. Max. Mean Min. Max. 

1 AM  30.6 (1.1)  26.0   36.8 2.8 (0.72)  1.4      4.9 7.5 (0.34)  7.0 8.6 1.2 (1.89) 0.1 7.0 30 (3.0)   24 35 

    PM  31.9 (1.1)  27.4   36.4 3.5 (1.10)  1.7      8.6 7.8 (0.60)  3.0 8.9 

2 AM  31.2 (1.3)  25.4   38.7 2.5 (0.70)  1.4      4.9 7.4 (0.48)  2.2 8.8 4.5 (5.35) 0.0 20.3 29 (3.8)   22 36 

   PM   32.3 (1.2)  26.9   34.2 2.9 (0.89)  1.5      5.9 7.6 (0.59)  2.6 8.6 

3 AM  30.9 (1.1)  27.3   32.7 2.7 (0.89)  1.4      7.9 7.4 (0.34)  3.6 8.0 1.3 (2.45) 0.0 7.8 28 (2.2)   24 32 

   PM   32.1 (1.3)  28.0   38.9 3.1 (0.89)  1.7      7.2 7.7 (0.22)  7.2 8.6 

4 AM  30.9 (1.2)  27.0   32.9 2.8 (0.87)  1.5      7.7 7.5 (0.16)  7.1 8.1 0.8 (1.36) 0.0 5.0 29 (3.0)   20 33 

   PM  32.0 (1.5)  28.0    34.7 3.2 (0.87)  1.6      5.9 7.8 (0.38)  2.9 8.4 

5 AM  30.8 (2.3)  26.8   34.3 2.6 (0.64)  1.4      4.2 7.4 (0.53)  2.3 8.5 1.2 (2.12) 0.0 8.0 32 (2.9)   25 36 

   PM  32.1 (1.1)  28.2    33.9 3.3 (0.85)  1.6      5.2 7.7 (0.65)  2.3 8.7 

6 AM  31.3 (1.2)  26.5    33.7 2.5 (0.76)  1.5      7.7 7.5 (0.30)  6.9 8.7 1.7 (2.32) 0.0 8.3 31 (2.4)   28 36 

   PM  32.4 (1.3)  27.4     34.3 2.9 (0.80)  1.6      5.4 7.7 (0.52)  2.3 8.9 
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Table 2.1 Continued 

Pond       Temperature       Dissolved oxygen  pH   NO2-N              Salinity 

        (°C)   (mg L-1)      (mg L-1)    (g L-1) 

Mean Min. Max.    Mean     Min. Max. Mean     Min. Max. Mean  Min. Max. Mean Min. Max. 

7 AM  31.1 (1.0)  26.2 32.7 2.8 (0.98)  1.4 7.8 7.6 (0.20)  7.2 8.3 1.6 (3.07) 0.0 10.8 29 (1.4)   26 31 

   PM  32.2 (1.1)  27.2 37.8 3.2 (0.89)  1.2 6.2 7.8 (0.44)  2.6 8.5 

8 AM  31.6 (0.7)  28.4 32.8 2.8 (0.89)  1.3 7.7 7.6 (0.24)  7.1 8.5 3.1 (4.13) 0.0 12.9 27 (3.5)   23 37 

   PM  33.1 (3.7)  29.3 34.0 3.2 (1.03)  1.5 7.5 7.9 (0.29)  7.4 8.9 

9 AM  31.5 (0.8)  28.5 34.5 2.7 (1.09)  1.4 7.5 7.6 (0.52)  2.1 8.7 3.3 (4.75) 0.0 12.5 28 (4.3)   23 36 

   PM  32.7 (0.8)  29.8 34.4 3.2 (1.15)  1.6 7.3 7.8 (0.33)  6.3 9.1 

10 AM  31.4 (0.8)  28.2 33.1 2.6 (0.78)  1.2 8.1 7.6 (0.28)  7.9 8.6 2.7 (4.02) 0.0 14.2 25 (2.3)   22 32 

     PM  32.5 (1.1)  24.2 36.4 3.2 (0.94)  1.2 7.4 7.9 (0.51)  3.6 9.9 

11 AM  31.6 (1.1)  27.0 33.6 2.5 (0.71)  1.1  4.9 7.5 (0.56)  2.4 8.7 2.1 (2.50) 0.1 10.0 29 (4.3)   22 35 

     PM  32.7 (1.0)  28.4 34.6 3.0 (0.92)  1.3 5.9 7.8 (0.65)   2.2 9.9 

12 AM  30.6 (1.6)  21.9 32.9 2.3 (0.85)  0.6  6.8 7.6 (0.33)  7.1 8.6 1.8 (3.73) 0.0 14.2 29 (4.3)   21 36 

     PM  31.9 (1.5)  26.2 37.9 3.0 (0.96)  1.6 7.6 7.8 (0.33)  7.0 8.8 
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1.2 mg L-1 in pond seven and 8.6 to 10 mg L-1 in pond one. The Cyanophyta appeared to 

be the predominant algal division followed by Chrysophyta, Pyrrophytes, Dynophytes 

and Euglenophyta (Table 2.2). A total of 23 genera, representing four divisions of algae, 

were identified from the ponds at LATIMAR throughout the study period. Overall, the 

most commonly observed genera were Oscillatoria and Crococcus, with Melosira, 

Navicula, Nitzchia, Thallasiosira, and Fragilaria being the most common genera of 

diatoms. 

On the first sampling date (11 November 2006), the phytoplankton community 

was dominated by cyanobacteria which comprised 75 - 85 % of the total cells counted 

(Fig. 2.2). However, on 14 November, the dominant species changed to Chrysophyta 

(65% of total cell counts). In this case, the proportion of cyanobacteria declined to 25%. 

From 17 November to the end of the sampling dates (28 July 2007) the cyanobacteria 

were dominant (70 - 95%). 

Mean microalgae cell counts from November 2006 to June 2007, ranged from 

168,650 cells mL-1 in Pond 7 to 313,900 cells mL-1 in pond 4 (Fig. 2.3). The highest 

concentration of cyanobacteria was observed in pond five with a mean of 160,727 c mL-1 

(91%). Pond ten had the highest mean cell density of diatoms (95,636 c mL-1; 38% of 

total). 

Characterization of the phytoplankton in the reservoir tank 

The water quality conditions of the AEC reservoir tank during the experimental period 

are shown in Table 2.3. No significant differences (P>0.05) in water temperature, DO, 

pH and salinity were observed during the 51 days of sampling. Dissolved oxygen, water 
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Table 2.2 Percent count (cell mL-1) of each microalgae genera identified in study ponds from 

November 2006 to July 2007 

Division Genus  Frequency Division Genus  Frequency 

          %           % 

Chrysophyta Melosira      3.9  Cyanobacteria  Oscillatoria     54.1 

Navicula      3.6    Crococcus     21.6 

Nitzchia       3.8    Anabaena       0.5 

Thallasiosira      2.8    Spirulina       0.1 

Fragilaria      1.3  % Total Division      76.3 

Chaetoceros      0.8 

Cymbella      0.5  Pyrrophyte Phacus      100 

Pleurosigma      0.4  % Total Division       5.1 

Amphipora      0.2 

Coscinodiscus      0.1  Euglenophyte Euglena sp     100 

Coconeis      0.1  % Total Division       1.0 

Bidulfia       0.1 

Risolenia      0.05 

Gyrosigma      0.04 

Scheletonema      0.04 

Pinnularia      0.02 

Bacteriosira      0.01 

% Total Division     17.60 
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Figure 2.2 Mean phytoplankton community structure by month from November 2006 to July 2007. 
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Figure 2.3 Phytoplankton by cell count of 12 semi-closed intensive shrimp culture ponds in Tumbes – Peru between 
November 2006 and June 2007. 
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temperature and pH were higher during the afternoon readings, but did not vary 

substantially at each sampling time (AM and PM; Table 2.3). Secchi depth and levels of 

chlorophyll a, b and c were relatively low during the 52-days of trial, especially during 

the first 35 days. Mean luminosity was 10,487 ± 2,972 lx cm-2, with a minimum of 4,930 

lx cm-2 and a maximum of 22,900 lx cm-2 depending on the daylight and amount of 

shadow from the clouds. 

Water from the “El Venado” estuary, used to initially fill the reservoir tank, 

contained diatoms (75%), cyanobacteria (20%) and chlorophytes (5%) and were 

ultimately eliminated as a result of disinfection with chlorine. The water used to 

exchange 50% of the reservoir water on 8 April 2008 consisted of cyanophytes (65%), 

chlorophytes (15%), diatoms (10%) and pyrrophytes (10%; Fig. 2.4). In contrast, estuary 

water used on 3 May 2008 consisted of 87.5% cyanophytes and 12.5% chlorophytes. 

The microalgae cell count from 19 March to 9 May 2008, varied from 1,150 c 

mL-1 on day one to 12,595 c mL-1 on day eight (Fig. 2.5). Diatoms were the dominant 

species of microalgae during the first 14 d of the study; whereas, cyanobacteria 

dominated during d 17 to 35 and the last five days of the trial, with cell counts ranging 

from 650 to 2,470 c mL-1. Diatoms, cyanophytes and chlorophytes began to increase ten 

days after the first water exchange (day 36 of the trial). Secchi depth decreased to 

approximately 30 cm as concentrations of microalgae increased from 160,000 to 265,500 

c mL-1. 
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Table 2.3 Variation in environmental criteria from 19 March to 9 May 2008 (52 d) in the reservoir 

tank. Numbers in parenthesis are SD of the mean. A total of 104 observations were made for 

temperature, DO and pH; and 52 for Secchi depth, luminosity and chlorophyll 

Factor   AM  Min Max PM  Min Max 

Temperature (°C) 31.0 (0.9) 28.1 32.8 32.5 (1.0) 30.1 34.6 

DO (mg L-1)    5.5 (0.9)   4.1   9.8   8.1 (1.6) 5.6 13.2 

pH     8.6 (0.3)   7.5   9.2   8.8 (0.3) 8.1   9.3 

Salinity (g L-1)      28.3 (0.9) 26.3 29.8 

Secchi Depth (cm)     62 (24)  24 100 

Luminosity (Lx cm-2)     10487 (2,972) 4,930 22,900 

Chl - a (mg m-3)     20.1 (15.3) 1.1 61.7 

Chl - b (mg m-3)       1.03 (1.7) 1.6   6.3 

Chl - c (mg m-3)       4.7 (3.8) 0.4 13.8.
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Figure 2.4 Phytoplankton community structure, by division, of estuary water used to exchange the reservoir tank. 
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Figure 2.5 Phytoplankton cell count vs. Secchi depth in reservoir tank from 19 March to 09 May 2008 (52 d). 
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On the first sampling date (19 March 2008), the phytoplankton community was 

dominated by cyanobacteria which comprised 82% of total cells counted (Fig. 2.6). 

From day three to nine, diatoms comprised more than 80% of the total cell count, 

compared to cyanophytes. From day ten (28 March 2008) to the end of sampling (7 

April 2008), cyanophytes decreased from 50 to 12% on day 13, and as high as 60% until 

day 35 (22 April 2008) when diatoms began to dominate and rapidly increase in number. 

This continued until day 42 (29 April 2008) at which point they comprised 99% of total 

cells. At day 42, cyanophytes and chlorophytes began to increase in number, comprising 

40% and 26% of total cells, respectively. This continued until day 52, when the trial 

ended. During this same time period, diatoms comprised 32% of the total cell count. 

Diatoms (e.g., Chaetoceros sp., Nitzchia sp., Navicula sp., Gyrosigma sp.) 

comprised 61% of the total cells, followed by cyanophytes (e.g., Oscillatoria sp.) at 23% 

and chlorophytes (e.g., Chlamydomonas sp.) at 16%. Pyrrophytes were present in very 

small concentrations and euglenophytes were apparently completely absent. A total of 

13 genera, representing three algal divisions, were identified from the reservoir tank 

during the 53 days of sampling (Table 2.4). 
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Figure 2.6 Phytoplankton community structure, by division, as percentage of total sample for reservoir tank. Samples taken 
from 19 March to 9 May 2008 (52 d). 
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Table 2.4 Percent count (cell ml-1) of each microalgae genera identified in reservoir tank from 19 

March to 9 May 2008 

Division Genus  Frequency Division Genus  Frequency 

          %           % 

Diatoms  Chaetoceros    52.7  Cyanobacteria Oscillatoria      22.6 

  Nitzchia      2.7    Chroococcus        0.1 

  Navicula     2.2    Gleocapsa        0.1 

  Gyrosigma     2.1    Spirulina        0.03 

  Cymbella     0.8  % Total Division       22.8 

  Amphipleura     0.2 

  Fragilaria     0.03  Chlorophytes Chlamydomonas      16.4 

% Total Division    60.7    Oocysts         0.07 

      % Total Division       16.5 

 

 

The predominant species of chlorophyll was chl-a (20.1 mg m-3) followed by chl-

c (4.7 mg m-3 - Table 2.3). Total chlorophyll followed the pattern of cell count and 

Secchi depth independent of the predominant species of microalgae (Fig. 2.7). 

Transparency varied from 100 to 24 cm and total chlorophyll from 1.9 to 77.9 mg m-3. 

As level of transparency decreased, total chlorophyll increased. Maximum chlorophyll 

(77.2 mg m-3) was observed when transparency reached 28 cm on May 3; whereas, 

minimum chlorophyll (1.9 mg m-3) was observed when Secchi depth reached 85 cm on 

April 9 simultaneous with water exchange. 
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Figure 2.7 Chlorophyll and Secchi depth levels in reservoir tank from 19 March to 9 May 2008 (52 d.). 
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Discussion 

Phytoplankton community structure in ponds 

The phytoplankton community structure observed during the study period was typical of 

shrimp culture ponds. Phytoplankton communities in coastal shrimp ponds are often 

dominated by cyanobacteria and/or chrysophytes (Boyd 1989; Cortez-Altamirano, Paez-

Osuna, Guerrero-Galvan & Esparza-Leal 1995; Tookwinas & Songsangjinda 1999; 

Yusoff, Zubaidah, Matias & Kwan 2002; Alonso-Rodriguez & Paez-Osuna 2003; 

McIntosh et al. 2006). On the other hand, Burford (1997) suggested that shrimp ponds 

can display higher cell densities of chlorophytes and cyanobacteria than chrysophytes in 

relation to the water source. These differences are generally attributed to decreased light 

availability, higher nutrient levels and decreased silica content (McIntosh et al. 2006). 

The dominance of cyanobacteria for most of the study period in all 12 shrimp 

culture ponds on the LATIMAR farm was probably due to the high levels of phosphorus 

in the system and nitrogen/phosphorus imbalance, both mainly caused by high amounts 

of feed inclusion (35% CP diet contains 5.6% N and 0.74% P which results in a N/P 

ratio of 7.6). Researchers have reported that the major source of nutrients in pond water 

is feed (Boyd 1989; Wang 1990; Briggs & Funge-Smith 1994; Tookwinas & 

Songsangjinda 1999; Alonso-Rodriguez & Paez-Osuna 2003). Shrimp feed is rich in 

nitrogen and phosphorus, containing 6.1 – 7.4% N and 1 – 1.5% P (Chiu 1988). The 

factors considered important in development of cyanobacteria blooms include high 

concentration of ammonium nitrogen (Blomqvist, Petterson & Hyenstrand 1994; Ferber, 

Levine, Lini & Livingston 2004; Marino, Chan, Howarth, Pace & Likens 2006), high 
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levels of phosphorus (Schindler 1977; Trimbee & Prepas 1978; Watson, McCauley & 

Downing 1997), low total nitrogen/total phosphorus ratios (Smith 1983; Lee, Jang, Kim, 

Yoon & Oh 2000; Moisander, Steppe, Hall, Kuparinen & Paerl 2003; Alonso-Rodriguez 

& Paez-Osuna 2003; Wacklin 2006; Watzin, Fuller, Kreider, Couture & Levine 2006), 

high pH and low CO2 availability (Reynolds 1973) and physical factors such as high 

temperature (Robarts & Zohary 1987), turbulence and mixing (Steinberg & Hartmann 

1988; Oliver & Ganf 2000; Paerl, Fulton, Moisander & Dyble 2001; Moisander, Hench, 

Kononen & Paerl 2002), and high light intensity (Paerl, Bland, Bowles & Haibach 1985; 

Tandeau de Marsac & Houmard 1993; Scheffer 1998; Vörös, Callieri, Balogh & Bertoni 

1998; Postius & Ernst 1999; Mur, Skulberg & Utkilen 1999; Ferris & Palenik, 1998; 

Oliver & Ganf 2000; Callieri & Stockner 2002; Stomp, Huisman, De Jongh, Veraart, 

Gerla, Rijkeboer, Ibelings, Wollenzien & Stal 2004). 

Zimba, Grimm & Dionigi (2001) reported that freshwater catfish earthen pond 

systems were dominated by cyanobacteria, which can lead to taste and odor problems in 

the fish. These ponds typically receive large nutrient inputs from excess feed, fish 

excreta and sediment mineralization/resuspension. This is the result of the large surface 

area:volume of these shallow water systems (depth < 1.5 m) as well as 30% conversion 

of feed into fish biomass (Tucker & Boyd 1985). Two of the predominant species found 

in these freshwater catfish ponds, Anabaena sp. and Oscillatoria sp. (50% of samples) 

and Aphanizomenon sp. (20% of samples), were less common in the present study (Table 

2.4), probably due to the higher level of salinity of the estuary water. 
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The diatoms Nitzchia sp. followed by Amphora sp., Navicula sp. and 

Pleurosigma sp. were the most common genera of microalgae found during a three-cycle 

study in a Caribbean shrimp farm in Venezuela. There, shrimp were stocked at 15 and 20 

m-2 (Velasquez et al. 2007). The dominant species of microalgae in that study could 

have differed from the present due to improved water quality and availability of silicates 

in sediments, as well as general water column characteristic of these semi-intensive 

culture systems found in the Caribbean Sea area. However, high numbers of 

cyanobacteria were observed in the third cycle, due to eutrophication of the ponds. As 

previously mentioned, cyanobacteria become enriched with phosphorus and reproduce 

rapidly as the amount of feed increases. Diatoms require specific levels of silicate, which 

was not applied as a supplement at LATIMAR ponds. Hence, this type of microalgae did 

not dominate at any time during the sampling period. 

Microalgae community structure was determined during a five-month period in 

20 low-water-exchange shrimp culture ponds in Eastern Thailand (Tookwinas & 

Songsangjinda 1999). Densities varied from 33 to 110 shrimp m-2. During the second, 

third and fourth months, the cyanobacterium Trichodesmium sp. was dominant (24.1, 

62.8 and 30.9%, respectively). During the first month Nitzchia sp. (18.7%) and Lyngbya 

sp. (9.9%) dominated; whereas, the chlorophyte, Chlorococcus sp. comprised 28.8% of 

the assemblage during the fifth month. The dominance of cyanobacteria in both Thai and 

LATIMAR could be principally due to similarities in stocking density, type of Pacific 

estuarine water and reduced water exchange typically used to minimize stress on shrimp. 
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Phytoplankton community in the reservoir tank 

Water used during the first stage of the present study was phytoplankton free, due to 

disinfection and microalgae air spores were likely the main source resulting in 

colonization of pond water. The limited amount of surface water in the reservoir which 

was greenhouse enclosed did not allow enough open space for algae colonization and 

propagation. When non-chlorinated estuarine water was eventually exchanged (d 22), 

diatoms proliferated, even though incoming water consisted primarily of cyanobacteria 

(65%) and diatoms (10%). The positive relationship between nutrient loading and 

productivity in freshwater and marine environments has been well-established (Schindler 

1977; Schindler 1978; Smith 1982; Pick & Lean 1987; Hecky & Kilham 1988; Boyd & 

Daniels 1993; USEPA 2000; Moisander et al. 2003; Walker, Younos & Zipper 2007). 

Thus, diatom proliferation in the reservoir tank was probably due to the N/P ratio used 

and the silicate applied during the fertilization program. According to Smith (1983), a 

dramatic tendency for blue-green algal blooms occurs when epilimnetic N/P ratios fall 

below 29 by weight, and for blue-green algae to be rare when the N/P ratio exceeds this 

value. Tilman, Kilham & Kilham (1982) suggested that blue-green algae (both those that 

fix nitrogen and those that do not) are generally inferior to diatoms as phosphorus 

competitors, indicating that blue-green algae should typically be dominant in lakes with 

low N/P ratios (in which most phytoplankton species would be nitrogen limited) and rare 

in lakes with high N/P ratios. Flett, Schlinder, Hamilton & Campbell (1980), found that 

nitrogen-fixing blue-green algae were typically associated with lakes having N/P supply 
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ratios less than 10 by weight and were mostly absent from those with a greater N/P 

supply ratio. 

Watson et al. (1997) found that despite diatoms having a smaller range in size 

and shape than cyanobacteria, they contributed a comparable percentage to total biomass 

in 91 northern temperate lakes. Diatoms are well adapted to a broad range of nutrient 

regimes (Willen 1991; Corbelas & Rojo 1994). Efficient nutrient uptake, especially 

silicate, may favor pinnate diatoms in oligotrophic environments (Sterner 1990; 

Velasquez et al. 2007), and centric diatoms, with higher growth rates and lower sinking 

losses, in eutrophic lakes, particularly in mixed systems (Corbelas & Rojo 1994). On the 

other hand, cyanobacteria have been shown to increase their proportion of total biomass 

at concentrations as low as 1.4 ppb total phosphorus (Watson et al. 1997). These 

findings were corroborated during subsequent days of the present study, after water was 

exchanged the second time (d 42). At this point, diatoms were less prevalent in the total 

cell count; whereas, cyanobateria and chlorophytes continued to increase until the end of 

the study. Because of this pattern, it might be inferred that an additional water exchange 

and re-fertilization, with a N/P ratio of 15 and adequate silicate levels could result in a 

phytoplankton assemblage containing a higher proportion of diatoms. This assumption 

should be confirmed under normal pond operation conditions. 

It is clear that management decisions on nutrient control measures must be based 

on controlled field tests as well as simple laboratory bioassays (Schindler 1977). For 

example, Zimba et al. (2001) found that pond size played a significant role in 

phytoplankton abundance. Thus, differences found in microalgae community structure 
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among the 12 LATIMAR ponds and the reservoir tank system at the AES, should be 

considered jointly. Microalgae populations in the reservoir were different from those in 

the ponds, probably due to internal and external variables such as a smaller controlled 

environment, different nutrient input (e.g., silicate, phosphorus and nitrogen) in the 

fertilization regime, amount of water used, light intensity and the lack of shrimp, grazers 

and predators. The assemblage of species comprising the microalgae community is 

subject to many variables (e.g., temperature, salinity, DO, pH, light intensity and nutrient 

balance). A good fertilization program could help to enhance presence of a desirable 

species of microalgae while simultaneously reducing unwanted ones. Despite known 

relationships with these controlling factors, substantial environmental variation (i.e., rate 

of change) could affect unpredictable change. 

Blooms of cyanobacteria usually occur during warm periods, at temperatures 

above 20 °C (Robarts & Zohary 1987). Both field and laboratory experiments (Reynolds 

1984; Robarts & Zohary 1987) have supported the hypothesis that elevated temperatures 

favor presence of cyanobacteria over that of other phytoplankton (Tilman et al. 1982; 

McQueen & Lean 1987). Cyanobacteria generally have higher temperature optima (>25 

°C) for growth, photosynthesis and respiration than do green algae and diatoms, 

although direct temperature effects probably act synergistically with other factors in the 

process (Robarts & Zohary 1987). Diatoms dominate a broader range of nutrient 

conditions (Si/P and N/P) below 14 °C; whereas, chlorophytes and cyanobacteria, 

specially Oscillatoria sp., dominate a wider range of nutrient ratios at temperatures of 17 

°C and 24 °C (Tilman et al. 1982). Trimbee & Harris (1984) stated that seasonal 
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succession also may affect both chl-a levels and community structure. Thus, although it 

is likely that the assemblage of microalgae could be managed by an appropriate program 

of fertilization in the reservoir tanks, the changing of shapes and sizes of containers, with 

different water parameters, as well as including shrimp and feed in the experimental 

tanks and ponds, could result in other dynamics. This could make it more difficult to 

stabilize beneficial microalgae communities. For this reason, it is important to cautiously 

apply results from a smaller controlled system to a larger pond. 

A number of methods are available for quantification of microalgae, including 

cell counts, biovolume, and algal pigments (e.g., chlorophylls, carotenoids and 

phycobilins). The biomass of phytoplankton in lakes and reservoirs is often estimated 

only by measuring the amount of chl-a, the predominant green pigment used in 

photosynthesis (Walker et al. 2007). Some authors suggest recording total chlorophyll 

pigments because all current methods of measuring chlorophyll-a concentration ignore 

some interference (Carlson & Simpson 1996). In the present study, the determination 

that levels of chlorophyll-a, -b and -c varied according to the type of predominant 

microalgae, suggests that cell counts and chlorophyll levels could be used as a balanced 

and complementary approach to monitor microalgae assemblages in the field. Zimba et 

al. (2001) corroborated that cell count data were generally strongly related to chl-a 

concentration in catfish ponds and that higher pigment values were associated with 

larger pond sizes. Also, chl-a level in inland low-salinity shrimp ponds, increased over 

the course of a 5-month growing season, with the level being higher in small ponds 

compared to larger ponds (McIntosh et al. 2006). Furthermore, USEPA (2004) used a 
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comprehensive baseline of 11 years of chl-a values as an indicator of amount of 

phytoplankton suspended in the water column. They determined that increases in chl-a 

values were not detected, and thus the bay they studied (e.g., Hervey Bay, Australia) 

maintained a stable trophic status and did not present any increasing trend or risk of 

eutrophication. Morabito, Ruggio & Panzani (2001) also found a strong correlation 

between phytoplankton total bio-volume and chl-a concentrations over a 13-yr period in 

Lake Orta, Italy. 

Analysis of costs and time consumed should be taken into consideration when 

evaluating a method to determine natural productivity in ponds. Associations between 

chlorophyll levels and nutrients are not currently available for shrimp ponds; however, it 

is expected that a positive correlation exists (McIntosh et al. 2006). Factors such as 

fertilization rates, day length and other physiochemical variables and many others are 

directly related to both chl-a level and community structure. Nutrient availability, 

biochemical oxygen demand, temperature, salinity and dissolved oxygen all play 

significant roles in explaining the variation observed in both algal community structure 

and abundance (Tookwinas & Songsangjinda 1999). Transparency measurement is 

routinely used as an approach to measure phytoplankton in commercial ponds. In the 

present study, Secchi disc depth and microalgae cell count were useful approaches for 

explaining the observed variation in chlorophyll levels in the reservoir tanks. Some 

authors suggest that Secchi depth should only be used as a simple visual index of the 

clarity of a body of water (Carlson & Simpson 1996). Others have found strong 

relationships between Secchi depth, chl-a, and total phosphorus concentrations, 
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suggesting the use of Secchi depth as a surrogate measure of algal chlorophyll or algal 

blooms (Carlson 1977). Phytoplankton community changes in shrimp ponds should be 

an additional tool to help manage shrimp ponds. Paying careful attention and 

establishing research focused on the influence of physical and chemical variables that 

are strongly related to phytoplankton community structures could provide aquaculturists 

the knowledge to better understand and best manage their ponds to optimize beneficial 

algal species and avoid problematic species. 

Shrimp farms operate in all hemispheres and thus are situated in different 

environments and operate under different water quality, culture systems and fertilization 

programs. Thus, determination of the relationship between the microalgae community 

and chlorophyll levels in combination with Secchi depth and nutrient inputs could be a 

useful practice to establish a baseline of data. From this database, trends could be 

assessed to potentially enable early detection of any significant variation in the status of 

the ponds when relating the contribution of microalgae to the nutritional balance of 

shrimp in comparison with supplemented feed. 

In summary a predominance of 76.3% Cyanobacteria (54% Oscillatoria) was 

observed for most of the nine months in all 12 semi-closed intensive shrimp ponds.  

However, with an adequate fertilization program in the reservoir tank, 60.7% Diatoms 

(52.7% Chaetoceros sp.) and 22.8% Cyanobacteria (22.6% Oscillatoria sp.) 

predominated. In the reservoir tank, total chlorophyll followed the pattern of cell count 

and Secchi depth independent of the type of predominant microalgae. 
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Conclusion 

In conclusion, the microalgae composition was manipulated with a fertilization regimen 

in the reservoir tank to be different than that in the commercial shrimp ponds. Secchi 

depth and microalgae cell count are closely related to chlorophyll levels in a control 

environment and could be used as a reliable measurement to study the dynamics of the 

water column. Experimental results from a controlled environment should be compared 

to commercial scale systems, in order to determine the specific management of the 

fertilization program that will enhance diatom proliferation. 
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CHAPTER III 

DIETARY EFFECT OF SQUID AND FISH MEAL ON GROWTH AND SURVIVAL 

OF PACIFIC WHITE SHRIMP LITOPENAEUS VANNAMEI IN THE PRESENCE OR 

ABSENCE OF PHYTOPLANKTON IN AN INDOOR TANK SYSTEM 

 

Introduction 

Global shrimp culture commonly experiences variations in price of feed ingredients 

(Coutteau, Ceulemans, Meeuws, Van Halteren, Robles & Nur 2008), largely due to 

demand and availability. The physical and nutritional quality of prepared feeds and 

efficacy of feed management are important because supplemental feeds can represent 20 

- 50% of variable production costs, depending on the intensity of the culture system 

(Akiyama, Dominy & Lawrence 1992; Lawrence & Houston 1993; Tacon & Barg 

1998). Thus, development of more cost-effective feeds with improved management is 

required for further development of the shrimp farming industry. 

Natural productivity plays an important role in shrimp nutrition and needs to be 

considered when formulating shrimp feeds (Leber & Pruder 1988; Moss & Pruder 1995; 

Otoshi et al. 2001; Michele et al. 2004). Juvenile shrimp reared in organically rich, 

hyper-eutrophic water and fed two commercial diets, grew 50 - 73% faster than shrimp 

fed an identical diet but maintained in well water devoid of natural productivity (Leber 

& Pruder 1988). Growth enhancement has been attributed to the assimilation by shrimp 

of microalgae and microbial-detrital aggregates present in pond water (Moss & Pruder 

1995). Moss, Pruder, Leber & Wyban (1992) showed that water from traditional shrimp 
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production ponds containing high levels of organic matter (i.e., microalgae) increased 

the growth of cultured shrimp by as much as 53%. The greater white shrimp growth in 

the presence of biofloc including microalgae versus clear water has also been previously 

evaluated (Tacon et al. 2002; Burford, Thompson, McIntosh, Bauman & Pearson 2004; 

Cuzon, Lawrence, Gaxiola, Rosas & Guillaume 2004; Moss, Forster & Tacon 2006; 

Wasieleski, Atwood, Stokes & Browdy 2006). However, no one has previously reported 

that the level of marine animal meals can be reduced in shrimp diets in the presence of 

microalgae. 

The most common marine animal meals in shrimp feeds are fish meal, squid 

meal and krill meal (Lim & Dominy 1990; Akiyama & Dominy 1991; Tacon 1993; 

Tacon & Barg 1998). However, all three of these ingredients are natural supply-limited 

aquatic resources and thus relatively high priced. Efforts should be made to determine 

the best relative levels of these critical sources of protein in shrimp diets using feed 

performance and cost, especially considering availability of intrinsic sources of nutrition 

such as phytoplankton. Forster, Dominy, Lawrence, Castille & Patnaik (2010) evaluated 

growth and survival of Litopenaeus vannamei in a 35-day growth trial with 25 different 

combinations of squid, krill and fish meal in an indoor recirculating system in the 

relative absence of natural productivity. Growth of shrimp was greater when fed diets 

containing 11.6% fish and 22.9% squid meals as compared to a combination of 5.8, 9.7, 

11.6, 14.5, 17.4, 13.5% of fish meal with 7.6, 11.4, 15.2, 19.1, and 22.9% of squid meal. 

These combinations, in the presence of and absence of krill meal resulted in similar 

growth, indicating that krill meal was not required with those levels of fish and squid in 
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a clear-water system. The growth response to different dietary levels of fish and squid 

meal in the presence of phytoplankton was not evaluated. In order to optimize diets for 

shrimp in green-water systems, it is critical to evaluate the potential of microalgae to 

reduce fish and squid meal inclusion levels in commercial feeds for L. vannamei. The 

objectives of the present study were: 1) to determine the effect of fish and squid feed 

levels in the presence and absence of microalgae on growth performance and survival of 

juvenile L. vannamei; and (2) to evaluate whether the presence of microalgae in the 

shrimp culture environment has the potential to reduce inclusion levels of squid and fish 

meals in commercial feeds. 

Materials and Methods 

This study was conducted in a greenhouse at the Alicorp Aquarium System (AAS), 

located at a shrimp farm in Tumbes, on the north Pacific coast of Peru. Specific-

pathogen-resistant (SPR) L. vannamei postlarvae in their fourteenth day of development 

after metamorphosis (PL14), were obtained from the Lobo Marino N°1 Laboratory 

(Salinas, Ecuador) and maintained in a greenhouse nursery system for 24 days prior to 

use. The nursery system was a high density polyethylene (HDPE)-lined, sediment-free 

wooden tank system (28 m3 volume). Aeration was provided by regenerative blower. 

The PL14 (0.02 g, 2% CV) were stocked at a density of 65 per m2 and manually fed 20 g 

of a commercial 40% crude protein (CP) crumble of 0.3 - 0.8-mm diameter (Nicovita® 

PC-1 40% crude protein; Alicorp, Lima, Peru) three times daily at 6:00, 12:00, and 

18:00 h. Newly-hatched live Artemia sp. nauplii were also fed daily (50 nauplii per PL 

day-1) for 2 weeks. For the next 10 days, only a commercial 40% CP crumble of 0.8 - 1.5 
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mm diameter (Nicovita® KR-1 40% crude protein; Alicorp, Lima, Peru) was fed at a rate 

of 45 g three times (6:00, 12:00 and 18:00 h) daily until harvest. This conditioning 

period allowed for acclimation to laboratory conditions (temperature 30.8oC ± 1.07 SD 

and salinity 18.1 g L-1 ± 0.4 SD) and achievement of sufficient body weight for initiation 

of the experimental trial. Juveniles used in the trial were netted and transferred to the 

experimental units and allowed to acclimate for 1 week to a commercial 35% CP diet of 

2 x 2 mm (length x diameter) (Nicovita® Alicorp, Lima, Peru - Bag Tag: min 35% 

protein, min 5% fat, max 12% moisture, max 4% fiber and max 12% ash) prior to 

starting the trial. The shrimp were netted and individually weighed to determine the 

initial weight before the 8-week trial. 

The experimental system consisted of 36 indoor rectangular fiberglass aquaria 

(40 L volume; 0.1-m2 bottom surface area) connected to either of two water supply 

systems:  1) a 2,680-L semi-closed recirculating system, consisting of a sump tank, three 

mechanical 200-, 75- and 5-µ filters, a biosphere biological filter and UV sterilizer and 

2) an open system consisting of four, 28-m3 wooden PVC-lined reservoir tanks. The 

water supply, which was also used for the shrimp farm ponds, was pumped from the “El 

Venado” estuary, through a 280-µ filter bag into four, 28-m3 wooden PVC-lined 

reservoir tanks. The stock water was chlorinated to minimize the introduction of 

pathogens from wild vectors, and kill plankton and benthos. A dose previously proven 

effective of 10 mg L-1 of calcium hypochlorite solution (65% active ingredient) was used 

to provide a free chlorine residual concentration of 4 mg L-1 30 min post-application 

with a targeted residual chlorine level of 1 mg L-1 after 24 h (analysis HACH-DR 2800, 
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Colorado, USA). After 72 h of aeration, the chlorine concentration of the water was 

reduced to < 0.05 mg L-1 and was used to fill 18 aquaria of the semi-closed recirculating 

system, referred to hereafter as the CLEAR water system. Two of the four chlorinated 

reservoir tanks were maintained in bloom with microalgae through a continuous 

fertilization program. The water was not seeded with microalgae. It bloomed from 

natural air spores in the reservoir water, as typically occurs in commercial lined ponds. 

Natural light source was used to maintain the algae. The water was fertilized with N:P 

and N:Si ratios of 15:1 and 1:1.25, respectively. Inorganic fertilization was applied at 

mid-day (12:00 ± 2 h) with NUTRILAKE® (15% nitrogen), Triple Super Phosphate 

(20% phosphorus) and NUTRICIL® (23% silicate). Thirty (30) g of ground 35% crude 

protein commercial feed (5.6% nitrogen, 0.85% phosphorus) and 30 g of commercial 

organic fertilizer (2.1% nitrogen, 0.65% phosphorus) were also added daily, as sources 

of carbon, nitrogen and phosphorus. After day 7, no NUTRILAKE® and Triple Super 

Phosphate were added. The source of metasilicate, NUTRICIL®, was maintained at a 

rate of 140 g day-1 (the equivalent of 50 kg ha-1 day-1) throughout the trial. Ground 

commercial diet (Nicovita® 35% CP, Alicorp, Lima, Peru) and a commercial organic 

fertilizer (Nicovita® FB 12% CP, Alicorp, Lima, Peru) were maintained at the same rate 

of 30 g day-1 throughout the trial. This water was used to fill another 18 aquaria and was 

labeled the GREEN water system. The CLEAR water system had a 21% new water 

exchange rate (1.1-L shrimp-1 day-1 - incoming chlorinated water that passed through 20- 

and 5-µ filters) and a recirculating rate of 0.95 L min-1 tank-1, (3409% exchange tank-1 
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day-1). The GREEN water system was exchanged 20% (1.0-L shrimp-1 day-1) daily for 6 

days per week and 50% (2.5-L shrimp-1 day-1) on the seventh day of the week. 

Eight (equivalent to 80 shrimp m-2) L. vannamei, very similar in size, were 

stocked in each aquarium. The mean weight per aquarium, weighed as a group, varied 

from 1.56 g to 2.56 g, with no significant differences among treatments (P = 0.964). 

Aeration was provided to each aquarium by one 2.5 x 2.5 x 5 cm air stone connected to a 

0.5-hp air blower to maintain oxygen at a minimum of 6 mg L-1. A light:dark 

photoperiod of 12:12 h was provided by supplemental compact fluorescent lighting. The 

distance between the white fluorescent lights (36 W) and the water in the aquarium 

system was 1.60 m. 

Six experimental isonitrogenous (35% crude protein) and isocaloric (17.5 kJ g-1) 

diets were formulated to contain one of three levels of squid meal (SM - 5%, 10% or 

20%) combined with one of two levels of fish meal (FM - 6.5% or 12%) (Table 3.1 – 

The diets will be referred to hereafter as 5S6.5F; 5S12F; 10S6.5F; 10S12F; 20S6.5F; 

20S12F with S and F representing squid and fish meals, respectively). De-hulled and de-

fatted soybean meal was added to maintain equal protein and energy levels in 

experimental diets. At the Nicovita® pilot feed mill plant (NPP, Lima, Peru), all 

ingredients were finely ground at 250 ± 100 µ, mixed, steam conditioned, pelletized 

(compacted and cut), dried and cooled in order to obtain a fast sinking and water stable 2 

x 2 mm pellet. Proximate analyses and pepsin digestibility (AOAC 971.09, 2005) were 

determined on each experimental diet. Diets where placed in labeled plastic containers 

and placed into a refrigerator at 4°C prior to feeding. 
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The biochemical composition of the diets was determined as follows: crude 

protein (DUMAS method; ISO 16634-1:2008; protein combustion analyzer LECO 

TruSpec®TRSCNC; Mugford 2000); crude fat (AOAC 920.39 C, 2005 Ether Extract); 

crude fiber (AOCS Ba 6-84, 1998); ash (AOAC 942.05, 2005); moisture (NTP-ISO 

6469, 2002); nitrogen-free extract (100 – (Crude Protein + Crude Fiber + Ether Extract + 

Ash)); gross energy (Parr 6200 Oxygen Bomb Calorimeter, Parr, Moline IL, USA); 

amino acid concentrations (AOAC, 2000, No. 988.15); and phospholipids (AOCS Ca 12 

- 55 2003 - Phosphorus). Prior to HPLC (high pressure liquid chromatography) analysis 

of amino acid concentration, duplicate feed samples (100 mg) were hydrolyzed in 

vacuum with 5 ml of HCl 6N for 22 h at 112 °C. 

The feeding trial was conducted by feeding each experimental diet in triplicate 

over a period of 56 days using a randomized block design. Automated feeders were used 

to feed shrimp five times daily (08:00, 11:00, 14:00, 17:00 and 20:00 h) with equal 

rations at each feeding. The feed from the automatic feeder fell only in a specially 

designed 10-cm diameter plastic feed tray, which allowed daily removal and weighing of 

uneaten feed. Feces and molts were also removed daily. Feeding rates were based on a 

feed table beginning at 0.13 g feed shrimp-1 day-1 and gradually increased to a maximum 

of 0.42 g shrimp-1 day-1. Feeding rate was always above satiation for all treatments. Feed 

rations were adjusted on a weekly basis, according to a projected weight gain of 2 g 

shrimp-1 week-1 and survival. 
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Table 3.1 Feed ingredients included in diets used in growth experiments. Values represent percent of 

total diet (Calculated on an as-fed basis) 

Feed Ingredient     Diet designation    

   5S6.5F        5S12F       10S6.5F       10S12F       20S6.5F 20S12F 

Squid Meal1    5         5  10       10  20      20 

Fish Meal1    6.5       12    6.5       12  6.5      12 

Soybean Meal1  39.77       34.31 34.78       29.54 20.04      12.48 

Wheat1   33.7       33.7  33.7       33.5  38.5      40.6 

Lecithin1    4         4    4         4    4        4 

Fish oil1     2         2    2         2    2        2 

Crustacean Meal2   2         2    2         2    2        2 

Brewers Yeast9    2.7         2.7    2.7         2.7    2.7        2.7 

Marine Salt8    1.5         1.5    1.5         1.5    1.5        1.5 

Calcium Carbonate8   0.5         0.5    0.5         0.5    0.5        0.5 

Potassium phosphate db8    0.5         0.5    0.5         0.5    0.5        0.5 

Potassium Chloride8    0.75         0.75   0.75         0.75   0.75        0.75 

Magnesium Oxide8    0.35         0.35   0.35         0.35   0.35        0.35 

DL-Methionine3     0.18         0.14   0.17         0.11   0.11        0.07 

Cholesterol4     0.2         0.2    0.2         0.2    0.2        0.2 

Vitamin Premix5     0.2         0.2    0.2         0.2    0.2        0.2 

Mineral Premix6     0.1         0.1    0.1         0.1    0.1        0.1 

Stay C 35%7     0.05         0.05   0.05         0.05   0.05        0.05 

1Alicorp, Lima, PE: Peruvian giant squid muscle meal (Dosidiscus gigas), Peruvian fish meal 
(Engraulis ringens) and fish oil (Engraulis ringens), Dehulled and defatted soybean meal, liquid 
lecithin and hard red winter wheat. 
2 
Cervimunida johni - BAHIA SpA, Santiago, Chile 

3Sigma Chemical Company, Cleveland, Ohio, USA 

4Dishman, Utrecht, The Netherlands 
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Table 3.1 Continued 
5DSM Vitamin premix: Vit. A 10000 IU g-1; B1 30 mg kg-1; B2 15 mg kg-1; DL Ca panthotenate 50 
mg kg-1; B6 35 mg kg-1; B12 40 mcg kg-1; Ascorbic acid 150; mg  kg-1, K3 3 mg kg-1; D 33500 IU g-

1; E 150 IU g-1; niacin 100 mg kg-1; folic acid 4 mg kg-1; biotin 1000 mcg kg-1 
6DSM Mineral premix: Mn, 40 mg kg-1; Zn, 40 mg kg-1; Cu, 25 mg kg-1; Fe, 100 mg kg-1; Se, 0.3 mg 
kg-1; I, 0.35 mg kg-1 
7DSM, Lima, Peru 
8ICN Biomedicals, Inc. Aurora, OH, USA 
9Inactive Saccharomyces cerevisiae - ICC, Sao Paulo, Brazil 
 

 

With the exception of salinity (g L-1) that was measured during the afternoon, 

water temperature (°C), dissolved oxygen (mg L-1), and pH were monitored twice daily 

(6:00 and 18:00 ± 0.5 hours) in the experimental aquaria and sump tank. Total ammonia 

nitrogen (TAN), nitrite nitrogen (NO2-N) and alkalinity were monitored weekly in 24 

experimental aquaria and the sump tank. The 24 aquaria were randomly chosen every 

week. Species identification of microalgae and cell density (cell mL-1) were determined 

twice weekly and chlorophyll (mg m-3) analysis was performed weekly in the GREEN 

water aquaria. Samples were collected at 12:00 hours using 500-mL plastic bottles. 

Subsamples (~150-mL) were preserved by adding 2 mL of Lugol’s solution (Throndsen 

1978). Cells were allowed to settle for 10 hours and subsequently processed for 

taxonomic and cell count analysis using an improved Neubauer hemocytometer at 600x 

magnification. Methodology for cell counts followed that of Venrick (1978). Malca's 

(1997) manual was used to separate microalgae into taxonomic divisions. Total 

chlorophyll was measured according to Strickland and Parsons (1972). 

Crude protein (nitrogen x 6.25), essential amino acids, crude fat, ash, gross 

energy and moisture of phytoplankton samples were also determined. These samples 
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were collected once weekly, filtering approximately 180 L of the system incoming water 

containing primary productivity, with a set of 100-, 75- and 5-µ mesh filters for 2 

minutes, then storing samples in a freezer (-12 to -18°C). The frozen samples were 

freeze-dried at -50°C for 48 h for reduction of moisture to less than 10%. Eight freeze-

dried samples were combined and analyzed as two composite samples in order to verify 

accuracy of results. 

Nutritional responses of the shrimp to the experimental diets were evaluated 

using the following indicators: (1) total weight gain (final mean wet weight – initial 

mean wet weight); (2) survival (final number of animals / initial number of animals) x 

100; and (3) FCR - feed conversion ratio (total feed intake in dry weight basis / total 

gained biomass). The microalgae percent contribution to shrimp growth for each 

treatment also was estimated by comparing the shrimp weight gain in the GREEN versus 

CLEAR water systems ((GREEN mean wet weight gain - CLEAR mean wet weight 

gain) / CLEAR mean wet weight gain)*100. 

A 2 x 3 x 2 factorial analysis of variance (ANOVA) was used to determine 

significant differences and their interaction among treatments (two fish meal levels, 

three squid meal levels and two microalgae levels) on weight gain and survival of 

shrimp. Survival was transformed by arcsine square root before being submitted to 

statistical analyses, to comply with the assumption of data being normally distributed. 

The normality was tested with “Kolmogorov-Smirnov”. When significant ( = 0.05) F 

values were obtained, differences among treatments were determined with Fisher’s least 
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significant difference (LSD) multiple range test. The data were analyzed using the SPSS 

statistical software version 16 for Windows (SPSS Inc., Chicago, Illinois, USA). 

Results 

Proximate composition of the experimental diets (Table 3.2) varied slightly from the 

formulated values for crude protein and gross energy although they were constant in all 

diets. The desired levels of lipid, ash and fiber were achieved. Amino acid composition 

of the diets (Table 3.3) was also relatively constant. 

There were no significant differences in treatments with respect to water quality 

indicators within each water system, with the exception of nitrite and alkalinity (P<0.001 

- Table 3.4). 

The level of phytoplankton in the CLEAR water system was negligible 

throughout the feeding trial and contrasted with that of the GREEN water system. Mean 

cell counts of microalgae among aquaria were not significantly different (ANOVA: 

P>0.05) in the GREEN water system (Fig. 3.1). Cyanobacteria were the predominant 

microalgae division, followed by Pyrrophytes, Diatoms and Chlorophytes (Table 3.5). 

Phytoplankton cell counts among dietary treatments were not significantly different 

(ANOVA: P>0.05) and had similar distribution patterns based on the average values of 

each aquaria in the GREEN water system (Fig. 3.2). The proximate and amino acid 

composition of composite microalgae samples were rather similar (Table 3.6). 
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Factorial ANOVA indicated that weight gain of shrimp in the GREEN water 

system was significantly higher and that FCR was significantly lower (Table 3.7). 

However, survival was not significantly different among dietary treatments and water 

systems. In all cases the interaction between the three factors (Fish meal, Squid meal and 

productivity) was not statistically significant (Table 3.7). No statistical differences in 

weight gain and FCR were evidenced in shrimp fed diets containing the various 

combinations of fish meal and squid meal, cultured in the CLEAR (with no 

phytoplankton) and GREEN water system (Table 7). Survival of shrimp among all water 

systems was not significantly different. Shrimp FCR values for those in the GREEN 

water system was significantly lower (ANOVA: P<0.001) among dietary treatments. 

The percent contribution of phytoplankton to weight gain of shrimp were 35% (5S6.5F), 

47% (5S12F), 52% (10S6.5F), 28% (10S12F), 57% (20S6.5F) and 36% (20S12F). 
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Table 3.2 Nutrient composition of the experimental diets (values expressed on dry-matter basis in % 

unless otherwise stated)a 

Component     Diet designation 

   5S6.5F        5S12F       10S6.5F       10S12F       20S6.5F 20S12F 

Crude Protein    39.7      40.0  40.8      39.6  42.3 43.0 

Crude Fat     9.4        9.4    9.7        9.2    9.8   9.4 

Ash    10.1        7.8  10.5      10.1  10.0   8.0 

Crude Fiber     2.0        2.3    1.9        2.0    2.1   2.2 

bNFE    38.8      40.5  37.1      39.1  35.8 37.4 

Gross Energy (kJ g-1)  18.2      18.5  18.2      18.3  18.1 18.7 

Phospholipids      3.7        3.4    3.4        3.8    3.9   3.8 

cDigestibility   94.3       93.1  93.2      94.0  93.7 93.8 

aValues represent averages of duplicate samples 
bNitrogen-free extract 
cPepsin 
 

 

Table 3.3 Amino acid composition (% of total) and essential amino acid index of experimental dietsa 

(dry-matter basis) 

Amino acids     Diet designation 

             5S12F 5S6.5F    10S12F       10S6.5F 20S12F           20S6.5F 

Non essential amino acids  

Aspartate + Asparagine  4.1    4.3        4.2  4.1    4.1  4.2 

Serine    1.8    1.9        1.9  1.8    1.8  1.9 

Glutamate+Glutamine  6.9    7.3        7.1  6.9    6.9  7.1 

Glycine    2.1    2.0        2.2  2.1    2.5  2.5 

Alanine    1.9    1.9        2.1  1.9    2.2  2.2 
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Table 3.3 Continued 

Amino acids     Diet designation  

               5S12F 5S6.5F     10S12F      10S6.5F 20S12F          20S6.5F 

Proline      2.2   2.3        2.3    2.2    2.3  2.4 

Tyrosine     1.2   1.2        1.1    1.3    1.2  1.2 

Total NEAA   20.1 20.9      20.8  20.3  21.0  21.6 

Essential amino acids  

Histidine     1.2    1.3         1.3    1.2    1.3  1.3 

Arginine     3.0    3.0         3.1    3.0    3.3  3.4 

Threonine     1.6    1.7         1.7    1.6    1.8  1.9 

Valine      1.9    2.0         2.0    1.9    2.1  2.1 

Methionine     0.8    0.9         0.9    0.9    1.1  1.1 

Methionine+cysteine    1.4    1.5         1.7    1.6    1.9  2.0 

Lysine      2.5    2.5         2.6    2.5    2.7  2.7 

Isoleucine     1.8    1.9         1.9    1.8    2.1  2.1 

Leucine      2.8    3.0         3.0    2.9    3.2  3.3 

Phenylalanine     1.8    1.9         1.9    1.8    1.9  2.0 

Total EAA   18.0 18.8       19.2  18.2  20.1  20.6 

Total AA   38.1 39.7       40.0  38.6  41.1  42.2 

EAA/Total AA (%)  52.8 52.7       52.2  52.7  51.1  51.1 

a Values represent averages of duplicate samples
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Table 3.4 Water-quality values from the GREEN water system (GWS) and the CLEAR water system 

(CWS) during the feeding trial 

Parameter   GWS   CWS   P 

Temperature (°C)  30.4 ± 1.07a  30.4 ± 0.98a  0.11 

Salinity (g L-1)   25.5 ± 0.94a  25.5 ± 0.98a  0.827 

pH     7.8 ± 0.13a   7.8 ± 0.14a  0.43 

Dissolved Oxygen (mg L-1)  6.0 ± 0.22a   6.0 ± 0.21a  0.228 

Chlorophyll (ug L-1)  12.1 ± 6.8 

TAN (mg L-1)   0.017 ± 0.01a  0.016 ± 0.01a  0.69 

NO2-N (mg L-1)   9.4 ± 5.96a  0.5 ± 0.23b  <0.001 

Alkalinity (mg L-1)  100.4 ± 13.45a  93.0 ± 11.95b  <0.001 

Values are means ± standard deviation of daily and weekly determinations over the 8-week trial. 
n = 2016 for temperature, pH and DO; 1008 for salinity; 96 for ammonia, nitrite and alkalinity; 126 
for chlorophyll. 
Means within rows with the same letter are not significantly different (LSD  =0.05). 
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Figure 3.1 Microalgae mean cell count by divisions among aquaria (n=16: 2 samples, 8 weeks) in the GREEN water system. 
There were no significant differences among aquaria (ANOVA: P > 0.05). 
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Table 3.5 Percent count (cell ml-1) of each microalga genera identified in the GREEN water system 

Division  Genus     Frequency 

           (%) 

Diatoms   Chaetoceros      27.3 

Navicula      20.9 

Nitzchia       18.8 

Cymbella      21.9 

Thalassiosira       6.0 

Gyrosigma       3.6 

Amphiprora       1.0 

Amphipleura       0.5 

% Total Division      7.0 

Cyanobacteria  Oscillatoria    100.0 

% Total Division     79.6 

Pyrrophytes  Phacus       70.9 

Glenodinium      29.1 

% Total Division       8.1 

Chlorophyts  Chlamydomonas      96.2 

Oocysts        3.8 

  % Total Division      5.4 
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Figure 3.2 Microalgae mean cell count by divisions among dietary treatments (n=48: 2 samples, 8 weeks, 3 replicates) in the 
GREEN water system. There were no significant differences among treatments (ANOVA: P > 0.05). 
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Table 3.6 Protein, dry matter, lipids, ash, energy and essential amino acid of the microalgae used in 

the experiment (eight samples pooled into two composites – dry-matter basis) 

Analyte      Composite 

       1     2 

Dry matter (%)       5.8     6.2 

Crude protein (%)   15.3   14.9 

Crude Fat (%)      0.3     0.4 

Ash (%)     45.6   45.9 

Gross Energy (kJ g-1)     7.5     7.7 

Essential amino acids (% of dry matter) 

Histidine    0.18   0.18 

Arginine    0.72   0.71 

Threonine    0.67   0.68 

Valine     0.78   0.77 

Methionine    0.26   0.25 

Methionine + cysteine   0.39   0.37 

Lysine     0.62   0.61 

Isoleucine    0.61   0.60 

Leucine     0.93   0.92 

Phenylalanine    0.64   0.63 
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Table 3.7 Growth, survival and feed conversion ratio (FCR) of L. vannamei fed diets with graded 

combinations of fish (FM) and squid meals (SM) in CLEAR and GREEN water systems. All values 

represent population means (n = 3 for all measurements) 

SM FM Water  Initial  Weight  Survival  FCR 

   level (%) system  weight (g) gain (g)  % 

5 6.5 GREEN  2.2  12.3a  96  1.74a 

5 12 GREEN  2.0  12.5a  83  1.98a 

10 6.5 GREEN  1.8  12.2a  96  1.82a 

10 12 GREEN  1.9  11.9a  92  1.96a 

20 6.5 GREEN  2.0  12.9a  96  1.68a 

20 12 GREEN  1.9  12.7a  100  1.66a 

5 6.5 CLEAR  1.8  8.2b  100  2.32b 

5 12 CLEAR  1.8  8.5b  96  2.54b 

10 6.5 CLEAR  1.8  8.0b  83  2.77b 

10 12 CLEAR  1.9  9.3b  92  2.45b 

20 6.5 CLEAR  1.8  8.3b  92  2.59b 

20 12 CLEAR  1.8  9.3b  84  2.92b 

PSEc    0.063  0.75  0.21  0.43 

ANOVA: P-values 

Fish meal     0.254  0.265  0.369 

Squid meal     0.473  0.908  0.695 

Water System     <0.001  0.463  <0.001 

Fish meal x squid meal x water system  0.632  0.224  0.307 

Water system: level of microalgae in aquaria. 
c Pooled standard error of treatment means = square root (MSE/n). 
Means within columns with the same letter are not significantly different (LSD  = 0.05). 
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Discussion 

Mean NO2-N for aquaria in the CLEAR water system were lower compared to those in 

the GREEN water system, probably due to the nitrifying bacteria present in the bio-filter 

of the clear recirculation water system. Alkalinity was slightly lower in the CLEAR 

water system, probably due to a reduction of calcium carbonate (CaCO3) levels, caused 

by a relatively low new water exchange rate in the recirculation system. Despite the 

differences in nitrite and alkalinity levels among the water systems, all water quality 

factors were within acceptable ranges for survival and growth of L. vannamei (Wickins 

1976; Van Wyk, Davis-Hodgkins, Laramore, Main, Mountain & Scarpa 1999; Lin & 

Chen 2003; Sowers, Young, Shawn, Isely, Jeffery, Browdy & Tomasso 2004; Handy, 

Samocha, Patnaik, Gandy & McKee 2004; Cohen, Samocha, Fox, Gandy & Lawrence 

2005; Mishra, Samocha, Patnaik, Speed, Gandy & Abdul-Mehdi 2008) throughout the 

duration of the 8-week experiment. 

In the present study, no diet-related differences in weight gain and FCR were 

observed in the CLEAR and in the GREEN water system. Forster et al. (2010) observed 

that the optimum dietary combination of marine animal meals in diets for L. vannamei in 

indoor, clear water tanks was 11.6% fish meal and 22.9% squid meal. Even though 

results from this study and the present one are not comparable due to differences in 

shrimp strain, initial weight, growth rate, water source, diet ingredients and conditions of 

the trial, trends concerning the levels of fish and squid meal inclusion in diets for L. 

vannamei were observed. Taking into consideration the assemblage of phytoplankton 

characterized under the experimental conditions of the present study, the most cost-
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effective combination of ingredients was the diet containing 6.5% fish meal and 5% 

squid meal, suggesting that fish and squid meal levels in commercial feeds for L. 

vannamei can possibly be reduced in the presence of microalgae in the culture water. 

The estimation of percent contribution of phytoplankton to weight gain of shrimp 

in this study ranged from 28 to 57% for L. vannamei stocked at 80 m-2. Lawrence and 

Houston (1993) estimated 77 to 83% percent contribution of natural productivity versus 

prepared diets to weight gain of shrimp in pens and in earthen ponds stocked at 15 m-2 

and 20 m-2, respectively. Anderson, Parker & Lawrence (1987) and Parker, Anderson & 

Lawrence (1989) using a stable carbon isotope tracer technique obtained similar 

estimates of percent contribution of natural productivity for assimilation of organic 

carbon by L. vannamei at similar stocking densities (20 m-2) with values ranging from 53 

to 77% and 44 to 86% compared to prepared feed. Even though there were not 

significant differences in the reported percentage contribution between the two studies, 

the variation in ranges could have been due to the different tracers used and variations in 

the characteristics of the pond biota as they were conducted in different years. Moss et 

al. (1992) evaluated weight gain of L. vannamei in 40 m2 tanks provided with selected 

solid fractions of pond water with biofloc. Their study estimated contributions of 53% 

for particles between 0.5 and 5 µ and an additional 36% for particles > 5 µ, resulting in a 

total contribution of 89%. Wasieleski et al. (2006) detected significant differences in 

growth and survival of juvenile L. vannamei fed two levels of protein (35% and 25%) 

and reared for 20 days (stocking weight of 1.82 ± 0.71 g) in 50-L plastic bins at a density 

of 300 m-2 within a raceway with and without natural productivity (zero- exchange 
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system with suspended microbial floc). Conceptually, as the stocking density and harvest 

biomass increase in an earthen pond, the percent contribution of natural productivity to 

the nutritional requirements of shrimp would decrease if all other factors did not change 

(Lawrence & Houston 1993). Further, using higher stocking densities in an aquarium 

with no soil, as in the present study, the contribution of the four divisions of microalgae 

for L. vannamei growth, would probably be relatively less. Thus, the relative 

contribution of natural productivity obtained in the present study indicates that the 

method can be used for estimating the contribution of microalgae to the weight gain of 

shrimp in aquaria systems. 

As none of the analyzed nutrients were limiting in any of the diets, differences in 

growth within diets cannot be attributed to any of the analyzed microalgae nutrients. The 

greater weight gain in the presence of primary productivity was possibly due to either 1) 

the phytoplankton contribution to a specific but unknown nutrient(s) in the shrimp diet, 

2) unknown growth factors or 3) by affecting some water quality or other system factor. 

Further studies are recommended in order to better understand the specific nutrient(s) 

that may contribute to the better growth of shrimp in the presence of microalgae. 

The significant weight gain exhibited by shrimp fed the different dietary 

treatments in the GREEN water system could also have been related to the greater 

digestion of unknown microalgae nutrients through the stimulation of the digestive 

enzymatic system of the shrimp when exposed to a microalgal environment. Moss, 

Divakaran & Kim (2001) compared the digestive enzyme activity of L. vannamei (mean 

weight = 0.07 g, SD = 0.004 g) reared at 40 m-2 in well and pond water plastic tanks for 
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35 days and fed a commercial 45%-protein feed. These authors observed that specific 

activities of serine protease, collagenase, amylase, cellulase, lipase and acid phosphatase 

in the shrimp digestive gland were more than two times higher in pond water than in 

well water and that shrimp reared in pond water had significantly greater growth (4.9 g) 

compared to well water (0.97 g). Divakaran & Moss (2004) investigated whether there 

was any difference in the specific activity of laminarinase between shrimp grown in an 

indoor clear water system and an outdoor zero-water exchange shrimp culture system. 

Specific activity of laminarinase was nearly seven times higher in shrimp grown in the 

outdoor zero-water exchange system, compared to shrimp grown in the indoor clear 

water system, thereby indicating the possibility of substrate specificity and enhanced 

enzyme production. If, as this study suggests, laminarinase is present in the digestive 

gland of shrimp reared in the presence of microalgae, this enzyme may serve an 

important role in the digestion of microalgae nutrient(s) and other sources of beta-1,3-

linked glucans present in shrimp pond water. 

The data obtained in the present study suggest that the squid and fish meal levels 

in commercial feeds for L. vannamei can be reduced. Further, microalgae present in the 

culture system significantly improved weight gain and FCR of shrimp, thus potentially 

reducing the feed cost associated with shrimp production. 
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CHAPTER IV 

DIETARY EFFECT OF FISH OIL AND SOYBEAN LECITHIN ON GROWTH AND 

SURVIVAL OF JUVENILE LITOPENAEUS VANNAMEI IN THE PRESENCE OR 

ABSENCE OF PHYTOPLANKTON IN AN INDOOR SYSTEM 

 

Introduction 

In the last 10 years the world fish oil annual production remained relatively steady 

varying annually from 0.85 to 1.4 million metric tons (Bimbo 2011). In contrast, 

aquaculture production has increased by 340% in the last 20 years, placing a fish oil 

demand as an ingredient in fish and shrimp feeds of 85 percent (FAO 2010). Thus, 

inclusion levels of fish oil in shrimp diets must be reduced to allow for sustainable 

industry growth (Naylor et al. 2009). 

Some fatty acids and other lipid classes like phospholipids, sterols and 

carotenoids are essential dietary components for crustaceans (NRC 2011). In the case of 

marine organisms, polyunsaturated fatty acids (PUFAs) and especially highly 

unsaturated fatty acids (HUFAs) are essential to provide pre-formed in the diet 

(Kanazawa, Teshima & Tokiwa 1977; Kanazawa, Tokiwa, Kayama & Hirata 1977; 

Kanazawa, Teshima, Endo & Kayama 1978; Kanazawa, Teshima & Tokiwa 1979; 

Kanazawa, Teshima & Ono 1979; Kanazawa, Teshima, Tokiwa, Kayama & Hirata 1979; 

Kanazawa, Teshima & Endo 1979). Past nutritional studies with various crustaceans 

indicate that the best survival and weight gain responses are achieved when the dietary 

lipid level is between 5 and 8% (D’Abramo 1997). Deshimaru, Kuroki & Yone (1979) 
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found that 6% of a mixture of Pollock (Pollachius vivens) liver oil and soybean oil 

provided in a ratio between 3:1 and 1:1 was associated with comparatively higher 

growth and feed efficiency values for P. japonicus. Lim, Ako, Brown & Hahn (1997) 

reported that menhaden oil, rich in n-3 HUFAs, was the most nutritious source of lipid 

for L. vannamei, and among plant oils, those rich in linolenic (18:3n-3) had a higher 

nutritional value than those rich in linoleic (18:2n-6). Gonzales-Felix, Lawrence, Gatlin 

& Perez-Velazquez (2002) reconfirmed that menhaden oil showed a higher nutritional 

value for juvenile L. vannamei due to the higher levels of essential fatty acids (EFAs), 

particularly n-3 HUFAs. 

One role of dietary phospholipids (PLs) in crustaceans is associated with the 

absorption (Lester, Carey, Cooperstein & Dowd 1975) and transport of lipids, especially 

cholesterol and triglycerides, in the hemolymph (Teshima, Kanazawa, Sasada & 

Kawasaki 1982; Kanazawa, Teshima & Sakamoto 1985; Teshima, Kanazawa & Kakuta 

1986a,b,c; Kanazawa 1993, Teshima 1997). Crustaceans are able to synthesize PLs such 

as phosphatidylcholine (PC) from phosphorylcholine, diglycerides, and 

phosphatidylethanolamine (PE - Shieh 1969; Ewing & Finamore 1970). Teshima et al. 

(1986b) also suggested the conversion of dietary TG to PL classes such as PC and PE in 

the hepatopancreas of M. japonicus. It is also known that HUFAs are preferentially 

incorporated and conserved in the polar lipid fraction (which include the PL and 

glycolipid fractions) of crustacean tissue, and that specifically docosahexaenoic acid 

(DHA or 22:6n-3) and eicosapentaenoic acid (EPA or 20:5n-3) are precursors of PC and 

PE, respectively (Clarke 1970; Kanazawa et al. 1977; D’Abramo, Bordner, Dagget, 
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Conklin & Baum 1980; D’Abramo & Sheen 1993). Greater growth and lower feed 

conversion ratio values were reported by Gonzales-Felix et al. (2002) in L. vannamei 

juveniles fed diets with 3.1% of a commercial soybean lecithin (97.6% PLs) as 

compared to shrimp fed diets without lecithin. Akiyama et al. (1992) recommended a 

total PLs content of 2% of the diet for L. vannamei juveniles. Teshima et al. (1986a) 

reported that the percentage weight gain and feed efficiency (g gain/g feed) of P. 

japonicus juveniles were markedly lower when a PLs-deficient diet was fed compared to 

one supplemented with 3% soybean lecithin (67 % purity). 

Gong, Lawrence, Dong-Huo, Castille & Gatlin (2000) reported an interaction 

between the requirements of dietary cholesterol (CH) and the presence of de-oiled 

soybean lecithin in the diet. In the absence of the lecithin ingredient, the dietary 

requirement of L. vannamei for CH was reported to be 0.35%. When dietary levels of the 

lecithin (97.6% purity) increased to 1.5% and 3.0%, the CH requirement 

correspondingly decreased to 0.14% and 0.13%, respectively. However, Chen (1993) 

and Chen & Jenn (1991) did not observe any interaction between the presence of PC 

(80% purity – levels of 0, 1.25, 2.5 and 5%) and the requirement for CH (levels of 0, 0.5 

and 1%) as determined by weight gain response of P. monodon. The larger number of 

replicates and uniformity of shrimp growth with small variation within each dietary 

treatment could have been the reasons for the identification of interactions between 

dietary PLs and CH in the study of Gong et al. (2000). 

Kontara, Coutteau & Sorgeloos (1997) reported a significant interaction between 

dietary PC and n-3 HUFAs in postlarvae of P. japonicas for resistance to osmotic stress, 
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proposing that PLs may possibly improve the utilization efficacy of EFAs supplied in the 

diet as neutral lipid, and thus reduce the quantitative requirements for n-3 HUFAs in 

shrimp diets. However, Gonzales-Felix et al. (2002) did not observe any interaction 

between PLs and EFAs based on weight gain of L. vannamei juveniles. 

The nutritional value of microalgae depends primarily on its biochemical 

composition and specific nutritional requirements of the animal consuming it (Brown et 

al. 1989). Most micro-algal species contain reasonable concentrations of proteins, 

carbohydrates, EFAs, carotenoid pigments, minerals and vitamins for various aquatic 

animals (Takeuchi, Lu, Yoshizaki & Satoh 2002). PLs sub-fractions detected in most 

microalgae include phosphatidyl inositol (PI), phosphatidyl choline (PC), phosphatidyl 

glycerol (PG), phosphatidyl ethanolamine (PE) and diphosphatidyl glycerol (DG) (Ben-

Amotz, Tornabene & Thomas 1985). Saturated fatty acids constitute about 15 to 30% of 

the total fatty acids in green microalgae; whereas, their range in diatoms and 

prymnesiophytes is 30 to 40%. Green microalgae also are relatively low in the mono-

unsaturated fatty acids (5 to 20%) but high in the PUFAs (50 to 80%); whereas, 

prymnesiophytes and diatoms have similar levels of both the mono-unsaturated (20 to 

40%) and polyunsaturated (20 to 50%) fractions (Brown et al. 1989). 

The preceding suggests that 1) PLs may reduce dietary EFAs requirements and 2) 

microalgae are potentially a source of EFAs and/or PLs. For these reasons, it is 

important to acquire a better understanding of the contribution of various nutrients from 

sustainable feedstuffs to shrimp in the absence and presence of natural productivity, 

which will give information to optimize formulated shrimp diets and reduce inclusion 
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levels of fish oil. Thus, the objective of the present study was to evaluate weight gain, 

survival and feed conversion ratio (FCR) of Litopenaeus vannamei fed different dietary 

combinations of fish oil (FO) and 65% purity soybean lecithin (LT) in an indoor clear-

water system and green-water system (presence of microalgae) to 1) determine if dietary 

PLs increases the availability of EFAs, and 2) evaluate if phytoplankton contributes to 

meeting the dietary requirements for PLs and EFAs, so that FO inclusion levels in 

commercial shrimp diets can be reduced. 

Materials and Methods 

The feeding trial was conducted in a greenhouse at Alicorp facilities, located at a shrimp 

farm (latitude 3°27’33.22”S, longitude 80°19’54.13”W – 3msl) in Tumbes, on the north 

Pacific coast of Peru. Specific-pathogen-resistant (SPR) L. vannamei post-larvae in their 

12th day of development after metamorphosis (PL12), were obtained from the “Lobo 

Marino 2” Laboratory (Mar Bravo, Salinas, Ecuador – latitude 2°14’09.27”S, longitude 

80°57’33.67”W – 3msl) and maintained in a greenhouse nursery system for 45 days 

prior to use in the experiment. The nursery system was one high density polyethylene 

(HDPE)-lined, sediment-free wooden tank (28 m3 volume). Aeration was provided by 

regenerative blower. The PL12 (0.02 g, 1.8% CV) were stocked at a density of 172 and 

manually fed 12 g of a commercial 0.6- to 0.8-mm crumble feed (Nicovita® PC-1 40% 

crude protein; Alicorp, Lima, Peru) six times a day (8:00, 10:00, 12:00, 14:00, 18:00 and 

20:00 h) for the first week. Also, during this first week, newly-hatched live Artemia sp. 

nauplii (50 nauplii per larvae day-1) were fed twice a day (06:00 and 14:00 h). For the 

second week, 12 g of the crumble feed were fed six times a day (6:00, 9:00, 12:00, 
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15:00, 18:00 and 21:00 h). Then, for the next 19 days, 33 g of a commercial 0.8- to 1-

mm crumble feed (Nicovita® KR-1 40% crude protein; Alicorp, Lima, Peru) were fed 

five times a day (6:00, 10:00, 14:00, 18:00 and 22:00 hours) until the harvest. This 

conditioning period allowed for acclimation to laboratory conditions (temperature 

30.6°C ± 0.6 SD and salinity 34.3 g L-1 ± 0.7 SD), and achievement of a desired body 

weight for initiation of the experimental trial. Juveniles used in the trial were netted and 

transferred to the experimental units and allowed to acclimate for 1 week to a 

commercial 35% CP diet of 2 x 2 mm (length x diameter) (Nicovita® Alicorp, Lima, 

Peru - Bag Tag: min 35% protein, min 5% fat, max 12% moisture, max 4% fiber and 

max 12% ash) prior to starting the trial. The shrimp were then netted and individually 

weighed to determine the initial weight before the 8-week feeding trial. 

The experiment was conducted in two greenhouse-enclosed water systems (CWS 

and GWS). The CWS consisted of 30 indoor rectangular fiberglass aquaria (40-L 

volume; 0.1-m2 bottom surface area), connected to a 2,680-L semi-closed recirculating 

system and one, 28-m3 wooden PVC-lined reservoir tank. The GWS which provided 

natural productivity (i.e., microalgae) consisted of 24 wooden PVC-lined tanks (1,944-L 

volume; 1.72 m2 bottom surface area; 1.13 m depth), connected to an open system that 

consisted of three, 28-m3 wooden PVC-lined reservoir tanks. Each aquarium was 

provided with one 1.5 cm x 1.5 cm x 3 cm air stone connected to a 0.5-HP air blower; 

whereas, each tank was provided with ten 2.5 x 80 cm airlifts connected to two 2.0-HP 

air blowers. A light: dark photoperiod of 12:12 h was provided in the CWS by 

supplemental compact fluorescent (36 W) lighting. The distance between the white 
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fluorescent lights and the water was 1.60 m. Natural photoperiod was provided in the 

GWS. The water supply for both culture systems, also used for the LATIMAR shrimp 

farm ponds, was initially pumped from the “El Venado” estuary, through a 280-micron 

filter bag into the six 28-m3 wooden PVC-lined reservoir tanks enclosed in a separate 

greenhouse. The water was chlorinated to minimize the introduction of pathogens from 

wild vectors, reduce organic matter and kill plankton and benthos. A dose previously 

proven to be effective (10 mg L-1 of calcium hypochlorite solution - 65% active 

ingredient) was used to provide a free chlorine residual concentration of 4 ppm 30 min 

post application with a targeted residual chlorine level of 1 ppm after 24 h. After 72 h of 

water aeration, the chlorine concentration was below 0.05 ppm, such that this clear water 

was used for filling the 60 aquaria. The CWS had a daily exchange rate of 25% new 

water (1.4-L shrimp-1 day-1) and a recirculating rate of 0.95 L min-1 aquarium-1 (3409% 

exchange aquarium-1 day-1). 

For the GWS, three of the six reservoir tanks were allowed to develop 

phytoplankton blooms through a continuous fertilization program. This water with 

primary productivity was used to fill the 1,944-L tanks in which the first 6 weeks the 

exchange rate was 10% (1.4-L shrimp-1 day-1) every 2 days. During the following 2 

weeks of the trial, 20% (2.8-L shrimp-1 day-1) of the water was exchanged also every 2 

days. 

Both CWS and GWS were stocked with the same density of L. vannamei 

(equivalent to 80 shrimp m-2). Eight shrimp were stocked in each aquarium, while 138 

shrimp where stocked in each tank. The individual mean weight in the CWS varied from 
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3.9 to 5.4 g, while the weight in the GWS varied from 5.2 g to 6.1 g, with no significant 

differences among treatments (CWS: P = 0.983; GWS: P = 0.689). Thus, both systems 

were stocked with a size large enough to achieve linear growth rate to the termination of 

the experiment. 

Six experimental isonitrogenous (35% protein) diets were formulated with 

technical grade feedstuffs (Table 4.1), to contain one of three levels of crude Peruvian 

fish oil – FO (10, 20 or 30 g kg-1) combined with one of two levels of soybean lecithin 

(65% purity) – LT (10 or 40 g kg-1) (Table 4.1). Crude fat and energy levels were 

allowed to vary among the diets. All ingredients were obtained from commercial sources 

(Table 4.1 footnotes). At the Nicovita® pilot feed mill plant (NPP, Lima, Peru), all dry 

ingredients were finely ground and mixed for 10 min. Fluid ingredients were then added 

and the slurry was mixed for an additional 10 min. The mixture was then steam 

conditioned at 90 ± 2 °C and pelletized (compact and cut) with a pellet mill through a 

2.5 x 5-mm die. Pellets were cooled and oven - dried at 73 °C under constant air for 45 

min. in order to obtain a fast-sinking and water-stable pellet. Proximate analysis, 

essential amino acid composition, essential fatty acid composition, cholesterol, 

astaxanthin and pepsin digestibility (AOAC 971.09, 2005) were determined on each 

experimental diet. Diets where bagged in labeled plastic containers and placed into a 

refrigerator at 4°C prior to feeding. 

The biochemical composition of the diets was determined as follows: crude 

protein using the DUMAS method (ISO 16634-1:2008; protein combustion analyzer 

LECO TruSpec®TRSCNC; Mugford 2000). Crude fat content of the diets was 
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determined gravimetrically following extraction of lipids according to the Soxhlet 

method (AOAC 920.39 C, 2005). Gross energy was determined by an adiabatic bomb 

calorimetry (Parr 6200 Oxygen Bomb Calorimeter, Parr, Moline IL, USA). Standard 

procedures were used for moisture, crude fiber (AOCS Ba 6-84, 1998), ash (AOAC 

942.05, 2005), moisture (NTP-ISO 6469, 2002), PLs (AOAC Ca 12-55, 2003 - 

Phosphorus), pepsin digestibility (AOAC 971.09, 2005), EFAs composition by gas 

liquid chromatography (GLC) (Marine Oils Modified, AOCS Ce-1b-89, 2003), amino 

acid composition by high pressure liquid chromatography (HPLC) (Waters  AccQ Tag), 

cholesterol (AOAC 994.10 modified) and astaxanthin (DSM version - 1.4 - 02.05.05). 

Prior to HPLC analysis of amino acid concentrations, duplicate feed samples (100 mg) 

were hydrolyzed in vacuum with 5 ml of 6N HCl for 22 h at 112 °C. 

The proximate, essential amino acid, EFAs, PLs and astaxanthin contents of 

phytoplankton also were determined. Samples of phytoplankton were obtained by 

filtering approximately 180 L of water per tank once a week from four tanks with a set 

of 100-µ, 75-µ and 5-µ mesh screens and then storing in a freezer (-12 to -18°C). Frozen 

samples were transported to a laboratory located 800 km south from the trial facility. 

Upon arrival, samples were thawed, centrifuged and freeze-dried at -50°C for 48 h to 

allow moisture to be reduced to less than 10%. Samples were then pooled into two 

composite samples per system per week to have enough material for analyses. 
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Table 4.1 Composition of experimental diets containing different levels of soybean lecithin and fish 

oil. Values represent percent of total diet (Calculated on as-fed basis, g/100 g) 

Feed Ingredient   Fish oil – Lecithin level (%)    

   1 – 1 1 - 4  2 - 1 2 - 4  3 – 1 3 – 4 

Squid meal1  10 10  10 10  10 10 

Fish meal1  12 12  12 12  12 12 

Soybean meal1  25 25  25 25  25 25 

Wheat1   44 41  43 40  42 39 

Soybean lecithin1 1 4  1 4   1 4 

Crude fish oil1  1 1  2 2  3 3 

Yeast8   2.3 2.3  2.3 2.3  2.3 2.3 

Marine salt7  2 2  2 2  2 2 

Vitamin premix2  0.2 0.2  0.2 0.2  0.2 0.2 

Mineral premix3  0.1 0.1  0.1 0.1  0.1 0.1 

Cholesterol4  0.05 0.05  0.05 0.05  0.05 0.05 

Mold inhibitor6   0.15 0.15  0.15 0.15  0.15 0.15 

Calcium carbonate7 0.5 0.5  0.5 0.5  0.5 0.5 

Potassium phosphate db7 0.5 0.5  0.5 0.5  0.5 0.5 

Potassium chloride7 0.75 0.75  0.75 0.75  0.75 0.75 

Magnesium oxide7 0.35 0.35  0.35 0.35  0.35 0.35 

DL-Methionine9  0.12 0.12  0.12 0.12  0.12 0.12 

Vitamin C5  0.05 0.05  0.05 0.05  0.05 0.05 

1Alicorp, Lima, PE.: Peruvian squid muscle meal (Dosidiscus gigas), Peruvian fish meal (Engraulis 
ringens) and fish oil (Engraulis ringens), dehulled and defatted soybean meal, liquid lecithin (65% 
purity), hard red winter wheat flour and wheat middling. 
2DSM Vitamin premix: Vit. A 10000 IU g-1; B1 30 mg kg-1; B2 15 mg kg-1; DL Ca panthotenate 50 
mg kg-1; B6 35 mg kg-1; B12 40 mcg kg-1; Ascorbic acid 150; mg  kg-1, K3 3 mg kg-1; D  
33500 IU g-1; E 150 IU g-1; niacin 100 mg kg-1; folic acid 4 mg kg-1; biotin 1000 mcg kg-1 
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Table 4.1 Continued 
3DSM Mineral premix: Mn, 40 mg kg-1; Zn, 40 mg kg-1; Cu, 25 mg kg-1; Fe, 100 mg kg-1; Se, 0.3 mg 
kg-1; I, 0.35 mg kg-1 
4Dishman, Utrecht, The Netherlands basis. 
5 DSM (L-ascorbyl-2-polyphospate, 35%). 
6MoldZap Degussa, Lima, Peru. 
7ICN Biomedicals, Inc. Aurora, OH, USA. 
8Inactive Saccharomyces cerevisiae - ICC, Sao Paulo, Brazil. 
9Sigma Chemical Company, Cleveland, Ohio, USA.  
 

 

The feeding trial was conducted over a period of 56 days (8 weeks) by feeding 

shrimp in five replicate aquaria per dietary treatment in the CWS. The same six 

experimental diets were simultaneously evaluated in the GWS in four replicate tanks. 

Concurrent feeding trials allowed comparison of the contribution of phytoplankton to the 

shrimp’s growth. Automatic feeders (wheel-type in CWS and belt type in GWS) were 

used to feed shrimp five times per day (6:00, 10:00, 14:00, 18:00 and 22:00 h) with 

equal rations at each feeding. The feed from the automatic feeder fell only in a specially 

designed 10-cm diameter plastic feed tray in the case of CWS and 60-cm diameter in 

GWS, which allowed daily removal and weighing of uneaten feed. Only in the CWS 

were feces and molts removed daily, while bottom tank accumulation of sludge in the 

GWS was completely flushed on a daily basis. Feeding rates were based on a feed table 

beginning at 0.13 g shrimp-1 day-1 and gradually increased to a maximum of 0.42 g 

shrimp-1 day-1. Feeding rate was above satiation and was adjusted on a weekly basis, 

according to theoretical average weight and survival in the case of the CWS, and to the 

determined average sample weights and theoretical survival in the GWS. Uneaten feed 

was collected with feed trays adapted in size for each system and weighed daily. 
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With the exception of salinity (g L-1) that was measured at noon, water 

temperature (°C), dissolved oxygen (mg L-1), and pH, were monitored twice daily (6:00 

and 18:00 ± 00:30 h) using a YSI 85® Meter and a YSI pHYSI10 Ecosense® pen-style 

meter (YSI Inc., Yellow Springs, OH), in the CWS and GWS. Total ammonia nitrogen 

(TAN), nitrite nitrogen (NO2-N) and alkalinity were monitored weekly. Luminosity and 

Secchi depth (cm) were measured at midday in the GWS using a Secchi disk (+ 0.01m) 

and a light meter Photometer SM 700 Milwaukee®, respectively. Incidence of 

luminosity was measured following the method of Walker et al. (2007) in three 

representative sections. Identification of microalgae, cell density (cell mL-1) and 

chlorophyll (mg m-3) analysis was performed twice a week only in the GWS. Samples 

were collected at 12:00 hours using 1000-mL beakers. Subsamples (~150-mL) were 

preserved by adding 2 mL of Lugol’s solution (Throndsen 1978). Cells were allowed to 

settle for 10 hours and subsequently processed for taxonomic and cell count analysis 

using an improved Neubauer hemocytometer at 600x magnification. Methodology for 

cell counts followed that of Venrick (1978). Malca's (1997) manual was used to separate 

microalgae into taxonomic divisions. Total chlorophyll was measured according to 

Strickland and Parsons (1972). 

After termination of the feeding trial, the cephalothorax (fore and midgut gland) 

and abdominal muscle (with no intestine) of 50 shrimp per tank or eight shrimp per 

aquarium were separated and wrapped in aluminum paper, packed in plastic bags, 

labeled and stored in a freezer (Electrolux 7.6 cu ft, FE22, PR) at -12 to -18°C for 1 

week. Frozen samples were transported to a laboratory located 800 km south from the 
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trial facility. Prior to analysis, the cephalothorax and abdominal muscle were removed 

and stored at -86°C in an ultra low temperature freezer (DFU-014 Giant Star, Gyeonggi-

do, Korea) for 24 h. Composite samples of 25 or four shrimp (cephalothorax or 

abdominal muscle) from the GWS or CWS, respectively, were vacuum freeze-dried at -

50°C for 24 h in the dark with a 4.5-L freeze-drier (FreeZone Benchtop, Labconco 

Corp., MO, USA). The dried cephalothorax and abdominal muscle were finely ground 

with a grinder (Retsch ZM 200 Retsch GmbH, Haan, Germany), and stored at -86°C for 

analysis. Dried samples were analyzed in duplicate for total lipids (AOAC 920.39 C, 

2005), essential fatty acid composition by GLC (Marine Oils Modified AOCS Ce-1b-89, 

2003), phospholipids (AOAC Ca 12-55, 2003 - Phosphorus) and astaxanthin (DSM 

version - 1.4 - 02.05.05) to compare the shrimp tissue variations among dietary 

treatments in the absence and presence of primary productivity. 

Nutritional responses of the shrimp to the experimental diets were evaluated 

using the following indicators: (1) total weight gain (final mean wet weight – initial 

mean wet weight); (2) survival [(final number of animals / initial number of animals) x 

100]; and (3) FCR - feed conversion ratio (total dry weight feed intake / total gained 

biomass). The microalgae percent contribution to shrimp growth for each treatment also 

was estimated by comparing the shrimp weight gain in the GWS versus CWS ((GWS 

mean wet weight gain - CWS mean wet weight gain) / CWS mean wet weight gain) x 

100. 

A 2 x 3 factorial analysis of variance (ANOVA) was used to determine 

significant differences and their interaction among treatments (two LT levels and three 
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FO levels) on weight gain and survival of shrimp. When significant ( = 0.05) F values 

were obtained, differences among treatments were determined with Fisher’s least 

significant difference (LSD) multiple range test. The data were analyzed using the SPSS 

statistical software version 16 for Windows (SPSS Inc., Chicago, Illinois, USA). 

Results 

Values of pertinent water quality characteristics obtained in the CWS and GWS during 

this experiment were within acceptable levels, suggesting shrimp were maintained under 

desired water quality conditions for the duration of the 8-week trial (Table 4.2 and 4.3). 

Luminosity in the GWS varied for the three different locations depending on the day 

light and amount of shadow from the clouds. 

Crude protein values (Table 4.4) of the experimental diets varied slightly from 

the formulated values. Amino acid and cholesterol composition of the diets were very 

similar. Crude fat, EFAs, PLs, neutral lipids and gross energy varied with the FO and LT 

inclusion levels in the experimental diets (Tables 4.4 and 4.5). Proximate composition 

(Table 4.6) of microalgae showed relatively high levels of ash (45.02%), protein (22.7%) 

and astaxanthin (4.5%) compared to the lipid levels. 
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Table 4.2 Water quality values during the feeding trial in the clear water system (CWS) 

  TEMP  OXYGEN  pH  SALINITY NH3-N  NO2-N ALKALINITY 

(°C)  (mg L-1)     (g L-1)  (mg L-1)  (mg L-1)  (mg L-1) 

Number   7800  7800   7800  3900  333  333  333 

MEAN   30.5  5.9   8.0  31.6  0.04  1.6  94.7 

MAX   32.2  7.1   8.2  35.2  0.1  8.3  130 

MIN   28.8  4.9   7.7  27.7  0.0  0.3  73.0 

Std. DEV  0.7  0.3   0.1    2.5  0.04  1.6  10.9 

 

Table 4.3 Water quality values during feeding trial in the green water system (GWS) 

 TEMP. OXYGEN     pH      SALINITY    NH3-N     NO2-N    ALKALINITY   Secchi Depth   Chl a   Chl b   Chl c  Luminosity 

  (°C) (mg L-1)           (g L-1) (mg L-1)  (mg L-1) (mg L-1)  (cm)          (mg m-3)          (light cm-2) 

Number  3024 3024       3024 1512  216     216  216  1512   432    432 432        63 

MEAN  31.3  5.6          8.0 31.7  0.0      6.2  115      50  19.2     0.5 3.5   34611 

MAX  33.8  6.8          8.4 34.1  0.02     28.4  140      97  64.1     6.5 12.6 219400 

MIN  28.6  4.7          7.6 27.7  0.0     0.0    73      24    0.9     0.0 0.0     4208 

Std. DEV   0.9  0.3          0.2   1.8  0.0     5.5  10.2      17  12.9     0.9 2.3   32425 
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Table 4.4 Analyses of proximate composition, cholesterol, energy and amino acid concentrations of 

the diets used in experiments (average of duplicate analyses) 

Analyte      Fish oil – Lecithin level (%) 

     1 – 1 1 – 4  2 – 1 2 - 4  3 – 1 3 - 4 

Dry matter (%)   9.8 12.1  10.1 11.3  10.1 11.6 

Dry-matter basis (% unless otherwise stated) 

Crude protein    39.1 38.9  39.3 39.3  39.5 39.7 

Total lipid    5.4 8.4  6.7 9.3  7.7 11.3 

Ash     10.5 8.5  10.5 8.6  10.5 8.7 

Fiber    3.4 1.7  3.7 2.0  1.8 1.6 

Cholesterol   0.31 0.32  0.31 0.34  0.31 0.31 

Gross energy (kJ g-1)  17.2 18.1  16.8 18.3  17.7 18.8 

Pepsin Digestibility  94.3 94.1  95.7 95.4  95.1 95.8 

Essential amino acids (% of diet) 

Arginine    2.50 2.53  2.57 2.54  2.51 2.56 

Cystine     0.40 0.47  0.44 0.52  0.59 0.59 

Histidine    1.00 1.03  1.01 1.03  1.02 1.02 

Isoleucine    1.61 1.65  1.63 1.59  1.58 1.61 

Leucine    2.80 2.87  2.85 2.75  2.76 2.79 

Lysine     2.33 2.37  2.38 2.42  2.43 2.45 

Methionine    0.85 0.90  0.90 0.90  0.90 0.86 

Phenylalanine    1.68 1.72  1.73 1.66  1.67 1.70 

Threonine    1.49 1.52  1.54 1.52  1.51 1.53 

Valine     1.77 1.80  1.79 1.72  1.74 1.75 
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Table 4.5 Lipid, lipid class composition and source (lecithin: LT; fish oil: FO; other ingredients: OI) 

of phospholipids (PLs) and neutral lipid (NL) of diets used in experiments 

Analyte       FO – LT Level (%) 

    1 – 1 1 – 4  2 – 1 2 - 4  3 – 1 3 - 4 

Total lipid (%)   5.4 8.4  6.7 9.3  7.7 11.3 

Total PLs (%)   1.7 3.5  1.8 3.5  1.7 3.9 

PLs –> LT   0.7 2.6  0.7 2.6  0.7 2.6 

PLs –> OI   1.1 0.9  1.2 0.9  1.1 1.3 

NL –> LT   0.4 1.4  0.4 1.4  0.4 1.4 

NL –> FO   1.0 1.0  2.0 2.0  3.0 3.0 

NL –> LT + FO   1.4 2.4  2.4 3.4  3.4 4.4 

NL –> OI   2.4 2.5  2.6 2.4  2.7 3.0 

Essential fatty acids (% of diet) 

Linoleic (18:2n-6)  1.57 3.01  1.49 2.88  1.43 3.07 

Linolenic (18:3n-3)  0.16 0.31  0.15 0.30  0.16 0.33 

Arachidonic (20:4n-6)  0.04 0.04  0.05 0.05  0.07 0.07 

EPA (20:5n-3)   0.48 0.53  0.74 0.76  0.97 1.08 

DHA (22:6n-3)   0.31 0.34  0.42 0.43  0.50 0.57 

LOA:LNA   10 10  10 10  9 9 

EPA:DHA   1.5 1.5  1.8 1.8  2.3 1.9 
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Table 4.6 Proximate composition, lipid class, essential amino acid, fatty acid and astaxanthin 

concentrations of the microalgae pool obtained in the experiment (average of duplicate analyses) 

Analyte    Microalgae 

Dry-matter basis (% unless otherwise stated) 

Ash    45.0 

Crude protein   22.7 

Total lipid   1.1 

Phospholipids   0.2 

Astaxanthin   4.5 

Gross energy (kJ g-1)  10.26 

Essential amino acids 

Arginine   1.06 

Cystine     0.35 

Histidine   0.72 

Isoleucine   0.97 

Leucine    1.56 

Lysine    0.96 

Methionine   0.48 

Phenylalanine   1.10 

Threonine   1.11 

Valine    1.17 

Essential fatty acids 

Linoleic (18:2n-6)  0.127 

Linolenic (18:3n-3)  0.21 

Arachidonic (20:4n-6)  0.06 

EPA (20:5n-3)   0.127 

DHA (22:6n-3)   0.042 
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The level of phytoplankton in the CWS was negligible throughout the feeding 

trial as compared to the GWS. In the GWS, Diatoms were the predominant algal type; 

followed by Cyanobacteria, Chlorophytes and Pyrrophytes (Table 4.7). The lowest 

microalgae cell count was observed during the first week of the trial (Fig. 4.1). 

Microalgae cell count reached the highest levels during the second week, which was also 

the period during which the diatoms were also the highest. During week 3, the levels of 

diatoms decreased and Cyanobacteria increased. Microalgae cell counts, specifically 

diatoms, steadily increased from week 5 to 7. Phytoplankton cell counts among dietary 

treatments were not significantly different (ANOVA: P>0.05) and had similar 

distribution patterns based on the average values of each tank in the GWS (Fig. 4.2). 

Increasing weekly levels of total chlorophyll were observed during the trial. Week 

7 achieved the greatest mean chlorophyll level and week 1 the lowest mean value (Fig. 

4.3). From week 3 to 7, the chlorophyll levels increased steadily, but reduced slightly in 

week 8. Chlorophyll a was predominant during the 8 weeks of the trial, followed by 

chlorophyll c; and finally chlorophyll b was measured at the lowest level. 



82 
 

 

82 

Table 4.7 Percent count (cells ml-1) of each microalgae genera identified in the tank system. n = 384 

(6 treatments, 4 replicates, 2 samples per week) 

Division    Genus    Frequency 
        (%) 
Diatoms    Thalassiosira   69 

Navicula   15.9 

Nitzchia    12.1 

Chaetoceros   1.9 

Cymbella   0.7 

Amphiprora   0.2 

Achnanthes   0.1 

Amphipleura   0.1 

% Total Division  70 

Cyanobacteria   Oscillatoria   100 

% Total Division  19.7 

Chlorophyts   Chlamydomonas   100 

% Total Division  7.9 

Pyrrophytes   Glenodinium   61 

Phacus    30 

Peridinium   9.2 

    % Total Division  2.4
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Figure 4.1 Weekly mean (n = 48) microalgae cell count divisions for the tank system. 
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Figure 4.2 Microalgae mean cell count divisions among dietary treatments. 64 measurements per treatment (2 samples, 8 
weeks, 4 replicates). 
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Figure 4.3 Weekly chlorophyll (mg m-3) of microalgae (n = 48). 
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In both culture systems, the CWS and GWS, a significant main effect of LT level 

on weight gain and FCR was observed at the end of the trial. However, the interaction 

between the two factors (FO level and LT level) was not statistically significant (Tables 

4.8 and 4.9). Significant differences (P < 0.001) in weight gain and FCR of shrimp 

evaluated in the CWS as compared to the GWS were observed. ANOVA indicated that 

weight gain of shrimp in the GWS was significantly higher and that FCR was 

significantly lower compared to the CWS. Shrimp fed diets containing 1% FO and 1% 

LT had significantly lower weight gain and higher FCR compared to the rest of the 

treatment diets with the exception of the diet containing 2% FO and 1% LT. However, 

survival was not significantly different among dietary treatments and water systems. The 

estimated percent contribution of phytoplankton to the weight gain of shrimp varied from 

38.8 ± 6.0 % (2% FO and 4% LT) to 60.6 ± 13.5 % (1% FO and 1% LT). 

For all the dietary treatments, shrimp cultured in the GWS showed significantly 

(P<0.05) higher mean lipid, linoleic acid (LOA), PLs and astaxanthin levels in the 

cephalothorax compared to those from the CWS (Table 4.10 and 4.11). However, in the 

muscle tissue the levels of lipid, PLs and linolenic acid (LNA), but not astaxanthin, were 

not different for all dietary treatments. 

Total lipid in shrimp cephalothorax was seven (CWS) to 12 (GWS) times greater 

than that in muscle tissue (Table 4.11). However, PLs in shrimp cephalothorax was one 

(CWS) to three (GWS) times greater. Higher dietary LT significantly affected the lipid 

cephalothorax content in CWS and GWS (P < 0.05). In the case of PLs content in 

cephalothorax, the higher dietary LT level was reflected only in CWS (P < 0.05). Total 

lipid content in shrimp muscle tissue was not affected by dietary FO or LT (Table 4.10). 
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Table 4.8 Growth, survival and feed conversion ratio of L. vannamei fed diets with graded 

combinations of fish oil (FO) and lecithin (LT) in the GWS. All values represent population means (n 

= 4) 

Diet  FO – LT Initial  Weight  Survival  FCR 

  level (%) weight (g) gain (g)  (%) 

Diet 1  1 - 1  5.6  14.3c  97.1  1.64c 

Diet 2  1 - 4  5.6  15.8a  94.4  1.53a 

Diet 3  2 - 1  5.5  14.8bc  95.1  1.62bc 

Diet 4  2 - 4  5.5  15.4ab  93.7  1.59ab 

Diet 5  3 - 1  5.6  15.2ab  95.1  1.57ab 

Diet 6  3 - 4  5.6  15.8a  93.7  1.54a 

PSEc    0.066  3.25  0.002  0.05 

P-value    0.689  <0.001  0.363  0.098 

 

Means of main effect 
h
 

FO level (%) 

1    5.6  15.0  95.7  1.58 

2    5.5  15.1  94.4  1.60 

3    5.6  15.5  94.4  1.56 

LT level (%) 

1    5.6  14.7c  95.8  1.61c 

4    5.6  15.7d  93.9  1.55d 

 

ANOVA: P-values 

FO Level   0.689  0.080  0.432  0.293 

LT Level   0.754  < 0.001  0.068  0.023 

FO x LT   0.978  0.057  0.827  0.339 
c Pooled standard error of treatment means = square root (MSE/n). 
h Main effect means followed by the same letter are not significantly different at P = 0.05 by Fisher’s 

protected least-significant-difference procedure. 
Means within columns with the same letter are not significantly different (Fisher’s protected least-
significant-difference,  = 0.05). 
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Table 4.9 Growth, survival and feed conversion ratio of L. vannamei fed diets with graded 

combinations of fish oil (FO) and lecithin (LT) in the CWS. All values represent population means (n 

= 5) 

Diet  FO – LT Initial  Weight  Survival  FCR 

  level (%) weight (g) gain (g)  (%) 

Diet 1  1 - 1  4.5  8.8e  100  2.07e 

Diet 2  1 - 4  4.7  10.7d  100  1.73d 

Diet 3  2 - 1  4.5  9.8de  100  1.88de 

Diet 4  2 - 4  4.8  10.8d  100  1.72d 

Diet 5  3 - 1  4.8  10.4d   100  1.77d  

Diet 6  3 - 4  4.5  10.8d  100  1.70d 

PSEc    0.14  0.92    0.03 

P-value    0.983  0.02    0.012 

 

Means of main effect
h
 

FO level (%) 

1    4.6  9.7    1.9 

2    4.6  10.3    1.8 

3    4.7  10.6    1.7 

LT level (%) 

1    4.6  9.7f    1.9f 

4    4.7  10.7g    1.7g 

 

ANOVA: P-values 

FO Level   0.983  0.15    0.109 

LT Level   0.569  0.005    0.004 

FO x LT   0.257  0.229    0.190 
c Pooled standard error of treatment means = square root (MSE/n). 
h Main effect means followed by the same letter are not significantly different at P = 0.05 by Fisher’s 

protected least-significant-difference procedure. 
Means within columns with the same letter are not significantly different (Fisher’s protected least-
significant-difference,  = 0.05). 
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Table 4.10 Analysesa of the lipid and phospholipids contents of tissues from shrimp fed various levels 

of fish oil (FO) and lecithin (LT) in the clear water system (CWS) and green water system (GWS) (n = 

2) 

FO - LT Tissue   Lipid          Phospholipids 

Level (%)   CWS  GWS   CWS  GWS 

1 – 1  CT b  6.35  12.89   2.15  4.18 

  Muscle  2.81  3.08   1.76  2.32 

1 – 4   CT  10.94  15.40   3.81  4.30 

  Muscle  3.00  2.55   2.32  1.77 

2 – 1  CT  9.53  12.10   2.89  4.25 

  Muscle  2.93  2.78   2.13  1.57 

2 – 4  CT  10.74  15.39   3.96  4.16 

  Muscle  2.84  2.98   2.06  2.04 

3 – 1 CT  8.59  14.69   2.37  4.72 

  Muscle  2.86  3.08   2.00  1.89 

3 – 4  CT  12.38  17.59   3.86  5.43 

  Muscle  3.04  2.81   2.43  2.10 

a Dry-matter basis (% unless otherwise stated). 
b CT – Cephalothorax 
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Table 4.11 Analysesa of the essential fatty acids and astaxanthin content of tissues from shrimp fed various levels of fish oil (FO) and lecithin 

(LT) in the clear and green water system (n = 2) 

FO - LT Water                LOA       LNA     ARA                 EPA                DHA  Astaxanthin (mg kg-1) 

Level (%) System          CTb Muscle    CT    Muscle CT     Muscle CT     Muscle CT     Muscle CT       Muscle 

1 – 1  Clear         1.42 0.43   0.07    0.02 0.07      0.06 0.40 0.38 0.31 0.28 1.11 1.08 

  Green          2.64 0.47   0.11    0.02 0.12      0.08 0.48 0.38 0.35 0.31 7.76 5.75 

1 – 4  Clear         2.90 0.56   0.13    0.03 0.08      0.06 0.47 0.36 0.35 0.26 0.72 1.03 

  Green         3.70 0.47       0.16    0.02 0.11      0.06 0.49 0.31 0.34 0.22 8.23 5.76 

2 – 1  Clear        1.87 0.40   0.10    0.02 0.10      0.06 0.59 0.44 0.44 0.32 0.99 1.34 

  Green        2.23 0.38   0.10    0.02 0.12      0.07 0.54 0.36 0.40 0.27 7.14 5.65 

2 – 4  Clear        2.54 0.47   0.12    0.02 0.09      0.05 0.53 0.37 0.38 0.27 0.83 0.96 

  Green        3.42 0.51   0.14    0.02 0.12      0.07 0.54 0.36 0.37 0.26 7.54 5.54 

3 – 1  Clear        1.35 0.33   0.06    0.01 0.10      0.06 0.53 0.41 0.38` 0.30 1.09 1.09 

  Green        2.16 0.38   0.08    0.02 0.13      0.08 0.57 0.41 0.38 0.30 7.06 5.95 

3 – 4  Clear        2.55 0.44   0.11    0.02 0.10      0.06 0.58 0.41 0.42 0.30 0.73 1.05 

  Green        3.89 0.42       0.18    0.02 0.15      0.07 0.72 0.34 0.50 0.25 7.39 5.34 

aDry-matter basis (percent unless otherwise stated).  
bCephalothorax. 
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The highest lipid level (CWS: 12.4%; GWS: 17.6%) was observed in 

cephalothorax of shrimp fed the diet containing 3%  FO and 4% LT, while shrimp fed the 

diet with 1% FO and 1% LT had the lowest value (CWS: 6.4%; GWS: 12.9% - Table 

4.10). Also, the fatty acid composition of the test diets was reflected to a certain extent in 

the fatty acid composition of the cephalothorax of the shrimp cultured in CWS and GWS 

(Table 4.11). For instance, significantly higher (P < 0.05) levels of LOA and LNA were 

observed in shrimp cultured in both systems fed diets containing 4% LT. However, no 

significant differences were observed in the fatty acid composition of shrimp muscle 

tissue, with the exception of DHA in shrimp cultured in the GWS. 

Discussion 

All of the water quality conditions throughout the duration of the 8 - week feeding trial 

in both the CWS and GWS were within recommended commercial production ranges for 

optimal growth and survival of L. vannamei (Samocha, Lawrence & Bray 1993). 

Measurements of NO2-N, temperature and alkalinity were slightly lower in the CWS 

compared to those levels in the GWS. In the case of nitrite and alkalinity, these 

differences primarily could be attributed to the activity of nitrifying bacteria and calcium 

imbalance in the recirculating water with no phytoplankton. In the case of temperature, 

the greater volume of water and depth of the culture units in the GWS (1,944 L and 1.13 

m depth) compared to the CWS (40 L and 0.45 m depth) could be the principal physical 

factors that made the water remain slightly warmer in the GWS. 

Results of the present study showed that dietary FO levels could be reduced to 

1% with the inclusion of 4% dietary LT (3.5% PLs), suggesting that dietary PLs may 
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improve the efficiency of EFAs utilization when supplied as neutral lipid. Beneficial 

effects could be related to an increased transport and lipid mobilization from the 

hepatopancreas to the hemolymph and to other tissues and organs, resulting in enhanced 

lipid deposition and increased energy availability for growth (Teshima et al.1986a,b; 

Teshima 1997). Studies on juvenile shrimp also have demonstrated that dietary PLs 

supplementation increased growth compared to diets without PLs (Teshima et al.; 

1986a,b; Gong, Lawrence, Gatlin, Jiang & Zhang 2001; González-Félix et al. 2002; 

Kumaraguru, Ramesh & Balasubramanian 2005; Hu, Tan, Mai, Ai, Zhang & Zheng 

2011). In addition, the fact that shrimp fed diets with higher levels of PLs and lower 

levels of HUFAs performed as well as those fed diets with higher HUFA levels was 

probably because liquid soybean lecithin may serve as a source of choline, inositol and 

EFAs or even energy (Coutteau, Geurden, Camara, Bergot & Sorgeloos 1997). In 

addition, dietary PLs have been shown to improve the properties of artificial diets by 

reducing the leaching of water-soluble nutrients, in particular manganese and B vitamins 

(Castell, Boston, Conklin & Baum 1991), and also may act as emulsifiers, facilitating the 

digestion and absorption of fatty acids, bile salts, and other lipid-soluble substances such 

as vitamins (Coutteau et al. 1997), thus contributing to the superior performance of 

shrimp. 

The best weight gain responses to different dietary levels of one oil (Menhaden 

fish oil or Pollack liver oil) or a mixture of oils (Pollock liver oil + soybean oil; Soybean 

oil + Pollock residual oil + short-necked clam oil; Cod liver oil + corn oil) in shrimp (P. 

japonicus) and other crustaceans (Homarus americanus, Procambarus acutus, 
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Macrobrachium rosenbergii), are generally achieved at dietary levels between 5 and 8% 

(D’Abramo 1997; NRC 2011), and that levels higher than 10% often retard growth 

(Akiyama et al. 1992; Hu, Tan, Mai, Ai, Zheng & Cheng 2008), most probably due to a 

reduction in consumption caused by high caloric content and/or inability to metabolize 

high levels efficiently (NRC 2011). In the present study, the lipid levels of experimental 

diets varied from 5.2 to 10.8 % (dry-weight basis), which were within the recommended 

range. However, the diet containing 1% FO and 1% LT (1.5% PLs) showed the lowest 

lipid level, which could be one of the factors for the reduced weight gain compared to 

the rest of the experimental diets. In addition, the level of dietary triglyceride judged to 

be best is ultimately influenced by a variety of factors: the quality and quantity of dietary 

protein; the quantity, quality and availability of other energy sources and the oil source 

(D’Abramo 1997). For instance, in the present study, the better performance of shrimp 

fed 4% LT (3.5% PLs) and 1% FO compared to the diet containing 1% LT (1.5% PLs) 

and 1% FO, could have been due to a combined effect of 56% more lipids, 106% more 

dietary PLs, 92% more LOA and 94% more LNA and 5% more gross energy. 

Survival in the present study, however, was not affected by the lower dietary 

levels of lecithin (1.5% PLs). According to Coutteau, Camara & Sorgeloos (1996), 

significant effects of PL supplementation on survival only has been demonstrated in 

larval M. japonicus (Kanazawa et al. 1985; Teshima et al. 1986c). Furthermore, all of 

the water quality conditions throughout the duration of the 8-week feeding trial were 

within recommended ranges for L. vannamei shrimp culture, which also may have 

contributed to high survival. 



 

 

94 

94 

In the present study the fatty acid composition of the cephalothorax reflected, to 

a certain extent, that of the test diets. These results are in agreement with other studies in 

various shrimp species (P. monodon: Deering, Fielder & Hewitt 1997; Millamena 1989; 

Kumaraguru et al. 2005; F. indicus: Colvin 1976; M. japonicus: Guary, Kayama, 

Murakami & Ceccaldi 1976; Kayama, Hirata, Kanazawa, Tokiwa & Saito 1980; L. 

vannamei: González-Félix et al. 2002; Hu et al. 2011; Ju, Forster, Dominy & Lawrence 

2011). In addition, studies have demonstrated retention of specific HUFAs when 

supplementing dietary saturated and monounsaturated fatty acids (Araujo & Lawrence 

1991; Xu, Wenjuan, Castell & O’Dor 1994; Deering et al. 1997). However, in the 

present study, shrimp fed diets with higher levels of PUFAs showed no preferential 

incorporation of EPA or DHA. 

The estimation of the contribution of phytoplankton from the data obtained in 

this study indicate that there was a contribution to weight gain of 38.8% ± 6.0 SD to 

60.6% ± 13.5 SD for L. vannamei stocked at 80 m-2. This greater weight gain observed 

in the GWS compared to the CWS is similar to the one reported in chapter III, indicating 

that both methods (Method A: CWS and GWS both shrimp reared in aquaria; Method B: 

CWS shrimp reared in aquaria and GWS shrimp reared in tanks) can be used to estimate 

the percent contribution of phytoplankton to the weight gain of shrimp. 

The higher levels of PLs, LOA, LNA and astaxanthin contained in the 

cephalothorax of shrimp cultured in the GWS compared to the ones cultured in the CWS 

could explain the contribution of microalgae for greater shrimp weight gain. However, 

with the exception of astaxanthin, these nutrients were not limiting in the diet, thus 
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complicating this assessment. In the case of astaxanthin, Ju et al. (2009) demonstrated 

that adding the whole diatom Thalassiosira weissflogi, Nannochloropsis biomass or its 

residue fraction to a control diet significantly improve shrimp growth. This enhanced 

shrimp growth effect might not be derived from the macronutrient contribution of the 

algae biomass, and may be due instead to the presence of a growth factor (or factors) 

more likely present in the residue fraction of the algae biomass, rather than the acetone 

extract or carotenoid fraction, which did not effectively improve growth in that 

experiment. Consequently the improved growth of shrimp in the presence of microalgae 

was likely not due to astaxathin differences. The results of this trial are consistent with 

those of earlier work (Ju, Forster, Conquest & Dominy 2008), and indicated that 

phytoplankton in the floc culture had a major role in improving shrimp growth. Thus, the 

greater weight gain of shrimp in the GWS may be due to either 1) the continuous 

availability of microalgae nutrient(s) and greater concentration of energy, 2) greater 

digestion of unknown microalgae nutrients through the stimulation of the digestive 

enzymatic system of the shrimp (Moss et al. 2001; Divakaran & Moss 2004), 3) a 

growth hormone or insulin-like growth factor (Guillaume, Cruz-Ricque, Cuzon, 

Wormhoudt & Revol 1989), 4) substances that induce gene expression (Distel, Robinson 

& Spiegelman 1992; Fafournoux, Bruhat & Jousse 2000; Clarke, Gasperikova, Nelson, 

Lapillone & Heird 2002), 5) the phytoplankton contribution to a specific but unknown 

nutrient(s) in the shrimp diet, 6) and/or by affecting some water quality or other system 

factor. Further research is needed to investigate the causative agents in microalgae that 

promote shrimp growth. 
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Under these experimental conditions, this study demonstrated that in the presence 

and absence of microalgae, 4% dietary LT (3.5% PLs + 3.2% PUFAs) and 1% FO in 

addition to the other marine oils from squid and fish meals, increased juvenile L. 

vannamei growth compared to 1% dietary LT (1.5% PLs + 1.6% PUFAs), confirming 

that PLs together with LOA and LNA contained in soybean lecithin could reduce the 

quantitative requirements of HUFAs from FO in the white-legged shrimp. In addition, 

the combined effect of nutrients present in microalgae and/or specific growth factors 

could positively influence shrimp performance, which should be considered when 

formulating commercial diets and to optimize the phytoplankton cultures in the shrimp 

pond water. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

Given sustainable management of wild fish stocks to produce fishmeal (FM) and fish oil 

(FO) for use in aquatic animal feeds, a key challenge is to grow the aquaculture industry 

within limits of available raw materials. This limited availability of FM and FO as 

ingredients for aquaculture feeds and the continuous growth of aquaculture impose 

strong pressure on the reduction of the dietary inclusion levels of these limited resources. 

At the same time, consumers and retailers have become increasingly interested in 

sustainability metrics, implicating that dietary inclusion levels of natural resources such 

as FM and FO need to be reduced. For these reasons, a series of experiments were 

conducted to evaluate the potential of phytoplankton to increase the availability of 

nutrients to shrimp and if dietary phospholipids (PLs) could increase the availability of 

essential fatty acids (EFAs), optimizing feedstuffs inclusion levels in commercial shrimp 

diets. Thus, weight gain, survival and feed conversion ratio (FCR) of Litopenaeus 

vannamei fed different dietary combinations of FM, squid meal (SM), FO and soybean 

lecithin (LT) in an indoor clear-water system and green-water system (presence of 

microalgae) were evaluated. 

Findings from these feeding trials included determining a minimum combination 

of 6.5% FM and 5% SM in the presence of primary productivity together with the 

reduction of FO levels to 1% by adding 4% LT (3.5% PLs + 3.2% PUFAs) could 

contribute to reducing aquaculture’s pressure on forage fisheries, and thus support a  
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more sustainable growth of commercial aquaculture. Indeed, the ratio of wild fisheries 

inputs to farmed shrimp outputs, or the “fish-in to fish-out ratio (FI/FO) for farmed 

shrimp based on results from the present study was 0.51 ((6.5% FM + 2% FO inclusion 

in diet / 24% yield of FM + 5% yield of FO from wild fish) x 1.74 FCR), meaning that 

half a kilogram of wild fish was needed to produce one kilogram of farmed shrimp 

obtained at their maximum growth and survival. These results could be rapidly applied 

to the aquafeed industry, as these trials have been done in the presence of primary 

productivity, the environment in which shrimp are typically cultured. 

This study also demonstrated that with an adequate fertilization program in a 

reservoir tank, 60.7% Diatoms (52.7% Chaetoceros sp.) and 22.8% Cyanobacteria 

(22.6% Oscillatoria sp.) predominated, which contributes to a better management of 

intensive shrimp ponds with a normal predominance of 76.3% Cyanobacteria (54% 

Oscillatoria) observed for most of the 9 months in all 12 sampled ponds. These 

experimental results should be compared to commercial-scale systems, in order to 

determine the specific management of the fertilization program that will enhance diatom 

proliferation. 

The contribution of phytoplankton to shrimp weight gain in the feeding trials of this 

study varied from 38.8 to 60.6%. This increased shrimp weight gain was not due to a 

specific nutrient, but to the combined effect of nutrients, and/or specific growth factors, 

which should be considered when formulating commercial diets.  
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