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ABSTRACT 

 

Candidate Well Selection for the Test of Degradable Biopolymer as Fracturing Fluid. 

 (December 2011) 

Yun Suk Hwang, B.S., Seoul National University, Seoul 

Chair of Advisory Committee: Dr. Ding Zhu 

 

 Hydraulic fracturing is a well-established technology of generating highly 

conductive flow path inside the rock by injecting massive amount of fracturing fluid and 

proppant with sufficient pressure to break the formation apart.  But as the concern for 

environment and health effects of hydraulic fracturing becomes intense, many efforts are 

made to replace the conventional fracturing fluid with more environment-friendly 

materials. 

 The degradable biopolymer is one of the novel materials that is injected in the 

form of solid pellets containing proppant, which degrades in the presence of water to 

form a viscous gel fluid, leaving no gel residue or harmful material.  

 This work develops a methodology and computer program to determine the best 

candidate wells for the field test of degradable biopolymer as fracturing fluid. The 

unique properties of degradable biopolymer are captured in the selection of decision 

criteria such as bottomhole temperature and treatment volume as well as traditional 

hydraulic fracturing candidate well selection criteria such as formation permeability, 

productivity index.  
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CHAPTER I 

INTRODUCTION 

 

1.1    Background  

 Hydraulic fracturing is a well-established technology of generating highly 

conductive flow path inside the formation rock to produce hydrocarbon more efficiently 

by injecting massive amount of fracturing fluid and proppant with sufficient pressure to 

break the formation apart. The induced flow path not only bypasses the damaged zone 

near the wellbore, but also provides increased contact between the reservoir and the 

wellbore. Therefore, the production could be increased by several-folds. 

            Since the first use in US in 1947, hydraulic fracturing has been applied in more 

than 1 million wells (API 2011a) and it is believed that US would experience 17% 

reduction in oil production and 45% reduction in natural gas production by 2014 if 

fracturing were eliminated (API 2011b).  

            Because reservoirs are various in terms of permeability, pressure, temperature 

and rock composition, different types of fracturing fluids have been developed and used 

based on the reservoir properties.  

            As the concern for the environment and health effects of hydraulic fracturing 

becomes intense, many efforts are made to replace the conventional fracturing fluid or 

proppant with more environment-friendly and cost effective materials. The degradable 

biopolymer is one of those novel materials which could be used in place of conventional  

____________  
This thesis follows the style of SPE Journal. 



2 
 

fracturing fluid.  

The degradable biopolymer could be applied to a large number of wells where 

small fracturing treatments, less than 50,000 lbs of proppant, is suitable. This small 

scale fracture treatments make up approximately 13,000 fracturing treatments per year 

or 40% of all fracturing treatment in the US (RPSEA Project #09123-20). 

     

1.2    Objective and Outline 

  The objective of this work is to develop a methodology and software tool to best 

identify wells that are suitable for the field application of degradable biopolymer as 

fracturing fluid. In the process of this work, the understanding of unique properties of 

degradable biopolymer compared with conventional fracturing fluid is crucial in 

establishing decision criteria. This will be discussed in detail in Chapter II. After that, in 

Chapter III, the methodology and approach of selecting candidate well and the decision 

tree are introduced as well as the list of decision criteria. Chapter IV covers the 

development of candidate well selection program and step by step guidance for the 

application of the program. Finally, the conclusion of this research will be summarized 

and future work will be recommended in Chapter V. 
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CHAPTER II 

                                        LITERATURE REVIEW 

 

2.1    Fracturing Fluids 

 The functions of fracturing fluids are to create hydraulic fracture when pumped 

at high enough pressure to crack the rock and transport the proppant into the fracture 

with the viscosity to hold the fracture open after fracturing. Fracturing fluids should also 

break easily and flow back to the surface once the treatment is over, so that the 

produced hydrocarbon can flow. The fluid leakoff into the formation needs to be 

controlled and the pressure loss due to friction inside the tubing needs to be low. The 

selection of fracturing fluid is complex because the fluids must simultaneously meet a 

number of requirements. The availability (especially for the case of water), cost, ease of 

mixing and use, compatibility with the formation rock, compatibility with the formation 

fluids, ability to be recovered from the fracture and safety are some of these 

requirements (Valko et al. 1998).  

 Fracturing fluids can be categorized as 1) water based fluids (linear, cross-linked, 

miceller and hybrid), 2) oil based fluids, 3) alcohol-based fluids, 4) foam fluids, 5) 

energized fluids. Fluid use started from gelled oil in the 1950s, passed the linear gelled 

water in the 1960s and crosslinked gelled water is the most commercially used since the 

1970s (Holditch 2010). Since the environmental issues concerning hydraulic fracturing 

become a problem, the research to develop an environment-friendly fracturing fluid, 

including degradable biopolymer, has been conducted. 
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 The viscosity of fracturing fluid is a function of polymer load. Polymers such as 

guar, which is a naturally occurring material, or hydroxypropyl guar (HPG) have been 

used in aqueous solutions to provide substantial viscosity to the fracturing fluid. The 40 

lb/1000 gal HPG solution at 175°F has a viscosity of less than 20 cp (Economides et al. 

1994). But when the viscosity is not high enough to transport the proppant (about 100 

cp), crosslinking agents are used to boost the viscosity significantly. Borate, Titanate 

and Zirconate are the most common materials. They form bonds with guar and HPG 

chains, resulting in very high viscosity, therefore 40 lb/100 gal borate-crosslinked fluid 

has about 250 cp at 200°F (Economides et al. 1994). 

 Table 1 shows the summary of various fracturing fluids (Holditch 2010). In Fig. 

2. 1, the structure of linear, branched and crosslinked polymers is compared 

conceptually as well as the process of polymer degradation. 
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Table 1 - Fracturing fluids summary (Holditch 2010) 

 

Fig. 2. 1 - Structure of polymers and gel break (Holditch 2010). 
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2.2    Gel Damage 

 To increase the viscosity for the transport of proppant, water soluble polymers 

are added to water and crosslinked with a metal like Borate or Zirconate. After the 

fracture treatment, the fracturing fluid should break down to less viscous fluid through 

polymer degradation by breakers or formation temperature. But some of the polymers 

do not break completely and leave insoluble gel residue in the formation and fracture. 

This residue causes problems known as gel damage.  

Gel damage can largely be divided into two different categories: damage inside 

the fracture itself (proppant-pack damage) and damage normal to the fracture intruding 

into the reservoir (fracture-face damage). The first generally occurs because of the 

inadequate breaking of the polymer and the second occurs because of excessive leakoff 

of fracturing fluid into the formation and subsequent filter cake buildup (Economides 

and Nolte 2000).  

The selection of fracturing fluids, polymer concentrations and breakers is critical. 

According to the research by Holditch (2009), the primary problem in hydraulic 

fracturing today is that the gel (guar based) left in the fracture. It is also concluded that 

incomplete breaking of the polymers in fracturing fluid is the most obvious cause of 

damage within hydraulic fractures, as well as the poor selection of proppant fracturing 

fluids (Brannon and Pulsinelli 1990). These damages are usually severe and cannot be 

improved with further matrix treatments.  

 The residue present in the pore spaces of the fracture will reduce the 

permeability of the proppant. Experimental test indicates that the residue will not be 
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displaced from the fracture by production and will degrade slowly. Only a small amount 

of guar residue could be displaced at extremely high pressure (Cooke 1975). The 

residual gel is concentrated polymer and even if breaker has been added, in most cases, 

the broken gel will still have a static yield stress that cause problems with fracturing 

fluid cleanup (Wang et al. 2008). Poor fracturing fluid cleanup leads to the loss of 

effective fracture half-length. Effective fracture length is the part of a propped fracture 

that cleaned up and contributes to production.  

 Filter cake buildup at the fracture face, which may contain 10 to 20 times 

polymer concentration of the original fluid, might act as an obstacle against the pressure 

drop between the reservoir and wellbore, and therefore preventing the increase of 

productivity from hydraulic fracturing treatment. 

 When the fracture conductivity or the near fracture reservoir permeability is 

reduced, the fracture choke skin and fracture face skin increase (Cinco-Ley and 

Samaniego 1981). Fracture face skin may not be an important factor (Economides and 

Nolte 2000), but the fracture choke skin is an important factor in reducing the 

productivity (Le et al. 2010). 

 According to the experiment to understand the remediation of gel residue 

(Marpaung et al. 2008; Xu 2010), higher polymer concentration decreases cleanup 

efficiency and higher flow rate increases cleanup efficiency and the use of proper 

breaker increases cleanup efficiency up to 3.5 times.  
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2.3    Degradable Biopolymer as Fracturing Fluid  

 To overcome the near wellbore damage including previously discussed gel 

damage to restore the natural flow capacity of a well, various methods have been 

proposed but the efficacy of any method is not known (RPSEA Project #09123-20). As 

a method of insuring proppant in a fracture near a perforation, degradable biopolymer 

based fracturing fluid is developed. It can create a wide, propped fracture for a limited 

distance in low permeability, medium temperature formations.  

 The fracturing fluid is generated from dry biopolymer in the form of solid pellets, 

embedded previously with the proppant by responding the formation water inside the 

tubing/casing. Before the polymer degrades enough to allow proppant particles to settle, 

the proppant-containing gel is squeezed into the formation above fracturing pressure. 

The polymer continues to degrade to a clear aqueous solution, leaving no damage in the 

fracture (Cooke et al. 2012).  

  In this process, no additional water beside the formation water inside the 

tubing/casing is required, which is practical and economical for use in remote areas 

where water transportation is difficult or expensive. The degradable biopolymer is 

applicable when formation temperature is between 130 to 250 °F and permeability is 

larger than 0.1md. 

 This novel fracturing fluid has two key benefits over conventional fracturing 

methods in that it can achieve higher production rates than conventional treatment, and 

it has less impact on the environment (RPSEA Project #09123-20). The fluid breaks up 

easily, therefore enables fluid cleanup and leaves no permeability plugging residue. The 
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process is also designed to deliver optimal proppant pack distribution resulting in more 

effective proppant pack.  

 It is environment-friendly in several ways. In the treatment process, substantially 

less fluid volume is used. It is anticipated that fluid volumes will be reduced by 60% to 

80% when compared to the traditional treatments (RPSEA Project #09123-20).  Also, 

the frac fluid itself is comprised of a biodegradable polymer that will hydrolyze in an 

aqueous environment to organic materials. This eliminates the need for metal 

crosslinkers, breakers and other commonly used chemicals for traditional crosslinked 

frac fluids. Additionally, the process does not require the normal levels of hydraulic 

horsepower and mixing equipment to perform treatment due to modified material 

placement technique, resulting in a smaller footprint. This will reduce the amount of 

equipment traffic, required foot print and number of roads necessary to provide for 

accessing the location for fracturing treatments (Cooke et al. 2012). 

 The fracture dimensions created by degradable biopolymer fracturing 

technology are small compared with conventional massive fracture treatment. This 

technology is aimed mainly at creating fractures to bypass deep formation. 

  

2.4    Productivity Index 

A well in a reservoir has a finite drainage area and most of the time it is 

produced at a stabilized flow regime, pseudo-steady state. During this production period, 

the productivity index (PI) of a well is defined as production rate per pressure 



10 
 

drawdown. The productivity index for unstimulated well is given by (Economides et al. 

1994) 
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For a fractured well, the stimulation effect can be calculated from       
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where, the skin factor can be obtained from the dimensionless fracture 

conductivity, which is expressed by 
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where k is the reservoir permeability, 
fx is the fracture half length, 

fk is the 

permeability of proppant and w is the average fracture width. 

The relationships between fDC  and fs is presented in the Fig 2.2 (Cinco-Ley 

and Samaniego 1981) and can be calculated simply by (Meyer and Jacot 2005) using 

Prats’ effective wellbore concept (1961) 
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Therefore, the after treatment skin factor is obtained by 
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Fig 2.2 - Equivalent fracture skin, length and conductivity  

(Cinco-Ley and samaniego 1981)  

When the data is not available, as a quick and easy first-pass procedure, it is 

often useful to substitute values of fs ranging from -4 to -6 to provide an idea of post-

treatment production. This equation is a rough approximation only, as it applies to radial, 

pseudo-steady state flow, something that rarely occurs post-treatment (Martin and 

Economides 2010).
 

The effect of treatment on productivity is obtained by calculating productivity 

index ratio and comparing it between wells. Productivity index ratio indicates how 
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much the productivity has been increased after the treatment compared to the production 

before the treatment. The higher the productivity index, the bigger the effect of the 

treatment. The productivity ratio is calculated by 
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CHAPTER III 

METHODOLOGY AND APPROACH  

 

3.1    Decision Tree 

 For the development of candidate well selection, decision tree was selected as a 

tool. Decision tree is one effective way to display an algorithm and is commonly used to 

help identify a strategy that most likely to reach a goal. Decision tree is simple to 

understand and interpret. It also requires little data preparation and can analyze large 

amounts of data in a short time.   

 Fig. 3. 1 shows the decision tree used for the candidate well selection program.  

 The decision tree is composed of 3 main parts ; Basic Screening, Productivity 

Index Calculation and Economic Analysis. 

 Basic Screening evaluates cases to identify if the technology can be applied. The 

main parameters are bottomhole temperature, formation fluid type, formation 

permeability and damage characteristics. Passing the Basic Screening, the next section 

calculates the well performance and assesses the improvement by the technology. The 

following section estimates the economic benefit.  

 The Part 1 Basic Screening starts from comparing the bottomhole temperature 

with the applicable temperature range of degradable biopolymer. If it is not met, the 

evaluation procedure aborts and the well is not considered as a candidate well. If the 

temperature condition is met, wellbore fluid type is evaluated next. If the main fluid 

inside the tubing/casing is water, the evaluation proceeds to the next session. If more 
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than 50% of the fluid inside the tubing/casing is hydrocarbon, the degradable 

biopolymer cannot be broken into liquids, so the evaluation procedure stops.  

 Next, formation permeability is compared with the applicable permeability range 

of degradable biopolymer. If formation permeability is smaller than the permeability 

value of degradable biopolymer, the evaluation procedure stops and the well is not 

considered as a candidate well any longer. 

 The possible treatment volume is calculated from the liquid volume inside the 

tubing/casing. If the pre-defined target fracture half length and target fracture width 

cannot be achieved with the possible treatment volume, the target fracture half length 

and target fracture width is modified according to the possible treatment volume. 

 If the skin factor is negative, which implies the well has been treated before, the 

well is excluded from the candidate well for the test of degradable biopolymer. And if 

the damaged radius is very short, less than the pre-defined value, the well is still 

included in the candidate well and the evaluation proceeds to the next session but the 

matrix acidizing is also suggested. 

 For the next step, breakdown pressure is calculated for reference in fracture 

design. This step is for reference only and no well is excluded from the candidate well.  

 Last session in Part 1 deals with the operational check-points. The location and 

accessibility of the well, any HSE issues and any restrictions by law are those.  If there 

is any of these issues, the well needs to be handled properly, therefore the well is still 

considered as candidate well, but the suggestion message is given to inform the user.
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 If the well meets all the requirements in Part 1, the productivity index is 

calculated in Part 2. After that, economic analysis is conducted in Part.   

 The list of decision criteria and the reason why they are selected as screening 

tool will be covered in the following chapters in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 1 – Decision tree for candidate well selection 
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3.2    Selection Decision Criteria 

 It is a complicated problem to determine which well to hydraulic fracture 

because the conditions of every well are different and there is no exact answer. But it is 

certain that the best candidate wells for hydraulic fracturing are the wells which are in 

need of production increase due to the near wellbore damage and which is capable of 

production increase by having substantial volume of oil and gas in place. Therefore 

these aspects of productivity need to be considered when selecting possible decision 

criteria. 

 In selecting decision criteria, both the unique properties of degradable 

biopolymer and general hydraulic fracturing technique should be taken into account. 

Therefore, it is always preferable to have all kinds of data for the analysis of the 

candidate well selection for the test of degradable biopolymer, but the availability of 

data is always restricted in reality. Table 2 is the list of data needed for the design of 

fracture treatment and its possible sources for the acquisition (Holditch 2010). The 

decision criteria for the development of candidate selection program were carefully 

chosen to reflect the importance of data and also the availability of the data. 
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Table 2 - Data needed for hydraulic fracturing design and the sources (Holditch 2010) 
Data Sources 

Formation Permeability Cores, Well Tests, Correlations, 

Production Data Formation Porosity Cores, Logs 

Reservoir Pressure Well Tests, Well Files, Regional Data 

Formation Modulus Cores, Logs, Correlations 

Formation Compressibility Cores, Logs, Correlations 

Poisson’s Ratio Cores, Logs, Correlations 

Formation Depth Logs, Drilling Reports 

In-situ Stress Logs, Correlations, Well Tests 

Formation Temperature Logs, Correlations, Well Tests 

Fracture Toughness Logs, Correlations 

Water Saturation Logs, Cores 

Net Pay Thickness Logs, Cores 

Gross Pay Thickness Logs, Cores, Drilling Reports 

Formation Lithology Cores, Logs, Drilling Reports, 

Geologic Reports Wellbore Completion Well Files, Completion Prognosis 

Fracture Fluids Service Company Information 

Fracture Proppants Service Company Information 

 

3.2.1    Reservoir Temperature 

 Temperature is the most important parameter, and also the most complicated 

issue in this application. The viscosity of the biopolymer that coated the proppant is 

strongly dependent on the surrounding temperature. As formation depth increases, 

temperature increases, and at certain point, that will reduce the viscosity of the fluid. 
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When this happens, proppant will start settling in the fracture, and screen-out may occur 

at worst case scenarios. The criteria is set at 130 to 250°F from the laboratory test for 

the standard formula of the biopolymer. Therefore the well with reservoir temperature 

outside of this range will be excluded from the candidate well. The temperature data can 

be achieved by logging or well tests. 

 

3.2.2    Wellbore Fluid Type 

 The degradable biopolymer reacts with the water inside the tubing/casing and 

breaks down into liquid and becomes viscous enough to transport the proppant 

embedded in the degradable biopolymer into the formation. Therefore the content of 

water inside the tubing/casing is detrimental for the application of degradable 

biopolymer. According to the laboratory test, the water content inside the tubing/casing 

needs to be more than 50% of the total fluid volume and hydrocarbon inside the 

tubing/casing needs to be less than 50% of the total fluid volume. Therefore the 

candidate well selection program will exclude the wells with wellbore fluid of less than 

50% of water and proceeds only with the wells which have more than 50% of water.  

 

3.2.3    Formation Permeability 

 There is no established range for the permeability in the literature, but it is 

generally accepted that oil reservoirs with permeabilities of 1 md or less are candidate 

for hydraulic fracturing (Heydarabadi et al. 2010). For gas reservoirs, permeabilities less 

than 0.1 md are believed to be favorable (Economides 1992).   
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 Based on another classification, permeabilities of 5 md or less for oil reservoir 

and permeabilities of 0.5 md or less for gas reservoirs are considered appropriate for 

fracturing (Heydarabadi et al. 2010). 

Jennings (1991) showed (Fig. 3. 2) the typical production increase curves. The 

available production increase relationship typically shows that little productivity 

improvement can be expected for hydraulic fracturing applications in moderate to high-

permeability (k > 10 md) formations and that maximum benefit from fracturing occurs 

when formation permeabilities are less than 1.0 md. 

 The lower the formation permeability, the higher the production increase. But 

other than the productivity improvement, there exist the permeability range for the 

degradable biopolymer to successfully react in the formation. From the laboratory test, 

it was characterized that the degradable biopolymer works successfully in the reservoir 

permeability of larger than 0.1 md. Accordingly, the well with formation permeability 

of less than 0.1 md will be declined in the process of candidate well selection program. 

 

 
Fig. 3. 2 – The effect of formation permeability on productivity increase (Jennings 1991) 
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3.2.4    Treatment Volume 

 As describe above, the procedure of using degradable biopolymer is to set the 

material in the available well space, and push the fluid into the fracture after the 

biopolymer turns into viscous fluid. This means that the fracture volume is determined 

by the space available in the wellbore. If the volume is not enough, the propagation of 

fractures and keeping the fractures open by transporting the proppant would be limited 

or even impossible.  

 Because the settled down polymers during the degradation below the bottom of 

perforation will not be able to be used for the propagation of hydraulic fractures, only 

the inside casing volume between packer and bottom of perforation is included in the 

possible treatment volume. Usually, a plug is preferably placed just below perforations 

before pumping of polymer into the well commences, so that polymer pellets will 

accumulate in the casing over and above the perforations and not below the perforations 

(Cooke, 2005). 

Therefore, the volume inside the tubing/casing is calculated based on the ID of 

tubing, ID of casing, the fluid level, packer depth and bottom of perforation depth using 

following relations 

)DepthPackerDepthnPerforatioof(BottomID

Level)FluidDepth(PackerIDV

gcaprod

tubingtreatposs





2

sin.

2

4

4





 

 The schematic for the calculation of possible treatment volume is in Fig. 3. 3. 

Fig. 3. 3 – Schematic for the calculation of possible treatment volume 
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 Fig. 3. 3 – Schematic for the calculation of possible treatment volume 

After calculating possible treatment volume, penetrable height is calculated for 

given target fracture half length and target fracture width. Usually the target fracture 

half length for this degradable biopolymer is 20 ft and target fracture width is 0.5 in, 

which is wider and shorter than conventional hydraulic fractures.  

 When the penetrable height is smaller than payzone thickness, which means the 

possible treatment volume is not enough to achieve target geometry, the target fracture 

half length and target width are modified based on the ratio of penetrable height and 

payzone thickness. Since achieving wide fracture width is more important than having 

long fracture length, fracture width was modified to half of the original target width and 

fracture half length was modified using the ratio of penetrable height and payzone 

thickness. 
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thicknesspayzone

thicknesspayzonepenetrable
ratio   

targetoldnew ww *5.0

 

targetoldf,newf x
ratio

x *
5.0

,   

When the penetrable height is greater than payzone thickness, which is enough 

to achieve target fracture half length and target fracture width, the original target values 

are used in subsequent calculations. 

 Optimum fracture half length and optimum fracture width are calculated using 

the concept of optimal fracture conductivity based on the proppant mass. The optimum 

fracture geometries are presented for reference purposes, which could be compared with 

the target fracture geometries and provide user an idea of how the target geometries 

could be modified if operation and economics allow. In many situations, the optimal 

condition cannot be achieved because of pumping limit. This is more common in higher 

permeability formation compared with low permeability unconventional resources.     

 The optimum fracture half length and optimum fracture width are calculated 

using following equations (Economides et al. 2002). 
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3.2.5    Damage Assessment 

 According to Matthews and Russell (1967), invasion of drilling fluids, 

dispersion of formation clays, presence of a mudcake and cement, partial well 

penetration, limited perforation, turbulence effects in the wellbore and perforation 

plugging can cause skin near the wellbore. Positive skin factor results in additional 

pressure drop in the vicinity of the well and this indicates permeability reduction in the 

formation near the wellbore. Therefore, positive skin is a good indicator that the well 

needs to be hydraulic fracture treated. 

Negative skin factor occurs when the well had already been treated (matrix 

acidizing treatment or hydraulic fracturing treatment) or there is a natural fracture 

(Schechter 1992). Even when the matrix acidizing had already been treated and the 

productivity increase is not enough, hydraulic fracturing can be treated additionally. 

Therefore it is not a good idea to automatically exclude the well with negative skin from 

the candidate well. Instead, it is necessary to carefully examine the treatment history 

before making any decision. 

  But because our work focuses on finding a well which has not been treated 

before, positive skin factor was selected as one of the decision criteria. Positive skin 

factor means the well has been damaged before, therefore it is expected that it would 

give large productivity increase when treated. The well with negative skin factor will be 

excluded from the candidate well.  

 Besides the skin factor, the damaged radius is also considered. Matrix acidizing 

is a production enhancement technique by injecting acid into the formation to dissolve 
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present minerals, and therefore, increase the permeability in the near-wellbore vicinity. 

For the very near-wellbore damage, matrix acidizing can be an alternative treatment for 

hydraulic fracturing. Therefore for the damaged radius of less than 6 in, the well is still 

included in the candidate well but matrix acidizing is additionally suggested as a 

possible option. 

 The relationship between the skin factor, damaged radius and damaged 

permeability is obtained by Hawkins’ formula (1956). 
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The skin factor can be calculated from pressure build-up (PBU) test. 

 

3.2.6    Pressure 

 In this session, several kinds of pressures are discussed. And the purpose of this 

session is to figure out breakdown pressure and not to screen out the candidate wells.  

 The fracturing pressure, also known as in-situ stress or minimum horizontal 

stress, is the pressure required to propagate a fracture. Breakdown pressure is the 

pressure required to initiate a fracture from the wellbore. Due to the effect of the stress 

induced by the wellbore, the breakdown pressure is usually greater than the fracturing 

pressure. An expression for the breakdown pressure has been given by Terzaghi(1923) 

and for a vertical well this pressure, bdp , is expressed as follows (Economides et al. 

1994) 

pHHbd pTp  0max,min,3   
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where, min,H and max,H are the minimum and maximum horizontal stresses, 

respectively, 0T is the tensile stress of the rock, and pp is the reservoir pressure. 

 Usually the fracturing pressure is known from log or step-rate test, but the data 

for maximum horizontal stress is not always provided. Therefore, the maximum 

horizontal stress was assumed to be higher by 700 psi than the minimum horizontal 

stress inside the program in the calculation of breakdown pressure. This is rough 

estimation only and as further data becomes available, it can be modified.    

 

3.2.7    Operational Check-points : Accessibility, HSE Issues, Restrictions by Law 

 Since most wells are located in remote area, the well location and accessibility 

becomes an important factor in determining the availability of treatment. During the 

treatment, large amount of proppant and fluid additives are used. Therefore, the well 

should be located and accessible at least by a full-size heavy-duty truck and provide 

enough room on location for the truck. Therefore the accessibility is chosen as one of 

the decision criteria and if the well doesn’t meet this requirement, the program shows a 

suggestion message that it is better for the well to be accessible by truck.  

 As the hydraulic fracturing becomes widespread practical operation in shale gas 

production, the HSE concerns such as the contamination of ground water, risks to air 

quality, the migration of gases and hydraulic fracturing chemicals to the surface and the 

potential mishandling of waste are highly expressed.  The waste disposal of flowback 

and sometimes the injected fracturing fluids are regulated by U.S. Environmental 

Protection Agency (EPA) under the Safe Drinking Water Act and Clean Water Act. And 
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local regulations also tend to support stronger regulation of hydraulic fracturing. 

Therefore the well which has specific issues regarding HSE regulation is informed to 

the user. 

  Besides the regulations from the EPA, many states have comprehensive laws 

and regulations for hydraulic fracturing to protect drinking water sources and for safe 

operation such as Louisiana, Alabama, Texas, Oklahoma, Utah and Wyoming. There 

sometimes exist regulations at city level regarding hydraulic fracturing to protect their 

own environment, such as lakes which serves as the source of drinking water. Therefore 

the well which has specific issues regarding law enforcement will receive a suggestion 

message before proceeds to the next session. 

 

3.3    Additional Considerations for Decision Criteria 

 The following parameters were not used as screening criteria for the 

development of candidate well selection program, but they are also important factors 

and should be discussed according to the data availability. 

  

3.3.1    Potential for Water Production 

 Fracturing into a water bearing zone can significantly affect the post treatment 

production. When a fracture penetrates the water zone, the water production will 

increase substantially at the cost of oil and gas production. Therefore, it needs to be 

considered if there exist a water-bearing formation above and beneath the target 
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formation in the context of fracture height growth and the treatment size needs to be 

modified accordingly (Martin and Economides 2010). 

 To prevent unwanted height growth, the understanding of in-situ stress field is 

essential. Not only the several layers in the pay zone which we intent to create hydraulic 

fracture but also several feet of upper and lower layers that coinside with the payzone. 

 

3.3.2    Consideration for Equipments  

 Martin and Economides (2010) took into account the operational equipments 

when choosing candidate well for hydraulic fracturing. Pressure limitations of 

tubing/casing, packer, valves, gas lift mandrels as well as wellhead isolation tool are 

those factors which need to be considered to endure the fracturing pressure. The quality 

of tubular is also important to prevent a treatment from being under-performed. The 

quality of cement bond needs to be considered to initiate the fractures where the 

perforations are, not somewhere else.    

  

3.4    Productivity Index  

To investigate the technical effect of the fracture treatment, productivity index 

were calculated before and after treatment and productivity index ratio was also 

obtained. The wells which satisfy all the basic screening criteria are compared based on 

the productivity index ratio. Productivity index ratio could be from slightly larger than 1 

to several dozen and the higher the productivity index ratio, the bigger the effects of the 

treatment. But about 2 to 5 folds of increase is the most common range.  
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3.5    Economic Analysis 

 Because the candidate well will be actually tested in the field, the proper 

analysis of economics is crucial in the candidate well selection program. For the quick 

and easy understanding of the economics, additional expected daily revenue from 

hydraulic fracture treatment is calculated, which does not consider the time value of 

money and assumes constant pressure drawdown.  

PriceOilDrawdownPressure)J(JRevenueExpectedAdditional fracbeforefracafter   

 And then the payback period is obtained using the revenue and the treatment 

cost. 

RevenueExpectedAdditional

CostTreatment
PeriodBackPay 
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CHAPTER IV 

DEVELOPMENT OF CANDIDATE WELL SELECTION PROGRAM  

 

4.1    Introduction 

 Candidate well selection program was developed using Microsoft-Excel VBA 

for easy application. The program is composed of input section and output section. After 

user finishes data input on input worksheet, program automatically delivers the 

summary of evaluation and relevant graphs on other worksheets.  

 The input section composes of 3 different parts as discussed before. Part 1 is the 

basic screening to decide whether the well is suitable for candidate well. In part 1, the 

each different decision criteria, divided by sessions, is evaluated in sequence by 

inputting appropriate data. In part 2, the productivity index ratio is calculated. Lastly, 

the economic analysis is conducted. 

 The output section consists of 3 main parts. First, the various input data are 

summarized and the results of evaluation for each session are also summarized. Second,  

for the effective visualization, the evaluated results are presented on the decision tree. 

Finally, several graphs are presented for given input data to show the sensitivity analysis.  

Inflow performance relationship (IPR) curves according to various skin factor, 

productivity index versus skin factor, optimum fracture geometry for a various proppant 

mass are some of the examples. 
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4.2    Test Run of Candidate Well Selection Program 

 It is interactive between the user and the program in that the program will 

generate candidate selection results based on the information provided by the user 

through a questionary.  From following section, the steps to run the candidate well 

selection program will be explained in detail with an example. 

 Table 3 is the summary of input parameters used in the test run of the program. 

Table 3 – Summary of input parameters 
Well Name TAMU-1 

Bottom Hole Temperature, °F 190 
Formation Permeability, md 50 

Tubing OD, in 2.375 
Casing OD, in 4.5 
Fluid Level,ft 6410 

Packer Depth,ft 6420 
Bottom of Perforation Depth,ft 6450 

TVD,ft 6465 
Pay Thickness,ft 15 

Drainage Radius,ft 745 
Proppant Permeability,md 10,000 
Damaged Zone Radius, in 12 

Damaged Permeability, md 10 
Fracture Gradient, psi/ft 0.62 

Tensile Stress, psi 0 
Pore Pressure Gradient, psi/ft 0.42 

Formation Volume Factor, rb/STB 1.1 
Formation Fluid Viscosity, cp 0.9 

Oil Price,$ 85 
Treatment Cost, $ 250,000 

Bottom Hole Pressure, psi 1000 
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4.2. 1    Part 1 : Basic Screening 

Session 1 : Bottomhole Temperature and Wellbore Fluid Type 

 Figure. 4. 1 shows the beginning of the basic screening part. The well name, 

bottomhole temperature are asked to be typed in by the user. And user can easily select 

the wellbore fluid type from the combo box, either “Water > 50% & HC < 50%” or 

“Water < 50% & HC > 50%” because the wellbore fluid type essentially determines 

whether the fracturing fluid can be used or not . After finishing the data input, user can 

click the “End of Session1” command button to check the results for session 1. The 

results are shown on the blue box under the data input box, either proceeding to the next 

session or stopping the evaluation. If the result is stopping the evaluation, the message 

shows which criteria, either bottomhole temperature or wellbore fluid type, does not 

meet the requirements so that the user can understand the reason. In this case, both 

temperature and fluid type satisfy the criteria, so we move to the next session. 

 
Fig. 4. 1 – Part 1 Basic screening : Session 1 checking bottomhole temperature and 

wellbore fluid type 
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Session 2 : Formation Permeability 

 Figure. 4. 2 is the formation permeability session. If the input formation 

permeability is in the range of degradable biopolymer fracturing, the message of 

“Proceed to Session 3” appears when user clicked the “End of Session2” button. If not, 

the evaluation abortion message pops up and it shows necessary permeability range for 

the treatment. In this case, the permeability is 50md, so it satisfies the criteria. 

 
Fig. 4. 2 – Part 1 Basic screening : Session 2 checking formation permeability 

Session 3 : Treatment Volume 

 In Fig.4.3, the treatment volume is calculated. The user can select the tubing and 

production casing sizes from the list boxes which were pre-developed according to the 

API standards. The fluid level inside the tubing, packer depth, bottom of perforation 

depth, true vertical depth (TVD) and the payzone thickness need to be provided. If the 

“End of Session 3” button is clicked, the results are shown for either proceeding to the 

next session or proceeding to the next session with the modification of target fracture 

geometries. In addition, the possible treatment volume is presented and modified target 

fracture half length and target fracture width are also presented if the possible treatment 

volume is not enough to achieve the desired target fracture geometry. Optimum fracture 

half length and optimum fracture width are also provided for the reference. 
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 In this case, possible treatment volume is 22.17 gal, which is not enough to 

achieve the target fracture half length (20 ft) and target fracture width (0.5 in), so the 

new target fracture half length of 4.74 ft and new target width of 0.25 in were set. 

Optimum fracture half length is 11.40 ft and optimum fracture width is calculated as 

1.12 in. These optimum values can act as a reference for user in designing the new 

target fracture geometries when necessary. 

 
Fig. 4. 3  – Part 1 Basic screening : Session 3 checking treatment volume 

Session 4 : Damage Assessment 

Skin factor and the radius of damaged zones are evaluated next such as in Fig. 4. 

4. If the calculated skin factor is positive and the damaged radius is larger than the pre-

defined limit, the “Proceed to Session 4” message appears. If the skin factor is negative, 

the evaluation aborts and the message of “This well is does not need by-pass fracture 
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treatment." is shown.  If the skin factor is positive but the damaged radius is smaller 

than the pre-defined limit, the suggestion of matrix acidizing is presented. 

 In this case, the calculated skin factor is 17.02 and damaged radius is long 

enough for hydraulic fracturing. 

 
Fig. 4. 4 – Part 1 Basic screening : Session 4 checking damage assessment 

Session 5 : Pressure 

 Figure 4. 5 shows the session for calculating breakdown pressure based on the 

input fracture gradient, tensile stress and pore pressure gradient. In this session, the 

screening process is not made, just the calculation of breakdown pressure is conducted. 

Reservoir pressure and in-situ stress are also presented for the reference. 

In this case, the minimum in-situ stress is 4008 psi and reservoir pressure is 2715 

psi. The breakdown pressure for the initiation of fracture at the wellbore is calculated as 

4601 psi. 
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Fig. 4. 5  – Part 1 Basic screening : Session 5 checking pressure 

Session 5 : Well Location & Accessibility, HSE Issues, Restrictions by Law 

 
 Last session is for checking the various operational considerations (Fig. 4. 6). 

The user can select “Yes” or “No” from the option button for each 3 questions. The 

“Yes” option for the “Well is easy to access by truck” question means there is no special 

concerns needed. On the other hand, the “No” buttons for the “Health, Safety and 

Environmental issues regarding this well” and “Any special restrictions by local/state 

law” mean there is not any issue which has to be further considered. If one of 3 

questions has some restriction, a suggestion message, that it’s better not to have any 

issue/restriction, appears. 

 In this case, well is accessible by truck and any special HSE issue or law 

restriction does not exist.  

 
Fig. 4. 6  – Part 1 Basic screening : Session 6 checking  operational check-points 
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4.2. 2    Part 2 : Productivity Index 

 The productivity index calculation part is shown in Fig. 4. 7. For the calculation, 

the data for the formation volume factor, formation fluid viscosity are needed. After 

clicking the “End of Part 1” button, the results of evaluation is shown on the blue box 

and the computed productivity indexes of before and after treatment are provided. The 

productivity ratio is also displayed. 

 In this case, the productivity index before treatment is 0.22 and after treatment is 

0.89 and productivity index ratio is 4.08. 

 
Fig. 4. 7 – Part 2 Checking productivity index 

4.2. 3    Part 3 : Economic Analysis 

 Figure. 4. 8 shows the economic analysis. After inputting oil price and the 

estimated treatment cost, the calculated additional revenue due to the treatment and 

payback period are presented on the message box. 

 In this case, the additional revenue expected from treatment is $97,785 and 

payback period is 2.56 days. 



37 
 

 
Fig. 4. 8 – Part 3 Checking economic analysis 

4.3    Evaluation Summary 

 After user followed all the sessions and provided all the input data,  the program 

runs to generate the evaluation results. If the user clicks “End of Program Run. Review 

the Results” button located at the very bottom of the worksheet, the results worksheet is 

added and the results are summarized. Starting from the list of all the input data, the 

evaluation results for each session are summarized (Fig. 4. 9) 

 Figure. 4.10 is the decision tree for the evaluated case results. On the decision 

tree, the results of evaluation for each session are represented as thick red arrows, so the 

user can easily figure out which decision criteria are satisfied. 
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Fig. 4. 9 – Summary of program run 
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Fig. 4. 10 – Decision tree with the results of program run 
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4.4    Graphic Output 

 Figure. 4. 11 shows the graphs of the evaluation. Inflow performance curves are 

presented to compare the flow rate before the treatment and after the treatment. Also, 

for the sensitivity analysis of the skin factor, IPR curves for different skin factor (before 

treatment) are provided. 

 
Fig. 4. 11 – IPR curves for various skin factors 

 And to investigate the effect of before treatment skin factor on the calculation of 

productivity index and on the calculation of productivity index ratio (Fig. 4. 12), graphs 

are displayed. The red dots on the graphs represent the calculated results from the 

program run and the blue curves are the results of sensitivity analysis. Therefore, even 

when the user has only a rough estimate of the input values, he/she can still use the 

candidate well selection program and can obtain the general idea of how the results 

would be.  
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Fig. 4. 12 – PI/PI ratio curves for various skin factors (before treatment) 

  The effect of after treatment skin can be also examined by Fig. 4.13.  

 
Fig. 4. 13 – PI/PI ratio curves for various skin factors (after treatment) 

 The sensitivity analysis for proppant permeability, fracture half length and 

fracture width are also presented. The red dot for proppant permeability is the input 

value and for fracture geometries, the modified target fracture half length and target 

width were used (Fig. 4. 14). 



42 
 

 
Fig. 4. 14 – PI/PI ratio curves for the various parameters 

 Additionally, the optimum fracture geometries for the different proppant mass 

are displayed (Fig. 4. 15). As the more proppant is used, longer fracture half length and 

wider fracture width can be achieved. But the proppant mass is directly related to the 

treatment cost, therefore the decision of how much proppant to use is a complex 

question. By providing the different fracture geometries for various proppant mass, the 
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user can better understand the relationships of proppant mass and fracture geometries 

and use it as a reference.  

 In this case, the red dot shows the calculated proppant mass and other markers 

are for the sensitivity analysis. 

 
Fig. 4. 15 – Optimum fracture geometry for various proppant mass 
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CHAPTER V 

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK  

 

5.1    Conclusion 

This thesis is about the process of building a user-friendly candidate well 

selection program for the test of degradable biopolymer as fracturing fluid. Conclusions 

drawn from this thesis include: 

 The decision criteria were carefully selected to incorporate the unique properties 

of degradable biopolymer as fracturing fluid. The field data availability and the 

benefits of each data were examined as well 

 The decision tree for the selection of candidate well was developed to reflect the 

selected decision criteria. The decision tree helps the user to understand the 

procedure of the selection process and easily figure out which data are used and 

how the data are sub-grouped together to provide meaningful results 

 The selection process is comprised of 3 main parts. Basic screening part is the 

part which screens out unsatisfactory wells by applying several decision criteria 

by sequence 

 After basic screening part, productivity index is calculated to help user to 

understand the productivity increase by comparing productivity index before and 

after the treatment 
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 Economic analysis is conducted after productivity index. Additional expected 

revenue and payback period are calculated to provide economical impact of the 

treatment 

 For the reference, optimum fracture geometries are presented from given 

proppant mass 

 Several graphs including IPR curves, productivity index curves and productivity 

index ratio curves depending on several independent parameters are presented 

for the sensitivity analysis. This will enable the user to have the general idea of 

how input values affect the results of evaluation 

 

5.2    Recommendation for Future Work    

 Though the candidate well selection program was made in the best possible way 

while reflecting the properties of degradable biopolymer and the requirements for 

hydraulic fracturing, the program can be much more improved by: 

 Test with real field data. By doing so, the program can be more practical and 

effective with necessary modification 

 Update the properties of degradable biopolymer as new information becomes 

available. By newly conducted laboratory test for the degradable biopolymer, 

new aspects of decision criteria can be added or the existing ones can be 

modified 
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NOMENCLATURE 

 

B       formation volume factor, res bbl/STB 

fDC     dimensionless fracture conductivity 

optfDC ,   optimum dimensionless fracture conductivity 

f       f-factor 

h        payzone thickness, ft 

ID      inner diameter, in 

J       productivity index   

k        formation permeability, md 

fk       proppant permeability, md 

sk       damaged permeability, md 

q        flow rate, STB/d 

p       pressure, psi 

bdp      breakdown pressure, psi 

pp      reservoir pressure, psi 

er       drainage radius, ft 

wr      wellbore radius, ft 

'

wr      effective wellbore radius, ft 

sr      damaged zone radius, ft 
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s        skin factor (before treatment) 

fs      skin factor (after treatment) 

oT         tensile stress of the rock 

TVD   true vertical depth, ft 

pV       propped fracture volume contain within the payzone (2-wing) 

w       fracture width, in 

optw    optimum fracture width, in 

fx      fracture half length, ft 

optfx ,  optimum fracture half length, ft 

      viscosity, cp 

      Poisson’s ratio 

max,H   maximum horizontal stress, psi 

min,H   minimum horizontal stress, psi 
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