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ABSTRACT 
 

Turbulent Flow Analysis and Coherent Structure Identification in Experimental Models 

with Complex Geometries. (December 2011) 

Noushin Amini, B.S., Amirkabir University of Technology (Tehran Polytechnic); 

M.S., Shahid Beheshti University 

Chair of Advisory Committee: Dr. Yassin A. Hassan 

 

Turbulent flows and coherent structures emerging within turbulent flow fields 

have been extensively studied for the past few decades and a wide variety of 

experimental and numerical techniques have been developed for measurement and 

analysis of turbulent flows. The complex nature of turbulence requires methods that can 

accurately estimate its highly chaotic spatial and temporal behavior. Some of the 

classical cases of turbulent flows with simpler geometries have been well characterized 

by means of the existing experimental techniques and numerical models. Nevertheless, 

since most turbulent fields are of complex geometries; there is an increasing interest in 

the study of turbulent flows through models with more complicated geometries. 

In this dissertation, characteristics of turbulent flows through two different 

facilities with complex geometries are studied applying two different experimental 

methods. The first study involves the investigation of turbulent impinging jets through a 

staggered array of rods with or without crossflow. Such flows are crucial in various 

engineering disciplines. This experiment aimed at modeling the coolant flow behavior 

and mixing phenomena within the lower plenum of a Very High Temperature Reactor 
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(VHTR). Dynamic Particle Image Velocimetry (PIV) and Matched Index of Refraction 

(MIR) techniques were applied to acquire the turbulent velocity fields within the model. 

Some key flow features that may significantly enhance the flow mixing within the test 

section or actively affect some of the structural components were identified in the 

velocity fields. The evolution of coherent structures within the flow field is further 

investigated using a Snapshot Proper Orthogonal Decomposition (POD) technique. 

Furthermore, a comparative POD method is proposed and successfully implemented for 

identification of the smaller but highly influential coherent structures which may not be 

captured in the full-field POD analysis. 

The second experimental study portrays the coolant flow through the core of an 

annular pebble bed VHTR. The complex geometry of the core and the highly turbulent 

nature of the coolant flow passing through the gaps of fuel pebbles make this case quite 

challenging. In this experiment, a high frequency Hot Wire Anemometry (HWA) system 

is applied for velocity measurements and investigation of the bypass flow phenomena 

within the near wall gaps of the core. The velocity profiles within the gaps verify the 

presence of an area of increased velocity close to the outer reflector wall; however, the 

characteristics of the coolant flow profile is highly dependent on the gap geometry and 

to a less extent on the Reynolds number of the flow. The time histories of the velocity 

are further analyzed using a Power Spectra Density (PSD) technique to acquire 

information about the energy content and energy transfer between eddies of different 

sizes at each point within the gaps. 
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CHAPTER I 

I INTRODUCTION  

 

I.1. Background 

Turbulent flows are commonly found in nature as well as various engineering 

and technological systems. Atmospheric and ocean currents, air flow over aircraft wings, 

blood flow through veins, and mixing of fuel and air in engines are examples of 

turbulent flows commonly found in nature and engineering systems. Turbulence is often 

referred to as the last great unsolved problem of the classical physics. The discovery of 

coherent structure within certain turbulent flows by means of experimental fluid 

mechanics methods has been a step forward towards better understanding the nature of 

turbulent flows (Holmes et al. 1996). Turbulence is normally characterized by 1- its 

effectiveness in heat, mass, and momentum transport resulting in enhanced mixing of the 

fluid flow, 2- existence of coherent structures of different length-scales within the 

turbulent flow, 3- having a chaotic nature (Pope 2000). Through the years, researchers 

have applied different methods to measure parameters that can help in characterizing the 

turbulent flows among which velocity is the most important parameter. A wide variety 

of techniques ranging from methods using a theoretical and/or an empirical relationship 

between  flow   velocity and other  properties of  the  flow to estimate flow  velocities  to  
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methods that directly measure the flow velocity using flow markers and tracer particles 

have been invented and implemented (Tavoularis 2005). 

Hot Wire Anemometry (HWA) technique was one of the earliest methods used to 

measure the local flow velocity within turbulent flows. HWA measurement takes 

advantage of a high sampling frequency which is important in the study of temporal 

behavior of turbulent flow structures. Different statistical methods have been 

implemented to further analyze turbulent velocities measured by HWA method. Most of 

these techniques such as probability density functions, Reynolds decomposition, and 

power spectra analysis provide information about the temporal behavior of a single point 

within turbulent flow fields. It has been observed that turbulent flow velocities are time 

dependent as well as space dependent; however, the spatial evolution of turbulent flows 

cannot be fully captured by HWA measurements. To address this issue, flow 

visualization techniques have been utilized to qualitatively study the spatial variations of 

turbulent flow fields and to identify the coherent structures in turbulent flows (Hussain 

1983). The field of turbulence was revolutionized by the introduction of Particle Image 

Velocimetry (PIV) technique in 1984 (Adrian 1984, Pickering & Halliwell 1984). PIV 

technique provides turbulent velocity fields with high spatial and temporal resolutions. 

The high spatial resolution of the PIV acquired velocity fields is absolutely essential in 

identification of the coherent structures in turbulent flow fields while the high temporal 

resolution of the measurements helps in characterizing the temporal evolution of these 

structures. For this reason, PIV technique has been extensively used in the study of 

turbulent flows. Due to technological advancements in different components used in PIV 
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systems, i.e. high speed cameras, double-pulsed solid-state lasers, and the vast 

improvement of computer processing power, PIV technique has progressed significantly 

within the past two decades (Adrian 2005, Raffel et al. 1998). The high-resolution 

experimentally measured velocity fields have provided reliable benchmarks for 

numerical models and helped in validation of advanced numerical models e.g. Direct 

Numerical Simulation (DNS) and Large Eddy Simulation (LES). Moreover, application 

of robust mathematical models e.g. Galilean decomposition, Reynolds decomposition, 

Proper Orthogonal Decomposition (POD), etc. in post-processing of PIV velocity fields 

has helped researchers in better identification of coherent structures within turbulent 

flow fields (Adrian et al. 2000). Application of advanced velocity measurement 

techniques as well as robust numerical models along with the powerful coherent 

structure identification techniques have provided a vast knowledge of many of the 

classical cases of turbulent flows such as free shear flows (e.g. jets, wakes, mixing 

layers), wall bounded turbulent flows (e.g. channel flows), flow around bluff bodies of 

different types (e.g. flow around a cylinder, sphere), etc. However, study of turbulent 

flows in complex geometries is still a challenge for researchers in different engineering 

disciplines. Two excellent examples of turbulent flows within facilities with complex 

geometries are jet flows through rod bundles which are of great importance in various 

engineering applications such as mechanical and nuclear engineering fields and flow 

through packed bed columns with extensive applications in chemical, petroleum and 

nuclear engineering.  
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In this dissertation, turbulent flow through two different experimental facilities 

with highly complex geometries is investigated. The first experimental study presented 

in Chapter II, investigated the behavior of impinging jet flows through a channel 

containing a staggered rod bundle. The experimental facility aims at modeling the 

coolant flow behavior within the lower plenum of a prismatic core Very High 

Temperature Reactor (VHTR). Velocity fields within the test section are acquired using 

a 2D Dynamic PIV system. Coherent structure identification within the instantaneous 

PIV velocity fields are performed applying a snapshot POD technique (Sirovich 1985) 

for the whole field and a new adaptive POD method for identification of smaller but key 

structures existing throughout the velocity field. The second experimental investigation 

presented in Chapter III, models the coolant flow behavior passing through an annular 

packed bed core VHTR. The main objective of this experiment is the study and 

characterization of the bypass flow phenomena occurring close to the outer reflector wall 

of a packed bed reactor. For this purpose, HWA technique is applied to obtain the 

velocity profiles of the coolant flow within near wall gaps between the spherical packing 

elements of the test section modeling an annular core packed bed VHTR. In order to 

further investigate the turbulent behavior of the coolant flow through the gaps close to 

the outer wall of the packed bed, the high frequency time histories of the local velocities 

are further analyzed using Power Spectra Density (PSD) analysis.   



5 
 

I.2. Background on Very High Temperature Reactors 

The rapidly increasing demand for electrical energy in the United States as well 

as all over the world requires safe, emission-free, and sustainable energy supplies. The 

proposed development of Next Generation Nuclear Plants (NGNPs) is in concert with 

securing nuclear energy as a reliable source of energy. The Very High Temperature 

Reactors (VHTRs) are the leading candidate for the NGNP program due to their higher 

efficiency in electricity production, improved fuel cycle, and their capability in 

production of Hydrogen as a clean and affordable source of energy which is needed in 

petroleum refining industry, chemical industry, etc. (U.S. Department of Energy 2011).   

 
 

 
 

       (a)              (b) 

     

Figure I-1 Schematic of the two VHTR designs (a) prismatic core (Schultz et al. 2004),  (b) pebble 

bed core (Dudley et al. 2008). 
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The two main designs proposed for VHTRs are prismatic core helium gas-cooled 

reactor and pebble bed core helium gas-cooled reactor. Both designs are expected to 

meet the basic requirements of: a) having inherent safety, b) outlet coolant temperature 

of 950°C for increased thermal efficiency, c) a total output power consistent with that of 

the commercial High Temperature Gas Cooled Reactors (HTGRs). The basic technology 

for prismatic core NGNP is based on the General Atomics Gas Turbine-Modular Helium 

Reactor (GT-MHR) design which needs to be modified to meet the requirements of the 

NGNP design (GT-MHR 2011). The South African Pebble Bed Modular Reactor 

(PBMR) which has an annular core with a solid inner reflector and a modified fuel 

pebble design is a starting point for development of pebble bed NGNP (Koster et al. 

2003). The schematic of both core designs of the VHTRs are represented in Figure I-1.    

The key design characteristics for both prismatic and pebble bed core VHTRs are 

the application of helium as coolant, graphite as moderator and using refractory coated 

fuel particles (TRISO coated fuel particles). In both designs, high power blowers provide 

helium coolant flow through the core during normal operation. Helium as an inert gas 

remains single phase through all stages of the reactor operation and while passing 

through different sections of the reactor and power conversion unit. Graphite has a high 

heat capacity and structural stability at high temperatures. The TRISO coated fuel 

particles have the capability of retaining the fission products at higher temperatures than 

the normal operational temperature. As shown in Figure I-1, helium enters the reactor 

vessel through a circular pipe or annulus in the bottom of the vessel. This pipe is 

mounted at a right angled direction to the reactor vessel axis. Helium then makes a 90-
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degree turn and goes upward towards the upper plenum. Subsequently, helium flows 

downward from the upper plenum into the reactor core and then is directed towards the 

lower plenum. Helium temperature increases about 400-500°C while passing the core. 

Helium flows from lower plenum into the “hot duct” which is basically a circular pipe 

mounted at a 90-degree angle with respect to the reactor vessel axis. Finally, helium 

goes towards the intermediate heat exchanger and the turbine inlet (MacDonald et al. 

2003, Schultz et al. 2004).  

 

I.2.1. Coolant Flow Behavior within the Lower Plenum of a Prismatic Core VHTR 

The study of the coolant flow behavior within the core and the lower plenum of a 

VHTR is essential in the improvement of the current thermal-hydraulic codes and the 

development of new models predicting the system’s behavior under normal operation as 

well as the accident conditions.  The high temperature helium coolant exits the core and 

enters the lower plenum of the core in form of high temperature circular helium jets. 

Some of the important phenomena that needs to be studied are the interaction between 

the high temperature helium jets and the adjacent graphite support rods present in the 

lower plenum as well as the surrounding walls, distribution of the high temperature 

helium flows within the lower plenum and the extent of mixing between the helium jets 

and the lower plenum flows, and also how and with what velocity the high temperature 

helium jets hit the bottom surface of the lower plenum. One of the main concerns during 

reactor’s normal operation is the issue called “hot streaking” which is caused by poor 

and non-uniform mixing of the high-temperature jets entering the lower plenum. The 
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“hot streaks” could move through the lower plenum and the hot duct and further 

downstream affect the performance of components such as the turbine and the 

intermediate heat exchanger. The objective of this experimental study is to obtain the 

velocity fields along the vertical planes within a rod bundle representing the lower 

plenum structure through which the key flow features are expected to be identified. 

Some of these main flow structures may be representations of the interaction between 

the jet flows and the adjacent graphite rods which could affect the degree of mixing 

within the lower plenum.  

 

I.2.2. Coolant Flow Behavior within the Core of a Pebble Bed VHTR  

Characterization of complex coolant flow behavior in gaps between the spherical 

fuel elements in the core of pebble bed VHTRs is highly important in the design and 

development of such reactors. It is observed that in gaps close to the outer reflector wall, 

the velocity increases from zero at the wall to a maximum value after which it begins to 

decrease. This sudden increase in the velocity is called bypass flow and is best explained 

by the special arrangement of the pebbles close to the wall i.e. increased local porosity in 

the vicinity of a solid boundary. Bypass flows can significantly affect the heat transfer in 

packed beds which could lead into changes in the core average temperature. 
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I.3. Dissertation Organization 

In the first experimental study presented in Chapter II, velocity fields of jets 

impinging into a channel containing a staggered rod bundle representing the lower 

plenum of a prismatic core VHTR are obtained using MIR technique along with a 2D 

Dynamic PIV technique. Experiments were carried out for various experimental 

conditions and with single and dual jets injecting into the test facility with or without 

crossflow. Time-averaged velocity and instantaneous vorticity fields obtained for 

different cases represent some key flow features within the impingement plane which in 

turn could affect the degree of mixing within the lower plenum. The time-averaged 

velocity and instantaneous vorticity fields along with the line-probes of Y-velocity and 

X-velocity components and other statistics of the flow such as turbulence intensities and 

Reynolds shear stresses as well as the line-probes of Y-velocity profiles for different 

planes within the lower plenum model are acquired. These results were published in a 

paper by (Amini & Hassan 2009) in International Journal of Heat and Mass Transfer. 

The PIV velocity fields are further analyzed using a Snapshot POD analysis to identify 

the large-scale coherent structures within the turbulent fields which are normally masked 

by the presence of the smaller scale coherent structures. Moreover, a comparative POD 

technique is proposed for analysis and reconstruction of the key flow features observed 

within the flow field that might have lower energies with respect to the whole flow field 

but could still be influential in enhancement of mixing within the flow field or could 

affect other components within the flow field. The results for the POD analysis are also 
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presented in Chapter II. The results of the POD analysis will be submitted to 

International Journal of Heat and Mass Transfer for review.  

The objective of the experimental investigation presented in Chapter III is to 

study the turbulent flow behavior of the coolant flow and to characterize the bypass flow 

phenomena within the gaps close to the outer reflector wall of a test facility modeling the 

core of a pebble bed VHTR. Axial and Radial velocity profiles of the coolant flow 

within the near wall gaps are acquired utilizing a HWA system coupled with a hot film 

X-probe. Subsequently, the location and magnitude of the bypass flow and the effect of 

the flowrate and the gap geometry on the characteristics of the bypass flow are 

investigated. Moreover, in order to study the turbulent behavior of the coolant flow, the 

time histories of the velocity at different points within the gap are further analyzed using 

a PSD method which provides information about energy content of the large-scale and 

smaller-scale eddies under different experimental conditions. The results presented in 

Chapter III will be submitted for publication in near future. 
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CHAPTER II 

II EXPERIMENTAL STUDY OF THE COOLANT FLOW BEHAVIOR WITHIN THE 

LOWER PLENUM OF A PRISMATIC CORE VHTR* 

 

II.1. Background 

The proposed development of the Next Generation Nuclear Plants (NGNPs) 

holds great promise as a viable solution to burgeoning global energy. The NGNP has the 

opportunity to ensure the sustainability of nuclear energy through its efforts to improve 

the fuel cycle, reprocessing and fuel treatment. The Very High Temperature Reactors 

(VHTRs) are the primary reactor design under consideration for the NGNP program 

because of their higher efficiency in electricity production and their capability in 

Hydrogen production (U.S. Department of Energy 2011). However, development of the 

VHTR systems, and other advanced systems, will require the enhancement of current - 

and development of new - predictive methods utilized to model the phenomena 

associated with a nuclear power production plant. Particularly, modeling system’s 

thermal hydraulic behavior is essential  to  the development  of  predictive  methods  for  

performance   studies  of  new  reactor  designs.  Therefore,  the  study  of  flow structure  

 

_____________ 
*Part of this chapter is reprinted with permission from “Measurements of jet flows 
impinging into a channel containing a rod bundle using dynamic PIV” by Amini N. and 
Hassan Y. A., 2009, International Journal of Heat and Mass Transfer, 52, 5479-5495, 
Copyright [2009] by Elsevier. 
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within the core of a VHTR, whether a prismatic block or a pebble-bed core, is of great 

importance. In the present study, investigations were conducted to study physical 

phenomena expected in a prismatic core NGNP, especially the flow of high temperature 

Helium coolant jets exiting the core and entering the lower plenum of the core (core 

bottom structure). Some of the important phenomena occurring in the lower plenum are 

how the coolant flow is hitting the lower plenum bottom surface, the interaction between 

the circular coolant jet flows and the neighboring circular graphite support rods of the 

lower plenum and the surrounding walls, as well as the distribution and the degree of 

mixing of the high temperature Helium coolant flows with the lower plenum flows. 

Experimental characterizations of the flow behavior in this system are an essential 

element in the efforts to develop models capable of accurately predicting plant’s thermal 

hydraulic behavior. To understand these phenomena and to measure the fluid 

characteristics in the lower plenum, many experiments have investigated single or dual 

jets effusing into flat plates or a rod bundles. 

One of the early investigations was performed by Donaldson & Snedeker (1971) 

and Donaldson et al. (1971) who presented the mean flow characteristics and the heat 

transfer rates of a circular convergent nozzle jet impinging on plates of different shapes 

at different angles. Additionally, the turbulent characteristics and the heat transfer rates 

of a circular subsonic jet effusing normally to a flat plate were studied. Landreth & 

Adrian (1990) used Particle Image Velocimetry (PIV) techniques to obtain the 

instantaneous and average velocity fields of a circular water jet which was connected to 

a converging nozzle at its end and was impinging vertically on a flat plate. They used the 
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instantaneous velocity fields to calculate the vorticity and shear stress rate. In another 

study, Cooper et al. (1993) investigated flow from a turbulent jet impinging orthogonally 

upon a large plane surface. In this experiment both the jet discharge velocities and the jet 

outlet height above the plate were varied. Such efforts allowed analysis of the mean 

velocity profile in the vicinity of the plate surface as well as each component of the 

Reynolds stress exerted on the plate for a variety of flow conditions. In another study, 

Nishino et al. (1996) implemented 2-D and 3-D Particle Tracking Velocimetry (PTV) 

technique to analyze the turbulence statistics in the stagnation region of a fixed Reynolds 

number jet which was impinging normally into a flat plate. Sakakibara et al. (1997) 

obtained measurements of simultaneous velocity and temperature profiles in the 

stagnation region of an impinging plane jet using both digital PIV and Laser-Induced 

Fluorescence (LIF). Moreover, Mi et al. (2001) investigated the effects of jet exit 

conditions on the passive scalar field by using two types of nozzles at a fixed Reynolds 

number; a smooth converging nozzle and a long straight pipe. They obtained the jet 

scalar field and the flow structure of each jet and showed that their experimental results 

corresponded well to the analytical results. In the investigation done by Alekseenko et 

al. (2007) stereo and 2D PIV techniques helped to study the flow characteristics of a jet 

impinging on a flat plate with varying swirl rates for a fixed Reynolds number of 8,900. 

Alekseenko et al. (2007) observed that the decay rate of the absolute velocity of the non-

swirling jets is less than that of the swirling jets. Abdel-Fattah (2007) numerically and 

experimentally studied the case of two circular air jets impinging on a flat plate with no 

cross-flow in two dimensions. He investigated the effects of the Reynolds number, 
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nozzle to plate spacing, nozzle to nozzle centerline spacing and the jet angle on the 

creation of a sub-atmospheric region between the two jets. 

Aside from experiments concerned only with the behavior of jets impinging on 

flat plates, flow mixing phenomena, including the velocity fields associated with 

impinging jets within rod bundles, have frequently been studied experimentally. The 

flow structure within the rod bundles is of great interest among nuclear reactor engineers 

because of the special configuration of the fuel rods in a nuclear reactor core. In an 

investigation performed by Trupp & Azad (1975), the mean velocity and turbulent 

characteristics of the axial flow within a triangular rod bundle were measured for 

different Reynolds numbers and different tube spacings. Hooper & Wood (1984) 

obtained the mean axial velocity, wall shear stress, and all six Reynolds stresses with 

varied Reynolds numbers for a fixed pitch squared bundle consisting of six rods. Hooper 

& Rehme (1984) and Rehme (1987) used hot-wire anemometry to measure the 

turbulence intensities of a rectangular channel. In the former experiment, they used two 

geometries, one containing four rods and the other one having six rods, while in the 

latter the bundle consisted of four rods. Renksizbulut & Hadaller (1986) used Laser-

Doppler Anemometry (LDA) to obtain the mean velocity and turbulent flow 

characteristics at a fixed Reynolds number within a square channel of six rods. 

Additionally, Smith et al. (2002) performed thermal hydraulic experiments in a 5×5 rod 

bundle with a heated rod using a PIV system. Subsequent Computational Fluid 

Dynamics (CFD) simulations were also performed to develop confidence in the use of 

CFD as a tool to investigate the flow and temperature distributions in a rod bundle array 
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with spacer grids. In an effort to examine the lateral flow structure of a square sub-

channel geometry, Chang et al. (2007) used two dimensional LDA to measure detailed 

turbulent flow profiles on a 5×5 rod bundle array. Notably, the study of impinging jets is 

not limited to nuclear industry. There are many other applications of impinging jets such 

as cooling electronic components or gas turbine blades, annealing of metals and drying 

of textiles, paper and hard wood. One example of research for different applications of 

impinging jets was demonstrated in Velasco et al.’s (2007) investigation. They carried 

out a 2D PIV measurement to obtain the gas flow behavior in the space between the 

breach and neighbor tubes of a shell-and-tube heat exchanger for a range of Reynolds 

number from 0.8 × 105 to 2.7× 105. They showed that increasing the gas Reynolds 

number improves the jet penetration and turbulence intensity level close to the breach. 

Velasco et al. 2007 observed that the presence of the tubes distorts the jet shape.  

McEligot & McCreery (2004) and McCreery & Condie (2006) emphasized the 

need for performing benchmark experiments and investigating the combined effects of 

the lower plenum flows for the purpose of developing effective models in such systems. 

They also asserted that the development of CFD codes to model flow in the lower 

plenum of a conceptual VHTR should be in concert with carrying out the experimental 

investigations over a wide range of operating conditions. These estimates predicted 

Reynolds numbers for jets exhausting into the lower plenum to vary from 50,000, at full-

power operation, to as low as 5,000, under partial loading conditions. Such large 

variations in flow parameters require that prediction methods anticipate and consider the 

mechanisms which control fluid flow behavior under different operating conditions.  
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For the current investigation, experimental studies of flow behavior in a model 

representing the lower plenum of a conceptual VHTR were conducted in the Laser 

Diagnostics Multiphase Flow Laboratory at Texas A&M University. Dynamic PIV 

technique was used in conjunction with Matched Index of Refraction (MIR) technique to 

acquire the instantaneous and time-averaged velocity fields of impinging jet flows within 

a channel containing a rod bundle. Some important flow features are identified in the 

velocity fields obtained by PIV technique and are discussed in detail. Subsequently, 

Snapshot Proper Orthogonal Decomposition (POD) method is used to decompose the 

flow fields into series of orthogonal POD modes, and the energy distribution of each of 

the POD modes is obtained showing their role in the formation of different flow patterns 

in the flow field. Snapshots of the flow fields have been reconstructed using the most 

energetic modes which would suggest that those modes are contribute to the formation 

of the dominant flow structures. The effect of the jet’s Reynolds numbers and the 

number of impinging jets on the size, shape, and formation of the coherent structures are 

also studied. These efforts will help in the development of the predictive methods 

utilized in analysis of the VHTR systems by aiding in the development of experimental 

databases, and providing benchmark data for CFD codes. 
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II.2. Experimental Methodology 

II.2.1. Experimental Set-up and Flow Configuration 

A detailed schematic of the experimental set-up aiming at modeling the flow 

behavior in the lower plenum of a conceptual VHTR is shown in Figure II-1. The 

experimental facility consisted of a hydraulic loop equipped with a submergible pump 

which would drive the water flow into two separate loops each leading to one of the inlet 

jets of the channel. The separate loops had flowmeters (Blue-White Industries, accuracy 

±5%) indicating the flow rates of each loop for determining mean flow velocity in each 

inlet jet. Both of the inlet jets entered the channel top wall at an angle of 90◦. The 

channel had a rectangular cross section with the dimensions of L=1016 mm, H=76.2 mm 

and W=76.2 mm. The channel had a single outlet located at one of its ends.  In order to 

ensure good visual conditions for PIV measurements, the channel was constructed with 

transparent polycarbonate sheets. To have uniform flow, two flow straighteners are 

installed close to the two ends of the channel. As it is shown in Figure II-1, the rod 

bundle consisted of 29 tubes fixed to the upper and lower surfaces of the channel. These 

tubes possessed a 10.67 mm outer diameter and a 10.16 mm inner diameter and were set 

as “in-line” in z direction, each row of tube is exactly placed behind the next row, with 

19 mm pitch and as “staggered” in x direction, each row of tubes is displaced with 

regards to the previous row, with 25.4 mm pitch (Figure II-2). The inlet jets were fixed  

1 cm from the top wall of the channel. It should be noted that the inlet jets were made of 

the same tubes as the rod bundle was. 
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Figure II-1 Schematic of the test section.
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Figure II-2 Schematic of the channel top wall showing the two inlet jets and the measurement 
planes. 

 

 

In this study, the Reynolds number is calculated as shown in Eq. II-1, where U0 

is the inlet jet’s mean velocity, d is the inlet jet’s inner diameter, ρ is water density and μ 

is water dynamic viscosity both at room temperature.  

 0Re jet
U d


  (II-1) 

MIR technique was used in the development of the experimental test facility to 

allow the more complete investigations of flow behavior to be executed. The material 

used for the rod bundle tubes and the inlet jets had the same index of refraction as water 

which was the working fluid in the experiment. Using MIR technique allowed for 

complete visualization of the flow in the interior regions of the bundle. Since the rods 

were represented as hollow cylinders, water filled the tubes to avoid optical aberrations. 
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Such an approach allows complete visualization of the flow without hidden regions 

obstructed by the presence of the rods. Moreover, a variety of flow conditions were 

developed in response to cursory investigations suggesting the possibility of large 

variations in reactor operating conditions. The matrix characterizing the flow conditions 

used in experimental investigations is presented in Table II-1 to demonstrate the range 

over which parameters were evaluated during the execution of this investigation. It 

should be mentioned that the Reynolds number of the crossflow is calculated based on 

channel inlet velocity and the height of the channel.  

 
 Rejet 1 Rejet 2 Recrossflow 

Single Jet 

Jet in the 
Middle  

Jet Up 
6,700 - - 

4,470 - - 

Jet Down 4,470 - - 

Jet in the corner 

13,400 - - 

8,980 - - 

4,470 - - 

Dual Jets 

11,160 6,250 - 

13,400 4,470 - 

13,400 6,590 - 

Dual Jets with Crossflow 11,160 6,700 1,670 
 

Table II-1 Experimental matrix of variation of parameters, Re jet 1 is the first jet’s Reynolds 

Number, Re jet 2 is the second jet’s Reynolds number, and Re crossflow is the crossflow’s Reynolds 

Number. 
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Relevant characteristics of the PIV and MIR systems, which are developed for 

this experiment, will be discussed separately in the following sections. 

 

II.2.2. Matched Index of Refraction (MIR) Technique 

II.2.2.1. Introduction to MIR Technique 

Laser diagnostic techniques such as Laser LDA, PIV, Particle Tracking 

Velocimetry (PTV), and Planar Laser Induced Fluorescence (PLIF) have been widely 

applied in fluid dynamics studies in various engineering and scientific fields. The main 

advantage of the optical measurement methods is their capability in measuring the flow 

characteristics without disturbing the flow. Application of laser diagnostic techniques in 

the experimental study of the flow fields requires optical transparency of the test section 

in order for the laser light to pass through the facility and also for the cameras to capture 

images of flow field. Refraction of the laser light while passing through the experimental 

set-up walls and the interfaces between different solid and fluid phases is a major issue 

for all optical diagnostic methods. A solution for this problem especially in the 

experimental flow studies is obtained by application of Matched Index of Refraction 

(MIR) technique in which the refractive index of the fluid is matched to that of the test 

set-up walls or interfaces. For this purpose, it is highly important to accurately determine 

the refractive index of both the working fluid and the transparent solid material. Other 

important factors such as physical and chemical properties of the fluid (e.g. density, 

viscosity, flammability, toxicity, etc.) need to be considered while selecting fluids for 

refractive index matching applications. Also additional research needs to be done on the 
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compatibility of the candidate fluid with the solid material to determine the possibility of 

any chemical reaction between the fluid of interest and the solid material considered for 

the test section. 

Previous research studies have indicated that non-uniformities in the refractive 

index throughout the test section may result in optical distortions of the measurement 

volume. Schmidt et al. (1984) addressed the significant errors in LDA velocity 

measurements of a flow field with large temperature gradients perpendicular to the laser 

beams. Temperature variations within the flow field results in variations of refractive 

index through the measurement volume affecting the path of the laser beam which in 

turn introduces errors in the results obtained from LDA measurements. It should also be 

noted that the issue with refraction of the laser light from the test section walls becomes 

even more complicated in case of facilities with curved surfaces/walls. An investigation 

done by Lowe & Kutt (1992) illustrated the complexities caused by refraction of light 

from the curved surface of cylindrical tubes and the differing refractive index in the 

medium which might lead into having multiple images or hidden regions in the 

measurement field. A method to eliminate the refractive index variations within density-

stratified liquid flows was proposed by McDougall (1979). This approach included the 

application of two solutions with nearly identical refractive indices with significantly 

different densities. This method of matching the refractive indices of the two fluids 

removed the loss of laser signal (“drop out”) through regions that originally had 

drastically different refractive indices and enabled the application of LDA technique in 

the study of stratified flows. Budwig (1994) presented a robust method for eliminating 
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the refraction of the laser light passing through the test section and/or from the solid 

walls in experimental fluid dynamics studies. This method involved matching the 

refractive index of the working fluid and the transparent solid walls within the 

experimental test section. The research study done by Budwig became the basis for 

application of MIR technique in fluid dynamic experiments. Ever since, matched index 

of refraction technique has been implemented in conjunction with LDA, PIV, PTV, and 

PLIF techniques to visualize the flow field and study the flow behavior within 

experimental facilities with complicated geometries in different areas such as 

mechanical engineering, nuclear engineering, chemical engineering, biology, etc.  

Table II-2 summarizes the choice of transparent solid material and the working 

fluid in some of the experimental fluid flow research studies in which MIR technique 

was applied. Additionally, when applicable, the laser imaging technique used in the 

experiment is also listed in the table. 
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Solid nS Liquid nL Optical 
Technique Application Reference 

Acrylic 1.49 

Mixture of Dow Corning 550 fluid and 
Dow Corning 200 fluid - LDA Velocity measurement in porous 

media 
Johnston et al.  

(1975) 
Mixture of 73% by weight Dow 

Corning 505 fluid and 27% by weight 
Union Carbide L42 fluid 

 
1.4905 

 
LDA Velocity measurement in porous 

media 
Dybbs & Edwards 

(1984) 

Mixture of 27% L42 organosilicone 
fluid (Union Carbide Co.) and 73% 550 

fluid (Dow Chemical Co.) by weight 
- PIV Velocity measurement in porous 

media 
Northrup et al.  
(1991, 1993) 

Mixture of 83% Dow Corning 550 and 
556 fluid, 83%/17%  by weight 1.4885 PTV Velocity measurement in porous 

media 
Peurrung et al.  

(1995) 
Mixture of 83% Dow Corning 550 and 

556 fluid, 83%/17%  by weight 1.4885 PTV Velocity measurement in porous 
media 

Rashidi et al.  
(1996) 

Saturated solution of Amonium 
Thiconayante in de-ionized water - LDA Study of the abdominal aortic 

aneurysms 
Egelhoff et al.  

(1999) 

P-Cymene 1.49 LDA Velocity measurement of a liquid 
flow in presence of dispersed beads 

Haam et al.  
(2000) 

P-Cymene 1.49 PTV Velocity measurement of solid beads 
dispersed in liquid 

Haam & Brodkey 
(2000) 

Aqueous solution of NaI 
(62-64% concentration by weight) 1.49-1.5 PIV Velocity measurement of an axial 

turbo-pump 
Uzol et al.  

(2001) 

Dibutyl phthalate (C16H22O4) 1.490 PIV Velocity measurement in porous 
media 

Aziz & Wong  
(2003) 

Mixture of 80% glycerin and 20% water 1.494 - - Bailey & Yoda  
(2003) 

Mixture of Diethyl Phthalate and 
Ethanol - - Study of blood flow in cardiovascular 

models 
Nguyen et al.  

(2004) 

P-Cymene 1.491 PTV Velocity measurements in a packed 
bed 

Hassan &  
Dominguez-Ontiveros  

(2008) 

P-Cymene - PTV Velocity and pore geometry 
measurements in a packed bed 

Huang et al. 

 (2008) 
 

Table II-2 A review list of the solids and liquids chosen for MIR technique in the literature. 
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Solid nS Liquid nL Optical 
Technique Application Reference 

Pyrex 1.47-1.49 

Mixture of 48.5% by weight Dow 
Corning 556 and 51.5% by weight Dow 

Corning 550 
1.474 LDA Velocity measurement in porous 

media 
Dybbs & Edwards 

(1984) 

Mixture of 71.4% by weight Sohio 
MDI-57 oil and 28.6% by weight 

mineral seal oil 
1.474 LDA Velocity measurement in porous 

media 
Dybbs & Edwards 

(1984) 

Mixture of Dow Corning 556 fluid and 
Dow Corning 550 fluid - LDA Velocity measurement in porous 

media 

Yarlagadda & 
Yoganathan  

(1989) 

NaI solution 55% by weight 1.474 PIV Velocity measurements in a 3-D gas-
liquid-solid fluidized bed Chen & Fan (1992) 

Mixture of ESSO MARCOL 82 and 
PRIMOL 352 - PIV Velocity measurement in porous 

media 
Saleh et al. 

(1992) 

NaI solution 54.5% by weight - - - Narrow et al.  

(2000) 
Mixture of 81.1% Diethyl Phthalate and 

18.9% Ethanol by volume 1.474 - Study of blood flow in cardiovascular 
models 

Miller et al. 
(2006) 

Borosilicate 1.471 
Mixture of 32.2%  Dow Corning 556 

and 67.8% Dow Corning 556 by volume 
fraction 

1.4736 PIV 

Measurement of the thickness of the 
transition layer between a porous 

layer and its overlaying viscous fluid 
layer 

Goharzadeh et al. 
(2005) 

Synthetic 

fused quartz 
1.4584 

Tetrathylene Glycol 1.459 - Velocity and porosity measurements 
in a packed bed 

Stephenson & Stewart 
 (1986) 

Tetrahydropyran-2-methanol 1.458 - Velocity and porosity measurements 
in a packed bed 

Stephenson & Stewart 
(1986) 

Mixture of cyclooctane and cyclooctene 
(9 to 1 by volume) 1.4584 - Velocity and porosity measurements 

in a packed bed 
Stephenson & Stewart  

(1986) 

Light mineral oil (Penreco Drakeol #5) - LDA 
Velocity measurement of a 

transitional boundary layer behind a 
roughness element 

Stoots et al. 
(2003) 

Mixture of 70.3% Diethyl Phthalate and 
29.7% Ethanol by volume 1.4585 - Study of blood flow in cardiovascular 

models 
Miller et al. 

(2006) 
Silicone 

elastomer 
1.41 Mixture of 36.3% Diethyl Phthalate and 

63.7% Ethanol by volume 1.41 - Study of blood flow in cardiovascular 
models 

Miller et al. 

(2006) 

FEP 1.33 Water 1.33 PIV 
Velocity measurements of turbulent 

jets in a channel containing a rod 
bundle 

Amini & Hassan 
(2009) 

Table II-2 Continued. 
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II.2.2.2. Refractive Index Theory 

Reflection, refraction, and absorption are the main mechanisms controlling the 

light propagation through interfaces between different media. Refraction happens when 

light is passing through a non-homogenous medium or when it goes from one medium to 

another which results in a change in the light direction. The Refractive Index (or Index 

of Refraction) of a material (n) is defined as (Hecht 2002): 

 
c

n
v

  (II-2) 

where c is velocity of the electromagnetic wave in free space (vacuum) and v is the 

electromagnetic wave velocity in the medium. This ratio shows how much the speed of 

light or other electromagnetic waves is reduced in that material. Since the speed of light 

in vacuum is the highest speed possible, it is concluded that n ≥ 1. The refractive index 

of gases is normally close to one while it is higher for liquids and solids (in the range of 

1.3-3.5). 

Refractive index is one of the most important optical characteristics of any 

material; therefore, precise measurement of this parameter is essential in the field of 

optics and also for applications such as MIR technique. Various methods have been 

suggested for measuring the refractive index of solids, liquids, and gases ranging from 

simple refractive index measurements using refractometers to more complicated 

techniques to measure refractive index of solid materials or human tissue. Different 

techniques applied to measure the refractive indices of various types of materials and 
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their improvements over the past two decades have been summarized in a study done by 

Singh (2002). 

In the early studies performed on refractive index (Gladstone & Dale 1863 and 

Lorentz & Lorenz 1880), index of refraction was introduced as an invariant parameter. 

However, more recent studies have indicated that the index of refraction is a function of 

various parameters, e.g. temperature of the medium, pressure of the medium, and 

wavelength of the incident light. A research study done by Ashton & Guggenheim 

(1956) led to introduction of a temperature coefficient to the Lorentz & Lorenz equation 

for refractive index calculations. Subsequently, the temperature dependence of refractive 

index of various materials was investigated by different researchers. The results of the 

experimental study done by Beysens & Calmettes (1977) indicated the temperature 

dependence of 15 different liquids and emphasized the significant deviation of the 

refractive index from the value obtained by Lorentz & Lorenz equation under 

temperature variations. Temperature dependence of refractive indices of acrylic and 

polycarbonate was represented in studies done by Waxler et al. (1979) and Cariou et al. 

(1986). The dependency of the refractive index of water on wavelength, temperature, 

and density was addressed in an experimental investigation by Thormählen et al. (1985). 

Schiebener et al. (1990) developed a formulation for calculation of refractive index of 

water and steam with respect to changes in wavelength, temperature, and density. 

Schiebener et al.’s (1990) formulation was further revised by Harvey et al. (1998). 

Table II-3 represents a list of refractive indices of some common materials. The 

solid materials mentioned in this table are the ones that are frequently used to construct 
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transparent test facilities for optical measurement techniques. Once the solid material for 

the test section walls is chosen, the search for a fluid with nearly the same refractive 

index as that of the solid walls begins. As it is seen in Table II-3, a significant difference 

exists between the refractive indices of the solids and gases while there are some liquids 

which possess refractive indices close to that of some of the common solid transparent 

substances. 

 

Gases† n† Liquids†† n†† Solids†† n†† 

H2 1.00013 Water 1.33 FEP 1.33 

Air 1.00029 Ethanol 1.362 Fused Quartz 1.4584 

He 1.00036 Glycerin 1.47 Pyrex Glass 1.47-1.49 

CO2 1.00045 Mineral Oil 1.48 Optical Glasses 1.45-1.96 

  P-Cymene 1.49 PMMA (Acrylic) 1.49 

  Diethyl Phthalate 1.504 Polycarbonate 1.58 

 

Table II-3 Refractive indices of some common material. 
 

† At a light wavelength of 589 nm; temperature of 273 K, and standard atmospheric pressure (Tavoularis 2005) 
†† Ref: Hassan & Dominguez-Ontiveros (2008) 
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II.2.2.3. MIR Technique and Fluid Flow Experiments 

There are many advantages in using water as the working fluid in fluid flow 

experiments including: 1- it is the most accessible liquid, 2- its physical and chemical 

characteristics are well known, 3- its optical characteristics and specifically its refractive 

index have been comprehensively studied, 4- it does not exhibit any significant chemical 

reaction with none of the above-mentioned transparent solid materials, 5- it does not 

show any potential health hazards, 6- it is non-flammable, and 7-it is odorless. As 

observed in Table II-3, FEP (Fluorinated Ethylene Propylene) has a refractive index 

close to that of water which at first glance makes it an ideal material for construction of a 

refractive index matched test facility along with water used as the working fluid. 

However, there are some issues with the application of FEP in experimental facilities 

such as low stiffness due to which it cannot be used for construction of parts of the test 

facility which will undergo extensive forces. Acrylic, fused quartz, Pyrex glass, and 

polycarbonate are more common materials for construction of transparent test sections 

and do not have the flexibility problem as transparent FEP does; as a result, they can be 

used in the construction of the entire test section. The refractive index of fused quartz is 

lower than that of Pyrex glass, acrylic and polycarbonate; therefore, more fluids and 

solutions can be found that would have nearly the same refractive index as fused quartz. 

It should be noted that fused quartz is fragile and this needs to be considered while using 

fused quartz for construction of test facilities. Pyrex glass is not as widely used as the 

other transparent solid materials due to its relatively high refractive index and being 

fragile. Acrylic, on the other hand, is shatter-resistant, reasonably priced, and available 
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in different shapes and sizes. All these characteristics make acrylic one of the most 

commonly used transparent solid materials in fluid flow experiments where optical 

transparency is required. However, the refractive index of acrylic is higher than most of 

other transparent solid materials mentioned in Table II-3 except for polycarbonate. The 

main restrictive factor on the application of polycarbonate in construction of transparent 

test sections is its high refractive index which drastically limits the number of fluids that 

would match its refractive index. Moreover, polycarbonate has low scratch-resistance 

characteristics which as well limit its application in the construction of the entire 

experimental facility. A comprehensive investigation on finding the appropriate working 

fluids and solid transparent materials for MIR facilities used in the fluid dynamic 

experiments was carried out during the course of this research study and the results are 

included in Appendix A. 

In the design of the test section for this experiment (see Figure II-1), MIR 

principles were employed to enhance the capability of the experimental investigations to 

characterize flow behavior inside the rod bundle without having the effect of the rods 

obstructing the view. The exterior of the flow channel was constructed with transparent 

polycarbonate sheets to allow both the passage of the illuminating laser sheets and the 

acquisition of PIV images. Although Polycarbonate does not exhibit the same refractive 

index as water, since it only comprises the outer surface of the channel, it does not affect 

imaging inside the channel. Thus, MIR techniques were used in the selection of a 

material to simulate rods. FEP tubes were selected for the rod material and the inlet jets 

since this material possessed an index of refraction nearly identical to that of water; 
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consequently it does not produce any optical distortion. In this experiment, the laser light 

frequency and the water temperature were kept constant; therefore, it was assumed that 

the refractive index of water remained constant through the data collection period.  

In total, twenty nine tubes made of FEP material were fixed to the upper and 

lower surfaces of the test section, near the two inlet jets located on the upper surface of 

the facility, to simulate the presence of a rod bundle in the jet exhaustion area. It is 

important to note that FEP tubes were filled with water. This measure was necessary to 

maintain a constant index of refraction throughout the test facility and to reduce the 

noise due to reflections and refraction at the interior rod interface. The effect of MIR 

technique can be distinctly observed when visualizing partially submerged tubes as seen 

in Figure II-3. Such measures allow flow behavior to be assessed throughout the channel 

volume by significantly reducing undesirable reflection and refraction and, effectively 

eliminating the blockage of interior regions by rod structures.  

 
 
 
 
 
 



32 
 

 

 
 

Figure II-3  Picture of the experimental setup illustrating the MIR technique with channel which is 

half filled. 
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II.2.3. Particle Image Velocimetry (PIV) Technique 

II.2.3.1. Introduction to PIV Technique 

PIV is a valuable flow visualization technique to measure the flow velocity since 

full field velocity measurements can be obtained without disturbing the flow (i.e. the 

technique is non-intrusive). In PIV, the motion of particles (i.e. – tracers) within a fluid, 

are tracked to ascertain the motion of the fluid itself. Since it must be assumed that 

tracers’ motion is determined by that of the fluid, tracer particles must faithfully follow 

the fluid for accurate full-field velocity profiles to be obtained (Raffel et al. 1998). In 

general, these tracer particles may be naturally occurring impurities or, manufactured 

seeds added to the fluid prior to the experiment. Another superior feature of PIV 

technique is the ability to measure full-field velocity components. The principles of PIV 

technique have been explained by Adrian (1991) and Hassan et al. (1992), and the 

development and progression of this technique is described by Adrian (2005). 

In PIV, to measure the velocity, two consecutive recorded images are compared 

at sub-region level through signal processing methods such as cross correlation 

technique and the particles displacement vectors are obtained subsequently. According 

to Hassan et al. (1992), the binary cross correlation coefficient, Cij, between candidate 

spot pairs in frames 1 and 2 of Figure II-4 is given by:  
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where the numerator is the sum of the logical products between the corresponding pixels 

in the sub-regions of frames 1 and 2 (F1
b and F2

b being the binary pixel values in frames 

1 and 2, respectively and L being the size of the sub-regions), and B1 and B2 show the 

total number of pixels of binary value 1 in the sub-regions in frames 1 and 2. It should be 

noted that during the post-processing, the size of the sub-regions was adjusted for each 

case depending on the Reynolds number and the number of impinging jet.   

    

 
Figure II-4 Two subsequent images illustrating the cross correlation technique. 

 
 

In this study, a 2-D Particle Image Velocimetry (PIV) technique was used to 

measure the flow field. In the present investigation, the fluid was seeded with Expancel 

091 UD particles with diameters in the range of 6-9μm and specific gravity of 1.05. 

These tracer particles were specifically chosen because their material density is close to 

that of water, which assures the tracer particle motion best reflects the actual flow path. 

The PIV system consists of several sub-systems including a high power laser 

which is used as the illumination source and an optical set up consisting of a number of 

lenses to turn the laser light into a laser sheet. The seeding particles in the fluid scatter 

Frame 1: 

t = t0 

Frame 2: t = 

t0 +Δt 

Frame 1: t = t0 Frame 2: t = t0 +Δt 
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the laser light which is captured by a video acquisition system. In the current 

experiment, a Nd-Yag laser (New Wave Research, Pegasus PIV, wavelength of 527nm, 

maximum energy of 20mJ per pulse), served as the illumination source for the PIV 

system. Illumination from this source was manipulated through the appropriate use of 

optical instruments (a mirror and three cylindrical lenses) to produce a laser sheet of       

1 mm thickness on the channel’s bottom wall. This allowed the illumination of planes 

parallel to the vertical axis. A high speed/high resolution CCD camera (Vision Research, 

Phantom v7.3, 800×600 pixels, 12 bit) captured images of the illuminated PIV particles 

at a rate of 1000 frames per second (fps). The camera was oriented perpendicular to the 

laser sheet direction to acquire video data depicting fluid behavior in the illuminated 

planes. A system of automatic and manual translation mechanisms were utilized to 

synchronize the laser plane of illumination with camera focal planes to allow movement 

of the measuring area within the measuring volume in Z direction. This allowed flow 

behavior to be evaluated in three different planes parallel to the vertical axis (see Figure 

II-2). 

In this experiment, the CCD camera captured 5,000 images (with a frequency of 

1000 fps over a five-second period) for each plane in each case. Then, the acquired data 

were analyzed through the use of appropriate image processing and PIV analysis 

techniques. The fore mentioned cross-correlation algorithm was applied to the captured 

images through the use of a software specifically written for the analysis of the PIV 

images (Stanislas et al. 2008). The results were filtered to remove the erroneous vectors. 

The final results were imported to TecPlot 360 for visualization and analysis.  
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II.2.3.2. PIV Error Analysis 

Considering the accuracy of PIV, a few different sources contribute to PIV 

measurement error. First, the experimental set-up and the optical instrument 

imperfections should be considered such as the flowmeter errors which is ±5% and 

optical errors due to laser sheet misalignment. The second type of possible error is 

attributed to the seeding particles, specifically regarding their sizes and how faithfully 

those particles follow the fluid motion. By choosing seeding particles with a density 

close to water (specific gravity of 1.05); the particles are expected to follow the fluid 

motion very well.  

Another possible error source is a result of the limited sample size. The mean 

flow characteristics are calculated by post processing the PIV images. If the number of 

images or the sample size is not high enough, an error would be caused because of 

averaging insufficient number of images. In this experiment, 5,000 images have been 

captured for each set of measurement. To ensure the adequacy of this procedure, the 

results of averaging 5,000 images were compared to those of 100, 200, …, 500, 1,000, 

…, 4,500 images of the mid-plane of the test section. Figure II-5 shows the deviation in 

the average velocity between different sample sizes and the average velocity obtained by 

averaging 5,000 images for the case of single impinging jet with Rejet 1=13,400. As seen 

in the Figure II-5, the smaller the number of the analyzed images, the higher is the 

difference between the obtained velocity magnitudes from the velocity magnitude 

calculated by averaging 5,000 images. Figure II-5 represents that the sample size error 

tends to decrease with increasing the number of images and it goes from 11.8% for 100 
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images down to 0.45% for 4,500 images. The same trend was observed for all of the 

other cases; therefore, to have the highest possible accuracy, each test condition was 

evaluated with 5,000 images. 

 
 
 

 
Figure II-5 Effect of sample size on the accuracy of measured velocities when compared to a sample 

of 5,000 images. Data obtained for the case of single isothermal inlet jet with Rejet 1=13,400. 

 

An additional source of error arises from the post-processing software’s error in 

analyzing the PIV images. The accuracy of the post-processing software was tested 

using synthetic images of a 3D shear jet flow obtained from the PIV Standard Image 
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website (PIV Challenge 2011).  The characteristics of the synthetic images used for 

these tests are shown in Table II-4. The results indicated that the error of the post-

processing software is of sub-pixel order which is 0.629 pixel/(time interval) for 

particles moving with the maximum velocity of 10 pixels/(time interval). 

 

  Unit 

Image Size 256×256 pixel2 

Area 4×4 cm2 

Laser Thickness 2 mm 

Interval 0.005 sec 

Maximum Velocity 10 pixel/interval 

 
Table II-4 Characteristics of the synthetic images used for error analysis. 

 

 

II.2.4. Proper Orthogonal Decomposition (POD) Analysis 

II.2.4.1. Introduction to POD Analysis 

POD, as an unbiased and powerful technique, has been used to extract the large-

scale coherent structures from turbulent flows and to reconstruct lower-order models of 

the complex flows since 1960’s when it was first introduced to turbulent flow concepts 

by Lumely (1967). Berkooz et al. (1993) emphasized the application of POD analysis in 

the study of all turbulent flows including jet flows. They reviewed the experimental and 

numerical investigations done on the jet flows and their mixing layers using POD 
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analysis. In an investigation done by Glauser et al. (1987), POD analysis was applied to 

the velocity data of the near-field of an axisymmetric jet mixing layer obtained by hot 

wire anemometry. The results show that the primary mode contains 40% of the turbulent 

kinetic energy of the field which corresponds to a large scale coherent structure in the 

mixing layer of the jet. The next two modes approximately contain 40% of the energy; 

therefore, the flow field could be accurately reconstructed using the first three modes. 

Sullivan & Pollard (1996) used hot wire anemometry technique to obtain data from the 

near field of a three-dimensional wall jet. The flow field data was further analyzed using 

POD, Linear Stochastic Estimation (LSE), Gram-Charlier Estimation (GCE), and 

Wavelet Decomposition (WD) methods. It has been shown that POD helps to extract 

underlying turbulent structures in the wall jet flow. Citriniti & George (2000) applied 

POD technique to the ensemble velocity field obtained by hot-wire anemometry from a 

turbulent round jet nozzle. As a result of using POD analysis, the small-scale structures 

which obstruct viewing the large-scale turbulent structures get filtered; therefore the 

evolution of the large-scale structures is presented more clearly. Reconstruction of the 

velocity field with the first five azimuthal modes shows the existence of counter-rotating 

streamwise vortex pairs which advect the high velocity from the core and also advect 

slow moving fluid from the low-speed outer layers of the jet to the core. In a study done 

by Gordeyev & Thomas (2002), POD technique was applied to the self-similar region of 

a turbulent planar jet obtained by multiple X-probe arrangements to study the behavior 

of large-scale flow structures in this region. They suggested that it is possible to 
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reconstruct a realistic low-dimensional model of the jet using POD technique due to the 

rapid energy convergence of the POD modes. 

One of the first investigations which employed both PIV and POD techniques to 

study the jet flows was done by Bernero & Fiedler (2000) in which the characteristics of 

a jet in a counterflow was studied. The analysis was carried out for the cases of low and 

high velocity ratios and the transition between stable and unstable flow conditions. They 

concluded that the key features of the flow were better represented using energy POD 

than that obtained by vorticity POD. In another study by Patte-Rouland et al. (2001), 

PIV and POD techniques were applied to the velocity fields of the recirculation zone of 

an annular jet having Reynolds numbers of 2048 and 7680. The results of the POD 

analysis show that the first four modes contain the majority of the energy of the flow 

field and that each mode has a specific effect on the nature of the flow, location of the 

stagnation point, and the organization of the recirculation zone of the annular jet. 

Maurel et al. (2001) studied the application of POD method to analyze the 

jet/vortex interactions in a square model engine cylinder. The analysis is focused on the 

central vertical region of the jet flow. It has been shown that the space–time correlation 

between different flow patterns can be captured experimentally using POD method. Bi et 

al. (2003) used time-resolved PIV and POD methods to study the characteristics of 

coherent structures forming around a turbulent round jet. POD analysis educes the most 

energetic flow structures and clearly represents their spatial- temporal evolution in the 

mixing layer of the jet. In a paper by Kim et al. (2007), PIV technique was used to study 

the characteristics of a confined slot jet impinging on a flat plate.  The range of Reynolds 
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numbers used in this experiment varied from 404 to 1026 which puts the flow in the 

transient regime. The results confirmed the appearance of vortical structures in the shear 

layer and also the transition of the flow from steady to unsteady regime when the 

Reynolds number increases beyond Re=404.  

Meyer et al. (2007) obtained the velocity fields of a jet in crossflow using 

Stereoscopic PIV and consequently analyzed the PIV results by snapshot POD method. 

The experiment was carried out with two different velocity ratios of jet to crossflow 

velocity, R=3.3 and R=1.3 for a Reynolds number of 2400 defined based on crossflow 

velocity and the pipe diameter. It has been found for R=3.3 that the first two POD modes 

have a higher energy than the other modes and the wake vortices are the dominant flow 

patterns which strongly interact with the jet core. However, for R=1.3 case, the jet shear-

layer vortices are much more dominant than the wake vortices. In a study by Merzari & 

Ninokata (2009), Large Eddy Simulation (LES) was used to simulate the axial turbulent 

flow (Re=6,400) in a tight triangular lattice rod bundle (P/D=1.05). POD method was 

applied to study the three-dimensional flow patterns and especially the large-scale 

periodic oscillations observed in the tightly packed rod bundle configurations. The 

results show that the velocity profile presents multiple wavelengths (short and large 

scale wavelength) and also the velocity profile in each gap is different from the others. 

The results confirm that the coolant flow is more complex in a rod bundle than flow in a 

channel. 

Conventional PIV technique with its high spatial resolution helps in obtaining the 

2D velocity field of a turbulent flow which could later be further analyzed applying POD 
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techniques. However, this technique does not have the high temporal resolution needed 

for POD to investigate the behavior of high frequency turbulent flow patterns. With the 

recent development in the camera technology and production of cameras having frame 

rates in the order of KiloHertz, a new technique called Dynamic PIV (DPIV) has 

emerged benefiting from improved temporal resolution compared to normal PIV. DPIV 

solves the low temporal resolution problem of conventional PIV for POD applications. 

 

II.2.4.2. Mathematical Background for POD Analysis 

In 1967, Lumley suggested the application of the POD technique to analyze the 

turbulent flows and to identify large-scale coherent structures in turbulent velocity fields. 

In POD, the velocity field is decomposed into a finite expansion of orthonormal 

functions or eigenfunctions (Φn) and orthonormal amplitude coefficients na : 
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Sirovich (1985) introduced a time-efficient method to carry out the POD analysis 

which is called Snapshot method. This method works best for cases in which the spatial 

resolution of the flow field is much higher than its temporal resolution which is normally 

the case for PIV data. The Snapshot POD method greatly reduces the computation time 

of the eigenfunctions; therefore, enables the analysis of the large velocity fields. Each 

instantaneous PIV velocity field is known as a snapshot of the flow. It should be noted 

that the POD analysis is often carried out using the fluctuating part of the velocity 

component (u, v, w) and the mean velocity field which is often called the zeroth POD 
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would only be added to the POD results when the velocity fields are being reconstructed 

using the POD modes. 

Now if each instantaneous PIV fluctuating velocity field (i.e. snapshot) is 

represented as: 

 ( ) ( , )n

nv v x t  (II-5) 

Therefore, the Kernel of the velocity field or the two-point time-averaged correlation 

function for cases where the number of snapshots (N) is sufficiently high is:  
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The Kernel is degenerate; therefore, it has eigenfunctions of the form: 
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In which the constants kA  need to be estimated. Then the eigenvalue problem would be 

of the form: 

 CA A  (II-8) 

where 

 1( ,..., )MA A A  (II-9) 

The k-th eigenvector kA corresponds to the eigenvalue 
k  of C. The components of the 

temporal correlation matrix ijC are given as:  
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C is a symmetrical matrix and therefore all the eigenvalues are real and positive 

numbers. The eigenvalues are organized in descending order as 
1k k    so that the 

first POD eigenvalue has the most energy. The magnitude of these eigenvalues is an 

indication of the kinetic energy of the modes and the total energy of the system is 

represented by the sum of all of the eigenvalues. 
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The relative energy stored in each mode is shown as 
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Now the POD modes (eigenfunctions) can be obtained using the eigenvectors of Eq. II-

8: 
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The POD modes can be arranged as:  
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The amplitude coefficients or the POD coefficients are calculated as follows: 

 n T na v   (II-15)                                                  

Finally snapshots of the flow field can be reconstructed as: 
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In POD analysis, the most energetic modes are the principle modes which can be 

used to represent the most energetic coherent structures, i.e. the large-scale coherent 
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structures, of the flow field. Therefore, the large-scale structures of the flow field would 

be captured by the first few POD modes; therefore a snapshot reconstructed by the first 

few modes would satisfactorily represent the original flow field.  On the whole, it can be 

said that the POD method helps to make a low-dimensional model of the real velocity 

field which represents most of the characteristics of the coherent structures. POD 

analysis can be applied to flow fields obtained either experimentally or numerically.  

 

II.2.4.3. POD Sample Size Analysis 

The temporal resolution of the POD analysis is determined by the number of 

snapshots chosen to reconstruct the velocity or the vorticity fields. Therefore, choosing 

the right number of snapshots enables accurate calculation of the eigenfunctions. 

Following the change in the energy of the eigenvalues and their convergence with the 

number of snapshots shows that the sample size needs to be large enough for the 

statistical data obtained by POD to be valid. Figure II-6 shows the change in the 

eigenmodes’ energies by increasing the number of snapshots for the first ten 

eigenmodes. As it is seen in Figure II-6, for most of the eigenvalues, there is not much of 

a difference in the energy of the eigenmodes when the number of snapshots is greater 

than 1000. Therefore, in this study, to optimize both the temporal resolution and the 

computing time, 1000 snapshots are used in order to carry out the POD analysis. 
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(a) 

 
(b) 

Figure II-6 Effect of sample size on calculated eigenvalue energy for the first ten eigenvalues (a) 

single isothermal inlet jet with Rejet 1 = 4470, (b) single isothermal inlet jet with Rejet 1 = 13,400, (c) 

dual isothermal inlet jets with Rejet 1=11,160 and Rejet 2= 6,250. 
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(c) 

Figure II-6 Continued. 

 
 

II.3. Results 

As it was mentioned earlier in the Experimental Methodology section, the 

experiment was performed for several cases with single and dual inlet jets impinging 

into the channel with various Reynolds numbers as well as cases with dual inlet jets 

impinging into the channel having crossflow. The results containing instantaneous and 

time-averaged velocity fields, instantaneous vorticity fields, line-probes of velocity and 

different velocity statistics at different heights of the channel and different measurement 

planes, as well as the results of the POD analysis for coherent structure identification 

within the flow field are presented in the following sections. 
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II.3.1. Time-Averaged Velocity Fields 

The time-averaged velocity fields were obtained for three discrete planes 

throughout the interrogation domain for each of the test cases mentioned in Table II-1. 

For better clarification of the differences between various cases, the results representing 

the time-averaged velocity fields are represented in the following sub-sections.  

 

II.3.1.1. Single Impinging Jet in the Corner of Mid-Plane 

In this case, a single inlet jet (Inlet Jet 1) was injecting into the bundle. The time-

averaged velocity fields were obtained for three discrete planes throughout the 

interrogation domain for each of the selected inlet jet Reynolds numbers. Figure II-7 

depicts the average velocity fields obtained for a single isothermal inlet jet discharging 

into the mid-plane for two different Reynolds numbers. The white lines in the figure 

represent the streamtraces calculated by means of Tecplot 360 which help to identify 

flow structure.  The velocity vectors are shown in black and are overlaid on a contour 

map which describes the Y-velocity component. 

As seen in both Figure II-7 (a) and Figure II-7 (b), a discontinuity is observed in 

the upper section of the jets’ velocity profiles. This can be attributed to undesired laser 

reflections at these locations. The data obtained for those regions was omitted, since it 

had no effect on the rest of the results. It is possible to interpolate the data during post-

processing and obtain the velocity profile in the excluded regions; however to maintain 

the integrity of the raw data, no data interpolation, approximation, or smoothing was 

performed. 
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Both of the plots in Figure II-7 show a well-defined radial velocity gradient, with 

the maximum velocity at the jet’s core and decreasing velocity in radial direction. In 

both cases the streamtraces on both sides of the jet are seen to shift toward the jet which 

indicates the jet entrainment process through its shear layer. Additionally, the higher 

Reynolds number jet (Figure II-7 (a)), the jet maintains its highest velocity core further 

into the channel than the lower Reynolds number jet (Figure II-7 (b)). 

In both cases a recirculation zone is identified on the right hand side of the center 

rod; however, the size and the location of these recirculation zones are different from 

one case to another. In the higher Reynolds case, the recirculation zone appears at a 

lower height and closer to the center rod and displays a stronger recirculation than the 

lower Reynolds number jet. In Figure II-7 (a), there are two other recirculation zones 

observed on the left hand side of the center rod which are not present in Figure II-7 (b). 

The time-averaged velocity fields for the impinging jets with the same Reynolds 

numbers are presented in a paper by Amini et al. (2008) although it should be mentioned 

that those velocity fields are obtained by averaging over 500 images. It is seen that for 

each of the cases, the recirculation zone on the right hand side of the center rod is 

identified either by averaging over 500 images or by averaging over 5000 images. 

However, a significant difference is observed in the number and the size of the 

recirculation zones observed on the left hand side of the center rod as a result of the 

sample size.  When averaging 5,000 images, the two key recirculation zones previously 

mentioned are present on the left hand side of the center rod, but when the velocity field 

is obtained by averaging 500 images, three small vortices appear in the same region. 
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(a) 

 
(b) 

Figure II-7 Time-averaged velocity field, the contour plot of the Y-velocity component and the 

streamlines along the vertical mid-plane for a single isothermal inlet jet with (a) Rejet 1=13,400,      

(b) Rejet 1=4,470. 

 

Inlet Jet 1 

Inlet Jet 1 
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II.3.1.2. Single Impinging Jet in the Middle of the Measurement Plane 

The flow pattern observed in velocity fields of the single impinging jets 

presented in the previous section and the asymmetry of the flow field between the 

impingement side and the other side of the center rod raised a few important questions 

such as: Is the recirculation zone observed close to the center rod actually created as a 

result of the jet/rod interaction or it could have happened on the other side of the center 

rod as well? Would another recirculation happen on the other side of the jet close to the 

other adjacent rod which is not captured in these images? Is the strength and position 

where the main recirculation zone is created directly depends on the jet Reynolds 

number and the distance of the jet from the bottom surface of the channel (the 

impingement plate)? To find an answer for these questions, a different geometry of the 

impingement plane is considered in which the jet is located in the middle of the 

measurement planes with two rods symmetrically places at each side of the jet. For this 

case, experiments have been carried out with two different Reynolds number of the jet 

and different jet to impingement plate distance in order to acquire a better understanding 

of the evolution of jet itself (spreading and decay of the center line velocity) as well as 

the potential effect of the jet/rod interaction on the formation and characteristics of the 

main recirculation zone observed close to the adjacent rod (see Figure II-7). It should be 

mentioned that the velocity fields presented in Figure II-8 are obtained using an in-house 

Particle Tracking software (Estrada-Perez 2004).The average error of the software for 

velocity calculation was reported as 0.1 (pixel/Δt) by Estrada-Perez & Hassan (2010).  In 

all three plots of Figure II-8, the white lines represent the streamtraces calculated by 
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means of Tecplot 360 which help to identify the key flow structure within each velocity 

field. The velocity vectors are shown in black and are overlaid on a contour map of the 

Y-velocity component. 

It is seen from all three plots of Figure II-8 that the key recirculation zone 

observed in the vicinity of the adjacent rod to the jet in Figure II-7 is present here close 

to both rods located at each side of the jet for all cases with different Reynolds numbers 

of the jet and different distances between the jet exit plane and the impingement plane. 

This actually supports the idea that the recirculation zone is created as a result of the 

interaction between the jet flow and the neighboring rod. However, no direct conclusion 

can be made from these plots regarding the effect of the jet Reynolds number on the size 

or location of the recirculation zones. Some of the flow features that have been notices in 

Figure II-7 are also present here and are even more clearly seen because of the symmetry 

in the flow field as well as the fact that more of the area surrounding the jet is captured 

in these measurements. For instance, the entrainment of the channel flow by the jet is 

better represented in these plots since both sides of the jet are equally captured in the 

flow field. For all cases shown in Figure II-8 (a) and (b) in which jet has a larger 

distance from the impingement plate, entrainment begins approximately from the top 

part of the channel and the streamtraces on both sides of the jet are drawn towards the 

jet. However, in Figure II-8 (c) the streamtraces, especially on the left-hand side of the 

jet, are not as drastically shifted towards the jet compared to the two previous cases.  

One of the interesting flow patterns that is clearly seen in the plots of Figure II-8 

is the flow structure created at each side of the jet as a result of the interaction between 
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two phenomena that are simultaneously present at each side of the jet -jet entrainment 

which is pulling the streamtraces towards the jet and the recirculation zone close to the 

neighboring rod which is in turn attracting the streamtraces towards itslef-. This 

interesting flow feature which is created due to the separation of the streamtraces close 

to the bottom surface of the channel is present in both sides of the jet for all cases and is 

called “Separation Region” hereafter. 

A comparison between Figure II-8 (a) and Figure II-8 (b) indicates that the jet 

maintains its high velocity core region up to a further distance into the channel in case of 

the higher Reynolds number jet (Figure II-8 (a)). Furthermore, in case of jets with 

identical Reynolds numbers and different jet to impingement plate distance (Figure II-8 

(b) and (c)), it is observed that the jet flow in Figure II-8 (a) loses its high velocity at the 

core region as it travels further downstream on the channel and has a relatively lower 

velocity while hitting the channel bottom surface (this phenomenon is called decay of 

the center line velocity of the jet); however, in case of the jet flow in Figure II-8 (c) 

where the jet to impingement plate distance is much shorter, the jet flow maintains its 

high velocity at the core region nearly until it reaches the channel bottom plate and 

interact with the bottom plate of the channel with a much higher velocity and momentum 

compared to the jet in Figure II-8 (b). Therefore, the jet to impingement plate distance is 

one of the most important criteria that needs to be considered in the design process in 

order to avoid structural damage to the nuclear graphite comprising the bottom surface 

of the lower plenum of a VHTR or any other impingement plate in other facilities 

including impinging jets.  
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(a) 

 
(b) 

Figure II-8 Time-averaged velocity field, the contour plot of the Y-velocity component and the 

streamlines along the vertical mid-plane for a single isothermal inlet jet for (a) jet up with                 

Rejet 1=6,700, (b) jet up with Rejet 1=4,470,  (c) jet down with Rejet 1=4,470. 

 

Inlet Jet 1 

Inlet Jet 1 
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(c) 

Figure II-8 Continued. 

 

Another flow pattern that is distinguished in all plots of Figure II-8, is the flow 

structure created by the sidewise and slightly upward distribution of the jet flow after 

hitting the bottom surface of the channel. This flow feature is observed on both sides of 

jet in the two-dimensional PIV velocity fields and is more pronounced in the case of the 

higher Reynolds number jet (Figure II-8 (a)) and the lower Reynolds jet with smaller jet 

to impingement plate distance (Figure II-8 (c)). Moreover, for all the three jet flows 

represented in Figure II-8, the radial distribution of the jet flow as it travels further down 

into the channel follows the same pattern observed for the jet flows in Figure II-7 

meaning that at each vertical distance from the jet exit plane, the jet’s core has the 

highest velocity and as the jet spreads out the velocity decreases in the radial direction. 

Inlet Jet 1 
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II.3.1.3. Dual Impinging Jets within the Mid-Plane 

In this case, both inlet jets (Inlet Jet 1 and Inlet Jet 2) impinged into the channel, 

each with a different Reynolds number. As in the case of the single jets, the time-

averaged velocity fields were developed for three different planes within the 

interrogation volume for each of the inlet jet conditions. Figure II-9 depicts the time-

averaged velocity field for one test case, with white streamtraces showing the important 

features of the flow. Again, the black arrows represent the velocity vectors which are 

overlaid on a contour map of the Y-velocity component. 

Contrary to the discontinuity observed in Figure II-7, Figure II-9 shows that both 

inlet jets velocity profiles were completely captured using the PIV technique. It should 

also be asserted that in this case the time-averaged velocity field has been presented 

without any data interpolation, approximation or smoothing. 

For both of the jets in Figure II-9, a well-defined velocity gradient is observed in 

each of them, showing a maximum velocity at the jet’s core and decreasing in the 

horizontal direction. It can also be observed that the streamtraces on left hand side of the 

higher Reynolds number jet and the streamtraces on right hand side of the lower 

Reynolds number jet are shifted towards the jets while the streamtraces on the left hand 

side of the lower Reynolds number jet are shifted towards the left hand side of the 

picture where the channel outlet is located. The camera lens was not able to capture 

information to the right of the higher Reynolds number jet and thus the streamtraces 

could not be identified in that region. However, if the streamtraces in this section follow 

the same pattern as the streamtraces of the single jet case, they are expected to be pulled 
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towards the jet.  Furthermore, as it is presented in Figure II-9, the higher Reynolds 

number jet maintains its highest velocity core up to a higher depth of the channel from 

the inlet jet exit than the lower Reynolds number jet. Most of the above mentioned 

observations reflect the remarks made about the single jet cases. 

Two recirculation zones of different sizes are detected on either side of the center 

rod; however, the locations of these recirculation zones differ from one jet to the other. 

The recirculation zone on the right hand side of the center rod appears slightly higher 

and farther from the center rod and is stronger when compared to the left hand side 

recirculation zone. These observations resemble those of the single jet excepting a few 

key differences. A brief evaluation of both Figure II-9 and Figure II-7 indicates that the 

size of the recirculation zones on the adjacent rod of an impinging jet is directly related 

to the Reynolds number of the jet. However, no such statement could be made about the 

dependence of the location of the recirculation zone on the Reynolds number of the jet. 

As mentioned before, in Figure II-7 the recirculation zone of the single impinging jet 

with a higher Reynolds number occurs at a lower height and closer to the adjacent rod 

than the lower Reynolds number case, while in Figure II-9 the recirculation zone 

adjacent to the higher Reynolds number jet appears at a higher height and farther from 

the adjacent rod compared to the lower Reynolds number jet. The discrepancy in the 

location of the recirculation zones between the cases of a single jet and the case of the 

dual impinging jets may be a result of the interaction between the two jets. In that case, 

additional dual jet flows must be studied to verify any corresponding relationship. 
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Figure II-9 Time-averaged velocity field, the contour plot of the Y-velocity component and the 

streamlines along the vertical mid-plane for two isothermal inlet jets with different Reynolds 

numbers Rejet 1=11,160 and Rejet 2=6,250. 

  

Inlet Jet 1 Inlet Jet 2 
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II.3.1.4. Dual Impinging Jets with Crossflow within the Mid-Plane 

Figure II-10 represents the time-averaged velocity fields for the case of dual jets 

injecting into the channel having crossflow. This case is rather important since the 

crossflow here represents the crossflow exerted on the coolant jet flows in the lower 

plenum of a VHTR. The crossflow in the lower plenum of a VHTR is formed by the 

coolant flows injecting into the lower plenum from the jets located before a certain jet as 

the coolant flow eventually converges to a single outlet. Therefore, each jet encounters a 

different crossflow velocity depending on its location with respect to the outlet of the 

plenum. In this case, the idea was using a very general test case with twin jets having 

different Reynolds numbers injecting into a channel containing a rod bundle with 

crossflow passing through it. It is worth mentioning that the Reynolds number of the 

crossflow is calculated based on water dynamic viscosity, crossflow velocity, and the 

height of the channel. The time-averaged velocity field for this case is represented in 

Figure II-10. It should be mentioned that the crossflow velocity field presented in Figure 

II-10 is obtained using an in-house Particle Tracking software developed by Estrada-

Perez (2004) which has an average error of 0.1 (pixel/Δt) for velocity calculations 

(Estrada-Perez & Hassan 2010). The Reynolds numbers of the jets are chosen to be close 

to those of the jets in the dual impinging jets case represented in Figure II-9 in order to 

better see and more easily compare the influence of the crossflow on the jets evolution 

with respect to the case without crossflow (Figure II-9).  In this figure, the white lines 

represent the streamtraces calculated by means of Tecplot 360 which help to identify the 
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key flow structure within the velocity field. The velocity vectors are shown in black and 

are overlaid on a contour map of the Y-velocity component. 

The streamtraces on the far left side of the velocity field in Figure II-10 clearly 

represent the crossflow in the channel in the left to right direction. However, as soon as 

it approaches the higher Reynolds jet (Inlet Jet 1), entertainment in the shear layer of the 

jet changes the horizontal direction of the crossflow to some extent, specifically in the 

lower parts of the channel and the jet. The interaction of the jet with crossflow on the 

other hand affects the jet evolution while going downstream in the channel in different 

ways which become more clear if the jet in crossflow is compared to the higher 

Reynolds jet in Figure II-9 where there was no crossflow. It should be noted that the 

Reynolds number of the higher Reynolds jet in both Figure II-9 and Figure II-10  are the 

same which provides the basis for a better comparison of the behavior of the jets. First, 

the jet in crossflow loses its high velocity core much faster than the jet without 

crossflow. Secondly, in the crossflow case the velocity profile of the jet is more spread 

out especially in the crosflow direction. The jet in crossflow is more spread out on its 

right-hand side compared to the jet with no crossflow which is quite symmetrical on 

both sides. The trail of the higher Reynolds number jet in cossflow is seen in the flow 

field approximately until it reaches the recirculation zone in the vicinity of the center rod 

on the higher Reynolds jet. It seems like the effect of the crossflow is so dominant on the 

jet that it has pushed the jet in its own direction in a way that no effect of jet entrainment 

is seen on the right-hand side of the jet and that part of the jet is inclined in the direction 

of the crossflow. Therefore, the “Separation Region” that was previously observed due 
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to the interaction between the jet entrainment process and the recirculation zone is not 

seen here. A comparison between the directions of the streamtraces at the right-hand side 

of the higher Reynolds number jet in Figure II-9  and Figure II-10 further clarifies this 

point. Moreover, it looks like the presence of the crossflow and the addition interaction 

of the crossflow with the center rod (in addition to jet/rod interaction) creates an even 

larger recirculation zone close to the center rod. It should be noted that at this point no 

general conclusion can be made with regards to the effect of the crossflow on the size 

and location of the recirculation zone created close to the center rod. Further, 

investigation and analysis with different combinations of jet to crossflow velocities is 

needed for such conclusions to be made.  

The effect of the crossflow on the lower Reynolds number jet and the flow field 

on the right hand side of the center rod is even more drastic. Figure II-10 shows that 

even with the presence of the crossflow, the key recirculation zone still exists on the 

right hand side of the center rod and that even the dominant effect of the crossflow was 

not capable of eliminating this flow feature. The lower Reynolds jet especially from    

Y= 60 mm downwards is strongly pushed to the right (in the direction of the crossflow). 

This becomes more noticeable while comparing the evolution of this jet compared with 

the approximately axisymmetric evolution of the lower Reynolds jet in vertical direction 

in Figure II-9. Unfortunately, the area on the right-hand side of the lower Reynolds jet is 

not fully covered by the camera view; therefore, no further observation can be made for 

the behavior of the jet on that side. The phenomenon that is particularly significant in 

this part of the flow field is the existence of a large recirculation area close to the bottom 
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surface of the channel between the main recirculation zone on the right-hand side of the 

center rod and the lower Reynolds number jet. In the previous cases, the flow pattern 

called “Separation Region” was observed around this area. However, it appears that in 

this case the interaction of the  crossflow which is in the right direction with both the 

downward direction of the jet which is also deviated to the right in this case with the 

recirculation zone on the right hand side of the center rod creates a relatively large 

recirculation zone in that area. The presence of this additional recirculation zone along 

with the other two recirculation areas at each side of the center rod and other vortical 

structures that exist all over the measurement plane will help in enhancement of the 

mixing between the jets and the crossflow. 

 

  

Figure II-10 Time-averaged velocity fields, the contour plot of the Y-velocity component and the 

streamlines along the vertical mid-plane for two isothermal inlet jets with different Reynolds 

numbers and with crossflow: Rejet 1=11,160, Re Rejet 2=6,700, and Recrossflow=1,670. 

 

Crossflow 

Inlet Jet 2 Inlet Jet 1 
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II.3.2. Instantaneous Vorticity Fields 

In this section, the instantaneous vorticity fields are presented for a few sample 

cases to indicate the presence of the vortical structures throughout the measurement field 

and to further clarify the connection between these vortex patterns and some of the 

phenomena observed in the time-averaged velocity fields. 

 

II.3.2.1. Single Impinging Jet within the Mid-Plane 

In Figure II-11, the instantaneous velocity vectors are presented with the vorticity 

fields for a single impinging jet with Reynolds numbers of 13,400 and 4,470. As shown 

in Figure II-11, in both cases, vortex structures with opposite directions are seen in the 

outer regions of the impinging jets. The opposite directions of the vortices are shown by 

positive and negative values in this figure. It should be noted that vortex structures have 

scarcely been identified in the center region of the jet. Expectedly, the magnitude of the 

vorticity is noticeably higher for the higher Reynolds number jet. The presence of the 

vortices in the outer regions of the jets explains the shift of the streamtraces toward the 

jet in Figure II-7. More simply, the jets entrain some of the channel flow while injecting 

into the channel. In Figure II-11 (a), the vorticity pattern in the opposite outer regions of 

the jet is more intense and exhibits symmetry. Alternatively, in Figure II-11(b), the 

vortex structures are more scattered and non-symmetrical.  
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(a) 

 
(b) 

Figure II-11 Instantaneous velocity vectors overlaid on a contour map of Z-vorticity along the 

vertical mid-plane for a single isothermal inlet jet with (a) Rejet 1=13,400, (b) Rejet 1=4,470. 
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II.3.2.2. Dual Impinging Jets within the Mid-Plane 

In Figure II-12, the instantaneous velocity vectors and the vorticity field are 

shown for the case of dual impinging jets each having a different Reynolds number. As 

seen in the Figure II-12, vortex structures with opposite directions are seen in the outer 

regions of each impinging jet. As mentioned before, the opposite directions of the 

vortices are shown by positive and negative values. Similar to the single jet cases, vortex 

structures have scarcely been identified in the center region of each jet. The magnitude 

of the vorticity is noticeably higher for the higher Reynolds number jet when compared 

to the jet with the lower Reynolds number. As before, the presence of the vortices in the 

outer regions of the jets validates the entrainment of channel flow indicated by the 

shifted streamtraces toward the jet in Figure II-9. 

Additionally, the prediction made about the streamtraces on the right hand side of 

the higher Reynolds jet is confirmed by the vortex structures located on that side of the 

jet, such that the jet is pulling the channel flow towards itself. On the whole, it could be 

said that the jets entrain some of the channel flow while injecting into the channel. Also 

it is observed in Figure II-12 that the vorticity patterns in the opposite outer regions of 

the higher Reynolds jet portray symmetry, especially in the top part of the jet. On the 

other hand, the vortex structures are more spread out and non-symmetrical for the lower 

Reynolds number jet. Furthermore, a number of small vortex structures are observed on 

the left hand side of the lower Reynolds jet, which is closer to the channel outlet. These 

small vortices help to explain why the streamtraces in this region were shifted towards 

the left hand side of the picture in Figure II-9. 
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Figure II-12 Instantaneous velocity vectors overlaid on a contour map of Z-vorticity along the 

vertical mid-plane for two isothermal inlet jets with different Reynolds numbers: Rejet 1=11,160 and 

Rejet 2=6,250. 
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II.3.3. Velocity Line-Probes   

To have a better understanding of the jet flow behavior and the velocity changes 

in the vertical direction, line-probes of the Y-velocity component and X-velocity 

component were obtained for three different heights of the channel’s mid-plane. 

 

II.3.3.1. Single Impinging Jet within the Mid-Plane 

The Y-velocity and X-velocity line-probes for three different heights in the mid-

plane of a channel with a single impinging jet are represented in Figure II-13 and Figure 

II-14, respectively. In each of the figures, the Y-velocity magnitude and X-velocity 

magnitude are normalized by the inlet jet’s mean velocity obtained from flowmeter 

readings. Additionally, the horizontal distance is normalized by the inlet jet’s inner 

diameter.  

In Figure II-13, for both cases the highest measured velocity is happening at 40 

mm above the bottom surface of the channel and a positive velocity is observed near the 

center rod at 20 mm above the bottom surface where the key recirculation zone is 

happening. In Figure II-13 (a), line-probes of Y= 40 mm and Y= 30 mm match well with 

each other in the region where the jet impinges and the line-probe of Y= 20 mm shows a 

maximum velocity at the center of the jet which is lower than the maximum velocity of 

the other two line-probes at the same region showing that the jet’s maximum velocity 

decreases as it gets closer to the bottom surface of the channel. It is also seen that there is 

a minor fluctuation in the Y-velocity line-probes of Y= 30 mm and Y= 20 mm on the 

left hand side of the center rod in the region where one of the two recirculation zones 
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appearing on the left hand side of the center rod in Figure II-7 (a) were located.  This is 

the recirculation zone located closer to the bottom surface of the channel and which 

covers an area between Y= 30 mm and Y= 20 mm. In Figure II-13 (b), line-probe of     

Y= 40 mm shows the highest maximum velocity at the center point of the impingement 

area among the three line-probes which are shown. On the whole, the maximum velocity 

at the center point of the impingement area decreases as the jet gets closer to the bottom 

surface of the channel.  

Figure II-14 shows the line-probes of normalized X-velocity component for a 

single jet impinging into the mid-plane of the channel with two different Reynolds 

numbers. Both of the plots show that the magnitude of the X-velocity component is 

rather small compared to the jet’s mean velocity and apparently compared to the 

magnitude of the Y-velocity component of that specific case. In Figure II-14 (a), the 

maximum magnitude of the X-velocity component, which is less than four percent of the 

inlet jet’s mean velocity, is observed at Y= 40 mm. Furthermore, for the case of the 

lower Reynolds number (Figure II-14 (b)), it is seen that the maximum value of the      

X-velocity component happens at Y= 30 mm and is less than seven percent of the inlet 

jet’s mean velocity. Consequently, the horizontal components of the velocities do not 

contribute significantly to the whole velocity field and thus will not be discussed further. 
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(a) 

 
(b) 

Figure II-13 Normalized Y-velocity component plot along a line-probe for different heights of the 

channel’s mid-plane for a single isothermal inlet jet with (a) Rejet 1=13,400, (b) Rejet 1=4,470. 
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(a) 

 
(b)  

Figure II-14 Normalized X-velocity component plot along a line-probe for different heights of the 

channel’s mid-plane for a single isothermal inlet jet with (a) Rejet 1=13,400, (b) Rejet 1=4,470. 
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II.3.3.2. Dual Impinging Jets within the Mid-Plane 

The line-probes of the Y-velocity component and X-velocity component are 

taken for three difference heights of the channel’s mid-plane to help provide a more 

quantitative understanding of the jet’s velocity profile and its evolution. The Y-velocity 

and X-velocity components are shown in Figure II-15 and Figure II-16, respectively. 

Here also, the velocity components and horizontal distance are normalized according to 

the higher Reynolds number jet’s mean velocity and the inlet jet’s inner diameter, 

respectively.  

In Figure II-15, both jets provide the highest measured velocity at 40 mm above 

the bottom surface of the channel. A positive velocity is also observed on both sides of 

the center rod at 20 mm above the bottom surface where the two recirculation zones 

appear in Figure II-9. As seen in Figure II-15, the line-probes of Y= 40 mm and Y= 30 

mm for both of the jets match well with each other in the region where the jet impinges, 

while the line-probe of Y= 20 mm shows a slightly reduced maximum velocity at the 

center of the jet when compared to the other two line-probes at the same region. Thus, 

the jets’ maximum velocity decrease as they get closer to the bottom surface of the 

channel. This difference between the maximum velocity of the line-probe at Y= 20 mm 

and the other two line-probes is more apparent for the case of the higher Reynolds jet.  
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Figure II-15 Normalized Y-velocity component plot along a line-probe for different heights of the 

channel’s mid-plane for two isothermal inlet jets with different Reynolds numbers: Rejet 1=11,160 

and Rejet 2=6,250. 

 

The normalized line-probes of the X-velocity component for dual impinging jets 

of different Reynolds numbers are presented in Figure II-16. All of the line-probes in 

this figure show that the magnitude of the X-velocity component is quite small compared 

to the higher Reynolds number jet’s mean velocity. The maximum magnitude of the      

X-velocity component is less than four percent of the higher Reynolds jet’s mean 

velocity and is located at Y= 40 mm. Therefore, the X-velocity component in this case 

similar to the X-velocity component in both of the single jet cases does not have a major 

role in determining the whole velocity field.  

One interesting feature observed in Figure II-16 is the two small peaks on either 

side of the center rod at Y= 20 mm. The two peaks correspond well with the two 

recirculation zones seen in Figure II-9 at each side of the center rod. The reason why one 
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of the peaks has a positive value and the other one has a negative value is that the two 

recirculation zones of Figure II-9 have opposite directions. 

 
 

 
Figure II-16 Normalized X-velocity component plot along a line-probe for different heights of the 

channel’s mid-plane for two isothermal inlet jets with different Reynolds numbers: Rejet 1=11,160 

and Rejet 2=6,250. 

 

 

II.3.4. Turbulence Intensity Line-Probes   

The turbulence intensities play an important role in transferring momentum 

between the neighboring fluid layers; therefore, they enhance flow mixing. The 

turbulence intensities of Y-velocity and X-velocity components were studied along a 

line-probe for three different heights of the channel’s mid-plane for both cases of single 

and dual impinging jets with variations of Reynolds number. 
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II.3.4.1. Single Impinging Jet within the Mid-Plane 

The line-probes of the turbulence intensity of the Y and X-velocity components 

at three different heights of the channel’s mid-plane for two different cases of single 

impinging jet are shown in Figure II-17 and Figure II-18, respectively. 

Figure II-17 and Figure II-18 show similar trends; the highest values of 

turbulence intensities for both Y-velocity and X-velocity components appear within the 

region where the jet impinges. There are some other turbulence intensity peaks on both 

the right and left hand side of the center rod in all cases which correspond well with the 

recirculation zones and the vorticity patterns that appeared in Figure II-7 and Figure 

II-11. For the higher Reynolds number case, the maximum of turbulence intensity of the 

Y-velocity component observed in Figure II-17 (a) is almost double the maximum of 

turbulence intensity of the X-velocity component seen in Figure II-18 (a) which shows 

the higher contribution of the Y-velocity fluctuations in the flow field. On the other 

hand, the maximum turbulence intensity of Y-velocity component observed in Figure 

II-17 (b) is close to the maximum turbulence intensity of X-velocity component seen in 

Figure II-18 (b) which shows the fact that velocity fluctuations in both directions 

contribute to the flow field to the same extent. 
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(a) 

 
(b) 

Figure II-17 Turbulence intensity of Y-velocity component plot along a line-probe for different 

heights of the channel’s mid-plane for a single isothermal inlet jet with (a) Rejet 1=13,400,                        

(b) Rejet 1=4,470. 
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(a) 

 
(b) 

Figure II-18 Turbulence intensity of X-velocity component plot along a line-probe for different 

heights of the channel’s mid-plane for a single isothermal inlet jet with (a) Rejet 1=13,400,                        

(b) Rejet 1=4,470. 
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 II.3.4.2. Dual Impinging Jets within the Mid-Plane 

The turbulence intensities of Y-velocity and X-velocity components were also 

plotted along a line-probe for three different heights of the channel’s mid-plane for two 

impinging jets with two different Reynolds numbers and the results are shown in Figure 

II-19 and Figure II-20, respectively. The camera view could not cover the whole region 

in the right hand side area of the first jet; therefore, a peculiarity is seen at the line-

probes of the turbulence intensities of Y-velocity and X-velocity components in Figure 

II-19 and Figure II-20 in that region and a small section of the line-probe passing 

through the right hand side of the higher Reynolds number jet is missing. 

Figure II-19 and Figure II-20 both show the highest values of the turbulence 

intensities of Y-velocity and X-velocity components appear within the region where the 

higher Reynolds jet impinges. Furthermore, there are some other turbulence intensity 

peaks on the right and left hand side of the center rod which corresponds with the 

recirculation zones and the vorticity patterns that were observed in Figure II-9 and 

Figure II-12. In both Figure II-19 and Figure II-20, the turbulence intensities of            

Y-velocity and X-velocity components drop abruptly at the center of each of the jets for 

all of the line-probes. It should be noted that for the higher Reynolds number jet, the 

maximum of the turbulence intensity of Y-velocity is significantly higher than the 

maximum of the turbulence intensity of X-velocity. While for the lower Reynolds 

number jet, the maximum of the turbulence intensities of Y-velocity and X-velocity are 

in the same order.  
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Figure II-19 Turbulence intensity of Y-velocity component along a line-probe for different heights of 

the channel’s mid-plane for two isothermal inlet jets with different Reynolds numbers:                 

Rejet 1=11,160 and Rejet 2=6,250. 

 

 
Figure II-20 Turbulence intensity of X-velocity component along a line-probe for different heights of 

the channel’s mid-plane for two isothermal inlet jets with different Reynolds numbers:                 

Rejet 1=11,160 and Rejet 2=6,250. 
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II.3.5. Reynolds Shear Stress Line-Probes   

Distribution of Reynolds shear stresses along line-probes at three different height 

of the channel is obtained for different cases of single and dual impinging jets within the 

mid-plane of the measurement volume. 

 

II.3.5.1. Single Impinging Jet within the Mid-Plane 

Figure II-21 shows the distribution of the Reynolds stresses along a line-probe 

for three different heights of the channel’s mid-plane for two cases of single impinging 

jets with different Reynolds numbers.  As seen in Figure II-21, the jet has two peaks of 

similar magnitude in opposite directions for both Reynolds numbers. Another similarity 

between the cases is that the magnitude of Reynolds stresses goes to zero in the outer 

region and the center point of the impinging jets. All of these characteristics validate the 

definition of the Reynolds stresses for a standard turbulent jet. Also in both cases, far 

from the impinging area the Reynolds stresses are zero with some minor fluctuations due 

to the velocity fluctuations in those areas. 
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(a) 

 
(b) 

Figure II-21 Normalized Reynolds shear stresses plot along a line-probe for different heights of the 

channel’s mid-plane for a single isothermal inlet jet with (a) Rejet 1=13,400, (b) Rejet 1=4,470. 
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II.3.5.2. Dual Impinging Jets within the Mid-Plane 

Figure II-22 shows the distribution of the Reynolds shear stresses along a line-

probe for three different heights of the channel’s mid-plane for the case of dual 

impinging jets with different Reynolds numbers. The Reynolds shear stresses of both jets 

in Figure II-22 show the same characteristics as the Reynolds shear stresses of the 

impinging jets of each of the jets in Figure II-21. In this case also, the Reynolds shear 

stresses of both of the jets have two peaks with slightly different magnitude in opposite 

directions and the magnitude of Reynolds shear stresses goes to zero in the outer regions 

and the center point of each jet. The Reynolds shear stresses reduce to zero (with minor 

fluctuations) far from the impingement area for both jets. The minor fluctuations in the 

Reynolds shear stresses far from the jets could be due to the minor velocity fluctuations 

observed in those areas. However, the Reynolds shear stresses on the left hand side of 

the lower Reynolds number jet do not approach to zero which could be because of the 

fact that this inlet jet is located closer to the outlet of the channel leading to higher 

velocity fluctuations in that area. 
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Figure II-22 Normalized Reynolds shear stresses plot along a line-probe for different heights of the 

channel’s mid-plane for two isothermal inlet jets with different Reynolds numbers: Rejet 1=11,160 

and Rejet 2=6,250. 

 

 

II.3.6. Y-velocity Line-Probes within Different Measurement Planes 

As mentioned previously, in order to visualize the flow behavior throughout the 

measurement volume, three discrete planes inside the interrogation volume were 

monitored for the different inlet jet conditions. However, in most cases so far the 

velocity fields and line-probes along the mid-plane have been presented. The reason to 

focus more on the data obtained from the mid-plane is that since the jet impingement 

occurs within the mid-plane of the channel, it is expected for most of the turbulence 

phenomena such as mixing, entrainment, and most of the coherent structures to happen 

within the mid-plane of the channel. In this section, to compare the flow field 

development in each of the measurement planes, Y-velocity line-probes at a certain 
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height of the channel are obtained for all three measurement planes and compared to 

each other.  

 

II.3.6.1. Single Impinging Jet within the Mid-Plane 

Figure II-23 compares the Y-velocity line-probes of those three different planes 

at a specific height of the channel (Y= 40 mm) for two cases of single impinging jets 

with different Reynolds numbers. In each of the plots, the Y-velocity magnitude is 

normalized by the inlet jet’s mean velocity obtained from the readings of the flowmeter 

which is installed upstream of the inlet jet and the length and depth of the measurement 

volume are normalized by the inlet jet’s inner diameter.  

In both plots of Figure II-23, the Y-velocity line-probes in the back-plane and the 

front-plane of the measurement volume have much less fluctuation compared to the     

Y-velocity line-probe of the mid-plane where the jet is located. Furthermore, in both 

cases, the jet’s Y-velocity profile has a parabolic shape with its maximum at the center 

of the region where the jet impinges. Apart from this region, the Y-velocity line-probe 

behaves similarly to the Y-velocity line-probes of the front-plane and the back-plane, 

where little fluctuation in its velocity occurs. The time-averaged velocity fields along the 

front-plane and back-plane of the measurement volume for cases shown in Figure II-23 

can be found in Appendix B.  
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(a) 

 
(b) 

Figure II-23 Normalized Y-velocity component plots along a line-probe for a constant height of the 

channel (Y= 40 mm) for three different planes for a single isothermal inlet jet with (a) Rejet 1=13,400, 

(b) Rejet 1=4,470. 
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II.3.6.2. Dual Impinging Jets within the Mid-Plane 

In this case also, to visualize the flow behavior within the measurement volume, 

data were taken for three discrete planes throughout the interrogation volume for 

different inlet jet’s Reynolds numbers. Figure II-24 compares the Y-velocity line-probes 

of those three different planes at a specific height of the channel (Y= 40 mm) for two 

isothermal jets impinging into the channel’s mid-plane with two different Reynolds 

numbers.  Here again, the results are normalized in the same way as previously 

explained for Figure II-24.  

Figure II-24 demonstrates that the Y-velocity line-probes in the back-plane and 

the front-plane of the measurement volume do not oscillate to the same extent as the    

Y-velocity line-probe of the mid-plane oscillates. In fact, for both of the jets, the jets’   

Y-velocity profiles have a parabolic shape with their maximum value at the center of the 

region where the jets impinge. Away from this region the Y-velocity line-probe behaves 

much more like the Y-velocity line-probes of the front-plane and the back-plane, lacking 

abrupt variations. These results strongly agree with the conclusion made about Figure 

II-23 for the two cases of a single isothermal jet with different Reynolds numbers. In this 

case, as well as the single inlet jet cases, the time-averaged velocity fields along the 

front-plane and back-plane of the measurement volume are presented in Appendix B. 
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Figure II-24 Normalized Y-velocity component plot along a line-probe for a constant height of the 

channel (Y= 40 mm) for three different planes for two isothermal inlet jets with different Reynolds 

numbers: Rejet 1=11,160 and Rejet 2= 6,250. 

 

 

II.3.7. POD Analysis of the Velocity Fields  

In this investigation, POD analysis is carried out on the velocity fields obtain by 

PIV technique for different cases with single or dual impinging jets. Consequently, the 

energy distributions of the POD eigenmodes of the different cases, the POD 

reconstruction of the vorticity fields, and the temporal evolution of some of the first 

eigenmodes are obtained and represented.  
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II.3.7.1. Energies of the POD modes 

In this section, the energy content of different POD modes is obtained for a few 

of the cases for which velocity fields were previously obtained through PIV analysis. As 

mentioned earlier, the energy content of each eigenmodes is represented by the value of 

its eigenvalue. It should be noted that the POD modes energy contents are calculated 

using the fluctuating part of the velocity (mean velocity is subtracted from the velocity 

value at each point in the flow field).  

 

II.3.7.1.1. Single Impinging Jet within the Mid-Plane 

The energy distributions among the eigenmodes and the cumulative sum of the 

energy with respect to the mode number are presented in different plots of Figure II-25. 

It can be clearly seen from the results that for both cases of a single impinging jet with 

two different Reynolds numbers, most of the flow energy is stored in the first few 

eigenmodes. It is also observed that with increasing the Reynolds number of the jet, 

more energy gets stored in the same number of eigenmodes which is in agreement with 

the results obtained by Kim et al. (2007). The first hundred modes for the case of the 

single impinging jet with Rejet 1=13,400 contains 58.6% of the energy of the field while 

the same number of modes contain 29.9 % of the total kinetic energy of the field in case 

of the single impinging jet with Rejet 1=4,470.  This expresses the fact that the flow field 

can be better represented with fewer number of POD eigenmodes as the Reynolds 

number increases.  
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(a) 

 
(b) 

Figure II-25 Energy distribution of POD eigenmodes for a single isothermal inlet jet with                

(a) Rejet 1=13,400, (b) Rejet 1=4,470. 
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II.3.7.1.2. Dual Impinging Jets within the Mid-Plane 

The energy distribution of POD eigenmodes for a case of dual impinging jets 

within the mid-plane of the test section are presented in Figure II-26. The results are in 

agreement with the findings of the previous section for cases of single impinging jets. It 

is seen from the figure that the first few eigenmodes contain most of the flow energy. In 

this case, 49.5% of the total kinetic energy of the flow field is stored in the first 100 

POD modes.  

 
 

 
Figure II-26 Energy distribution of POD eigenmodes for dual isothermal inlet jets with                

Rejet 1=11,160 and Rejet 2= 6,250. 
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II.3.7.2. POD Mode Shapes and Their Temporal Evolution 

In this section, the velocity fields and the contour plots of the velocity of the 

POD eigenmode as well as the time histories of the corresponding POD coefficients and 

the POD mode shapes are presented for the first five POD modes. POD mode shapes and 

the time evolution of the POD coefficients are obtained for cases of single and dual 

impinging jets and the results are shown in the following sections. It should be 

mentioned that the results presented in this section are acquired using the fluctuating part 

of the velocity. Moreover, in order to represent the time evolution of the POD modes, a 

non-dimensional form is defined for time using the measurement period (T= 5 sec), 

height of the channel, and inlet jet velocity in the single impinging jet case and the 

higher Reynolds’ jet velocity in case of the dual impinging jets, specifically 

0T U
t

H

 
 
  . 

 

II.3.7.2.1. Single Impinging Jet within the Mid-Plane 

The time evolution of the first five POD mode coefficients throughout the 

measurement period along with the corresponding POD mode shapes for two different 

cases of single impinging jet are presented.  

The time histories of the POD coefficients for the first five modes presented in 

Figure II-27 which in fact represent the temporal variation of the POD mode amplitudes 

through the measurement period. However, several interesting points are observed in the 

plots of the first five mode shapes. A first look at the plots of all five mode shapes shows 
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that the main flow features captured by these modes are different parts of the jet and 

none of the other flow pattern that were previously observed in the time-averaged 

velocity and instantaneous vorticity fields represented in Figure II-7 (a) and Figure II-11 

(a) are captured in these mode shape fields except for a small part of the main 

recirculation zone region in the fifth POD mode shape. This is an indication of the fact 

that in this case the high Reynolds number of the jet and its high energy content 

compared to the rest of the flow field makes it the dominant feature of the field which is 

captured by the most energetic modes. Therefore, higher number modes need to be 

investigated in order to see the behavior of the lower energy flow features. 

A more detailed look at each individual mode shape indicates the contribution of 

each mode in different parts of the jet. The modal shape of the first POD eigenmode only 

captures the high velocity region at the top part of the jet exactly after the jet flow exits 

the jet exit plane. The second mode shape captures the top part of the jet with a lower 

velocity compared to the velocities seen in the first mode shape. Moreover, the middle 

part of the jet as well as a part of the bottom section of the jet is captured with this mode. 

It should be noted that in this plot, the middle section of the jet shows the high velocity 

core region of the jet. The third and fourth mode shapes major contributions are in 

illustrating the bottom part of the jet while the fifth mode represents the top half of the 

jet.  
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Figure II-27 Time evolution and the shape of the first five eigenmodes for single inlet jet with      

Rejet 1=13,400 (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4, (e) Mode 5.  
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Figure II-28 represents the time histories of the POD coefficients of the first five 

modes along with the mode shapes of the corresponding modes for the case of a single 

impinging jet with a Reynolds number of 4,470 which is much lower than the Reynolds 

number of the jet studied in Figure II-27.  The temporal evolution of the POD 

coefficients represents the variations in the amplitude of the POD mode shapes with 

time.  

The mode shapes of the first five POD modes in this case are quite different from 

the mode shapes of the higher Reynolds jet represented in Figure II-27. In the POD 

mode shapes of Figure II-28, in addition to different parts of the jet, some parts of the 

recirculation area close to the center rod of the measurement plane are observed. 

Furthermore, the mode shapes represent different vortical structures within the jet 

impingement area which are in agreement with the findings of Figure II-11 (b) where the 

instantaneous z-vorticity field showed the presence of vortical structures with different 

directions within the jet region.  
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Figure II-28 Time evolution and the shape of the first five eigenmodes for single inlet jet with      

Rejet 1=4,470 (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4, (e) Mode 5. 
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II.3.7.2.2. Dual Impinging Jets within the Mid-Plane 

In this section, to represent the contribution of each POD mode to the whole 

velocity field, the temporal evolution of the POD coefficients and the mode shapes of the 

first five eigenmodes are obtained for a case of dual impinging jets within the mid-plane 

of the measurement volume and the results are shown in Figure II-29. The POD mode 

shapes of the case with dual impinging jets  with two different Reynolds numbers 

confirm some of the conclusions made from the POD modes of the single impinging jet 

with Rejet 1=13,400 (see Figure II-27). As seen in Figure II-29 (a) and (b), the higher 

Reynolds jet with a Reynolds number of 11,160 dominates the whole flow field, other 

flow features previously seen in Figure II-9 and Figure II-12, and even the second 

impinging jet which has a lower Reynolds number. In this case, the higher Reynolds jet’s 

energy is much higher than the lower Reynolds jet; therefore, no significant part of the 

lower Reynolds jet is captured in the first tow mode shapes of the flow field. The top 

part of the lower Reynolds jet right after the jets exits the nozzle is captured in the third 

and fourth mode shapes due to the high velocity of its core region. In these mode shapes 

- i.e. the third and fourth POD modes-, the lower half of the higher Reynolds jet is 

captured along with some contributions of the top part of the jet. The mode shape of the 

fifth POD mode captures the top part of both jets and some smaller flow features in both 

jets impingement areas. Moreover, it is interestingly observed that a small part of the 

recirculation region on the higher Reynolds jet side is represented through the fifth POD 

mode; however, no parts of the recirculation zone on the lower Reynolds jet side is 

captured by this mode.   
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Figure II-29 Time evolution and the shape of the first five eigenmodes for dual inlet jets with       

Rejet 1=11,160 and Rejet 2= 6,250 (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4, (e) Mode 5.  
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II.3.7.3. POD Reconstructed Fields 

As it was mentioned before, POD is a powerful tool which is used to create lower 

dimensional models of high dimensional systems. Moreover, POD technique provides a 

method to extract the large-scale coherent structures from complex flow fields by giving 

a cleaner view of these flow patterns; therefore, POD facilitates the study of the behavior 

of large-scale coherent structures that may be masked by the smaller structures within 

the flow field.  

Here, to reconstruct the flow fields using POD technique the mean velocity 

which was previously eliminated from the velocity fields is added back to the field. 

Mean velocity is normally considered is the Zero
th

 POD Mode. The energy contribution 

of the mean velocity is represented in Table II-5. The energy content of the Zeroth POD 

Mode for the single impinging jets is consistent with the findings of section II.3.7.1.1 

(see Figure II-25) which explained the fact that the higher Reynolds number of a jet 

leads into having a first POD mode with higher energy content. Here, 77.3% of the 

energy of the mean flow field is stored in the first mode for the case of single impinging 

jet with Rejet 1=13,400 while for the lower Reynolds number jet the energy content of the 

first mode of the flow field decreases to 64.7% which is in agreement with the findings 

of Kim et al. (2007).  
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Case Study 
Zero

th
 Mode 

Energy (%) 

Cumulative Sum of Energy  

of the first 50 mode (%) 

Single Jet, Rejet 1=4,470 64.7 70.6 

Single Jet, Rejet 1=13,400 77.3 84.2 

Dual Jets,  
Rejet 1 =11,160 and Rejet 2= 6,250 76.3 81.9 

 

Table II-5 Energy content of the Zero
th

 POD mode and the cumulative sum of energies of the first 50 

modes.  

 

 
As it was mentioned before, the majority of the energy of the flow field is stored 

in the first few POD modes; therefore, POD reconstructed flow fields using these 

primary eigenmodes are expected to represent the spatial and temporal evolution of the 

dominant (most energetic) coherent structures in the flow field. In this investigation the 

first 50 modes are considered for reconstruction of the flow field using POD technique. 

It should be noted again that the mean flow is added to the fluctuating flow field for the 

reconstruction of the flow field. 

 

II.3.7.3.1. Single Impinging Jet within the Mid-Plane 

In this section, the instantaneous Z-vorticity fields obtained by PIV technique 

and their corresponding POD reconstructed fields are represented for two cases of single 

impinging jet with different Reynolds numbers. The results for each case are shown at 

three different time steps.  
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Figure II-30 shows the instantaneous and POD reconstructed vorticity fields for 

the case of single impinging jet with Rejet 1=13,400. It is clearly seen that the 

instantaneous vorticity field is covered with smaller scale vortical patterns throughout 

the field while the POD reconstructed fields at each time step represent a cleaner view of 

the vorticity field by filtering the smaller scale coherent structure. In all three 

reconstructed fields, large vortical structures are observed in the outer layer of the jet. 

Moreover, the vorticity patterns seen on the opposite outer layers of the jet are almost 

symmetrical with different directions which are consistent with the findings of Figure 

II-11 (a). The presence of the large vortical structure in the shear layer of the jet at all 

three time steps confirm the jet entrainment phenomena and the presence of the Kelvin-

Helmholtz instabilities at the shear layer of the jet. In this case, in all three time steps a 

part of the vortical structures occurring close to the bottom surface of the center rod is 

captured on the reconstructed fields. 

Instantaneous and POD reconstructed vorticity fields for a single impinging jet 

with Rejet 1=4,470 for three different time steps are represented in Figure II-31. A 

comparison between different plots of Figure II-30 and Figure II-31 reveals some 

interesting points. First, in this case it is seen that POD is successful in extracting the 

large-scale coherent structures from the flow field and representing the dominant flow 

features. The POD reconstructed fields emphasize on the larger vortical structures 

specifically in the jet shear layer by eliminating the small scale vorticity patterns from 

the flow field. This facilitates the understanding of some of the important phenomena 

such as the behavior of the jet in its shear layer and the entrainment process. However, in 
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this case, the coherent structures observed close to the center rod of the measurement 

plane are not fully captured in any of the three reconstructed fields. A different POD 

analysis approach may be needed for investigation of the evolution of those coherent 

structures occurring close to the center rod. 

 
 

 
 

Figure II-30 Instantaneous and POD reconstructed velocity fields for single inlet jet with             

Rejet 1=13,400 using the first 50 modes (a) t=0.05 sec, (b) t=0.15 sec, (c) t=0.25 sec.  
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Figure II-31 Instantaneous and POD reconstructed velocity fields for single inlet jet with             

Rejet 1=4,470 using the first 50 modes (a) t=0.05 sec, (b) t=0.15 sec, (c) t=0.25 sec. 
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II.3.7.3.2. Dual Impinging Jets within the Mid-Plane 

In this section, the instantaneous vorticity fields of dual impinging jets for three 

time intervals along with their corresponding POD reconstructed field using the first 50 

POD modes are represented in Figure II-32. This case is quite interesting since it 

represents two jets with two different Reynolds numbers and can be used to make a 

comparison on the performance of the POD routine in the reconstruction of each of the 

jets. 

As observed in Figure II-32, the POD reconstructed vorticity fields represent the 

behavior of the jets at each time step more clearly by filtering the numerous smaller 

scale vorticity patterns present in the instantaneous vorticity fields. Both jets are very 

well captured by POD reconstruction. Moreover, as expected POD reconstruction 

provide a faithful image of the flow field apparent from the reconstruction of the jets 

with higher and lower Reynolds numbers with vorticity patterns with higher and lower 

magnitudes, respectively. In this case, as well as the cases of the single impinging jet the 

higher Reynolds number jet shows vorticity patterns with larger magnitudes and the 

vortical patterns in the opposite outer layers of the jet are more symmetrical compared to 

the lower Reynolds number jet. Furthermore, coherent structures close to the center rod 

are better represented on the higher Reynolds jet side; however, the vortical structures 

close to the center rod are not fully captured on either side of the center rod confirming 

the conclusion made in the previous section expressing the need for an improved POD 

technique to further investigate the evolution of the vortical structures close to the center 

rod. 
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Figure II-32 Instantaneous and POD reconstructed velocity fields for dual inlet jets with              

Rejet 1=11,160 and Rejet 2= 6,250 using the first 50 modes (a) t=0.05 sec, (b) t=0.15 sec, (c) t=0.25 sec  
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II.3.8. POD Analysis of the Recirculation Area  

As it was observed in the PIV velocity fields of all different cases, one common 

characteristic of all the velocity fields was the existence of a main recirculation zone and 

coherent structures close to bottom surface of the center rod on the jet impingement side. 

These vortical structures are believed to have a significant role on the enhancement of 

the mixing within the test section. Moreover, the presence of the coherent structures 

close to the rods which are representing the graphite support rods in the lower plenum of 

a VHTR may affect the structural integrity of the rods in long term by creating flow 

induced vibration on them. Also, the coherent structures existing in the vicinity of the 

bottom surface of the channel close to the center rod may interact with nuclear graphite 

comprising the bottom surface of the lower plenum and cause abrasions on the bottom 

surface by scouring it. Therefore, a comprehensive understanding of the behavior of this 

important flow feature as well as its temporal and spatial distribution is of great 

importance. However, as it was seen in the previous section, the spatial and temporal 

evolution of the key recirculation zone was not completely captured in the reconstructed 

vorticity fields using the first 50 POD modes. It was concluded that since this region is 

only a small part of the each velocity instantaneous field, it is expected to have much 

lower kinetic energy compared to the whole field. This could be the reason why the POD 

modes and the POD reconstructed fields using the first few POD modes are not able to 

thoroughly capture this flow feature. 

In this section, a new approach is utilized for quantitative and qualitative 

investigation of the coherent structures occurring on the impingement side of the mid-
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plane velocity fields close to the lower part of the center rod. The main objective of this 

approach is to comprehensively study the temporal and spatial distribution of the 

coherent structures happening in the vicinity of the bottom part of the center rod and the 

bottom surface of the channel (called “Recirculation Area” henceforth.) and compare 

their significance to the whole velocity field. For this purpose, a Snapshot POD 

technique has been utilized for both the whole field and the area of the coherent 

structure. Here, the same routine that was previously applied for the POD analysis of the 

whole field is utilized in which 1,000 successive frames evenly distributed over the 

measurement period are chosen out of the 5,000 PIV captured frames. Subsequently, the 

energy content of the coherent structures in the recirculation area is evaluated with 

respect to the whole field and the evolution of the coherent structure is investigated. 

First, the boundaries of the Recirculation Area are obtained for each case by 

following the evolution of the coherent structures close to the center rod and the bottom 

surface of the channel through the instantaneous velocity fields obtained by PIV 

analysis. The Recirculation Area for different cases under investigation is marked in 

different plots of Figure II-33 by a solid red line. Subsequently, the kinetic energy 

content of this region is compared to the whole field to verify the assumption about the 

lower energy content of this recirculation with respect to the whole field. The results of 

this comparison are shown in Table II-6. The data presented in Table II-6 confirm the 

statement made about the energy of the recirculation area being much lower than the 

whole field. As seen in the table, the energy content of the Recirculation Area for 

different cases varies within a range of 0.17% to 2.82% of the energy content of the  
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Figure II-33 Location and size of the Recirculation Area for different cases (a) Rejet 1=13,400,          

(b) Rejet 1=4,470, (c) Rejet 1=11,160 and Rejet 2= 6,250.  
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whole field. Therefore, to reasonably capture the relatively low energy coherent 

structures in the recirculation area with POD analysis, sufficient number of modes 

should be considered which may be larger than the number of modes needed to capture 

the behavior of the jet.  

 
 

Case Study 
Re

%
circulation Area

Whole Field

E

E

 
 
 
 

 

Single Jet 

 

Rejet 1 = 4,470 2.82 

Rejet 1 = 13,400 1.28 

Dual Jets 

 

Rejet 1 = 11,160 0.68 

Rejet 2 = 6,250 0.17 

 

Table II-6 Comparison of the kinetic energy content of the Recirculation Area with the whole field. 
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One other solution for the detailed analysis of the Recirculation Area may be 

isolating this area from the flow field and applying POD technique to this smaller 

region; however, in this case no direct comparison can be made between the POD modes 

of the Recirculation Area and the whole field and each flow field is analyzed 

individually. This method may eventually clarify some of the features in the 

Recirculation Area which were not captured by the full-field POD reconstruction; 

however, the lack of direct correlation between the smaller region and the whole field 

makes it difficult to draw conclusions about the importance and interaction of the 

coherence structures in the Recirculation Area with respect to the whole field. 

In this study, a comparative POD analysis method is proposed to 

comprehensively capture the evolution of coherent structures with lower energies with 

respect to the rest of the flow field. These smaller scale coherent structures may be 

important features of the flow and may have important roles with respect to other 

phenomena occurring in the flow field. The so called Recirculation Area in the case of 

the impinging jets within a rod bundle which is under investigation here is a good 

example of these smaller scale flow patterns having important roles in enhancing some 

of the important phenomena within the flow field such as the mixing phenomena or 

causing behavioral or structural change in other components in the flow field, for 

instance, possibility of creation of flow induced vibration on the center rod by the 

smaller-scale coherent structure present in the Recirculation Area.  

The comparative POD method suggested in this study includes calculation of the 

energy of a specific flow feature (Recirculation Area in this investigation) with respect 
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to the whole field. Subsequently, the flow field is reconstructed using a certain number 

of POD modes which contain certain amount of energy of the flow field to capture the 

main flow features of the actual field and provide a faithful representation of the original 

field. The area of interest (Recirculation Area) is then separated from the reconstructed 

flow field and its energy content is compared with that of the original Recirculation 

Area. This comparison will demonstrate how well the Recirculation Area is 

reconstructed by the number of modes that were originally considered to reconstruct the 

flow field. Therefore, it can be concluded if a higher number of modes are required for 

representing a good reconstruction of the Recirculation Area.  

 

II.3.8.1. Single Impinging Jet within the Mid-Plane 

The results obtained by application of this comparative POD method are 

represented in Figure II-34 for the Recirculation Area located close to the center rod in 

the flow field of a single jet with Rejet 1=13,400 impinging into a staggered rod bundle.  

Figure II-34 provides a qualitative comparison between the Recirculation Area 

separated from the instantaneous vorticity field and its corresponding POD reconstructed 

fields using different number of eigenmodes. A magnified view of the Recirculation 

Area within the instantaneous Z-vorticity field of Figure II-30 (a) at time t= 0.05 sec is 

presented in Figure II-34. The Z-vorticity colormap is adjusted for this figure to better 

represent the details of the distribution of coherent structures in this region. As seen in 

this figure, several vortical structures with different magnitudes and directions exist in 

Recirculation Area. The details of the coherent structures present in this region were not 
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as obvious in the full-field plot (Figure II-30 (a)). As seen in Figure II-34 (a), vorticity 

patterns closer to the bottom surface of the Recirculation Area are of larger sizes and 

magnitudes compared to the ones happening close to the rod at higher Y/Ds. These 

larger size coherent structures were partially captured in the POD reconstructed 

instantaneous flow field represented in Figure II-30 (a). Figure II-34 (b) through (j) 

present the POD reconstructed Recirculation Area using different number of modes. It is 

clearly seen from these plots that the more number of the modes considered gives a 

better representation of the Recirculation Are; however, considering very large number 

of modes clearly contradicts the basic idea of the application of POD techniques which 

is extraction of the large-scale coherent structures from the flow field. As observed in 

Figure II-34, considering the first 50 modes for reconstruction of the Recirculation Area 

is not sufficient while the POD reconstruction of the whole field with the same number 

of modes was quite satisfactory. In the case of the Recirculation Area, it appears that at 

least the first 200 modes need to be taken to account for the reconstruction of this region 

for the reconstructed field to capture the vortical structures occurring in the vicinity of 

the center rod as well as the ones closer to the bottom surface.  
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Figure II-34 Recirculation Area for the case of single impinging jet with Rejet 1=13,400                      

(a) Instantaneous Recirculation Area at t=0.05 sec, (b)-(j) POD Reconstructed Recirculation Area 

with different number of modes (N: number of modes). 
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Figure II-35 represents the Recirculation Area separated from the instantaneous 

vorticitiy field and its corresponding POD reconstructed fields with different number of 

modes for a case of single impinging jet with a lower Reynolds number. A comparison 

between Figure II-35 and Figure II-34 clearly indicates that in the lower Reynolds jet 

case the size and magnitude of the vorticity patterns within the Recirculation Area are 

noticeably smaller than those observed in Figure II-34. This is an indication of how the 

jet’s Reynolds number affect the flow structure close to the center rod as well as close to 

the bottom surface of the channel since the larger and stronger these coherent structures 

are the more they will affect the rod and the bottom surface of the channel. Another 

interesting point observed from Figure II-35 and the reconstruction of the coherent 

structures in this case is that it seems like more number of modes needs to be considered 

for a reliable reconstruction of the field compared to Figure II-34. Here, reconstructed 

field using 400 modes show a better representation of the original recirculation area. It is 

worth remembering that in the lower Reynolds number impinging case represented in 

Figure II-31 (a) reconstructed with the first 50 modes, a less significant trail of the 

coherent structures close to the center rod was observed compared to the reconstructed 

field of the higher Reynolds jet shown in Figure II-30 (a). The reason behind that 

became quite clear here by comparing the number of modes needed in the two cases to 

have an acceptable representation of the Recirculation Area. 
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Figure II-35 Recirculation Area for the case of single impinging jet with Rejet 1=4,470                         

(a) Instantaneous Recirculation Area at t=0.05 sec, (b)-(j) POD Reconstructed Recirculation Area 

with different number of modes (N: number of modes). 
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II.3.8.2. Dual Impinging Jets within the Mid-Plane 

The instantaneous and the POD reconstructed plots for the two Recirculation 

Areas observed on each side of the center rod for the case of dual impinging jets with 

two different Reynolds numbers are separately presented in Figure II-36 and Figure 

II-37. The results shown in both figures confirm the observations made from Figure 

II-34 and Figure II-35. The Recirculation Area on the side with the higher Reynolds 

number jet has larger vortical structures with bigger magnitudes compared to the 

Recirculation Area on the lower Reynolds number jet which in turn confirms the fact 

that there exists an active interaction between the jet flow, the center rod, and bottom 

surface of the channel which might lead into having flow induced vibration on the rod or 

abrasions of the bottom surface of the channel.  

Also, the number of modes needed for a reliable reconstruction of the 

Recirculation Area on the higher Reynolds jet side is approximately 200 modes while 

this number is increases to around 400 for the Recirculation Area on the lower Reynolds 

number jet side. 
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Figure II-36 Recirculation Area for the case of dual impinging jets on the higher Reynolds jet side 

(Rejet 1=11,160) (a) Instantaneous Recirculation Area at t=0.05 sec, (b)-(j) POD Reconstructed 

Recirculation Area with different number of modes (N: number of modes). 
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Figure II-37 Recirculation Area for the case of dual impinging jets on the higher Reynolds jet side 

(Rejet 2= 6,250) (a) Instantaneous Recirculation Area at t=0.05 sec, (b)-(j) POD Reconstructed 

Recirculation Area with different number of modes (N: number of modes). 
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Table II-7 provides a quantitative comparison between the energy of the 

separated Recirculation Area from the instantaneous field and its corresponding POD 

reconstructed area by presenting the ratio of the energy content of the reconstructed 

Recirculation Area with certain number of modes to that of the original Recirculation 

Area. 

 

 

Table II-7 Relative energy of the POD reconstructed Recirculation Area using different number of 

modes compared to that of the original Recirculation Area. 

 

Number of 

Modes 

Re Re

Re

%
constructed circulation Zone

circulation Zone

E

E

 
  
   

Single Jet Dual Jets 

Rejet 1=4,470 Rejet 1=13,400 Rejet 1=11,160 Rejet 2= 6,250 

N=10 56.9 53.5 60.6 54.9 

N=50 60.9 61.5 64.4 58.0 

N=100 64.0 64.7 68.0 61.4 

N=200 69.2 70.5 73.0 66.7 

N=300 74.0 75.5 77.0 71.5 

N=400 80.6 80.0 81.0 76.0 

N=500 82.6 84.2 84.6 80.4 

N=600 86.7 88.1 88.2 84.6 

N=700 90.4 91.7 91.5 88.7 



118 
 

 

One significant point observed in Table II-7 is that the ratio of the e energy 

content of the reconstructed Recirculation Area with 200 modes to that of the original 

Recirculation Area seems to be close for the two cases of single inlet jet with different 

Reynolds numbers. The energy ratio of the reconstructed to original is Recirculation 

Area is  69.2% for the case of reconstruction with 200 modes for the jet with a Reynolds 

number of  4,470 and this number only increases to a value of 70.5% for the higher 

Reynolds jet with a Reynolds number of 13,400. It is significant to notice that from the 

reconstructed Recirculation Area plots in Figure II-35, it seemed like more number of 

modes (approximately 400 modes) are needed for a better reconstruction of the 

Recirculation Area. However, the difference between the energy ratios of the 

reconstructed to original is Recirculation Area for the dual inlet jet case is much more 

significant which emphasizes on the fact that more number of modes are needed to 

reconstruct the lower energy content Recirculation Area. Therefore, both factors, i. e. the 

qualitative comparison between the coherent structures in the reconstructed 

Recirculation Area and in the original Recirculation Area as well as a quantitative 

comparison between the energy content of the reconstructed and original Recirculation 

Area while choosing the number of modes needed for the reconstruction of 

Recirculation Area. 
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II.4. Conclusion 

In this investigation, the mixing of impinging jet flows of various Reynolds 

numbers into a rectangular channel containing a staggered rod bundle has been studied 

experimentally through the use of 2-D PIV and MIR techniques. The experiment 

included both single and dual jet flows over a Reynolds number range of 4,470 - 13,400, 

with data obtained for three separate planes within the interrogation volume. For each 

case, the time-averaged velocity fields and the instantaneous vorticity fields were 

obtained for the investigated flow conditions. Furthermore, the line-probes of different 

flow statistics were obtained for three different heights of the channel to study the jet 

flow evolution in the channel. The results show that using PIV techniques in a Matched 

Index of Refraction facility enabled the study of the flow field characteristics in regions 

within the rod bundle which are normally visually obstructed. 

The time-averaged velocity fields of the mid-plane for the single jets identify the 

presence of one primary recirculation zone located close to the center rod on the 

impinging side. The size of this recirculation zone varies directly with the magnitude of 

the jets’ Reynolds number. The time-averaged velocity field of the dual impinging jets 

confirms the presence of a key recirculation zone at each side of the center rod whose 

sizes changes proportionally with the jets’ Reynolds numbers. The higher the Reynolds 

number of the jet is, the larger is the size of the major recirculation zone that forms near 

the adjacent rod. However, no such conclusion can be made about the location where the 

recirculation zone appears, it could only be said that the position in which the main 



120 
 

 

recirculation zone happens changes with the jets’ Reynolds number, but no further 

conclusion can be made with the present data. 

Studying the spatial distribution of vorticity confirms streamtrace observations 

where flow was shifted towards the jets due to strong vorticity structures found in the 

outer regions of each impinging jet. This verifies the fact that the jet entrains some of the 

channel flow in its outer regions. However, it is found that less mixing occurs in the 

center of the jets than in the outer regions. In addition to that, in all of the cases, several 

smaller vorticity patterns appear throughout the interrogation area. 

Comparing the line-probes of the Y-velocity component and X-velocity 

components for different heights of the channel shows that the X-velocity component 

has a much less significant contribution towards the calculation of the mean velocity 

compared to Y-velocity component. Also, the line-probes of the Y-velocity component 

show that the jet’s velocity - especially at its core - decreases as it gets closer to the 

channel’s bottom surface. 

By analyzing the line-probes of the turbulence intensities of Y-velocity and X-

velocity components and the Reynolds shear stresses for different heights of the channel 

it was found for nearly all the cases that the highest values appear in the regions where 

the jet impinges. Particularly, for the higher Reynolds number jets, the maximum 

turbulence intensity of Y-velocity component is significantly higher than the maximum 

turbulence intensity of X-velocity component. While, for the lower Reynolds number 

jets, the values of maximum turbulence intensities of Y-velocity and X-velocity 

components are relatively close to each other.  
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The line-probes of the Y-velocity were taken at the same height for three 

different planes inside the rod bundle.  They show that the major velocity fluctuations 

happen in the impinging plane for all cases. Otherwise, there only exist minor velocity 

fluctuations in the other two planes. 

This study has indicated the presence of one key recirculation zone near to the 

closest rod to each jet.  The combination of these recirculation zones along with the 

vorticity patterns at the outer regions of the jet, the smaller vortex structures found 

throughout the interrogation area, and the high values of turbulent intensities and 

Reynolds shear stresses in the jets’ impinging area, all aid in the enhancement of mixing 

within the channel.  

To obtain a better understanding of the behavior of the vortical structures present 

in the flow field and to extract the large-scale coherent structures from the velocity fields 

of the impinging jets within the rod bundle, the Snapshot POD technique was applied to 

the instantaneous PIV velocity fields. The results confirm that the majority of the energy 

of the flow field is stored in the first few primary eigenmodes; therefore, a lower-order 

model of the flow field can be reconstructed using these primary eigenmodes. Moreover, 

the increasing trend observed in the energy content of these primary modes with the 

increase in the Reynolds number for cases of single impinging jet compares well with 

the findings of the study done by Kim et al. (2007), even though the Reynolds number of 

the jets in this study are much higher than those in the investigation performed by Kim et 

al. (2007).  
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Subsequently, the mode shapes and amplitudes of the modes for the first five 

POD modes are obtained for two cases of single and dual impinging jets. It was 

observed that in the case of single impinging jet, the first few modes mainly capture 

different parts of the jet and other key flow features that were previously observed in the 

velocity fields are not fully captured with these modes. This led to the conclusion that 

the jet flow is the dominant feature of the whole field because of its high levels of kinetic 

energy compared to the other flow features within the velocity field. Therefore, the 

primary POD modes will mainly capture the high energy jet flow. This becomes even 

more interesting in the case of dual impinging jets with different Reynolds numbers. In 

this case, the first two modes only represent parts of the higher Reynolds jet. It is not 

until the third mode shape that a part of the lower Reynolds number jet is captured by the 

mode shapes.  

The POD reconstructed vorticity fields using the first 50 modes offer a lower 

order model of the instantaneous vorticity fields. The reconstructed POD fields capture 

the large-scale vorticity patterns in the shear layer of the jets quite well; and present a 

clearer image of the large-scale coherent structures that may be covered by the presence 

of the smaller vertical structures within the instantaneous fields. However, the energy 

content of the main recirculation zone happening close to the center rod in the velocity 

fields are not fully captured in the POD reconstructed fields and this is consistent for 

cases with single and dual impinging jets with different Reynolds numbers.  

A comparative POD analysis method was proposed here to further study the 

evolution of the coherent structure existing in the Recirculation Area close to the center 
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rod of the velocity field. As it was mentioned before, the importance of these set of 

coherent structures is due to their role in enhancement of mixing within the channel as 

well as their potential effect on the structural integrity of the center rod and the bottom 

surface of the channel through flow induced vibration and scouring processes, 

respectively. In this comparative POD method, the Recirculation Area is first separated 

from the flow field and its energy content is compared to that of the original flow field. 

It was observed that for all cases the energy content of the Recirculation Area was below 

3% of the energy of the whole field. Therefore, it was concluded that to reasonably 

capture the evolution of the coherent structures in this Recirculation Area more number 

of modes need to be considered for POD reconstruction with respect to the number of 

modes which may be sufficient for reconstruction of the whole field or other high energy 

flow features e.g. jet flow. Consequently, the Recirculation Area was reconstructed with 

different number of modes and at each step its energy content was compared to that of 

the original area defined as Recirculation Area. It was observed that while the whole 

field may be well reconstructed using the first 50 POD modes, a higher number of 

modes are needed for a reasonable reconstruction of the coherent structures in the 

Recirculation Area. Moreover, to find the sufficient number of modes for faithful 

reconstruction of the Recirculation Area, a qualitative comparison between the coherent 

structures in the original and reconstructed Recirculation Area as well as a quantitative 

comparison between the energy content of the two regions is required.  

The data presented in this study could serve as a benchmark for validation of the 

CFD codes used to simulate the lower plenum flows and their mixing. The complexity of 
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the behavior seen in these regions requires additional investigation to properly 

characterize the behavior of the thermal jets and their mixing properties. 
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CHAPTER III 

III  EXPERIMENTAL STUDY OF BYPASS FLOW IN DIFFERENT NEAR WALL GAP 

GEOMETRIES OF A PEBBLE BED VHTR 

 

III.1. Background 

Characterization of the fluid flow behavior within packed beds is essential in a 

wide variety of engineering systems such as chemical engineering fluidized beds, packed 

bed nuclear reactors, oil recovery, and filtration systems. Fluid flow through porous 

media has been studied for decades in the field of chemical engineering and has recently 

received much attention in the field of nuclear engineering due to the extensive research 

being done on the pebble bed core VHTR concept as one of the main candidates for 

NGNP program. The core of a pebble bed VHTR is composed of spherical TRISO 

coated fuel particles which are randomly stacked in an annular bed. Characterization of 

the flow velocity within the packed beds are of great significance since heat, mass, and 

momentum transfer through the packed beds is quantitatively correlated to the coolant 

velocity profile within the bed. Therefore, the study of complex coolant flow behavior in 

gaps between the spherical fuel elements in the core of pebble bed VHTRs is highly 

important in the development of such reactors.  

Research studies performed on the distribution of the fluid flow through packed 

beds indicated the complex nature of the flow passing through the gaps between the 

randomly stacked pebbles. Fluorescent PIV technique in conjunction with MIR was 
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applied by Northrup et al. (1991, 1993) to measure low flow velocities in the interstitial 

regions of a porous medium which resulted in making conclusions about the existence of 

intra-pore mixing within the porous medium. Hassan (2007) used Large Eddy 

Simulation (LES) technique to simulate the helium flow within a segment of pebble bed 

core where the coolant Reynolds number was 8×105. Also, an experimental facility 

representing the pebble bed core was used to measure the velocity in the fuel gaps. In 

this experiment Particle Tracking Velocimetry (PTV) and Matched Index of Refraction 

(MIR) techniques were used to measure the velocity in the mid-plane of the packed bed. 

Both LES results as well as the experimental results show very complex flow structures 

within the gaps between the fuel elements. Hassan & Dominguez-Ontiveros (2008) 

applied Particle Image Velocimetry (PIV) along with MIR technique to obtain the full-

field velocity measurements in the interior region of a randomly packed bed. Vortical 

structures were identified in some of the pores between the spheres while there were 

some flows with preferential direction in some other pores. On the whole, it was 

observed that the flow in the pores is of a very complicated nature.  Lee & Lee (2009) 

used PIV to visualize the flow within a scaled up test facility representing the core of a 

pebble bed high temperature gas cooled reactor. A Reynolds number of 2.1614×104 was 

chosen for this experiment to match the Reynolds number in the core of an actual pebble 

bed gas cooled reactor. The results show that the presence of stagnation points within the 

fuel gaps might lead to having hot spots on the surface of the fuel particles.   

Moreover, previous experimental and numerical research studies performed on 

flow distribution within packed beds have indicated that velocity profiles within the bed 
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significantly changes in the vicinity of the packed bed wall reaching a maximum in the 

near wall region. This sharp peak in the flow velocity profile close to the packed bed 

wall is considered a form of Bypass Flow (also called Flow Channeling). Bypass flow 

has been observed in chemical packed beds with different sizes and shapes of the bed 

and also various sizes and shapes of the packing pellets. In an investigation done by 

Schwartz & Smith (1953), the air velocities measured by a hot wire anemometer above 

the packed bed for different pipe sizes and different pellet shapes and sizes illustrate a 

peak in the velocity at approximately one pellet diameter away from the wall. The results 

of HWA velocity measurements above a cylindrical packed bed with air passing through 

it done by Marivoet et al. (1974) indicates peaks in the radial mean velocity profile close 

to the container wall. Johnston et al. (1975) applied LDA technique along with MIR 

technique in a hexagonal packed bed facility to obtain the axial velocity of the fluid 

passing through the bed which showed large velocities in regions close to the wall. 

Velocity profiles of the air passing through a packed bed column obtained by Drahoš et 

al. (1982) at the exit plane of the bed using HWA technique indicated a well-pronounced 

maximum in the vicinity of the wall for sphere and cylindrical pellets. Vortmeyer & 

Schuster (1983) developed a method for calculation of the flow distribution within 

packed bed columns through which they obtained a sharp peak on the velocity profile 

near the wall. Another model for velocity distribution through packed beds was 

developed by White & Tien (1987). The predictions of this model was in good 

agreement with previous numerical results and the experimental velocity profiles 

obtained at the exit of the packed bed in showing the flow channeling phenomena close 
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to the packed bed wall. In an investigation done by Ziólkowska & Ziólkowski (1988), 

the radial profile of the flow inside a packed bed was determined through LDA 

experiments as well as calculated on the basis of the Dupuit-Drochheimer hypothesis for 

different pellet sizes. The air flow profiles obtained through both approaches verified the 

presence of a region of higher velocity close to the packed bed container wall. Moise & 

Tudose (1998) obtained the local velocities of air passing through long packed beds 

(L/D>1) for different pebble sizes and for different Reynolds numbers (Re=100-400). 

The velocity measurements in the bed were obtained by a thermo-anemometer passing 

through a free zone with a 20 mm height. The velocity distributions are shown to be 

strongly affected by the local porosity, pellet diameter, bed length and diameter, and the 

Reynolds number. The results confirm the existence of a region of higher velocity 

adjacent to the wall. The results of some other experimental studies on the flow 

distribution within the packed beds revealed a different flow pattern than the velocity 

profile obtained by the investigations that have been mentioned so far (i.e. presence of a 

sharp peak in the radial velocity profile close to the packed bed container wall). For 

instance, in a study done by Lerou & Froment (1977), the velocity profiles obtained by 

HWA technique downstream the packed bed for different air flowrates showed more 

than one peak. More interestingly the peak close to the wall was not necessarily the 

highest one. They emphasized on the fact that rearrangement of the structure of the 

packing significantly affected the velocity profile and in some cases resulted in obtaining 

the classical velocity profile with one sharp peak at the wall.  
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Many research studies have confirmed that the flow behavior and consequently 

heat, mass, and momentum transfer through packed beds are directly correlated to the 

porosity of the bed as well as the individual pore geometries. In fact, many studies have 

related the Bypass Flow phenomena to the increased porosity close to the solid wall of 

the packed bed. Therefore, a variety of theoretical, experimental and numerical 

techniques have been applied to calculate/measure the porosity profiles within packed 

beds. One of the early experimental porosity studies of the packed beds was done by 

Roblee et al. (1958) where the radial porosity variations within a cylindrical cardboard 

packed bed was measured for different cases with different types of packing (spheres, 

cylinders, etc.). The results confirmed that the packed bed wall has a significant effect on 

the porosity of the bed in areas close to the wall meaning that the bed porosity was much 

higher close to the container wall. Other studies such as the investigation done by 

Goodling et al. (1983) confirmed the results obtained by Roblee et al. (1958) showing a 

porosity value of one at the container wall which then oscillates around the mean 

porosity value with a decreasing amplitude. Fluid flow passes within the packed bed 

through the free gaps between the packing material meaning that the flow chooses the 

paths of least resistance between the pebbles to flow through the bed. Therefore, the 

sharp peak in the velocity profile of the fluid flow corresponds well to the maximum 

porosity value close to the packed bed wall. 

In the present study, HWA technique will be applied to obtain high frequency 

velocity measurements in the gaps between the pebbles in areas close to the outer 

reflector wall of an annular packed bed for different Reynolds number of the flow 
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passing through the bed. Subsequently, time-averaged velocity fields for each point is 

calculated and the average velocity profiles of the flow within the near wall gaps are 

obtained for different Reynolds numbers. Moreover, the time histories of the velocities 

obtained at each measurement point and for different Reynolds numbers will be further 

analyzed utilizing Power Spectra Density (PSD) method to acquire a more in-depth 

insight of the turbulence characteristics of the flow within the near wall gaps of an 

annular packed bed.  

 

III.2. Experimental Methodology 

III.2.1. Experimental Set-up and Flow Configuration 

Schematic of the test facility which is designed to model the core of an annular 

pebble bed VHTR in this investigation is presented in Figure III-1 (a). In addition to the 

schematic of the whole test facility, a picture of the test section modeling the annular 

packed bed along with pictures of a sample measurement point and the location of the 

HWA probe in the gap is shown in Figure III-1 (b). As seen in Figure III-1, the test 

facility used for this study is an annular bed containing spheres representing the 

spherical TRISO coated fuel elements. The outer cylinder is made of clear Acrylic with a 

height of 2.18 m and an outer diameter of 0.89 m. The radius of the annulus inside the 

cylinder is 0.27 m. The experimental setup is designed to accommodate both PIV and 

HWA measurement techniques. Therefore, as seen in Figure III-1 (b), two different 

types of spheres are used to stack the annular bed: 1- Black spheres made of plastic with 

a diameter of 0.03302 m used in the upper and lower sections of the bed, 2-Clear spheres 
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made of Acrylic with a diameter of 0.03175 m used in the middle section of the annular 

bed. The area packed with clear Acrylic spheres will be used for PIV measurements to 

provide optical access to regions inside the packed bed. The Acrylic spheres are chosen 

to have nearly the same size of the black plastic spheres to ensure an approximately 

uniform porosity throughout the bed. In this experiment, air is chosen as the working 

fluid instead of helium and it is passed through the bed using a high power blower. The 

velocity of air passing through the gaps between the pebbles is measured in certain 

locations of the bed using HWA technique. Four evenly spaced sets of holes (columns A 

to D, as shown in Figure III-1) are made through the circumference of the cylinder. Each 

set has ten equally spaced holes (0.17 m apart) along the cylinder height which could be 

used for air velocity measurements within the gaps close to the packed bed wall. Since 

the annular bed is randomly packed, it is expected to have holes which are blocked by 

the presence of the spheres; therefore, not every single hole could be used to take hot 

wire measurements. 

In this study, two different near wall gaps with significantly different geometries 

at different heights and on different measurement columns of the bed are used for 

velocity measurements (gaps A4 and B6). Figure III-2, represents pictures of the two 

measurement gaps and the three dimensional reconstructions of the gap geometries. It 

can be visually seen from Figure III-2 that Gap B6 is much deeper than Gap A4.   
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(a) 

Figure III-1 (a) Schematic of the experimental facility representing an annular packed bed,              

(b) Picture of the model representing a packed bed and the measurement points. 
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(b) 

Figure III-1 Continued. 
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(a) 

Figure III-2 Picture and three dimensional reconstruction of near wall gap geometry (a) Gap A4,   

(b) Gap B6. 
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(b) 

Figure III-2 Continued. 
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In order to obtain the velocity profile within each gap, the HWA probe is moved 

within the gap along a straight line in radial direction with very fine increments. For Gap 

A4, the measurement points have been chosen to be 0.5 mm apart (starting from 0.5 mm 

far from the outer cylinder wall) for the first 3mm of the depth of the gap and 1mm apart 

from 3mm up to the end of the gap resulting in having a total of 18 velocity 

measurement points along the radial direction within the gap (see Figure III-3 (a)). For 

Gap B6, the first 18 points are chosen in the same manner that measurement points 

within gap A4 were selected. However, since this gap is significantly deeper than gap 

A4, for the rest of the depth of the gap (starting from 15 mm from the outer cylinder 

wall) seven more points each being 5 mm apart are chosen for velocity measurements. 

Therefore, for this gap (B6) a total of 25 points are selected for velocity measurements 

within the depth of the gap in the radial direction (see Figure III-3 (b)). It should be 

noted that for both gaps, the last point for the velocity measurements is chosen in a way 

to be approximately 5 mm away from the sphere blocking the end of the gap. 

At each measurement point within each gap, the velocity measurements have 

been acquired using HWA technique. To ensure a good accuracy for the velocity 

measurements at each point the measurements have been repeated three times and 

average values of those readings are recorded to acquire the velocity profiles within each 

gap. The velocity profiles in each gap have been obtained for five different air flowrates 

through the packed bed. 
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(a) 

 
(b) 

Figure III-3 Arrangement of the velocity measurement points within (a) Gap A4, (b) Gap B6. 
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To measure the air flowrate through the packed bed, the inlet, the outlet, and to 

calculate the Reynolds number of the air flow within the bed, a TSI portable air velocity 

meter with an of accuracy ±3% was used. The velocity of the air at the inlet of the bed is 

measured by inserting the velocity meter probe into the holes made on the upper 

cylindrical part of the bed (shown in Figure III-1  (a)). The air velocity is measured at 

the outlet of the bed using the same velocity meter probe to check and ensure that the air 

velocity flowrate through the bed is constant and there is no leakage in the system. At 

each flowrate, the inlet and outlet velocity of the air is measured at 10 different points 

along four different diameters of the circular inlet and outlet of the bed. Therefore, a 

total of 40 measurements are taken at the inlet and another 40 velocity measurements at 

the outlet for each flowrate and average of the 80 measured velocities are reported as the 

bed velocity. Once the bed velocity is acquired, a modified version of the Reynolds 

number for air passing through the porous media of the packed bed is calculated. 

Modified Reynolds number     is defined as follows: 

 0Re
(1 )

m

U D

 



 (III-1) 

where: 

U0: Bed Velocity, 

D: Bed Diameter, 

υ: Air Kinematic Viscosity 

ε: Bed Porosity 
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The velocity profiles within the near wall gaps between the spherical particles 

used as packing for the bed are obtained for five different Reynolds numbers as 

indicated in Table III-1.  

 

Bed Velocity (m/s) Modified Re  Number 

0.6 2043 

1.0 3354 

1.4 4541 

1.7 5735 

2.0 6857 

 
Table III-1 Air velocity and Reynolds number through the annular packed bed. 

 

 

III.2.2. Hot Wire Anemometry (HWA) Technique 

As it was mentioned before, in this investigation, HWA technique is applied to 

obtain velocity profiles of the coolant flow within the gaps between the pebbles in areas 

close to the outer reflector wall of a test section representing an annular packed bed.  

HWA technique takes advantage of a considerably high frequency response which is 

required for velocity measurements in turbulent flows. Moreover, this technique does not 

have the limitations of optical techniques such as PIV and PTV, e.g. laser light blockage 

by fuel particles, etc.; therefore, it can be used on the entire height of the annular bed 

regardless of the type of the spheres, i.e. clear Acrylic or black plastic.  
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III.2.2.1. Introduction to HWA Technique 

Thermal anemometers are widely used in the experimental measurements of 

local flow velocity and temperature in turbulent flow fields. Thermal anemometers 

measure the local flow velocity based on the convective heat transfer from an electrically 

heated metallic sensor to the surrounding fluid. Different types of heated sensors are 

used for velocity measurements in different types of fluid, for instance, hot wire sensors 

are applied in clean air or any other gas flows and hot film sensors are applicable for 

both gas and liquid velocity measurements. The higher strength of the hot film sensors 

compared to hot wires makes them a better choice for flows with high velocity ranges, 

flows with contamination, and especially for the multi-sensor probes (X-probes or triple 

probes) where the rigidity of the sensor is of great importance. The sensors are normally 

made of tungsten or platinum alloys with diameters in the range of 2.5-7.5 μn and sensor 

length of 0.8-1.5 mm. Sensors with thicker diameters are used in high-speed flows or 

flows with some impurities in them in order to have a higher strength of the probe. The 

principles of Hot Wire Anemometry technique has been extensively explained in the 

literature (Brunn 1995, Jørgensen 2002). The principle equation governing the 

performance of a hot wire sensor is as follows:  

 2 ( )W W fI R h A T T   (III-2) 

where: 

I: Electric current passing through the wire, 

RW: Wire resistance, 

h:  Heat transfer coefficient of the wire 
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A: Projected surface area of the wire  

TW:  Wire Temperature 

Tf:  Fluid Temperature 

The type of the hot wire/film sensor for a certain experiment is chosen based on 

the specific application or type of measurement needed. For instance, single wire/film 

probes are used for high frequency single velocity component measurements, X-probes 

are applied in flows where two velocity components are needed to be measured 

simultaneously, and triple probes are utilized for simultaneous measurement of all three 

velocity components.  

The hot wire anemometer systems are categorized into two groups based on the 

design of their internal electric circuit which in turn is selected with regards to the 

parameter that the system needs to measure. The two systems are called Constant 

Temperature Anemometry (CTA) and Constant Current Anemometry (CCA). The 

former is used for velocity measurements while the latter is used for temperature 

measurements. A CTA system is chosen for this experiment, since the air flow velocity 

is the parameter that needs to be measured.  

 

III.2.2.2. HWA System 

The hot wire system that is used in this experiment is a TSI IFA 300 unit. The 

unit can accommodate any of the cylindrical or non-cylindrical single wire or film 

probes as well as the X-probes. Consequently, the system is capable of measuring a 

single or two velocity components. The hot wire system used in this experiment has the 
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ability to measure samples with high frequencies which enables the system to resolve the 

smallest turbulence scales. In this investigation, an X-probe hot film anemometer is used 

to measure the two velocity components at a frequency of 20 KHz for a period of  

26.214 sec. The hot wire probe needs to be first calibrated before being used for velocity 

measurements in the experiment. Table III-2 shows the characteristics of the HWA unit 

used in this experiment as well as the properties of the X-probe utilized for 

measurements.  

 
 

HWA system  TSI constant-temperature, model IFA 300  

X-probe  Standard TSI hot film, model 1240  

Sensor length  1.02 mm  

Sensor diameter  50.8 µm  

Sensor material  Platinum  

Calibration system Round jet with 12.7mm diameter  

Data acquisition /analysis software  THERMALPRO Software 5.0 

Operating System  Windows XP 

Sampling frequency  20 KHz 

Sampling period  26.214 sec  

 

Table III-2 Characteristics of the HWA system and the measurement conditions. 

 

As it is mentioned in Table III-2, a TSI hot film X-probe model 1240 which is 

capable of simultaneously resolving tow velocity components. The probe consists of two 



143 
 

 

film sensors made of platinum which are oriented normal to each other and inclined with 

respect to the probe body axis by a ±45° angles. The detail characteristics of the X-probe 

and its orientation with respect to each velocity component while being used in the 

experiment are shown in Figure III-4. 

 
 

 
Figure III-4 Schematic of the X-probe used in this experiment and its orientation with respect to the 

flow (TSI1 2011). 
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III.2.2.3. HWA Probe Calibration  

As mentioned before, a TSI Constant Temperature Anemometry (CTA) system 

coupled with a hot film X-probe is used in this investigation for air velocity 

measurements within the near wall gaps of an annular packed bed. The hot film X-probe 

needs to be calibrated before being used in the actual experiment. The calibration 

process establishes a relationship between the flow velocity and the measured voltages 

recorded by the HWA system. The facility used for calibration (called “Calibrator” 

henceforth) of the hot wire probes in this experiment is shown in Figure III-5. Clean 

pressurized air passes supplied from an air compressor is passed through a pressure 

regulating valve and then into the calibrator. Figure III-5 (b) shows the details of the 

components inside the calibrator which are: a quick disconnect fitting, a jet breakup 

plate, three wire mesh screens (40 mesh per inch screen), housing and the nozzle. The air 

enters the housing of the calibrator as a jet which will lose its structure after passing the 

jet breakup plate. The jet breakup plate generates large scale eddies which will be broken 

into slammer eddies after passing through the mesh screens. Furthermore, the mesh 

screens create a resistance against the flow which in turn creates a uniform flow profile 

downstream the last layer of screens. The flow exiting the nozzle of the calibration has a 

uniform velocity and a low turbulence intensity (approximately 2%). It should be 

mentioned that the air velocity passing through the calibrator should not exceed 100 

(m/s). 
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           (a)                                                                     (b)     

Figure III-5 (a) Picture of the calibrator unit, (b) detailed schematic of the inside of the calibrator 

unit. 
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The following procedure is pursued in order to calibrate the hot film X-probe 

used for measurement of the air velocity profile in this experiment.  

  Probe is placed in the potential core region of a round air jet with a diameter of   

12.7 mm and with low turbulence intensity at a distance of approximately 6mm from the 

nozzle exit plane. The direction of the probe with respect to the flow needs to be exactly 

the same as the direction that it will have with respect to the flow in the actual 

experiment. In this experiment, the X-probe is positioned against the flow in a way that 

both sensors make a 45° angle with the flow exiting the nozzle.  

  The velocity range chosen for calibration should cover the velocity range expected 

in the actual experiments. For this calibration process, measurement points are chosen in 

a velocity range of 0-38 (m/s). Such high velocities are needed for the calibration of the 

X-probe since very high velocities were observed in the near wall gaps for the highest air 

flowrates through the bed.  

  Normally, 15 to 20 properly spaced velocity points are chosen in the velocity range 

to obtain the calibration curve. In the current calibration process, total of 76 

appropriately spaced points are chosen within the aforementioned velocity range. 

Furthermore, to ensure obtaining a calibration curve with high accuracy (i.e. a better 

curve fit), the calibration points are closely spaced in the lower velocity range and more 

widely spaced in the higher velocity range. 

  The air compressor is turned on and the air velocity exiting the nozzle of the 

calibrator is adjusted using the pressure regulating valve. The air jet velocity at the 

nozzle exit plane is set by increasing the pressure slowly until the desired differential 
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pressure (ΔP) is measured by the Pitot tube at the nozzle exit. This method is valid for 

the whole range of velocities that can be set through the calibrator. It should be noted 

that ΔP needs to be kept approximately constant while the measurements are being taken 

and it should not vary more than 3%. 

  At each calibration point, the reading of the Pitot tube is used to calculate the 

velocity as follows: 

 
1

22
jet

P
U



 
 
 

 (III-3) 

where: 

Ujet : air jet velocity exiting the calibrator nozzle, 

ΔP: differential pressure measured by the Pitot tube, 

ρ:  density of the air jet exiting the calibrator nozzle at the calibration temperature. 

 The air jet temperature is monitored and recorded using a T-type thermocouple 

which is set downstream the jet exit plane and the recorded voltages are corrected to this 

temperature. 

 After recording the voltage regarding all the velocity points, the THERMALPRO 

software is used to obtain the calibration curve which is normally a polynomial curve fit 

through the points (E, Ujet). This calibration function is used while converting the 

voltage data obtained in the actual experiment to velocity values.  

 The polynomial or power law coefficients representing the calibration curve are 

given by the THERMALPRO software. The polynomial curve fit normally has the form 

of: 
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 2 3 4

jetU K AE BE CE DE      (III-4) 

where: 

E: Voltage,  

Ujet: air jet velocity,  

K, A, B, C, D: Polynomial coefficients 

The power law curve fit is normally in the form of:  

  1
2 n

jetE A BU   (III-5) 

where: 

 E: Voltage,  

Ujet: air jet velocity,  

A, B, n: Calibration coefficients 

 The software also provides the mean square error which is a measure of how well the 

curve fits the calibration points. 

 If the points on the curve are plotted correctly and show a smoothly increasing trend, 

then the calibration process is complete. However, if one or a few points on the 

calibration curve do not look good, it might be needed to repeat the calibration process. 

 An additional type of calibration called “directional calibration” needs to be done 

for X-probes which provides directional sensitivity coefficient (“yaw coefficient (k)”) 

for each individual sensor. These coefficients are used to decompose the velocities 

obtained by each sensor into actual velocity components. In cases where maximum 
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accuracy is not needed, the default value for yaw coefficient which is provided by 

manufacturer can be used. 

 The yaw calibration is performed by choosing 11 different angles between 25-75° 

with an angle increment of 6°. The angles are chosen in a manner that the middle angle 

is the “head –on” orientation which is the direction of the X-probe that was previously 

used during velocity calibration for which both sensors were positioned at a 45° angle 

with respect to the direction of the flow. 

 A constant velocity of the air flow is required throughout the yaw calibration 

process. It is suggested to set the air jet velocity at a value close to 40% of the maximum 

velocity used in the calibration process. For yaw calibration of the X-probe in this 

experiment, air velocity is fixed at a value of 1.419E+01 (m/s).  

 The THERMALPRO software calculates the yaw coefficient for each sensor once 

the voltage readings for all 11 angles are completed.  

 In Figure III-6, the data points obtained through the calibration process are shown as 

black circles. The voltage vs. velocity plots in Figure III-6 show the calibration curve 

obtained for each individual sensor of the X-probe used in this experiment. The 

calibration curve is shown with the red line passing through the data points. Both 

calibration curves are in agreement with the expected operation of a hot film sensor for 

which the increase in the velocity of the air flow corresponds to an increased output 

voltage. Different calibration curve options were tested among which King’s law curve 

fit provide a more accurate approximation of the data. The calibration equations obtained 
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for each sensor along with the mean square error of the calibration curve fitting as well 

as the yaw coefficient of each sensor are presented in Table III-3.  

 

 
Figure III-6 Calibration curves obtained for each sensor of the X-probe used for velocity 

measurements (TSI2 2011). 

  

 

 

  

U (m/s) 

U (m/s) 
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 King’s Law Calibration 

Equation 

Mean Square 

Error 

Yaw 

Coefficient 

Sensor 1 Ujet
2=1.33037E0.51+0.89703 0.00125 3.08491E-01 

Sensor 2 Ujet
2=1.85846E0.52+0.94556 0.00075 3.29428E-01 

 

Table III-3 Calibration curve equations and their corresponding error for each sensor of the          

X-Probe. 

 

 

III.2.2.4. HWA Data Acquisition and Analysis 

As mentioned before, TSI THERMALPRO software is used for data acquisition 

and analysis of the data. Once the probe is calibrated, it can be used for velocity 

measurements in the experiment. The following steps were taken during the data 

acquisition and analysis using the hot film X-probe: 

 The calibrated probe is placed in the experimental facility with the same direction 

with respect to the flow as it had in the calibration process (each sensor at a 45° angle 

with respect to the direction of the flow). 

 The fluid flow temperature in the experiment will be measured using a thermocouple 

and corrections will be made through the software in case the fluid temperature is 

different from the calibration temperature. 

 The atmospheric pressure is measured at the time of data collection and corrections 

will be made in case it is different from the pressure measured during the calibration of 

the probe.  
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 The sampling rate and the sampling period are set through the THERMALPRO 

software. In this case, as it was mentioned before, velocity data is taken at a sampling 

frequency of 20 KHz for a period of 26.214 sec. 

 The acquired data can be displayed graphically immediately after acquisition. Plots 

of velocity vs. time and velocity vs. probability distribution are displayed by the 

software. Furthermore, the values of mean velocity, turbulence intensity, and 

temperature are also shown by the software. 

 The acquired data will be saved in raw data files. The raw data filed containing the 

time histories of output voltage of each sensor through the measurement period need to 

be further analysis to obtain the time histories of the two velocity components. 

 The post-analysis part of the THERMALPRO software allows for calculation and 

graphical display of velocity statistics and velocity time histories.  

 

III.3. Results 

As it was mentioned before, in this investigation, HWA technique is used to 

measure the air velocity profiles within two different near wall gaps in an annular 

packed bed. The time histories of the velocities at each measurement point are averaged 

over the data acquisition time and subsequently the axial and radial time-averaged 

velocity profiles are obtained within each gap. Moreover, the time histories of the 

velocity at each point within each gap are further analyzed using a PSD method to 

acquire a more in depth insight to the turbulent flow characteristics of the coolant flow 
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within each gap which is essential for accurate predictions of the helium coolant flow 

inside the core of a pebble bed VHTR.  

 

III.3.1. Velocity Profiles within Near Wall Gaps 

Time histories of the two velocity components, i.e. axial and radial components, 

are acquired using a hot film X-probe at several points within each measurement gap for 

five different Reynolds numbers. For each case, the time-averaged velocities at each 

point are normalized with the corresponding bed velocity and the radial distance is 

normalized with the sphere diameter. 

 

III.3.1.1. Axial Velocity Profiles 

Figure III-7 shows the time-averaged axial velocity profiles of the air flow along 

the radial direction within gaps A4 and B6 for five different Reynolds numbers. It is 

observed in Figure III-7 (a) that all five velocity profiles measured within gap A4 follow 

a similar pattern to a good extent. As seen in the Figure III-7 (a), for all the five different 

Reynolds numbers, the axial velocity increases from a low value close to the packed bed 

wall (no slip condition at the wall) to a maximum velocity which is approximately 6-7 

times higher than the corresponding bed velocity. This sudden increase in the velocity 

close to the container wall of the packed bed is observed for all different Reynolds 

numbers around the radial distance of Y/D ≈ 0.05-0.25. For Y/D ˃ 0.25, all of the 

velocity profiles for all Reynolds numbers show a decreasing trend as the hot film probe 

gets closer to the end of the gap where one sphere is blocking the end of the gap. The 
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existence of this sharp peak in the axial velocity profile within gap A4 is in agreement 

with all the previous studies indicating the existence of bypass flow close to the 

container wall of packed beds (Schwartz & Smith 1953, Marivot et al. 1974, Johnston et 

al. 1975, Čermák et al. 1982, Vortmeyer &Schuster 1983, White & Tien 1987, 

Ziólkowska & Ziólkowski 1988, Moise &Tudose 1998).  

The time-averaged axial velocity profiles within gap B6 presented in Figure III-7 

(b) show a very different pattern than what was observed in Figure III-7 (a). In this case, 

two different peaks are observed in the axial velocity profiles for all Reynolds number 

cases. More interestingly, as seen in Figure III-7 (b), the second peak for the three cases 

with highest Reynolds numbers (Rem = 4,542, 5,735, and 6,857) are significantly higher 

than the first peak happening closer to the wall. On the other hand, the profiles of the 

time-averaged axial velocity fields for the two lower Reynolds number cases (Rem = 

2,043 and 3,355) show a totally different behavior. For these two profiles, there are still 

two peaks in the time-averaged axial velocity profile; however, the peak closer to the 

wall is the peak with the largest magnitude. The observations made from time-averaged 

velocity profiles of gap B6 are quite similar to the results of the study done by Lerou & 

Froment (1977). In the experiment done by Lerou & Froment (1977), the axial velocity 

profiles were measured at the exit of the packed bed. There were more than one peak in 

the velocity profiles obtained at the exit of the packed bed and interestingly the peak 

closest to the wall was not always the largest one. In addition, they showed that the 

change in the arrangement of a few layers of the packing had a great influence on the 

velocity profile. 
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(a) 

 
(b) 

Figure III-7 Normalized time-averaged axial velocity profile within gap (a) A4, (b) B6. 
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III.3.1.2. Radial Velocity Profiles 

The plots of time-averaged radial velocity profiles within both measurement gaps 

are shown in Figure III-8. The radial velocity profiles obtained for gap A4 presented in 

Figure III-8 (a) show a maximum value approximately around the same location where 

the peaks in the time-averaged axial velocity profiles (Figure III-7 (a)) were observed. 

There are two main differenced seen between the axial and radial velocity profiles of gap 

A4. First, the peaks in the radial velocity profile have much lower magnitudes than the 

peaks in the axial velocity profile which is anticipated since the main direction of the 

flow is in the axial direction. The magnitude of the peaks of the radial velocity profiles 

for all different Reynolds numbers is approximately 1.5-2 times more than the 

corresponding bed velocity. Secondly, the peaks in the radial velocity profiles of gap A4 

are narrower compared to the peaks observed in the axial velocity profiles.  

Figure III-8 (b), represents the time-averaged radial velocity profiles within gap 

B6 for five different Reynolds numbers. There are some similarities and differences 

between the radial and axial velocity profiles within gap B6. First, similar to the axial 

velocity profiles of gap B6, there are two peaks in the time-averaged radial velocity 

profiles. However in this case, only for the two highest Reynolds number cases, the 

second velocity peak (the one farther from the packed bed wall) has a larger magnitude 

than the peak that is closest to the wall. In this case, for the three lowest Reynolds 

number cases, the closest peak to the wall is the one with higher magnitude. In all five 

different cases, the radial velocity profile decreases after the second peak as the probe 

approaches the sphere, which is blocking the end of the measurement gap.  
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(a) 

  
(b) 

Figure III-8 Normalized time-averaged radial velocity profile within gap (a) A4, (b) B6. 
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It should be noted that, the magnitude of the radial velocity peaks are much 

smaller than those observed in the axial velocity profiles. 

 

III.3.2. Power Spectra Density (PSD) Analysis 

To have a more comprehensive understanding of the energy distribution of the 

axial and radial velocity at different points and at different Reynolds numbers of the 

flow, the power spectral density analysis is performed on the time histories of the axial 

and radial velocities for different measurement points for both gaps A4 and B6. The PSD 

analysis have been performed in two different ways: 1- at a constant Reynolds number 

of the flow for different spatial locations within the gap, 2- at a specific point with varied 

Reynolds numbers. This method helps in separately identifying the effect of the distance 

of the point from the wall as well as influence of the Reynolds number on the 

distribution of the energy among eddies of different sizes. In all the power spectrum 

plots obtained for gaps A4 and B6, the black solid line represents the equivalent slope of 

the inertial sub-range in the wavenumber domain for the classical Kolmogrov power 

spectrum for the frequency domain (Tennekes & Lumely 1972). The inertial sub-range is 

the section of the energy cascade where energy transfers from production (low frequency 

section, large eddies) to dissipation (high frequency section, smaller eddies) in 

homogenous turbulent flows. Here it is important to notice the advantage of HWA 

technique in taking samples with considerably high frequencies helps in resolve all parts 

of the energy cascade, especially in the dissipation range. 
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III.3.2.1. Spectral Analysis of Velocity Points  

In this section, five different points are chosen along the velocity measurements 

within each gap and the axial and radial energy spectrum for each point is obtained at 

three different Reynolds numbers. 

Figure III-9, Figure III-10, and Figure III-11 present the result of the PSD 

analysis for five different points within gap A4 for three different Reynolds numbers. 

These five points are particularly chosen: 1- close to the container wall to study the 

effect of the solid boundary on the spectrum, 2- at the left side of the axial velocity peak, 

3- the center of axial velocity peak, 4- at the right side of the axial velocity peak, 5- close 

to the end of the gap to study the effect of the sphere at the end of the gap. It should be 

noted that the energy spectrum of radial velocity of the point that is closest to the wall is 

not shown in the plots since the velocities at that point have such low values that the 

spectrum was not considered reliable. 

The temporal energy spectra presented in Figure III-9 to Figure III-11 show a 

high spatial dependency. This effect is more clearly seen in the case of the axial energy 

spectra compared to the radial energy spectra. It is also observed that the change in the 

radial location of the points affect both high frequency and low frequency parts of the 

spectrum. Moreover, the slope of the spectra in the inertial sub-range, particularly for the 

axial power spectra, varies with changes in the radial location of the points to values 

smaller or larger than the predicted value for a classical spectrum shown by the black 

solid line. It can be concluded that the rate of energy transfer from the large eddies in the 

low frequency region of the spectra to the smaller eddies in the high frequency section of 
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the spectra is highly sensitive to the location of the points within the measurement gap. 

In addition, for all three Reynolds number cases, power spectra of the radial velocity 

component show a significant variation when approaching the solid boundary i.e. the 

sphere at the end of the gap.  

The result of the PSD analysis for five different points within gap B6 for three 

different Reynolds numbers are presented in Figure III-12, Figure III-13, and Figure 

III-14. These five points are specifically chosen: 1- close to the container wall to study 

the effect of the solid boundary on the spectrum, 2- at the center of the first axial 

velocity peak, 3- the trough observed between the two axial velocity peaks, 4- at the 

center of the second axial velocity peak, 5- close to the end of the gap to study the effect 

of the sphere at the end of the gap. It should be noted that the energy spectrum of radial 

velocity of the point that is closest to the wall is not shown in the plots since the 

velocities at that point have such low values that the spectrum was not considered 

reliable. 
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(a) 

 
(b) 

Figure III-9 Power spectra density for points within gap A4 at Rem= 2,043 obtained by the time 

histories of (a) axial velocity, (b) radial velocity. 
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(a) 

 
(b) 

Figure III-10 Power spectra density for points within gap A4 at Rem= 4,541 obtained by the time 

histories of (a) axial velocity, (b) radial velocity. 
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(a) 

 
(b) 

Figure III-11 Power spectra density for points within gap A4 at Rem= 6,857 obtained by the time 

histories of (a) axial velocity, (b) radial velocity. 
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The temporal distribution of the energy spectra presented in Figure III-12 to 

Figure III-14  show less sensitivity to the radial position compared to the results 

presented in Figure III-9 to Figure III-11. The power spectra of both axial and radial 

velocities obtained for the three points in the middle of the gap approximately follow the 

same slope in the inertial sub-range and in some cases overlap. This effect is more 

pronounced in the case of power spectra of the radial velocity for the three middle points 

shown in (Figure III-12 (b), Figure III-13 (b) and Figure III-14 (b)). The slope of the 

energy cascade especially in the case of the temporal spectrum of the axial velocity 

follows the predicted slope of the inertial sub-range by Kolmogrov. Moreover, the effect 

of the solid boundary on the power spectra of both axial and radial velocities is clearly 

seen in all the distributions shown in Figure III-12 to Figure III-14. In case of the power 

spectra of the axial velocity, it is observed that the effect of the container wall of the 

packed bed is more pronounced on the power spectra than that of the sphere at the end of 

the gap.  

  



165 
 

 

 
(a) 

 
(b) 

Figure III-12 Power spectra density for points within gap B6 at Rem= 2,043 obtained by the time 

histories of (a) axial velocity, (b) radial velocity. 
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(a) 

 
(b) 

Figure III-13 Power spectra density for points within gap B6 at Rem= 4,541 obtained by the time 

histories of (a) axial velocity, (b) radial velocity. 
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(a) 

 
(b) 

Figure III-14 Power spectra density for points within gap B6 at Rem= 6,857 obtained by the time 

histories of (a) axial velocity, (b) radial velocity. 
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III.3.2.2. Spectral Analysis at the Peak Point of Time-Averaged Axial Velocity 

Profiles for Different Reynolds Numbers 

In this section, to investigate the effect of the Reynolds number on the behavior 

of the power spectra, the spectra is obtained for specific points within the gaps for all 

five different Reynolds numbers. 

Figure III-15 shows the power spectra of the axial and radial velocities for the 

point at the peak of the time-averaged velocity profile (Y/D= 0.19) within gap A4 for 

five different Reynolds numbers. The significant point here is the exchange in the 

transfer of energy from low frequency section of the spectra to the high frequency part as 

the Reynolds number increases. As seen in the distributions, the energy spectrum of the 

lower Reynolds number cases begins with a higher energy content at the lower 

frequency part while the energy content drops quickly for the lower Reynolds cases and 

is lower than that of the higher Reynolds cases in the higher frequency range. This trend 

is clearly observed in both power spectra of axial and radial velocity in Figure III-15. 

To obtain a more clear understanding of the effect of Reynolds number on the 

evolution of the power spectra within gap B6, two points at the center of the two axial 

velocity peaks (Y/D = 0.13 and Y/D = 0.42) are estimated and shown in Figure III-16 

and Figure III-17, respectively. The results of the power spectra analysis for both axial 

and radial velocity components indicate the same trend of energy transfer from lower 

frequency section to higher frequency section of the spectra as the Reynolds number 

increases.  

  



169 
 

 

 
(a) 

 
(b) 

Figure III-15 Power spectra density at the peak of the time-averaged axial velocity of gap A4    

(Y/D= 0.19) obtained by the time histories of (a) axial velocity, (b) radial velocity. 
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(a)  

 
(b) 

Figure III-16 Power spectra density at the first peak of the time-averaged axial velocity of gap B6 

(Y/D= 0.13) obtained by the time histories of (a) axial velocity, (b) radial velocity. 
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(a) 

 
(b) 

Figure III-17 Power spectra density at the second peak of the time-averaged axial velocity of gap B6 

(Y/D= 0.42) obtained by the time histories of (a) axial velocity, (b) radial velocity. 
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III.4. Conclusion 

Characterization of complex coolant flow behavior in gaps between the spherical 

fuel elements in the core of pebble bed VHTRs is highly important in the design and 

development of such reactors. In this study, a Hot Wire Anemometry system coupled 

with a hot film X-probe is utilized to measure the two components of the coolant 

velocity within the near wall gaps of a pebble bed VHTR. For this purpose, two different 

gaps with extremely different geometries and at different heights and radial position of 

the bed were chosen for velocity measurements. The results of hot wire velocity 

measurements for five different Reynolds numbers of the air passing through the bed 

compares well with the results from previous studies confirming the presence of an 

annular region of a higher velocity close to the outer reflector wall (bypass flow). The 

results indicate the presence of bypass flow in both time-averaged axial and radial 

velocity profiles obtained by HWA technique. Moreover, the results show a strong 

dependence of the velocity profiles and the characteristics of the bypass flow to the gap 

geometry. In one geometry (gap A4), the classical behavior of bypass flow with one 

sharp peak in the velocity profile close to the packed bed wall was clearly observed 

while in the other gap, two peaks were identified in both axial and radial velocity 

profiles. In the second gap, the peak close to the wall was not always the highest one.  

The effect of Reynolds number on the velocity profile was found to be quite 

consistent for one of the gap geometries (gap A4) while for the second gap the 

magnitude of the two peaks changed with the change in Reynolds number. Specifically 

for the second gap, for the higher Reynolds numbers, the peak closest to the wall was the 
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lower peak and for the lower Reynolds numbers, the peak closest to the wall was the 

higher peak. It can be concluded that the gap geometry and Reynolds number of the flow 

simultaneously affect the velocity profile of the coolant through the gap. Further 

measurements in different gaps with different geometries and different Reynolds number 

of the flow are required in order to categorize the effect of each of these parameters on 

the velocity profiles of fluid passing through the gap. 

The high frequency time histories of the velocities obtained at each point were 

further analyzed using power spectra method. The results of the power spectra density 

for specific points chosen within each gap reveal that the spatial variation within the gap 

highly affects the shape of the power spectra and the slope of the energy cascade. 

Moreover, the effect of the solid boundary i.e. packed bed wall and the sphere at the end 

of the gap was found to be significant on the power spectra. In addition, the effect of the 

Reynolds number on the evolution of the power spectra at specific points within each 

gap was investigated. The results show that as the Reynolds number increases, from the 

slope of energy transfer from the lower frequency part of the spectrum to the higher 

frequency part decreases resulting into a milder slope for the energy cascade in the 

inertial sub-range. 

The results of this experimental study could provide as a benchmark for 

validation of the numerical models attempting at modeling the flow behavior within 

porous media and specifically for development of models to predict the helium coolant 

flow behavior within the core of a pebble bed VHTR. 
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CHAPTER IV 

IV SUMMARY 

 

In this dissertation, turbulent flow behavior within two experimental models with 

highly complex geometries was studied with the application of appropriate experimental 

turbulent flow measurement techniques. The first experimental study involves the 

investigation of coolant flow behavior within the lower plenum of a prismatic core 

VHTR. In the second experimental investigation, coolant flow behavior and bypass flow 

phenomenon within the near wall gaps of a pebble bed VHTR were studied. A summary 

of the problem under study in each case, the experimental techniques applied in each 

experiment, and the results and findings of each investigation is presented in the 

following sections. 

IV.1. Experimental Study of the Coolant Flow Behavior within the Lower Plenum of 

a Prismatic Core VHTR 

This experimental investigation aims at modeling the helium coolant flow 

behavior within the lower plenum of a prismatic core VHTR. The experimental test 

section representing the geometry of the lower plenum consisted of a rectangular 

channel with a length of 1016 mm and a square cross section of 76.2  76.2 mm2. Inside 

the channel a rod bundle including 29 tubes with an outside diameter of 10.67 mm and 

an inside diameter of 10.16 mm were set in a staggered configuration modeling the 

configuration of graphite support rods within the lower plenum. Two circular inlet jets 
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with dimensions similar to that of the tubes used in the rod bundle were entering the 

channel top wall in areas within the rod bundle. The two jets were representing the 

helium coolant jets impinging into the lower plenum environment. The channel has a 

single inlet and a single outlet modeling different crossflow velocities within the lower 

plenum and the single outlet of the lower plenum, respectively. In this experiment water 

was used as the working fluid and various cases with different numbers of the jets and 

different Reynolds numbers of the jets with or without crossflow were studied.  

A 2-D Dynamic PIV technique was applied to obtain the velocity fields within 

the rod bundle. To provide the complete visual access to areas inside the rod bundle 

which is required for the PIV method, MIR technique was used in the selection of the 

material for the tubes representing the graphite support rods. For this purpose, FEP tubes 

were selected to be used both for the rod bundle and the inlet jets. Moreover, to ensure a 

uniform refractive index within the test section the FEP tubes used in the rod bundle 

were filled with water.  

In this investigation, for each case study, velocity fields of three different vertical 

planes within the rod bundle were obtained applying PIV technique (image acquisition 

frequency of 1,000 fps and image acquisition period of five seconds). Different sources 

that may affect the accuracy of the PIV measurements and analysis were considered and 

error analysis was performed on the PIV analysis software as well as on the adequacy of 

the number of images obtained by PIV for each case. Both procedures showed a high 

level of accuracy for the PIV acquired data. 



176 
 

 

The time-averaged velocity fields of the mid-plane for cases with single or dual 

impinging jets identified a key recirculation zone close to the bottom part of the adjacent 

rod of the inlet jets on the impingement side. Interestingly, these recirculation zones 

exist even in the presence of a crossflow. These key flow features along with the other 

vertical patterns observed within the instantaneous vorticity fields could contribute to the 

enhancement of mixing within the lower plenum environment. Moreover, the coherent 

structures observed close to the bottom part of the neighboring rod of inlet jets 

(representing the graphite support rods within the lower plenum) could potentially affect 

the structural integrity of the rods and the bottom surface of the actual model in long 

term. 

To further study the behavior of the coherent structures within the flow field, a 

Snapshot POD method was applied to the PIV velocity fields. POD analysis helps in 

extracting the large-scale coherent structures from the flow field and in reconstructing 

lower-order models of the highly complex flow fields. The results of the POD analysis 

confirm that the first few POD modes (also called the primary POD modes) contain the 

majority of the energy of the flow field. Hence, lower order models of the flow fields 

can be reconstructed by only applying these primary modes which will represent the 

flow features with the highest energy content. In this study, the mode shapes of the first 

five POD modes for all cases are mainly representing the jet flow which confirms that 

the jet is the dominant feature of the flow field. Therefore to capture the lower energy 

but highly important flow features of the flow field (i.e. the coherent structures close to 
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the bottom part of the adjacent rod of the inlet jet, called “Recirculation Area”) through 

POD analysis, a different approach needs to be adopted. 

In this investigation, a Comparative POD analysis technique is suggested to 

study the behavior of the coherent structures existing within the Recirculation Area. In 

this technique, first the Recirculation Area is separated from the flow field and its energy 

content is compared to that of the whole field. The results showed that for all cases, the 

energy content of the Recirculation Area is lower than 3% of the energy content of the 

whole field. Consequently, a higher number of POD modes is required to be considered 

for a reasonable reconstruction of the coherent structures within the Recirculation Area 

compared to the number of modes required for the reconstruction of the whole field or 

the higher energy content flow features (e.g. jets). Therefore, the flow field was 

reconstructed using different number of POD modes, the Recirculation Area was 

separated from the reconstructed field, and its energy was compared to the original 

Recirculation Area. The results confirm that a higher number of modes is needed for a 

faithful reconstruction of the vortical structures within the Recirculation Area. 

Furthermore, a qualitative comparison between the coherent structures within the 

reconstructed Recirculation Area and the original Recirculation Area as well as the 

quantitative comparison between the energy content of the two regions would help in 

obtaining the sufficient number of modes for a reasonable reconstruction of the 

Recirculation Area.  

The data acquired through this experimental study could be applied as a 

benchmark for validation of the existing CFD codes and also for development of new 
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models predicting the behavior of helium coolant flow within the lower plenum of a 

prismatic VHTR under normal operation as well as accident scenarios. 

IV.2. Experimental Study of Bypass Flow in Different near wall Gap Geometries of  

a Pebble Bed VHTR 

The main objective of this experimental study is characterization of the coolant 

flow behavior and specifically the bypass flow phenomenon within gaps between the 

spherical fuel elements in areas close to the outer reflector wall of an annular pebble bed 

VHTR. The test section modeling the core of an annular packed bed which was used in 

this experiment was an annular bed filled with spheres representing the spherical fuel 

particles in the core of an actual pebble bed VHTR. The outer cylinder has a height of 

2.18 m and an outer diameter of 0.89 m while the radius of the inner annulus is 0.27 m. 

Two different types of spheres are used to fill the annular bed: 1- Black spheres with a 

0.03302 m diameter used in the upper and lower sections of the bed and, 2- Clear acrylic 

spheres with a 0.03175 m diameter used in the middle section of the bed. The two types 

of spheres are chosen to have nearly identical sizes to ensure a uniform porosity 

throughout the bed. Air is used as working fluid in this experiment and it is passed 

through the bed using a high power blower. In this experiment, a high frequency HWA 

system is applied to obtain the velocity profiles within the near wall gaps of the annular 

packed bed. Four evenly spaced columns (columns A to D) each containing ten evenly 

spaced holes were considered on the circumference of the packed bed to provide access 



179 
 

 

to the near wall gaps in order to carry out the velocity measurements using the HWA 

probe. 

For this experimental study, two different near wall gaps on different 

measurement column at different heights of the channel (gaps A4 and B6) which have 

significantly different geometries were considered for velocity measurements. To obtain 

the velocity profile within each gap, the HWA probe was moved along a straight line in 

radial direction within the gap in very fine increment. An X-probe hot film anemometer 

is used in this set of experiments to obtain both axial and radial components of the 

velocity at each measurement point. The X-probe records the velocity data at a 

frequency of 20 KHz for a period of 26.214 seconds. To ensure a high level of accuracy 

for velocity measurements at each point within each gap, the velocity measurements 

have been repeated three times and an average value of those measurements is recorded 

as the average velocity at each point. For each near wall gap geometry, the velocity 

profiles within the gaps were obtained for five different Reynolds numbers of air passing 

through the packed bed. 

Both axial and radial time-averaged velocity profiles obtained in the two near 

wall gaps for all five different Reynolds numbers show a sharp peak in the velocity 

(bypass flow) close to the outer cylinder wall representing the outer reflector in the 

actual pebble bed VHTR. Furthermore, it was observed that the gap geometry has a 

major influence on the shape of the velocity profiles and the characteristics of the bypass 

flow within each gap. For instance, both axial and radial velocity profiles within gap A4 
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showed a sharp peak close to the outer cylinder wall while the axial and radial velocity 

profiles within gap B6 represented two separate peaks with two different magnitudes. 

The effect of the Reynolds number on the velocity profiles within each gap was 

found to be changing from one gap geometry to the other. In gap A4, the shape of both 

axial and radial velocity profiles and the location of the bypass flow peak were quite 

similar for all different Reynolds numbers. On the other hand, in gap B6, variations in 

the Reynolds number resulted in the changes in the shape of the velocity profiles (i.e. for 

the higher Reynolds numbers the peak closest to the outer cylinder wall had a higher 

magnitude compared to the second peak observed in the velocity profile while this peak 

had a lower magnitude for the lower Reynolds numbers). 

To further study the turbulent flow behavior of the coolant flow within the near 

wall gaps of a pebble bed VHTR, the time-histories of the velocities at each 

measurement point within both gaps were analyzed applying power spectra density 

technique. It was observed that spatial variation within each gap significantly affects the 

power spectrum as well as the slope of the energy cascade. Moreover, investigations 

carried out on the effect of variations in the Reynolds number on the power spectra at 

specific points within each gap showed that the increase in the Reynolds number results 

in having a milder slope of the energy cascade in the inertial sub-range.  

The result of this investigation could be applied in developing an experimental 

database for validation of CFD codes modeling the flow behavior within porous media 

particularly for validation of the numerical models used for prediction of the helium 

coolant flow behavior within the core of pebble bed VHTRs.  
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APPENDIX A 
 

As mentioned in Chapter II, optical distortions caused by non-uniformities of the 

refractive index within the measurement volume is a major impediment for all laser 

diagnostic imaging techniques applied in experimental fluid dynamic studies. An 

effective solution for this problem is obtained through matching the refractive index of 

the working fluid to that of the test section walls and interfaces. The experimental set-

ups designed to be used along with laser imaging techniques are typically constructed of 

transparent solid materials. 

This investigation is mainly focused on finding working fluids with refractive 

indices matched with those of fused quartz and acrylic which are commonly used for 

construction of test sections in fluid dynamics experiments (see section II.2.2.2 for more 

details). Consequently, different types of aqueous salt solutions with different salt 

concentrations as well as various organic fluids are studied for refractive index matching 

with acrylic and fused quartz. One aqueous CaCl2.2H2O solution and two organic fluids, 

Dibutyl Phthalate and P-Cymene, are suggested for refractive index matching with fused 

quartz and acrylic, respectively. Moreover, the temperature dependence of the refractive 

indices of these fluids is investigated and the Thermooptic Constant is calculated for 

each fluid. Finally, the fluid viscosity for different shear rates is measured as a function 

of temperature and is applied to characterize the physical behavior of the proposed 

fluids. 
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A.1. Experimental Methodology 

A.1.1.  Refractive Index Measurements 

In this investigation, a VEE GEE ABBE Refractometer is utilized to measure the 

refractive index of different liquid samples (see Figure A-1). This refractometer works 

based on the optical refraction critical angle detection technique and has a measuring 

range of 1.3-1.7, a resolution of 0.0005n (25%), and an accuracy of ±0.0003n (±0.15%). 

The refractometer has two circulating nozzles for the primary prism and two more for 

the secondary prism through which it could be connected to a circulating bath to 

precisely control the prism/sample temperature. The prism is made of optical glass and 

its temperature is shown on an external glass thermometer which has a range of 0-70°C. 

Distilled water is used for calibration of the refractometer since its refractive index is 

well-known. A small sample of the liquid is placed directly on the measuring prism, the 

eyepiece section and the base prism are then locked together  to ensure good contact 

between the sample and the measuring prism, the shadow-line is matched with the center 

of a crosshair seen through the eyepiece of the refractometer using a control knob. The 

refractive index is read where the vertical line on the scale bar is matched with the center 

of the crosshair. 

In this study, for all refractive index measurements, the ambient temperature was 

recorded as 23°C. Moreover, in order to control the temperature of the prism, the 

refractometer was connected to a NESLAB RTE-221 Refrigerated Bath/Circulator with 

a temperature range of -23°C to +100°C (with a temperature stability of ±0.01°C) and 

water running though it as the working fluid. To obtain more accurate values for the 
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refractive index, a minimum of two readings was performed at each prism temperature 

while measuring the refractive index of each individual material. The average values of 

those two readings are reported here as the refractive index. 

 

 

 

 
Figure A-1 Picture of the VEE GEE ABBE Refractometer (VEE GEE 2011). 
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A.1.2 Viscosity Measurements 

Viscosity is one of the most important physical characteristics of any fluid that 

needs to be fully known in fluid flow experiments to obtain the parameters 

characterizing the experiment such as dimensionless numbers (e.g. Reynolds number, 

Prandtl Number, Nusselt number, etc.). In this investigation, a Physica MCR 300 

Modular Compact Rheometer manufactured by Anton Paar is used for viscosity 

measurements. The rheometer is equipped with a “Cone-Plate” type probe (Anton Paar, 

model: CP50-1, diameter: 49.95 mm, angle: 0.987). In order to control the temperature 

of the samples while measuring their viscosity, the rheometer is connected to a 

Brinkmann Lauda RE-106 Refrigerated Bath with an operating temperature range of -

30°C to +120°C (with a control accuracy of ±0.02°C) and water running through it as the 

working fluid. Viscosity measurements for each sample are done under different shear 

rates and different temperatures. It should be noted that for all viscosity measurements 

the ambient temperature was recorded as 23°C. Furthermore, viscosity measurement for 

each substance at any temperature increment was done two times and an average value 

of the two readings is reported.  
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A.2. Results 

A.2.1.  Refractive Index Matching  

The main focus here is to study a wide variety of fluids and to obtain practical 

fluids that have refractive indices matching with those of fused quartz and acrylic. For 

this purpose, two categories of fluids are considered: (a) aqueous salt solutions, and (b) 

organic fluids.  

 

A.2.1.1. Refractive index matching using aqueous salt solutions 

As mentioned earlier, water is considered to be a robust candidate for working 

fluid in many fluid flow experiments. However, water has a much lower refractive index 

(nwater = 1.33) than refractive indices of both acrylic and fused quartz. One solution to 

increase the refractive index of water is to add salts with high refractive indices to water 

which will lead into having a solution with a higher refractive index than that of water 

and possibly matching the refractive indices of fused quartz and acrylic. The main issue 

here is finding the appropriate type of salt and the right concentration of salt for the 

aqueous solution. Therefore, several types of salt have been considered in this study 

which are listed in Table A-1. In this table, some of the important chemical and optical 

characteristics of the studied materials, i.e. refractive index, specific gravity, and their 

solubility in water are summarized.  
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Inorganic Compound 
Refractive 

Index 

Specific 

Gravity 

Solubility 

(in grams per 100 cc) 

Cold water Hot water 

Calcium Chloride (anhydrous) 

(CaCl2 )  
1.52 2.15 74.5 159 

Calcium Chloride (dehydrate) 

(CaCl2.2H2O ) 
1.531†† 0.835 97.7 326 

Calcium Chloride 

(hexahydrate) 

(CaCl2 .6H2O)  

1.417,1.393††† 1.71 279 536 

Potassium Chloride (KCl) 1.49 1.984 34.7 56.7` 
Sodium Chloride (NaCl) 1.5442 2.165 35.7 39.12 
Sodium Iodide (NaI) 1.7745 3.667 184 302 

 

Table A-1 Physical properties of different types of salts
†
. 

 

†Ref: Weast  (1976-1977) 

†† Ref:  Guidechem (2011) 

††† For different crystalline forms: Ref: Weast  (1976-1977) 

 

The first salt that is discussed here is NaI which has the highest refractive index 

among all the studied salts. Additionally, NaI has excellent solubility in water. As 

mentioned by Uzol et al. (2001) a 62%-64% aqueous solution of NaI (by weight) would 

have a refractive index of 1.49-1.5 which matches the refractive index of acrylic. 

Therefore, a less concentration of NaI in water would provide a solution with a refractive 

index matched with that of fused quartz. Although NaI aqueous solution seems to be an 

appropriate candidate for working fluid in facilities constructed with both acrylic and 

fused quartz, there are some major issues with this solution that limit its application: (a) 

NaI is relatively expensive compared to the other types of salt mentioned in Table A-1, 

(b) More importantly, as pointed out by Uzol et al. (2001), small amount of     ions form 

in the solution when the aqueous NaI solution is exposed to light and oxygen.       ions 

absorb the light in some sections of the visible range including the green light which can 

lead into attenuation of the laser sheet passing through the test facility where the optical 
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measurements are performed. This causes difficulties in acquisition of PIV images in the 

regions where the laser light is attenuated. Uzol et al. (2005) suggested keeping the NaI 

solution under vacuum condition and away from light sources as much as possible. 

However, the suggestions made by Uzol et al. (2005) are not applicable in case of 

experiments where the facility is not entirely closed or in cases where it is not possible to 

keep the test section in darkness. Considering the mentioned difficulties, NaI aqueous 

solution does not seem to be a practical option for MIR purposes in this investigation.  

The second salt that will be discussed here is NaCl. As indicated in Table A-1, 

NaCl has the second highest refractive index among all other types of salts; however, its 

low solubility in water makes it impossible for its aqueous salt solution to reach 

refractive indices as high as fused quartz or acrylic (see solution 1 in Table A-2). As it is 

seen in the table a saturated aqueous solution of NaCl has a refractive index of 1.38 

which is much lower than the refractive indices of both fused quartz and acrylic. 

Therefore, another approach has been followed in which a combination of different types 

of salt is utilized to achieve a higher refractive index for the solution. This approach has 

been chosen since it gives the possibility of using those types of salts with highest 

refractive index and lower solubility (e.g. NaCl) along with salts having lower refractive 

indices than NaCl but higher solubilities in water (e.g. CaCl2). It should be mentioned 

that careful measures have been taken while solving different types of salt in water not to 

add all different types of salts to water at once and add each of them separately at a 

different stage after  making sure  that  the  previous salt is entirely  solved. This  method  
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Solution Material Concentration 

 (by weight)% 

Refractive index  

1 
NaCl 26.310 1.3800 H2O 73.690 

2 

CaCl2.6H2O 32.354 

1.3800 KCL 4.339 
NaCl 0.152 
H2O 63.155 

3 

CaCl2.6H2O 46.653 
1.3935 KCL 0.218 

H2O 53.129 

4 

CaCl2.2H2O 32.354 

1.4040 KCL 4.339 
NaCl 0.152 
H2O 63.155 

5 

CaCl2.6H2O 54.862 
1.4070 NaCl 0.535 

H2O 44.603 

6 

CaCl2.6H2O 51.230 

1.4120 KCL 6.870 
NaCl 0. 240 
H2O 41.660 

7 

CaCl2.2H2O 45.756 
1.4285 NaCl 2.136 

H2O 52.108 

 

8 

CaCl2.2H2O 47.620 
1.4340 NaCl 4.760 

H2O 47.160 

 

9 

CaCl2.2H2O 55.007 
1.4430 NaCl 0.257 

H2O 44.736 

10 

CaCl2.2H2O 55.015 
1.4450 NaCl 0.257 

H2O 44.728 
 

Table A-2 Refractive index of a number of aqueous salt solutions at room temperature. 

 

 

ensures that different salts do not interfere with each other and do not prevent other salts 

from being solved. The refractive indices of different solutions that were tested are 

shown in Table A-2. As seen in the table, the refractive index of the solution with the 

highest refractive index obtained by this approach (solution 10, n=1.445) is still 

significantly lower than the refractive indices of either fused quartz or acrylic. 
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Therefore, it is concluded that the studied approach is not appropriate for this particular 

purpose. 

As indicated in Table A-1, all types of CaCl2 take advantage of having high 

solubilities in water as well as relatively high refractive indices. Moreover, all types of 

CaCl2 are reasonably priced and are appropriate for application in large volume 

experiments. Efforts are made here to obtain aqueous CaCl2 solutions with refractive 

indices close to those of fused quartz and acrylic. The results of the refractive index 

measurements of aqueous CaCl2 solutions with different types and various 

concentrations of CaCl2 are listed in Table A-3. It should be noted that none of the three 

types of CaCl2 aqueous solutions that have been tested in this investigation shows any 

significant chemical or physical changes while exposed to either oxygen or light. All the 

above mentioned characteristics make CaCl2 aqueous solutions good candidate working 

fluids for a wide variety of fluid flow experiments.  

CaCl2 (anhydrous) has a granular form and releases noticeable amount of heat 

while being dissolved in water (exothermic reaction). As mentioned in Table A-3, the 

CaCl2 solution becomes opaque at a 23% concentration by weight; therefore, additional 

experiments will not be done on CaCl2 since optical clarity of the fluid is the main factor 

for the laser diagnostic techniques. CaCl2.6H2O (hexahydrate) has the highest solubility 

in cold water among all other types of CaCl2 which is an advantage since high 

concentrations of salt in water is required to achieve the necessary refractive index. 

Therefore, solutions with different concentrations of CaCl2.6H2O were made and their 

refractive indices were measured. As seen in Table A-3, an aqueous solution of 
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CaCl2.6H2O with 75% concentration by weight which is slightly higher than maximum 

soluble amount of CaCl2.6H2O in cold water (according to Table A-1), has a refractive 

index which is still much lower than that of either fused quartz or acrylic. Hence, 

CaCl2.6H2O solutions will not be further tested for MIR purposes.  

 
 
 

 Refractive index (n) 

Concentration (by weight)% 
9% 13% 23% 37.5% 49% 50% 63% 75% 

CaCl2 

 
1.354 1.364 1.389 

(opaque) - - - - - 

CaCl2.2H2O 

 
1.3485 - 1.376 1.405 1.43 - 1.458 - 

CaCl2 .6H2O 

 
- - - 1.381 - 1.3975 - 1.434 

 

Table A-3 Refractive index of aqueous Calcium Chloride solutions at room temperature. 

 

 

It can be seen in Table A-1 that CaCl2.2H2O has a relatively high solubility in 

cold and hot water (≈ 49% by weight in cold water and ≈ 77% by weight in hot water) as 

well as a noticeably high refractive index. The results of refractive index measurement 

of aqueous CaCl2.2H2O solution with different concentration are shown in Table A-3. 

The refractive index of a 49% (by weight) aqueous CaCl2.2H2O solution in cold water 

was measured at 1.43 which was still lower than even the refractive index of fused 

quartz. In this case, attempts were made to make solutions with higher concentrations of 

CaCl2.2H2O with the help of heating up the solution by indirectly exposing it to a heat 

source. It should be mentioned that CaCl2.2H2O was gradually added to the solution to 

make sure that at each step, the added CaCl2.2H2O is completely dissolved. This 
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procedure was done multiple times, and the refractive indices of the solutions were 

measured until an aqueous CaCl2.2H2O solution with 63% concentration by weight 

showed a refractive index of 1.458 which is identical to that of fused quartz. This 

solution remained at the liquid phase even when the heat source was removed and even 

after days of remaining at room temperature. However, it was observed that the solution 

crystallizes if it is rapidly cooled down or is kept at very low temperatures. This solution 

is considered a reasonable candidate for fluid dynamics experiments in which the facility 

is made of fused quartz. Since this solution is a water-based salt solution, it is expected 

to have similar characteristics to that of water. The refractive index and viscosity 

variations of this solution with respect to temperature will be further investigated in the 

following sections. It should be noted that a much higher concentration of CaCl2.2H2O 

in water is needed for the solution to reach to the refractive index of acrylic. Considering 

that the existing solution is nearly a fully saturated solution, application of CaCl2.2H2O 

solution for refractive index matching with acrylic is not practical. 

 

A.2.1.2. Refractive index matching using organic fluids 

In this investigation, organic fluids are studied as alternatives to water based 

solutions to find a working fluid with a refractive index closely matched with that of 

fused quartz and acrylic. Organic fluids normally have a higher refractive index than 

water. Some of the organic compounds which were found to have refractive indices 

close to refractive indices of fused quartz and acrylic were tested and their refractive 

indices were measured using the ABBE Refractometer. A list of the organic compounds 
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that have been investigated is shown in Table A-4. In this table, some important physical 

properties of these organic compounds e.g. viscosity, specific gravity, and flash point are 

also provided. P-Cymene and Dibutyl Phthalate have refractive indices which are closely 

matched to that of acrylic. The physical characteristics of P-Cymene (viscosity and 

specific gravity) make it a good candidate to be used in MIR facilities where acrylic is 

used for the construction of the test section. The only issue that needs to be considered 

while working with P-Cymene is its low Flash Point (47.222°C for a close loop 

(ScienceLab1 2011) which is an important factor in experiments where the working fluid 

needs to be heated more than 47.222°C. Dibutyl Phthalate, on the other hand, has a 

relatively high flash point (157°C for a close loop (ScienceLab2 2011); therefore, it may 

be a better choice for heated flow experiments. However, the higher viscosity of Dibutyl 

Phthalate needs to be considered while selecting the hydraulic pump in fluid flow 

experiments. Both P-Cymene and Dibutyl Phthalate are listed as materials with type 2 

health hazard in the Material Safety Data Sheet (MSDS) charts. Therefore, both 

materials should be applied carefully and personal protection equipments such as splash 

goggles, gloves, and respirator masks need to be worn while working with these two 

substances. The MSDS charts provide more detailed information regarding the health 

hazards and personal protection for these materials. 
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Fluid  Refractive Index
†
 

(n) 

Viscosity
††

 

(Pa.s) 

Specific 

Gravity
††

 

Flash Point
††

 

(°C) 

Ethanol  1.362 - 0.79 14 
P-Cymene 1.4905 0.876  10-3

 0.861 47.222 
Dibutyl Phthalate  1.4905 13.329  10-3 1.043 157 
Diethyl Phthalate 1.5040 12  10-3 1.118 156 

 

Table A-4 Refractive index of some organic fluids. 

 

† The refractive indices of all organic compounds except for Ethanol are measured in this study. 

†† Viscosity, Specific Gravity, and Flash Point of all the material as well as the refractive index of Ethanol are taken from Hassan & 

Dominguez-Ontiveros (2008) 

 

 

As suggested by Nguyen et al. (2004) and Miller et al. (2006), another option to 

make a solution with a refractive index matched with fused quartz or acrylic is to dilute 

the higher refractive index organic fluids with lower refractive index ones (in case they 

are soluble in each other). In this case, refractive index of the mixture of the two fluids 

can be calculates as (Budwig 1994 and Nguyen et al. 2004): 

 1 2(1 )mixturen n p n p    (A-1) 

where n is the refractive index and p is the relative volume percentage. As it is shown in 

Table A-4, Diethyl Phthalate has a refractive index of 1.504 which is higher than that of 

both acrylic and fused quartz. Therefore, as suggested by Nguyen et al. (2004) and 

Miller et al. (2006), diluted solutions of Diethyl Phthalate with Ethanol (with different 

concentrations) would have refractive indices close to acrylic or fused quartz. Based on 

Eq. A-1, a Diethyl Phthalate/Ethanol solution of 90% Diethyl Phthalate to 10% Ethanol 

would have a refractive index of 1.49 at room temperature. This is confirmed in the 

current study by measuring the refractive index of the mixture with the refractometer. 
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There are two main issues with this mixture: 1- Ethanol is in fact a solvent for acrylic; 

therefore, it reacts with acrylic and affects the optical clarity of acrylic after sometime. 

2- Ethanol is volatile; therefore, the solution should be kept in a perfectly sealed 

container to maintain the ethanol content of the mixture and prevent changes in the 

refractive index of the solution over time. This is even more critical in case a solution of 

Diethyl Phthalate and Ethanol is made to match the refractive index of fused quartz 

since a higher percentage of Ethanol (≈ 32% by volume) is needed. Hence, this solution 

will not be further pursued as a candidate working fluid for MIR facilities. 

 

A.2.2. Refractive Index Variations with Temperature 

As indicated in the previous section, three different fluids are chosen among 

which one has a refractive index matched with fused quartz, aqueous CaCl2 .2H2O 

solution (63% by weight), and the other two possess refractive indices closely matched 

with refractive index of acrylic, P-Cymene and Dibutyl Phthalate. 

To have a more comprehensive understanding of the optical characteristics of the 

solutions chosen for refractive index matching, the dependency of the refractive index of 

all three solutions on temperature is measured using the ABBE refractometer which is 

connected to a water bath for temperature control of the prism and the sample. The 

results of refractive index measurements as a function of temperature for all three 

solutions are shown in Figure A-2. To provide a basis for comparison, the temperature 

dependence of the refractive index of water as a reference fluid is also measured and 

shown in Figure A-2. The “Thermooptic Constant (dn/dT)” which represents the 
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temperature dependence of the refractive index of each fluid is obtained from the slope 

of the linear regression lines for each data set shown in Figure A-2. As mentioned in the 

methodology section, the external glass thermometer which indicates the prism/sample 

temperature has a range of 0-70°C; therefore, all refractive index measurements have 

been acquired in this range. It should be mentioned that since water is used as the 

working fluid in the thermal bath controlling the temperature of the refractometer prism, 

the lowest temperature chosen for the measurements is set at 6°C to avoid approaching 

the freezing point of water. Moreover, the refractive index measurements are presented 

in the range of 26-70°C in case of the CaCl2 .2H2O solution and within the range of 6-

65.5° for P-Cymene. It should also be noted that Error Bars shown in Figure A-2 are 

hardly seen due to their small value.  

As seen in Figure A-2, the refractive index of all the materials under 

investigation decreases with the increase in the temperature. Figure A-2 shows that the 

refractive index of water does not drastically change with temperature increase and the 

Thermooptic Constant in this case is estimated as  (    ⁄ )          which is in 

agreement with the value obtained by Stöhr et al. (2003) (    ⁄ )            . As 

expected, the refractive index of the aqueous CaCl2 .2H2O solution shows a relatively 

similar behavior to that of water with a Thermooptic Constant of            . This is 

a significant advantage of aqueous salt solutions for applications in MIR facilities 

specifically in those where sharp temperature gradients exist or where the working fluid 

needs to be heated.  
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Figure A-2 Temperature dependence of the refractive index of fluids suggested for MIR technique. 

 

As observed in Figure A-2, the refractive indices of P-Cymene and Dibutyl 

Phthalate rapidly decrease with the temperature increase. The line for P-Cymene shows a 

steeper decaying slope than that of Dibutyl Phthalate. The Thermooptic Constant is 

acquired as         and         for Dibutyl Phthalate and P-Cymene, 

respectively. The relatively large decrease in the refractive indices of Dibutyl Phthalate 

and P-Cymene (going from 1.499 at 6°C down to 1.472 at 70°C for Dibutyl Phthalate 

and decreasing from 1.499 at 6°C to 1.469 at 66°C for P-Cymene) needs to be 

considered while working with any of these two fluids in heated fluid flow experiments. 
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It should be noted that for both fluids at higher temperatures (higher than 48°C for 

Dibutyl Phthalate and higher than 35°C for P-Cymene) the refractive indices of both 

fluids are below the acceptable range for refractive index matching purposes. 

 

A.2.3. Viscosity Variations with Temperature 

Another important factor that needs to be considered while selecting fluids for 

MIR technique for fluid flow experiments is the viscosity of the fluid and the 

temperature dependence of the viscosity of that specific fluid. Therefore, viscosity 

measurements have been performed for each of the three candidate working fluids at 

different temperatures and under different shear rates and the results are presented in 

Figures A-3-5. Viscosity measurements have been performed in the practical range of 5-

80°C. As an exception, in case of the aqueous CaCl2 .2H2O solution, the lowest 

temperature is chosen to be 25°C in order to keep the solutions from crystallization. 

Furthermore, the highest temperature for P-Cymene viscosity measurements is set at 

60°C not to largely pass the flash point of P-Cymene. 

Figure A-3 represents the results of viscosity measurements of the aqueous CaCl2 

.2H2O solution with a refractive index matched with that of fused quartz. As seen in the 

figure, viscosity profiles of CaCl2 .2H2O solution show a similar trend under different 

shear rates for temperatures lower than 65°C. In the temperature range of 25-60°C, 

viscosity of the solution decreases with increasing the temperature; however, the 

solutions shows a totally different behavior for temperatures higher than 60°C.  For the 

temperature range of 60-80°C, viscosity values obtained under most shear rates show an 
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increasing trend while the temperature increases. Moreover, for temperatures higher than 

60°C, the viscosity values acquired under different shear rates do not follow a similar 

pattern. Therefore, in case of using aqueous CaCl2 .2H2O solution for MIR purposes, it 

is suggested to use the solution in temperatures below 60°C for which the viscous 

behavior of the solution is predictable and follows a certain trend. It is worth mentioning 

that this solution has a higher viscosity than water. Water has viscosity of 0.00089008 

Pa.s at a temperature of 25°C and a pressure of 1 atm (NIST Chemistry WebBook 2011).  

 

 
Figure A-3 Temperature dependence of the dynamic viscosity of aqueous CaCl2.2H2O solution 

under different shear rates. 
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The results of viscosity measurements for Dibutyl Phthalate in the temperature 

range of 5-80°C are shown in Figure A-4. As observed in this figure, viscosity of 

Dibutyl Phthalate decreases with temperature increase for all applied shear rates. 

Moreover, the viscosity profile of Dibutyl Phthalate under all shear rates follows a 

similar pattern and the data points at each temperature with different shear rates are 

almost identical.  

 

 
Figure A-4 Temperature dependence of the dynamic viscosity of Dibutyl Phthalate under different 

shear rates. 
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Figure A-5 represents the results acquired for the viscosity variations of             

P-Cymene under temperature variations and different shear rates. It is observed from the 

figure that for most shear rates -except for some temperatures at the shear rate of 

56.9(1/s)- the viscosity data points at each temperature match up pretty well.  

 

 
Figure A-5 Temperature dependence of the dynamic viscosity of P-Cymene under different shear 

rates. 
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A.3. Conclusion 

Optical distortions caused either by the refraction of the laser light passing 

through the test section walls/interfaces or by the non-uniformities in the refractive index 

in the measurement volumes is a main issue for the optical imaging techniques. Matched 

Index of Refraction technique - which involves matching the refractive indices of the 

transparent materials utilized in the construction of the test section and the working 

fluid- helps in eliminating the image distortion problem. Another major factor that needs 

to be considered while choosing a working fluid is the viscosity of the candidate fluid. 

In this investigation, several aqueous salt solutions and organic fluids have been 

studied for their refractive index and viscosity characteristics to find appropriate working 

fluids for transparent MIR facilities constructed with either fused quartz or acrylic. 

An aqueous CaCl2.2H2O solution with a concentration of 63% by weight of 

CaCl2.2H2O in water provides a solution with a refractive index matched with that of 

fused quartz. The temperature dependence of the refractive index and viscosity of this 

solution is further studied. Similar to water, the refractive index profile of the 

CaCl2.2H2O solution shows a low Thermooptic Constant. It has been observed that the 

CaCl2.2H2O solution crystalizes under lower temperatures and has unpredictable 

viscosity behavior for temperatures higher than 60°C; therefore, it is suggested that this 

solution is more applicable in a temperature range of 20-60°C. 

Two different organic fluids (Dibutyl Phthalate and P-Cymene) were proposed 

for refractive index matching with acrylic. The refractive indices of these fluids indicate 

a decaying trend with the increase in temperature which is more sensible in case of P-
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Cymene. Both Dibutyl Phthalate and P-Cymene have predictable viscosity profiles with 

a decreasing trend with respect to temperature. Dibutyl Phthalate has a higher viscosity 

(16.58310-3 (Pa.s) at 25°C) compared to P-Cymene (0.74110-3 (Pa.s) at 25°C). 

Moreover, Dibutyl Phthalate has a higher flash point (157°C) than P-Cymene 

(47.222°C). Regarding the results of this study, it can be concluded that Dibutyl 

Phthalate is the preferable working fluid in heated fluid flow experiments while             

P-Cymene is more suitable for isothermal experimental fluid dynamic studies.  
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APPENDIX B 
 

The time-averaged velocity fields along the vertical front-plane and back-plane 

of the measurement volume for the cases presented in Figure II-23 and Figure II-24 in 

Chapter II are presented in this Appendix. As observed from Figures B-1, B-2, and B-3, 

the velocity values within the back-plane and front-plane for each case are much smaller 

compared to those of the time-averaged velocity fields along their corresponding mid-

planes. This was somewhat expected since the mid-plane is the plane into which the jets 

inject. However, despite the relatively low velocities observed in the front-planes and 

back-planes, the key flow feature, the recirculation zone, which was observed close to 

the center rod of the mid-plane for all cases, is also observed in these planes. In cases 

with single impinging jets, the recirculation zones are observed close to the first two rods 

from the left-hand side of the field which are closer to location of the impinging jet in 

the mid-plane. In case of two impinging jets, the recirculation zone appears in the 

vicinity of all three rods within back-plane and front-plane. These flow features 

appearing close to the rods needs to be considered in the design process of the graphite 

support rods present in the lower plenum of a prismatic core VHTR. 
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(a) 

 

 
(b) 

Figure B-1 Time-averaged velocity field, the contour plot of the Y-velocity component for a single 

isothermal inlet jet with Rejet 1=13,400 (a) along the vertical back-plane, (b) along the vertical front-

plane. 
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(a) 

 

 
(b) 

Figure B-2 Time-averaged velocity field, the contour plot of the Y-velocity component for a single 

isothermal inlet jet with Rejet 1=4,470 (a) along the vertical back-plane, (b) along the vertical front-

plane. 
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(a) 

 

 
(b) 

Figure B-3 Time-averaged velocity field, the contour plot of the Y-velocity component for two 

isothermal inlet jets with different Reynolds numbers Rejet 1=11,160 and Rejet 2=6,250 (a) along the 

vertical back-plane, (b) along the vertical front-plane. 
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