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ABSTRACT 

 

The Performance of Fractured Horizontal Well in Tight Gas Reservoir.  

(December 2011) 

Jiajing Lin, B.S., Beijing Institute of Technology; 

M.S., University of Louisiana at Lafayette 

Chair of Advisory Committee: Dr. Ding Zhu 

 

Horizontal wells have been used to increase reservoir recovery, especially in 

unconventional reservoirs, and hydraulic fracturing has been applied to further extend 

the contact with the reservoir to increase the efficiency of development. In the past, 

many models, analytical or numerical, were developed to describe the flow behavior in 

horizontal wells with fractures. Source solution is one of the analytical/semi-analytical 

approaches. To solve fractured well problems, source methods were advanced from 

point sources to volumetric source, and pressure change inside fractures was considered 

in the volumetric source method. This study aims at developing a method that can 

predict horizontal well performance and the model can also be applied to horizontal 

wells with multiple fractures in complex natural fracture networks. The method solves 

the problem by superposing a series of slab sources under transient or pseudosteady-state 

flow conditions. The principle of the method comprises the calculation of semi-

analytical response of a rectilinear reservoir with closed outer boundaries.  
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A statistically assigned fracture network is used in the study to represent natural 

fractures based on the spacing between fractures and fracture geometry. The multiple 

dominating hydraulic fractures are then added to the natural fracture system to build the 

physical model of the problem. Each of the hydraulic fractures is connected to the 

horizontal wellbore, and the natural fractures are connected to the hydraulic fractures 

through the network description. Each fracture, natural or hydraulically induced, is 

treated as a series of slab sources. The analytical solution of superposed slab sources 

provides the base of the approach, and the overall flow from each fracture and the effect 

between the fractures are modeled by applying superposition principle to all of the 

fractures. It is assumed that hydraulic fractures are the main fractures that connect with 

the wellbore and the natural fractures are branching fractures which only connect with 

the main fractures. The fluid inside of the branch fractures flows into the main fractures, 

and the fluid of the main fracture from both the reservoir and the branch fractures flows 

to the wellbore.  

Predicting well performance in a complex fracture network system is extremely 

challenged. The statistical nature of natural fracture networks changes the flow 

characteristic from that of a single linear fracture. Simply using the single fracture model 

for individual fracture, and then adding the flow from each fracture for the network 

could introduce significant error. This study provides a semi-analytical approach to 

estimate well performance in a complex fracture network system. 
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CHAPTER I 

INTRODUCTION 

 

 

1.1 Statement of the Problem 

 

In recent years, hydrocarbon resources recoverable from reservoirs of different natures 

have become important play. These resources are referred as “unconventional 

resources”, including tight gas, gas/oil shale, oil sands, and coal-bed methane. North 

America has a substantial growth in its unconventional oil and gas market over the last 

two decades. The primary reason for that growth is because North America, being a 

mature market, is beyond the peak production from its convention hydrocarbon 

resources.  

The defining characteristics of an unconventional resource are at best nebulous. 

Etherington (2005) states “An unconventional reservoir is one that cannot be produced at 

economic flow rates without assistance from massive stimulation treatments or special 

recovery processes.” Others use a definition based upon two common aspects, they are 

comprised of large volumes of rock pervasively charged with hydrocarbon, and that the 

accumulation types are not dependent on buoyancy.  

 

                                                 


 This dissertation follows the style of  SPE Production & Operations. 
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New technology applications of multi-fractured horizontal wells allow us to produce 

at economical rates from these low permeable oil and gas resources. Since commercial 

exploration and production of oil and gas reservoirs began there have been 

circumstances where the reservoir character or depositional model has caused difficulty 

in assessment. Production assessment of unconventional reservoirs using standard 

methodology has been notoriously problematic. The complexity of the fractured system 

posts the challenges to analytical models, and reservoir simulation of such a system is 

extremely time-consuming.  

Although most of the solutions to the flow problem in porous media have been 

investigated in a similar case as in the heat transfer and the solution is originated from 

the heat transfer, Gringarten and Ramey’s (1973) work is the first application of the 

Green’s and Source function to the problem of unsteady-state fluid flow in the 

reservoirs. They introduced proper Green’s functions for a series of source shapes and 

boundary conditions. They showed that the point source solution is actually a more 

general theory of Green’s function, and used the integration of the response to an 

instantaneous source solution to get the response for a continuous source solution. The 

application of the Newman’s principle in breaking a problem of 3D into the product of 

three 1 D solutions is also discussed in this work.  

The application of source and Green’s function later extended to the unsteady-state 

pressure distribution for more complex well completion schematics by others. The major 

disadvantage of this method is the inherent singularity of the solution wherever the 

source is placed. Since the source is assumed to have no volume (point, line source), the 
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source is considered to be at infinite pressure at the time zero and it is not possible to 

calculate the exact pressure as a function of time at the point where source is placed. To 

handle this problem, a source method with assigned volume needs to be developed.  

Furthermore, as the petroleum industry goes toward producing lower quality reservoirs 

like low- and ultra-low permeability reservoirs, the period of transient flow covers larger 

part of the well lifetime and these pseudosteady-sate productivity calculations become 

less applicable in prediction of the reservoir’s production behavior. A source method 

needed to be able to fill this gap.  

 

1.2 Objectives 

 

In this proposed research, we present a different approach to the problem of unsteady 

state flow of a compressible fluid in a rectilinear reservoir. The model is based on the 

solution of a series of slab sources. It can be used to calculate well performance for 

horizontal gas wells with or without fractures. Fractures can be longitudinal or 

transverse, single or multiple, and fractures can be infinite conductivity or uniform 

influx. Using the slab source approach, we assigned the sources (horizontal wells or 

fractures) a geometry dimension and the effect of pressure behavior inside sources are 

considered by superposition principles. This method is relatively easy to apply because 

flow rate could be calculated directly from pressure difference between initial reservoir 
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pressure and pressure in fracture, which is the same as wellbore flow pressure for an 

infinite conductivity fracture.  

The research proposed in this project will develop a model to predict fractured 

horizontal well performance in tight/shale gas reservoirs. It will accomplish the flowing 

objectives. 

1. To develop the slab source method as a solution to the problem of pressure and 

production distribution in a closed, rectangular reservoir for a uniform flux 

boundary condition. 

2. To validate a series of solutions for pressure and flow rate behavior of simple and 

complex well/fracture configurations such as: 

 Vertical well 

 Horizontal well 

 Multiple fractures along a horizontal well 

 Hydraulic fractured well with natural fractures 

3. To demonstrate the applicability of the new solution method in predicting 

pressure and production behavior for a complex well/fracture configuration. 

4. To apply the new method as an optimization tool to obtain the best completion 

schematic for development of an example case. 

5. To study the flow effect inside of fractures by dividing the fracture into several 

segments. 
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1.3 Literature Review 

 

Over the past decades, point source integrated over a line and/or a surface has been 

mostly used in solving single-phase flow problems in porous media when fluid 

movement is from a complex fractured well system, Horizontal well models with point 

source solution have been presented in many literatures.  

Gringarten and Ramey (1973) were the first to apply the Green’s and source function 

to the reservoir flow problems. They introduced Green’s function under different 

boundary conditions for plane, slab, line, and point source. The source function is 

combined with Newman’s product to de-component a problem in 3D to the product of 

three 1D solutions.  

Gringarten et al. (1974) applied the Green’s function later to the unsteady state 

pressure distribution created by a vertical fractured well with infinite conductivity 

fracture. By dividing the fracture into N segments, a series of equations had been solve 

to calculate the pressure distribution and contribution of each segment to the total flow 

by assuming each segment as a uniform flux source.  

Cinco-Ley and Samaniego (1981) used the Green’s function under Laplace 

transform to develop the model of finite conductivity vertical fracture in an infinite 

reservoir. They presented a new technique for performing pressure transient analysis for 

vertical finite-conductivity fractures using a bilinear flow model.  
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Point source solution was introduced by Ozkan et al. (1995). He developed point 

source solution in Laplace domain in order to remove the limitations of the Gringarten 

and Ramey’s model in considering the wellbore storage and skin effects.  

By integrate the point source to line source, Babu and Odeh (1988) developed a line 

source solution to predict horizontal well performance in a closed reservoir. The model 

is under pseudosteady-state condition. One of the limitations of this method is the well 

must be parallel to the reservoir boundary.    

Goode and Kuchuk (1991) introduced solution for productivity of a horizontal well 

in a reservoir with no-flow boundary and constant pressure boundary. Their solution is 

expressed in the form of an infinite condition. A simplified solution for a short well was 

developed in their study.  

Ouyang et al. (1997) presented a 3D horizontal well model to describe wellbore 

pressure and reservoir pressure change with time and location. The formula is in the 

Laplace space. The transient pressure behaviors in physical space can be easily obtained 

by means of the Stehfest algorithm. 

Valko and Amini (2007) developed a method with distributed volume sources to 

simulate fractured horizontal wells in a box-shaped reservoir. A source term was added 

to the diffusivity equation to calculate the pressure distribution. Then the production rate 

from a fracture is computed. Different from the other point source methods, the volume 

source approach is able to describe the pressure behavior inside sources and its influence 

to the flow field. 
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Zhu et al. (2007) showed applications of the volumetric source model and field cases 

are presented in their work.  

Meyer et al. (2010) presented a comprehensive methodology using the trilinear 

solution to predicting the behavior of multiple transverse finite conductivity vertical 

fractures in horizontal wellbores.  

Miskimins et al. (2005) demonstrated that non-Darcy flow effects can influence well 

productivity across the entire spectrum of flow rates, including low rates. They showed 

that even in low velocity situations, non-Darcy effects can influence the productivity. 

Non-Darcy flow can have a major impact on reduction of a propped half-length to a 

considerably shorter effective half length, thus lowering the well’s productive capability 

and overall reserve recovery.  
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CHAPTER II 

METHODOLOGY 

 

Point source and line source solutions have been used to solve petroleum engineering 

problems in past years. The model is adapted from point source solutions of heat 

conduction problem. The slab source solution of 3D problems is obtained by multiplying 

three 1D slab sources together and integrating in time and along the source. This chapter 

presents a semi-analytical slab source solution for 3D wellbore and fracture system in 

this chapter. The model developed here can be applied to a variety of systems including 

horizontal wells, slanted wells, single fracture, and multiply fractures along a horizontal 

well. Firstly, the semi-analytical slab source solution is derived, and then the slab source 

solution is applied to predict well performance for different well systems. It also 

discusses the inner boundary conditions on the flow rate and wellbore pressure 

distribution along the wellbore and fractures. Finally, the non-Darcy effect inside of the 

fractures is studied.  

 

2.1 Source Technique 

 

The diffusivity equation of a single-phase incompressible fluid is written as Eq.(2.1)  

 
t

p

k

c

x

p t








 
2

2

 (2.1)  
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For an anisotropic medium, the diffusivity in three directional domains becomes 
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 (2.2)  

Because the diffusivity equation is in the same format as the heat conduction problems, 

we can directly apply the sink/source technique to solve the flow in porous media. 

 

2.1.1 Instantaneous Point Source 

Gringarten and Ramey (1973) presented the instantaneous Green’s function in infinite 

plane reservoir. The geometries of the source function are shown in Fig. 1 and Green’s 

functions for different boundary conditions in infinite plane reservoirs are shown in 

Table 1. 

 

Table 1—Instantaneous Green’s function in 1D infinite reservoir.  

Boundary Conditions Instantaneous Green’s functions for point source 

Constant pressure 
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     
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where, tc  . 
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Fig. 1—Instantaneous Green’s function for point source. 

 

For a 3D problem Newman’s product can be applied to instantaneous Green’s and 

source functions which solves a 3D problem by multiplication of three 1D problem 

solution.  The instantaneous Green’s function for a 3D reservoir that can be visualized as 

the intersection of three one-dimensional reservoirs is equal to the product of the 

instantaneous Green’s function for each one-dimensional reservoir. For example, the 

x=0 x=a 

No-flow boundary condition 

at x=0 and x=a 

x=0 x=a 

Constant pressure boundary condition 

at x=0 and x=a 

x=0 x=a 
Mixed boundary condition  

No-flow boundary at x=0 

Constant pressure at x=a 
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dimensional pressure drop as a results of a constant production, q, at a position (x0, y0, 

z0) in a homogenous box-shaped reservoir measured at a position (x,y,z) is readily 

calculated by 

    zyx sss
L

qB
tzyxpp 













,,,int  (2.3)  

In the above equation, pint is initial pressure, B is formation volume factor, L is the 

distance between point (x,y,z) and (x0,y0,z0), and sx, sy, and sz are the solution of 1D 

source problem depending on the instantaneous Green’s functions which shown in Table 

1. Fig. 2 shows the geometry of the source and the reservoir.  

 

 

Fig. 2—Instantaneous point source in a box-shaped reservoir. 

 

For example, if the reservoir is completely bounded or no-flow across the reservoir 

boundary, and sx, sy, and sz in this case are 

(xo,yo,zo) (x,y,z) 

h 
b 

a 

z 

y 

x 
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2.1.2 Continuous Point Source Solution 

By integrating the continuous point source solution along a line, the continuous line 

source solution could be developed. For a line source that have the initial position at (x01, 

y01, z01) and the end point at (x02, y02, z02) as shown in Fig. 3, the solution of the 

continuous line source in dimensional format can be written as, 

     dydsss
L

qB
tzyxpp

y

y

t

zyx 



  










2

1 0

000

int ,,,  (2.7)  

The sx, sy, and sz can be any combinations of the instantaneous Green’s function 

depending on the boundary conditions in Table 1. 
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Fig. 3—Schematic of a horizontal well trajectory in line source. 

 

2.1.3 Slab Source Solution 

The slab source method solves the flow problem in a parallelepiped porous medium with 

a slab source, s, placed in the domain, as shown in Fig. 4. The reservoir is assumed to be 

an anisotropic porous medium. Following the same approach as the conventional point 

source solution to apply Newman’s principle, the three-dimensional pressure response of 

the system to an instantaneous source can be obtained as the production of the solutions 

of three one-dimensional problems from each principal direction. 

 

 

z 

y 

x 

(xo,yo1,zo1) (xo,yo2,zo2) 

 

h 
b 

a 
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Fig. 4—Schematic of the slab source model. 

 

 

 

The solution from this technique applies to different state in the flow period, both 

transient flow and stabilized flow. The boundary condition of the reservoir can be 

constant pressure boundary, no-flow boundary or mixed boundary, which makes the 

model practical to a wide range of flow problems in petroleum engineering. 

The procedure of obtaining the solution is to obtain one-dimensional solution of the 

slab problem, applying Newman’s product method based on instantaneous source 

function in an infinite reservoir to get three-dimensional solution, and then integrates the 

three-dimensional solution over time to get a continuous source function. Modifying the 

point source domain by placing a pair of parallel plates in the domain, as shown in Fig. 

5, we began the model with one-dimensional instantaneous infinite slab source in an 

infinite slab reservoir. Green’s functions (Carslaw and Jaeger, 1959) for different 

boundary conditions in infinite slab domain with a system schematic are shown in Table 

2. 
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Fig. 5—Instantaneous Green’s function for slab source. 
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Table 2—Instantaneous Green’s function in 1D infinite slab reservoir (Carslaw and Jaeger, 1959). 

Boundary Conditions Instantaneous Green’s Functions 

Constant pressure 
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Staring with an instantaneous slab source in an infinite one-dimensional reservoir 

(Fig. 5), overlaying three of such sources in x, y, and z direction makes a three-

dimensional instantaneous slab source in a box-shaped reservoir. To obtain the solution 

of the new system, we multiple the three solutions of the original one-dimensional 

problem to have an instantaneous solution for the three-dimensional system. Integrate 

over the well trajectory or the fracture length and height to get the instantaneous slab 

source solution for the performance of the well, and then integrate over the time to get 

the three-dimension continuous slab source solution to solve practical reservoir 

problems. The procedure is summarized in Fig. 6. The solution as instantaneous source 

depends on the locations of the slab source and the box shape reservoir. To apply this 

method for horizontal wells with or without fractures, we define the source term (the 
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location and the dimensions of the source) and the main domain according to each 

individual physical system. 

 

 

 

 

Fig. 6—Slab source solution flowchart. 

 

 

 

For instance, the pressure drop as a results of a constant production, q, at a position 

(x0,y0,z0) in an anisotropic box-shaped reservoir measured at a position (x, y, z) is 
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where, a is reservoir width, b is reservoir length, h is reservoir height, and sx, sy and sz 

are the slab source functions in each direction depending on the boundary conditions, as 

shown in Table 2.  

For no-flow boundary condition, and sx, sy, and sz are 
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After obtain the instantaneous slab source solution under defined boundary 

conditions, we integrate the instantaneous point source over a time interval to attain the 

continuous slab source solution. The pressure drop at point (x, y, z) as a result of the 

continuous production or injection at position (x0, y0, z0) in an anisotropic box-shaped 

reservoir then is 
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For the slab source representing a fracture as shown in Fig. 7, the solution of the 

continuous slab source can be written as, 
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Fig. 7—Schematic of a single fracture. 

 

To integrate Eq.(2.13), the solution is  
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where F(x, y, z, t) is equal to  
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(2.15)  

At late time or stabilized flow, the exponential terms in Eq. (2.15) becomes zero and 

it reduced to 
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  (2.16)  

For stabilized flow under pseudo-steady-state condition, the average reservoir 

pressure can be written as 
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Defining the drainage volume, then 
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Because tc  we substitute  into Eq. (2.18) and we obtain 
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Substituting Eq. (2.19) into Eq.(2.17), we have 
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  (2.20)  

In oil field unit, Eq. (2.20) becomes 
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(2.21)  

where tc 73.158  

For gas reservoir, Eq.(2.20) becomes 
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 (2.22)  

 

 

2.1.4 Horizontal Well in Slab Source Solution 

Using the slab source solution to calculate a horizontal well without fractures 

performance, first define inner boundary condition, then to count pressure change inside 

a wellbore, we divide the wellbore into N segments. Each segment connects to each 

other by superpositioning in space. By using this technique, a set of linear equation is 
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generated and the solution of the system equation predicts the well performance. For 

horizontal well showed in Fig. 8, the pressure drop causes by a constant production flow 

rate, q1, into segment 1 is evaluated on the well circumstance are the middle of every 

well segment. For each segment, we have a set of N linear equations for pressure 

respond to the flow. With N segments, there are N set of N linear equations as shown in 

Eq. (2.24).  

 

 

 

 

Fig. 8—Schematic of slab source for horizontal well. 
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NN pNNFqNFqNFqNFq  ),(...)3,()2,()1,( 321  (2.23)  

 

 

2.1.5 Fracture System in Slab Source Solution 

For fractures, we divided each fracture into N*N segments, each segment will create 

flow rate from the reservoir. For example, we have a fracture with 25 segments as shown 

in Fig. 9, each segment is contact with each other. To simplify the problem, it is 

assumed that in such a system, only fracture create flow rate. Similar to the horizontal 

well system, each segment will generate flow rate from the reservoir. Because of the 

flow rate in the segment 1, the pressure for the other 24 segment will be changed. By the 

same way, the flow rate of the second segment would change the pressure distribution in 

the other 24 segments. With N*N segments, we have a set of N*N linear equations for 

pressure respond to the flow in the fracture. The horizontal well takes flow rate from the 

fracture, but not directly from the reservoir.  

 

 

Fig. 9—Discretized fracture. 
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The pressure drop as a result of each fracture segment produces at a constant rate is 

calculated by Eq. (2.14). The pressure at segment i as a result of the production, qj, at 

segment j is evaluated by multiplying qj with F(i,j) as shown in Eq. (2.14) and (2.15). 

For the entire fracture (N segment), we obtain a set of linear equation shown as,  

 1321 ),1(...)3,1()2,1()1,1( pNFqFqFqFq N    

 
2321 ),2(...)3,2()2,2()1,2( pNFqFqFqFq N    

 
3321 ),3(...)3,3()2,3()1,3( pNFqFqFqFq N    

 . 

. 

. 

 

 
NN pNNFqNFqNFqNFq  ),(...)3,()2,()1,( 321  (2.24)  

where, qj is a constant flow rate flow into segment j and ∆pj is the pressure drop 

calculated at segment j as a result of the production into every segment. The total 

production from the fracture is calculated by  

 total

n

j

j qq 
1

 (2.25)  

where qtotal is the total production for every segment, or the maximum flow rate if the 

well constraint is constant production rate. By using the above method, we can calculate 

the horizontal well with fractures performance in uniform flux boundary condition, 

infinite boundary condition, and finite boundary condition. The well system is predicted 

by either a constant flow rate constraint or constant wellbore pressure constraint.  

The inflow distribution along the wellbore or fracture depends on the inner boundary 

conditions.  
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2.1.6 Solution for Infinite Conductivity Condition 

In infinite conductivity condition for fractures, we divided the source into N segments. 

For a source under infinite conductivity, uniform pressure over the source is assumed. 

Fig. 9 shows an example of how the source is discretized into 25 segments. For the 

infinite conductivity inner boundary condition, the wellbore pressure is constant along 

the well or the fracture. The right hand side in Eq. (2.26) have the same pressure drop 

which shown in Eq. (2.27).In this way, we could solve the set of liner equations and get 

the flow rate along the fracture.  

 125321 )25,1(...)3,1()2,1()1,1( ppFqFqFqFq i    
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. 
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. 

 

 2525321 )25,25(...)3,25()2,25()1,25( ppFqFqFqFq i   (2.26)  

 252 ... pppi   (2.27)  

 

 

2.1.7 Solution for Finite Conductivity Condition 

For the cases with finite conductivity we use the same approach as the infinite 

conductivity except we have to introduce another term to account for the pressure drop 

between source segments because of the source conductivity. 
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We first define the inner boundary condition at the interface of the source and the 

domain (for example, the wellbore and the reservoir). Then we divide the fracture into 

multiple segments. The segments are then connected to each other by super position in 

the space. By using this technique, a set of linear equation is generated and solved to 

predict the fractured horizontal well performance. Fig. 10 shows an example for 25 

sources fracture. We first allow source 1 to exist in the reservoir and let it generate a 

flow rate of q1 at the location. The flow results in corresponding pressure changes at 

locations of sources 2 through 25. Then if we only let source 2 exists the pressure also 

changes at all source locations. We can apply this procedure to all 25 sources in the 

system. To illustrate the influence of the source location, we use dimensional format of 

the equations in this section.  

 

 

Fig. 10—Segment fracture for finite conductivity. 
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circle 3 is in pink.  The fluid will firstly flow from the out boundary to inner boundary of 

circle 1(seg. 1-5, 6, 10-11, 15-16, and 20-25). Then the fluid flows inside circle 2(seg. 7-

9, 12, 14, 17-19). Finally it flows from circle 3 to wellbore. In such a way, we could 

easily calculate the pressure drop inside of the fracture by Eq. (2.28). 
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 (2.28)  

where,  A is drainage area, CA is shape facture, and is Euler’s constant. 

The Earlougher’s shape factor is shown in Table 3. 

 

Table 3—Shape factor (Earlougher, 1977). 

Drainage Area Earlougher Shaper Factor 
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The procedures for calculating the flow rate and pressure drop along the fractures 

have two parts. One is from the reservoir to the fracture. The other is inside of the 

fractures. An example used here for a transverse fracture with 25 segments.  

First it is the reservoir to fracture system. The fracture is divided into 25 segments. 

We start from the first segment to the last segment. The segment 1 will generate the flow 

rate from the reservoir, q1, flowing into the fracture by using Eq. (2.22). After this 

calculation, we will have 25 F(1, j) terms. Then we move to the next segment which is 

segment 2 and repeat the same procedure but for this segment we evaluate the pressure 

drop as a result of a constant flow, q2,  flowing into segment 2 which gives another 25 

F(2, j). We use the superposition principle in space to get a set of linear equation. The 

series of linear equation can be written as Eq. (2.29) 
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 (2.29)  

Then, fluid inside fracture is analyzed. As shown in Fig. 10, for circle 1, the pressure 

drop in these segments could be calculated by Eq. (2.28). We rewrite the equation as the 

following 

 11,1, circlecircleinnercirclei Bqpp   (2.30)  

pi is the pressure at the middle point of each segment.  
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In the circle 2, the fluid flows from the out boundary of circle 2 to the middle of the 

segment, then to the inner boundary of circle 2. The flow rate will be the fluid flow 

inside of the segment plus the fluid comes from the circle 1.  

 22,2, circlecircleinnerciclei Cqpp   (2.31)  

 
22,2, circlecircleicirlceout Eqpp   (2.32)  

Finally the fluid flows inside circle 3 from out boundary of circle 3 to the wellbore, it 

could be written as 

 33, circlewfcircleout Dqpp   (2.33)  

where, pwf is the wellbore pressure.  

To solve these equations, subsisting Eqs. (2.30), (2.31), Eq. (2.33) into Eq. (2.29) 

yields 

   icircleoutcircleinnercircleinner qDCBApppp  3,2,1,int  (2.34)  

Adding Eq. (2.31) and Eq. (2.32) 

   icircleinnercircleout qCEpp  2,2,  (2.35)  

where B, C, D, and E are the left part of Eq.(2.18) with different rw, CA, and A.  

We also set that  

 2,3, circleinnercircleout pp   (2.36)  

and  

 1,2, circleinnercircleout pp   (2.37)  
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The procedure to calculate the production and pressure distribution is showed in Fig. 

11. We first assume the values of pinner,circle1 and pinner,circle2 to calculate the gas flow rate, 

and then calculate the pout,circle2 by using Eq. (2.35).  

 

 

Fig. 11—Flow chart for pressure drop inside fracture. 
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We compared the pout,circle2 and pinner,circle1 to check whether they are the same. If it is 

not, we will set a new pinner,circle1 value which is equal to pout,2 to iterate until pout,cirlce2 is 

equal to pinner,circle1. Then we will move to the next step to calculate pwf using Eq. (2.33). 

Comparing with the true pwf which is a given parameter, if they are same then we 

calculate the flow rate and pressure distribution in the fracture. If it is not, then we 

increase or decrease the pinner,circle2 value to iterate again until the pwf is converged.  

 

 

2.1.8 Solution for Multi-Fractures System 

A schematic of transverse fractures with a horizontal well is illustrated in Fig.12. As a 

simple example, we consider a two-transverse-fracture. For transverse fractures 

intercepting a horizontal well, the fractures are represented as infinitely conductive or 

with uniform flux under the assumption that the fractures are dominating the total 

production to the well. Each fracture can be treated as an individual source and their 

effects to other fractures are included through the superposed pressure drawdown. 
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Fig. 12—Transverse fractures along a horizontal well. 

 

 

 

Eq. (2.22) can be directly used in this case. In the equation i denotes the location that 

observes the pressure change, and j denotes the fracture that causes the pressure change. 

If considering pressure drop in the wellbore between fractures, then 

 iwellboreiwfiwf ppp ,1,,    (2.38)  

To calculate the well performance, we first place fracture 1 in the system, which 

causes a flow rate of q1 at the location of the fracture 1. The flow results in 

corresponding pressure changes at both locations of the fracture 1 and the fracture 2. 

Then if assume only fracture 2 exist, the pressure also changes at both locations. Since 

the total pressure drawdown at each fracture should be the sum of the pressure drops 

caused by all the fractures in the system, by the superposition principle, we have 

 1),,,(int *),,,(
1

qtzyxFpp tzyx    

 

 

2),,,(int *),,,(
2

qtzyxFpp tzyx   (2.39)  
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The pressure drop inside the wellbore relates the wellbore flowing pressure pwf,1 and pwf,2 

(Economides, el.at, 1993) 
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The pressure drop along the fracture could also be studied. We divided the fracture 

into N*N segments which are connected to each other by super position. An example of 

a horizontal well with two transverse fractures is presented here by dividing each 

fracture into 9 segments, as shown in Fig. 13. 

 

 

 

 

Fig. 13—Transverse fractures with segments. 
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we move to the next segment (segment 2) and repeat the same procedure but for this 

segment we evaluate the pressure drop as a result of constant flow, q2, flowing into 

segment 2 which gives another 18 F(2, j). We continue this calculation to the last 

segment. At this point we will obtain totally 18*18 F(i, j) terms. Then we use the 

superposition principle in space to connect the wellbore segments. This yields a set of 

linear equations.  

 1int18321 )18,1(...)3,1()2,1()1,1( ppFqFqFqFq    

 
2int18321 )18,2(...)3,2()2,2()1,2( ppFqFqFqFq    

 
3int18321 )18,3(...)3,3()2,3()1,3( ppFqFqFqFq    

 . 

. 

. 

 

 
18int321 )18,18(...)3,18()2,18()1,18( ppFqFqFqFq N   (2.41)  

 

The series of linear equation can be written as Eq. (2.41). Then we solve this linear 

system by defining the inner boundary condition. 

The matrix solver used here already encountered the inverses of matrices if it is 

nonsingular. Gauss-Jordan elimination is used to determine whether a given matrix is 

invertible and find the inverse. Gauss-Jordan elimination is an algorithm for getting 

matrices in reduced row echelon form using elementary row operations. It is a variation 

of Gaussian elimination. Gaussian elimination places zeros below each pivot in the 

matrix, starting with the top row and working downwards. Matrices containing zeros 

below each pivot are said to be in row echelon form. Gauss-Jordan elimination goes a 
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step further by placing zeros above and below each pivot; such matrices are sid to be in 

reduced row echelon form. Every matrix has a reduced row echelon form, and Gauss-

Jordan elimination is guaranteed to find it.  

If Gauss-Jordan elimination is applied on a square matrix, it can be used to calculate 

the matrix’s inverse. This can be done by augmenting the square matrix with the identity 

matrix of the same dimensions and applying the following matrix operation. 

      11   IAAIAAI  (2.42)  

 

 

 

2.1.9 Non-Darcy Flow 

The existence of non-Darcy effects in the flow of fluids through porous media has been 

studied by petroleum industry for many years; however, characterizing and assessing in 

magnitude of these effects is still proved difficult. 

Henry Darcy developed flow correlation through sand pack configurations in 1856 

by flowing water at the local hospital. His results are based on a series of experiments on 

water flow through a sand packed column at various pressure differentials. From these 

various experiments he concluded that flow rate varied in proportion to the imposed 

head and inversely to the height of the sand pack.  Darcy’s law describes that the linear 

proportionality which is in Eq. (2.43)  involving a constant, k, is related to the potential 

gradient ∂p/∂L, the fluid viscosity of µ, and the superficial velocity of v. 
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


 (2.43)  

In 1901, Forchheimer Observed that the deviation from linearity in Darcy’s law 

increased with flow rate. He proposed a second proportionality constant to describe the 

increasing pressure drop caused by inertial losses. He assumes that Darcy’s Law is still 

valid, but added an additional pressure drop.  The familiar Forchheimer equation is 

shown in Eq. (2.44)  
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 (2.44)  

When the flow velocity is low, the second term in Eq. (2.44) can be neglected. However, 

for higher velocities this term becomes more important, especially for low viscosity 

fluids. If dividing Eqs.(2.43) and (2.44) by g we obtain  
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 (2.45)  

for Darcy flow and  
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for non-Darcy flow. Comparing Eq. (2.45) and (2.46) we see that the effective 

permeability (determining the actual pressure drop) is 
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The second term in the denominator of the right-hand side is dimensionless and acts as a 

Reynolds Number for porous media flow. The Reynolds number in a porous media can 

be defined as 

 


 fk
N Re  (2.48)  

where, kf is in Darcy or cm-g/100sec
2
-atm,  is in g/cm

3
,  is in cm/s, ug is in cp or 

g/100cm-sec and  is in atm-sec
2
/gm. 

Suggested by Geertsma (1974) , substituting Eq. (2.48) into Eq. (2.47), the final 

expression of kf-eff describing the non-Darcy flow effects is 

 
 Re1 N

k
k

f

efff


  (2.49)  

where velocity  in Eq.(2.48) 

 
A

q
353.0  (2.50)  

where, q is in Mscf/day and A is in ft
2
. 

In hydraulic fracturing operations, the non-Darcy flow effect has been addressed by 

Cooke (1973). The oil industry attempts to study the impact of non-Darcy effects under 

different producing situations in the past several years.  Non-Darcy effects can 

significantly decrease well production especially in high flow rate well. Smith, et al 

(2004), claimed that non-Darcy flow effects decrease 35% in productivity in a 

hydraulically fractured high rate oil well. They also showed a productivity index 

reduction of 20% in a high rate (120 MMscf/d) gas well. Cramer (2004) also concluded 

that “Non-Darcy flow in the fracture exists to some extent in most gas well completions. 
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It will show up as a rate dependent pseudo-skin, reducing the calculated effective xf 

(half-length)” in an extensive analysis of non-ideal cases.  

The non-Darcy effect calculation, is one of the important parameters.  factor is a 

property of the porous media. The equations have been developed to estimate this factor 

is based on lab data. Cooke (1973) first developed equation to estimate  factor of 

proppants. Brady sand was used in the lab experiments. Based on the form of the 

Forchheimer equation presented in Eq. (2.49), Cooke plotted 
vL

p




vs



v
 to get the 

factor, which is the slope of the curve on the plot. Five sand sizes and various stress 

levels were considered. The fluids used were brine, gas and oil. Cooke observed no 

difference of the results among fluids evaluated. All curves followed the simple equation 

 b

fk

a
  (2.51)  

where, kf is in Darcy,  is in atm-sec
2
/gm, a and b are dimensionless, correlation 

constants, as shown in Table 4. 

Penny and Jin (1995) plotted b factor vs. permeability for different type of 20/40 

proppants (i.e. northern wide sand, precurred resin coated white sand, intermediate 

strength ceramic products and bauxite).  Final equation developed by them has the same 

form as Cooke’s equation where the coefficients a and b depends on type of sand. These 

coefficients are shown in Table 5. The correlation provides the dry  factor because the 

authors propose to correct it for multiphase flow (when water or condensate is also 

flowing). 
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Table 4— Constants a and b of Cooke’s equation. 

Sand Size 

 (mesh) 

a b 

8/12 3.32 1.24 

10/20 2.63 1.34 

20/40 2.65 1.54 

40/60 1.10 1.6 

 

Table 5—Constants a and b of Peeny and Jin equation for 20/40 mesh. 

Type of proppant a b 

Jordan Sand 0.75 1.45 

Precurred Resin-Coated Sand 1 1.35 

Light Weight Ceramic 0.7 1.25 

Bauxite 0.1 0.98 

 

As previously discussed, non-Darcy flow in a gas reservoir causes a reduction of the 

productivity index. The effect on pressure drop and production distribution inside 

fracture is estimated following the flow chart as shown in Fig. 14. Using the slab source 

method, the flow rate is first calculated with the original proppant. Then the effective 

proppant permeability is compared with the proppant permeability at the flow rate to 

check whether they are the same. If it is not, the effective proppant permeability is used 

to get the new gas production by the slab source method. The iteration stops until the 

new effective proppant permeability is the same as the previous one. The final proppant 
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permeability is then used to calculate the pressure and production distribution along the 

fracture.  

 

Fig. 14—Flow chart for Non-Darcy flow. 
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2.1.10 Preliminary Solution for Complex Fracture System 

The multiple hydraulic fractures combined with natural fractures create very complex 

fracture networks. In this study, a simplified hydraulic fracture/natural fracture system is 

used to illustrate the approach of using the Slab source model to estimate flow rate in 

such a system.   

 

 

Fig. 15—Schematic of complex fracture system. 

 

Fig. 15 shows the physical model used in the approach. If assuming that the natural 

fractures that connected to the hydraulically created fractures are all orthogonal to the 

hydraulic fractures, as shown in Fig. 15, then it is assumed that the hydraulic fractures 

that connect with the wellbore are the main fractures and the natural fractures are branch 

fractures which only connect with the main fractures, but not the wellbore. The fluid 

inside the branch fractures directly flows into the main fractures. For the main fractures, 
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the fluid is from both the reservoir and the connected branch fractures, and it flows to the 

wellbore. We considered each hydraulic fracture and natural fracture is an individual 

source, and the sources will be affected by each other. Superposition method is applied 

in this situation. By inputting properties for the natural fractures and hydraulic fractures, 

production can be calculated.  

The natural fractures are local sources providing flow rate at the locations where they 

intercept with hydraulic fractures. If a natural fracture intercept move than one hydraulic 

fracture, such as NF3 and NF4 in Fig. 15, the natural fracture will be treated as shown 

on the right side of Fig. 15. The natural fracture is divided into 2 parts, and each part 

would be treated as a single natural fracture. Then the total flow rate from this natural 

fracture is the total of the two parts. For example, the flow rate of NF4 is divided by 2 

part and we treated it as NF5 and NF6. 

The complex system is controlled by a constant wellbore pressure. With the system 

shown in Fig. 14, we have 4 hydraulic fractures, HF1, HF2, HF3, and Hf4; and 4 natural 

fractures NF1, NF, 2, NF3, and NF4. However, NF3 and NF4 are connected with two 

Hydraulic fractures, and then the total fracture number should be 10. 

We acquire a set of linear equations as shown in Eq.(2.52). Then we solve this linear 

system by defining the inner boundary condition  

 

 1int11321 )10,1(...)3,1()2,1()1,1( ppFqFqFqFq    

 
2int11321 )10,2(...)3,2()2,2()1,2( ppFqFqFqFq    



 49 

 
3int11321 )10,3(...)3,3()2,3()1,3( ppFqFqFqFq    

 . 

. 

 

 
10int11321 )10,10(...)3,10()2,10()1,10( ppFqFqFqFq   (2.52)  
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CHAPTER III 

VALIDATION 

 

The solution presented in Chapter 2 is validated by the solutions of different methods. 

For horizontal wells, we compared the solution with an analytical solution presented by 

Babu and Odeh (1988), and for fracture cases, we validated the slab source model with 

the volumetric source model (Valko and Amini, 2007) and commercial software, Ecrin-

Kappa (Version 4.12). We validated the complex fracture system case with the 

ECLIPSE (Schlumberger).  

 

3.1 Uniform Flux Horizontal Well 

 

Babu and Odeh (1988) presented a method to obtain the performance of a horizontal 

well. They developed a line source solution to represent a horizontal well. The model is 

under pseudo-steady state condition.  The input data is given in Table 6. Comparing the 

slab source model with Babu and Odeh’s model, Fig. 16 shows the results of the two 

solutions for the example of uniform flux horizontal well. The result of the slab source 

model agrees with the Babu and Odeh’s model. Since Babu and Odeh’s model assumed 

pseudo-steady state boundary, the reservoir pressure is an average pressure over the 

reservoir volume, but the slab model is a transient model and pressure declines from the 

initial reservoir pressure. We used the material balance to approximate the average 
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reservoir pressure decline when using Babu and Odeh’s model, which causes the 

difference between the results of the two models. 

 

Table 6—Input data for horizontal well validation. 

Parameter Value Unit 

Reservoir length (assumed), b 4000 ft 

Reservoir width (assumed), a 2000 ft 

Reservoir thickness, h 200 ft 

Horizontal wellbore length, L 3000 ft 

Porosity,  9.0%  

Reservoir initial pressure, pi 2335 psi 

Reservoir temperature, T 146 F 

Bottomhole pressure, pwf 1886 psi 

Gas specific gravity, g 0.836  

Water specific gravity, w 1.005  

Gas component  {
   
   

  

 

0%  

1%  

1.4%  

Reveal Data 

Horizontal permeability, kh 0.25 md 

Vertical permeability, kv 0.1 md 

Gas viscosity, g 0.0156 cp 
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Fig. 16—Comparison of the slab source model with Babu and Odeh’s model. 

 

Ouyang (1997) presented a semi-analytical solution to study to horizontal well 

performance under pseudo-steady state condition by an integrated point source along a 

well trajectory. The slab source model has been compared with Ouyang’s model. The 

input data is shown in Table 7. The results (Fig. 17) show that the two methods get the 

similar results for pseudo-steady state condition. At the beginning of 300 days, the flow 

rate drops fast and then it is almost flat.  

 

 

 

 

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12 14 16

q
g,

 M
sc

f/
d

ay
 

Time, month 

Slab source solution

Babu and Odeh's
solution



 53 

Table 7—Input data for horizontal well validation (2). 

Parameter Value Unit 

Reservoir length (assumed), b 4000 ft 

Reservoir width (assumed), a 1000 ft 

Reservoir thickness, h 200 ft 

Horizontal wellbore length, L 3000 ft 

Porosity,  0.2  

Reservoir initial pressure, pi 3500 psi 

Bottomhole pressure, pwf 2000 psi 

Formation volume, B 1.1 bbl/stb 

Oil viscosity 1.6 cp 

Horizontal permeability, kh 10 md 

Vertical permeability, kv 10 md 

Total compressibility, ct 1.25*10
-5

 psi
-1

 

 

 

Fig. 17—Comparison of the slab source model with Ouyang’s model. 
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3.2 Fully Penetrating Transverse Fracture Intercepting a Horizontal Well 

 

The input data used in validating the fracture model is shown in Table 8. The result of a 

fully-penetrating transverse fracture with uniform flux is compared with the solution by 

the distributed volumetric source model (Valko and Amini, 2007) and the commercial 

software Ecrin-Kappa. In this case, as demonstrated in Fig. 18, the three methods 

showed a good agreement. It should be noticed that the slab source model neglected the 

pressure drop caused by the Non-Darcy flow inside fracture. For the purpose of 

comparing with the distributed volumetric source model because this pressure drop is 

not included in the distributed volumetric methods. When flow rate is high, this 

assumption is not valid (Miskimins. et. al, 2005) and could result in some errors in rate 

estimation.  

From the comparisons with other models at the appropriate conditions, we validated 

of the slab model for horizontal wells with an excellent agreement for uniform flux and 

infinite conductivity solution. For the case of fractured wells, the results are in very good 

agreement (within 1% difference).  
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Table 8—Input data for single transverse fracture validation. 

Parameter Value Unit 

Reservoir length (assumed), b 4000 ft 

Reservoir width (assumed), a 2000 ft 

Reservoir thickness, h 200 ft 

Porosity,  0.09 ft 

Reservoir initial pressure, pi 2335 psi 

Reservoir temperature, T 146 F 

Bottomhole pressure, pwf 1885 psi 

Gas specific gravity, g 0.836  

Horizontal permeability, kh 0.5 md 

Vertical permeability, kv 0.25 md 

Gas viscosity, g 0.0156 cp 

Fracture length, Lf 1000 ft 

Fracture height, hf 100 ft 

Fracture width, wf 0.033 ft 
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Fig. 18— Comparison of the slab source model with DVS and simulation by Ecrin. 
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segment number. In addition, the total flow rate should be equal to the rate from non-

segment fracture model if neglecting the pressure drop inside the fracture. We use this to 

validate the superposition operation.  The input data is given in Table 8. The example 

shown here is to validate the superposition method which is used in our model. By 

checking whether the total flow rate is the same no matter of how many segments the 

fracture has.  From the results (Fig. 19), the production rates for 1, 4 and 9 sources are 

the same, which confirms the superposition method we used in the study. More segment 

number can be used to count for conversion in the fracture. The effect of heterogeneity 

in the reservoirs can also be studied by this method by assigning different permeability 

to different segments.  

 

 

Fig. 19—Comparison of superposition procedure. 
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3.4 Complex Fracture System vs ECLIPSE 

 

For complex fracture system, we use a simple example to compare our results with a 

commercial simulation result (ECLIPSE 100, Schlumberger). The input parameters are 

list in Table 9. The schematic of complex fracture system is show in Fig. 20. 

 

 

 
Fig. 20—Complex fracture system schematic. 

 

Fig. 21 and 22 present comparison of the two methods. They show a good match. 
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Table 9— Input data for complex fracture validation. 

Parameter Value Unit 

Reservoir length (assumed), b 2000 ft 

Reservoir width (assumed), a 1000 ft 

Reservoir thickness, h 100 ft 

Porosity,  0.09 ft 

Reservoir initial pressure, pi 2200 psi 

Reservoir temperature, T 146 F 

Bottomhole pressure, pwf 1800 psi 

Gas specific gravity, g 0.836  

Horizontal permeability, kh 0.01 md 

Vertical permeability, kv 0.001 md 

Gas viscosity, g 0.0156 cp 

Horizontal well length, L 1500 ft 

Hydraulic Fractures   

Fracture length, xf 250 ft 

Fracture height, hf 100 ft 

Fracture width, wf 0.033 ft 

Natural Fractures   

  Fracture length, xf 125 ft 

  Fracture height, hf 50 ft 

  Fracture width, wf 0.008 ft 
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Fig. 21—ECLIPSE simulation results. 

 

 

 
Fig. 22—Slab source model results. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

In this chapter, the Slab source method is applied to cases of complex well or fractured 

horizontal well schematic to show how to optimize the production of such wells by using 

the developed method.  

Examples of horizontal well with different wellbore length, a horizontal well with 

single or multiple transverse fractures intercepts horizontal well are presented first. Then 

three field examples are used to show the procedure of the model application with one 

example for low permeability unconventional reservoir, and the other moderate 

permeability conventional reservoir.  

 

4.1 Synthetic Model 

 

In this section, synthetic examples are used to illustrate how to use the Slab model to 

optimize well design for horizontal wells and horizontal wells with fractures. The input 

data used in this section is shown in Table 10. 
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Table 10—Input data for synthetic examples. 

Reservoir type Tight gas 

Formation type Sandstone 

Parameter Value Unit 

Reservoir length (assumed), b 4000 ft 

Reservoir width (assumed), a 2000 ft 

Reservoir thickness, h 200 ft 

Horizontal wellbore length, l 1000, 2000, 3000, 3500 ft 

Porosity,  9.0%  

Reservoir initial pressure, pi 2500 psi 

Reservoir temperature, T 146 F 

Bottomhole pressure, pwf 1800 psi 

Gas specific gravity, g 0.836  

Reveal Data 

Horizontal permeability, kh 0.1, 0.01, 0.001 md 

Vertical permeability, kv 0.01, 0.001, 0.0001 md 

Gas viscosity, g 0.0156 cp 

 

 

4.1.1 Horizontal Well 

To product tight gas reservoir, horizontal wells are more efficient compared with vertical 

wells. The length of the horizontal laterals relative to the reservoir drainage dimension 

will is a key parameter for well production. In general, for tight formation since mobility 

dominates the production, the longer the wellbore length, the higher the production rate. 

Comparing to the drawdown of the reservoir, the pressure drop along the wellbore is 

usually not significant, therefore the pressure drop along the wellbore is neglected in 
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these examples. The well was placed in the middle of the reservoir. Fig. 23 is the 

schematic for this study. This resembles an open-hole completion. 

 

 

Fig. 23—Set up for horizontal well. 
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Fig. 24— Effect of wellbore length on production rate for kh=0.01md, kv=0.005md. 

 

 

Fig. 25— Effect of wellbore length on production rate for kh=0.1md, kv=0.01md. 
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 The advantage of a longer well length reaches a plateau when the wellbore length is 

close to the reservoir dimension. Since longer length will cost more in drilling and 

completion, there should be an optimal length which is not only directly related to the 

reservoir dimension but also affected by the reservoir properties, such as permeability. 

As shown in Fig. 26, the longer the wellbore is, the better the production is. For 

relatively low permeability reservoir, the performance will be good when a really long 

horizontal wellbore placed in reservoir.  Fig. 27 and 28 show that after 3000-ft length, 

the production increase reaches a plateau. Beyond this point, increasing wellbore length 

will no increase the production rate enough to justify the addiction costs of creating a 

longer wellbore. For different reservoir conditions, the optimal length varies, and the 

optimal length should be identified for individual cases. This can be clearly 

demonstrated that when permeability is relatively low the horizontal well would be 

benefit compared to moderate permeability reservoir.  In the same reservoir dimension, 

the longer the wellbore length in low permeability gives more production increase ration 

compared to the one in high permeability.  

Realizing that even the flow rate of horizontal wells in low permeability formations 

may not be high enough to cause a significant pressure drop in the wellbore, it does not 

limit the case that frictional pressure will affect the well performance. When wellbore 

length increases it will increase the frictional pressure in the wellbore in two counts: 

longer horizontal wells can also limit the well performance, the pressure drop in the 

wellbore in such situation should be considered when designing the wellbore length.  

 



 66 

 

Fig. 26—Effects of wellbore length on cumulative production (kh=0.01md). 

 

 

Fig. 27—Effects of wellbore length on cumulative production (kh=0.1md). 
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Fig. 28—Percentage increases in cumulative production  

due to wellbore length increase. 
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fractures that can be placed along the wellbore, the higher production rate will be. As 

studied before (Zhu et al., 2007; Bagherian et al., 2010), there may be a maximum 

number of fractures, and above that number, more fractures will not bring more benefit 

to the well production. The optimal fracture spacing also depends on the stress field 

change while fracturing each stage (Roussel and Sharma, 2010; Suri and Sharma, 2009), 

and completion limitations (how many fractures can actually be placed along a 

wellbore). All these should be considered when design a multi-stage fracture treatment 

in additional to maximum production rate. 

 

 

Fig. 29—Cases comparison for kh=0.1md and kv=0.01md. 
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Fig. 30— Cases comparison for kh=0.01md and kv=0.001md. 

 

 

Fig. 31— Cases comparison for kh=0.001md and kv=0.0001md. 
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Noticed that the results show that a horizontal well with 20 fractures produces about 

five times more than the production rate of a horizontal well with 5 fractures at early 

time of production when reservoir permeability is 0.001md. The reason is that for more 

fractures, the sources are more evenly distributed in the reservoir, and traveling distance 

for the reservoir fluid to research the sources (one of the fractures) becomes smaller, 

implying that flow efficiency is improved with more fractures placed along the wellbore.  

For reservoir permeability is 0.1-md, the well with 15 and 20 fractures shows almost the 

same production rate in Fig. 29, which means in such a reservoir, more fracture number 

will not give us more benefit on production. It suggests that ten fractures should be 

enough for this reservoir. When reservoir permeability is drop to 0.01-md (Fig. 30), the 

horizontal well with 15 fractures still produces significantly more than 10 fractures. But 

when placed 20 fractures, the production rate does not increase much compared with 15 

fracture case; which means that the fracture number around 15 is optimal for this 

reservoir. For reservoir permeability of 0.001-md (Fig. 31), the horizontal well with 20 

fractures still gives us a high production rate. We could draw the conclusion that in 

extremely low (0.001-md) permeability reservoir, the more hydraulic fractures, the more 

it will benefit to the production.   

Fig. 32 shows that after 15 fractures, the production increase (rate at any fracture 

number compared with the rate at 5 fractures) approaches a constant for k=0.1-md. 

Beyond this point, increasing fracture number will not increase the production rate 

enough to justify the addiction costs of creating a longer wellbore. For different reservoir 

conditions, the optimal fracture number should be identified for individual cases.  We 
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also notice that the production increase for k=0.001-md is four times higher compared to 

k=0.1-md condition, which is could also draw the conclusion that hydraulic fractures is 

an effective way to develop the reservoir with low permeability.  

 

 

Fig. 32—Production increase ratio as a function of number of fractures. 
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five fractures along the horizontal well and each fracture has 9 segments. Because of the 

pressure drawdown, the production rate is lower than infinite conductivity condition.  

 

 

 
Fig. 33—Fracture pressure profile for kh=0.1md, kv=0.01md, and kf=50000md. 
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Fig. 34—Infinite conductivity vs. finite conductivity for kh=0.1md, kv=0.01md, and kf=50000md. 
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Fig. 35—Flow rate profile for each fracture. 

 

 

Fig. 36—Flow region for each fracture. 
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4.1.4 Complex Fracture System 

The slab source method could also be used for complex fracture systems.  The complex 

fracture system is defined as multiple hydraulic fractures placed along a horizontal well 

in a natural fracture formation. The hydraulic fractures that connect with the wellbore 

are the mean fractures and the natural fractures are branch fractures which only connect 

with the main fractures. The fluid inside of the branch fractures directly flows into the 

main fractures. For the main fractures, the fluid of the main fracture is from both the 

reservoir and the branch fractures and flows to the wellbore. We considered each 

hydraulic fracture and natural fracture is a separate source, and the sources will be 

affected by the other sources in the system. Superposition method is applied to capture 

the internal affection among the sources.  

Fig. 37 shows a randomly generate natural fracture network with 20 hydraulic 

fractures. The natural fracture length is from 100 to 500-ft and the width is 0.08 to 0.1-

in. For 20 natural fractures, only seven of them are connected with the hydraulic 

fractures. One of the natural fractures connects two of the hydraulic fractures. As 

mentioned before, we divided the natural fracture into two parts and each of them is 

connect with the hydraulic fractures near it.  The input data for this case is shown in 

Table 11.  
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Fig. 37— Randomly generated complex fracture system. 
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Table 11—Input data for complex fracture system. 

Parameter Value Unit 

Reservoir length (assumed), b 4000 ft 

Reservoir width (assumed), a 2000 ft 

Reservoir thickness, h 200 ft 

Porosity,  0.09 ft 

Reservoir initial pressure, pi 2200 psi 

Reservoir temperature, T 146 F 

Bottomhole pressure, pwf 1800 psi 

Gas specific gravity, g 0.836  

Horizontal permeability, kh 0.1 md 

Vertical permeability, kv 0.01 md 

Gas viscosity, g 0.0156 cp 

Horizontal well length, L 3000 ft 

Hydraulic Fractures   

Fracture length, xf 500 ft 

Fracture height, hf 100 ft 

Fracture width, wf 0.033 ft 

Natural Fracture No. Fracture length, xf Fracture width, wf 

1 237 0.007 

2 594 0.007 

3 260 0.008 

4 250 0.009 

5 257 0.008 

6 528 0.005 

7 371 0.008 
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Fig. 38—Flow rate for complex fracture system. 
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Table 12—Cases for non-Darcy flow study. 

Case Reservoir  

Perm (md) 

Proppant Conc. Frac 

Height (ft) 

BHFP 

(psi) 

Reservoir Pressure 

(pai) 

xf 

(ft) 

1 0.01 1.0 100 1000 4000 1000 

2 0.01 1.0 100 1000 4000 100 

3 0.1 1.0 100 1000 4000 1000 

 

The results of the three model cases are presented in Fig. 39 thorough 41. The 

models show that even for 0.01 md reservoirs the impact of non-Darcy flow can be 

significant if the created fracture length is long. In case 1, the slab source result shows a 

slightly higher production rate than Barree’s results, but almost the same. The non-Darcy 

effects result decrease in cumulative production after 10 years of 11%.  

 

Fig. 39—Cumulative production for case 1. 
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Case 2 is similar to case 1 except that the fracture length is decreased from 1000-ft to 

100-ft. when the fracture is short, Fig. 40 shows that non-Darcy effects are not 

significant.  

 

Fig. 40—Cumulative production for Case 2. 
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Fig. 41—Cumulative production for Case 3. 
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Table 13—Cumulative production results. 

Case Barree’s model Slab source Model 

No. Darcy Flow 
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Non-Darcy 

(MMscf) 

Percentage 

Change 

Darcy Flow 

(MMscf) 

Non-Darcy 
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Percentage 

Change 

1 3160 2840 11.3 3250 2870 11.6 

2 1835 1825 0.5 1850 1830 2.0 
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4.2 Field Cases 

 

In this section, field examples are used to illustrate how to use the Slab model. Two field 

examples are used to show the procedure of the model application with one example for 

low permeability unconventional reservoir, and the other moderate permeability 

conventional reservoir.  

 

4.2.1 Case1: Unconventional Reservoir (Mayer, shale) 

To validate the multiple fracture calculation, we compared the model result with a 

published field production history data. The history match is based on a horizontal well 

in Marcellus shale as shown in Fig. 42 (Meyer et al., 2010). The horizontal well was 

completed with a seven stage fracture treatment over a lateral length of 2100 ft. Seven 

stage fracture treatment was completed over the horizontal wellbore. The production log 

showed a total gas flow rate of 3.166 MMscf/d and a water rate of 2541 bpd. Stage two 

showed a minimal contribution of about 3% of the total production. Therefore, only six 

multiple transverse fractures were used to history match. The reservoir and fracture 

properties for Marcellus shale is given in Table 14. The Marcellus shale history matched 

parameters are given in Table 15.  
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Table 14—Marcellus Shale-reservoir and fracture properties. 

Formation Marcellus 

Formation height, ft 162  

Porosity, % 4.2 

Pore Pressure, psi 4726 

Specific Gravity 0.58 

Temperature, °F 175 

Drainage Area, acres 80 

Reservoir Size (xe,ye), ft 933,3733 

BHFP 1450-530 

Wellbore Radius, ft 0.36 

Well Length, ft 2100 

Number of Stages 7 

 

Table 15—History matched parameters. 

Formation Permeability, k, md 0.000546 

Fracture Permeability, kf, md 526 

Propped Length, ft 353 

Fracture Width, ft 0.0065 

Number Equivalent Fractures 6 

 

The production data was matched with the single phase, multiple transverse fractures 

in horizontal wellbores, and the result is shown in Fig. 43. The history match analysis of 

measured production was based on the parameters which shown in Table 15. The 

calculated result is on the same order of the field observation. Because fractured well 
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performance depends on numerous parameters including reservoir properties and 

fracture geometries which both contain uncertainty and it is not surprised that a perfect 

match was not obtained. From the results (Fig. 43), the higher production rate at early 

time from the slab model could be caused by the assumptions of ideal condition of 

fractures and neglected Non-Darcy effect inside fracture. The proppant permeability 

used in the history match is the effective permeability. The effective permeability 

contains two parts, one is the proppant permeability and the other is the natural fracture 

permeability. In this case, the connection between natural fractures and hydraulic 

fractures are unknown factor, the source function cannot directly applied in the natural 

fracture system. The natural fracture permeability has been represented here as an 

effective proppant permeability in the hydraulic fractures. 

An average permeability of 377 nanodarcy over a formation thickness of 162 ft that 

included the upper and lower Marcellus has been showed by a petrophysical analysis. 

The resulting reservoir capacity (kh) was calculated to be 0.061md-ft, an average 

reservoir permeability of 555 nanodarcy, and a reservoir capacity of 0.09 md-ft. the 

history match results for this case match very well with the information.   
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Fig. 42—Field Data (Meyer et al., 2010). 

 

 

Fig. 43—History match of a gas well in Marcellus Shale. 
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4.2.3 Case2: Moderate Permeability 

A gas reservoir is used in the example. The reservoir has multiple layers with significant 

contraction in permeability in each layer. The permeability profile is shown in Table 16 

and Fig. 44. Layer 3 has the lowest permeability, serving as a vertical isolation in the 

formation. In such a reservoir, horizontal well may lose its attraction compared with 

vertical well because of low vertical communication. The example compares the well 

structure plans including vertical well, vertical well with fracture, slanted well, 

horizontal well without fracturing, and horizontal well with multiple transverse fractures. 

The input data is shown in Table 17. 

 

Table 16—Permeability summary for layers. 

Layer No. Layer Thickness (ft) kh (md) kv (md) Average perm, kh (md) 

1 12 0.05-0.5 0.14 0.26 

2 6 10.64 5.53 10.64 

3 5 0.003 0.003 0.003 

4 26 0.2-0.6 0.16 0.36 

5 2 2.32 2.32 2.32 

6 116 0.1-0.8 0.12 0.25 

7 10 1.92 1.92 1.92 

8 5 7.55 4.07 7.55 

9 18 0.5-2.3 0.89 1.67 
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Table 17—Input data for case study. 

Reservoir type Tight gas 

Formation type Sandstone 

Parameter Value Unit 

Reservoir length (assumed), b 4000 ft 

Reservoir width (assumed), a 2000 ft 

Reservoir thickness, h 200 ft 

Horizontal wellbore length, l 3000 ft 

Porosity,  9.0%  

Reservoir initial pressure, pi 2335 psi 

Reservoir temperature, T 146 F 

Bottomhole pressure, pwf 1886 psi 

Gas specific gravity, g 0.836  

Water specific gravity, w 1.005  

 

 

Fig. 44—Schematic of the formation. 
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Well Structure Design  

Even vertical wells are considered as conventional and less aggressive, since this 

reservoir has multiple layers, vertical well should not be simply eliminated from 

consideration. The initial comparison considers  a vertical well fully perforated in the 

pay zone as shown in Fig. 45, a hydraulic fractured  vertical well with 500 ft fracture 

half-length (Fig. 46), and a 3000-ft long horizontal well (Fig. 47). One disadvantage of 

horizontal wells is that they could only produce from one pay zone. In such a 

heterogeneous reservoir, a slanted well with a deviated angle of 82° (Fig. 48) is 

considered here. To simplify the problem, the slanted well is approximated with three 

horizontal sections as shown in Table 18. The sum of the production from these sections 

provides us an estimated flow rate of a slanted well.  

 

 

Fig. 45—Vertical well schematic. 
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Fig. 46—Fractured vertical well schematic. 

 

 

Fig. 47—Horizontal well schematic. 

 

Table 18—Parameter list for slanted well. 

Zone No. Layer No. kh, md kv,md 

1 1-4 0.72 0.34 

2 5-6 0.26 0.2 

3 7-9 1.67 0.92 
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Fig. 48—Slanted well with 82° and modified well for simulation. 

 

The last well plan is multiple transverse fractures along the horizontal well. 

Transverse fractures are equally placed along the horizontal well. Fracture numbers 

varied from 5 to 10. All the fractures have the same dimension of 500-ft in half length, 

150 ft in height, and 0.033 ft in width.   

Result Comparisons 

The results of production rate for different well structures are shown in Fig. 49. From 

Fig. 49, it can be seen that the horizontal well with 10 fractures has the highest 

production rate since 10 fractures increase the contact with the reservoir most effectively 

and create the communication of the upper and the lower pay zones. However, the 

production rate declines significantly after 50 days. It also shows that the slanted well 

has the challenge production compared with the horizontal well and the fractured 

vertical well. Since the reservoir permeability is moderate for this gas formation, slanted 

well has the potential of improved production with relatively low cost compared with 

horizontal well and fracturing. Fig. 50 shows the cumulative production.  There are 
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significant increases in production from horizontal well/slanted well to horizontal well 

with 5 fractures. Economic evaluation is necessary to make final decision. This 

observation is directly related to the moderate permeability of the reservoir. 

 

 

Fig. 49—Cases comparison for production rate. 
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Fig. 50—Cases comparison for cumulative production. 
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CHAPTER V 

CONCLUSIONS 

 

Hydraulic fractures have been used widely today especially in the tight gas reservoir. 

Predicting well performance becomes much more difficult compared with conventional 

wells. In order to evaluate well performance, we developed a new model. This 

dissertation presents well performance models of horizontal wells with/without fractures, 

and complex fractures system. The model can be used to generate inflow performance 

relationships, study parameter sensitivity, and optimize well designs.  

We developed the slab source method as a solution to calculation the well 

performance and pressure distribution in a closed, rectangular reservoir under different 

boundary conditions. The model can be used for both transient and pseudosteady-state 

flow. we have successfully developed and validated a series of solutions for pressure and 

production behavior of simple and complex well/fracture configurations such as 

horizontal well, multiple fractures, and natural fractures. We also demonstrated the 

applicability of the new solution method in predicting production behavior for a 

horizontal well with multiple transverse fractures and complex fractures system. The 

new method is applied as an optimization and screening tool to obtain the best 

completion schematic for development of well design. 

The conclusions can be summarized as following: 

1. Slab source model was developed successfully to calculate flow problems in 

complex reservoir system 
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2. Model can handle horizontal wells with multiple stage fractures in a natural 

fracture reservoir.  

3. The optimal number of fracture stages is strongly depends on reservoir 

permeability. For moderate permeability formation, higher number of fractures 

stages does not necessarily yield justified benefit in production. For lower 

permeability formation, the higher the fracture number, the better the production. 

The optimal number of fractures should be determined by other constrains than 

production rate. 

4. Non-Darcy flow effects have an influence on flow rates, these decrease can range 

from 2% to 20% under a given set of conditions. 

5. Long-term production is significantly affected by Non-Darcy conductivity losses, 

even in relatively low permeability reservoirs where long fractures are needed.  

6. For complex fracture system, the production from natural fractures depends on 

natural fracture location, dimension, and connection point with the hydraulic 

fractures.  

Recommendations 

Based on the results of this study, it is recommend that 

1. Non-Darcy effects can be added for complex fractures system to count for the 

additional pressure and production decrease.  

2. A comprehensive two-phase well flow model can be developed in the future. 

3. The limitation of the model is that the natural fracture must be parallel to 

reservoir boundary. 

4. Constant pressure boundary will be appreciated for application. 

  



 95 

NOMENCLATURE 

 

As  = cross-section area of source term, ft
2
 

a  = reservoir width, ft 

B  = formation volume factor 

b  = reservoir length, ft 

ct  = compressibility, psi
-1

 

h  = reservoir height, ft 

kx  = permeability in x-direction, md 

ky  = permeability in y-direction, md 

kz  = permeability in z-direction, md 

l  = wellbore length, ft 

L  =dimensionless reservoir position 

pD  =dimensionless pressure 

pint  = initial reservoir pressure, psi 

p  = average reservoir pressure, psi 

pwf  = bottomhole pressure, psi 

Δp  = pressure drawdown, psi 

q  = flow rate, Mscf/day 

T  = temperature, °R 

tD                 =dimensionless time 

xD  = dimensionless reservoir length 
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xf  = fracture width, ftyD   

yf  =dimensionless reservoir width   

zD  =dimensionless reservoir height  

g  specific gas gravity, dimensionless 

  = density, lb/ft
3
 

  = porosity, fraction 

  = viscosity, cp 

                   = time 

  atm-sec
2
/gm 

ug   = cp or g/100-cm-sec 
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APPENDIX A 

 

The use of Green’s functions in the theory of potential is well known. The function is 

most conveniently defined for the closed surface S as the potential which vanishes over 

the surface, and is infinite as 1/r, when r is zero, at the point p(x’,y’,z’) inside the 

surface. If this solution of the equation 02  u  is denoted by G(p). The solution with 

no infinity inside S and an arbitrary value V over the surface is given by  

  


 VdSpG
n

)(
4

1


  A1 

n


denoting differentiation along the outward drawn normal. 

We proceed to show how a similar function may be employed with advantage in the 

mathematical theory of the conduction of heat. In this case we shall take the Green’s 

function as the temperature at (x,y,z) at the time t, due to an instantaneous point source 

of strength unity generated at the point p(x’,y’,z’) at time τ, the solid being initially at 

zero temperature, and the surface being kept at zero temperature. This solution is written 

 ),'',',,,(   tzyxzyxF          (τ>t) A2 

and u satisfies the equation 

 uk
t

2



                                      (τ>t) A3 

However, since t only enters in the form (t-τ), we have also 

 02 



uk

t


                                (τ<t) A4 
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Further, 




t

u 0)lim(
at all points inside S, expect at point (x’,y’,z’), where the solution 

takes the from 
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 Finally, at the surface S, u=0 (τ<t). 

Let v be the temperature at the time t in this solid due to the surface temperature 

ϕ(x,y,z,t) and the initial temperature f(x,y,z) 

Then v satisfies the equations 

 vk
t

v 2



                                    (t>0)                           A6 

v=f(x,y,z) inially, inside S 

v=ϕ(x,y,z) at S, when t>0 

Also, since the time τ of our former equations lies within the interval for t, we have 

 vk
t

v 2



                                     τ<t                            A7 

v=ϕ(x,y,z) at the surface. 

Therefore,  
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The triple integrate being taken into the solid, and ε being any positive number less than 

t. 

Interchanging the order of integration on the left-side of this equation and applying 

Green’s theorem to the right-hand side. We have 
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where 
in


denotes differentiation along the inward-drawn normal, and we have used the 

condition that u vanishes at the surface.  

Now take the limit as ε tends to zero. The left-side gives 

      dxdydzvudxdydzuV tP 00 
                                     A11 

The first integral being taken though an element of volume including the point 

p(x’,y’,z’), where the function u becomes infinite at t=τ. The second integral being taken 

through the solid, and the  
PV stands for the value of v at the point p(x’,y’,z’) at the 

time t. but since u is the temperature at the time t due to a unit source at (x’,y’,z’) at time 

τ, 1  dxdydzu t and we have 
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as the temperature at (x’,y’,z’) at the time t due to the initial distribution f(x,y,z) and the 

surface temperature ϕ(x,y,z,t). 

In the case of radiation at the surface, the Green’s function u is taken as the 

temperature at (x,y,z) at time t due to an instantaneous point source of strength unity 

generated at (x’,y’,z’)  at time τ, radiation taking place at the surface into a medium at 

zero temperature.  

Linear flow in the semi-infinite solid x>0 

 

 

Fig. 51—Semi-infinite solid reservoir and slab source. 
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For linear flow in reservoir, 0<x<a, the slab source is at x=xw as shown in . Initial 

temperature f(x), bounding planes kept at zero. 

 Starting with the source f(xw)dxw at xw, we have to take the images of this source in 

the planes x=0 and x=a, a source and a sink alternating so that the boundaries may be 

kept at zero. In this way we have sources at the points xw+2na and sinks at the points –

xw+2na, where n is zero or any positive or negative integer. 

 

 

Fig. 52—Finite solid bounded by the planes x=0 and x=a, slab source. 
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Because of the Poisson’s summation formula, 

a 0 

x xf 

xw 
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Therefore, A14 could be written as 
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