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ABSTRACT   

 

Genomic Approaches to Study Molecular and Cellular Mechanisms of Host Response to 

Avian Influenza Virus Infection in Chickens. (December 2011) 

Ying Wang, B.A.; M.S.; Ph. D., Northeast Agricultural University 

Chair of Advisory Committee: Dr. Huaijun Zhou 

 

        Avian influenza virus (AIV) is a type A virus of the family Orthomyxoviridae and 

its outbreaks not only cause economic losses in poultry, but also are worldwide threats to 

human health. The phenotypic changes in host cells induced by pathogens are always 

accompanied by remarkable changes in gene expression. Therefore understanding the 

gene expression profile of infected cells at the global level is important to get insights 

into interactions between hosts and viruses. Different genomic approaches have been 

utilized in the current study to investigate the host-AIV interactions in chickens. 

        The Ser to Asn mutation on position 631 in the chicken Mx1 protein was reported 

to result in a positive antiviral function in vitro. With AIV infection, the Mx1 mRNA 

expression levels in heterozygous birds were significantly up-regulated. Additional 

mutations on the chicken Mx1 coding region were identified by sequencing. The results 

showed that most identified mutations were co-segregated with S631N mutation except 

one insertion in the position of 1544bp in the heterozygous birds. We speculate this 

insertion might be related to the up-regulation of mRNA expression of heterozygous birds 

with AIV infection. 
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        The miRNAs play critical roles in biological processes and are important effectors 

in host-pathogen interactions. The miRNA deep sequencing was used to profile miRNAs 

in AIV infected or non-infected chickens. Differentially expressed miRNAs identified 

have expanded our knowledge in the functions of these potential immune related chicken 

miRNAs regulating host response to AIV infection.  

        Both microarray and transcriptome analysis by RNA-Seq were used in the current 

study to investigate the global gene expression of host response to AIV infection. 

Through the comprehensive analysis, a list of strong candidate miRNAs such as miR-32 

and their host target genes including Mx1 were identified for further elucidating the 

regulatory mechanism of host-AIV interaction.  

        In summary, we have identified many important candidate host genes and miRNAs 

which play important roles in the modulation of host response to AIV infection using 

genomic approaches. Further investigation of underline regulatory mechanisms of these 

genes, miRNAs or related pathways, followed by functional analysis, could lay solid 

foundation for understanding cellular and molecular mechanisms of the host-AIV 

interactions, thereby, pave a way for the development of novel protective strategies 

against AIV infection in chickens. 
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CHAPTER I 

INTRODUCTION 

 

Avain influenza virus 

Gene coding assignment and protein function of influenza virus 

        Influenza viruses belong to Orthomyxoviridae family (Acheson, 2007). There are 

five different genera in this family, including influenza A, B, C, Thogotovirus and 

Isavirus (Sebbag, 1998). Influenza A viruses can infect avian and mammalian species 

(Stephenson and Democratis, 2005).  

        Type A influenza virus genome consists of eight negative sense single-stranded 

RNA segments. The structure of the influenza A virus includes a liquid membrane from 

the host cell. Of the eleven viral proteins produced by type A viruses, nine are packaged 

in virions (Knipe, 2007). Genome segments encode different viral proteins: three viral 

polymerase subunits (PA, PB1 and PB2) and the non-structural pro-apoptotic protein 

PB1-F2 generated by an alternative reading frame in PB1; the envelope glycoproteins 

Hemaglutinin (HA) and Neuraminidase (NA); the nucleocapsid protein (NP); the matrix 

protein (M1) and the membrane bound ion channel protein (M2); and the non-structural 

protein (NS1) and nuclear export protein (NEP).  

        PA, PB1 and PB2 are the components of the RNA polymerase complex (Braam, et 

al., 1983). They play distinct roles within the polymerase and are critical for viral  
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transcription and replication (Deng, et al., 2005). Two glycoproteins HA and NA form 

projections on the surface of the viral particles and they are also major antigenic 

determinants recognized by the host adaptive immune system. The M1, the most 

abundant viral protein, lies just beneath the lipid envelope and is the inner layer of the 

viral envelope. The M2 proteins project from the surface of the virus serving as an ion-

channel, which is essential for virus uncoating and maturation. Viral RNA segments, the 

polymerase complex and the nucleoprotein (NP) form ribonuceloproteins (RNP), is the 

core of the virus particle (Knipe, 2007). The viral RNA wraps around NP, which makes 

it accessible to the replication machinery (Zur Stadt, et al., 2005).  NS1 is able to down-

regulate host cell mRNA processing, sequester dsRNAs and reduce interferon response 

(Hale, et al., 2008). NEP (NS2) interacts with M1 protein and directs nuclear export of 

viral nucleocapids (O'Neill, et al., 1998). The viral RNA polymerase complex lacks 

proofreading mechanism, which makes the viral genome highly variable. Different 

mutations could occur in the HA and NA genes, which generate different virus subtypes 

(Brown, 2000).  

 

Replication of influenza viruses 

        Influenza viruses bind to neuraminic acids (sialic acids) on the surface of the cells 

to initiate the replication. HA binds to sialic acid-containing receptors, and then they 

form a trimer in the virus envelope. Cleavage of HA by cellular proteases into two 

subunits activates its ability to carry out membrane fusion. Since having an envelope, 

influenza virus requires low pH to fuse with endosomal membranes. After binding to 
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cell receptors, virions enter the cell within an endosomal vesicle. Then HA undergoes a 

major conformational change into HA1 and HA2. HA1 contains the sialic acid-binding 

domain. HA2 is anchored in the virus envelope and contrains a hydrophobic fusion 

peptide created by protease cleavage. The cleavage of HA activates its ability to carry 

out fusion of viral and endosomal membranes.The HA-mediated fusion of the viral with 

endosomal membrane and the M2-mediated release of the RNP result in the appearance 

of free RNP complexes in the cytoplasm (Knipe, 2007). At this point, these RNP 

complexes are transported back to the nucleus and begin making mRNAs by copying its 

negative-strand RNA genome segments. Influenza viral RNAs are synthesized within the 

nucleus. Host cellular RNAs are used as primers for the initiation of viral mRNA 

synthesis. These vRNAs are exported through the nuclear pores into the cytoplasm 

where they are translated into viral proteins (Cros and Palese, 2003). Two viral proteins 

M1 and NEP (NS2) are involved in directing the nuclear export of RNPs (Cros and 

Palese, 2003).  M1 makes contact with both vRNA and NP. NEP contains a nuclear 

export signal and it can also bind to the matrix protein. NEP is responsible for recruiting 

the export machinery and directing export of the complex. For influenza virus, HA, NA 

and M2 have all been shown localized to the apical surface of polarized cells (e.g. lung 

epithelial cells) (Rodriguezboulan and Sabatini, 1978). Following the assembly of viral 

components (HA, NA and M2), vRNAs are packaged by RNPs and then the replication 

is completed by budding from the plasma membrane. Finally, NA is able to reverse the 

HA binding by cleaving sialic acid bound from oligosaccharides and help virions reach 
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their target cells by releasing them from the surface of virus-producing cells or from 

mucoproteins that are abundant in the respiratory tract. 

 

Ecology of avian influenza viruses 

        Influenza A can be divided into different subtypes, by sharing related nucleoprotein 

and matrix proteins but differing in hemagglutinin (HA) and/or neuraminidase (NA). 

Until now, 16 subtypes of HA (H1-H16) and 9 subtypes of NA (N1-N9) have been 

identified, some of which have been found in different combinations of HA and NA in 

various species. Waterfowl and seagulls are the natural reservoirs of AIVs and are 

hypothesized as the source of all mammalian influenza A viruses (Webster, et al., 1992; 

Knipe, 2007).  Normally AIVs infect non-natural hosts such as chickens, pigs and 

humans without any clinical signs. However, genetic variability of AIVs is able to 

generate new virus strains that can cause pandemics (Acheson, 2007).         

         Depending on the pathogenicity, AIVs are classified as low pathogenic (LP) or 

high pathogenic (HP) AIVs (Jackson, et al., 2009). HPAIV can cause clinical illness and 

disease with 100% mortality in some cases (Alexander, 2000). Only H5 and H7 subtype 

viruses have been classified as HPAIV, however not all of H5 and H7 subtypes belong 

to HPAIV (Alexander, 2000).  LPAIV strains can cause asymptomatic to mild 

respiratory and enteric tract infections, followed by reduction in egg production or can 

lead to secondary bacterial infections (Acheson, 2007). LPAIV of H5 and H7 subtypes 

are important since they are capable of mutating to HPAIV (Acheson, 2007; Leijon, et 
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al., 2011). Although HPAI viruses have been intensively investigated, LPAI viruses have 

increasingly received more attention.  

 

Host immune responses during avian influenza virus infection 

        AIVs are foreign organisms, which cause infection by invading host cells and 

replicating within host cells. During their life cycles, they have a relatively short 

extracellular period and a longer intracellular period during which they undergo 

replication. The host immune system has mechanisms that can attack against viruses in 

both phases of their life cycles, and that involve both innate and adaptive immune 

responses (Abbas A.K, 2007).  Influenza viruses code the NS1 protein which is able to 

inhibit host innate immunity and essential for successful infection in host (Knipe, 2007).  

However, once the infection is initiated, the adaptive immune response is stimulated and 

cellular immunity is activated. Viral clearance can only be achieved through adaptive 

immunity (Yang, 2009).  

 

Innate immunity 

         The first line of defense against AIVs is provided by the elements of innate 

immune system, such as mucus, phagocytes and natural killer (NK) cells  (Yang, 2009). 

Proteins of mucus can kill, opsonize or inactivate microbial invaders (Sheehan JK, 

2006). Macrophages have been shown to phagocytize cells that are infected by influenza 

viruses (Shiratsuchi, et al., 2000). Two natural cytotoxic receptors NKp44 and 46 

expressed on the surface of NK cells are able to directly interact with the influenza virus 
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HA protein and activate NK cells, which result in killing of infected cells (Arnon, et al., 

2004).  The release of Type I IFNs from infected cells indicates the initiation of the 

immune response to AIV infection. Type I IFNs, including IFN-β and different IFN-α 

types, are produced in response to virus infection mainly by two mechanisms: Toll-like 

receptor (TLR) signaling and Retinoid acid inducible gene-I (RIG-1)-like receptors 

(RLR) (Pichlmair, 2006; Abbas A.K, 2007) . 

 

Toll like receptors (TLRs) 

        Innate immunity is the first line of host defense by recognizing pathogen-associated 

molecular patterns (PAMPs) represented by conserved components of microorganisms. 

The pathogen can be detected by receptors expressed in immune cells. Members of  the 

TLR family have been identified as a primary evolutionarily conserved sensor of 

PAMPs (Sonkoly, 2008).  TLRs represent a set of pattern recognition receptors (PRRs), 

which recognize PAMPs of microbes (Abbas A.K, 2007). TLR3 binds double-stranded 

RNA (dsRNA), which is important for type I IFN release and activation of immunity to 

influenza virus infection (Heer, et al., 2007). TLR7 is activated by single-stranded RNA 

(ssRNA). The activation of TLR7 stimulates the production of type I IFN on 

plasmacytoid dendritic cells (pDCs). Influenza virus can induce pDCs and the induction 

has been proved to be an important mechanism for the IFN release during AIV infection 

(Yang, 2009).  
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RIG-I-like receptors (RLRs) 

        RLRs can sense the presence of viral infection by interacting with vRNA. The 

melanoma differentiation associated gene-5 (MDA-5) is specific for dsRNAs (Kato, et 

al., 2006). The other RLR, RIG-I is a cytoplasmic protein which is specifically activated 

by ssRNA products (Pichlmair, 2006). Upon binding dsRNA, RIG-I can activate 

transcription factors IRF-3 and IRF-7, and then activate the expression of IFN-α/β 

(Hiscott, et al., 2006a). A recent study showed that RIG-1 is present in ducks and 

apparently absent in chickens (Barber, et al., 2010). Since ducks generally do not 

develop disease with AIV infection, the absence of RIG-1 in chickens may account for 

the reason why ducks are more resistant and chickens are more susceptible to AIVs. 

 

The Mx1 protein 

        Type I IFNs are secreted by virus-infected cells and bind to their receptors, which 

result in triggering the innate antiviral response. IFN-induced proteins such as Mx1 

protein play important roles in the antiviral response. Mx1 proteins are interferon-

inducible protein with an ability of hydrolyzing GTP, which belongs to the dynamin 

superfamily of guanosine triphosphatase (GTPase) involved in endocytosis and vesicle 

transportation (Martens and Howard, 2006).  Expression of Mx1 gene interrupts viral 

replication through a dynamin-like force by wrapping around viral nucleocapsids then 

blocking the transcription of influenza viruses (Acheson, 2007). It also interferes with 

the transportation of influenza virus ribonucleoprotein complexes from the cytoplasm to 
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the nucleus, which leads to the termination of viral transcription and replication.  Mx1 

cDNA sequences were examined in many chicken breeds with surprisingly high 

polymorphism (Bernasconi, et al., 1995). An activity of a chicken Mx1 allele was first 

demonstrated in the White Leghorn breed in Germany (Bernasconi, et al., 1995). Avian 

cells expressing murine Mx1 protein showed resistance to three strains of influenza A, 

and three orders of magnitude reduction in influenza virus titers were observed (Garber, 

et al., 1991). Ko reported that there is an antiviral allele on Mx1 gene in some chicken 

breeds against influenza virus and vesicular stomatitis virus (VSV) (Ko,et al., 2002). The 

N631 allele was shown to confer antiviral activity independently of the alternative 

residues at any other polymorphic sites (Ko, 2004).  Although this specific amino acid 

mutation was demonstrated to be the deciding factor in conferring the Mx1 antiviral 

activity against influenza (Ko, 2004), there are still some inconsistency on the among 

different studies (Benfield, 2008; Daviet, 2009). In these studies, no associations 

between the viral replication and the mutation were identified. Several other factors 

might be also involved in affecting the antiviral activity of the allele, such as genetic 

backgrounds or viral strains (Benfield, 2008; Dittmann, 2008). Based on these studies, 

the reported single amino acid substitution near the C-terminal (N631) (Ko, et al., 2002; 

Ko, 2004) may not be the only factor in conferring this antiviral phenotype and more 

studies need to be developed to confirm its antiviral activity. 
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Adaptive immunity 

        Both humoral and cell mediated the immunity play roles as specific effector 

mechanisms in antiviral immunity (Abbas A.K, 2007). The adaptive immunity is not 

only necessary for the clearance of the infection, but also provides long term 

immunological memory and confers the protection against re-infection of AIV. In mice, 

both CD4
+
 and CD8

+
 T cells help to clear the primary influenza infection (Moyron-

Quiroz, et al., 2004). With AIV infection, B cells contribute to the control of the 

infection mainly through production of virus-specific antibodies (Abs) and CD4
+
 T cells 

appear to promote the Ab response by improving the therapeutic activity of Ab-mediated 

effector mechanisms (Mozdzanowska, et al., 2005).   

        Effector CD8
+
 cells are activated by recognizing (viral) antigens which have been 

synthesized within cell's cytosol. Specific antigenic peptides presented at the cell's 

surface as short peptides associated with self class I MHC molecules. CD8
+
 cells 

receptors (TCR) recognize the specific antigenic peptide presented by MHC-1 molecules 

expressed on the surface of antigen presenting cells (APCs). Recognition of an APC by 

an antigen-specific CTL usually results in the destruction of the APC, through which 

virus infected epithelial cell in the lung or trachea will be eliminated (Topham, et al., 

1997). The principal effector cells which are involved in clearing established viral 

infections are the virus specific CD8+ cytotoxic T lymphocytes (CTL) (Hikono, 2006).  

        CD4
+
 T cells protect hosts from the primary influenza virus infection by enhancing 

CD8
+
 T cells and B cell responses. A T helper 1 (Th1) type of CD4

+
 T cell is required 

for the effective development of an anti-influenza virus immune response (Yang, 2009). 
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These cells secrete IFN-γ, which promotes the expansion and recruitment of T cells to 

the lung and contributes to the efficient clearance of virus infection (Turner, et al., 

2007). 

        Specific antibodies are important and able to protect against viral infections. 

Mucosal IgA and systemic IgG neutralize virus growth and help to control the infection 

(Sangster, et al., 2003). The most effective type of antiviral antibody is "neutralizing" 

antibody, which binds to the viral envelope or capsid proteins and blocks the virus from 

binding and gaining entry to the host cell (Abbas A.K, 2007). Neutralizing antibodies 

against the HA protein limit the viral replication and anti-NA antibodies prevent viral 

release from infected cells to reduce the infection rate (Johansson, et al., 1989).  

        Circulating anti-influenza virus antibodies, CD8
+
 and CD4

+
 T cells can 

independently provide protection against secondary infection by influenza virus 

(Hikono, 2006).  After the clearance of a primary influenza virus infection, substantial 

memory CD8
+
 T cells including both NP and PA specificities persist for a long time, 3-9 

weeks post-inoculation, which help to control a secondary infection with the same or 

closely related virus (Singh, et al., 2010; Turner, et al., 2003). In chickens, the 

percentage of activated CD8
+
 T cells in lungs is related with the protective immunity 

against a variant AIV (Seo, et al., 1997).  

 

Small RNA mediated gene expression regulation 

        Gene expression is a complex process that involves the transcription and translation 

for synthesizing a functional gene product by using the information from a gene (Nestler 
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and McClung, 2003; Schwanhausser, 2011). Products are proteins or functional RNAs 

including rRNAs, tRNAs, siRNAs or miRNAs (Eddy, 2001).  By the stimulation of 

extracellular signals, gene expression regulation is a primary mechanism of 

development, homeostasis, and adaptation to the environment.  The alteration of 

expression levels of specific genes by the modification of transcription factors is the 

ultimate step in many signal transductional pathways (Eric J. Nestler, 2002). Gene 

regulation can occur at the transcription of the gene known as transcriptional regulation, 

at the translation level known as translational regulation, and after the synthesis of gene 

products by either post-transcriptional or post-translational regulation (Nancy Jo Trun, 

2003). Modifications of RNA, protein or non-coding RNA can play major roles in the 

biological function of gene products (Schwanhausser, 2011). As one of the non-coding 

RNAs, microRNAs (miRNAs) have been found to have significant roles in regulating 

gene expression at post-transcriptional and translational levels (Cui, et al., 2007).  

 

miRNA biogenesis 

        miRNAs are short, ~22 nt regulatory RNAs, which comprise a large family of 

regulatory molecules found in all multi-cellular organisms (Bartel, 2004). Over 30% of 

genes are under the control of miRNAs, which prevent specific genes from being turned 

into protein and regulate many crucial processes (Slaby, et al., 2009).  

        The miRNAs are excised from long endogenous transcripts by the sequential action 

of two endonucleases Drasha and Dicer in different compartments in the cell (Fig. 1) 

(Sonkoly and Pivarcsi, 2009). The transcripts generated by miRNA genes are referred as 
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primary-miRNA (pri-miRNA), which can be several kilobases long, and consist of one 

or more hairpins. The pri-miRNAs is firstly cleaved by Drosha, producing segments 60 

~80 nt long hairpin-shaped precursor miRNA (pre-miRNA). Drosha is an RNase III 

domains and a dsRNA binding domain. DiGeorge syndrome critical region gene 8 

(DGCR8)/Pasha of Drosha, is thought to be involved in recognizing the pri-miRNA 

(Singh, et al., 2008). The processing complex recognizes the stem-loop structure of the 

pri-miRNA and excises it by cutting at the base of the hairpin. Drosha cuts about two 

helical turns after the terminal loop of the hairpin, leaving a 5’ phosphate and about a 2-

nt  3’ overhang, which is typical for RNase III enzymes. Each processed hairpin is now 

referred as a precursor miRNA (pre-miRNA). This process in animals is slightly 

different from plants since animals lack homologues to Drosha and DGCR8/Pasha 

(Rajesh K. Gaur, 2009).  Then the pre-miRNA is exported from the nucleus by Exportin 

5 in animals in a RanGTP-dependent manner (Beezhold, et al., 2010). Once in the 

cytoplasm, the pre-miRNAs are processed into mature miRNAs by Dicer. Dicer is a 

RNase III-like enzyme that has two RIIIDs, a dsRBD, a DEAD-box helicase domain, 

and a Piwi, Argonaute and Zwille (PAZ) domain (Rajesh K. Gaur, 2009). The PAZ 

domain binds 3’ end of small RNAs and is found in members of the Dicer and 

Argonaute protein families. The result of Dicer activity is ~22 nt double strand RNA 

known as the miRNA:::miRNA complex. Which strand of the complex will be the 

mature miRNA is determined by the free energy of the ends of this complex  (Rajesh K. 

Gaur, 2009). The strand whose 5’ end is bound with the lower free energy becomes the 

guide strand, or mature miRNAs. The passenger strand does not target mRNAs and gets 
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degraded, although it is unclear how exactly the miRNA passenger strand is removed 

(Rajesh K. Gaur, 2009). Then the mature miRNA is loaded onto RNA induced silencing 

complex (RISC). Finally the RISC-complex miRNA binds to its target mRNA and 

inhibits the protein production. Perfect base pair matching between the RISC-bound 

miRNA and the target mRNA results in cleavage and degradation of the targets. 

However, imperfect complementary still can lead to translational repression of the 

targets (Taganov, et al., 2007).  

 

 

        Figure 1 The biogenesis of miRNAs (Sonkoly and Pivarcsi, 2009). Note: Within the nucleus, 

miRNA gene generated primary miRNAs by the function of RNA polII. Then primary miRNAs will be 

cutted by Drosha into precursor miRNAs. Precursor miRNAs will be exported from the nucleus into the 

cytoplasm. By the function of Dicer, precursor miRNAs result in mature miRNAs. With the combination 

of mature miRNAs and RNA induced silencing complex (RISC), target mRNAs will be binded and 

translationally repressed. 

 

 

 

Regulation of gene expression by miRNA  

         Upon the recognition of target genes, the manner in which miRNAs regulate 

expression of their target genes appears to be multiple mechanisms including miRNA-
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mediated translational repression at initiation of protein synthesis, translation and at the 

level of cap recognition; effects on mRNA stability, inhibition of target genes by 

miRNA-mediated deadenylation and inhibiting target genes’ elongation. 

Target recognition 

        The 3’ UTRs of regulated mRNAs contain multiple copies of sequences with 

imperfect complementary to the miRNAs. These sites are necessary for miRNA-

mediated regulation and, accordingly, that target recognition is accomplished at least in 

part by base-pairing interactions. The critical region of the miRNA is known as the seed 

region, and “seed-pairing” forms the basis for popular target prediction algorithms. The 

secondary structure can have profound effects on the ability of miRNAs to recognize 

perfect seed matches. miRNAs can bind with perfect or imperfect complementary. It is 

important to note that G: U base parings can be tolerated. More than one copy of one 

miRNA or combinations of multiple miRNAs can bind to a single mRNA to regulate its 

expression. miRNAs freely diffuse in the cytoplasm, and the recognition occurs 

passively via random collision. While sometimes, the engagement of miRNA with target 

mRNAs can be an active process, it is important to determine where in the cell and when 

during the lifetime of an mRNA the recognition takes place. (Rajesh K. Gaur, 2009). 

 

Mechanisms of miRNA-mediated gene regulation  

miRNA-mediated translational repression 

       The miRNA-mediated translational repression can occur at several different levels 

(Rajesh K. Gaur, 2009). First of all, miRNAs are involved in the initiation of protein 
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synthesis, a situation in which regulated mRNAs are prevented from engaging with 

ribosomes (Pillai, et al., 2007a). Sometimes, miRNAs might induce the degradation of 

protein even if it has already been synthesized. Several studies have found that miRNAs 

can inhibit protein synthesis at the level of initiation of translation (Maroney, et al., 

2006; Standart and Jackson, 2007). miRNAs can also affect translation at the stage of 

cap recognition (Humphreys, et al., 2005; Valencia-Sanchez, 2006). Studies have shown 

that m
7
G-capped mRNAs is repressed by miRNA let-7 (Pillai, et al., 2005). Similarly, 

miRNA-122 can mediate the repression of the amino-acid-starvation-induced release of 

endogenous cationic amino acid transporter 1 (CAT1) mRNA accompanied by a more 

effective recruitment of CAT1 mRNA to polysomes in human hepatoma cells 

(Bhattacharyya, et al., 2006). However, in some cases, miRNAs are able to regulate 

target gene expression by inhibiting translation without causing a significant, correlative 

reduction in target mRNA level (Valencia-Sanchez, 2006). 

 

Effects on mRNA metabolism 

        Some miRNA-mediated mRNA degradation is not restricted in translation. With the 

exception of direct effects on translation and/or protein accumulation, miRNAs can also 

exert effects on other aspects of mRNA metabolism to promote mRNA degradation 

around the miRNA binding sites (Filipowicz, et al., 2010).  

        At the sites outside of their seed sequences, miRNAs can result in mRNA 

degradation possibly by directing exonucleases to the mRNAs (Filipowicz, et al., 2008). 

Researchers suggested that miRNAs can make target mRNAs into processing bodies, or 
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P bodies, and these cytoplasmic structures are the sites for mRNA degradation (Liu, et 

al., 2005). The P bodies have been reported to reduce the HIV-1 viral production and 

infectivity in humans (Nathans, et al., 2009).  Knocking down of the miRNA specific 

Ago protein in Drosophila lead to up-regulation of a number of mRNAs that were 

strongly enriched at the miRNA target sites (Schmitter, et al., 2006). Researches also 

showed that miRNAs played a role in AU-rich element (ARE)-mediated mRNA 

instability (Jing, et al., 2005).  

 

miRNA-mediated deadenylation 

       The miRNA-mediated repression can go through the deadenylation of target 

mRNAs (Beilharz, et al., 2009).  The mRNA polyadenylation process has a versatile 

means to regulate gene expression, while miRNAs are able to disturb this process and 

then regultate target mRNA expression. By transfecting three constructs carrying 

imperfectly matching let-7 target sites in the 3’ UTR into mammalian cells, a rapid target 

mRNA deadenylation was observed, which preceded the translational repression by let-7 

miRNA (Beilharz, 2009). In mammalian cells, deadenylation not only contributes to 

mRNA decay, but also is the translational repression mediated by miRNAs (Beilharz, 

2009). Accelerating deadenylation of target mRNAs by miRNAs has been observed in 

many species, which contributes to miRNA mediated destabilization of target genes 

(Izaurralde, et al., 2009). 
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Inhibition of translation elongation 

       After initiation, miRNAs can affect the translation elongation of target mRNAs. The 

miRNA-targeted mRNAs are loaded with ribosomes. The miRNAs may prevent protein 

production by blocking translation elongation or/and by promoting premature 

dissociation of ribosomes from completely reading the mRNA only in some cases 

(Eulalio, et al., 2008). 

        From the discussion of mechanisms of miRNA-mediated regulation, it is apparent 

that there is no single mechanism of action but multiple means by which miRNAs can 

exert their effects on regulating gene expression. Determining how and when these 

mechanisms of suppression are employed by individual miRNAs remains one of the 

greatest challenges in the field. 

 

miRNAs and immunity  

Effects of miRNAs on the host immune system 

        Studies, in which certain components in the miRNA biogenesis pathway have been 

knocked out, revealed that miRNA is critical for proper immune system development. 

Dicer is a key enzyme responsible for regulatory RNA biogenesis and it is responsible 

for the cleavage of long double-stranded RNAs and short-hairpin RNAs siRNAs and 

miRNAs (Ambros, 2003; Bartel, 2004).  Dicer also plays important roles in the immune 

system. Two experimental systems to conditionally delete Dicer in mature CD8
+
 T cells 

were used to study the function of Dicer in the immune system. Results demonstrated 

that Dicer is essential for the CD8
+
 effector T cells response and it also controls CD8

+
 T 
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cell activation, proliferation, migration and accumulation during acute infection (Zhang 

and Bevan, 2010). The function of dicer in the T cell instruction indicates that miRNAs 

regulate diverse aspects of T cell biology, including basic cellular processes such as 

proliferation and survival as well as cell-lineage decisions and cytokine production 

during T helper cell differentiation (Muljo, et al., 2005). B-cell integration cluster (Bic) 

was originally discovered as recurrent integration site of avian leukosis virus (ALV) in 

chicken lymphoma cells, and was recently observed as a primary miRNA precursor of 

miR-155 (Tam, 2001; van den Berg, et al., 2003). Increased expression levels of 

bic/miR-155 were observed in activated B cells, T cells, macrophages and dendritic 

cells. Over-expression of miR-155 has been reported in B cell lymphomas, solid tumors 

and Hodgkin’s disease suggesting that the locus may also be linked to cancers (Kluiver, 

et al., 2006).  

 

miRNAs effects on the development of hematopoietic cell lineages 

         There are distinct patterns of miRNA expression in different hematopoietic cell 

lineages by expression profiling studies (Chen, 2004). The miR-150, whose expression 

is rapidly decreased upon differentiation of naive T cells into Th1 or Th2 subtypes, was 

selectively expressed in mature resting B and T cells but not in their progenitors or other 

cell types (Monticelli, 2005). With the activation of CD4
+
 and CD8

+
 cells, expression of 

miR-150 was down-regulated (Wu, 2007). But the detailed function of miR-150 in 

lymphocytes is still not quite clear (Sonkoly, 2008).  
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        miR-181a is involved in the development of both B and T lymphocytes (Sonkoly, 

2008). Over-expression of miR-181a up-regulated the number of B cells. Therefore, 

miR-181a is a specific positive regulator for B lymphocyte differentiation in mouse bone 

marrow (Chen, 2004; Sonkoly, 2008). miR-181a also participates in the thymic T cell 

development. Knocking down of miR-181a impaired both positive and negative 

selection in thymic cell cultures (Davis, et al., 2007).  

        Under the same condition, expression of miR-146 was differentially up-regulated in 

the T helper cell 1 (Th1) subset and abolished in Th2 cells (Monticelli, 2005). The miR-

146a is quite important in the regulatory T cell Regulatory (Treg) cell mediated control 

of Th1 responses (Lu, et al., 2010).  High expression of mouse miR-155 in the spleen 

and bone marrow in a B cell specific manner showed that, accelerated rates of pre-B cell 

proliferation resulted in the development of a B cell lymphoproliferative disorder by 6 

months (Calin and Croce, 2006). 

 

miRNA regulation of signal transduction in immune cells 

       The miRNAs can regulate signaling pathways by targeting certain components of 

signal pathways. The regulations of miRNAs enable the multi-gene regulatory capacity 

or remodel the signaling landscape, and facilitate or reverse the transmission of 

information to downstream effectors (Tsang, et al., 2007). Emerging evidence suggests 

that miRNAs affect the response of host cells to signaling molecules such as TLRs or 

transforming growth factor-β (TGF-β) ( Taganov, 2006, Hill and Schmierer, 2007). 

Serving as nodes of signaling networks, miRNAs affect homeostasis and regulate cancer, 
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metastasis, fibrosis and stem cell biology (Inui, et al., 2010). To regulate signaling 

pathways, miRNAs are targeting gene promoters in default repression or activation of 

these pathways and subsequently turn on or shut down the signaling cascades (Barolo 

and Posakony, 2002; Halder, et al., 2006). The miRNAs are able to sharpen morphogen 

gradient in TGFβ signaling (Martello, et al., 2007), attenuate RAS signaling (Nishino, et 

al., 2008) and amplify signals in some cases (Volinia, et al., 2006; Thum, et al., 2008). 

The miRNAs can also serve as mediators of crosstalk between signaling pathways and 

confer signaling robustness by working as signaling balancers and buffers (Choi, et al., 

2007; Meng, et al., 2007; Yi, et al., 2008).  

        Several miRNAs including miR-146, miR-132, and miR-155 were significantly up-

regulated in response to lipopolysaccharide (LPS) in human monocytic cells (Taganov, 

et al., 2007). In response to various microbial components, miR-146 expression level 

was induced by certain members of the TLR family. The expression of miR-146 is also 

weakly inducible by the proinflammatory cytokines, IL-1 and TNF, whose cognate 

receptors share some of their signaling machinery with TLRs et al., 2007). The miR-146 

was reported to participate in the regulation of TLR and cytokine signaling through a 

negative feedback loop involving repression of IL-1 receptor-associated kinase 1 

(IRAK1) and TNF receptor-associated factor 6 (TRAF6) at the translation level 

(Taganov, 2006). The miR-132 has been recently shown to be a CREB-responsive gene 

that regulates neuronal outgrowth in the rat by controlling the expression of the GPTase-

activating protein P250GAP (Vo, et al., 2005).  Since the CREB family was reported to 

be involved in LPS signaling, it may also mediate the up-regulation of miR-132 
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expression in response to endotoxin in monocytes or the activation goes through the 

classical inflammation mediator, NF-kappaB (Gilchrist, et al., 2006). The up-regulation 

of miR-155 is controlled by TLR3 and the IFNα/β receptor in mouse bone-marrow-

derived macrophages (Baltimore, 2007). The miR-155 can be induced by both bacterial 

(i.e., LPS) and viral (i.e., double-stranded RNA) ligands, suggesting miR-155 has 

important roles in the regulation of antimicrobial defense. The miR-155 is also involved 

in the development of B cell malignancies. Therefore, miR-155 may provide a potential 

link between the inflammatory response and tumor (Taganov, et al., 2007). 

 

miRNA and immune responses 

        Innate immune responses are initiated by binding of microbial ligands to membrane 

associated PRRPs, known as TLRs. With the treatment of LPS, the expression of miR-

146a and miR-155 was significantly increased (Taganov, 2006). Further characterization 

revealed that miR-146a is induced by the ligands of TLR2, TLR4 and TLR5 recognizing 

bacterial constituents (Akira and Takeda, 2004). Expression of miR-146 can also be 

induced by the treatments of TNF-α and IL-1β through NFκB-dependant pathways by 

targeting on TRAF6 and IRAK1 (Taganov, 2006). In contrast to miR-146a that was 

stimulated by bacterial products, miR-155 was regulated by viral antigens such as TLR3 

ligand poly (I:C) (Baltimore, 2007). The miR-155 expression can also be induced by 

antiviral response cytokines IFN-β, IFN-γ via TNF-α autocrine/paracrine signaling. The 

miR-155 is essential for proper function of T and B cells. Therefore, miR-155 has been 
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considered having complex roles in a broad range of inflammatory mediators for both 

bacterial and viral stimulations (Sonkoly, 2008). 

        A group of miRNAs, including miR-16, miR-21, miR-142-3p, miR-142-5p, miR-

150, miR-15b and let-7f, have been reported to be associated with T cell activation and 

differentiation (Sonkoly, 2008). Most of these miRNAs were globally down-regulated 

with the differentiation of naïve CD8
+
 T cells into effector cells, which lead to the 

dramatic  up-regulation of the protein-coding genes in effector T cells (Wu, 2007). When 

T cells are activated by anti-CD3 antibodies in vitro, some miRNAs (miR-21, miR-22, 

miR-24, miR-103, miR-155 and miR-204) were significantly up regulated, while others 

(miR-16, miR-26, miR-30b,c, miR-150, miR-181) were repressed (Pillai, et al., 2007b). 

Further studies on these differentially expressed miRNAs are needed to reveal the roles 

of miRNAs in T cell activation and differentiation process. 

 

miRNAs in antiviral immunity  

        The miRNAs have been proposed to contribute to the repertoire of host-pathogen 

interactions during viral infection. Host cellular miRNAs have effects on antiviral 

immunity by modulating the expression of various viral genes and impinging the viral 

life cycle, viral tropism and the pathogenesis of viral diseases (Cullen, 2006a). On the 

other hand, viruses encode viral miRNAs to protect themselves against cellular antiviral 

responses (Gupta, et al., 2006). 

        Host miRNAs play important roles in antiviral defense. With sequence-predicted 

targets within the hepatitis C virus (HCV) genomic RNA, interferon beta (IFN-β) is able 
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to induce several miRNAs such as miR-196, miR-296, miR-351, miR-431 and miR-448 

(David, et al., 2007). Human miR-32 has a direct negative effect on the replication of 

retrovirus primate foamy virus type 1 (PFV-1), which is mediated through the down-

regulation of replication-essential viral proteins encoded by open reading frame 2 (ORF2) 

( Lecellier, et al., 2005; Cullen, 2006b).  

        The miRNAs encoded in the viral genome potentially modulate the host cellular 

environment in order to maximize viral replication by specifically down-regulate host 

gene expression (Cullen, 2006b). Viral miRNAs might repress host genes to disturb 

processes in host immune responses such as antigen presentation or the interferon 

system (Cullen, 2006b). For instance, miR-LAT encoded by the herpes simplex virus-1 

(HSV-1) inhibits apoptosis by targeting TGFβ and SMAD-3 of the TGFβ pathway 

(Gupta, et al., 2006). vRNAs are also capable of interfere with host antiviral immunity 

by targeting viral genes. The miRNAs encoded by Simian Virus 40 (SV40) reduced 

susceptibility of infected cells to cytotoxic T cells  (Ganem, et al., 2005). A growing list 

of human viruses, including herpes viruses, polyomaviruses, and retroviruses, have been 

shown to encode miRNAs targeting a wide range of cellular genes, including cytokines 

and signaling proteins (Cullen, 2006b).  

        In some cases, hosts miRNAs and viruses have close interactions. A liver specific 

miRNA, miR-122, is essential for hepatitis C virus (HCV) replication. miR-122 was 

specifically detected in human Huh7 liver cells and HCV RNA constructs can only 

replicate in Huh7 cells.  The expression of miR-122 was sequestered in human Huh7 

cells stably expressing HCV replica. With the inactivation of miR-122, the level of HCV 
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viral replicon RNA was significantly reduce by 80 percent (Jopling, 2005). Meanwhile, 

miR-122 is also able to help host to clean up viruses. Over expression or inhibited 

expression of miR-122 demonstrated that miR-122 specifically inhibited borna disease 

virus (BDV) protein synthesis, viral replication and transcription in infected human 

oligodendroglial cells (Qian, et al., 2010).  

 

Transcriptome analysis: from microarray to next generation sequencing 

        The responses of host cells to pathogenic microorganisms are the major focus of 

host-pathogen interactions. Pathogen induced phenotypic changes in host cells are 

always accompanied by remarkable changes in gene expression (Jenner and Young, 

2005). Understanding the gene expression profiling at the global level is the key to get 

insights into cellular functions of interaction between hosts and viruses. There are 

thousands of genes targeted by viruses or other pathogens in many cell types that 

participate the mediation of inflammation, responding to interferon, activating or 

attenuating immune responses and activating lymphocytes (Jenner and Young, 2005). 

The profiles of genome-wide genes in terms of alterations in response to specific 

biological stimuli provide valuable insights for interpreting functional elements of the 

genome, revealing the molecular constituents of cells, and also understanding 

developmental and disease processes. Therefore, high throughput transcriptome profiling 

technologies are needed to carry out this type of studies.  
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Microarray analysis 

        Different types of technologies have been developed to interrogate transcriptome 

abundance. Hybridization-based microarray analysis have been the primary 

transcriptomic high-throughput tool for almost two decades, which has accelerated the 

study of transcriptome analysis by profiling thousands of genes simultaneously (Li, et 

al., 2008). Microarray technology can provide more comprehensive, relatively unbiased 

information of all gene networks including members of gene families, ligands, receptors 

and transcription factors.  

        While powerful, microarrays do have several limitations. (1) Microarray design 

requires a priori knowledge of the genome or genomic features, which affects the 

effectiveness if the genome information is incomplete, incorrect or the genome 

annotations are outdated; (2) Cross-hybridization problems between similar sequences. 

In this case, non-repetitive fraction of genomes and complicates analysis of related 

genes, alternatively spliced transcripts, allelic gene variants and SNPs are restricted 

(Okoniewski and Miller, 2006); (3) Microarray is an indirect quantification by 

hybridization-signal intensities (Cassone, et al., 2007). High signal to noise ratios and 

competitive hybridization on microarrays limit the dynamic range of high-confidence 

data. Low abundance transcripts are difficult to be detected; (4) The variety of available 

microarray formats, preparative methodologies and analytical approaches could limit the 

reproducibility of microarray data (Draghici, et al., 2006).  
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Digital gene profiling by next generation sequencing (NGS)  

         Digital expression profiling using next generation sequencing (NGS) promises to 

reduce or in some cases eliminate the weakness of microarrays. In addition, the 

massively-parallel sequencing platforms have improved the affordability of 

comprehensive genomic analysis (Hurd and Nelson, 2009).  

 

Next generation sequencing 

        Next generation sequencing refers to a new class of instrumentation that combines 

rapid sample preparation and dramatically enhanced total throughput and promises to 

bring unprecedented capability in genomic research.  

        The first high-throughput sequencing platform is the 454 pyrosequencing by Roche, 

which is using emulsion PCR of DNA library fragments affixed to micro-beads. It has 

individual sequence lengths of up to 500 bp, and a single run can generate 500 Mb 

sequence. Having the longest reads of all of the NGSs, 454 sequencing is good at de 

novo genome assemblies. However, the inaccuracies in calling homopolymeric stretches 

of sequences are the major drawback (Janitz, 2008). 

        Applied Biosystems offers the next-generation SOLiD System sequencing 

technology, which is based on sequential ligation of dye-labeled oligonucleotides, 

enabling massively parallel sequencing of clonally amplified DNA fragments. Features 

inherent to this system, such as mate-paired analysis and two-base encoding, enable 

studies of complex genomes by providing a greater degree of accuracy. In addition, this 

system contains the necessary computing power and software to perform base calling on 
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a large scale without the need for additional computing hardware. A single run on the 

SOLiD 3 has 35 bp read length with up to 400 million DNA tags, which yields nearly 15 

Gb of total sequences. The throughput and scalability of the SOLiD System holds great 

promise for large-scale re-sequencing, digital gene expression, hypothesis-free 

chromatin immunoprecipitation (ChIP) and methylation studies (Janitz, 2008). 

        With the ability to sequence more than 60 million DNA fragments simultaneously, 

the first generation of the Illumina Genome Analyzer (GA) had revolutionized the ability 

to generate large volumes of sequence data in a short time at low cost. The massively 

parallel nature of the Illumina GA system of sequencing millions of DNA fragments 

facilitate the diverse application range and brings us significantly closer to understanding 

the links between genotype and phenotype and in establishing the molecular basis of 

many diseases. The updated version, the Genome Analyzer II, generates gigabases of 

high-quality data per day with an uncomplicated process that requires just one operator 

and less than 6 hours of hands-on time. The newly developed HiSeq sequencing system 

offers unprecedented output, generating up to 600 Gb per run with highest yield of data. 

Runs for HiSeq sequencing is quite easy to set up. One single run can process over 200 

gene expression samples at a price less than microarrays. Unrivalled output and ease of 

use provide the lowest overall operating cost (Goldfeder, et al., 2011).  

 

Small RNA deep sequencing 

        Historically, identification of small non-coding RNA has been performed by 

computational prediction, qPCR, and sequencing the bacterial cloning cDNA libraries 
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(Xu, et al., 2006; Gu, et al., 2007). With the development of the NGS, the massively 

parallel sequencing provides a superior sensitivity at high sequencing depth to discover 

especially those miRNAs with low abundance and novel miRNAs that are not able to be 

identified using traditional cloning approaches. Small RNA deep sequencing has been 

widely used to profile miRNAs, including both chicken miRNAs and Marek’s disease 

virus miRNAs (Burnside, et al., 2008; Glazov, 2008; Wang, 2009a).  

 

Transcriptome analysis by RNA-seq 

        RNA-Seq is a powerful sequencing-based method that enables to identify, profile 

and quantify RNA transcripts across the entire transcriptome. After poly (A) selection, 

mRNA is fragmented to small fragments and converted into a cDNA library, which 

provides a simple and more comprehensive way to measure transcriptome composition 

and to discover new genes by high-throughput sequencing without bacterial cloning of 

cDNA input (Mortazavi, et al., 2008). Studies using this technology have already 

changed our views regarding the extent and complexity of transcriptomes in an organism 

and improved our understanding of transcriptome.  

        The principle procedure of RNA-Seq is shown in Figure 2 ( Mortazavi, et al., 

2008). With two rounds of poly (A) selection, RNA is fragmented to an average length 

of 200-bp and then converted into cDNA by random priming. The cDNA is then 

converted into a molecular library for sequencing, and the resulting reads are mapped 

onto the genome. Transcriptome prevalence is normalized to reads per kilobase of exon 

per million mapped sequence reads (RPKM) (Mortazavi, 2008). RNA-Seq can analyze 
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novel transcripts, novel isoforms, alternative splice sites, rare transcripts and cSNPs in 

one experiment (Wang, 2009b). 

 

 

 

        Figure 2. Outline of RNA-Seq procedure (Mortazavi, 2008). Note: A, With polyA selection, RNA is 

fragmented to small pieces and then converted into cDNA by random priming. The cDNA is then 

converted into a molecular library for sequencing, and the resulting reads are mapped onto the genome. 

Normalized transcript prevalence is calculated by statistical software. B, Primary data map uniquely in the 

genome to a 1-kb region, including reads that span introns. Each point represents the number of reads 

covering each nucleotide, per million mapped reads. C, It can also detect and quantify differential 

expression. For example, these two genes are muscle specific and only got mapped on muscle. The 

expression could be high or low.  

 

 

 

         

        Comparing with microarray analysis, RNA-Seq has several advantages including: 

(1) RNA-Seq is not dependent on prior knowledge about the target sequences. 

Knowledge of genome annotation is helpful but not required. (2) The digital nature of 
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RNA-Seq allows for much higher resolution and a large dynamic range and sensitivity of 

differential expression. (3) The survey of a transcriptome is more accurate in RNA-Seq, 

because the quantification of signal from sequence-based approaches is directly based on 

counting sequence tags rather than relative measures between samples. Therefore, RNA-

Seq offers both single-base resolution for annotation and “digital” quantification at the 

RNA level, which allows the entire transcriptome to be analyzed in a high-throughput 

and quantitative manner (Wang, et al., 2010). However, the expense per sample for 

RNA- Seq is still a limiting factor in preventing researchers from sequencing multiple 

biological replicates per group, which are needed for statistically-significant analysis.  

        Next generation sequencing and microarrays are complementary technologies. Even 

NGSs have advantages over microarrays, microarray analysis may still be an option for 

gene expression profilings. Sample preparations for microarrays are easier and the image 

analysis is faster and more convenient. It will provide enough information by surveying 

thousands of genes on a single array, if gene expression changes are the specific 

interests. On the other hand, if large numbers of samples need to be tested, microarray 

analysis may be much useful as a screening tool (Hurd and Nelson, 2009). Analyzing 

microarray gene expression data is reaching a maturity with many good software tools 

readily available both commercially and with open-source software. Meanwhile 

bioinformatics for the data analysis of huge datasets brings us the bottle neck of the 

application of NGSs. The data analysis support for digital gene expression using 

sequencing is simply not as powerful as microarrays. 
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        Currently there is a merger between microarrays and NGSs. For example, it makes 

sense to use microarrays to study a large population of samples, identify representative 

samples or outliers, and then apply digital gene expression to that smaller number of 

samples. Promising results from the NGS will generate new content which can be 

analyzed on microarray platforms. The parameters such as the cost, throughput, and data 

analysis would be major factors to be considered for choosing the technology for 

transcriptome analysis. 
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CHAPTER II 

ASSOCIATIONS OF CHICKEN MX1 POLYMORPHISM WITH ANTIVIRAL 

RESPONSES IN AVIAN INFLUENZA VIRUS INFECTED EMBRYOS AND 

BROILERS 

 

Introduction 

        Avian influenza virus (AIV) is a type A virus of the family Orthomyxoviridae. Mx1 

proteins are interferon (IFN) induced GTPases and show antiviral activity in human and 

mice (Haller and Kochs, 2002; Haller, et al., 2007). The replication of influenza virus 

and other negative-strand viruses were affected through the interruption of  the viral 

transcription by Mx expression (Acheson, 2007). Mx1 protein was reported to have 

intrinsic antiviral activity and be responsible for the influenza virus resistance in 

mammals (Arnheiter, et al., 1990). Chickens only have one Mx gene (Mx1) and are 

originally showed to lack antiviral activity (Bernasconi, et al., 1995). Chicken Mx1 

protein is encoded by Mx1 gene and is composed of 705 amino acids in which a 

tripartite GTP-binding motif and a leucine zipper motif are conserved (Watanabe, 2007). 

There are a number of natural mutations in the chicken Mx1 gene. Interestingly the Ser 

(S) to Asn mutation at amino acid position 631(N) caused by a single nucleotide 

polymorphism at nucleotide postion 2,032 (G to A) of Mx1 cDNA had an antiviral 

activity in vitro on mouse 3T3 cell lines (Ko, et al., 2002; Ko, 2004). Mouse 3T3 cell 

lines expressing chicken Mx1 gene carrying N631 (NN genotype resistant allele) had 

significantly lower percentage of infected cells than those cell lines expressing S631 (SS 
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genotype susceptible allele) Mx1 mRNAs (Ko, 2004) . A skewed allele frequency 

distribution in the S631N mutation  was observed in different chicken populations, in 

which the viral resistant amino acid N had a much higher frequency in Chinese native 

chicken breeds than in highly selected commercial lines (Li, et al., 2006). However, 

there is no consistent conclusion regarding antiviral activity of chicken Mx gene either in 

vivo or in vitro assays (Ewald, et al., 2011). Many studies in Mx antiviral function have 

been focused on in vitro. In order to fully understand antiviral activity of Mx1 protein, 

we sought evaluate whether the S to N mutation is associated with the Mx antiviral 

activity in vivo and in ovo. 

 

Materials and methods 

Experimental inoculation of embryos and chickens 

        Embryos and chickens were from the cross of Mx1 heterozygous (S631N) broiler 

parents with expected segregating ratio of 1:2:1 in the progeny. Total of 119 thirteen-day 

old embryonated chicken eggs were inoculated with 10
6
EID50 H5N9 AIV. 

Hemagglutination (HA) assay was used to evaluate virus replication in chicken embryos. 

Hemagglutinating units in allantoic fluid were determined at 48 hours post-inoculation 

for all infected embryos. DNA isolated from leg muscles was used for Mx1 genotyping.  

        For in vivo challenge study, birds were housed in negative pressure Horsfall-Bauer, 

temperature control isolation units and provided with water and commercial feed ad 

libitum. Chicken combs were collected to isolate DNA samples for Mx1 genotyping on 

day 1. Sixteen chickens from each genotype were used for experimental inoculations. At 
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one week of age, 8 chickens from each genotype were inoculated with 0.2 ml of 

CK/TX/02/H5N3 virus containing10
6
 EID50/ml while the remaining 8 chickens were 

inoculated with PBS (mock treatment) by the intra-choanal cleft route. All birds were 

sacrificed at 4 days post-infection (dpi) and chicken lung samples were collected for 

RNA isolation. Virus replication at 4 dpi was determined through the lung total RNA 

samples by real-time RT-PCR for influenza matrix gene (M protein) using AgPath-ID™ 

AIV- M kit (Ambion, Austin, TX) following the manufacturer’s instructions. Control 

RNA was extracted from serially diluted H5N3 virus (10
1.5

–10
5.5

 log10 EID50/ml). A 

standard curve was generated with control viral RNAsand the amount of viral RNA in 

the samples was converted into log10 EID50/ml by interpolation as described previously 

(Lee and Suarez, 2004). The animal experiment was performed according to the 

guidelines approved by the Institutional Animal Care and Use Committee, Texas A&M 

University. 

 

Genotyping and sequencing 

        Genomic DNA was extracted from the embryonic leg tissues or chick combs using 

Wizard Genomic DNA purification kit (Promega, Madison, USA) following 

manufacture’s protocols. Genotyping of S631N was carried out by both PCR-RFLP. For 

PCR-RFLP, the PCR primers (+MX1SER: 5’ GCTCTCCTTGTAGGGAGCCAG 3’; 

+MX1ASN: 5’ TAATAATAATAACCTCTCCTTGTAGGGAGCGAA 3’ and -

MX1SERASN: 5’ GTGACTAATTCTGCTGGTCAGTAAC 3’) were designed to 

amplify a fragment in the coding region of chicken Mx1 mRNA sequence (Accession 
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No. Z23168) including the substitution S631N. PCR conditions were 94 
◦
C 2 min, 

followed by 35 cycles at 94 
◦
C for 30 s, 55 

◦
C for 1 min, 72 

◦
C for 1 min, and a final 

extension at 72 
◦
C for 7 min. PCR products were then loaded on Synergel (0.7% agarose 

and 1.66% synergel) and run in a TAE buffer at 110 volts for 5 hours. Different 

genotypes were determined by the size of PCR products due to the different sizes of 

forward primers for alleles G and A.  

        In order to identifiy other Mx1 mutations in the coding region besides the S631N 

mutation (the mutation G2032A on the nucleotide sequences), total RNA isolated from 

chicken lung samples was reverse transcribed into cDNA by random hexamers using 

ThermoScript RT-PCR system (Invitrogen, Carlsbad, CA, USA) in a reaction volume of 

20 µl. Using these cDNAs as template, the complete coding region of chicken Mx1 gene 

(Accession No. Z23168) was amplified by three pairs of primers (P1F1:5’ 

GCTCGGTGCAGTACCTGCGG 3’, P1R1: 5’ TTCCCCACGGCCTCTCTGGC 3’; 

P2F2: 5’ GCCAGAGAGGCCGTGGGGAA 3’, P2R2: 5’ 

CCCGTCCGCGGTACTGGTCT 3’; P3F3: 5’ CCAGTACCGCGGACGGGAGT 3’, 

P3R3: 5’ GGTTGCTGCTAATGGAGGATTTTGC 3’). PCR conditions were 94 
◦
C 7 

min, followed by 35 cycles at 94 
◦
C for 30 s, 55 

◦
C for 1 min, 72 

◦
C for 1 min, and a final 

extension at 72 
◦
C for 10 min. The PCR products were purified by PCR purification kit 

(Qiagen, Valencia, CA, USA). Purified PCR products were sent to the Gene 

Technologies Lab in Texas A&M University to do sequencing with Perkin Elmer ABI 

Big Dye reaction by ABI 3100 Automated Sequencer (Life Technologies, Carlsbad, CA, 

USA).  
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Gene expression 

        Primers (forward: 5’ GCACACACCCAACTGTCAGCGA 3’; reverse: 5’ 

CCCATGTCCGAAACTCTCTGCGG 3’) were designed to examine chicken Mx1 gene 

expression by real-time PCR with an amplicon of 157 base pairs across both exons 10 

and 11. cDNA from the previous reverse transcription reactions was used as templates. 

PCR reactions were performed in a 10 µl volume containing a 1× SYBR Green Master 

Mix on an ABI Prism 7900HT sequence detection system (Applied Biosystems, Foster 

City, CA). The amplification condition were 50 
◦
C for 2 min, 95 

◦
C for 10 min, followed 

by 40 cycles of 95 
◦
C for 15 s and 59 

◦
C for 1 min, and a final soak at 4 

◦
C. Chicken β-

actin gene (forward: 5’ ACG TCT CAC TGG ATT TCG AGC AGG 3’; reverse: 5’ TGC 

ATC CTG TCA GCA ATG CCA G 3’) was used for normalization by the same 

amplification condition. The expression levels of chicken Mx1 were measured in terms 

of threshold cycle value (CT) and normalized to β-actin using 2
-∆CT

(Schmittgen and 

Livak, 2008).  

 

Statistical Analysis 

        Data were subjected to one way ANOVA of JMP 8.0 (SAS Institute, Cary, NC). 

Significance threshold of P < 0.05 was considered statistically significant. 

 

Results and discussion 

        A PCR-RFLP method followed by Synergel gel separation was developed to 

identify three different Mx1 genotypes. Two forward primers (+MX1SER and 
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+MX1ASN) working with the same reverse primer (-MX1SERASN) generated PCR 

products of different sizes based on which allele (A or G) was present in the sequence. 

PCR products for genotypes NN (allele A resulting in amino acid N) were 211 bp long, 

while for genotype SS were 199 bp (allele G resulting in amino acid S), and two bands 

for the heterozygous NS genotype.  

        Chickens with NN genotype were considered resistant, while birds with SS 

genotype were considered as the susceptible (Ko, et al., 2002; Ko, 2004).Virus titers 

(Hemagglutinating units) for chicken embryos are shown in Figure 3. At 48 hours pi, SS 

birds had a higher virus titer than NN genotype birds, although the difference was no 

significant (P > 0.05). For young chicks, there was a similar tendency with SS genotype 

birds having the highest virus titer (3.04) followed by NS and NN genotypes (Fig. 4). 

Our results show that chickens of NN genotype had a tendency for lower virus titers than 

SS birds, although the differences were not significant (P > 0.05). 

 

 

 

 

        Figure 3. Virus titers of different Mx1 genotypes in chicken embryos. Note: Virus titers were 

determined by HA tests 48 hours post inoculation. Embryos with NN genotype had a lower virus titer 

(Hemaglutinating Units) than SS, although the difference was not significant (P > 0.05). 
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        Figure 4. Virus titers of different Mx1 genotypes in chickens. Note: Virus titers were determined by 

the real-time PCR 4 days post inoculation.Chickens with NN genotype had a lower virus titer than SS 

birds, although the difference was not significant (P > 0.05). 

 

  

        Genetic resistance to avian viruses has been studied for a long time and differences 

in genetic susceptibility or resistance are known to exist for major viral pathogens such 

as avian leukosis and Marek’s disease viruses in poultry (Bumstead, 1998). Genetic 

resistance is a quantitative trait with multiple genes contributing toward resistance 

(Ewald, et al., 2011). Significant associations between AIV titers and genotypes of the 

amino acid 631 mutation on chicken Mx1 protein have been reported for both embryos 

and chicks (Ko, 2004; Li, et al., 2006; Yin, et al., 2010b). However, such an association 

has not been confirmed in the current study. We speculate that other coding region 

mutations besides amino acid 631 might contribute AIV resistance. Three pairs of 

primers were designed to amplify the entire coding region of chicken Mx1 gene and 

PCR products were sequenced to screen for additional muations. Besides the substitution 

at amino acid 631 (nucleotide G2032A), thirteen additional point mutations were 
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except one insertion at the nucleotide postion of 1544 bp on the chicken Mx1. It was 

very interesting that at the beginning of the coding region (nucleotide 60-300) NS and 

SS genotypes had the same genotype which was different from NN chickens, suggesting 

that a recombination event might have taken place around this region. Therefore, more 

mutations should be identified to increase the marker density and haplotype analysis 

should be preformed to validate the antiviral activity of chicken Mx1 gene. 

 

Table 1. Genotypes of identified sigle nucleotide polymorphisms in the coding region of chicken Mx1 

cDNA sequences 

 

S631N 

(G2032A) 
C12T A61G G121C C124T A155T A280G T792C A813G G922A A1015G 1544 bp A1545G A1747G 

NN CC GG CC TT TT GG TT AA GG AA 
 

AA AA 

NN CC GG CC TT TT GG TT AA GG AA 
 

AA AA 

NN CC GG CC TT TT GG TT AA GG AA 
 

AA AA 

NN CC GG CC TT TT GG TT AA GG AA 
 

AA AA 

NN CC GG CC TT TT GG TT AA GG AA 
 

AA AA 

NN CC GG CC TT TT GG TT AA GG AA 
 

AA AA 

NS TT AA GG CC AA AA TC AG GA AG AA GG AG 

NS TT AA GG CC AA AA TC AG GA AG AA GG AG 

NS CT AA GG CC AA AA TC AG GA AG AA GG AG 

NS CT AA GG CC AA AA TC AG GA AG AA GG AG 

NS TT AA GG CC AA AA TC AG GA AG AA GG AG 

NS CT AA GG CC AA AA TC AG GA AG AA GG AG 

SS TT AA GG CC AA AA CC GG AA GG 
 

GG GG 

SS TT AA GG CC AA AA CC GG AA GG 
 

GG GG 

SS TT AA GG CC AA AA CC GG AA GG 
 

GG GG 

SS TT AA GG CC AA AA CC GG AA GG 
 

GG GG 

SS TT AA GG CC AA AA CC GG AA GG 
 

GG GG 

SS TT AA GG CC AA AA CC GG AA GG 
 

GG GG 
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        Mx1 mRNA expression increases in chicken embryo fibroblasts (CEF) by the 

treatment with poly I: C (Yin, et al., 2010a). Using a chicken 44K gene expression 

microarray we have previously shown that , the expression level of Mx1 gene was highly 

up-regulated (11.46 folds) after AIV infection (Data not published). In the current study, 

we examined chicken Mx1 gene expression levels in the three Mx1 genotypes by real-

time RT-PCR. The Mx1 gene expression levels in AIV infected and non-infected 

chickens are shown in Figure 5.  For AIV infected and non-infected chickens, Mx1 

mRNA expression was greater in NN genotype birds than SS birds, although the 

difference was not statistically significant (P > 0.05). This result was consistent with a 

previous study, in which chickens of the NN genotype had greater Mx1 expression 

levels than the SS genotype in both Beijing-You and White Leghorn lines. (Yin, et al., 

2010b). After AIV infection, Mx1 mRNA expression in chickens of the NS genotype 

was significantly up-regulated compared to the non-infected ones (P<0.05). It is 

important to mention that there was a nuleotide insertion (A) at nucleotide position 1544 

of the chicken Mx1 cDNA, which was only presented in the heterozygous chickens. 

Whether the insertion is related with the up-regulation of Mx1 mRNA expression in 

chickens of the NS genotype after AIV infection warrants further investigation.   
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        Figure 5. The Mx1 mRNA expressions of infected and non-infected birds with different genotypes. 

Note: The mRNA expression of chicken Mx gene was detected by real-time PCR. For AIV infected and 

non-infected chickens, Mx1 mRNA expression was greater in NN genotype birds than SS birds, although 

the difference was not statistically significant (P > 0.05); Mx1 mRNA expression in chickens of the NS 

genotype was significantly up-regulated compared to the non-infected heterozygous birds (P < 0.05). 

 

         

 

        The sample size can affect significance level in a given experiment. We used 119 

chicken embryos and 48 chicks in the current study. The relatively small population 

sizes, especially for the chick animal trial, plus standard variation among individual 

chickens need be taken into account for the reason why the differences were not 

significant. 

        Meanwhile, there has been a discussion of whether the S631N mutation in the 

chicken Mx1 protein plays an important antiviral role in AIV infection (Benfield, et al., 

2008; Daviet, et al., 2009). Different anti-viral responses to HPAIV infections were 

found among different genetic lines and limited resistance to LPAIV was observed in a 

recent study (Sironi, et al., 2011). They concluded that no significant association 

between anti-AIV response and polymorphisms of Mx1 gene in a genome-wide (60K 

SNP array) analysis existed (Sironi, et al., 2011). Another report showed that the 
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antiviral effect of type I IFN in chicken CEF cells were not dependent on Mx1 protein, 

suggesting that chicken Mx1 probably does not play a critical role in the inhibition of 

AIV replication in chickens (Hartle, et al., 2011).  

        In addition, genetic background might play a significant role in the anti-AIV 

response in the chicken. In 2007, Mx1 polymorphisms of 294 samples from 37 strains of 

17 chicken breeds were examined. White Leghornhad a higher frequency of the 

resistance allele (N) on Mx1 proteins, broilers had a higher frequency of the susceptible 

allele(S) (Watanabe, 2007). In another study, the positively antiviral variant was not able 

to inhibit influenza virus replication in primary chicken embryo fiboblasts from a 

commercial broiler population (Benfield, et al., 2008). Broilers and layers have 

developed different characteristics of their immune systems. Broilers are specialized in 

the production of a short term humoral response, while layers have a long-term humoral 

response in combination with a strong cellular mediated response (Koenen, et al., 2002). 

These might cause the distinct Mx1 activities after AIV infection. Since broilers were 

used in the current study, it might not easy to identify significant antiviral activities. 

        The antiviral activity of chicken Mx1 gene might also depends on different strains 

of influenza viruses. A range of influenza A virus strains were tested for murine and 

human Mx1 proteins and remarkable differences among them were found (Dittmann, 

2008). This was also confirmed in chicken studies. The Mx1 N631 variant alleles had 

effects on reductions in morbidity, early mortality, viral shedding and cytokine responses 

in chicken infected withHPAIV (H5N2), while the results were not reproduced when a 

LPAIV (H5N9) was used (Ewald, 2011). LPAIV strains (H5N9 and H5N3) were used in 
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our studies, which might determine that no significant effects were identified in the 

different Mx1 genotypes. 

        In summary, we developed a very efficient PCR-RFLP approach using a single 

PCR reaction to screen the genotypes of S631N of the chicken Mx1 gene. Our results 

suggest that embryos or chickens carrying the resistant N631 had lower virus titers and 

greater Mx1 gene expression levels than those chickens carrying the susceptible S631, 

although there were no statistically significant differences among them observed. 

However, a comprehensive analysis including the association of chicken Mx1 S631N 

variant alleles with virus titers, Mx1 mRNA expression in different genotypes and 

identification of additional Mx1 point mutations, has expanded our knowledge in the 

potential role of chicken Mx1 protein on the genetic resistance to AIV in chickens and 

its potential application in the poultry breeding industry.  
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CHAPTER III 

IDENTIFICATION OF DIFFERENTIALLY EXPRESSED MIRNAS IN CHICKEN 

LUNG AND TRACHEA WITH AVIAN INFLUENZA VIRUS INFECTION BY A 

DEEP SEQUENCING APPROACH* 

 

Introduction 

        Avian influenza virus (AIV) is a type A virus of the family Orthomyxovirida. 

Although wild aquatic birds such as waterfowl and seagulls are their natural reservoir 

(Webster, 1992), land-based birds including chickens may also be infected, which causes 

significant economic losses to the poultry industry, and raises a great public health threat 

due to potential host jump from animals to humans (Webby and Webster, 2003).  

        miRNAs are non-coding, single-stranded RNAs of 19~23 nucleotides which 

represent a novel class of gene regulators and play important roles in a variety of 

biological processes in both plants and animals (Ambros, 2003; Carrington and Ambros, 

2003; Bartel, 2004). miRNAs modulate gene expression largely at the post-

transcriptional level by different mechanisms including direct cleavage of targeted 

mRNAs (Bartel, 2004), inhibition of translation (Zhang, 2006) or even up-regulation of 

translation (Vasudevan, et al., 2007). miRNAs are involved in different biological 

activities such as development, differentiation, growth and metabolism ( Lee, et al., 

1993a; Guo, 2005; Hatfield, 2005; Lindsay, 2008). Recently, in mammals, miRNAs  

___________________ 
*Reprinted with permission from “Identification of differentially expressed miRNAs in chicken lung and 

trachea with avian influenza virus infection by a deep sequencing approach” by Wang Y. et al., 2009, 

BMC genomics, 10:512. Copyright 2009 by BMC Central Ltd. 
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have been reported to participate in the regulation of immunity, including development 

and differentiation of lymphocytes, monocytes and neotrophils, and modulation of 

inflammation (Lindsay, 2008). miR-150 expresses in mature B and T cells derived from 

mouse hematopoietic stem cells, and is able to block early B cell development when 

expressed prematurely (Zhou, et al., 2007). miR-181a is an intrinsic modulator of T cell 

sensitivity and selection in mice (Li, et al., 2007a). After exposure of THP-1 (human 

acute monocytic leukemia cell line) cells to lipopolysaccharides (LPS), miR-146 is 

identified as an inhibitor of signalling proteins of the innate immune responses by NF-

kappaB (Taganov, 2006). miRNAs have also been found to be critical effectors in the 

regulation of viral pathogenesis. Two human encoded miRNAs (miR-136 and miR-507), 

have been shown to have potential binding sites for the genes that code for the 

polymerase basic 2 (PB2) and hemmagglutinin (HA) proteins and are reported to be 

involved in the pathogenesis of H5N1 AIV (Scaria, et al., 2006). All of these evidences 

suggest that certain miRNAs might be important in the modulation of AIV infections in 

chickens. 

        In order to effectively control AIV infection in poultry, it is essential to elucidate 

the mechanisms of virus pathogenesis in chickens. However, how host cells interact with 

AIVs during infection in poultry remains poorly understood. Identification of 

differentially expressed miRNAs in AIV infected chickens will pave a novel avenue to 

understand host-virus interaction. With the development of next generation sequencing, 

massively parallel sequencing holds great promise for expression profiling (Torres, et al., 

2008) and it can provide a superior sensitivity at high sequencing depth to discover 
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especially those miRNAs with low abundance and novel miRNAs that are not able to be 

identified using traditional cloning approaches. Deep sequencing has been previously 

used to profile both chicken miRNAs and Marek’s disease virus miRNAs (Burnside, 

2008; Glazov, 2008). In the current study, a Solexa Sequencer was used to deep 

sequence differentially regulated chicken miRNAs in H5N3 infected and non-infected 

SPF chickens. Our results will expand the list of miRNAs which might be related to the 

host immune responses in animals.  

 

Materials and methods 

Sample collection and RNA isolation 

        One week old commercial Leghorn SPF chickens were randomly divided into two 

groups (4 chickens per group), housed in a negative pressure Horsfall-Bauer, 

temperature control isolation unit, and provided with water and commercial feed ad 

libitum. At three weeks of age, one group was inoculated with 0.2 ml H5N3 virus 

containing 10
6
 EID50/ml, while the other group was inoculated with PBS by the intra-

choanal cleft route. Based on the pilot study at 4 dpi, depression and severely congested 

lungs and trachea were observed. Therefore, all chickens were euthanized at 4 days post-

inoculation, and lung and trachea epithelial layers were collected for RNA isolation. The 

animal experiment was performed according to the guidelines approved by the 

Institutional Animal Care and Use Committee, Texas A&M University. 

        Two pools of total RNA samples (two random chickens per pool) of each tissue 

from each group were generated. Total RNAs were isolated using Trizol (Invitrogen, 
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Carlsbad, CA) following the manufacturer’s protocol. Dnase I (Ambion, Austin, TX) 

digestion was carried out after RNA isolation according to manufacturer’s instructions. 

The RNA concentration and purity were determined by measuring absorbance at 260 nm 

and A260/A280 ratio using a NanoDrop ND-1000 spectrophotometer (Nanodrop 

Technologies, Wilmington, DE). RNA samples were stored at -80 ºC until further use.  

 

Viral Titration 

        Virus replication at 4 dpi was determined by real-time RT-PCR for influenza matrix 

gene using AgPath-ID™ AIV- M kit (Ambion, Austin, TX) following the 

manufacturer’s instructions. Control RNA was extracted from serially diluted H5N3 

virus (10
1.5

–10
5.5

 log10 EID50/ml). Standard curve was generated with control viral 

RNAs. The amount of RNA in the samples was converted into log10 EID50/ml by 

interpolation as described previously (Lee and Suarez, 2004). 

 

Small RNA sequencing and analysis 

        For small RNA library construction, RNA samples were prepared using the DGE-

Small RNA Sample Prep Kit (Illumina, San Diego, CA). In brief, RNA was purified by 

polyacrylamide gel electrophoresis (Pages, et al.), to enrich for molecules in the range of 

18-30 nt, and ligated with proprietary adapters to both 5’ and 3’ termini of the RNA. 

Ligated samples were used as templates for cDNA synthesis and then amplified with 15 

PCR cycles to produce sequencing libraries. A total of eight Solexa-ready small RNA 

templates were prepared through two gel purification steps to eliminate concatenated 
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adaptors without inserts. Purified cDNAs were quantified using the Quant-iT PicoGreen 

dsDNA Kit (Invitrogen, Carlsbad, CA) and diluted to 10 nM for sequencing on an 

Illumina 1G Genome Analyzer at the Genome Sequencing Center of Baylor College of 

Medicine. Cluster generation was performed and clusters were sequenced.   

        For each sample, sequences were first passed through an adaptor filter that searched 

for sequences that were followed by at least 6 nucleotides of the 3' adaptor. Out of the 

total reads, any reads without a perfect 10-nt linker subsequence were directly discarded 

adjoining the insert, yielding of length 10 nt or longer that were subject to further 

processing. All full-length, exact sequence matches to E. coli (k12, o157:h7, o157:h7 

edl933, cft073) were discarded to eliminate possible sequence artifacts arising from the 

amplification process. All unique sequence reads with a minimum read count of 10 were 

aligned with precursor chicken miRNA sequences from miRBase version 13.0 (Ambros, 

et al., 2003; Griffiths-Jones, 2004; Griffiths-Jones, et al., 2006; Griffiths-Jones, et al., 

2008a). Reads of each miRNA were the sum of exact and loose matches (± 4 bp) to 

known miRNAs. For each sample, counts were normalized to the total number of small 

RNA sequences, and then for each miRNA, the normalized number of counts was 

compared between groups or between tissues.  

        Fisher’s Exact test was used to identify differentially expressed miRNAs at a 5% 

false discovery rate. False discovery rate (FDR) (Q values) was calculated by R program 

according to Benjamin and Hochberg's method (Benjamini, 1995). Ratios were 

calculated as the ratio of normalized reads of infected over non-infected group or lung 

over trachea. 
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        Statistics related to over representation of functional categories were performed 

using DAVID, which is based upon a Fisher Exact statistic methodology similar to that 

described by Al-Shahrour et al (Al-Shahrour, et al., 2004). A P < 0.05 was considered as 

significant.  

        Novel miRNAs from both lung and trachea libraries were identified using the 

method by Creighton et al. 2009 (Creighton, et al., 2008). In brief, the first step is to take 

the sequence reads that did not map to known miRNA precursors, mapped them to the 

chicken genome, and got an exact sequence match along with 100 bases flanking either 

side. About 220-bp sequences were then tested for miRNA-like hairpin structure, and 

folded with the Vienna package (Hofacker, et al., 1994). The miRNA hairpin structures 

that meet the Ambros (Ambros, et al., 2003) criteria were identified. Specifically, the 

putative miRNA must lie on one arm of a single-loop hairpin with minimum free energy 

less than -25 kcal/mol. The sequence reads that were appropriately placed in these 

miRNA-like hairpins were considered as ‘putative mature miRNAs’ (pmms). Then we 

examined the pmms for cross-species conservation of the hairpin structure. The 

sequence reads with strong conservation of the mature miRNA, significant conservation 

of the hairpin arm opposite the mature miRNA, and little or no conservation of the 

hairpin loops were considered as novel miRNAs. 

 

Confirmation by TaqMan MicroRNA Assay 

        To determine the expression of miRNAs by quantitative RT-PCR (qRT-PCR), 

TaqMan microRNA assay was preformed. The specific stem-loop RT primers of miR-1a, 



 

 

50

miR125b, miR-146a and U6 were obtained commercially from Applied Biosystems 

(Foster City, Calif., USA). In brief, cDNA was synthesized from total RNA by using the 

gene specific primers according to the protocol of TaqMan Micro RNA Assays (Applied 

Biosystems, CA, USA). Reverse transcriptase reactions contained 10 ng of RNA 

samples, 3 µl stem loop RT primer and reagents from a TaqMan MicroRNA Reverse 

Transcription Kit (Applied Biosystems, CA, USA). The 15 µl reactions were incubated 

for 30 min at 16 °C, 30 min at 42 °C and 5 min at 85 °C, and then held at 4 °C.  

        Real-time PCR was performed by using gene specific probes and a pair of primers 

(TaqMan MicroRNA Assays, Applied Biosystems) and reagents of TaqMan 2* 

Universal PCR Master Mix (No AmpErase UNG) (Applied Biosystems, CA, USA). The 

20 µl PCR reactions included 1.33 µl RT-PCR product, 10 µl PCR master mix, and 1µl 

20* TaqMan MicroRNA Assay mix (Applied Biosystems, CA, USA). These reactions 

were incubated at 95 °C for 10 min, followed by 40 cycles at 95 °C for 10 s, 60 °C for 

40 s and 72 °C for 1 s by ABI 7900 Realtime PCR instrument (Applied Biosystems, CA, 

USA). All reactions were run in triplicates. The threshold cycle was defined as the 

fractional cycle number at which the fluorescence passes the fixed threshold. The 

expression levels of miR-1a, miR-125b and miR-146a in each sample were measured in 

terms of threshold cycle value and normalized to U6 using 2
-∆∆CT 

(Schmittgen, 2008 ). 

U6 was used as an internal control. 
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Results 

Virus titration 

        Virus replication was examined by real-time RT-PCR for influenza matrix gene 

from total RNAs of lung and trachea at 4 dpi. The titer of infected samples was 12.29 

log10 EID50/ml in lung, and 3.89 log10 EID50/ml in trachea. Both non-infected lung and 

trachea samples were negative. 

 

Small RNA libraries 

        A total of 278,398 and 340,726 filtered high quality reads were obtained from 

chicken lungs and trachea, respectively (Table 2). In the libraries of chicken lungs, 

98,849 and 179,549 reads were obtained from infected and non-infected lungs, 

respectively. Out of these reads, 52,363 of these high quality reads were exact matches 

while another 9,357 reads were loose matches to known chicken miRNAs. All reads 

with a perfect match to mature miRNA sequences from chicken deposited in miRBase 

(http://microrna.sanger.ac.uk/) with insertions or deletions of 1-4 nucleotides was 

considered as a loose match to represent dicer-processing products from each of the 

chicken miRNA precursors. An example from gga-mir-181a is shown in Figure 6. Here 

we saw that the sample had 77 copies of a sequence that was identical to that of the 

mature gga-mir-181a (denoted by a ‘*’). In addition we observed significant alternate 

processing at the 3’-end that was characteristic of miRNAs in various copy numbers. 

Loose matches were defined by sequence reads that aligned with chicken miRNA 

consensus sequence with 1-4 mismatches. These may represent sequencing errors (when 
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occurring in low copy numbers), mutations and/or RNA editing events. In the libraries of 

chicken trachea, 250,460 reads were obtained from infected trachea and 90,266 were 

obtained from non-infected trachea. Out of these reads, 44,243 of these high quality 

reads were exact matches and another 4,178 reads were loose matches to known chicken 

miRNAs. The sum of exact and loose match reads was used as the total number of reads 

for each miRNA.  

 

Table 2. Number of reads of miRNAs from AIV infected and non-infected chicken lungs and trachea 

 

 
Infected 

lungs 

Non-infected 

lungs 

Infected 

trachea 

Non-infected 

trachea 

High quality /both adapter 98849 179549 250460 90266 

Exact match to known 

chicken miRNAs 
10939 41424 36405 7838 

Loose match to known 

chicken miRNAs 
1441 7916 2926 1252 

 

 

 

 

 

 
 

        Figure 6. Reads aligning with of gga-mir-181a. Notes: Sequence of gga-mir-181a hairpin is 

described in the top line. The brackets below denote the secondary structure. Reads aligning with the 

mature gga-mir-181a sequence as found in miRBase is denoted by a ‘*’ sequence. The +/- 4 nt matches 

representing reads that perfectly matched the gga-mir-181a precursor with insertions or deletion of 1-4 

nucleotides from the 5’ and 3’ ends are shown below the mature miRNA exact matches. The number of 

reads corresponding to each sequence is shown at the right hand end of the dotted line.  
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        To display the distribution of miRNAs at each library, reads of individual miRNA 

within each group were transformed to log10. The plots of distributions of transformed 

reads for each miRNA from each group are shown in Figure 7. Most miRNAs had 

around 10-100 reads in these four groups. There was no significant difference in the 

medians of the four libraries (P > 0.05) indicating they had similar distributions of the 

miRNA reads.  

 

 

 

        Figure 7.  Distributions of reads from each group. Notes: All the reads in each group have been 

transformed by Log10. 

 

 

        Of the 475 distinct Gallus gallus miRNA entries in miRBase (Ambros, et al., 2003; 

Griffiths-Jones, 2004; Griffiths-Jones, et al., 2006; Griffiths-Jones, et al., 2008a), 377 

miRNAs were identified in chicken lungs and 149 miRNAs in chicken trachea. In 

addition, we identified 87 potential novel miRNA sequences, in which 84 novel 
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miRNAs were identified in chicken lung and 3 miRNAs were identified in chicken 

trachea.  

 

 miRNAs expression profiling analysis 

        In the present study there were four different groups: two tissues (lung and trachea) 

and two states per tissue (infected and non-infected states). Two comparisons were made 

between infected vs. non-infected within tissue and another two comparisons between 

lung and trachea at either infected or non-infected state. Differentially expressed 

miRNAs in each comparison were identified (P < 0.05, Q < 0.05 and fold change > 2). 

Within tissues, 73 and 36 miRNAs were differentially expressed between infected and 

non-infected groups in lungs and trachea, respectively (Tables 3 and 4). When between 

tissues were compared, 57 and 78 miRNAs were differentially expressed at infected and 

non-infected states, respectively (Tables 3 and 4).   

        More miRNAs (60 out of 73 miRNAs in lungs and 27 out of 36 miRNAs in trachea) 

were down-regulated than up-regulated with AIV infection in both lungs and trachea. 

When infected vs. non-infected was compared, 5 miRNAs (miR-106, miR-1729, miR-

1798, miR-429 and miR-1711) were only expressed in the non-infected lungs, while 2 

miRNAs (miR-1576 and miR-1636) were only expressed in infected lungs (Table 3). 

Between infected and non-infected trachea, two (miR-1612 and miR-1458) out of 27 

down-regulated miRNAs were expressed only in non-infected trachea (Table 4). 
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Table 3. Differentially expressed miRNAs between infected and non-infected lungs (P < 0.05, Q < 0.05 

and Ratio > 2) 

 

miRNA Position on chromosomes 
Reads in 

infected  

Reads in 

non-

infected  

Ratio 

infected/non-

infected 

(Normalized) 

gga-mir-1576 chr13:18532632-18532726 8 0 -
1 

gga-mir-1636 chr 15: 4729959-4730046 6 0 - 

gga-mir-206 chr3: 110390439-110390514 101 9 20.38 

gga-mir-1793 chr9: 25115521-25115617 25 5 8.36 

gga-mir-1599 chr7: 25926968-25927029 48 13 6.71 

gga-mir-1701 chr4: 82234261-82234337 27 9 5.45 

gga-mir-449 chrZ: 16040613-16040698 38 14 4.93 

gga-miR-140 chr11: 21030641-21030735 1438 803 3.25 

gga-mir-1416 chrZ: 34596479-34596567 17 10 3.09 

gga-mir-1458 chr9: 11743528-11743637 25 15 3.03 

gga-mir-1612 chr9: 6031748-6031831 39 31 2.29 

gga-mir-1a-1 chr20: 8107831- 8107901 551 471 2.12 

gga-mir-1a-2 chr2: 105673483- 105673567 593 523 2.06 

gga-mir-103-2 chr4: 91906889-91906971 49 148 0.49 

gga-mir-99a chr1: 102424333-102424413 23 92 0.45 

gga-mir-456 chr3: 32679710-32679821 30 122 0.45 

gga-let-7c chr1: 102425086-102425169 735 3059 0.44 

gga-mir-181b-2 chr17: 10220137- 10220221 20 89 0.41 

gga-let-7j chr26: 1442697-1442779 648 2938 0.40 

gga-mir-15b chr9: 23742966- 23743056 9 41 0.40 

gga-let-7a-1 chr12: 6302911-6303000 658 3020 0.40 

gga-let-7a-2 chr24: 3380993-3381064 671 3113 0.39 

gga-let-7g chr12: 2809078-2809160 342 1623 0.38 

gga-mir-181a-2 chr17: 10218497-10218587 57 283 0.37 

gga-mir-200b chr21: 2585642-2585726 14 72 0.35 

gga-let-7a-3 chr1: 73421272-73421347 892 4699 0.34 

gga-mir-100 chr21: 3372894-3372973 15 79 0.34 

gga-mir-30d chr2: 148337263-148337326 60 334 0.33 

gga-mir-30e chr23: 5248414-5248509 20 112 0.32 

gga-mir-181a-1 chr8: 2001561-2001664 65 366 0.32 

gga-mir-181b-1 chr8: 2001750-2001838 18 106 0.31 

gga-let-7k chr26: 1442897-1442979 53 327 0.29 

gga-mir-125b chr1: 102457647-102457736 19 119 0.29 

gga-mir-1b chr23: 4663912-4663975 10 63 0.29 

gga-mir-146b chr6: 24570060-24570164 102 691 0.27 

gga-mir-10a chrun_random: 379304-379377 86 598 0.26 

gga-mir-101-2 chr8: 29051918-29051993 18 136 0.24 

gga-mir-27b chrZ: 41157642-41157738 5 41 0.22 

gga-mir-144 chr19: 5824123-5824207 11 94 0.21 

gga-let-7f chr12: 6302497-6302583 947 8228 0.21 

gga-mir-33-1 chr1: 51372282-51372350 2 19 0.19 

gga-mir-126 chr17: 8431742-8431825 25 250 0.18 

gga-mir-1456 chrZ: 44167486-44167595 2 20 0.18 

gga-mir-22 chr19: 5352096- 5352195 4 43 0.17 

gga-mir-16c chr4: 4048689- 4048759 6 65 0.17 
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Table 3 continued 

 

miRNA Position on chromosomes 
Reads in 

infected  

Reads in 

non-

infected  

Ratio 

infected/non-

infected 

(Normalized) 

     

gga-mir-101 chrZ: 28037874- 28037952 19 219 0.16 

gga-mir-30a-5p chr3: 85102239- 85102310 68 785 0.16 

gga-mir-30c-1 chr23: 5249637-5249725 3 37 0.15 

gga-mir-146c chr4: 92169271- 92169399 18 243 0.13 

gga-mir-26a chr2: 4467516- 4467592 98 1326 0.13 

gga-mir-451 chr19: 5823968-5824036 93 1287 0.13 

gga-mir-146a chr13: 7555593- 7555691 7 105 0.12 

gga-mir-21 chr19: 7322072-7322168 46 771 0.11 

gga-mir-24 chrZ: 41158175-41158242 18 344 0.10 

gga-mir-17-3p chr1: 152248781-152248865 2 44 0.08 

gga-mir-20a chr1: 152248306-152248403 1 23 0.08 

gga-mir-23b chrZ: 41157406-41157491 12 285 0.08 

gga-mir-142-3p chr19: 496983-497070 2 49 0.07 

gga-mir-142-5p chr19: 496983-497070 2 49 0.07 

gga-mir-17-5p chr1: 152248781-152248865 2 55 0.07 

gga-mir-19b chr1: 152248183-152248269 1 31 0.06 

gga-mir-30c-2 chr3: 85126853-85126924 1 34 0.05 

gga-mir-739  7 241 0.05 

gga-mir-15c chr4: 4049055-4049130 1 46 0.04 

gga-mir-15a chr1: 173700493-173700575 2 102 0.04 

gga-mir-16-2 chr9: 23742791-23742884 1 67 0.03 

gga-mir-16-1 chr1: 173700351-173700434 1 107 0.02 

gga-mir-106 chr4: 3970359-3970439 0 27 +
2
 

gga-mir-1729 chr15: 769596-769666 0 24 + 

gga-mir-1798 chr20: 9654914-9655009 0 24 + 

gga-mir-429 chr21: 2580812-2580895 0 22 + 

gga-mir-1711 chr12: 17010140-17010207 0 18 + 

 
Note:

 1
 Specifically expressed in infected lungs. 

2
 Specifically expressed in non-infected lungs. 
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Table 4. Differentially expressed miRNAs between infected and non-infected trachea (P < 0.05, Q < 0.05 

and Ratio > 2) 

 

miRNA 

 

Position on chromosomes 

 

Reads in 

infected 

Reads in 

non-

infected 

Ratio 

infected/non-

infected 

(Normalized) 

gga-mir-1a-2 chr2: 105673483- 10567356 11423 441 9.34 

gga-mir-1a-1 chr20: 8107831- 8107901 10438 405 9.29 

gga-mir-455-3p chr17:6021890-6021975 29 2 5.23 

gga-mir-455-5p chr17:6021890-6021975 29 2 5.23 

gga-mir-34b chr24: 5684900-5684983 870 82 3.82 

gga-mir-499 chr20: 2599334-2599424 154 15 3.70 

gga-mir-34c chr24: 5685637-5685710 540 64 3.04 

gga-mir-140 chr11: 21030641-21030735 2334 383 2.20 

gga-mir-1b chr23: 4663912-4663975 66 11 2.16 

gga-mir-456 chr3: 32679710-32679821 37 28 0.48 

gga-mir-125b chr1: 102457647-102457736 31 24 0.47 

gga-mir-148a chr2: 32053543-32053610 116 94 0.44 

gga-let-7b chr1: 73422101-73422185 1761 1460 0.43 

gga-mir-181a-1 chr8: 2001561-2001664 59 49 0.43 

gga-mir-146c chr4: 92169271- 92169399 42 36 0.42 

gga-mir-181a-2 chr17: 10218497-10218587 51 45 0.41 

gga-let-7g chr12: 2809078-2809160 413 373 0.40 

gga-mir-206 chr3: 110390439-110390514 95 88 0.39 

gga-mir-222 
chr1: 114216027-114216124; 

chr1: 114218422-114218519 
14 13 0.39 

gga-let-7k chr26: 1442897-1442979 58 54 0.39 

gga-mir-181b-2 chr17: 10220137- 10220221 20 21 0.34 

gga-let-7i chr1: 34895687-34895770 123 136 0.33 

gga-mir-126 chr17: 8431742-8431825 17 19 0.32 

gga-mir-99a chr1: 102424333-102424413 14 16 0.32 

gga-mir-30a-3p chr3: 85102239- 85102310 66 76 0.31 

gga-mir-30a-5p chr3: 85102239- 85102310 74 87 0.31 

gga-mir-146b chr6: 24570060-24570164 78 107 0.26 

gga-mir-181b-1 chr8: 2001750-2001838 18 25 0.26 

gga-mir-30d chr2: 148337263-148337326 46 68 0.24 

gga-mir-100 chr21: 3372894-3372973 25 41 0.22 

gga-mir-92 chr1: 152248070-152248070 24 40 0.22 

gga-mir-15a chr1: 173700493-173700575 3 9 0.12 

gga-mir-451 chr19: 5823968-5824036 14 89 0.06 

gga-mir-10a chrun_random: 379304-379377 11 139 0.03 

gga-mir-1612 chr9: 6031748-6031831 0 9 -
1 

gga-mir-1458 chr9: 11743528-11743637 0 7 - 

 

Note:
 1
 Specifically expressed in non-infected trachea. 
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         In the comparisons between tissues, only few miRNAs (6 out of 57 miRNAs in the 

infected state and 1 out of 78 miRNAs in the non-infected state) were highly expressed 

in trachea compared to lungs (Tables 5 and 6). Under the infected state, 28 miRNAs 

were specifically expressed in lungs and 23 miRNAs were expressed at higher levels in 

lungs than in trachea. In the non-infected state, 11 miRNAs specifically expressed in 

lungs and 66 miRNAs were expressed at higher levels in lungs than trachea. Of 

particular interest, miR-1a, miR-140, and miR-449, which were highly expressed in 

infected tracheas than the non-infected ones, and also were differentially expressed 

between infected tissues (higher expression levels in infected trachea than infected 

lungs). In the tissue comparison under the non-infected state, miR-206 was the only 

miRNA that had higher expression level in trachea than in lungs. In general, those highly 

abundant miRNAs were observed across all four groups examined (Table 7).  

 

 

 

Table 5. Differentially expressed miRNAs between infected lungs and trachea (P < 0.05, Q < 0.05 and 

Ratio > 2) 

 

miRNA Position on chromosomes 
Reads in 

lungs  

Reads in 

trachea  

Ratio 

lung/trachea 

(Normalized) 

gga-mir-1599 chr7: 25926968-25927029 48 0 -
1 

gga-mir-1612 chr9: 6031748-6031831 39 0 - 

gga-mir-1701 chr4: 82234261-82234337 27 0 - 

gga-mir-1458 chr9: 11743528-11743637 25 0 - 

gga-mir-1793 chr9: 25115521-25115617 23 0 - 

gga-mir-181b-2 chr17: 10220137- 10220221 20 0 - 

gga-mir-1416 chrZ: 34596479-34596567 17 0 - 

gga-mir-7-1 chrZ: 8107831-8107901 16 0 - 

gga-mir-7b chr1: 73422101-73422185 15 0 - 

gga-mir-1638 chr5: 58712377- 58712463 13 0 - 

gga-mir-144 chr19: 5824123-5824207 11 0 - 

gga-mir-1761 chr8: 17523212-17523292 9 0 - 
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Table 5 continued 

 

miRNA Position on chromosomes 
Reads in 

lungs  

Reads in 

trachea  

Ratio 

lung/trachea 

(Normalized) 

gga-mir-1576 chr13:18532632-18532726 8 0 - 

gga-mir-1814 chr4: 61722590-61722663 8 0 - 

gga-mir-1452 chrZ: 8107831-8107901 7 0 - 

gga-mir-1815 chr6: 29566734-29566810 7 0 - 

gga-mir-122-1 chrZ: 649337-649413 6 0 - 

gga-mir-122-2 chrurn_random: 12066796-12066872 6 0 - 

gga-mir-1636 chr15: 4729959-4730046 6 0 - 

gga-mir-1659 chr7: 14764187-14764287 6 0 - 

gga-mir-1786 chr14: 7801714-7801822 6 0 - 

gga-mir-218-1 chr4: 77774698-77774806 5 0 - 

gga-mir-218-3  5 0 - 

gga-mir-7-2 chr10: 14823525-14823623 5 0 - 

gga-mir-1467 chr2: 141373919-141374028 4 0 - 

gga-mir-1630 chr9: 1883593-1883649 4 0 - 

gga-mir-1816 chr2: 90603851-90603955 4 0 - 

gga-mir-7-3 chr28: 4436025-4436119 4 0 - 

gga-mir-10a chrun_random: 379304-379377 86 11 19.81 

gga-mir-451 chr19: 5823968-5824036 93 14 16.83 

gga-mir-184 chr10: 22146245-22146318 11 3 9.29 

gga-mir-193b chr14: 759453-759535 11 3 9.29 

gga-mir-181a-2 chr17: 10218497-10218587 57 18 8.02 

gga-mir-205a chr26: 2896047-2896142 6 2 7.60 

gga-mir-92 chr1: 152248070-152248070 42 24 4.43 

gga-mir-99a chr1: 102424333-102424413 23 14 4.16 

gga-mir-126 chr17: 8431742-8431825 25 17 3.73 

gga-let-7i chr1: 34895687-34895770 177 123 3.65 

gga-mir-146b chr6: 24570060-24570164 102 78 3.31 

gga-mir-30d chr2: 148337263-148337326 60 46 3.30 

gga-mir-181a-1 chr8: 2001561-2001664 65 51 3.23 

gga-let-7b chr1: 73422101-73422185 2008 1761 2.89 

gga-mir-206 chr3: 110390439-110390514 101 95 2.69 

gga-mir-148a chr2: 32053543-32053610 114 116 2.49 

gga-mir-30a-5p chr3: 85102239- 85102310 68 74 2.33 

gga-let-7k chr26: 1442897-1442979 53 58 2.32 

gga-mir-30a-3p chr3: 85102239- 85102310 58 66 2.23 

gga-mir-30e chr23: 5248414-5248509 20 23 2.20 

gga-let-7g chr12: 2809078-2809160 342 413 2.10 

gga-mir-456 chr3: 32679710-32679821 30 37 2.05 

gga-mir-103-2 chr4: 91906889-91906971 65 82 2.01 

gga-mir-1b chr23: 4663912-4663975 10 66 0.38 

gga-mir-34b chr24: 5684900-5684983 112 870 0.37 

gga-mir-34c chr24: 5685637-5685710 78 540 0.37 

gga-mir-499 chr20: 2599334-2599424 13 154 0.21 

gga-mir-1a-1 chr20: 8107831- 8107901 551 10438 0.13 

gga-mir-1a-2 chr2: 105673483- 10567356 593 11423 0.13 

 
Note:

 1
 Specifically expressed in infected lungs. 
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Table 6. Differentially expressed miRNAs between non-infected lungs and trachea (P < 0.05, Q < 0.05 

and Ratio > 2) 

 

miRNA Position on chromosomes 
Reads in 

lungs  

Reads in 

trachea  

Ratio 

lung/trachea 

(Normalized) 

gga-mir-30c-2 chr3: 85126853-85126924 34 0 -
1 

gga-mir-19b chr1: 152248183-152248269 31 0 - 

gga-mir-1798  chr20: 9654914-9655009 24 0 - 

gga-mir-1456  chrZ: 44167486-44167595 20 0 - 

gga-mir-1711  chr12: 17010140-17010207 18 0 - 

gga-mir-122-1 chrZ: 649337-649413 17 0 - 

gga-mir-203  chr:5: 53206814-53206911 16 0 - 

gga-mir-122-2 chrurn_random: 12066796-12066872 14 0 - 

gga-mir-1599  chr7: 25926968-25927029 13 0 - 

gga-mir-1638  chr5: 58712377- 58712463 12 0 - 

gga-mir-1761  chr8: 17523212-17523292 12 0 - 

gga-mir-144  chr19: 5824123-5824207 94 2 23.63 

gga-mir-146a  chr13: 7555593- 7555691 105 3 17.60 

gga-mir-739   241 7 17.31 

gga-mir-106  chr4: 3970359-3970439 27 1 13.57 

gga-mir-16-1 chr1: 173700351-173700434 107 4 13.45 

gga-mir-193a chr18: 6423770-6423846 26 1 13.07 

gga-mir-142-3p  chr19: 496983-497070 49 2 12.32 

gga-mir-142-5p  chr19: 496983-497070 49 2 12.32 

gga-mir-1729  chr15: 769596-769666 24 1 12.07 

gga-mir-20a  chr1: 152248306-152248403 23 1 11.56 

gga-mir-21  chr19: 7322072-7322168 771 40 9.69 

gga-mir-17-5p  chr1: 152248781-152248865 55 3 9.22 

gga-mir-16-2 chr9: 23742791-23742884 67 4 8.42 

gga-mir-24  chrZ: 41158175-41158242 344 21 8.24 

gga-mir-30e  chr23: 5248414-5248509 112 7 8.04 

gga-mir-15c  chr4: 4049055-4049130 46 3 7.71 

gga-mir-223  chr:4: 232949-233048 15 1 7.54 

gga-mir-29a  chr1: 3236329-3236417 15 1 7.54 

gga-mir-29c chr26: 2511658-2511746 15 1 7.54 

gga-mir-17-3p  chr1: 152248781-152248865 55 3 7.37 

gga-mir-451  chr19: 5823968-5824036 1287 89 7.27 

gga-mir-101  chrZ: 28037874- 28037952 219 16 6.88 

gga-mir-126  chr17: 8431742-8431825 250 19 6.61 

gga-mir-26a  chr2: 4467516- 4467592 1326 103 6.47 

gga-mir-130c  chr19: 7145027-7145120 25 2 6.28 

gga-mir-23b  chrZ: 41157406-41157491 285 23 6.23 

gga-mir-30c-1 chr23: 5249637-5249725 37 3 6.20 

gga-mir-193b  chr14: 759453-759535 23 2 5.78 

gga-mir-101-2 chr8: 29051918-29051993 136 12 5.70 

gga-mir-15a chr1: 173700493-173700575 102 9 5.70 

gga-let-7f chr12: 6302497-6302583 8228 781 5.30 

gga-mir-27b chrZ: 41157642-41157738 41 4 5.15 

gga-mir-30a-5p chr3: 85102239- 85102310 785 87 4.54 

gga-mir-30a-3p chr3: 85102239- 85102310 656 76 4.34 

gga-mir-16c chr4: 4048689- 4048759 65 8 4.08 
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Table 6 continued 

 

miRNA Position on chromosomes 
Reads in 

lungs  

Reads in 

trachea  

Ratio 

lung/trachea 

(Normalized) 

gga-mir-181a-1 chr8: 2001561-2001664 366 49 3.76 

gga-mir-200b chr21: 2585642-2585726 72 10 3.62 

gga-mir-22 chr19: 5352096- 5352195 43 6 3.60 

gga-let-7a-3 chr1: 73421272-73421347 3193 468 3.43 

gga-mir-146c chr4: 92169271- 92169399 243 36 3.39 

gga-mir-146b chr6: 24570060-24570164 691 107 3.25 

gga-mir-181a-2 chr17: 10218497-10218587 283 45 3.16 

gga-let-7k chr26: 1442897-1442979 327 54 3.04 

gga-mir-15b chr9: 23742966- 23743056 41 7 2.94 

gga-let-7a-2 chr24: 3380993-3381064 3113 540 2.89 

gga-mir-99a chr1: 102424333-102424413 92 16 2.89 

gga-mir-1b chr23: 4663912-4663975 63 11 2.88 

gga-mir-199-1 chr17: 5667150-5667243 541 95 2.86 

gga-mir-199-2 chr8: 4732773-4732880 541 95 2.86 

gga-let-7a-1 chr12: 6302911-6303000 3020 532 2.85 

gga-let-7a-3 chr1: 73421272-73421347 1506 266 2.85 

gga-let-7j chr26: 1442697-1442779 2938 522 2.83 

gga-mir-221 chr1: 114218926-114219024 129 23 2.82 

gga-mir-128-1 chr7: 3222815032228231 43 8 2.70 

gga-mir-125b chr1: 102457647-102457736 119 24 2.49 

gga-mir-30d chr2: 148337263-148337326 344 68 2.47 

gga-mir-103-2 chr4: 91906889-91906971 243 51 2.40 

gga-let-7i chr1: 34895687-34895770 633 136 2.34 

gga-mir-107 chr6: 20487964-20488044 77 17 2.28 

gga-let-7c chr1: 102425086-102425169 3059 679 2.26 

gga-mir-456 chr3: 32679710-32679821 122 28 2.19 

gga-let-7g chr12: 2809078-2809160 1623 373 2.19 

gga-mir-10a chrun_random: 379304-379377 598 139 2.16 

gga-mir-181b-1 chr8: 2001750-2001838 106 25 2.13 

gga-mir-181b-2 chr17: 10220137- 10220221 89 21 2.13 

gga-mir-34b chr24: 5684900-5684983 337 82 2.07 

gga-mir-206 chr3: 110390439-110390514 9 88 0.05 

 
Note:

 1
 Specifically expressed in non-infected lungs. 
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Table 7. High abundant miRNAs in all four libraries 

Name 
Uninfected lung 

(179,549)
1 

Infected lung 

(98,849) 

Uninfected trachea 

(90,266) 

Infected trachea 

(250,460) 

gga-let-7b 4,732 2,008 1,460 1,761 

gga-let-7f 8,228 947 781 1,949 

gga-let-7a-3 3,193 562 468 917 

gga-let-7c 3,059 735 679 1,327 

gga-mir-140 803 1,438 383 2,334 

gga-mir-1a-2 523 593 441 11,423 

gga-mir-1a-1 471 551 405 10,438 

gga-let-7a-2 1,633 341 276 549 

gga-let-7g 1,623 342 373 413 

gga-let-7a-1 1,510 329 266 532 

 

Note: 
1
 Total number of reads for each group 

 

 

Confirmation of differentially expressed miRNA 

        TaqMan miRNA assays were used to confirm the expression pattern of 

differentially expressed miRNAs in lungs. There were general consistency between 

TaqMan assay and deep sequence analysis in three miRNAs (miR-1a, miR-125b and 

miR-146a) in terms of directions of regulation and significance. Specifically, there was a 

1.16 fold up-regulation (2.12 folds in deep sequencing analysis) in miR-1a, 2.13 fold 

down-regulation (8.33 fold in deep sequencing analysis) in miR-125b, and 3.03 fold 

down-regulation (3.45 fold in deep sequencing analysis) in miR-146a (P < 0.05).   

 

Clustering of chicken miRNAs 

        Chromosomal positions of differentially expressed miRNAs revealed that some of 

them were very close to each other. According to a previous report (Gu, et al., 2007), 

miRNAs can be grouped as one cluster if they are less than 1,000 bp apart on the same 
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chromosome. Based on the miRBase 13.0 (Ambros, et al., 2003; Griffiths-Jones, 2004; 

Griffiths-Jones, et al., 2008a), there are 20 miRNA clusters in the chicken genome 

according to the criteria above. Eighteen of these clusters were detected in lungs and 12 

clusters in trachea, respectively (Table 8). Each cluster contained at least two miRNAs, 

and total of 47 miRNAs were included in these clusters. Within these clusters, the mir-

92-mir-19b-mir-20a-mir-19a-mir-18a-mir-17, which is equivalent to the mammalian 

mir-17-92 cluster, and mir-302b-mir-302c-mir-1811-mir-302a-mir-302d-mir-367 cluster 

were the biggest clusters containing six miRNAs. Both of them were detected in lungs. 

There were only seven clusters differentially expressed (all miRNAs within the cluster 

differentially expressed in the comparison of infection vs. non-infection or between 

tissues). Clusters mir-16-1-mir-15a, let-7f-let-7a-1, mir-181a-1-mir-181b-1, let-7j-let-7k, 

mir-23b-mir-27b-mir-24, and mir-16-2-mir-15b were down-regulated in lungs and mir-

181a-1-mir-181b-1 was also down-regulated in trachea with AIV infection. Cluster mir-

34b-mir-34c was up-regulated in trachea. 
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Table 8. Identified miRNA clusters 

Cluster Chromosome locations 
Expressed in 

lungs 

Expressed in 

trachea 

let-7a-3-let-7b Chr1: 73421272-73421347; 73422101- 

73422185 

Y
1 

Y 

mir-222-mir-221 Chr1: 114218422- 114218519;  11421 

8926-114219024 

Y Y 

mir-92-mir-19b-mir-20a-

mir-19a-mir-18a-mir-17 

Chr1: 152248070-152248147; 152248 

183-152248269; 152248306- 1522484 

03; 152248492 -152248572; 1522486 26-

152248718; 152248781-152248865 

Y N
2
 

mir-16-1-mir-15a Chr1: 173700351-173700434; 173700 

493-173700575 

Y Y 

mir-20b-mir-18b Chr4: 3970047-3970131; 3970228- 

3970311 

Y N
 

mir-302b-mir-302c-mir-

1811-mir-302a-mir-302d-

mir-367 

Chr4: 58651314-58651385; 58651576- 

58651640; 58651698-58651778; 5865 

1879-58651945; 58652214-58652282; 

58652350-58652422 

Y N 

mir-1547-mir-204-2 Chr10: 6651001-6651074; 6651274- 

6651374 

Y N 

mir-1720-mir-7-2 Chr10: 14823390-14823454; 14823525 -

14823623 

Y Y 

let-7f-let-7a-1 Chr12: 6302497-6302583; 6302911- 

6303000 

Y Y 

mir-1763-mir-1564 Chr14: 12895655-12895720; 12896507-

12896577 

Y N 

mir-34b-mir-34c Chr24: 5684900-5684983; 5685637- 

5685710 

Y Y 

let-7j-let-7k Chr26: 1442697-1442779; 1442897- 

1442979 

Y Y 

mir-29c-mir-29b-2 Chr26: 2511658-2511746; 2512569- 

2512648 

Y N 

mir-181a-1-mir-181b-1 Chr8: 2001561-2001664; 2001750- 

2001838 

Y Y 

mir-1b-mir-133c Chr23: 4663912-4663975; 4664051- 

4664129 

N Y 

mir-449-mir-449b ChrZ: 16040613-16040698; 16040763 -

16040856 

Y Y 

mir-216b-mir-1461 Chr3: 288214-288302; 288216-288301 N N 

mir-23b-mir-27b-mir-24 ChrZ: 41157406-41157491; 41157642- 

41157738; 41158175-41158242 

Y Y 

mir-194-mir-215 Chr3: 19924487-19924561; 19924793 -

19924897 

 

Y N 

mir-16-2-mir-15b Chr9: 23742791-23742884; 23742966 -

23743056 

Y Y 

 

Note: 
1
 Identified in the library; 

2
 Not identified in the library 
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Gene ontology analysis 

        Potential target genes of differentially expressed miRNAs in each comparison were 

predicted by miRanda (John, et al., 2004). In brief, each differentially expressed miRNA 

was submitted to miRanda individually and all of its targets predicted in miRanda were 

used for the following gene ontology (GO) analysis. For each comparison, target genes 

of induced and repressed miRNAs were separately analyzed. All targets of induced 

miRNAs in each comparison were submitted to DAVID program (Dennis, et al., 2003) 

and so were the targets of repressed miRNAs. Functional category enrichment based on 

the GO terms was evaluated on the targets of these differentially expressed miRNAs. 

Immune related GO terms of each comparison are presented in Figures 8, 9, 10 and 11. 

 

 

 

        Figure 8.  Enriched immune related GO terms of target genes of repressed differentially expressed 

miRNAs in the comparison of infected vs. non-infected lungs. Notes: Fold enrichment is a ratio obtained 

by dividing user’s percentage by the percentage of each category of the whole genome. 
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        Figure 9. Enriched immune related GO terms of target genes of repressed differentially expressed 

miRNAs in comparison of infected vs. non-infected trachea. Notes: Fold enrichment is a ratio obtained by 

dividing user’s percentage by the percentage of each category of the whole genome. 

 

 

 

 

 

 

        Figure 10. Enriched immune related GO terms of target genes of induced differentially expressed 

miRNAs in comparison of infected lungs and trachea. Notes: Fold enrichment is a ratio obtained by 

dividing user’s percentage by the percentage of each category of the whole genome. 
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        Figure 11. Enriched immune related GO terms of target genes of induced differentially expressed 

miRNAs in comparison of non-infected lungs and trachea. Notes: Fold enrichment is a ratio obtained by 

dividing user’s percentage by the percentage of each category of the whole genome. 

 

         

 

        In the comparison of infected vs. non-infected lungs, 15 immune related GO terms 

in biological process were significantly enriched (P < 0.05) (Fig. 8) from the targets of 

down-regulated miRNAs. Response to virus was the GO term with the highest fold 

enrichment (15 folds). Other functional terms including immune system response, 

lymphocytes, and lung development were also identified.  

        In the comparison of infected vs. non-infected trachea, six immune-related GO 

terms in biological process were significantly enriched (P < 0.05) (Fig. 9) from the 

targets of down regulated miRNAs, in which interleukin-12 production and interleukin-

12 biosynthetic process had the highest fold enrichment (9.8 folds). For the targets of up-

regulated miRNAs between the infected vs. non-infected both in lung and trachea 
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comparisons, only two immune related GO terms: immunoglobulin I set and 

immunoglobulin subtype 2 in INTERPRO category were significantly enriched. 

        For the tissue comparison under the infected state, targets of induced miRNAs in 

lungs were associated with ten immune related GO terms in biological process including 

tissue development, interleukin-12, lymphocytes cytokines and immune system 

development (P < 0.05) (Fig. 10). Targets of repressed miRNAs in lungs were associated 

with immune system development and immunoglobulin subtype 2 in the INTERPRO 

category. Under the non-infected state, 15 immune related terms were significantly 

enriched in biological process in the targets of miRNAs highly expressed in lungs. These 

GO terms were related to lung development and host immune system. The GO term NF-

kappaB binding was also enriched in molecular function (P < 0.05) (Fig. 11).  

 

Discussion 

         The impact of miRNAs expression on the understanding of molecular mechanisms 

in gene regulations has been remarkable. Although thousands of small RNAs have been 

identified over the last decade, the challenge remains to fully identify all small nuclear 

RNAs, especially very low abundant ones and to determine their individual functions. 

The majority of known miRNAs have been identified through traditional cloning method, 

which is both time consuming and labor intensive. The advantages of next-generation 

sequencing technologies have provided an innovative tool to look into the genome with 

unprecedented depth of coverage. Solexa deep sequencing is one of these high 

throughput technologies, by which miRNAs can be detected in any organism without 
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prior sequence or secondary structure information. This technology has been used in 

many species including human, mice and birds (Burnside, 2008; Friedlander, et al., 2008; 

Glazov, et al., 2008; Hafner, et al., 2008; t Hoen, et al., 2008). Expression of miRNAs 

varies in different developmental stages (Dhanasekaran, 2004; Darnell, et al., 2006; 

Goldsmith, et al., 2006). Chicken miRNAs identified in the present study provided novel 

information in the profiling of miRNAs not only in AIV infected chickens, but also the 

two tissues (lung and trachea) that have not been previously examined for miRNA 

profiling in chickens. To our knowledge, this is the first study to profile chicken 

miRNAs in AIV infected chickens by deep sequencing approach. There are 475 chicken 

miRNAs predicted in miRBase 13.0 (Ambros, et al., 2003; Griffiths-Jones, 2004; 

Griffiths-Jones, et al., 2008b). The deep sequencing results in the current study 

experimentally confirmed 377 miRNAs in chicken lungs and 149 miRNAs in chicken 

trachea, and the approach is more powerful than other conventional technologies 

previously used in birds (Xu, et al., 2006). The identification of these chicken miRNAs 

will be very useful in further investigating the functions and regulatory mechanisms of 

miRNAs in the chicken. 

        Growing evidence has suggested a relationship between differential miRNA 

expression and human diseases (Jiang, et al., 2008; Jones, et al., 2008). miRNAs can 

regulate many aspects of the immune response, including the development and 

differentiation of B and T cells, proliferation of monocytes and neutrophils, antibody 

switching and the release of inflammatory mediators by regulating basic component of 

host immune system ( Sonkoly, et al., 2008; Turner and Vigorito, 2008; Sonkoly and 
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Pivarcsi, 2009). miR-155 has been reported by several groups to play important roles in 

both innate and adaptive immune responses in mammals (O'Connell, et al., 2006; 

Lindsay, 2008; Romania, et al., 2008). miR-155 deficient mice lacked the capability to 

generate defensive immune responses and to develop lymphocytes, especially B-cell, 

and antigen-presenting cell functions (Thai, et al., 2007). However, miR-155 showed 

very low abundance in both lungs and trachea and no significant differential expression 

was observed in the present study. Over expression of miR-181a in mature mouse T cells 

can augment the sensitivity to peptide antigens, while suppressing miR-181a expression 

can reduce sensitivity and impair both positive and negative selection (Li, et al., 2007a). 

Selective expressions of miR-181a in the thymus and miR-223 in the bone marrow have 

been shown to be involved in the differentiation of pluripotent hematopoietic stem cells 

into the various blood cells lineages including B and T cells (Chen, et al., 2004; Cobb, et 

al., 2006). In the present study, miR-223 was not significantly regulated while miR-181a 

was down-regulated in both infected lungs and trachea. In addition, miR-181a had a 

higher expression level in lungs than in trachea under both infected and non-infected 

states. The expression levels of miR-181a, 181a* and 181b were investigated in LPS 

activated and CD40-lignad activated macrophages of chickens, respectively (Ahanda, et 

al., 2009). Only miR-181b was expressed in the macrophage cell line HD11 as well in 

the spleen adherent cells and that its expression increased after activation by LPS or 

CD40-ligand (Ahanda, et al., 2009). In the current study, miR-181b had same expression 

pattern with miR-181a in both lung and trachea comparisons. These results suggest that 

miR-181a and miR-181b may be strong miRNA candidates that regulate host response 
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to AIV infection, and warrant further investigation of their targets and regulation 

mechanism in chickens. 

        Although the interaction between miRNA expression and virus infection remains to 

be elucidated, we speculated that miRNA might target immune related genes or 

modulate virus replication. Sequencing of chicken miRNAs in Marek’s disease virus 

(MDV) infected and non-infected chicken embryo fibroblast (CEF) indicated that more 

miRNAs were up-regulated in MDV infected cells (Burnside, 2008). These results differ 

from the current study in which most differentially expressed miRNAs (55 out of 73 in 

lungs and 27 out of 36 in trachea) were down-regulated in AIV infected tissues. These 

results indicate that the mechanisms of miRNA regulation of the host response to 

different types of virus in chickens are different. Chicken miR-221 and miR-222, the 

most abundant miRNAs in the CEF small RNA libraries, had significantly higher reads 

in MDV infected than non-infected CEF (Burnside, 2008). While both miR-221 and 222 

had relatively lower abundance in the present study. These results demonstrate that 

miRNA expression can be tissue-specific with high abundance of miR-221 and 222 in 

the CEF libraries and low abundances in lungs and trachea. It can also be speculated that 

host miRNAs expression may be suppressed by AIV replication based on the miRNA 

expression patterns observed in the current study.  

        Some miRNAs have been shown to be directly involved in virus replication. A liver 

specific miRNA (miR-122) was shown to be required for Hepatitis C virus (HCV) 

replication in humans (Jopling, et al., 2005). MiR-122 can positively affect the viral 

replication and has become a therapeutic target for the treatment of HCV infection (Pan, 
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et al., 2007). In the current study, miR-122 specifically expressed in chicken lungs 

compared to trachea under both infected and non-infected states. These data suggest 

miR-122 might play a more important role in tissue distribution than the responses to 

AIV infection in chickens. Another two human miRNAs miR-507 and miR-136 have 

potential target binding sites in polymerase basic 2 (PB2) and hemagglutinin (HA) genes 

of AIV, respectively (Scaria, et al., 2006). Unfortunately, these two miRNAs are absent 

in the chicken genome, which might indicate different infectivity and lethality of the 

virus between chickens and humans.  

        Although in the present study most differentially expressed miRNA were down-

regulated during AIV infection, some miRNAs were also up-regulated. miR-1a, miR-

140 and miR-449 were significantly up-regulated in both tissues, while miR-455, miR-

34b and miR-34c were only up-regulated with AIV infection in trachea. This suggests 

different miRNA regulation mechanisms might exist on host response to virus infection. 

These up-regulated miRNAs might inhibit gene expression of their target genes; 

therefore down-regulation of these target genes might help the host to inhibit virus 

replication.  

        Different tissues serve different biological functions in animals and the expression 

patterns of miRNAs can vary in different tissues (Gu, et al., 2007; Xu, et al., 2006). 

miRNAs in bursa and spleen of developing chicken embryo have been recently 

identified, and diverse expression patterns of these miRNAs between different immune 

organs were observed, suggesting that miRNAs may function as dynamic regulators of 

the vertebrate immune system (Hicks, et al., 2009). Some miRNAs show tissue-specific 
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distribution in mouse, suggesting specific functions within these tissues (Lagos-Quintana, 

et al., 2002). In the current study, chicken lung and trachea were examined, as they are 

both part of the respiratory system and important sites for AIV replication. There was a 

significant difference in miRNA expression between lung and trachea with more 

miRNAs expressed in lungs (377 miRNAs identified) than trachea (149 miRNAs 

identified), although only small percentage of miRNAs (19% in lung and 24% in trachea) 

were significantly differentially expressed in AIV infected samples.  

        When tissues in the state of virus infection were compared, 28 and 23 miRNAs 

were specifically and highly expressed in lungs, respectively, and only 6 miRNAs (miR-

1a-1 and 2, miR-1b, miR-34b, 34c and miR-449) were highly expressed in trachea. 

When tissues were compared under the non-infected state, all differentially expressed 

miRNAs were expressed at higher levels in lungs than trachea with the only exception of 

miR-206, which showed a higher expression level in non-infected trachea than lung. 

More interestingly, miR-206 was up-regulated in virus infected vs. non-infected lungs 

and was down-regulated in infected vs. non-infected trachea. We can conclude that miR-

206 has an opposite regulatory role in lungs and trachea or might have different targets 

in different tissues and therefore play different roles in host-virus interactions. MiR-1458 

and miR-1612 were up-regulated in AIV infected chicken lungs, while they were 

specifically expressed in non-infected trachea not the infected one. The different 

regulation of miR-1458 and miR-1612 between lung and trachea suggests they may also 

have different mechanisms in response to AIV infection between tissues.  
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        We hypothesize that miR-34b, miR-34c, miR-206, miR-1458 and miR-1612 might 

be some of the most important miRNAs associated with AIV infection. Significantly 

different miRNA expression pattern between lung and trachea suggests the regulatory 

mechanism of miRNAs on host response to the AIV infection between lung and trachea 

is distinct. However, similar regulatory mechanism might also exist in these two tissues. 

Within the down-regulated miRNAs in infected vs. non-infected lungs and trachea, there 

were 18 miRNAs which overlapped in both tissues. This suggests that these 18 miRNAs 

might have common modulation mechanisms with the AIV infection in chickens. 

        GO term enrichment analysis has been widely used in functional analysis and 

allows the identification of important categories associated with functions of interests. 

GO terms enriched by the target genes of differentially expressed miRNAs in the current 

study can provide useful information for the follow-up study to elucidate the regulatory 

mechanism of miRNAs in host immune response to AIV infection. During AIV 

infection, the host immune system is stimulated to develop a defensive mechanism, 

which might be the reason why genes involved in immune system development were 

enriched in all comparisons.  

        With virus infection, more immune related GO terms were enriched by the targets 

of repressed miRNAs in lungs than in trachea (15 terms in lung comparison and 6 terms 

in trachea comparison) (Figures 8 and 9). Response to virus was identified as the most 

enriched term (15 fold enrichment) in lung comparison, confirming that genes related to 

virus infection were regulated by miRNAs. The hyperinduction of proinflammatory 

cytokines such as TNF-α and IFN-β in human macrophages and respiratory epithelial 
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cells by the highly pathogenic AIV H5N1 was believed to contribute to its high 

pathogenecity (Hui, et al., 2009). Lymphocytes were also reported to be suppressed by 

AIV (Wiwanitkit, 2008). Enrichments of T-cell and leukocytes activation and cytokines 

activities terms identified in the comparison of infected vs. non-infected lungs might be 

an indication of host immune system response against virus infection. Meanwhile, GO 

terms involved in lung development and epithelium morphogenesis were enriched, 

suggesting the genes associated with lung epithelium development in lungs may be 

important for the recovery from AIV infection in chickens.  

        It was interesting that two GO terms, interleuklin-12 production and biosynthetic 

process, were enriched in the infected tissue comparison, which were not included in the 

non-infected comparison. These two terms were also enriched in the comparison of 

infected vs. non-infected trachea instead comparison of lung. IL-12 plays a pivotal 

regulatory role in the anti-viral response due to its induction of IFN-γ, an anti-viral 

cytokine (Thomas, et al., 2008). These may suggest that a different defensive mechanism 

against virus infection might occur in trachea compared to lungs.  

        The two terms, response to virus and T-cell activation were also enriched by 

immune related genes differentially expressed in the early immune responses to H9N2 

infection in tracheal organ cultures (TOC) (Reemers, et al., 2009). Host immune 

response, showed as adaptive immune responses in the current study, was enriched by 

differentially expressed genes in H5N1 infected chicken embryo fibroblasts (CEF) as 

well (Sarmento, et al., 2008). Influenza virus triggered a cascade of both innate and 

specific immune responses. Then both immune related genes and miRNAs who might 
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regulate these genes maybe involved in similar biological processes with the same GO 

terms. 

        Of special note, NF-KappaB binding was also enriched in the comparison between 

lung and trachea under non-infected state. A similar GO term, regulation of NF-KappaB, 

was enriched in the previous TOC model with the infection of AIV H9N2 (Reemers, et 

al., 2009). Activation of NF-KappaB pathway is an essential immediate early step of 

immune activation. Many viruses have developed strategies to manipulate NF-KappaB 

signalling through the use of multifunctional viral proteins that target the host innate 

immune response pathways (Hiscott, et al., 2006b). Enrichment of GO term NF-KappaB 

binding suggests these two tissues might utilize this signal pathway differently. 

        Post-transcriptional gene activity can be regulated through the interaction of 

regulatory RNA-binding proteins and small non-coding RNAs such as miRNAs (Bartel, 

2004; Keene, 2007). miRNAs can modulate protein activities by altering mRNA stability, 

translational efficiency or localization (Chabanon, et al., 2004; Keene, 2007). The 3’ 

untranslated regions (3’ UTR) are widely accepted as important post-transcriptional 

regulatory regions of mRNAs, which are particularly rich in cis-acting regulatory 

elements (Chen, et al., 2006). miRNAs can regulate their target genes through the cis-

acting regulatory elements (Xie, et al., 2005). miRNAs within the same cluster might 

share the same cis-regulatory elements (Gu, et al., 2007), and therefore, might have the 

same regulatory mechanism for their target genes. Out of the 18 miRNA clusters 

identified in lungs and 12 miRNA clusters identified in trachea, there were 7 miRNA 

clusters differentially expressed in different comparisons. The miRNAs from five of 
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these clusters (mir-16-1-mir-15a, mir-16-2-mir-15b, let-7f-let-7a-1, let-7j-let-7k and mir-

23b-mir-27b-mir-24) identified in both lungs and trachea were significantly down-

regulated in infected lungs compared to non-infected lungs and also had higher 

expression levels in non-infected lungs than non-infected trachea. The mir-181a-1-

mir181b-1 cluster was significantly down-regulated in both infected lungs and trachea. 

And the mir-34b-mir-34c cluster was the only significantly up-regulated cluster in the 

AIV infected trachea. Different miRNA clusters had different regulation direction in 

AIV infected tissues in the present study. This illustrates that, during AIV infection, 

different modulation mechanisms among different miRNA clusters might coexist in both 

lungs and trachea.    

        It is interesting to note that when considering the miRNA clusters that were most 

active in chicken lung and trachea, mir-17-92 cluster (consisting of six miRNAs) and 

mir-302b-mir-302c-mir-1811-mir-302a-mir-302d-mir-367 cluster are highly associated 

with cell proliferation and self-renewal of stem cells and cancer cells (Aguda, et al., 

2008; He, et al., 2005; Mendell, 2008; Wang and Lee, 2009). In addition the miRNAs 

clusters that were significantly down-regulated miR-15/16 and let-7 are typically down-

regulated in stem cells and cancer (Cimmino, et al., 2005; Cho, 2007; Nimmo and Slack, 

2009). These results suggest that AIV infection in chickens may instigate cell 

proliferation and self-renewal like behaviour in chicken lung epithelium and the newly 

recruited T lymphocytes. 

        Modulation of target genes by miRNA is one of most critical steps for gene 

expression regulation. The targeted genes for some differentially expressed miRNAs in 
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the current study were predicted using miRanda (Enright, et al., 2003; John, et al., 2004). 

Interestingly, many of the target genes were involved in the host immune system. The 

potential target genes for miR-1a and miR-1b are the T-cell immuno-modulatory protein. 

MiR-34b and miR34c, whose target genes are B-cell CLL-pymphoma 2 & 11, might be 

involved in the B-cell differentiation. Target genes for miR-206 were associated with 

monocyte macrophage differentiation, suggesting they maybe associated with antigen 

presentation. Based on other immune related miRNA studies in mammals (Chen, et al., 

2007; Lindsay, 2008), differentially expressed miRNAs of their mammalian homologs 

and their targets are presented in Table 9. MiR-15a, miR-21 and miR-181a have 

important functions in lymphocytes development and modulations while miR-122 and 

miR-24 are related to virus infection and miR-146a, induced by macrophages, can 

activate Toll like receptor (TLR) and expose antigens to interleukin-1 beta. Although the 

exact functions of these miRNAs in the AIV infected chickens remains to be determined, 

candidate miRNAs and their potential targets identified in the current study provide 

strong evidence of their roles and warrant further investigation. Whether these chicken 

miRNAs have the same function as mammals or not need to be validated in the future 

studies. On-going efforts in the author’s laboratory focusing on gene expressions of 

these target genes and determination of target genes for these differentially expressed 

miRNAs will provide new insights of miRNA regulations on AIV infection in chickens.  
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Table 9.  miRNAs involvement in immune responses (Lindsay, 2008) 

miRNA Functions Targets 

miR-15a Decreased expression in chronic lymphocytic leukaemia Bcl-2 

miR-16 Binds to UA rich elements in 3’ UTR and induces TNF alpha 

mRNA degradation 

TNFα 

miR-21 Increased expression in B-cell lymphoma and chronic lymphocytic 

leukaemia  

 

miR-17-5p Inhibits monocyte proliferation, differentiation and maturation AML-1 

miR-20a Inhibits monocyte proliferation, differentiation and maturation AML-1 

miR-106a Inhibits monocyte proliferation, differentiation and maturation AML-1 

miR-24 Inhibits replication of vesicular stomatitis virus  

miR-29a Down-regulated in B-cell chronic lymphocytic leukemia Tcl-1 

miR-122 Required for hepatitis C proliferation in liver  

miR-125b Expression downregulated by LPS and oscillations in expression 

after exposure to TNF alpha 

TNFα 

miR-146a Expression induced in macropahges and epithilial following 

activation of TLR or exposure to TNF alpha and IL-1beta 

IRAK1, TRAF6 

miR-146b LPS induced expression induced in macrophages IRAK1, TRAF6 

let-7i Regulates TLR-4 and contributes to cholangiocyte immune 

responses 

 

miR-181a Positive regulator of B-cell development and CD4
+
 T-cell 

selection, activation and sensitivity 

SHP-2, PTPN22, 

DUSP5, DUSP6 

 

 

        miRNAs have recently been implicated in the intricate cross-talk between host and 

pathogen in viral infections and are critical in viral pathogenesis. In AIV infected tissues, 

expression patterns of some host miRNAs were significantly differentially regulated in 

the current study, supporting the hypothesis that certain miRNAs are essential in the 

host-pathogen interactions. Once the role of these miRNAs in the regulation of host-AIV 

interaction has been determined, it will improve the protective strategies of AIV 

infection in poultry. 
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CHAPTER IV 

INTEGRATED ANALYSIS OF MIRNA EXPRESSION AND MRNA 

TRANSCRIPTOME IN LUNGS OF AVIAN INFLUENZA VIRUS INFECTED 

BROILERS 

 

Introduction 

        Avian influenza virus (AIV) infection is a world-wide threat to both human and 

avian species. AIV causes an infection of the respiratory tract of the host, triggering a 

cascade of innate and adaptive immune responses. Efforts have been made to develop 

new intervention strategies to control AIV infections. Poultry can be infected with 

influenza viruses. Therefore, understanding the pathogenesis of AIV infection and 

chicken-virus interaction is not only essential to the poultry industry, but also provides 

key insights into the prophylactic and therapeutic protection for other influenza hosts 

including humans.  

        miRNAs are short, 17-24 nt RNAs, which comprise a large family of regulatory 

molecules found in almost all multi-cellular organisms (Bartel, 2004). These small 

RNAs have been demonstrated to have important functions in a variety of biological 

processes and have been implicated in many diseases including influenza, hepatitis and 

cancer (Lee, et al., 1993b; Guo, et al., 2005; Hatfield, et al., 2005; Jopling, et al., 2008; 

Lindsay, 2008; Sassen, et al., 2008; Song, et al., 2010). miRNAs are capable of 

regulating mammalian immune cell differentiation, the outcome of immune responses to 

infection, and the development of diseases of immunological origin (Baltimore, et al., 
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2008). There are multiple mechanisms of miRNA-mediated regulation of gene 

expression including translational repression, disruption of mRNA stability, miRNA-

mediated deadenylation and inhibition of polypeptide elongation (Appasani, 2008). 

Determining how and when miRNA suppression of target mRNA gene expression 

remains one of the greatest challenges in the field.  

        Through recognition of sequence-complementary target elements, miRNAs can 

either translationally suppress or catalytically degrade both cellular and viral RNA 

(Bartel, 2004; Sullivan, et al., 2005). Host miRNAs are able to impinge on viral life 

cycles, viral tropism, and the pathogenesis of viral diseases (Cullen, 2006b). miRNAs 

can potentially regulate different steps of a virus life cycle and abrogate toxicities of 

replication-competent viruses (Lecellier, et al., 2005; Otsuka M, 2007; Kelly and Russell, 

2009; Nathans, et al., 2009). For example, human miR-32 represses the replication of the 

primate foamy virus type 1 (PFV-1), a retrovirus, through the down-regulation of 

replication-essential viral proteins encoded by open reading frame 2 (ORF2) (Lecellier, 

et al., 2005). Based on computational prediction, human miR-136 and miR-507 have 

potential binding sites at the polymerase basic 2 (PB2) and hemmagglutinin (HA) 

proteins of H5N1 AIV, and those two miRNAs may modulate AIV infection in humans 

(Scaria, et al., 2006). 

        Next generation sequencing (NGS, deep sequencing) has provided a powerful tool 

to identify differentially expressed miRNAs especially low abundance ones, under 

conditions of physiological perturbation. We previously used a Solexas Sequencer to 

identify differentially expressed chicken miRNAs in AIV infected lungs and trachea of 
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layer type birds (Wang, et al., 2009). Genetics play a significant role in host response to 

viral infection. We hypothesize that gene expression of host cellular miRNAs following 

virus infection could be different between different chicken genetic lines. There are two 

major types of chickens: broilers (meat type chicken) and layers (egg type chickens). In 

general, there are significant genetic differences between these two types of chickens.. In 

the current study, a deep sequencing approach was employed to identify differentially 

expressed miRNAs after AIV infection of broilers. Identification of associated host 

miRNAs is just the first step towards understanding miRNA regulation of host-virus 

interactions. Dissection of miRNA modulation of both host and viral mRNA expression 

will provide insight in the cellular mechanisms of host-virus interaction. A powerful 

symbiosis between microarrays and NGS technologies has been witnessed (Hurd and 

Nelson, 2009). Therefore, global gene expression (mRNA) profiling of host response to 

AIV infection was conducted using a chicken 44K Agilent microarray. Host mRNA 

profiling and miRNA profiling were integrated and compared between infected and non-

infected birds. Our results suggested that gga-miR-34a, gga-miR-106, gga-miR-146a, 

gga-miR-155 and gga-miR-206 were strong candidate miRNAs involved in regulating 

the host response to AIV infection in the lungs of broiler chickens. 

 

Materials and methods 

Sample collection and RNA isolation:  

        Day old broilers (Cobb-Vantress, Inc.) were randomly divided into two groups (4 

chickens per group), housed in negative pressure Horsfall-Bauer, temperature control 



 

 

83

isolation units and provided with water and commercial feed ad libitum. At one week of 

age, one group was inoculated with 0.1 ml of CK/TX/02/H5N3 virus containing10
7.5 

EID50/ml and the remaining chickens were inoculated with PBS (mock treatment) by the 

intra-choanal cleft route. At 4 days post-inoculation (dpi), depression and severely 

congested lungs were observed in the treated chickens. Therefore, all chickens were 

humanely euthanized at 4 dpi, and lungs were collected for RNA isolation. The animal 

experiment was performed according to the guidelines approved by the Institutional 

Animal Care and Use Committee, Texas A&M University.  

        Two pools of total RNA samples (2 random chickens per pool) were generated 

from the infected and non-infected group. Total RNAs were isolated using Trizol 

(Invitrogen, Carlsbad, CA) following the manufacturer’s protocol. Dnase I (Ambion, 

Austin, TX) digestion was carried out after RNA isolation according to manufacturer’s 

instructions. RNA concentration and purity were determined by measuring absorbance at 

260 nm and A260/A280 ratio using a NanoDrop ND-1000 spectrophotometer (Nanodrop 

Technologies, Wilmington, DE). RNA samples were stored at -80 ºC until further use. 

 

Viral Titration  

        Virus titers in lungs of inoculated chickens were determined at 4 dpi by real-time 

RT-PCR of influenza virus matrix gene using AgPath-ID™ AIV- M kit (Ambion, 

Austin, TX) following the manufacturer’s instructions. For quantitation of virus load, 

RNA was extracted from serially diluted H5N3 virus stock (10
1.5

–10
5.5

 log10 EID50/ml) 

and used to generate a standard curve. The amount of RNA in the samples was 
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converted into log10 EID50/ml by interpolation as described previously (Lee and Suarez, 

2004). 

 

Small RNA sequencing and analysis  

        For small RNA library construction, total RNA samples from lungs of infected and 

non-infected broiler chickens were prepared using the DGE-Small RNA Sample Prep 

Kit (Illumina, San Diego, CA) as previously described (Wang, et al., 2009). A total of 

two Solexa-ready small RNA templates were analyzed on an Illumina 1G Genome 

Analyzer at the University of Houston. Cluster generation was performed and clusters 

were sequenced. Initial sequence process and analysis was done as previously described 

(Wang, et al., 2009a). All unique sequence reads with a minimum read count of 5 were 

aligned with precursor chicken miRNA sequences from miRBase version 16 (Griffiths-

Jones, 2004; Griffiths-Jones, et al., 2006; Griffiths-Jones, et al., 2008b). Reads of each 

miRNA were the sum of exact and loose matches (± 4 bp) to known miRNAs. For each 

sample, counts were normalized to the total number of small RNA sequences, and then 

for each miRNA, the normalized number of counts was compared between groups. False 

discovery rate (FDR) (Q values) was calculated by R program according to Benjamin’s 

method (Benjamini, et al., 2001). Fisher’s exact test was used to identify differentially 

expressed miRNAs at a 5% false discovery rate. Ratios were calculated as the ratio of 

normalized reads of infected over non-infected group. Statistics related to over 

representation of functional categories were performed using DAVID (Dennis, et al., 

1993; Huang da W, 2009). A P < 0.05 was considered significant. Novel miRNAs were 
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identified using the methods of Creighton et al. and Wang et al. (Creighton, et al., 2008; 

Wang, et al., 2009a).  

 

Confirmation of miRNA expression by Northern-blot  

        Expression of two potential novel miRNAs was confirmed by Northern blot 

analysis using the same total RNA samples as those used for small RNA library 

construction. Total RNA of infected and non-infected lung samples (15 µg each) were 

separated on a 15% denaturing acrylamide gel and transferred onto a GeneScreen Plus 

nylon membrane (GE Healthcare, Piscataway, NJ). Membranes were fixed by UV cross-

linking at 1200 µJ and baking at 80 °C for 1 hour. DNA probes (antisense to two mature 

miRNA sequences) were end-labeled with [γ-
32

P] ATP (GE Healthcare, Piscataway, NJ) 

using a mirVana Probe & Marker Kit (Ambion, Austin, TX). Pre-hybridization, 

hybridization and washes were carried out at 42°C using ULTRAhyb-Oligo 

hybridization buffer according to the manufacturer’s instructions (Ambion, Austin, TX). 

Chicken U6 small nuclear RNA was used as an internal control to account for loading 

differences between samples. 

 

Confirmation of differentially expressed miRNAs by TaqMan miRNA Assay 

        To determine the expression of miRNAs by quantitative RT-PCR (qRT-PCR), 

TaqMan miRNA assays were performed. The specific stem-loop RT primers for miR-

206, miR-451 and U6 were obtained commercially from Applied Biosystems (Foster 

City, CA). In brief, cDNA was synthesized from total RNA by using the miRNA 
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specific primers according to the protocol of TaqMan Micro RNA Assays (Applied 

Biosystems, CA). Reverse transcriptase reactions contained 10 ng of RNA samples, 3 µl 

of 50 nM stem loop RT primer and reagents from the TaqMan MiRNA Reverse 

Transcription Kit (Applied Biosystems, CA). The 15 µl reactions were incubated for 30 

min at 16 °C, 30 min at 42 °C and 5 min at 85 °C, and then held at 4 °C. Real-time PCR 

was performed using gene specific probes and a pair of primers and TaqMan 2X 

Universal PCR Master Mix (No AmpErase UNG) (Applied Biosystems, CA). The 20 µl 

PCR reactions included 1.33 µl cDNA product, 10 µl PCR master mix, and 1µl 20X 

TaqMan MiRNA Assay mix (Applied Biosystems, CA). These reactions were incubated 

at 95 °C for 10 min, followed by 40 cycles at 95 °C for 10 s, 60 °C for 40 s and 72 °C 

for 1 s using an ABI 7900 Realtime PCR instrument (Applied Biosystems, CA). All 

reactions were run in triplicate. The threshold cycle was defined as the fractional cycle 

number at which the fluorescence passes the fixed threshold. The expression levels of 

miR-206 and miR-451 in each sample were measured in terms of threshold cycle value 

and normalized to U6 expression using 2
-∆∆CT

 (Schmittgen and Livak, 2008).  

 

miRNA prediction and validation 

Target prediction 

        The chicken (Gallus gallus) Unigene database (NCBI) and the miRNA target 

prediction algorithm miRanda 3.1 (http://www.microran.org/microrna/getDownloads.do) 

were employed to predict potential targets of all the differentially expressed miRNAs. 

For miRanda, default parameters were used with the following exceptions: the score was 
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set to ≥ 130 and the free energy was set to ≤ -16 kCal/mol. The predicted targets were 

further filtered using more stringent criteria in which they must contain either (1) a 

match between nucleotides 2-8 of the miRNA with the target sequence or (2) a match 

between nucleotides 2-7
 
and 13-16 of the miRNA with the target sequence (G:U base-

pairing was tolerated). A set of target genes containing miR-146a binding sites within 

their 3´UTRs were selected for further analysis using a dual luciferase reporter assay. 

 

Insertion of target sequences into psiCHECK-2 

        For each potential target gene, the region of 3´UTR flanking the miR-146a binding 

sites was PCR amplified from Red Jungle Fowl genomic DNA using gene specific 

primers. Each PCR product was cloned into the 3´UTR of the Renilla reporter gene in 

the psiCHECK-2 vector (Promega, WI) using NotI and XhoI restriction sites from the 

multicloning site.  

 

Construction of RCAS viruses expressing chicken miR-146a  

        The previous described RCASBP(A)-miR vector (Chen, et al., 2008) was used to 

ectopically express miR-146a. In order to produce RCAS viruses expressing chicken 

miR-146a, an entry vector was constructed using PAGE purified 76-nt forward and 68-nt 

reverse oligos (Invitrogen) (Supplemental Table1). Restriction sites for SphI and 

NgoMIV were introduced at the 5´- and 3´-ends, respectively. Forward and reverse 

oligos were mixed at a final concentration of 1 µM, denatured at 95 °C for 20 sec and 

annealed at RT to generate a short double-stranded DNA fragment. The fragment was 
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then cloned into the pENTR3C-miR-SphNgo vector at the SphI and NgoMIV restriction 

sites. The RCASBP(A)- miR-146a vector was generated via a recombination between 

the pENTR3C- miR-146a entry vector and RCASBP(A)-YDV gateway destination 

vector using a LR clonase kit (Invitrogen, CA). To produce miR-146a expressing viruses 

(RCAS- miR-146a), the RCASBP (A)-miR146a plasmid vector was transfected into DF-

1 cells, a chicken embryo fibroblast continuous cell line, using FuGENE 6 (Promega, 

WI). Virus stock was harvested at day 6 post transfection and titer was determined using 

immunofluorescence staining with the monoclonal 3C2 antibody against the RSV/ALV 

gag protein (Developmental Studies Hybridoma Bank, University of Iowa) and FITC-

conjugated goat anti mouse IgG (Invitrogen, CA). In addition, RCAS viruses (RCAS-

SC) expressing a scrambled control sequences were produced to serve as a negative 

control. Ectopic expression of the miR-146a was validated using a miScript Reverse 

Transcription kit and a miScript SYBR Green PCR kit (Qiagen, CA). 

 

Dual luciferase reporter assay 

        DF1 cells were infected with either RCAS-miR-146a or RCAS-SC at a multiplicity 

of infection of 1 and maintained for 6 days in a 96-well plate in RPMI 1640 medium 

supplemented with 1 % heat-inactivated FBS, L-glutamine, penicillin (100 U/ml), 

streptomycin (100 µg/ml), and fungizone (4 µg/ml), at 37 °C with 5% CO2.  The 

psiCHECK-2 construct (100 ng) for each potential target gene, as well as the scramble 

control, were then transfected into both RCAS-miR-146a or RCAS-SC infected DF-1 

cells using FuGENE 6 (Promega, WI). Forty-eight hours post-transfection, cells were 
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washed with PBS and lysed in Passive Lysis Buffer (Promega, WI). For each 

transfection, firefly and Renilla luciferase activities were determined using the Dual-

Luciferase Reporter Assay System (Promega, WI) and a VictorLight 1420 luminescence 

counter (PerkinElmer, MA). The Renilla luciferase signal was normalized to the firefly 

luciferase signal. The normalized Renilla luciferase activity was compared between the 

RCAS-miR-146a and the RCAS-SC using student’s t-test (P < 0.05).  Triplicates for 

each target construct were performed and the assay was repeated to confirm the results. 

 

Microarray analysis 

        Microarray experiment design: Four biological replicates from infected and non-

infected groups were used to do microarray analysis. Dye swap were used to to prevent 

dye-bias during sample labeling. 

        Labeling and hybridization: The integrity of total RNA samples was confirmed 

using Agilent Bioanalyzer 2100 Lab-on-chip system (Agilent Technologies, Palo Alto, 

CA). Four hundred nano-grams (ng) of total RNA were reverse-transcribed to cDNA 

during which a T7 promoter sequence was introduced into the cDNA. T7 RNA 

polymerase-driven RNA synthesis was used for preparation and labeling of RNA with 

Cy3 (or Cy5) dye. Fluorescent cRNA probes were purified using Qiagen RNeasy Mini 

Kit (Qiagen, Valencia, CA), and an equal amount (825 ng) of Cy3 and Cy5 labeled 

cRNA probes were hybridized to a 44 K chicken Agilent array (GEO accession: 

GSE9416). The hybridized slides were washed using a commercial kit package (Agilent 
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Technol-ogies, CA) and then scanned using a Genepix 4100A scanner (Molecular 

Devices Corporation, Sunnyvale, CA) with a tolerance of saturation setting of 0.005%. 

Microarray data collection and analysis: For each channel, the median of the signal 

intensity and local background values were used. A Locally Weighted Linear Regression 

(LOWESS) normalization was applied to remove signal intensity-dependent dye bias for 

each array using R program. The Student’s t test was used to identify differentially 

expressed genes. P < 0.05 was considered significant. 

 

Gene ontology  

        Functional annotations for differentially expressed genes were performed through 

the use of the Database for Annotation, Visualization and Integrated Discovery 

(DAVID) (Dennis, et al., 2003; Huang, et al., 1993; Huang da W, 2009). Statistics 

related to over representation of functional categories was based upon a Fisher Exact 

statistic methodology similar to that described by Al-Shahrour et al (Al-Shahrour, et al., 

2004). A P < 0.05 was considered as significant. 

 

Results 

Virus titers in lungs 

        Virus replication in lungs of infected chickens was examined by real-time RT-PCR 

of influenza virus matrix gene from total RNAs at 4 days post inoculation (dpi). Virus 

titers in the four infected chicken, determined by extrapolation of real-time RT-PCR data, 
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were 1.69, 3.41, 3.81, and 4.52 log10 EID50/ml. Lung samples from all 4 non-infected 

chickens were negative. 

 

miRNA sequences from small RNA libraries 

        A total of 2,672,582 and 3,318,307 filtered high quality reads were obtained from 

infected and non-infected chicken, respectively (Table 10). In the library from infected 

chicken lungs, 2,314,793 of these reads were exact matches and another 357,789 reads 

were loose matches to known chicken miRNAs. In the library of non-infected chicken 

lungs, 2,875,366 of these reads were exact matches and another 442,941 reads were 

loose matches to known chicken miRNAs. All reads with a perfect match to mature 

miRNA sequences from chicken deposited in miRBase version 16.0 

(http://microrna.sanger.ac.uk/) (Griffiths-Jones, 2004; Griffiths-Jones, et al., 2006; 

Griffiths-Jones, et al., 2008b) with insertions or deletions of 1- 4 nucleotides at the 5’ 

and 3’ ends of miRNAs were considered to represent Dicer-processing products from 

each of the chicken miRNA precursors. The loose match reads were defined as no more 

than 4 nt differences comparing to the known chicken miRNA sequences determined as 

we previously described (Wang, et al., 2009). The sum of exact and loose match reads 

was used as the total number of reads for each miRNA. 
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Table 10. Number of reads of miRNAs from lungs of AIV infected and non-infected chickens  

 Infected lung Non-infected lung 

High quality/both adapter 2,672,582 3,318,307 

Exact match to known chicken 

miRNAs 
2,314,793 2,875,366 

Loose match to known chicken 

miRNAs 
357,789 442,941 

 

 

        Of the 499 distinct Gallus gallus miRNA entries in miRBase (Griffiths-Jones, 2004; 

Griffiths-Jones, et al., 2006; Griffiths-Jones, et al., 2008b), 271 miRNAs were identified 

in the current chicken lung small RNA library. Also, there was one potential novel 

miRNA. Expressions of the novel miRNA “N1” and chicken miRNA miR-1711 were 

confirmed by Northern blotting (Fig. 12). 

 

 

                   

        Figure 12. Confirmation of miRNAs. Northern blot analysis was performed to confirm the presence 

of a novel miRNA (N1) and another known chicken miRNA (gga-miR-1711) in infected and non-infected 

chicken lungs. U6 probe was used as a control. 

 

 

Chicken U6 

N1 

gga-mir-1711 

Infected lung Non-infected lung 



 

 

93

miRNAs expression profiling analysis 

        miRNA expression profiles of infected and non-infected chicken lungs were 

compared. Differentially expressed miRNAs were identified (P < 0.05, Q < 0.05 and 

fold change > 2). Between infected and non-infected lungs, 121 miRNAs were 

differentially expressed. Of those, 43 miRNAs were unique to infected lungs and 8 

miRNAs were unique to uninfected lung. Sixty-five miRNAs were more highly 

expressed in infected lungs, while 5 miRNAs were more highly expressed in non-

infected lungs (Table 11).  

 

 

Table 11. Differentially expressed miRNAs between lungs of infected and non-infected chickens (P<0.05, 

Q<0.05 and Ratio>2) 

 

miRNA Position on chromosomes 
Reads in 

infected 

Reads in 

non-infected 

Ratio 

infected/non-

infected 

(Normalized) 

gga-miR-1719 chr12:842924-843012 109 0 -
1 

gga-miR-1585 chr19:8800028-8800118 65 0 - 

gga-miR-1777 chr28:2555498-2555592 24 0 - 

gga-miR-460b-5p chr4:26873962687485 23 0 - 

gga-miR-1716 chr5:60283968-60284072 22 0        - 

gga-miR-3537 chr6:18024717-18024793 19 0 - 

gga-miR-1718 chr5:33777662-33777741 18 0 - 

gga-miR-1354 chr4: 3970359-3970439 18 0 - 

gga-miR-1792 chr3:7712006-7712104 16 0 - 

gga-miR-3535 chr9:16372628-16372709 15 0 - 

gga-miR-1610 chr8:12398260-12398347 15 0 - 

gga-miR-1631 chrZ:15789429-15789502 13 0 - 

gga-miR-1805-5p chr1:135141607-135141690 12 0 - 

gga-miR-1604 chr1:312691-312787 12 0 - 

gga-miR-153 chr2:8765687-8765773 12 0 - 

gga-miR-1593 chr1:61691788-61691877 12 0 - 
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Table 11. continued 

 

miRNA Position on chromosomes 
Reads in 

infected 

Reads in 

non-infected 

Ratio 

infected/non-

infected 

(Normalized) 

gga-miR-3538-1 chrUn:44040736-44040810 10 0 - 

gga-miR-3538-2 chr1:52608155-52608229 10 0 - 

gga-miR-1723 chr2:41377973-41378078 10 0 - 

gga-miR-1584 chrZ:18238506-18238570 10 0 - 

gga-miR-1754 chr9:25014275-25014342 9 0 - 

gga-miR-3528 chr17:8404342-8404438 9 0 - 

gga-miR-1644 chr14:8284308-8284393 8 0 - 

gga-miR-1745-1 chr24:5271413-5271449 8 0 - 

gga-miR-1770 chr2:151547087-151547183 7 0 - 

gga-miR-1809 chr8:23417849-23417956 7 0 - 

gga-miR-34a chr21:3251514-3251622 7 0 - 

gga-miR-1681 chr2:96361604-96361703 6 0 - 

gga-miR-1692 chr9:23692587-23692675 6 0 - 

gga-miR-1805-3p chr1:135141607-135141690 6 0 - 

gga-miR-1463 chr5:11171642-1171751 6 0 - 

gga-miR-1560 chr11:20587431-20587444 6 0 - 

gga-miR-1700 chr1:140966218-140966317 6 0 - 

gga-miR-1712 chr3:81937337-81937409 6 0 - 

gga-miR-1772 chr6:11560478-11560546 6 0 - 

gga-miR-1713 chr7:17384289-17384387 6 0 - 

gga-miR-1781 chr14:3330762-3330854 6 0 - 

gga-miR-1551 chr14:5233361-5233450 5 0 - 

gga-miR-2127 chr1:170154815-170154918 5 0 - 

gga-miR-3527 chrMT:8673-8781 5 0 - 

gga-miR-3533 chrUn:20438961-20439044 5 0 - 

gga-miR-3536 chr25:1478485-1478562 5 0 - 

gga-miR-1785 chr11:20641236-20641337 5 0 - 

gga-miR-1594 chrZ:75709-75799 473 17 34.54 

gga-miR-1599 chr7: 25926968-25927029 184 7 32.64 

gga-miR-1767 chr3:44732913-44732971 71 7 12.59 

gga-miR-1662 chr2:1721334-1721406 140 17 10.23 

gga-miR-202 chr6:22813068-22813156 40 5 9.93 

gga-miR-122-1 chrZ: 649337-649413 1952 279 8.69 

gga-miR-1766-1 chr2:77319215-77319307 42 6 8.69 

gga-miR-122-2 chrUn:12066796-12066872 1685 258 8.11 

gga-miR-32 chr2:86506451-86506520 45 7 7.98 
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Table 11. continued 

 

miRNA Position on chromosomes 
Reads in 

infected 

Reads in 

non-infected 

Ratio 

infected/non-

infected 

(Normalized) 

gga-miR-204-2 chr10:6651274-6651374 12 2 7.45 

gga-miR-211 chr28:1784394-1784467 12 2 7.45 

gga-miR-451 chr19: 5823968-5824036 207487 35518 7.25 

gga-miR-19b chr1: 152248183-152248269 955 181 6.55 

gga-miR-1694 chr7:5419755-5419852 26 5 6.46 

gga-miR-1729 chr15:769596-769666 4292 843 6.32 

gga-miR-1611 chr10:16350472-16350560 167 38 5.46 

gga-miR-2188 chr22:2684926-2685094 7045 1800 4.86 

gga-miR-18a chr1:152248626-152248718 88 23 4.75 

gga-miR-1581 chr1:51158137-51158222 18 5 4.67 

gga-miR-193b chr14: 759453-759535 159 47 4.20 

gga-miR-1451 chr3:78710207-78710207 129 42 3.81 

gga-miR-1587 chr19:1782806-1782901 15 5 3.72 

gga-miR-1572 chr12:9668820-9668820 182 61 3.70 

gga-miR-3523 chr13:8968882-8969047 65 22 3.67 

gga-miR-18b chr4:3970228-3970311 70 24 3.62 

gga-miR-155 chr1:105930213-105930275 40 14 3.55 

gga-miR-454 chr15:399833-399953 31 11 3.50 

gga-miR-15a chr1: 173700493-173700575 2413 861 3.48 

gga-miR-144 chr19: 5824123-5824207 13216 4727 3.47 

gga-miR-551 chr9:21966405-21966517 25 9 3.45 

gga-miR-218-1 chr4:77774698-77774806 11 4 3.41 

gga-miR-218-2 chr13:4322806-4322954 11 4 3.41 

gga-miR-193a chr18: 6423770-6423846 1230 461 3.31 

gga-miR-223 chr4: 232949-233048 1842 717 3.19 

gga-miR-30b chr2:148331598-148331684 165 67 3.06 

gga-miR-214 chr8:4739550-4739659 74 32 2.87 

gga-miR-142-3p chr19: 496983-497070 1055 461 2.84 

gga-miR-142-5p chr19: 496983-497070 1100 481 2.84 

gga-miR-106 chr4: 3970359-3970439 897 394 2.83 

gga-miR-16-2 chr9:23742791-23742884 1952 856 2.83 

gga-miR-16-1 chr1: 173700351-173700434 2724 1206 2.80 

gga-miR-1579 chr6:3677284-3677350 164 73 2.79 

gga-miR-20a chr1: 152248306-152248403 426 190 2.78 

gga-miR-1416 chrZ: 34596479-34596567 25 12 2.59 

gga-miR-146a chr13: 7555593- 7555691 1331 639 2.59 
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Table 11. continued 

 

miRNA Position on chromosomes 
Reads in 

infected 

Reads in 

non-infected 

Ratio 

infected/non-

infected 

(Normalized) 

gga-miR-1798 chr20:9654914-9655009 36 18 2.48 

gga-miR-3531 chr23:417154-417240 22 11 2.48 

gga-miR-20b chr4:3970047-3970131 734 378 2.41 

gga-miR-1434 chr28:1055204-1055280 89 46 2.40 

gga-miR-29a chr1: 3236329-3236417 205 108 2.36 

gga-miR-29c chr26: 2511658-2511746 205 108 2.36 

gga-miR-24 chrZ:41158175-41158242 10052 5343 2.34 

gga-miR-7b chrUn:38163821-38163930 251 134 2.33 

gga-miR-17-5p chr1:152248781-152248865 1831 982 2.32 

gga-miR-15c chr4:4049055-4049130 1002 538 2.31 

gga-miR-1763 chr14:12895655-12895720 147 80 2.28 

gga-miR-23b chrZ:41157406-41157491 15783 8718 2.25 

gga-miR-147-1 chr1:12334922-12334991 92 52 2.20 

gga-miR-17-3p chr1:152248781-152248865 1480 853 2.15 

gga-miR-1800 chr5:47604931-47605006 98 58 2.10 

gga-miR-458 chr13:8034158-8034273 69 41 2.09 

gga-miR-92 chr1:152248070-152248417 13819 8291 2.07 

gga-miR-7-1 chrZ:39554766-39554874 81 49 2.05 

gga-miR-1705 chr17:9510405-9510494 26 16 2.02 

gga-miR-7-2 chr10:14823525-14823623 71 44 2.00 

gga-miR-1306 chr15:1296916-1296984 20 62 0.40 

gga-miR-206 chr3: 110390439-110390514 28 98 0.35 

gga-miR-301 chr15:406313-406405 5 19 0.33 

gga-miR-1638 chr5:58712377-58712463 5 23 0.27 

gga-miR-187 chr2:85892470-85892555 6 33 0.23 

gga-miR-449b chrZ: 16040763-16040856 0 23 0
2 

gga-miR-460a chr2:3583690-3583779 0 11 0 

gga-miR-1765 chr18:5840573-5840677 0 9 0 

gga-miR-216c chr3:288216-288301 0 7 0 

gga-miR-1607 chr2: 45452355-45452433 0 6 0 

gga-miR-1555 chr1:149148336-149148421 0 6 0 

gga-miR-1c chr7:36625855-36625928 0 6 0 

gga-miR-3529 chr10:14823529-14823619 0 6 0 

 

Note:
 1
 Specifically expressed in infected lungs; 

  2 
Specifically expressed in non-infected lungs. 
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          TaqMan miRNA assays were used to confirm the expression pattern of two 

differentially expressed miRNAs. There was general consistency between the TaqMan 

assays and deep sequence analysis of miR-451 and miR-206 in terms of direction of 

regulation and statistical significance. Specifically, there was a 2.05 fold up-regulation 

(7.25 fold in deep sequencing analysis) in miR-451, and 4.71 fold down regulation (2.86 

fold in deep sequencing analysis) in miR-206 with AIV infection in lungs (P < 0.05).  

 

miRNA target identification and validation 

        Potential targets of differentially expressed miRNAs were predicted by the miRNA 

target prediction algorithm miRanda 3.1 (John, et al., 2004). One hundred and seventy 

one immune related genes were predicted to be targets of 35 differentially expressed 

miRNAs. Some miRNAs have several immune related targets, while some immune 

related genes each had several predicted miRNA binding sites. For example, IL-17 

receptor D (Accession No.: AY278204), has predicted binding sites for seven 

differentially expressed miRNAs,: gga-miR-30b, 34a, 142-5p, 202, 449b, 460a, and 

460b-5p. Additionally, some immune related gens were targeted by both up and down 

regulated miRNAs following AIV infection. For instance, IL-17 receptor D was a target 

of gga-miR-202 (which was up-regulated 9.93 folds with AIV infection), and gga-miR-

460a (which was specifically expressed in non-infected lungs).  

        gga-miR-146a is one of differentially expressed miRNAs that was associated with 

virus infection in chickens (Wang, et al., 2009). Seven potential target genes (Table 12) 

of gga-miR-146a were selected for the validation by a dual luciferase reporter assay. The 
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results are shown in Figure 13. The 3’ UTR of five (ARL11, CHMP2B, POU1F1, PDHB 

and HIF1AN) out of the seven genes targeted by miR-146a showed significant 

suppression of Renilla luciferase activity in RCAS-miR-146a infected cells relative to 

those infected with RCAS-SC (P < 0.05). Inhibition of the luciferase activity of 

significant targets varied between 65-85% amongst target sites. 

 

 

Table 12. Potential gga-miR-146a targets 

 

Symbol/ 

GI 
gga-miR-146a:mRNA(3’UTR) interaction 

miRanda 

score/ 

energy 

(kcal/mol) 

Binding 

site 

Insert 

location* 

HIF1AN/ 

118092762 

 

3' UUGGGUACCUUAAGUCAAGAGU 5' 

   |:|:: |||  || |||||||| 

5' AGCTTCTGG--TTGAGTTCTCA 3' 

 

167/-18.0 2261-2280 1959-2417 

PDHB/ 

118097022 

 

3' UUGGG--UACCUUAAGUCAAGAGU 5' 

   |:||:  | || | |||||||||| 

5' AGCCTAAAAGGCA-TCAGTTCTCA 3' 

 

168/-22.3 3732-3754 3365-3864 

LATS1/ 

118088356 

 

3' UUG--GGUACCUUAA----GUCAAGAGU 5' 

   |:|  |::||||| |    :|||||||| 

5' AGCTGCTGTGGAAATGGCATAGTTCTCA 3' 

 

167/-20.5 4243- 4270 4067-4381 

POU1F1/ 

45383513 

 

3' UUGGGUACCUUAAGUCAAGAGU 5' 

   | :|: |  |: | |||||||| 

5' ACTCTCTTCAGGT-AGTTCTCA 3' 

 

150/-16.5 2979-2999 2327-3057 

CHMP2B/ 

71896762 

 

3' UUGGGUAC-CUUAAGUCAAGAGU 5' 

   || :| || |||| ||||||||| 

5' AAGTC-TGAGAATGCAGTTCTCA 3' 

 

174/-21.1 1893-1914 1778-2027 

ARL11/ 

118084874 

 

3' UUGG-GUA---CCUUAAGUCAAGAGU 5' 

   :||| |||   |||    |||||||| 

5' GACCGCATATAGGA----AGTTCTCA 3' 

 

157/-19.1 1579-1600 1424-1694 

MAP3K3/ 

118102843 

 

3' UUGGGU----A-CCUUAAG----UCA-AGAGU 5' 

   ::||||    | ||||| :    ||| ||||| 

5' GGCCCAAGAGTGGGAATGTAAGAAGTGTCTCA 3' 

 

127/-19.6 2235-2266 2057-2320 

  
Note: * The 3’UTR predicted target genes containing gga-miR-146a binding sites were cloned into the 

3’UTR of the psiCHECK-2 vector (Promega). 
 

 

 



 

 

99

 
         

        Figure 13. Validation of miR-146a target genes in the Renilla luciferase reporter system. Notes: 

Seven potential miR-146a target genes predicted by the miRanda algorithm were chosen for validation. 

For each predicted target gene a luciferase reporter vector was constructed in which the predicted miR-

146a binding site was cloned into the 3’ UTR of a Renilla luciferase reporter gene. The Renilla luciferase 

activities were normalized to Firefly luciferase activities (under the control of an independent promoter). 

The relative expression of each Renilla luciferase target construct was compared between cells expressing 

miR-146a and those expressing the scrambled control sequence (SC) using a t-test for statistical 

significance (p<0.05). Error bars indicate standard deviation. CASP6, a gene containing no binding site for 

miR-146a but predicted to contain a miR-143 target site was used as negative control. 

 

 

 

 

 

        Recent evidence indicates that cellular miRNAs can also target viral genes 

(Lecellier, Dunoyer, Arar, Lehmann-Che, Eyquem, Himber, Saib and Voinnet, 2005). 

Potential viral genes targeted by differentially expressed miRNAs were predicted using 

Vita program (Hsu, et al., 2007). All of the AIV genes were predicted to be targeted by 

at least one of up or down regulated miRNAs (Table 13) and 28 differentially expressed 

miRNAs were predicted to target AIV gene products. gga-miR-34a, which was only 

expressed in infected chicken lungs, not only had 14 immune related target genes in the 

host transcriptome, but also targeted the AIV HA, NA, PA, PB1 and PB2 genes. In 
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general, more AIV genes were targeted by induced host miRNAs than repressed 

miRNAs (8.33 times higher). Some miRNAs had only two viral targets, such as gga-mir-

32 (targeting HA and NS genes) and gga-miR-30b (targeting M and NA genes). Some 

other differentially expressed miRNAs had multiple predicted viral targets, such as gga-

miR-202 which is predicted to target all of the 9 AIV genes. 

 

Table 13. AIV viral targets of differentially expressed miRNAs between lungs of infected and non-

infected chicken (P<0.05, Q<0.05 and Ratio>2).   

 

miRNA 
Ratio of Infected 

/Non-infected (Normalized) 
AIV RNA segments 

gga-miR-153 

gga-miR-34a 

gga-miR-202 

only in infected lung 

only in infected lung 

+9.93 

HA, NA, PA, PB1 and PB2 

HA, NA, PA, PB1 and PB2 

HA, M, NA, NP, NS, PA, PB1 and PB2 

gga-miR-32 

gga-miR-211 

gga-miR-19b 

gga-miR-18a 

gga-miR-18b 

gga-miR-155 

+7.98 

+7.45 

+6.55 

+4.75 

+3.62 

+3.55 

HA and NS 

HA, M, NA, NP, NS, PA, PB1 and PB2 

HA, NS, PA and PB1 

HA, M, NA, PB1 and PB2 

HA, M, NA, PB1 and PB2 

HA, NA, NP, NS and PB1 

gga-miR-15a +3.48 HA, M NP, NS and PB2 

gga-miR-223 

gga-miR-30b 

+3.19 

+3.06 

HA, NA, PB1 and PB2 

M and NA 

gga-miR-142-3p +2.84 HA, NA, PA, PB1 and PB2 

gga-miR-106 +2.83 HA, NA, PA, PB1 and PB2 

gga-miR-20a +2.78 HA, NA, NP, PB1 and PB2 

gga-miR-146a +2.59 HA, M, NA, NP, NS, PA, PB1 and PB2 

gga-miR-20b +2.41 HA, M, NA, NP, NS, PB1 and PB2 

gga-miR-29a +2.36 HA, M, NA, NP, PA, PB1 and PB2 

gga-miR-29c 

gga-miR-24 

gga-miR-7b 

gga-miR-17-5p 

gga-miR-23b 

gga-miR-17-3p 

gga-miR-92 

+2.36 

+2.34 

+2.33 

+2.32 

+2.25 

+2.15 

+2.07 

HA, M, NA, NP, PA and PB1 

HA, M, NA, NP, NS, PA, PB1 and PB2 

HA, M, NA, PA, PB1 

HA, M, NA, NP, PA, PB1 and PB2 

HA, M, PA and PB1 

HA, M, NA, NP, PA and PB2 

HA, M, NP, NS, PB2 

gga-miR-206 -2.86 HA, NA, NP, PB1 and PB2 

gga-miR-301 -3.03 HA, NA, PB1 and PB2 

gga-miR-187 -4.35 NA, NP, PB1 and PB2 

 

Note:
 
+ Up-regulated with AIV infection; - Down-regulated with AIV infection. 
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Host mRNA profile analysis 

        The genome-wide expression profiling of host response to AIV infection was 

carried out by using chicken 44K Agilent microarray. There were 1,303 genes 

differentially expressed (303 up-regulated vs. 1000 down-regulated) between AIV 

infected vs. non-infected chickens (P<0.05, Fold-change>1.2). The fold-change of gene 

expression between infected and non-infected group ranged from 34.33 to -10.10 (Fig. 

14). 

 

 

        Figure 14. Differentially expressed host genes between lungs of AIV infected and non-infected 

chicken (P<0.05, Fold-change>1.2). Notes: Volcano plots of differentially expressed genes between AIV 

infected and non-infected chicken. NLP represents negative log10 of P-value. Fold change was log2 

transformed. Positive values means gene expression is higher in infected group than non-infected one. 

 

         

        Seventeen immune related host genes were significantly up or down regulated with 

AIV infection. Six genes were significantly up-regulated, while the rest were 

significantly down-regulated (Table 14). Chicken MX1 gene, which was reported to be 

associated with influenza virus resistance (Ko, et al., 2002), had the highest fold-change 

(11.46 fold) followed by interleukin 8 (11.03 fold) and interferon regulatory factory 7 
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(2.11 fold). Tumor necrosis factor receptor superfamily member 19 was down-regulated 

(1.85 fold). 

 

 

Table 14.  Differentially expressed immune related host mRNAs between lungs of infected and non-

infected chickens (P<0.05 and Fold-change>1.2) 

 

Gene description 
Gene 

Accession  

Infected vs. 

Non-infected 

(Fold-change) 

miRNA
1
 (fold change) 

MX1 myxovirus (influenza virus) 

resistance 1 
Z23168 +11.46 

gga-miR-155(+3.55) 

gga-miR-206(-2.86) 

Interleukin 8 (IL8) M16199 +11.03 gga-miR-32(+7.98) 

Interferon regulatory factor 7 (IRF7) U20338 +2.11 gga-miR-142-5p(+2.84) 

Interleukin1receptor-like1, transcript 

variant1 
AB041738 +1.65 

gga-miR-460 (only expressed 

in infected lungs) 

Ficolin 2 CR406783 +1.38 NA
2 

Phosphoinositide-3-kinase catalytic, 

α polypeptide 
AF001076 +1.31 gga-miR-451(+7.25) 

TNF receptor superfamily, member 

19 
BX931334 -1.85 gga-miR-187(-4.35) 

Ripartite motif-containing 7.1 BX934475 -1.81 NA 

RAC serine/threonine-protein 

kinase3 (ATK3) 
BX950472 -1.65 NA 

C-fringe-1 U97157 -1.52 NA 

Cell division cycle 42 CR385975 -1.52 NA 

CKLF-like MARVEL 

transmembrane domain 3 
BX935400 -1.49 gga-miR-7b(+2.33) 

Integrin beta 1 binding protein 3 CR352634 -1.42 gga-miR-24(+2.34) 

Mitogen-activated protein kinase 

kinase 5 
AJ721122 -1.27 gga-miR-451(+7.25) 

TGF beta-inducible nuclear protein 1 CR523694 -1.26 
gga-miR-451(+7.25) 

gga-miR-34a (only expressed 

in infected lungs) 

 

Note:
 1

miRNAs targeting on differentially expressed immune related genes; 
2
 No miRNAs targeting on the 

gene; +: Up-regulated with AIV infection; –: Down-regulated with AIV infection. 

 

 

 

Gene ontology (GO) analysis 

        The significantly enriched functional terms in biological processes from 

differentially expressed host genes and predicted target genes of differentially expressed 
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miRNAs with AIV infection, respectively are presented in Figure 15. Immune response 

(3.68 fold) was the only term enriched by induced host genes. There were no immune 

related GO terms for targets of repressed miRNAs. GO terms enriched in repressed 

genes included four clusters: cytoskeleton-dependent intracellular transport; DNA 

unwinding during replication and DNA repair; microtubule-based movement; and 

response to DNA damage stimulus and response to endogenous stimulus. Five GO terms 

were enriched in targets of induced miRNAs. These included calcium ion transport; 

hemophilic cell adhesion; T cell activation; gamma-aminobutyric acid signaling 

pathway; and Wnt receptor signaling pathway. 

 

 

A 

        Figure 15. Gene ontology (GO) annotation of differentially expressed genes (A) and target genes of 

differentially expressed miRNAs (B) between lungs of AIV infected and non-infected chicken in 

biological process category (P<0.05). Notes: Fold enrichment is a ratio obtained by dividing user’s 

percentage in certain categories by the percentage of each category of the whole genome. 
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B 

        Figure 15. continued. 

 

Discussion 

        miRNAs are evolutionarily conserved RNA molecules that regulate and integrate 

hundreds of genes within and across multiple signaling pathways. The discovered 

miRNA functions are currently revolutionizing both basic biomedical research and drug 

discovery (Appasani, 2008). Global profiling of miRNAs expression may enhance our 

understanding of regulatory mechanisms in many biological processes. In the present 

study with broiler chickens, there were more miRNAs up-regulated than down-regulated 

with virus infection, which was the opposite of our previous miRNA profiling in AIV 

infected layers (more down-regulated than up-regulated) (Wang, et al., 2009). Table 15 

lists differentially expressed miRNAs in both current broiler (2
nd

 deep sequencing) and 

previous layer studies (1
st
 deep sequencing). Only two (mir-1599 and mir-1416) of 

eighteen miRNAs had consistent directions of regulation following AIV infection. These 

findings suggest that these two miRNAs are conserved responses to AIV infection in 
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chickens across diverse genetic lines. The major discrepancies between two studies 

might be due to: broilers and layers being genetically distinct chicken breeds with long-

term diverse selection targeting on growth and egg production, respectively. Genetics 

play an important role in the regulation of miRNAs expression in animals (Bueno, et al., 

2008). The genetic differences between broilers and layers might contribute to miRNAs 

expression differences. Broilers have rapid growth rate and larger size and percentage of 

meat than layers (Jones, et al., 1986). miR-206 was reported promoting muscle 

differentiation in mouse myoblasts (Kim, et al., 2006). In our results, gga-miR-206 was 

highly up-regulated in layers while down-regulated in broilers. With the down-regultion 

of miR-206 in broilers, muscle differentiation might be inhibited which made broilers 

hardly keep a high growth rate with AIV infection. Also, broilers and layers have 

developed different characteristics of their immune systems. Broilers are specialized in 

the production of a short term humoral response, while layers have a long-term humoral 

response in combination with a strong cellular mediated response (Koenen, et al., 2002). 

With AIV infection, it was expected that a different host response between broilers and 

layers would be observed. The differential expression of miRNAs between chicken 

breeds reflects their different responses to virus infection. Differential expression of 

miR-142-3p in conventional CD4
+
 T cells and CD25

+
 TREG cells in mice is able to 

control the functions of both effector and suppressor cells. In our study, gga-miR-142-3p 

was down-regulated in layers and up-regulated in broilers, which indicated that 

regulation of host immune system is different between genetic lines. 3) Different 

development stages might contribute to miRNA expression differences (Hicks, et al., 
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2008; Hicks, Tembhurne and Liu, 2009). The broilers used in the present study were 

challenged on day 7 of age and layer chickens used previously were challenged on day 

21, which represents different developmental stages. These results suggest that genetic 

backgrounds and/or age at time of challenge play a vital role in the regulation of 

miRNAs during AIV infection in chickens. 

 

Table 15. Comparison between two deep sequencing results (P<0.05, Q<0.05 and Ratio>2). 

 

 miRNAs 

3 week old layers 1 week old broilers 

Infected 
Non 

-infected 
Ratio 

(Normalized) 
Infected 

Non 
-infected 

Ratio 
(Normalized) 

In
co

n
si

st
en

t 

gga-mir-106 0 27 + 897 394 2.83 

gga-mir-142-3p 2 49 0.07 1055 461 2.84 

gga-mir-142-5p 2 49 0.07 1100 481 2.84 

gga-mir-144 111 94 0.21 13216 4727 3.47 

gga-mir-146a 7 105 0.12 1331 639 2.59 

gga-mir-15a 2 102 0.04 2431 861 3.48 

gga-mir-16-1 1 107 0.02 2724 1206 2.80 

gga-mir-1729 0 24 + 4292 843 6.32 

gga-mir-19b 1 31 0.06 955 181 6.55 

gga-mir-193a 5 26 0.35 1230 461 3.31 

gga-mir-206 101 9 20.38 28 98 0.35 

gga-mir-20a 1 23 0.08 426 190 2.78 

gga-mir-20b 0 10 + 734 378 2.41 

gga-mir-223 1 15 0.12 1842 717 3.19 

gga-mir-29a 2 15 0.24 205 108 2.36 

gga-mir-451 93 1287 0.13 207487 35518 7.25 

C
o

n
si

st
en

t 

gga-mir-1599 

gga-mir-1416 

48 

17 

13 

10 

6.17 

3.09 

184 

25 

7 

12 

32.64 

2.59 

Note:
 +

 Specifically expressed in non-infected lungs. 

 

         miRNAs regulate gene expression mainly by binding to their target mRNAs in one 

of two places: the coding sequence or 3’ UTR. It is clear that the major role of miRNAs 
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is to down-regulate the protein production by targeting mRNAs (Cannell, et al., 2008). 

Mammals encode two isoforms of miR-146 (a and b). Both miR-146a and miR-146b 

respond to LPS in lymphocyte cell lines, but only the expression of miR-146a was 

induced (Taganov, et al., 2007). miR-146a is predicted to have an antiviral role by 

targeting Primate Foamy Virus type 1 (PFV-1) virus, Dengue virus, Hepatitis C virus, 

influenza virus and several other viruses (Hsu, et al., 2007). It was also reported to be 

able to inhibit a group of interferon-responsive genes in an Epstein-Barr virus (EBV) 

latency type III cell line, which suggested that miR-146a functions in a negative 

feedback loop to modulate the intensity and/or duration of the interferon effects 

(Cameron, et al., 2008). Chicken miR-146 has three isoforms miR-146a, miR-146b and 

miR-146c. It will be very interesting to examine if miR-146 also has targets on AIV 

genes. In the current study, of the 3 isoforms, only miR-146a was significantly up-

regulated with AIV infection and targeted on Toll-like receptor 3 (TLR3) by 

computational target prediction. TLR3 is a part of host innate immunity, which is 

capable of recognize dsRNA and trigger antiviral and inflammatory responses to viral 

infection and has antiviral role against AIV (Wong, et al., 2009). In addition, miR-146a 

was also differentially expressed in the previous AIV study although the direction of 

regulation was opposite (Wang, et al., 2009). Therefore, we decided to examine the 

predicted targeted genes of miR-146a in order to understand underlying regulatory 

mechanism of AIV infection. Although five predicted target genes were confirmed by 

Dual luciferase reporter assay, unfortunately, none of them were significantly 

differentially regulated at the mRNA level (P > 0.05) by microarray analysis. miRNAs 
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fine tune target gene expression, this might be one of the reason that no dramatic 

changes on these target genes were identified. In addition, the regulatory mechanism for 

gga-miR-146a may primarily regulate the protein rather than the mRNA levels of these 

five target genes.  

        miR-155 has been reported to play important roles in both innate and adaptive 

immunity in mammals ( O'Connell, 2007; Lindsay, 2008; Romania, et al., 2008). miR-

155 knock-out mice are not capable of generating defensive immune responses, 

developing lymphocytes, or antigen-presenting cell functions (Thai, et al., 2007). miR-

155 is up-regulated with poly (I:C) and IFNβ stimulation in mouse bone-marrow derived 

macrophages (O'Connell, 2007). Poly(I:C) is a ligand for TLR3, which in turn induced 

the expression of miR-155 directly and immediately, while the induction of miR-155 by 

IFN is indirect and requires TNFα autocrine and paracrine signaling (Taganov, et al., 

2007). These studies suggest an important role of miR-155 in the regulation of viral 

infection. In the current study, gga-miR-155 was significantly induced by AIV infection, 

which was consistent with other study in which miR-155 was up-regulated by a variety 

of pathogen stimuli (Taganov, et al., 2006). Based on target prediction, miR-155 could 

target the chicken anti-influenza gene Mx1, therefore playing a role in host and AIV 

interactions in chickens. The activation of c-Jun NH2-terminal kinases (JNK) pathway 

can eliminate virus-infected cells by apoptosis. The inhibition of JNK pathway blocks 

the expression of miR-155 in murine macrophages (Taganov, et al., 2006; O'Connell, 

2007). Based on host mRNA profiles by microarray, TNFRSF19 (TNF receptor 

superfamily member 19), one of the genes in the JNK pathway, was significantly down 
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regulated with AIV infection, which indicate that antiviral activities through JNK 

pathway might be inhibited. Therefore, up-regulated miR-155 in the current study might 

also activate JNK pathway, and subsequently induce apoptosis to eliminate virus-

infected cells.  

        miRNAs play vital roles in host-virus interactions. Host cellular machinery 

determines virus survival and propagation, and cellular miRNAs and their targets have 

been shown to be involved in the regulation of host-pathogen interactions (Wang, et al., 

2009). Many cellular miRNAs have been found to directly regulate virus replication. 

Human miR-32 had a direct negative effect on the replication of retrovirus Primate 

Foamy Virus type 1 (PFV-1) by down regulating replication-essential viral proteins 

encoded by open reading frame 2 (ORF2), causing translation inhibition (Lecellier, et al., 

2005). miR-32 was significantly up-regulated (7.98 folds) with AIV infection in this 

study, which might indicate a similar host defensive mechanism in order to block viral 

infection. miR-32 was predicted to target several chicken immune related genes such as 

TNF receptor-associated factor 3, NFKB-1 and IL8 as well as HA and NS genes of AIV 

(Table 13). NS1 protein has been shown to block the synthesis of cellular mRNAs and 

also inhibits activation of PKR (dsRNA-dependent serine/threonine protein kinase R) 

induced by interferon, which initiate the interferon and cellular responses to viral 

infection (Knipe, 2007). We speculate that the induction of chicken miR-32 during AIV 

infection could lead the degradation of NS1mRNA, improve the integrity of host 

mRNAs, and promote the PKR pathway that inhibits viral replication. 
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        Microarray analysis provides a powerful tool to identify differentially expressed 

genes in a global level. In the current study, 17 immune related host genes were 

differentially regulated (Table 14). As expected, the Mx1 gene, originally discovered as 

an interferon induced protein with the ability to block replication of influenza viruses 

(Knipe, 2007), was highly expressed during AIV infection (11.46 fold up-regulation). 

Antiviral genes such as interleukin 8, interferon regulatory factor (IRF)-1(P=0.08 with 

fold-change of 2.78), and IRF-7 were also highly up-regulated during AIV infection. 

IRF-1, a transcriptional activator of interferon α and β, has been shown to be essential 

for host response to virus infection (Yu-Lee, et al., 1990). This indicates the possibility 

that virus infection initiates host anti-viral defense response (Mogensen and Paludan, 

2001). On the contrary, tumor necrosis factor superfamily member 19 (TNFRSF19), 

which is capable of inducing apoptosis (Hu, et al., 1999), was significantly down 

regulated; so were mitogen-activated protein kinase 5 (MAP2K5) and TGF beta-

inducible nuclear protein 1 (Ramachandran, et al., 2005). All three genes are associated 

with cell signaling, differentiation and apoptosis.  

        Both Mx1 gene (11.46 fold up-regulation) and TGF beta-inducible nuclear protein 

1 (TGFβINP1) (1.26 fold down-regulation) were predicted to be targeted by two 

differentially expressed miRNAs (miR-155 and miR-206 for Mx1, and miR-451 and 

miR-34a for TGFβINP1, respectively). From miRNA deep sequencing results in the 

current study, miR-155 was up-regulated, while miR-206 was down-regulated with AIV 

infection. Based on negative theoretical regulation of miRNA on mRNA expression and 

the high fold up-regulation of Mx1 observed we suggest miR-206 plays a major 
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regulatory role on Mx1 expression. On the other hand, both miR-34a and miR-451 were 

up-regulated with AIV infection, suggesting that down-regulation of TGFβINP1 at the 

mRNA level might be due to suppressive effects of both miRNAs.  

        Cellular miRNAs can regulate viral genome transcription and translation. Human 

miR-122 has been reported to play an essential role in HCV virus replication by 

interacting with HCV genome at both 3’ and 5’ non-coding regions (Jopling, et al., 2005; 

Jopling, et al., 2008). Of particular interest, miR-122-1 and miR-122-2 were up-

regulated during AIV infection (fold-changes of 8.11-8.69, respectively) in the current 

study. Although no viral targets for miR-122-1 and miR-122-2 were identified, it is 

noteworthy to further examine if and how miR-122 might regulate AIV virus replication. 

On the other hand, 28 differentially expressed miRNAs had multiple AIV gene targets 

(Table 13). Some miRNAs (miR-153, miR-34a, miR-202, miR-211, miR-142-3p, miR-

106, miR-146a, miR-29a, miR-24 and miR-17-5p) specifically expressed in infected 

lungs or were up regulated during AIV infection. They target AIV polymerase basic 1 

(PB1), polymerase basic 2 (PB2) and polymerase acid (PA) mRNAs. PB1, PB2 and PA 

are components of influenza virus RNA dependent RNA polymerase complex and are 

essential for virus replication (Knipe, 2007). We speculate that up-regulation of these 

miRNAs may inhibit AIV replication, and experiments to examine the effects of these 

miRNAs on AIV replication are underway. Most of these up-regulated miRNAs were 

predicted to target the hemaglutinin (HA) and neuraminidase (NA) mRNAs such as 

miR-34a and miR-155. Both HA and NA are major surface glycoproteins. HA is 

responsible for receptor binding and virus fusion (Knipe, 2007), while NA is responsible 
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for receptor destruction and virion release (Knipe, 2007). Therefore, induction of these 

miRNAs might affect virus attachment and release and therefore the formation of new 

infectious viral particles. Further more, three down-regulated miRNAs (miR-206, miR-

301 and miR-187) also were predicated to target the AIV genome. The first line of 

evidence from this analysis strongly indicates several candidate miRNAs including miR-

34a, 146a, 155 and 206, basing on both the differential expression with AIV infection 

and their host and viral targets, warrant further investigation to understand the 

mechanisms of miRNA regulation of AIV infection in chickens. 

        In summary, by integrating both cellular miRNA and mRNA expression during 

AIV infection in broiler chickens, this comprehensive analysis has provided several lines 

of new evidence on how host miRNA might regulate host response to AIV replication in 

broilers. Specifically, this study generated a list of strong candidate miRNAs including 

miR-32, 34a, 146a, 155, 187, 206, and 451 for our on-going effort to further elucidate 

regulatory mechanisms of miRNAs on AIV infection in chickens. In addition, several 

candidate genes including MX1, IL-8, IRF-1, 7, TNFRS19, MAPK5 have been 

identified to be associated with AIV infection in broilers. Finally, comparison with our 

previous report on layer miRNA expression profile, this study strongly indicates that 

genetic background is a critical factor in determining miRNA abundance and regulation 

during AIV infection. 
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CHAPTER V 

EVALUATION OF THE COVERAGE AND DEPTH OF TRANSCRIPTOME BY RNA-

SEQ IN CHICKENS* 

 

Introduction 

        The transcriptome catalogues the complete set of transcripts in a cell. 

Transcriptomic regulation is critical to all physiological, developmental and pathological 

processes (Blencowe, et al., 2009), and mRNA expression profiles can represent the 

characteristics of a cell at a specific state and help to govern its present and future 

activities (Mortazavi, et al., 2008). The profiles of a transcriptome in terms of alterations 

in response to specific biological stimuli provides valuable insights for interpreting 

functional elements of the genome, revealing the molecular constituents of cells, and 

also understanding developmental and disease processes.  

        Different types of technologies have been developed to interrogate transcript 

abundance, including hybridization-based and sequencing-based approaches. 

Hybridization-based microarrays have been the primary transcriptomic high-throughput 

tool for almost two decades, which has accelerated the study of transcriptome analysis 

by profiling thousands of genes simultaneously (Bhattacharjee, et al., 2001; Jurata, et al., 

2004; Li, et al., 2008). However, microarray technology has several limitations  

 

___________________ 
*Reprinted with permission from “Evaluation of the coverage and depth of transcriptome by RNA-Seq in 

chickens” by Wang Y. et al., 2011, BMC Bioinformatics, 12 (Suppl 10):S5. Copyright 2011 by BMC 

Central Ltd. 
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including: indirect quantification by hybridization-signal intensities (Cassone, et al., 

2007), background and cross-hybridization problems (Okoniewski and Miller, 2006) and 

reproducibility issues (Draghici, et al., 2006). The development of next generation 

sequencing with improved qualitative and quantitative measurements holds great 

promise in transcriptome analysis. 

         RNA-Seq is a recently developed approach to map and quantify transcriptomes by 

digitally recording how frequently each transcript is represented in a sequence sample. 

After poly (A) selection, RNA is fragmented to small fragments and converted into a 

cDNA library, which provides a simple and more comprehensive way to measure 

transcriptome composition and to discover new genes by high-throughput sequencing 

without bacterial cloning of cDNA input (Mortazavi, et al., 2008). Studies using this 

technology have already altered our views regarding the extent and complexity of 

transcriptomes in an organism and dramatically improved our understanding of 

transcriptome. RNA-Seq has several advantages over micorarrays including: 1) RNA-

Seq is not dependent on prior knowledge about the target sequence; 2) It has a large 

dynamic range and sensitivity due to its digital nature, which is especially important for 

highly abundant and extremely low abundant genes; 3) The survey of a transcriptome is 

more accurate because the quantification of each transcript is directly based on digital 

counts of the transcript. Therefore, RNA-Seq offers both single-base resolution for 

annotation and “digital” quantification at the RNA level, which allows the entire 

transcriptome to be analyzed in a high-throughput and quantitative manner (Wang, et al., 

2010). However, the expense per sample for RNA- Seq is still a limiting factor in 
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preventing researchers from sequencing multiple biological replicates per group, which 

are needed for statistically-significant analysis. It is common to adopt a pooling strategy 

to reduce the cost for RNA-Seq studies (Liu, et al., 2011). With the continued 

enhancement of sequencing output and the development of multiplex labelling 

techniques, the cost per sample could be significantly reduced if several samples are 

multiplexed and sequenced in the same lane, given sufficient transcriptome coverage per 

sample. Therefore, it is imperative to address the trade-off between the depth of RNA-

Seq and the coverage of the transcriptome in an organism. The objective of this study 

was to evaluate what coverage or sequencing depth of transcriptome would be sufficient 

to interrogate gene expression profiling in the chicken by RNA-Seq. 

 

Materials and methods 

RNA preparation 

        Total RNA was isolated from four chicken lungs from two genetic chicken lines 

leghorn and fayoumi (two samples per line) by Trizol (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s protocol. Two RNA samples from the same line were 

pooled to generate totals of two pooled RNA samples (Sample1 and Sample2).  DNase I 

(Ambion, Austin, TX) digestion was carried out after RNA isolation and the RNA 

concentration and purity were determined by measuring absorbance at 260 nm and 

A260/A280 ratio using a NanoDrop ND-1000 spectrophotometer (Nano-drop 

Technologies, Wilmington, DE). RNA samples were stored at -80 ºC until further use.  
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cDNA library preparation and sequencing by RNA-Seq 

        Total RNA (7 µg) was subjected to two rounds of hybridization to oligo (dT) beads 

(Invitrogen, Carlsbad, CA) to enrich mRNA. Ribosomal RNA contamination was 

evaluated by RNA pico chip using a BioAnalyzer (Agilent, Santa Clara, CA). The 

resulting mRNA was then used to prepare cDNA libraries using the RNA sequencing 

sample preparation kit (Illumina, San Diego, CA). Sample1 and Sample2 were 

sequenced by Illumina Genome Analyzer and then Genome Analyzer II, which 

generated four datasets: S1-R1, S2-R1, and S1-R2, S2-R2, respectively.  

 

Data filtering, mapping reads and identifying transcriptome contents 

        The sequences generated went through a filtering process first. Any reads that 

contained numerous interspersed Ns in their sequences, or had relatively short reads 

(<17 bp), were removed for the following analysis. Sequence reads obtained after quality 

control with filtering were analyzed using CLC Genomics Workbench 4 (CLC bio, 

Cambridge, MD). After mapping, the gene expression level was quantified by simply 

dividing the number of reads mapped to each gene by the size of its transcripts, 

commonly known as the number of reads per kilobase of exon per million mapped reads 

(RPKM) (Mortazavi, et al., 2008), for all 15,742 annotated chicken genes in the 

database.  The gene expression level was then log2 transformed. 
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Random sampling of S1-R2 and S2-R2 

        We have obtained RNA-Seq data in three different levels of depth: 1.6 M, 4.9 M, 

and about 30 M reads. Clearly, there was a big gap between 4.9 M and 30 M reads. In 

order to identify the appropriate depth of transcriptome per sample that is sufficient for 

whole genome transcriptome profiling, it is important to generate additional datasets at 

different levels of depth. It would be very costly to re-sequence each sample to generate 

RNA-Seq data at different levels of sequencing depth. Random sampling from the 

current dataset might provide a cost-effective approach for this purpose. This procedure 

synthetically created samples from the originally sequenced samples. Thus, for samples 

S1-R2 and S2-R2 data sets, by drawing without replacement a fixed number of reads 

from the overall data set, we randomly selected 10 M, 15 M and finally 20 M reads. 

These random selections were repeated 4 times, resulting in total of 24 technical 

replicates with different transcriptome depth. Each one of the reads in the FASTQ 

format of the input files, which were used in the sampling, was selected equally likely. A 

program in Perl was written to serve this purpose. Then, the resulting replicate datasets 

were uploaded into CLC Genomics Workbench in the FASTQ format for the analysis 

individually. The correlation coefficients of gene expression (RPKMs) between 

replicates of each sequencing depth were calculated by JMP (SAS, Cary, NC). The 

average RPKMs of transcripts identified by each sequencing depth (10 M, 15 M and 20 

M) were calculated to represent the gene expression values for further analysis.  
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Correlation coefficients between different sequencing depths from the same sample  

         In order to evaluate how reliable the sequence data is at each level of sequencing 

depth, correlation coefficients between lower and high depth sequence data for each 

sample were calculated by JMP (SAS, Cary, NC). Any genes with no gene expression at 

either sequence dataset were excluded from the correlation coefficient computation. The 

depth of sequencing is highly correlated with the abundance of gene expression, 

therefore, genes were divided into the four quartile groups based on expression levels for 

each dataset, from the bottom 25% (1
st
 quartile) to the top 25% (4

th
 quartile). 

Subsequently, correlation coefficients between lower-depth sequence data and the data 

with 28.7- 29.6 M reads within each of the four quartile groups were calculated. 

 

Results 

RNA-Seq  for cDNA libraries 

        The two chicken cDNA libraries (Sample1 and Sample2) were sequenced by the 

Illumina Genome Analyzer, which generated 4.9 M (60 bp) reads (S1-R1) and 1.6 M (60 

bp) reads (S2-R1), respectively. Then, two technical replicate cDNA libraries from the 

same RNA samples were re-sequenced using the Genome Analyzer II, which generated 

29.6 M (75 bp) reads (S1-R2) and 28.7 M (75 bp) reads (S2-R2).  

 

Random sampling of the S1-R2 and S2-R2 

        The datasets of S1-R2 (29.6 M) and S2-R2 (28.7 M) were each randomly re-

sampled into 10 M, 15 M, and 20 M reads with four replicates each. The correlation 
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coefficients between every two replicates for each re-sampled level (10 M, 15 M and 20 

M) within each sample (S1-R2 and S2-R2) were all greater than 0.98, which 

demonstrated that the sampling procedure is consistent and accurate. Averages of gene 

expression from the four replicates at each re-sampled level for each sample were used 

for further analysis.  

 

Effects of sequence depth on the distributions of transcripts 

        The distributions of transcript abundance at different levels of sequence depth from 

Sample1 and Sample2 are presented in Figures 16 and 17, respectively. In general, the 

median and 75% percentile were similar across five different levels of depth, while the 

95% percentile showed a slight increase; especially from 20 M to 30 M. Significant 

decreases at the 25% and 5% percentile were observed, especially from 20 M to 30 M. 

In addition, a significant decrease was also observed from 1.6 M to 10 M in Sample2. 

 

 

        Figure 16. Distributions of log2 transformed reads of transcripts at different sequencing depths for 

Sample1. 

 

 

 

 

 



 

 

120

 

        Figure 17.  Distributions of log2 transformed reads of transcripts at different sequencing depths for 

Sample2. 

 

Coverage of annotated chicken genes  

        There are about 15,742 annotated chicken genes in the NCBI database. Number of 

detected chicken genes at different levels of sequencing depth from Samples 1 and 2 are 

presented in Table 16. There were 14,336 genes detected in S1-R2 (29.6 M) and 14,212 

genes in S2-R2 (28.7 M), which accounted for 91.07% and 90.28% of all 15,742 

annotated chicken genes in the database, respectively. With the reduction of sequencing 

depth, the number of detectable genes also decreased from 91% to 78% in Sample1 (Fig. 

18A), and from 90% to 68% in Sample2 (Fig.18B).  Two significant drops of 

transcriptome coverage were observed: from 30 M to 20 M, and 10 M to 1.6 M. 

 

Table 16.  Numbers of detected annotated chicken genes at different levels of sequence depth. Note:
 1
 

percentage of identified known chicken genes across all genes in the database. 

 

Sample 1 Sample 2 

 No.of genes %
1
  No. of genes %

1
 

29.6M 14336 91.07
 

28.7M 14212 90.28
 

20M 13011 82.65 20M 12895 81.91 

15M 12822 81.45
 

15M 12690 80.61
 

10M 12515 79.50
 

10M 12406 78.81
 

4.9M 12276 77.98
 

1.6M 10664 67.74
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        Figure 18. Percentages of detected chicken genes at different levels of sequence depth across all 

annotated chicken genes. A: Sample1; B: Sample2. 

 

 

Correlation coefficients between different sequencing depths 

        To evaluate the appropriate depth of sequence that is needed for transcriptome 

profiling, correlation coefficients between different levels of sequencing depth and the 

most abundant reads for each sample were calculated. For Sample1, overall correlation 
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coefficients at four different levels of depth were greater than 0.95. When we examined 

the four quartile groups based on expression level (Fig. 19A), correlation coefficients 

ranged from 0.34 to 0.67 for the 1st quartile, 0.22 to 0.77 for the 2nd quartile, 0.65 to 

0.95 for the 3rd quartile, and 0.97 to 1.0 for the 4th quartile. A similar pattern in terms of 

correlation coefficient change was observed for the 1st, 2nd, and 3rd quartiles; a 

significantly increased correlation coefficient from 4.9 M to 10 M, and kept relative flat 

from 10 M to 20 M. For the 4th quartile, correlation coefficients at four different levels 

of depth were greater than 0.95. From the 1st to the 4th quartiles, there were significant 

increases for correlation coefficients between every two quartile groups (p<0.01). For 

Sample2, overall correlation coefficients at four different levels of depth were greater 

than 0.98, except for 1.6 M at 0.84. Correlation coefficients ranged from 0.08 to 0.72 for 

the 1st quartile, 0.05 to 0.78 for the 2nd quartile, 0.31 to 0.95 for the 3rd quartile, and 

0.87 to 1.0 for the 4th quartile (Fig. 19B). The same pattern in terms of correlation 

coefficients changes at different levels of depth between Sample1 and Sample2 was also 

observed. 
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        Figure 19. Correlation coefficients between 30 M reads and four different levels of sequence depth at 

different quartiles. A: Sample1; B: Sample2. 

 

Discussion 

        In the current study, RNA-Seq was performed twice using two chicken cDNA 

samples. The first run of RNA-Seq had fewer numbers of reads and larger variation in 

terms of total number of reads between the two samples, while the second run had 

greater number of reads and very small variation between the two samples. The first run 

was performed at the very early stage of the sequencing technology when it was still in 
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the testing phase. The lower reads and larger variation in the first run may be coming 

from two major sources of technical error: the purification of cDNA templates during the 

library preparation, and the loading of libraries onto flow cells (RNA-Seq technical 

guide and personal communications, Illumina technical support staff). These potential 

sources of errors were corrected during the second RNA-Seq analysis, which provided 

improved sequencing depth with greater number of reads. The first RNA-Seq datasets 

were directly derived from actual experiment, which made the results more informative 

than replicating datasets by random sampling. Therefore, we chose to include these two 

early datasets in the analysis in the current study. Furthermore, all of the reads from each 

sample were normalized by the RPKM and the datasets can serve as a reference for 

random sampling at different sequencing depths from the exact same samples. 

        The capacity of sequencing length of 60 bp for the first run was increased to 75 bp 

at the second RNA-Seq analysis. Longer reads should reduce estimation error and 

mapping uncertainty, and read lengths have consistently increase with improving 

Illumina massively parallel sequencing technology. However, people have noted that the 

number of reads is more important than the read length once reaching a minimum read 

length of 25 bp (Li, et al., 2010a; Nicolae, et al., 2011). The read lengths (60 bp and 75 

bp) in the current study were larger than 25 bp; therefore, the read length will not affect 

the overall conclusions drawn. 

        As a powerful new technology for transcriptome analysis, RNA-Seq provides a 

more comprehensive view of the transcriptome than earlier technologies. Besides its 

ability to detect splicing variation, RNA editing and discovery of new transcripts 
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(Wilhelm, et al., 2011), RNA-Seq can also function in the role of a conventional 

microarray in measuring gene expression due to its accurate measurements. In order to 

detect less abundant transcripts, appropriate sequencing depth is needed. The 

transcriptome coverage or sequencing depth needed for a given study can be affected by 

several factors such as genome size, transcriptome complexity and objectives of the 

study. In general, the more complex the transcriptome, the more sequencing depth is 

required for adequate coverage (Cloonan, et al., 2008). Depending on the purpose of 

transcriptome analysis, the requirement of sequencing depth varies. In most 

transcriptome studies, quantifying mRNA abundance is one of the major objectives. 

There is a certain sequencing depth that is sufficient in simple transcriptomes. For 

example, in the yeast genome, a 29.9 M (35 bp) reads dataset was generated by RNA-

Seq which was able to get 100% transcriptome coverage (Nagalakshmi, et al., 2008). 

The number of transcripts detected by RNA-Seq in the yeast dataset was able to reach 

80% transcriptome coverage at 4M mapped reads, and even though the sequencing depth 

doubled as 8M reads, the transcriptome coverage only increased 10% (Nagalakshmi, et 

al., 2008; Wang, et al., 2009b). These results suggest that the improvement of 

sequencing depth or transcriptome coverage after reaching a certain sequencing depth 

had relatively less impact on detecting low abundant genes (Wilhelm, et al., 2008). In 

addition, the cost per sample per lane by RNA-Seq is still not affordable for most 

laboratories. Recent development in multiplex labelling using bar-coded libraries by 

Illumina and continued increase in sequence output have made it possible to sequence 

multiple samples per lane without extra cost or running time (Stiller, et al., 2009). 
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Therefore, it is imperative to examine the correlation between sequencing depth and 

transcriptome coverage; in other words, what sequencing depth might be sufficient in 

reaching a certain level of transcriptome coverage and reliable measurement for RNA-

Seq. In order to accomplish this objective, two approaches could be applied: 

experimental or simulation methods. Both methods have been applied in this study. High 

correlation among replicates within each sequencing depth, gradual increase in 

correlation coefficients from 10 M to 20 M, and consistent patterns observed between 

Samples1 and 2 (Fig. 19) have demonstrated that random sampling was an effective and 

reliable method in reaching the goals of this study. 

        Transcriptome coverage is one of the most important parameters in profiling global 

gene expression. The number and level of transcript isoforms is not always known and 

transcription activity varies across the genome (Wang, Gerstein and Snyder, 2009b). 

This was confirmed in a study by using the number of unique transcription start sites as a 

measure of coverage in mouse cells (Wilhelm, Marguerat, Watt, Schubert, Wood, 

Goodhead, Penkett, Rogers and Bahler, 2008). In the current study, we took a more 

practical approach using all annotated genes in the chicken genome. Because the chicken 

genome is far under-annotated, we assume that the 15,742 annotated chicken genes in 

the database would well represent different levels of expression abundance in the 

chicken genome, which is essential for the analysis of transcriptome coverage in this 

study. Since gene expression depends on tissue and time of biological process (Wilhelm, 

et al., 2008), it is impossible for any single tissue to have all genes in the genome 

expressed. Ninety percent of all annotated genes (Fig. 18) detected at about 30 M (75 bp) 
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reads might represent a saturated detection of the whole genome. The analysis results 

indicated significant improvements of transcriptome coverage occurred from 1.6 M to 

4.9 M and from 20 M to 30 M. Depending on the purpose of transcriptome analysis, the 

current study suggested that 10 M (75 bp) reads could have 80% of transcriptome 

coverage, while 30 M (75 bp) reads could reach 90% of transcriptome coverage. 

        When we analyzed overall correlation coefficients at different levels of sequencing 

depth regardless of gene expression level, we observed very high correlation coefficients 

between each level of sequencing depth compared with 30 M, except for 1.6 M. One 

might draw a conclusion that there is no significant difference among different levels of 

sequencing depth. But as we see in Figure 19, this might be true in the case of highly 

abundant genes (the 4
th

 quartile group), but not in the case of the 1
st
 to 3

rd
 quartile 

groups, especially the first two quartile groups (i.e. expression below the median). High 

abundant genes will be less affected by sequencing depth than low abundant genes, 

because high abundant genes are more likely to be captured even when the sequencing 

depth varies (Ramskold, et al., 2009).  This is also confirmed by our analysis. 

Collectively, the following conclusions can be inferred: 1) Sequencing depth below 20 

M (75 bp) reads had a significant effect on detecting  transcript levels of medium and 

low abundant transcripts; 2) Sequencing depth at both 1.6 M and 4.9 M would result in 

unreliable mRNA expression on all genes except highly abundant transcripts; 3) There 

was no significant improvement in correlation coefficients when sequencing depth 

doubled from 10 M to 20 M. Based on these analysis, the results suggested: 1) 5 M reads 

might be sufficient in obtaining reliable mRNA expression measurement on highly 
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abundant transcripts; 2) When sequencing depth is beyond 10 M reads, a relatively 

reliable measurement of mRNA expression is expected, especially for abundant 

transcripts; 3) It seems that 30 M of reads is needed to achieve reliable measurement of 

mRNA expression across all genes in the chicken genome.  To our knowledge, this is the 

first study evaluating the appropriate sequencing depth using RNA-Seq in farm animals 

and will provide the first reference for similar studies. The knowledge generated from 

this study has laid a solid foundation for applying this analysis to other species. 
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CHAPTER VI 

SUMMARY AND DISCUSSION 

 

        Influenza A viruses are important pathogens causing contagious respiratory 

diseases. In most cases, influenza infections are self-limiting but sometimes they cause 

substantial morbidity and mortality worldwide (Katz, 2003). As a negative stranded 

RNA virus, influenza viruses show high mutation rates especially in the antigenic 

regions such as HA and NA segments. Due to the small sizes of gene segments, 

reassortments of influenza viral genes during mixed infections with two or more virus 

subtypes, even between species, can make pandemic influenza A viruses (Reid, et al., 

2001).  Since the late 1990s, interspecies transmission of
 
avian influenza viruses to 

humans has occurred on a global scale
 
and has heightened concerns of AIVs impact on 

the public health (Katz, 2003). Understanding molecular mechanisms of host AIV 

interactions not only benefit poultry industry, but also provide valuable knowledge for 

human influenza prevention and treatment. 

         The main characteristic of pathogenic microorganisms is their abilities to cause 

tissue damage and consequently disease in the hosts. Various methods have been utilized 

to study how pathogens interact with the hosts and the mechanisms by which hosts 

protect themselves from pathogenic microorganisms. The generated results from these 

studies have been valuable for the development of safe and effective diagnostics, 

therapeutics and vaccines (Small, et al., 2001). Currently there are several genomics 

approaches available to thoroughly study the host-pathogen interactions from the host 
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aspect. These methods include genetic association analysis, DNA methylation, gene 

expression profiling, and proteomics analysis. The current dissertation demonstrated the 

applications of different genomics approaches for studying the host-AIV interactions in 

chickens. 

        Disease susceptibility is, in general, inheritable, although the heritability of disease 

resistance is usually low (Knight and Kwiatkowski, 1999). Therefore, genetic selection 

of birds with more disease resistance has offered a promising approach for the disease 

control (Wigley, 2004). The diversity of host immune systems during pathogen 

infections may result in genetic differences in disease susceptibility among different 

genetic lines (Hilleman, 2004). Inbred lines have provided a unique model to study 

genetic resistance to disease resistance. Several inbred chicken lines have been shown 

different degree of susceptibility to viral infections such as genetic resistance to Marek’s 

disease (MD) in line 6 and line 7 where line 6 is resistant to MD, and line 7 is 

susceptible to MD (Bacon, et al., 2000). For AIV studies, two highly inbred chicken 

lines (Leghorn and Fayoumi) with distinct genetic characteristics (Zhou and Lamont, 

1999) were used to examine genetic resistance to AIV infection. Interestingly, AIV titers 

in trachea at 4 days post infection in the two lines were significantly different (Fig. 20). 

Leghorn birds had higher viral titer (relatively susceptible) and Fayoumi birds had lower 

viral titer (relatively resistant) to AIV infection. Therefore, these two genetic lines will 

be good models to investigate genetic resistance to AIV infection in the chicken. 

        Disease resistance is a quantitative trait. Both linkage analyses such as quantitative 

trait loci (QTL) mapping and associations studies can be used to identify markers 
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associated with disease resistance trait. In the chicken, several genes have been 

demonstrated to be associated with pathogen infections such as chicken TLR4 (Wigley, 

2004), CD28 and MD-2 genes (Malek, et al., 2004) for Salmonella resistance; growth 

hormone gene for MD (Liu, et al., 2001) resistance. Chicken Mx1 gene is widely 

reported having anti-influenza activities in vitro (Ko, et al., 2002; Ko, 2004) and in vivo 

(Yin, et al., 2010b).  While the antiviral capabilities among different chicken lines varied 

with different viral strains (Watanabe, 2007). In the current study, with AIV infection in 

both embryos and birds, low virus titers were observed in embryos or birds carrying 

Mx1 N631 allele (resistant allele) compared to S631 allele (susceptible allele), although 

there was no significant difference between them. In terms of Mx1 gene expression for 

three different genotypes: NN, NS, and SS, the expression level was significantly up-

regulated with AIV infection only in the NS genotype birds (P < 0.05). The NN 

genotype birds had higher Mx1 mRNA expression levels than SS birds under both 

infected or non-infection status, while the differences were not statistically significant (P 

> 0.05). This was the first study that integrated Mx1 polymorphism association with 

AIV titers and Mx1 mRNA level among different genotypes with AIV infection. Further 

study is warranted to focus on the regulatory role of the Mx1 mutation in the AIV 

infection in chickens. 
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        Figure 20. AIV titers in the two highly inbred genetic chicken lines.Virus titers were determine 

through chicken lung total RNA samples by real-time PCR.  

         

 

        The other approach at the DNA level for the host-pathogen interaction study is 

DNA methylation. DNA methylation is a stable epigenetic modification found in both 

plants and animals and it plays a critical role in many biological processes such as gene 

expression regulation (Bird, 2002). Chicken genome-wide DNA methylation map was 

developed in the Red Jungle fowl and broilers (Li, et al., 2011). Methylations of 

cytosines within CpG dinucleotides at promoter regions are important for gene silencing 

and genome integrity (Jones, et al., 1999). Methylations of gene coding regions are 

related with post transcriptional gene silencing (PTGS) in plants (VanHoudt, et al., 1997) 

and they also play roles in controlling gene expression in animals (Bhakat and Mitra, 

2003). DNA methylation is usually served as a defensive mechanism to protect host 

against viral infection (Yoder, et al., 1997). During host-pathogen interactions, the DNA 

adenine methylation (Dam) regulates virulence genes by reparing mismatches and 
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transcriptional regulation (Marinus and Casadesus, 2009). Retroviruses are known to 

integrate in host cell genome as proviruses, and the down-regulation of proviruses is 

mediated by DNA methylation (Svoboda, et al., 2000). However, the Epstein-Barr Virus 

(EBV) relies heavily on DNA methylation to regulate its promoter usage (Robertson, 

2000), which is highly associated with viral immortalization into host cells. By utilizing 

DNA methylation, EBV is able to maximize latency and escape from the host immune 

detection (Robertson and Tao, 2003). Clearly, DNA methylation is important in 

regulating host-pathogen interactions. A study focusing on DNA methylation related to 

AIV infection in the chicken using next generation sequencing is currently undergoing in 

our laboratory. 

        Gene expression profiling is one of the most popular approaches for studying the 

alteration of host mRNA or miRNA expression with pathogen infection. Activities of 

thousands of genes or miRNAs are measured simultaneously, which provide a global 

view of cellular function in responding to pathogen infection.  The cDNA microarray 

and next generation sequencing (NGS) are two most popular techniques for mRNA and 

miRNA expression profiling to study the alteration of host mRNA gene and miRNA 

expression.  

        Microarray technology has been widely applied for host-pathogen interaction 

analysis in chickens. It not only provides us the relative mRNA expression and 

differentially expressed genes on a global level, but also offers an important tool to infer 

gene networks and to identify highly conserved gene pathways (Li, et al., 2008). For the 

host-pathogen interaction studies, the cDNA microarray has been used to identify 
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differentially expressed genes in Campylobacter jejuni colonization and infectivity (Li, 

et al., 2010b; Zhang, et al., 2006) and Salmonella enteritidis infections on chicken 

heterophils (Chiang, et al., 2008). With the infection of MD in chicken embryo 

fibroblasts, inductions of several host immune genes including interferon-inducible 

protein, MHC class I and II were found using a cDNA microarray (Morgan, et al., 2001). 

In an influenza A virus-infected human lung epithelial cells study, a significant induction 

of genes involved in the IFN pathway was identified (Geiss, et al., 2002). Host cellular 

gene expression response to infection with five different human and avian influenza A 

virus strains in a human lung epithelial cell line was investigated and about 300 

differentially expressed genes were identified between infected and non-infected cells 

(Josset, et al., 2010). These common differentially expressed genes among different viral 

strains can be used as a global gene expression signature for its use to examine drugs 

effectiveness on all influenza A viruses (Josset, et al., 2010). A list of differentially 

expressed genes in the current study were identified including IL8, IRF-1 and IRF-7, 

which were associated with the initiation of host immune responses (Hu, et al., 1999), 

and tumor necrosis factor superfamily member 19 (TNFRSF19), mitogen-activated 

protein kinase 5 (MAP2K5), and  TGF beta-inducible nuclear protein 1 (TINP1), which 

were associated the inhibition of inducing apoptosis (Mogensen and Paludan, 2001; 

Ramachandran, et al., 2005; Yu-Lee, et al., 1990). These results have laid the foundation 

for further investigation of host immune response to AIV infection in the chicken. 

        Although microarray technology has been widely applied for gene profiling 

analysis, recent development in digital expression profiling using next generation 
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sequencing (NGS) such as RNA-Seq has become one of more powerful high-throughput 

sequencing technologies for transcriptome profiling in organisms, which has many 

advantages over microarray technology especially for low abundant transcripts. Due to 

relative high cost per lane, RNA-Seq has not been widely utilized in gene profiling 

analysis. With newly developed multiplex labeling technology in Illumina, multiple 

samples running in the same lane becomes possible. Thereby, genome coverage would 

be critical to determine how many samples can be multiplexed into the same lane. Our 

preliminary analysis has demonstrated that 30 M (75 bp) reads is sufficient to detect all 

annotated genes in the chicken, and RNA-Seq at this depth can serve as an alternative 

transcriptome profiling technology. Furthermore, our results indicated that the depth of 

sequencing had a more significant impact on measuring gene expression of low 

abundant genes.         

        Another important aspect for host-pathogen interaction studies is the profiling of 

regulatory miRNAs. Approaches for miRNA discovery and profiling have been 

improved in the past few years. Initially, forward genetics methods were instrumental in 

identifying the first two miRNAs lin-4 and let-7 (Lee, et al., 1993a). But only a few 

miRNAs were discovered by this method. Meanwhile, since the special secondary 

structure and highly phylogenetic conservation of both sequences and structures, a set of 

distinctive miRNAs were identified by computational prediction (Bentwich, 2005; Lim, 

et al., 2003). Later on, cloned small RNA cDNA libraries became the preferred approach 

to identify miRNAs. Most of the known miRNAs have been successfully identified 

through these small RNA libraries. However, this method has its limitation in finding 
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miRNAs with low expression levels or in rare cell types (Berezikov, et al., 2006). 

Massively parallel sequencing by NGSs such as small RNA deep sequencing boosts the 

discovery of small RNAs and results in identification of more novel miRNAs.  

        Small RNA deep sequencing was used to profile chicken miRNA expression  in 

chicken embryo and embryo fibroblasts with MDV infection in the past few years 

(Burnside, 2008; Hicks, et al., 2008). Differentially expressed miRNAs between 

developmental stages or between immune organs were identified (Hicks, et al., 2009). 

Two runs of miRNA deep sequencing, for layers and broilers, respectively, were 

conducted in our study. miRNAs, such as miR-1599 and miR-1416, had the same 

regulatory direction in both layers and broilers might be important candidates for further 

functional study. Chicken miRNA profiling in both lung and treacheae were compared in 

the layer miRNA deep sequencing. There was a significant difference in miRNA 

expression profiles between lung and trachea. For those ubiquitous miRNAs or tissue 

specific miRNAs, there is a promising application in which they can be applied to 

attenuate AIVs to make vaccination more safety (Perez, et al., 2009).  

        Differentially expressed miRNAs identified by the deep sequencing approach 

indeed provided some insights of the regulatory mechanism in host-pathogen 

interactions. In addition, these immune related chicken miRNAs can be involved in 

different phases of the host immune response. Some of them might have effects on the 

components of immune systems. For example, miR-142-3p differentially regulated 

between broilers and layers, which is participating functions of both effector and 

suppressor cells. miR-181a is related to lymphocyte development with AIV infection in 
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chickens. Some other miRNAs might take part in the signal transduction in immune 

cells. With the infection of AIV, miR-146a was significantly up-regulated in broilers 

which could inhibit the TLR3 production, then weakened host antiviral and 

inflammatory responses to viral infection. Up-regulation of gga-miR-155 in the current 

study might rescue the function of the JNK signaling pathway, and subsequently induce 

apoptosis to eliminate virus infected cells. 

        The miRNAs are a set of gene regulators that can modulate cellular gene expression 

at different levels. Having both the host cellular gene expression profiles by microarray 

or RNA-Seq and miRNA profiles by miRNA microarray or small RNA deep 

sequencing, we are able to integrate both mRNA and miRNA data to understand how 

host miRNAs regulate cellular gene expression with AIV infection. Both Mx1 gene (up 

regulated with AIV infection) and TINP1 (down regulated with AIV infection) were 

predicted to be targeted by two differentially expressed miRNAs (miR-155 and miR-206 

for Mx1, and miR-451 and miR-34a for TINP1, respectively). The miR-155 was up-

regulated, while miR-206 was down-regulated with AIV infection. Based on negative 

regulation of miRNA on mRNA expression and the observed high fold up-regulation of 

Mx1expression, it suggested that miR-206 plays a major regulatory role on Mx1 

expression. On the other hand, both miR-34a and miR-451 were up-regulated with AIV 

infection, suggesting that down-regulation of TINP1 at the mRNA level might be due to 

suppressive effects of both miRNAs. Basing on the target regulation mechanisms, 

miRNAs can have several target genes; one target gene is able to be targeted by several 
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miRNAs. miRNAs seem to be responsible for fine regulation of gene expression, tuning 

the cellular phenotype during delicate processes (Sevignani, et al., 2006).  

Alternative splicing of mRNAs generate more distinct proteins than the number of 

original mRNAs (Maniatis and Tasic, 2002). Additionally, during the posttranslational 

stage, cells could make modifications to proteins (Kirkpatrick, et al., 2005). Therefore, 

mRNAs are able to sever as the basis for lots of potential proteins leading to various 

biological functions (Sinchaikul, et al., 2008). Having the information in cellular protein 

production will be more important than knowing how much mRNA is generated from 

each gene (Wilhelm, et al., 2007). Proteomics analysis will provide indispensable 

insights into host-pathogen interactions. The proteome is the entire complement of 

proteins (Wilkins, et al., 1996), and generally proteomics deals with the large-scale 

determination of gene and cellular function directly at the protein level (Aebersold and 

Mann, 2003). Mass spectrometry (MS) is one of the most popular approaches for 

proteomic analysis because of its capability for analyzing complex protein samples 

(Aebersold and Mann, 2003). Liquid chromatography (LC) coupled to tandem MS, 

called LC-MS/MS, is a powerful tool for the analysis of peptides and proteins. 

Biological materials are efficiently separated by LC, then identification and 

quantification of each individual protein have been carried out by MS. Thousands of 

proteins even with complicated structure can be directly analyzed (Mann, et al., 2001). A 

proteomic analysis using the LC-MS/MS method is the underway to analyze 

differentially expressed proteins with AIV infection in both Leghorn and Fayoumi lines.  

Over 2000 proteins have been identified with more proteins having higher expression 
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levels in Fayoumi than Leghorn birds pre-inoculation. However, more proteins were 

highly expressed in Leghorn birds than in Fayoumi birds post infection. Within genetic 

lines, more proteins were down-regulated in Fayoumi and more were up-regulated in 

Leghorn birds with AIV infection. This has demonstrated different defensive 

mechanisms between Leghorn and Fayoumi lines with AIV infection, given the nature of 

genetic resistance difference between these two lines (Leghorn is more susceptible, and 

Fayoumi is more resistant). Further data mining is necessary to discover crucial proteins 

involved in chicken and AIV interactions. 

        In conclusion, different genomic approaches can be utilized to elucidate molecular 

and cellular mechanisms of host-pathogen interactions at different regulatory levels. 

Specifically, studies in the dissertation generated a list of strong candidate miRNAs 

including miR-1, 32, 34a, 146a, 155, 181a, 187, 206, and 451 for our on-going effort to 

further elucidate regulatory mechanisms of miRNAs on AIV infection in chickens. In 

addition, several candidate genes including Mx1, IL-8, IRF-1, 7, TNFRS19, MAPK5 

have been identified to be associated with AIV infection in broilers. Collectively, the 

results generated in this study have laid solid foundation not only in improving the 

prevention and treatment strategies of AIV in poultry industry, but also helping to 

control influenza infections as well as pandemic influenza viruses in humans. 
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