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ABSTRACT

Alignment of LC-MS Data Using Peptide Features. (December 2011)

Xincheng Tang, B.E., Wuhan University, Hubei, China

Chair of Advisory Committee: Dr. Alan R. Dabney

Integrated liquid-chromatography mass-spectrometry(LC-MS) is becoming a widely

used approach for quantifying the protein composition of complex samples. In the

last few years, this technology has been used to compare complex biological samples

across multiple conditions. One challenge in the analysis of an LC-MS experiment

is the alignment of peptide features across samples.

In this paper, we proposed a new method using the peptide internal information

(both LC-MS and LC-MS/MS information) to align features from multiple LC-MS

experiments. We defined Anchor points which are data elements that are highly

confident we have identified and are shared by both samples. We chose one sample

as template data set, find Anchor Points in this sample, then apply alignment to

modify another sample and find Anchors in modified sample, these Anchors should

line up with one another. One advantage of our method is that it allows statistical

assessment of alignment performance. Use Anchor Points to perform alignment be-

tween samples, and labeling an objective performance in LC-MS.
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NOMENCLATURE

GC-MS Gas Chromatography Mass Spectrometry

LC-MS Liquid Chromatography Mass Spectrometry

MALDI Matrix Assisted Laser Desorption Ionization

MS Mass Spectrometry

MS/MS Tandem Mass Spectrometry

M/Z Mass-To-Charge Ratio

PNNL Pacific Northwest National Laboratory

RT Retention Time

SELDI Surface Enhanced Laser Desorption Ionization

TOF Time-Of-Flight
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1. INTRODUCTION

1.1 Background

Mass spectrometry (MS) proteomics has become the tool of choice for identi-

fying and quantifying the proteome of an organism, in recent years, tremendous

improvement in instrument performance and computational tools are used. Several

MS methods for interrogating the proteome have been developed: Surface Enhanced

Laser Desorption Ionization(SELDI)[1], Matrix Assisted Laser Desorption Ioniza-

tion (MALDI)[2] coupled with time-of-flight (TOF) or other instruments, and gas

chromatography MS (GC-MS) or liquid chromatography MS (LC-MS).

In LC-MS-based proteomics, complex mixtures of proteins are first subjected to

enzymatic cleavage, and the resulting peptide products are analyzed by using a mass

spectrometer. In tandem mass spectrometry (denoted by MS/MS), fragmentation

spectra are obtained for each subset of observed high-intensity peaks and compared

to fragmentation spectra in a database, using software like SEQUEST[3], Mascot[4],

or X!Tandem[5].

If the data used to be analyzed and interpreted at the protein level, then once a

list has been constructed of the proteins believed to be present in the sample, the next

task is to quantify the abundance of the proteins. Protein abundance information

is contained in the set of peaks that correspond to the protein component peptides.

Peak height or area is a function of the number of ions detected for a particular

peptide, and is related to peptide abundance.

In LC-MS, each sample may have thousands of scans, each containing a mass

spectrum. The mass spectrum for a single MS scan can be summarized by a plot

of M/Z values versus peak intensities. These data contains signals that are specific

to individual peptides. As a first step towards identifying and quantifying those

This thesis follows the style of Journal of Nuclear Materials.
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peptides, features need to be identified in the data and distinguished from background

noise, one simple method is to employ a filter on the signal-to-noise ratio of a peak

relative to its local background. Each peptide gives an envelope of peaks due to a

peptide constituent amino acids. The presence of a peptide can be characterized by

the M/Z value corresponding to the peak arising from the most common isotope,

referred to as the monoisotopic mass.

1.2 Experimental Procedure

A LC-MS-based proteomic experiment requires several steps of sample prepa-

ration (Figure 1.1), including cell lysis to break cells apart, protein separation to

spread out the collection of protein into more homogenous groups, and protein di-

gestion to break intact proteins into more manageable peptide components. Once

this is complete, peptides are further separated, then ionized and introduced into the

mass spectrometer.

A mass spectrometer measures the mass-to-charge ratio (M/Z) of ionized molecules,

which is designed to carry out the distinct functions of ionization and mass analysis.

The key components of a mass spectrometer are the ion source, mass analyzer, and

ion detector (Figure 1.2). The ion source is responsible for assigning charge to each

peptide. Mass analyzer measures the mass-to-charge (M/Z) ratio of each ion. The

detector captures the ions and measures the intensity of each ion species. In terms

of a mass spectrum, the mass analyzer is responsible for the M/Z information on

the x-axis and the detector is responsible for the peak intensity information on the

y-axis.

1.3 Existing Alignment Methods

The goal of alignment is to match corresponding peptide features in the M/Z

vs scan plot(see Figure 1.2) from different experiments. A time warping method
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Fig. 1.1. Sample Preparation
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Fig. 1.2. Mass Spectrometry
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based on raw spectrum for alignment of LC-MS data was introduced by Bylund

and others[6],which is a modification of the original correlated optimized warping

algorithm[7]. Wang and others [8], implemented a dynamic time warping algorithm

allowing every RT point to be moved. However, the LC-MS data have added dimen-

sion of mass spectral information, so only mapping the retension time coordinates

between two LC-MS files is not sufficient to provide alignment for individual pep-

tides. Radulovic and others [9] performed alignment based on (M/Z, RT) values of

detected features. Their method first divides the M/Z domain into several intervals

and fitted different piece-wise linear time warping functions for each M/Z interval.

After the time warping, they applied a “wobble” function to peak and allow peak to

move (1-2% of total scan range) in order to match with the nearest adjacent peak

in another file. Their method relies on the (M/Z, RT) values of detected peptide

features, it fails to take advantage of other information in the raw image. Wang and

others [10] proposed an alignment algorithm, PETAL, for LC-MS data. It uses both

the raw spectrum data and the information of the detected peak features for peptide

alignment.

In this paper, two Shewanella datasets are obtained from Pacific Northwest Na-

tional Laboratory (PNNL) and they were analyzed by SEQUEST on different days.

SEQUEST correlates uninterpreted tandem mass spectra of peptides with amino

acid sequences from protein and nucleotide databases, which determines the amino

acid sequence and thus the protein(s) and organism(s) that correspond to the mass

spectrum being analyzed. Based on the SEQUEST output files, each sample has

thousands of scans, and the M/Z, peak intensities, peptide information associated.

It’s obvious that there’s some systematic error between the alignment of the two

datasets.

In this study, we first applied some filter criteria to choose data points matched

with high confidence in both samples, which are called “Anchor Points”. We then use

these “Anchor Points” in sample one as the baseline and modify the data points in
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sample two, to make the “Anchor Points” between the two samples aligned together,

which means after alignment the “Anchor Points” in both samples show up at the

same locations. The alignment algorithm is then applied on all the data points in

sample two. Finally, statistical measurements of the performance of alignment are

given on sample level and regional level.

In future study, we hope this alignment method can be applied to several samples

of one organism, and as a guide to justify the points with same peptide information

in different samples.
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2. METHODS

2.1 Anchor Points

In our method, for different experiments, we have the raw data analyzed by

SEQUEST. Based on the SEQUEST output files, each sample has thousands of

scans, and the M/Z, peak intensities, peptide information of each scan, an example

is given in Table 2.1. Define a point with high probability that its peptide shows up

in SEQUEST output files as “Anchor Points”.

A sample record of data is given in Table 2.1

Table 2.1
An Example of Data Record Returned from SEQUEST.

ScanNum MZ PeakArea PassFilt PeakSignalToNoiseRatio

8239 826.4 4.98E+06 1 25.1

ChargeState Xcorr NumTrypticEnds RankXc Peptide

3 7.9171 2 1 K.LAYADGYVHA

Table 2.2
An Example of Anchor Points Located.

ScanNum MZ PeakArea PassFilt PeakSignalToNoiseRatio

8239 826.4 4.98E+06 1 25.1

ChargeState Xcorr NumTrypticEnds RankXc Peptide

3 7.9171 2 1 K.LAYADGYVHA

ScanNum MZ PeakArea PassFilt PeakSignalToNoiseRatio

7567 813.2 3.57E+06 1 19.2

ChargeState Xcorr NumTrypticEnds RankXc Peptide

3 7.5681 2 1 K.LAYADGYVHA
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In LC-MS, we need to distinguish the peptide features from the background

noise, the first step for doing this is MS peak detection. We employ a simple filter

routine on the signal-to-noise ratio of a peak relative to its local background [11].

In our approach, in order to find peptides that exist in both samples with high

confidence, three filtering criteria are applied. The first criterion is PassFilt equaling

to 1, the second criterion is NumTrypticEnds equaling to 2 and the third criterion is

SignalToNoiseRatio being greater than 10.

PassFilt is a score that does not come from by SEQUEST but is calculated from

syn-fht summary generator using Xcorr, DelCN, RankXc and the number of tryptic

termini. NumTrypticEnds (number of tryptic cleavage sites) is the number of termini

that conforms to the expected cleavage behavior of trypsin (i.e. C-terminal to R and

K). Note that K-P and R-P do not qualify as tryptic cleavages because of the proline

rule. However, the protein N-terminus and protein C-terminus do count as tryptic

cleavage sites. Values can be 0, 1, or 2 with 2 = fully tryptic; 1 = partially tryptic;

0 = Non tryptic. Any points in both sample satisfied these three criteria are called

“Anchor Points”. Table 2.2 is an example of the Anchor Points located after applying

the three filtering criteria. In this example, we can find the points in both sample

with same peptide information, which is K.LAYADGYVHA.

2.2 Alignment Algorithm

“Anchor Points” found from both samples differ on “ScanNum”, which represent

retention time, so we need to find some algorithms to make these points in two

samples aligned on “ScanNum” as well as M/Z and PeakArea. Let Mi be M/Z for

peak i, Si be the Scan Number for peak i, and Pi be the log intensity for peak i.

The data is normalized to 0-1 range by dividing normalization factors of M/Z, scan

number and log(Peak Area), denoted as MN, SN, and PN, which are the max M/Z,

max Scan Number and max log(Peak Area) of the two samples. The reason why we

do normalization is that due to the different scales of Scan Number,M/Z and Peak
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intensity values, the distance can not be equally measured, for example, the scan

number is very large compared to the M/Z. So transforming the data into 0-1 range

will give equal weight of all these three values.

With the pool of “Anchor Points” found between sample one and sample two,

we are able to locate the five nearest anchor points for peak i in the second sample,

where the distance is defined by Euclidean metric considering the three dimensions

of normalized M/Z, Scan Number and log(PeakArea). With the defined range, let

Dij be the distance between peak i and Anchor Point j in the second sample two,

Dij = ((Mi −Mj)/MN)2 + ((Si − Sj)/SN)2 + (Pi − Pj)/PN)2

Let ∆1 be the difference of averaged M/Z across the five nearest Anchor Points

of peak i between the two samples, ∆2 be the difference of averaged scan number

and ∆3 be the difference of averaged intensity. Then we use the differences to modify

peak i in sample two by adding (∆1,∆2,∆3) to (Mi, Si, Pi)

∆1 = Mij1 −Mij2

∆2 = Sij1 − Sij2

∆3 = Pij1 − Pij2

where j = 1, 2, 3, 4, 5

This algorithm uses both the raw spectrum data which are analyzed by SE-

QUEST and the information of the detected peak features for peptide alignment, we

use all the information,such as Scan Number, intensity and M/Z to find the target

points. Although in both samples,the points with same peptide information appear

in different place due to the systematic bias, we assume that, for such point in sample

one, the point with same peptide information in sample two should be not far away

from the point in sample one.
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3. REAL DATA EXAMPLE

In the Shewanella datasets, the normalizing factors of M/Z, Scan Number and

Peak Area are as follows: MN = 1519.48, SN = 10606, PN = 10.08476

For comparison, both “Anchor Points” before and after alignment are plotted in

Figure 3.1.

The distance of Anchors in both samples before alignment have systematic differ-

ence, and after alignment, the difference should be randomly distributed around the

standard points (Anchor Points in sample one). We draw histograms to compare the

distance of Anchors between both samples before and after alignment in Figure 3.2,

Figure 3.3, and Figure 3.4, the Histogram shows that, after alignment, the distance

differences between two samples are mostly around 0.

It is important to perform test to justify that after alignment, there is no system-

atic difference on the anchor points between two samples. As justification, perform

Wilcoxon signed-rank test on the differences between two samples on the “Anchor

points” before and after alignment. The null hypothesis is the true location shift is

equal to 0 and the alternative hypothesis is the true location shift is not equal to 0.

We have the following results: Before alignment Wilcoxon signed-rank test on

Scan Number of anchor point with continuity correction W = 537733, p-value =2.2e-

16. After alignment Wilcoxon signed-rank test on Scan Number of anchor point with

continuity correction W = 293222, p-value =0.0986.

Before alignment Wilcoxon signed-rank test on M/Z of anchor points with con-

tinuity correction W = 142212, p-value =0.1091. After alignment Wilcoxon signed-

rank test on M/Z of anchor point with continuity correction W = 265884, p-value

=0.9049.

Before alignment Wilcoxon signed-rank test on log(Peak Area) of anchor point

with continuity correction W = 336362, p-value=1.655e-09. After alignment Wilcoxon
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Fig. 3.1. Plot of Anchor Points Embedded in Both Samples. Left
Panel is for Sample 1 and Right Panel for Sample 2.

signed-rank test on log(Peak Area) of anchor point with continuity correction W =

281910, p-value =0.6141.

So we conclude that the difference between ”Anchor points” after alignment in

two samples has a common median 0, which indicates the method can be used as

one alignment method to find or justify ”Anchor Points” in sample two.

All the data points in the two sampels before and after alignment are displayed

in Figure 3.5, and Figure 3.6. It’s clear that the two samples mixed better in the

scatter plots after alignment.
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Fig. 3.2. Histograms of Scan Number of Anchor Points. Left Panel
is for before Alignment and Tight Panel for after Alignment.
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Fig. 3.3. Histograms of M/Z of Anchor Points. Left Panel is for
before Alignment and Right Panel for after Alignment.
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Fig. 3.4. Histograms of Log(Peak Area) of Anchor Points. Left
Panel is for before Alignment and Right Panel for after Alignment.
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Fig. 3.5. Scatter Plot of Scan Number vs Log (Peak Area) on All
Data Points. Left Panel is for before Alignment and Right Panel for
after Alignment.
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Fig. 3.6. Scatter Plot of Scan Number vs. M/Z on All Data Points.
Left Panel is for before Alignment and Right Panel for after Align-
ment.
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4. CONCLUSION

One advantage of our method is that it allows statistical assessment of alignment

performance. We could statistically evaluate the performance of our methodology

with other alignment algorithms on some dataset that has peptides identified with

high confidence.

The statistical confidence measure of our method was given on sample level. We

expanded it to region level and the future work would be developing peptide level

statistical confidence measure and pass it to downstream quantitative analysis.
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