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ABSTRACT

Nonlinear Interactions between LongsWaves in a Two-Layer Fluid. (December

2011)

Navid Tahvildari, B.S., Amirkabir University of Technology (Tehran Polytechnic);

M.S., Sharif University of Technology

Chair of Advisory Committee: Dr. James M. Kaihatu

The nonlinear interactions between long surface waves and interfacial waves in

a two-layer fluid are studied theoretically. The fluid is density-stratified and the

thicknesses of the top and bottom layers are both assumed to be shallow relative

to the length of a typical surface wave and interfacial wave, respectively. A set of

Boussinesq-type equations are derived for potential flow in this system. The equations

are then analyzed for the dynamics of the nonlinear resonant interactions between a

monochromatic surface wave and two oblique interfacial waves. The analysis uses a

second order perturbation approach. Consequently, a set of coupled transient evolu-

tion equations of wave amplitudes is derived. Moreover, the effect of weak viscosity

of the lower layer is incorporated in the problem and the influences of important

parameters on surface and interfacial wave evolution (namely the directional angle

of interfacial waves, density ratio of the layers, thickness of the fluid layers, surface

wave frequency, surface wave amplitude, and lower layer viscosity) are investigated.

The results of the parametric study are discussed and are generally in qualitative

agreement with previous studies.

In shallow water, a triad formed of surface waves (or interfacial waves) can be

considered in near-resonant interaction. In contrast to the previous studies which lim-

ited the study to a triad (one surface wave and two interfacial waves or one interfacial
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and two surface waves), the problem is generalized by considering the nonlinear inter-

actions between a triad of surface waves and three oblique pairs of interfacial waves.

In this system, each surface wave is in near-resonance interaction with other surface

waves and in exact resonance with a pair of oblique interfacial waves. Similarly, each

interfacial wave is in near-resonance interaction with other interfacial waves which

are propagating in the same direction. Inclusion of all the interactions considerably

changes the pattern of evolution of waves and highlights the necessity of accounting

for several wave harmonics. Effects of density ratio, depth ratio, and surface wave

frequency on the evolution of waves are discussed.

Finally, a formulation is derived for spatial evolution of one surface wave spec-

trum in nonlinear interaction with two oblique interfacial wave spectra. The two-layer

Boussinesq-type equations are treated in frequency domain to study the nonlinear in-

teractions of time-harmonic waves. Based on weakly two-dimensional propagation of

each wave train, a parabolic approximation is applied to derive the formulation.
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CHAPTER I

INTRODUCTION

The evolution of oceanic internal waves has been the subject of numerous studies in

the past several decades. Internal gravity waves are commonly found in stably density

stratified fluids in various scales. The density stratification can be due to temperature

(as in lakes) or salinity (as in ocean) gradient. A two-fluid system is a common,

although simplified, model for ocean stratification. The internal waves propagate

along the density interface (thus the term ”interfacial” waves). Although nonlinear

evolution of internal waves often makes it impossible to track their source of generation

(Staquet & Sommeria, 2002), several mechanisms, which are not well investigated,

are known to lead to generation of interfacial waves in the ocean. Among others

are interaction of tides with topography, interfacial shear instability, and nonlinear

interactions with surface waves.

Stokes (1847) was the first to show that two modes of oscillation are possible in

a two-layer fluid. The modes are called barotropic or surface mode, corresponding to

the mode in which the largest fluid oscillations occur at the surface, and baroclinic

or internal mode in which maximum oscillation is at the interface. It was found that

the interface between the layers allows for presence of waves which are very similar to

the surface waves. Helland-Hansen & Nansen (1909) reported the first observation of

internal wave effects as fluctuation of the temperature at a fixed depth. Having es-

tablished the evidence of their presence, researchers focused on possible mechanisms

of generation and dissipation of interfacial waves and their interaction with other

waves in the ocean. After initial studies by Philips (1960) on nonlinear wave inter-

The journal model is the Journal of Fluid Mechanics.
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actions, Ball (1964) showed that in a two-layer shallow fluid, nonlinear interactions

are possible between surface and interfacial waves. The nonlinear interactions among

different wave components have been widely studied since then (Philips, 1981). Non-

linear interactions in a two-layer fluid are of practical importance in coastal dynamics,

limnology and oceanography. The focus of the studies on internal waves have mostly

been in deep ocean conditions (Thorpe, 1975) and there are only a few accounts of ob-

servation of interfacial waves in coastal areas where the seabed boundary conditions

becomes influential. However, theoretical and experimental results of Hill & Foda

(1998) and Jamali (1998) confirm that surface waves can induce interfacial waves in

intermediate and shallow waters. Study of interface processes also has implications

in investigation of wave-sediment interactions.

Vast areas of mud, silt and fine sediments line the adjacent shorelines of many

areas of the world (e.g., the coastlines of Louisiana, USA (Jaramillo et al., 2009); the

Korean Peninsula; the Amazon River delta (Cacchoine et al., 1995); coast of Surinam;

the Persian Gulf (Soltanpour et al., 2010)). Generally, the immediate effect of cohesive

sediments on the surface waves has been that of very strong damping, as reported by

Wells & Coleman (1981). However, in addition to the direct damping of surface waves,

several other physical phenomena occur during the propagation of surface waves over

bottom mud. An example is the interaction between surface waves which can lead to

the energy transfer from short to long waves (Sheremet & Stone, 2003; Kaihatu et al.,

2007). In addition, surface waves can generate short internal waves over a sediment-

water interface (Hill & Foda, 1996). The bottom mud can become fluidized due to

the dynamic forcing of surface waves and form a two-layer fluid admitting nonlinear

generation of instabilities over lutocline (mud-water interface). Surface waves can lose

energy to grow such instabilities to become interfacial waves. Therefore, one possible

damping mechanism for surface waves which is often disregarded is the generation
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of interfacial waves. In addition, interfacial waves may break and result in vertical

mixing in the water column (Thorpe, 1968). These phenomena highlight the practical

importance of the evolution of the interfacial waves in coastal regions. The nonlinear

interactions among surface and interfacial modes of motion or their interaction with

bottom topography has been studied only to a small degree.

In contrast to a single layer fluid where completely resonant nonlinear interac-

tions are third order effects and occur among four waves in deep to intermediate depth

water (Philips, 1960), exact resonance is possible among triads of waves in second or-

der in a two-layer fluid (Ball, 1964). Either two surface waves with one interfacial

wave or two interfacial waves with a single surface wave can form a resonant triad.

The former triad was first studied by Ball (1964). He specifically focused on the triad

in very shallow water (non-dispersive limit) and showed that the interfacial wave gains

energy from opposite-traveling surface wave pair. Thorpe (1966) studied the same

triad using Euler equations. In addition, Segur (1980) noted that a two-layer system

mathematically admits resonant interactions between two internal waves and a single

surface wave. The physical consequence of this resonant triad was examined later in

the theoretical studies of Wen (1995) and theoretical and experimental studies of Hill

& Foda (1998) and Jamali (1998). The experiments generally indicated the genera-

tion of a pair of oblique short interfacial waves and their growth due to subharmonic

resonance with a monochromatic surface wave. These studies used second order per-

turbation approach and predicted initial exponential growth of the interfacial waves.

Hill (2004) extended the analysis to the third order by providing an inviscid analy-

sis for internal waves propagating over a deep lower layer. His results indicate that

the second order analysis significantly overestimates the interfacial wave amplitudes.

Recently, Tahvildari & Jamali (2009) extended the third order study to intermediate

depth water and incorporated the effect of viscosity in the evolution equations of
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wave amplitudes. Their analysis could predict the long-term saturation of interfacial

waves due to viscous effects, which was in agreement with experimental observations

(Jamali, 1998). All of these analyses use deep water scaling, with the small param-

eter as ϵ = ka, where a and k are respectively a typical wave amplitude and wave

number, limiting the analysis to fluid layers of large to intermediate depths. However,

the interaction between surface waves and seabed becomes significant in shallow wa-

ters where Stokes theory breaks down and Boussinesq-type equations provide a more

consistent description of wave forms.

The classical Boussinesq equations of Peregrine (1967), are the extension of

weakly nonlinear shallow water equations to include weak dispersiveness. Therefore,

they can provide an appropriate formulation for the relatively shallow to interme-

diate depth waters corresponding to coastal regions. Numerical simulations of the

standard Boussinesq equations have compared quite well in their range of validity

with field observations (Chen et al., 2003; Elgar & Guza, 1985; Freilich & Guza,

1984) and laboratory data (Liu et al., 1985; Rygg, 1988). There have been several

attempts to overcome the shallow water limitation of the conventional Boussinesq

equations by improving the linear dispersion properties (Madsen et al., 1991; Nwogu,

1993) which have led to introduction of extended Boussinesq equations. The numer-

ical investigation of Nwogu (1993) equations has shown improved comparisons with

experimental results (Wei & Kirby, 1995). A fully nonlinear extension of Nwogu

(1993) equations was derived and modeled by Wei et al. (1995). On long internal

waves, early studies were based on the Korteweg-De Vries (KdV) equation Benjamin

(1966). Some researchers used KdV-type equations with incorporation of dissipa-

tive and shoaling effects (Lewis et al., 1974; Liu, 1988; Maxworthy, 1979). Koop &

Butler (1981) studied the behavior of weakly nonlinear KdV models for long inter-

nal waves against experimental measurements and concluded that the model behaves
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fairly well where both layers of fluid are in shallow range. Based on the KdV or

the Kadomtsev-Petviashvili (K-P) equations, all these models have the limitation of

uni-directional or weakly two-dimensional waves in horizontal plane. Weakly non-

linear and weakly dispersive (Choi & Camassa, 1996; Lynett & Liu, 2002) and fully

nonlinear and weakly dispersive (Choi & Camassa, 1999) models were derived for

evolution of internal waves. Recently, Debsarma et al. (2010) improved the fully

nonlinear model of Choi & Camassa (1999) with inclusion of higher order dispersive

terms. Among the aforementioned two-fluid models, all assume a rigid lid condition

except for Choi & Camassa (1996). The rigid lid assumption eliminates the complica-

tions due to nonlinear interactions between surface and interfacial modes. However,

a two-layer fluid with free surface boundary condition is a more realistic analogy for

oceanic environment. It is noted that derivation of extended Boussinesq equations

in the manner of Madsen et al. (1991) and Nwogu (1993) can also be accompanied

following this general approach; this would allow for more accurate wave propagating

modeling at frequencies beyond the weakly dispersive limit. However, our focus here

is on the nonlinear processes in shallow water (small µ2) rather than on enhancement

of the model performance in intermediate-deep water.

In deep-intermediate water, neither the surface wave nor the interfacial waves

can be in near-resonance condition with other surface or interfacial modes in second

order. On the other hand, study of waves in non-dispersive limit confines the results

to very shallow waters. The work in this dissertation contributes to the research

on nonlinear wave interactions, and in particular, focuses on generalization of study

of nonlinear interactions between a surface wave and a pair of interfacial waves by

including shallow water scaling. Accounting for shallow water scaling extends the

previous research on the topic from intermediate-deep water to shallow-intermediate

depths. On the other hand, other resonant interactions are possible in shallow water; a
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triad formed of surface waves (or interfacial waves) can exchange energy if they satisfy

near-resonance condition. These interactions are also influential on the evolution of

waves. In an effort to take this interaction into account, we consider a triad of

surface waves which are in near-resonance with each other and simultaneously in

exact resonance with two oblique interfacial waves. The interfacial waves on the other

hand, are in shallow water range as well and thus, are in near-resonant interaction

with other interfacial waves in the same wave train. Therefore, we have expanded the

problem by considering a system of 9 waves which interact to varying degrees.

In Chapter (2), the governing equations for the propagation of weakly disper-

sive waves in a two-layer fluid are derived. These equations form a two-dimensional

Boussinesq-type model with depth-averaged velocities in which the nonlinearity and

dispersiveness are in balance, i.e. O(ϵ) = O(µ2) ≪ 1, where µ = kh is the dispersion

parameter in which k and h are a typical wave number and water depth respectively.

The equations are shown to be compatible with the system derived by Choi & Ca-

massa (1996) in the limit of shallow lower layer and slightly varying bottom. This

system of equation follows is consistent with the ordering in the conventional Boussi-

nesq equations and thus is valid in shallow water range. The equations are analyzed

for the nonlinear wave interactions in the system. Initially, the problem of subhar-

monic generation of two oblique interfacial waves due to resonant interaction with

a long surface wave is studied. A second order perturbation approach is used and

coupled evolution equations of the amplitudes of the interacting waves are derived.

The focus is on dynamics of transient evolution of wave amplitudes. Furthermore,

the effect of weak viscosity of the lower layer is incorporated in the amplitude evo-

lution equations. Finally, the influence of important parameters in the system such

as directional angle of interfacial waves, viscosity of the lower layer, surface wave

frequency and initial amplitude, relative thickness of the layers and density difference
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on temporal evolution of surface and interfacial wave amplitudes are discussed. Fi-

nally, the problem is generalized to include the near-resonant terms and the effects of

stratification, depth ratio and surface wave frequency on the evolution of waves are

discussed. The study provides invaluable insight on the dynamics of surface-interface

interactions by studying their temporal evolution. It is also desirable to investigate

the spatial evolution of waves when they have reached their steady-state amplitude.

As mentioned earlier, Tahvildari & Jamali (2009) investigated the third order

effects on the evolution of interfacial waves. The significant result of the study was

that after initial exponential growth, the interfacial wave amplitudes inhibit growth

and approach a constant magnitude in long time due to weak viscosity effects. In

other words, interfacial waves approach a time-periodic steady-state behavior. There

are a few studies on the spectral energy transfer between surface and interfacial waves.

Watson et al. (1976) discussed the spectral growth of internal waves due to coupling

with surface waves. The study was limited to linear theory. Olbers & Herterich

(1979) studied the energy transfer from the spectrum of surface wave to internal

wave field in deep ocean. Parau & Dias (2001) showed that nonlinear interaction is

possible between a long internal mode and a short surface mode in oceanic conditions.

However, the study was formulated in deep water conditions and was limited to one

horizontal dimension. Recently, Liu (2006) studied the energy transfer in random

surface and internal wave field using Stokes theory. However, there is no study on

the evolution of interacting spectra of long surface and interfacial waves.

In Chapter (3), the nonlinear interactions between surface and interfacial waves

is extended to one spectrum of surface waves and a pair of spectra of interfacial

waves. The spatial evolution of interacting waves in the steady-state stage is for-

mulated. Time evolution of spatially periodic waves was studied by Bryant (1973,

1974). He applied a Fourier transform, periodic in space, for velocity potential and
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free surface displacement and formulated a model for flat bottom. However, as most

wave records are taken as time-series in spatially fixed gages, a time periodic spatial

varying formulation is a more suitable model for practical applications. Liu et al.

(1985) studied refraction-diffraction of time periodic waves by Boussinesq equations

using a parabolic approximation. Agnon et al. (1993) derived a nonlinear spatially

varying, temporally periodic shoaling model. Kaihatu & Kirby (1995) extended the

model in Agnon et al. (1993) to two dimensions and derived a nonlinear mild-slope

elliptic model. A parabolic approximation was used to develop the evolution equa-

tions in two-dimensions. The model showed an improvement in comparison with

experimental data. Furthermore, Kaihatu & Kirby (1998) used the parabolic approx-

imation to model the extended Boussinesq equations. In this chapter, the quadratic

nonlinear interactions between components of one surface wave spectrum and two

oblique interfacial wave spectra is studied. The interfacial wave trains are assumed

to be generated due to subharmonic resonance with the surface wave. Therefore, the

considered interactions include second order near-resonant interactions among sur-

face waves harmonics and also among interfacial wave harmonics in each wave train,

as well as second order exact resonance between surface and subharmonic interfacial

harmonics. As frequency domain formulation allows for explicit modeling of the non-

linear wave interactions and provides the suitable tool to extend the study of triad

interactions to steady-state condition, this framework is adopted. In Chapter (4), the

conclusions and suggestions for future work are discussed.
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CHAPTER II

ANALYSIS OF THE NONLINEAR INTERACTIONS

A. Introduction

In a two fluid system, energy can be exchanged between a surface wave in barotropic

mode to a pair of interfacial waves in baroclinic mode. This interaction is a poten-

tial mechanism for parametric instability of internal gravity waves in near-inertial

frequency band (Foda & Hill, 1998). In shallow waters, in addition to this energy

exchange, components in a surface or interfacial wave train can form resonant triads.

The purpose of this chapter is to analyze these processes. As a first step, a suitable

formulation is derived to analyze the dynamics of the nonlinear interactions. Then

the parametric instability of the interfacial waves is investigated and finally, the anal-

ysis is expanded to include more possible nonlinear interactions between waves in a

two-layer shallow water.

Initially, a system of Boussinesq-type equations is derived for shallow flows in a

two-layer fluid. The resulting model is composed of four equations for conservation

of mass and momentum in both layers and can be used for numerical simulation of

surface and interfacial waves propagation. The model is verified by comparing to Choi

& Camassa (1996). The model retains second order of nonlinearity and first order of

dispersion, i.e. the truncation error is O(ϵ2, ϵµ2). Then, using a standard approach

(second order perturbation), the equations are analyzed for the dynamics of the gen-

eration of two oblique interfacial waves due to nonlinear interactions with a surface

wave. Consequently, temporal evolution equations of the waves are derived and the

interaction between the surface and interfacial waves is studied. Furthermore, the

influence of important parameters in the problem, i.e. directional angle of interfacial
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waves, viscosity, surface wave frequency, surface wave amplitude, stratification, and

depth ratio on the evolution of interacting waves are studied.

In addition to the aforementioned coupling between surface and interfacial waves,

triads of nonlinear interaction can be formed among harmonics of surface or interfa-

cial waves. To allow for such interactions, we generalize the problem by considering

a triad of surface waves. A triad is a basic structure to study nonlinear energy trans-

fer between modes. The nonlinear interactions between the same type of waves in

weakly-dispersive limit, is a near-resonant interaction. In such condition, the frequen-

cies exactly and the wave numbers approximately satisfy the kinematic conditions of

resonance. Due to exact resonance condition, each surface wave component generates

two oblique interfacial waves and thus, two trains of oblique interfacial waves each

having three waves are generated. The component of generated interfacial waves are

also long waves and can form an interacting triad. In Section (II-F), these possible

nonlinear interactions are analyzed and the changes in the evolution of waves due to

alteration of the important parameter values are examined.

B. Governing equations

Figure 1 illustrates the configuration of the problem. The Cartesian coordinate sys-

tem is introduced with origin at still interface, (x, y) at the interfacial plane and

z-axis positive upward. The fluid is two-layer and density stratified with an upper

layer of density ρ′ and thickness h, and lower layer of density ρ and thickness d

(prime quantities refer to upper layer hereafter). The fluid layers are assumed invis-

cid (initially), incompressible, homogeneous and immiscible and flows are assumed

irrotational within each fluid. Therefore, velocity potential functions ϕ′ and ϕ can be

defined for the upper and lower layer, respectively. We allow for mild spatial variation
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Fig. 1. Configuration of the problem

of bathymetry; z = −d(x, y) where ∇d = O(µ2). Resonant generation of interfacial

waves due to interaction with a surface wave is a three dimensional process, and to

capture this three dimensionality, the fluid layers are assumed to be horizontally in-

finite, corresponding to a laterally unbounded ocean. The free surface and interface

displacements are η(x, y) and ξ(x, y) respectively.

In the derivation of a depth-averaged model, we scale the problem in a manner

consistent with a shallow water formulation. Using a typical wave amplitude, a0,

characteristic wave number, k0, and a typical upper layer thickness, h0, the following

dimensionless variables are introduced (Mei et al., 2005):

(x∗, y∗) = k0(x, y), z∗ =
z

h0
, t∗ = k0

√
gh0 t, ω∗ =

ω

k
√
gh0

,

(ξ∗, η∗) =
(ξ, η)

a0
, (d∗, h∗) =

(d, h)

h0
, ϕ∗ = ϕ

k

ϵ
√
gh0

, k∗ =
k

k0
, (2.1)

where g is the gravity acceleration and the asterisks denote dimensionless quantities.

The parameter ϵ = a0/h0 is a measure of relative smallness of the wave amplitudes

and the nonlinearity parameter. In scaling the long wave motion, another small

parameter is defined to represent frequency dispersion ; µ = k0h0. By substituting

the dimensionless variables, the equations become non-dimensional. The asterisks are

dropped hereafter for convenience.
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1. Basic equations

One approach to deriving the Boussinesq-type equations is to start from the potential

flow boundary value problem (e.g. see Mei et al., 2005) where the fluid is inviscid.

The internal kinematics of the two layers are thus governed by the Laplace equation.

The equations are written in terms of velocity potentials in the two layers and are

scaled using (2.1):

µ2∇2ϕ′ + ϕ′
zz = 0, ϵξ < z < h+ ϵη (2.2)

µ2∇2ϕ+ ϕzz = 0, −d < z < ϵξ (2.3)

where ∇ = (∂/∂x, ∂/∂y) and subscripts of coordinates or time denote partial deriva-

tives. The free surface kinematic and dynamic boundary conditions are given by

µ2 [ηt + ϵ∇ϕ′ · ∇η] = ϕ′
z, z = h+ ϵη (2.4)

µ2
[
ϕt + η +

1

2
ϵ (∇ϕ′)

2
]
+

1

2
ϵ(ϕ′

z)
2 = 0, z = h+ ϵη (2.5)

where z = h is the elevation of the undisturbed free surface, and the atmospheric

pressure on the free surface is assumed to be zero. Similarly, the kinematic and

dynamic interface boundary conditions are,

µ2 [ξt + ϵ∇ϕ′ · ∇ξ] = ϕ′
z, z = ϵξ (2.6)

µ2 [ξt + ϵ∇ϕ · ∇ξ] = ϕz, z = ϵξ (2.7)

rµ2
[
ϕ′
t + ξ +

ϵ

2
(∇ϕ′)

2
]
+
ϵ

2
(ϕ′

z)
2 = µ2

[
ϕt + ξ +

ϵ

2
(∇ϕ)2

]
+
ϵ

2
(ϕz)

2, z = ϵξ

(2.8)

where the parameter r = ρ′/ρ < 1 is the density ratio of the layers in a stable

stratification. Equations (2.6) and (2.7) respectively account for the particles at the

interface in the upper and lower fluid to remain on the interface. Equation (2.8) is the
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Bernoulli equation at the interface where the pressures in the lower layer and upper

layer are identical. It is evident in the scaled equations that the displacements at the

free surface and interface are in the same order of magnitude and both surface and

interfacial modes are assumed to be long waves. The bottom topography is assumed

to be mildly varying in space and a no flux kinematic boundary condition is used at

the seabed:

µ2∇ϕ · ∇d+ ϕz = 0, z = −d(x, y) (2.9)

C. Boussinesq-type equations in a two-layer fluid

In this section, we derive Boussinesq equations for propagation of weakly nonlinear

and weakly dispersive waves in the two-fluid system. The Boussinesq approximation

results in a simplifying assumption to the governing equations that nonlinearity and

frequency dispersion are in balance, i.e. O(ϵ) ∼ O(µ2). We express the depth depen-

dence of the velocity potentials in the layers as power series in vertical coordinate, z,

for both layers,

ϕ′(x, y, z, t) =
∞∑
n=0

znϕ′
n(x, y, t) (2.10)

ϕ(x, y, z, t) =
∞∑
n=0

(z + d)nϕn(x, y, t) (2.11)

The above expansions are substituted in the bottom boundary condition, (2.9), and

kinematic interfacial boundary condition, (2.6), respectively. Therefore, ϕ1 and ϕ′
1

are obtained in terms of potential function values at the seabed and interface (ϕ0 and

ϕ′
0 respectively),

ϕ′
1 = µ2ξt + ϵµ2∇ϕ′

0 · ∇ξ (2.12)

ϕ1 = −µ2∇ϕ0 · ∇d+ µ4∇ϕ0 · ∇d(∇d)2 (2.13)
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By substituting (2.10) and (2.11) respectively in the upper and lower layer Laplace

equations, (2.2) and (2.3), the following recursion expressions are obtained,

ϕ′
n+2 = −µ2 ∇2ϕ′

n

(n+ 1)(n+ 2)
(2.14)

ϕn+2 = µ2(µ2 − 1)
∇2ϕn + (n+ 1) [∇ϕn+1 · ∇d+∇ · (ϕn+1∇d)]

(n+ 1)(n+ 2)
(2.15)

We rewrite (2.10) using (2.12) and (2.14) and rewrite (2.11) using (2.13) and (2.15)

and retain terms of O(µ3) and larger. The expressions for velocity potential functions

are then given by,

ϕ′ = ϕ′
0 + µ2ξt −

µ2

2
∇2ϕ′

0z
2 +O(µ4) (2.16)

ϕ = ϕ0 − µ2∇ϕ0 · ∇d(z + d)− µ2

2
∇2ϕ0(z + d)2 +O(µ4) (2.17)

The above expressions for the velocity potentials will be used to obtain the depth-

integrated momentum equations. Horizontal gradients of these equations give the

horizontal velocities in the upper and lower layers in terms of the horizontal velocity

at the interface and the seabed respectively. In the upper layer, (2.2) is integrated over

the layer thickness and the kinematic boundary conditions at the interface, equation

(2.6), and at the free surface, equation (2.4), are used. Similarly, in the lower layer,

equation (2.3) is integrated from the seabed, z = −d(x, y), to the interface, z = ϵξ,

and the kinematic boundary conditions, (2.7) and (2.9) are used. Therefore, the

depth-integrated continuity equations in the layers are obtained as:

(h+ η − ξ)t +∇ ·
∫ h+ϵη

ϵξ
∇ϕ′ dz = 0 (2.18)

ξt +∇ ·
∫ ϵξ

−d
∇ϕ dz = 0 (2.19)
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The initial assumption that the waves are long allows for definition of depth-averaged

horizontal velocities in the layers:

ū ′ =
1

H ′

∫ h+ϵη

ϵξ
u ′ dz, ū =

1

H

∫ ϵξ

−d
u dz (2.20)

where ū ′ = ∇ϕ′ and ū = ∇ϕ. The total thickness of the top and bottom layers are

defined by H ′ = h+ϵ(η−ξ) and H = d+ϵξ respectively. Substituting the velocity for

velocity potential in equations (2.18) and (2.19) and also substituting the total depth

in terms of surface and interface displacements and the layer depths, the continuity

equations are written in terms of depth-averaged velocities:

(h+ η − ξ)t +∇ · [(h+ ϵη − ϵξ)ū ′] = 0 (2.21)

ξt +∇ · [(d+ ϵξ)ū ] = 0 (2.22)

The above equations are exact to all orders of nonlinearity and dispersiveness for

viscous and inviscid fluids and for rotational and irrotational flows. In deriving the

momentum equations, it is convenient to define horizontal velocities at interface and

seabed:

u ′
0 = ∇ϕ′

0, u0 = ∇ϕ0 (2.23)

The horizontal gradients of velocity potentials are integrated in the depth of

the respective layers and equations (2.16) and (2.17) are used to write the velocity

potential of the upper and lower layer in terms of the velocity potential at the interface

and the seabed, respectively. Therefore, the horizontal velocities in the layers can be

written as:

ū ′ = ū ′
0 +

µ2

2
h∇ξt −

µ2

6
h2∇∇ · ū ′ +O(ϵµ2, µ4) (2.24)

ū = ū0 −
µ2

2
d

[
∇(ū0 · ∇d) +∇d · ∇ū0 +

d

3
∇∇ · ū0

]
+O(ϵµ2, µ4) (2.25)
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Noting that ū0 = ū +O(µ2) and ū ′
0 = ū ′ +O(µ2), the above equations can be

reverted to obtain ū0 and ū ′
0 as:

ū ′
0 = ū ′ − µ2

2
h∇ξt +

µ2

6
h2∇∇ · ū ′ +O(ϵµ2, µ4) (2.26)

ū0 = ū +
µ2

2
d

[
∇(ū · ∇d) +∇d · ∇ū +

d

3
∇∇ · ū

]
+O(ϵµ2, µ4) (2.27)

Using (2.26) and (2.27) in the dynamic boundary conditions at the surface and

interface will give the momentum equations for horizontal velocities in the upper and

lower layer, respectively:

ū ′
t + ϵū ′ · ∇ū ′ +∇η = µ2h∇

(
h

3
∇ · ū ′

t −
1

2
ξtt

)
(2.28)

ū t + ϵū · ∇ū + (1− r)∇ξ +∇η =

µ2

[
d

2
∇∇ · (dū t)−

d2

6
∇∇ · ū t + r

(
h2

2
∇∇ · ū ′

t − h∇ξtt
)]

(2.29)

It is noted that the momentum equations retain O(ϵ, µ2) terms and thus are

weakly dispersive and weakly nonlinear in the sense of conventional Boussinesq equa-

tions; components of O(ϵµ2) and smaller are neglected in these equations. A similar

approach is taken to derive the momentum equation in the lower layer using the

interfacial dynamic boundary condition, (2.8). Equations (2.21), (2.22), (2.28) and

(2.29) are essential equations for describing long surface and interfacial wave motion

in a two-fluid system. The equations can readily be converted to dimensional form

using (2.1):

(h+ η − ξ)t +∇ · [(h+ η − ξ)ū ′] = 0 (2.30)

ū ′
t + ū ′ · ∇ū ′ + g∇η =

−h
2

∇ξtt +
h2

3
∇∇ · ū ′

t (2.31)

ξt +∇ · [(d+ ξ)ū ] = 0 (2.32)

ū t + ū · ∇ū + g(1− r)∇ξ + gr∇η =
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d

2

[
∇∇ · (dū t)−

d

3
∇∇ · ū t

]
+ r

(
h2

2
∇∇ · ū ′

t − h∇ξtt
)

(2.33)

The derived equations reduce to classical nonlinear shallow water equations (e. g.

Ball, 1964) in the non-dispersive limit (µ → 0). In the limit of r → 0, the equa-

tions can be combined to reduce to the single layer Boussinesq equations (Peregrine,

1967). Using horizontal velocity at the interface for the lower layer and depth aver-

aged velocity for the upper layer, Choi & Camassa (1996) derived a similar system

via a different approach. The equations in Choi & Camassa (1996) are derived for

arbitrary lower layer depth. If the limit of shallow lower layer, flat bottom (or slightly

varying bottom where | ∇d |≤ O(µ)), and free surface condition is applied, equations

(2.30)-(2.33) reduce to the system of equations provided in Choi & Camassa (1996)

(see their appendix). The long wave approximation allows for substituting the fully

dispersive terms in polynomial of dispersion orders, and thus, significantly facilitates

the application of the derived Boussinesq equations for numerical modeling. Derived

equations can be modeled numerically in time or frequency domain.

It is noted that derivation of extended Boussinesq equations in the manner of

Madsen et al. (1991) and Nwogu (1993) can also be accompanied following this gen-

eral approach; this would allow for more accurate wave propagating modeling at

frequencies beyond the weakly dispersive limit. However, our focus here is on the

nonlinear processes in shallow water (small µ2) rather than on enhancement of the

model performance in intermediate-deep water.

D. Perturbation analysis

The Boussinesq-type equations derived above represent the comprehensive behavior

of surface and interfacial waves as they propagate and evolve in time and space. Due

to the nonlinearity of the system of equations, super and subharmonic generation of
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modes occur. While numerical modeling of this set of equations in the time-domain

can replicate this comprehensive view, it cannot do so in isolation from other effects.

In this section, based on the derived model (2.30)-(2.33) and by using a perturbation

approach, we directly focus on the transient evolution of the interacting surface and

interfacial modes. For simplification, we assume that the depth of the layers, h and

d are constant. It is more convenient to carry out the analysis in dimensional form.

The triad of resonance is composed of either two surface modes and a single

interfacial mode (Ball, 1964) or a single surface mode and two interfacial modes (Hill

& Foda, 1998; Jamali, 1998). The triad of waves in resonance satisfy the following

kinematic conditions on wave frequencies and vector wave numbers:

ω1 ± ω2 ± ω3 = 0

k 1 ± k 2 ± k 3 = 0 (2.34)

where ωi and k i are the wave frequency and wave numbers respectively. The triad

under consideration is composed of interfacial waves 1 and 2 and surface wave 3.

Wave amplitudes are assumed to be slowly varying functions of time. The nonlin-

earity parameter, ϵ, is chosen as the small perturbation parameter and the following

expansions are introduced for the variables,

η = η0 + ϵη1 +O(ϵ2), ξ = ξ0 + ϵξ1 +O(ϵ2)

u ′ = u ′
0 + ϵu ′

1 +O(ϵ2), u = u0 + ϵu1 +O(ϵ2) (2.35)

These expansions are substituted in the governing equations (2.30)-(2.33) and the

ordered equations up to the second order are obtained. We recall that the velocities

are depth-averaged and drop the overbar signs hereafter.
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1. Linear solution

The linear solution, O(1), is obtained using continuity equations, (2.21) and (2.22),

and the linearized momentum equations of the two layers, (2.28) and (2.29),

(h+ η0 − ξ0)t + h∇ · u ′
0 = 0 (2.36)

(u ′
0)t + g∇η0 + h∇

(
h

3
∇ · (u ′

0)t −
1

2
(ξ0)tt

)
= 0 (2.37)

(ξ0)t + d∇ · u0 = 0 (2.38)

(u0)t + g(1− r)∇ξ0 + gr∇η0 −
[
d2

3
∇∇ · (u0)t

]
+ (2.39)

r

[
h2

2
∇∇ · (u ′

0)t − h(∇ξ0)tt
]
= 0

The eigensolution of the above homogeneous equations are the free propagating sur-

face and interfacial modes. It is evident that dispersive terms are important in the

linear solution. Surface and interface displacements and velocities are written as,

η0 =
3∑

n=1

η0n =
3∑

n=1

a0n(T )e
iψn + c.c., (2.40)

ξ0 =
3∑

n=1

ξ0n =
3∑

n=1

b0n(T )e
iψn + c.c., (2.41)

u ′
0 =

3∑
n=1

û ′
0ne

iψn + c.c., (2.42)

u0 =
3∑

n=1

û0ne
iψn + c.c. (2.43)

where ψn = kn · x − ωnt is the phase function and c.c. denotes complex conjugate.

Wave amplitudes, a0n and b0n, are slow functions of time. The variables η0n, ξ0n, û
′
0n

and û0n represent the contribution of wave n on the surface and interface displacement

and velocity fields of the upper and lower layer respectively. It is noted that the above

definition of phase function requires constant wave numbers which are connected to

the assumption of constant depth. Using equations (2.36)-(2.40), the linear velocities
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are obtained as,

û0n =
(
ωn
k2d

)
b0nkn (2.44)

û ′
0n =

(
g − 1

2
hω2

ω(1 + k2h2

3
)− g k

2h
ω

)
b0nkn (2.45)

where k =| k | is the wave number magnitude. The relationship between the surface

and interfacial amplitudes is also obtained,

a0n = b0n

 1− k2h2

6

1− g hk
2

ω2 + h2k2

3

 (2.46)

Equations (2.44)-(2.46) are the long wave asymptotes of the fully dispersive linear

solutions (e.g. Lamb 1932). The eigenpair (ω, k) of a free surface or interfacial wave

satisfy the dispersion relation associated with linear equations (2.36)-(2.40),

ω4

(1 + k2h2

3

)1 + k2d2

3

kd

+ rkh
(
1 +

1

12
k2h2

)
−ω2gk

kh
1 + k2d2

3

kd

+ 1 +
k2h2

3

+ (1− r)g2k3h = 0 (2.47)

The above equation is the small kh and kd limit of the fully dispersive linear dispersion

relation for a two-fluid system (see Lamb 1932). Equation (2.47) is a quartic function

of ω and provides two independent sets of real roots for wave number magnitude,

k. Each set of roots includes two real roots equal in magnitude and opposite in

sign and represent the surface or interfacial mode of motion. Surface and interfacial

roots of the dispersion relation and the possible triads of resonance are shown in

Figure 2. For a given surface wave number, in triad 1 where (OA = OB + BA),

one surface wave (S1) is in resonant interactions with another surface wave (S2)

traveling in opposite direction and an interfacial wave (I2) propagating in the same

direction as S1. Although all waves are within the long wave limit (kh ≈ kd ≤

π/10), all the modes have comparable wave lengths in this triad. On the other
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hand, in triad 2 (OA = OC + CA), a surface wave is in resonant interaction with

two opposite-traveling interfacial waves and the interfacial modes are evidently short

relative to the surface mode. Figure 3 illustrates the solutions to the dispersion

relation, equation (2.47), compared to the fully dispersive expression (Lamb, 1932)

and its non-dispersive shallow water limit. As expected, the solutions coalesce in

very shallow water and the fully dispersive solution deviates from other solutions in

higher frequencies (kh > 0.75). However, it is noted that the interfacial branch of

weakly dispersive expression provides accurate approximation of the full dispersion

relation in higher frequencies as well. In studying the interfacial wave behavior, it

is more convenient to use equations (2.44)-(2.46) to write all the linear variables in

terms of interfacial wave amplitude, b. The expressions for velocities in terms of

the interfacial wave amplitudes can readily be expressed in terms of surface wave

amplitudes using (2.46). Therefore, while the evolution of b is obtained, it is always

possible to obtain the evolution of its surface signature. Conversely, the surface

wave also has an interfacial signature. As mentioned, the linear solutions form the

components of the forcing functions of the second order solution. In next section

we analyze the second order solution, solvability condition and evolution of the wave

amplitudes.

2. Second order solution and solvability condition

Applying the perturbation expansions (2.35), the second order system is obtained as,

(h+ η1 − ξ1)t + h∇ · u ′
1 = −∇ · [(η0 − ξ0)u

′
0] (2.48)

(u ′
1)t + g∇η1 + h∇

(
h

3
∇ · (u ′

1)t −
1

2
(ξ1)tt

)
= −u ′

0 · ∇u ′
0 (2.49)

(ξ1)t + d∇ · u1 = −∇ · (ξ0u0) (2.50)

(u1)t + g(1− r)∇ξ1 + gr∇η1 −
[
d2

3
∇∇ · (u1)t

]
+ (2.51)
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Fig. 2. (ω, k) roots of the dispersion relation and possible resonances among surface

and interfacial modes. The dot lines are identical images of surface 2 and

interface 2 which are shifted to pass point A.
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r

[
h2

2
∇∇ · (u ′

1)t − h(∇ξ1)tt
]
= −u0 · ∇u0

(2.52)

The linear solutions obtained in the previous section are now the components of

the forcing functions for the second order solution. Quadratic nonlinear interactions

among the linear components result in a secular term in the second order solution.

As the homogeneous system of equations, corresponding to the linear system, has

a nontrivial solution, the above inhomogeneous second order system will not have

a nonsecular solution unless the components of forcing functions satisfy a certain

solvability condition.

It is convenient to combine the above equations to eliminate the linear terms of

free surface and interface displacements in favor of velocities in the fluid layers (e. g.

Dingemans, 1993). By cross differentiation, four equations reduce to two equations

expressed in terms of velocities,

(u ′
1)tt − gd∇∇ · u1 − gh∇∇ · u ′

1 −
h2

3
∇∇ · u ′

tt −
hd

2
∇∇ · u tt =

−(u ′
0 · ∇u ′

0)tt + g∇∇ · (ξ0u0 + ηu ′
0 − ξ0u

′
0) +

h

2
∇∇ · (ξ0u0)tt (2.53)

(u1)tt − gd∇∇ · u1 − grh∇∇ · u ′
1 − d

(
d

3
+ rh

)
∇∇ · (u1)tt − r

h2

2
∇∇ · (u ′

1)tt =

−(u0 · ∇u0)tt + g∇∇ · (ξ0u0) + gr∇∇ · ([η − ξ]u ′
0) + rh∇∇ · (ξ0u0)tt (2.54)

Equations (2.53) and (2.54) are used hereafter in the analysis. It can be shown that

the determinant of the coefficient matrix of above equations is the dispersion relation,

(2.47), and thus equals zero. Inserting (2.35) in above expression gives,

(u ′
1)tt − gd∇∇ · u1 − gh∇∇ · u ′

1 −
h2

3
∇∇ · u ′

tt −
hd

2
∇∇ · u tt = F1 (2.55)

(u1)tt − gd∇∇ · u1 − grh∇∇ · u ′
1 − d

(
d

3
+ rh

)
∇∇ · (u1)tt −
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r
h2

2
∇∇ · (u ′

1)tt = F2 (2.56)

where F1 and F2 are the forcing functions formed of coupling of the linear terms

in equations (2.53)-(2.54). The difference between Stokes and Boussinesq scaling

stems from the disparity in scales of motion between horizontal and vertical velocities.

In the Boussineq scaling, the vertical motion is assumed to be one order smaller

than the horizontal motion. In the Boussinesq equations, there is a balance between

nonlinearity and dispersiveness. Therefore, while the linear solutions are long wave

asymptotes of the fully dispersive solutions, the nonlinear terms in equations differ.

The linear solutions, (2.40)-(2.43), are inserted in the above expressions for forcing

functions, and F1 and F2 are rewritten as,

F1 =
3∑

n=1

(
Sn
db0n
dt

eiψn

)
+

3∑
m=1

3∑
n=m

(
Tmnb0mb0ne

i(ψm+ψn) +Tm̄nb̄0mb0ne
i(ψn−ψm)

)
+ c.c.

(2.57)

F2 =
3∑

n=1

(
S′
n

db0n
dt

eiψn

)
+

3∑
m=1

3∑
n=m

(
T′
mnb0mb0ne

i(ψm+ψn) +T′
m̄nb̄0mb0ne

i(ψn−ψm)
)
+ c.c

(2.58)

where Sn, S
′
n, T and T′ are functions of layer thicknesses (h and d), surface wave

frequency (ω3), surface wave number (k 3), the linear solutions for velocities in the

layers (from equations 2.44-2.45), density ratio (r) and relative magnitude of surface

wave amplitude to its interfacial signature (from 2.46). All these parameters are

obtained from the dispersion relation and linear solutions. From the expressions for

the forcing functions, it is evident that the second order solution for u will have the

following form,

u1 =
3∑

m=1

3∑
n=m

(
⌢
u1mn +

⌢
u1m̄n

)
+ c.c. (2.59)

where
⌢
u1mn, and

⌢
u1m̄n are the second order velocity component proportional to
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ei(ψm+ψn) and ei(ψn−ψm), respectively. Velocity u ′
1 is written similarly. We now ana-

lyze the evolution of interfacial wave 2 as an example. The analysis for other waves

in resonance are carried out similarly. Regarding the resonance conditions, (2.34),

the second order component in the velocity associated with interfacial wave 2 is
⌢
u11̄3.

The combined equations, (2.55) and (2.56), are coupled equations with two degrees of

freedom. This system should have a finite solution for uniformity of the perturbation

expansions (2.35). To allow this, the aforementioned secularity of the second order

solution is removed by applying a solvability condition: The forcing functions should

be orthogonal to the solution of the adjoint system. It is noted that the homogeneous

system is not self-adjoint. For interfacial wave 2, equations (2.55) and (2.56) become,

p11
⌢
u
′
1̄3 +p12

⌢
u 1̄3= S2

db02
dt

+ T1̄3b̄01b03 +N.R.T (2.60)

p21
⌢
u
′
1̄3 +p22

⌢
u 1̄3= S ′

2

db02
dt

+ T ′
1̄3b̄01b03 +N.R.T (2.61)

where
⌢
u 1̄3=

⌢
u 1̄3 k 2, S1̄3 = S1̄3k 2, T1̄3 = T1̄3k 2 and so on. Coefficients p are given as,

p11 = −ω2
2

(
1 +

h2

3
k22

)
+ ghk22, p12 = dk22

(
g − h

2
ω2
2

)
(2.62)

p21 = rhk22

(
g − h

2
ω2
2

)
, p22 = −ω2

2

[
1 + µ2dk22

(
d

3
+ rh

)]
+ gdk22 (2.63)

and N.R.T denotes terms which oscillate at a non-resonant phase. As the triad of

waves are in exact resonance, there will be no near-resonant terms. The velocities

⌢
u

′
1̄3 and

⌢
u 1̄3 are the unknowns in these algebraic equations. In matrix form: p11 p12

p21 p22




⌢
u
′
1̄3

⌢
u 1̄3

 =

 f1

f2


or P

⌢
u= F. | P |= 0 and in order for the above set of equations to have a solution,
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the forcing matrix F should be orthogonal to the solution of the adjoint system X ,

FTX = 0 (2.64)

where FT is the transpose of forcing matrix. Inserting values for pij and fi from

(2.60), (2.61), (2.62) and (2.63) in the above equation yields the evolution equation

of the amplitude of the interfacial wave 2.

The expressions for the interaction coefficients, α’s, are rather lengthy but straight-

forward to calculate. These coefficients govern the energy transfer among the inter-

acting modes. Here we provide the interaction coefficient for interfacial wave 2 and

the other two coefficients can be obtained similarly. T1̄3 and T ′
1̄3 in equations (2.57)

and (2.58) are given by,

T1̄3 = −ω2
⌢
u
′
01

⌢
u
′
03 (k1 · k3) + g[−(

⌢
u01 k

2
1+

⌢
u03 k

2
3)− (

⌢
u03 −

⌢
u01)(k1 · k3)−

η̂01
⌢
u
′
03 k

2
3 − η̂03

⌢
u
′
01 k

2
1 + (η̂01

⌢
u
′
03 +η̂03

⌢
u
′
01)(k1 · k3)]+

⌢
u
′
01 k

2
1+

⌢
u
′
0̄3 k

2
3 −

(
⌢
u
′
03 −

⌢
u
′
01)(k1 · k3)] +

h

2
ω2
2[
⌢
u01 k

2
1+

⌢
u03 k

2
3 − (

⌢
u03 −

⌢
u01)(k1 · k3)] (2.65)

T ′
1̄3 = −ω2

⌢
u01

⌢
u03 (k1 · k3) + g

[
(
⌢
u01 k

2
1+

⌢
u03 k

2
3)− (

⌢
u03 −

⌢
u01)(k1 · k3)

]
−

gr[η̂01
⌢
u
′
03 k

2
3 + η̂03

⌢
u
′
01 k

2
1 − (η̂01

⌢
u
′
03 −η̂03

⌢
u
′
01)(k1 · k3)] +

gr[
⌢
u
′
01 k

2
1+

⌢
u
′
0̄3 k

2
3 − (

⌢
u
′
03 −

⌢
u
′
01)(k1 · k3)] + rhω2

2[
⌢
u01 k

2
1+

⌢
u03 k

2
3 −

(
⌢
u03 −

⌢
u01)(k1 · k3)] (2.66)

where ω2 and ki are obtained from dispersion relation (2.47).
⌢
u0n,

⌢
u
′
0n and η̂0n are

obtained from linear solutions, (2.44), (2.45) and (2.46). In addition, linear coefficients

Sn and S ′
n are given by:

Sn = 2iωn

[
⌢
u
′
0n

(
h2

3
k2n + 1

)
+
dh

2
k2n

⌢
u0n

]
(2.67)

S ′
n = 2iωn

(
⌢
u0n

[
1 + d(

d

3
+ rh)k2n

]
+
rh2

2
k2n

⌢
u
′
0n

)
(2.68)
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Knowing the required coefficients and pij from equations (2.62) and (2.63), the inter-

action coefficient associated with interfacial wave 2, α2, is given by,

α2 =
1

η̂03

 p11+p12
p21+p22

T ′
1̄3 − T1̄3

S2 − p11+p12
p21+p22

S ′
2

 (2.69)

Similar approach is carried out and the evolution equations for the interfacial

wave 1 and surface wave 3 are obtained. Therefore, the system of coupled evolution

equations of the interacting harmonics is given by,

db01
dt

= α1a03b̄02,
db02
dt

= α2a03b̄01,
da03
dt

= α3b01b02 (2.70)

where αi are the interaction coefficients and found to be purely imaginary. The

above set have exact solutions in terms of Jacobian elliptic functions (Mei & Unlu-

ata, 1972). However, it is straightforward to solve the evolution equations numerically.

The calculation of interaction coefficients is carried out by Mathematica R⃝, a sym-

bolic computational software. One advantage of the present approach over the fully

dispersive problem is the simple nature of the interaction coefficients, which reduces

the required computation time. Temporal evolution of the harmonic amplitudes in

a typical case is illustrated in Figure 4. The parameters in this case are, T = 7s,

H = 1m, d = 0.2m, r = 0.926, θ = 70, ϵ = 0.01. It is seen that the interfacial waves

grow in time, approach a maximum and reduce in amplitude until they lose energy; in

contrast, the surface wave loses its energy from the initial stage. This pattern repeats

periodically. Since inviscid flows are assumed, the total energy exchanged among the

modes is conserved.

It is instructive to calculate the growth rate of amplitude harmonics using the

derived evolution equations. The initial amplitude of interfacial waves are assumed

such that b01(0) = b02(0) ≪ a03(0). By cross differentiation, the initial growth rate

of interfacial wave 2 is obtained and the approximate solution for the amplitude is
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given by,

b02 ∼ exp{±
√
α2α3 | b01 |2 +α1ᾱ2 | a03 |2 t} (2.71)

Similar expressions can be obtained for interfacial wave 2 and surface wave. It is

evident that the behavior of harmonics amplitudes depend on the signs of the inter-

action coefficients as well as initial amplitudes of modes. If α1 and α2 have the same

sign and α3 has the opposite sign, the interfacial mode amplitudes grow exponentially

resulting in instability at the interface while the surface wave amplitude shows oscilla-

tory behavior. On the other hand, if the interfacial waves have opposite signs, all the

harmonic amplitudes will merely oscillate and exhibit no growth. In such condition,

the modes conduct suitable phase shifts to conserve energy in a phase period. If the

variation of surface wave amplitude with time is neglected (corresponding to Hill &

Foda, 1996; Jamali, 1998), the solution of the interfacial wave amplitudes becomes,

b01, b02 ∼ exp{± | a03 |
√
α1ᾱ2 t} (2.72)

3. Viscous effects

In this section, the effects of lower layer viscosity is added to the analysis. Fluid

viscosity affects the interfacial instabilities through two different mechanisms. The

increase in viscosity will lead to stronger velocity shear at the interface and the

increased shear can potentially lead to Kelvin-Helmholtz instabilities (e.g. see Turner,

1973). The other mechanism is viscous attenuation of wave amplitude (e.g. Davis

& Acrivos 1967). In a slightly viscous system, the latter mechanism is dominant.

On the other hand, the governing equations, (2.2)-(2.9), are based on an inviscid

formulation, and thus the effect of viscosity should be sufficiently weak that the

underlying assumption of irrotational flows is not violated. Consequently, the system

under consideration here resembles clear water overlying lightly viscous mud (e.g.
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mud assumed as newtonian fluid).

The attenuation of waves in two-layer systems has been widely studied with

primary focus on surface waves. Dalrymple & Liu (1978), Hsiao & Shemdin (1980)

and Macpherson (1980) among others, assuming different rheologies for the sediment,

investigated the surface wave damping due to viscous dissipation in the lower sediment

layer. Davis & Acrivos (1967) studied the damping of interfacial instabilities. They

showed that in the case of weakly viscous fluids, the dissipation rate of wave energy can

be superposed to the evolution equations of the harmonics. More recently, Hill (2002)

and Troy & Koseff (2006) provided a more comprehensive treatment of the damping

of interfacial waves in a flume. In this section we consider the damping effects in both

surface and interfacial waves. Consequently, the inviscid set of evolution equations,

(2.70) is modified as,

db01
dt

= α1a03b̄02−β1b01,
db02
dt

= α2a03b̄01−β2b02,
da03
dt

= α3b01b02−β3a03 (2.73)

where βi is the dimensionless temporal damping rate of wave i. Inclusion of β in

evolution equations will result in exponential damping effect on the harmonic ampli-

tudes. If the viscosity of the upper layer is negligible comparing to the lower layer,

corresponding to clear water over fluidized sediment, the damping rate can be ob-

tained from Macpherson (1980). In it, a complex dispersion relation was provided,

quartic in wave number and wave frequency, which accounts for viscoelasticity of the

lower layer. Although only the attenuation of the surface mode was discussed, the

derived dispersion relation can be solved numerically to obtain the damping rate of

interfacial waves. Since the focus of the present study is on temporal attenuation,

we feed the complex dispersion relation with wave numbers calculated from the in-

viscid dispersion relation, (2.47), and obtain the complex wave frequency. Therefore,

if (ω, k) is an eigenpair in (2.47), (ω′, k) is the eigenpair in the viscous dispersion
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relation. Frequency ω′ is a complex number where Re[ω′] ≃ ω, and Im[ω′] = β is the

damping coefficient. Figure 5 illustrates the temporal variation of modes in viscous

interaction. The parameters are the same as the inviscid case in Figure 4 with ad-

dition of viscosity ν = 3 × 10−6m2/s. It is seen in the figure that surface wave loses

energy from the initial step of resonance. Interfacial wave 1 gains energy and exhibits

initial growth, reach a maximum amplitude and undergo strong viscous attenuation

thereafter but interfacial wave 2 is suppressed due to viscosity and is not excited.

By incorporation of viscous effects in both surface and interfacial waves evolution

equations, we have made a more complete treatment of surface wave damping than

previous studies; in addition to the direct damping of surface mode due to lower layer

viscosity (represented by −β3a03 in 2.73), some of surface wave energy is redirected to

interfacial modes due to nonlinear interactions and is lost through viscous attenuation

of interfacial waves (represented by −β1b01 and −β2b02 in equation (2.73)).

As in the inviscid case, by cross-differentiation of the viscous evolution equations,

(2.73), the amplitudes of the harmonics are obtained as,

b02 ∼ eγ
′t (2.74)

where

γ′ =
−β2
2

±
(
α1α3 | b01 |2 +α1ᾱ2 | a03 |2 +β2

2

) 1
2 (2.75)

The expressions for interfacial wave 1 and the surface wave are similar. It is clear

that the addition of viscosity leads to addition of exponential decay to harmonic

amplitudes. In the next section, we investigate the influence of important parameters

on resonant interaction.
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E. Parametric study

In this section, the important parameters controlling the resonant interaction are

studied numerically. Variation of these parameters is translated into the variation

of the interaction and damping coefficients in evolution equations of the amplitudes

(equations 2.70). Directional angle of the interfacial waves, viscosity of the lower layer,

surface wave frequency and amplitude, relative thickness of the layers as well as the

density difference of the layers influence the energy exchange among the harmonics. In

a fluid of constant total depth, H, these dimensionless parameters are mathematically

independent and describe the problem,

θ, ν/
√
gH3, a0/H, k0H, h/H, r = ρ′/ρ (2.76)

We investigate the influence of the parameters by varying one parameter at a time.

As before, the parameters in the base example are selected as H = 1m, d = 0.2m,

r = 0.926, T = 7s, θ = 80◦, ν = 3 × 10−6m2/s with initial wave amplitudes of

a0 = 0.01m, b0 = 0.001m.

As the directional angle, θ, is an independent parameter, mathematically there

are an infinite number of interfacial wave pairs that can be in resonance with a given

surface wave. Among these possible instabilities, the one which exhibits maximum

growth rate is most likely to be observed. Therefore, the growth rate of the interfa-

cial waves with variation of θ is evaluated by equation (2.71). Although the initial

amplitudes of the waves affect their growth rate, the maximum amplitude gained by

the interfacial waves is independent of their initial magnitudes (Tahvildari & Jamali,

2009). Figure 6 illustrates the variation of the initial growth rate, γ, against direc-

tional angle. As θ is reduced, the y component of the second interfacial wave (I2)

decreases while its x component becomes larger in magnitude in the opposite direction
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d = 0.2m, r = 0.926, T = 7s, a0 = 0.01m, b0 = 0.001m

of the surface wave. When one of the interfacial waves and the surface wave are par-

allel and plane (θ = 0) the second interfacial wave propagates in the same plane but

in opposite direction. With the aforementioned specifications, the interfacial waves

do not grow until θ ≃ 67◦ and have maximum growth rate when the directions of

interfacial wave pair are symmetric and form an angle of about 84◦ with respect to

the surface wave. Figure (7) shows this configuration. S1 denotes the surface wave

and I1 and I2 represent the interfacial waves. In this condition (referred to as the

symmetric case hereafter), the two interfacial wave amplitudes become identical in

amplitude and phase.

Since the growth rate of the wave amplitudes is a function of wave forcing and the

damping coefficient is independent of directional angle, the influence of directional

angle can be observed in the inviscid analysis. As the symmetric pair is the most
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Fig. 7. Symmetric configuration of interfacial waves exhibits maximum growth rate;

θ = 84◦ when h = 0.8m, d = 0.2m, r = 0.926 and T = 7s, a0 = 0.01m,

b0 = 0.001m

Fig. 8. Three-dimensional pattern of nearly-standing interfacial waves. θ = 84◦,

h = 0.8m, d = 0.2m, r = 0.926 and T = 7s, a0 = 0.01m, b0 = 0.001m

likely to occur, its conditions (ω1 = ω2 and | k 1 |=| k 2 |) will be used in the rest of

the parametric studies (b1 = b2 = b). The three dimensional nearly-standing wave

pattern at the interface is illustrated in Figure (8).

Temporal variation of the wave amplitudes with alteration of viscosity in the

lower layer is illustrated in Figure 9. Based on the viscosity, the interfacial waves grow

to reach a maximum amplitude and attenuate afterwards. Surface wave undergoes

attenuation likewise. As expected, with increase in lower layer viscosity, the rates of

attenuation of surface and interfacial waves increase. Figure 10 shows the variation of

damping rate against lower layer viscosity. As mentioned by Macpherson (1980), the

rate of attenuation of surface wave appears to be smaller than that of the interfacial
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waves. It is noted that in the present approach, damping rate is independent of forcing

and furthermore, all the parameters except θ influence the damping coefficient. In

the present example, when viscosity increases to 1.3 × 10−5m2/s, interfacial waves

exhibit no growth indicating that the forcing from the surface wave is inadequate to

overcome viscous damping. To allow the generation of interfacial waves for a wide

range of values of the other parameters, we hereafter assume that the lower layer has

a viscosity of 3× 10−6m2/s.

Figure 11 illustrates the evolution of interfacial waves and surface wave ampli-

tudes for various values of surface wave frequency. It is interesting to note that

although the initial growth rate is larger when T = 45s, the maximum amplitude of

interfacial wave is larger at T = 8s. Therefore, the interfacial wave pair exhibiting

maximum initial growth rate does not necessarily acquire maximum amplitude.

For various surface wave frequencies, the growth rate of the interfacial wave is

illustrated in Figure 12. At k3H = 0.21206 the growth rate is maximum. The damp-

ing rate of the surface and interfacial waves are shown in Figure 13. Dimensionless

surface wave number, k3H, is used as a measure of surface wave frequency (T3). Sur-

face wave attenuation rate appears to be smaller than the interfacial damping rate for

all the frequencies and all waves undergo weaker damping as the surface wave (and

consequently the interfacial waves) becomes deeper. It is also seen that with the in-

crease in surface wave frequency, the attenuation and viscous growth rate (equations

2.74) of the interfacial wave decrease regardless of the wave length.

Stratification has significant effects on generation of interfacial waves. Figure

14 shows the variation of interacting interfacial and surface modes with variation of

density ratio of 1.00 < 1/r ≤ 1.20. Variation of growth and attenuation rate of inter-

facial waves and the attenuation rate of surface wave with density ratio are illustrated

in Figure 15. As shown, the variation of density ratio does not significantly affect
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r = 0.926, T = 7s, a0 = 0.01m, b0 = 0.001m



39

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−4

0

0.002

0.004

0.006

0.008

0.01

0.012

ν (m2/s)

β(
1/

s)

 

 

Interfacial mode
Surface mode

Fig. 10. Variation of temporal damping rate, β, against viscosity ν. h = 0.8m,

d = 0.2m, r = 0.926, T = 7s, a0 = 0.01m, b0 = 0.001m



40

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

t(s)
(a)

b
(

m
)

 

 

T=4 s
T=6 s
T=8 s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.01

0.02

0.03

0.04

0.05

0.06

t(s)
(b)

a
(

m
)

 

 

T=4 s
T=6 s
T=8 s

Fig. 11. Temporal variation of (a) interfacial wave amplitude, (b) surface wave ampli-

tude for values of surface wave frequency T3. h = 0.8m, d = 0.2m, r = 0.926,

a0 = 0.01m, b0 = 0.001m
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Fig. 12. Magnitudes of growth rate of interfacial mode against k3H. h = 0.8m,

d = 0.2m, r = 0.926, a0 = 0.05m.

the surface wave dissipation; surface wave damping rate slightly decreases in higher

density gradients. As 1/r increases within the range of 1 to 1.05, the growth and

dissipation rate of the interfacial wave increase dramatically. With further increase

in the density gradient up to 1/r = 1.20, the attenuation rate mildly increases ap-

proaching a constant. In this range, the damping and forcing effects balance and the

growth rate approaches a constant as well.

Figure 16 shows the time variation of the surface and interfacial wave amplitude

with alteration of the upper layer depth, h. As mentioned, the total depth, H, is

kept constant. It is noted in this figure that the depth configuration which gives the

largest maximum amplitude gives the smallest initial growth rate.

The interfacial wave growth rate exhibits an interesting behavior with variation

of upper layer depth. As shown in Figure 17, the growth rate decreases as the upper
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layer depth, h/H. r = 0.926, T = 7s, ν = 3.00 × 10−6m2/s, a0 = 0.01m,

b0 = 0.001m.

layer thickens, until it reaches a relative depth of h/H = 0.8. As the upper layer gets

deeper from this point, the growth rate increases significantly. Interfacial damping

rate is an increasing function of h/H with increasing rate as the lower layer becomes

thinner. This result is expected from the physics; as the lower layer becomes thinner,

the interfacial waves become shallower and hence, a larger bottom boundary layer is

generated. Therefore, the damping rate increases substantially. The dissipation rate

of the surface wave is a very mildly decreasing function of upper layer thickness.

Surface wave height is the main source of energy in the interaction with interfacial

waves. In addition, relative surface wave amplitude is a measure of nonlinearity in

the equations and the small parameter in the perturbation expansion. Consequently,

initial surface wave amplitude is an important parameter in the resonant interaction.
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Figure 18 illustrates the typical time variation of the interfacial and surface wave

amplitude for three values of initial surface wave amplitude. When the surface wave

amplitude is increased, the growth rate of the interfacial wave amplitude increases.

As shown, interfacial waves excited by larger surface waves have larger initial growth

rates as well as larger maximum amplitudes. Equation (2.74) suggests that | a03 |

should have a minimum to make exponential growth possible,

| a03 |2≥
−β2

1 − α1α3 | b01 |2

α1ᾱ2

(2.77)

Figure 19 shows that the growth rate of an interfacial wave is a linear function of

initial surface wave amplitude. In the present approach, the damping coefficient is

independent of surface wave amplitude, and furthermore, the present theory does not

account for the dissipation due to breaking of the waves. Similar to Hill (2004) and

based on experiments of Thorpe (1968), we assume that the threshold of interfacial

wave breaking is reached when its steepness becomes larger than 0.3, i.e. 4 | b01 |max<

0.3/ | k1 |. In the present typical case, the breaking occurs when a/H = 0.023, and

thus the growth rate of interfacial waves is calculated up to this limit.

1. Comparison with Jamali (1998)

As mentioned, Hill & Foda (1998) and Jamali (1998) carried out a second order

analysis to study the resonant interactions between a surface and two interfacial waves

in intermediate depth. Jamali (1998) provided a parametric study to investigate the

influence of important parameters on the growth of interfacial waves. A comparison

with his study shows qualitative agreement between the results of parametric study in

the present analysis and Jamali (1998) for some parameters and difference for others.

Jamali (1998) predicts smaller growth rates for larger density differences (their Figure

2.7). However, as illustrated in Figure 15, the interfacial wave growth rate is expected
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to increase in stronger stratifications in shallow water. In finite depth, Jamali (1998)

predicts that the interfacial wave growth rate increases with the ratio of the lower

layer to the total depth (their Figure 2.8). In the present study, the same result

is obtained for depth ratios h/H < 0.8. For larger depth ratios the growth rate

increases significantly (Figure 17). Similar to Jamali (1998), the damping ratio is

an increasing function of viscosity and the interaction coefficients are independent of

viscosity (10). The behavior of the growth of the interfacial waves with surface wave

frequency is also similar in the present study and Jamali (1998) (their Figure 2.10);

The growth increases with the frequency and reaches its maximum at a frequency

in shallow water but decreases thereafter (Figure 13). The predicted direction of

interfacial waves which exhibits the maximum growth rate is also similar in the two

studies. Based on the comparison of the growth rates, both studies show interfacial

waves are generated in an angle about 84◦ with respect to the surface wave direction.

F. Near-resonant interactions

In the Boussinesq formulation, the secondary harmonics can grow in amplitude and

attain a magnitude comparable to the primary waves (Mei et al., 2005). Three har-

monics can be present at the surface and each can give rise to a pair of harmonics at

the interface. In addition, near-resonant interactions are likely between the harmonics

on either surface or interface.

In this section, to generalize the study of nonlinear interactions in shallow water,

a triad of surface waves are considered on the surface. The choice of a triad is

due to the fact that it forms the basic structure of quadratic nonlinear interactions

in shallow water and allows for studying the interactions between components of

a surface waves or interfacial wave train as well as coupling between the surface
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and interface. Figure 20 shows the configuration of 9 interacting waves. This basic

structure can be further generalized to wave spectra with numerous harmonics. In the

next chapter, a formulation for spatial evolution of interacting time-harmonic waves

will be presented. The kinematic conditions of exact resonance in the present case

will be:

ωs1 = ωi11 + ωi12 (2.78)

ωs2 = ωi21 + ωi22 (2.79)

ωs3 = ωi31 + ωi32 (2.80)

k s1 = k i11 + k i12 (2.81)

k s2 = k i21 + k i22 (2.82)

k s3 = k i31 + k i32 (2.83)

in which, for instance, frequency ωi21 is the frequency of interfacial wave 1 in triad 2.

It is assumed that the surface wave frequencies have the following relationship,

ωs2 = 2ωs1, ωs3 = 3ωs1 (2.84)

and therefore, ωs1 can be considered the base frequency in this triad. In addition, the

three surface waves will form a near-resonant triad which satisfies,

ωs1 + ωs2 = ωs3 (2.85)

k s3 − k s2 − k s1 = ∆k s (2.86)

k s2 − 2k s1 = δk s (2.87)

where δk s and ∆k s are the mismatch from the exact resonance condition. It will

be shown that δk is small relative to the wave numbers. As the interfacial waves,

(ωi11, k i11) and (ωi12, k i12) are generated due to subharmonic resonant interactions,
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Fig. 20. Sketch of the configuration of the interactions between 3 surface waves and

corresponding interfacial wave pairs. Surface (or interface) waves in the same

direction exchange energy due to near-resonant condition. Surface and inter-

facial waves exchange energy due to exact resonance condition.

they have half the frequency of the surface wave, i.e. ωi11 = ωi12 = ωs1/2. Similarly,

ωi21 = ωi22 = ωs2/2 and ωi31 = ωi32 = ωs3/2. Therefore, the following relationship is

the near-resonant condition among interfacial waves in direction 1:

ωi11 + ωi21 = ωi31 (2.88)

k i31 − k i21 − k i11 = ∆k i1 (2.89)

k i21 − 2k i11 = δk i1 (2.90)

The same expression can be written for interfacial waves in direction 2. It is

instructive to see the relative smallness of δk. The interfacial root of the dispersion

relation can be written as follows (Pond & Pickard, 1983):

ω2
i =

∆ρgki
ρcothkih+ ρcothkid

(2.91)

By inserting ω2i = 2ωi and k i2 = 2k i1+δk in the above expression, we will obtain the

following expression for the relative magnitude of mismatch between wavenumbers,

δk

ki
=

ρ′d(kih)
2 + ρh(kid

2)

ρ′d+ ρh− ρ′d(kih)2 − ρh(kid)2
= O(µ2) (2.92)
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Therefore, the mismatch between the wave numbers is of order of frequency

dispersion. A similar expression can found for ∆k. The forcing function for the near-

resonant terms has the same form as forcing functions in equations (2.57) and (2.58).

However, since the phase mismatch should be considered, the components forcing

each harmonic will be different. For instance, in the forcing term (u ′
0 · ∇u ′

0)t, a term

proportional to
⌢
u

′
0s1

⌢
u

′
0s2 a2â1e

i(ks2−ks1)xe−iωs1t will be forcing surface wave 1. Similarly

in the forcing term (u0 · ∇u0)t, a term proportional to
⌢
u0i1

⌢
u0i2 b2b̂1e

i(ki2−ki1)xe−iωi1t

will be forcing interfacial wave 1. The variables are expanded to include all the

interacting terms,

η(x, y, t) =
3∑

k=1

ask(t)e
iΩsk +

3∑
k=1

bik(t)η̂ike
iΩik +

3∑
k=1

bimk(t) ˆηimke
iΩimk (2.93)

ξ(x, y, t) =
3∑

k=1

ask(t)

η̂sk
eiΩsk +

3∑
k=1

bik(t)e
iΩik +

3∑
k=1

bimk(t)e
iΩimk (2.94)

u ′(x, y, t) =
3∑

k=1

ask(t)

η̂sk
k sk

⌢
u
′
sk (t)e

iΩsk +
3∑

k=1

bik(t)k ik
⌢
u
′
ik e

iΩik +

3∑
k=1

bimk(t)k
′
imk

⌢
u
′
sk e

iΩimk (2.95)

u(x, y, t) =
3∑

k=1

ask(t)

η̂sk
k sk

⌢
usk e

iΩsk +
3∑

k=1

bik(t)k ik
⌢
u ik e

iΩik +

3∑
k=1

bimk(t)k imk
⌢
usk e

iΩimk (2.96)

where Ω = k .x − ωt is the phase function. the The system of evolution equations

which govern the energy transfer between the 9 waves are derived as follows,

da1
dt

= αs1a2ā1 + αs2a3ā2 + α′
1b1b2 (2.97)

db1
dt

= αi1b3b̄1 + αi2b5b̄3 + α′
2a1b̄2 (2.98)

db2
dt

= αi3b4b̄2 + αi4b6b̄4 + α′
3a1b̄1 (2.99)

da2
dt

= αs3a
2
1 + αs4a3ā1 + α′

4b3b4 (2.100)
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db3
dt

= αi5b
2
1 + αi6b5b̄1 + α′

5a2b̄4 (2.101)

db4
dt

= αi7b
2
2 + αi8b6b̄2 + α′

6a2b̄3 (2.102)

da3
dt

= αs5a1a2 + α′
7b5b6 (2.103)

db5
dt

= αi9b1b3 + α′
8a3b̄6 (2.104)

db6
dt

= αi10b2b4 + α′
9a3b̄5 (2.105)

It was shown in section (II-E) that the two subharmonic interfacial waves are

identical. Therefore, above set of equations reduces to,

da1
dt

= αs1a2ā1 + αs2a3ā2 + α′
1b

2
1 (2.106)

db1
dt

= αi1b3b̄1 + αi2b5b̄3 + α′
2a1b̄1 (2.107)

da2
dt

= αs3a
2
1 + αs4a3ā1 + α′

4b
2
3 (2.108)

db3
dt

= αi5b
2
1 + αi6b5b̄1 + α′

5a2b̄3 (2.109)

da3
dt

= αs5a1a2 + α′
8b

2
3 (2.110)

db5
dt

= αi10b1b3 + α′
9a3b̄5 (2.111)

The above equations are solved numerically and the temporal evolution of waves

are obtained for a typical example. The parameters in this typical example are

ωs1 = 0.1rad/s, ωs2 = 0.2rad/s, ωs3 = 0.3rad/s, H = 1m, d = 0.2m, r = 0.91, ν =

3 × 10−6m2/s, a1(0) = a2(0) = a3(0) = 0.05m and b1(0) = b2(0) = b3(0) = 0.001m.

As there are a large number of variables and equations in the system, there may

be computational difficulties due to stiffness of the system. In such condition, the

numerical scheme fails to converge to a solution. In the parameter ranges studied

here, only one instance of stiffness was encountered in very long term and generally

the stiffness was not an issue. Figure 21(a) shows the evolution of the 3 surface waves
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in interaction with their corresponding interfacial wave pair. The interactions among

surface waves or among interfacial waves is turned off here. Figure 21(b) shows the

evolution of the interfacial waves in theses triads. These two figures only include

the exact resonance conditions (2.34), and look into three triads of surface-interfacial

waves without any coupling between the triads.

In Figure 22(a), the evolution of the three surface waves, decoupled from their

corresponding interfacial waves, and only in interaction with other surface waves is

illustrated. As expected, the evolution of the surface wave triad in a two-layer fluid

differs from its evolution in a single layer fluid (e. g. see Dingemans, 1993, Figure

7.23). Figure 22(b) shows the time variation of the triad of interfacial waves decoupled

from surface waves.

Figures (23)-(28) show the evolution of surface and interfacial waves where all the

possible interactions are active. It is evident that the addition of all the interactions

results in a more complicated evolution. Figures (23)-(25) shows the evolution of

surface waves and Figures (26)-(28) show the evolution of interfacial waves.

Although the evolution is far more complicated than the surface-interface exact

resonant triad, it would be instructive to investigate the influence of the important

physical parameters on the evolution of waves in the system. We investigate the influ-

ence of density ratio, 1/r, upper layer relative depth, h/H, and highest surface wave

frequency, ωs3, on the evolution of waves. Frequencies, ωs1, and ωs2 are proportional

to ωs3 and thus, their variation will have the same result as the variation of ωs3.

Figures (29) and (30) illustrates the time variation of surface and interfacial waves

for three different density ratios respectively. Examination of the figures shows that

surface wave 1 and 3 exhibits an initial oscillatory behavior as they loose energy from

the beginning of the interaction. However, surface wave 2 experiences growth and its

amplitude increases from the initial stages of interaction. The growth of surface wave
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Fig. 21. Temporal evolution of (a) surface waves amplitudes in interaction with their

subharmonic interfacial waves and (b) Subharmonic interfacial wave ampli-

tudes in resonant triads with corresponding surface waves (the interaction is

decoupled from other resonant triads), H = 2.00m, d = 0.50m, ω3 = 0.3rad/s,

r = 0.926, a1(0) = a2(0) = a3(0) = 0.05m b1(0) = b2(0) = b3(0) = 0.001m.
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Fig. 22. Temporal evolution of (a) surface wave amplitudes in interaction triad with

other surface waves (decoupled from interfacial waves) and (b) interfacial

wave amplitudes in resonant triads with other interfacial waves (decoupled

from surface waves) H = 2.00m, d = 0.50m, ω3 = 0.3rad/s, r = 0.926,

a1(0) = a2(0) = a3(0) = 0.05m.
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Fig. 23. Time variation of the amplitude of surface wave 1, H = 2.00m, d = 0.50m,

ω3 = 0.3rad/s, r = 0.926, a1(0) = a2(0) = a3(0) = 0.05m.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t(s)

a
(

m
)

 

 
a

2

Fig. 24. Time variation of the amplitude of surface wave 2, H = 2.00m, d = 0.50m,

ω3 = 0.3rad/s, r = 0.926, a1(0) = a2(0) = a3(0) = 0.05m.
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Fig. 25. Time variation of the amplitude of surface wave 3, H = 2.00m, d = 0.50m,

ω3 = 0.3rad/s, r = 0.926, a1(0) = a2(0) = a3(0) = 0.05m.
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Fig. 26. Time variation of the amplitude of interfacial wave 1, H = 2.00m, d = 0.50m,

ω3 = 0.3rad/s, r = 0.926, a1(0) = a2(0) = a3(0) = 0.05m.
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Fig. 27. Time variation of the amplitude of interfacial wave 2, H = 2.00m, d = 0.50m,

ω3 = 0.3rad/s, r = 0.926, a1(0) = a2(0) = a3(0) = 0.05m.
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Fig. 28. Time variation of the amplitude of interfacial wave 3, H = 2.00m, d = 0.50m,

ω3 = 0.3rad/s, r = 0.926, a1(0) = a2(0) = a3(0) = 0.05m.
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2 is intensified when the stratification becomes weaker. The three interfacial waves

show initial growth. Unlike the 3 wave problem, in the 9 wave problem, the interfacial

waves show stronger growth when the density ratio is closer to 1. In addition, it is

observed that the surface wave amplitudes start oscillation with a slight phase-shift

until about t = 1700s. After this time, a considerable change in the pattern and

relative phase of the surface wave amplitudes occurs. This change is due to the

entrance of the interfacial waves to the energy exchange. As seen in Figure (30), the

interfacial waves do not exhibit significant growth until about t = 1700s. Therefore,

the presence of subharmonic interfacial waves affects the evolution of interacting

surface waves.

Figures (31) and (32) respectively illustrate the time variation of the surface

and interfacial waves for three values of relative depth of the upper layer. Similar to

density ratio, only surface wave 2 exhibits initial growth among surface waves. It is

noteworthy that its growth rate is maximum when the interface is closer to the surface.

Interfacial waves 1 and 2 show largest growth rates when the lower layer thickness

is the least. This is generally in accordance with the three wave problem where

interfacial wave growth decreases with h/H. In contrast, b3 shows the maximum

growth rate when h/H = 0.7.

Figures (33) and (34) show the time variation of harmonic amplitudes for various

surface wave frequencies ωs3. It is seen that for larger ωs3, surface wave 3 exhibits

growth. As before, surface wave 2 shows growth and its growth rate is highest for

the largest ωs3. By close examination of Figure (34), the interfacial waves show the

largest growth rate with the lowest ωs3 but they gain the largest long term amplitude

and variations with ωs3 = 0.3rad/s.
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Fig. 29. Temporal evolution of surface waves for different density ratios, H = 2m,

d = 0.5m, ω3 = 0.3rad/s, a1(0) = a2(0) = a3(0) = 0.05m,

b1(0) = b2(0) = b3(0) = 0.001m.
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Fig. 30. Temporal evolution of interfacial waves for different density ratios, H = 2m,

d = 0.5m, ω3 = 0.3rad/s, a1(0) = a2(0) = a3(0) = 0.05m,

b1(0) = b2(0) = b3(0) = 0.001m.
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Fig. 31. Temporal evolution of surface waves for different depth ratios, H = 2m,

ω3 = 0.3rad/s, r = 0.926, a1(0) = a2(0) = a3(0) = 0.05m,

b1(0) = b2(0) = b3(0) = 0.001m.
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Fig. 32. Temporal evolution of interfacial waves for different depth ratios,

H = 2m,ω3 = 0.3rad/s, r = 0.926, a1(0) = a2(0) = a3(0) = 0.05m,

b1(0) = b2(0) = b3(0) = 0.001m.
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Fig. 33. Temporal evolution of surface waves for different frequencies ratios,

H = 2m, d = 0.5m, r = 0.926, a1(0) = a2(0) = a3(0) = 0.05m,

b1(0) = b2(0) = b3(0) = 0.001m.
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Fig. 34. Temporal evolution os surface waves for different frequencies ratios,

H = 2m, d = 0.5m, r = 0.926, a1(0) = a2(0) = a3(0) = 0.05m,

b1(0) = b2(0) = b3(0) = 0.001m.
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G. Concluding remarks

In this chapter, the nonlinear interactions between the long waves in a two-layer fluid

are analyzed. A two-layer Boussinesq system of equations is derived to analyze the

shallow water wave processes. The formulation is verified by favorable comparison

with Choi & Camassa (1996). The equations are then analyzed for the interaction

between one surface and two interfacial waves. A standard approach using a second

order perturbation analysis is applied to obtain the evolution of the amplitudes of

the interacting waves. Damping effect of weak viscosity is added to the evolution

equations. A parametric study is also carried out to investigate the influence of each

of the important physical parameter in the system. A typical case with, H = 1m,

d = 0.2m, r = 1/1.08, T = 7s, a(0) = 0.01m, and b(0) = 0.001m is used as the base of

the numerical study. The evolution of waves are studied by changing one parameter at

the time and keeping other parameters constant. The parametric study shows that

interfacial waves exhibit maximum growth rate when they form a symmetric pair

forming a 84◦ angle with respect to the surface wave direction (Figure 7) and thus, a

surface wave can excite two oblique interfacial waves. The results indicate that the

interfacial wave damping rate is larger than the surface wave damping rate (Figure

10). Weak viscosity effects suppress the generation of the interfacial waves (Figure

9). It is shown that the growth rate of interfacial waves increases with surface wave

frequency up to a frequency of about k3H = 0.22 and decreases thereafter (Figure 13).

Stratification enhances the interfacial wave growth as well as its damping but slightly

reduces surface wave damping rate (Figure 15). As upper layer thickness increases

the growth rate of the interfacial waves decreases until about h/H = 0.8 and increases

thereafter. Finally, it is shown that the interfacial wave growth rate is an increasing

linear function of surface wave amplitude. The results of the parametric study are
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in qualitative agreement with previous study of Jamali (1998) which was carried out

for intermediate depth. However, the effect of stratification in the present study

differs from Jamali (1998): While in intermediate depth the stratification weakens

the interfacial waves growth, for the range of parameters in this study, stratification

enhanced the wave growth.

Unlike intermediate depths, second order nonlinear interactions can occur among

a triad of waves in shallow water. To generalize the problem, we expanded the surface

wave to 3 surface harmonics to make the study of theses interactions possible. The

3 long surface waves are in near-resonant conditions in which their frequency exactly

and their wavenumbers approximately satisfy the kinematic conditions of resonance.

On the other hand, based on the instability analysis, each of these surface waves can

generate a pair of oblique interfacial waves. Therefore, a system of 9 interacting waves

is formed. The system is solved numerically. The results of increasing the number of

frequencies in the system considerably affect the evolution pattern of the waves. The

smooth energy exchange in the 3 wave problem will vanish in the 9 wave system. In

addition, the larger system of equation in which oscillators can vary in different time

scales, make the system vulnerable to stiffness. In the parameter range of the present

problem, this computational issue occurred only in one case in very long time.
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CHAPTER III

FREQUENCY DOMAIN FORMULATION

A. Introduction

The theoretical study in Chapter (2) provides invaluable insight in the generation

of interfacial waves and temporal evolution of surface waves at initial stages of the

interaction. It is also desirable to look into the interaction problem when waves

have passed this transient stage and the evolution occurs in space. The of evolution

of waves can be described using two approaches: 1- Assuming spatial periodicity

and use Fourier series with amplitudes varying with time (Bryant, 1973, e.g.), 2- Or

assuming time periodicity and using Fourier series with spatially varying amplitudes

(Liu et al., 1985; Kaihatu & Kirby, 1995, e.g.). The spatial evolution of waves of

time-harmonic waves has practical significance as most of the available data on waves

are recorded as time series at fixed points.

In addition, it is invaluable to obtain a formulation to study the evolution of

coupled spectra of surface and interfacial waves. The Boussinesq-type equations in a

two layer system, (2.30)-(2.33), can serve as a base for setting up a formulation for

spectral evolution. The waves are assumed to be time-periodic. The time-periodic

or steady state behavior of the interfacial waves in long term has been verified by

experiments (Jamali, 1998) and predicted in theory (Tahvildari & Jamali, 2009).

The instability analysis in Chapter (2) showed that for a range of parameters, a

surface wave can generate two oblique interfacial waves. If the surface wave harmonic

is generalized to a spectrum, the generated interfacial waves can potentially form a

pair of interfacial wave spectra. In the parametric study in the previous chapter, the

variation of growth of interfacial waves with directional angle was studied. Table (I)



71

T (s) θ(degrees)

4 84.33

6 83.94

8 83.82

10 83.76

Table I. Variation of θ (directional angle) with variation of T (surface wave period)

shows that the directional angles of the most energetic interfacial waves are nearly

independent of the surface wave frequency. It is seen that in a typical problem with

parameters T = 4 − 10s (surface wave period), H = 1m, d = 0.20m, r = 0.926 and

ϵ = 0.01, the interfacial waves are generated in an angle of about 84◦ with respect to

the surface wave direction. Therefore, it is confirmed that a spectrum of surface wave

can potentially generate two spectrum of oblique interfacial waves and the interfacial

wave harmonics in each spectrum form a nearly unidirectional wave train.

In this chapter, we derive a formulation for the spatial evolution of a coupled

system formed of one surface wave spectrum and two oblique interfacial wave spectra.

As the frequency domain framework allows for explicit treatment of nonlinear inter-

action terms, it is a suitable platform to study the nonlinear dynamics in the system

(Kaihatu, 2003). In the first section, based on two-layer Boussinesq system derived

in the previous chapter, we derive a time-harmonic formulation. The solutions are

assumed to be periodic in time and represent the spatial evolution of the waves in

steady-state condition of the system. The weak two-dimensionality of each of the

wave trains suggests that we can apply the parabolic approximation for surface waves

in x direction and for interfacial waves in ±y direction. Therefore, the parabolic

equations for spatial evolution of propagating surface and interface waves spectra are
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derived.

B. Boussinesq equations for a two-layer fluid

The problem configuration is the same as Figure 1 with the difference that the indi-

vidual waves in previous chapter are now unidirectional wave spectra. The overbars of

depth-averaged velocities are dropped hereafter. The two-layer system (2.30)-(2.33)

will be used as the base of the frequency domain model. The long wave approxima-

tion allows for substituting the hyperbolic functions in the full dispersion relation with

polynomials of dispersiveness (µ2) orders, and thus, compared to the fully dispersive

system, numerical modeling of the Boussinesq equations are significantly facilitated.

It is more convenient to eliminate the spatial derivatives of the velocities in nonlin-

ear terms using linear relationships between surface and interface displacements and

velocities through continuity equations:

∇ · u ′
t = −1

h
(ηtt − ξtt) (3.1)

∇ · u t = −1

d
ξtt (3.2)

By these substitutions, equations (2.30)-(2.33) become,

(η − ξ)t + h∇ · u ′ + u ′ · ∇(η − ξ)− 1

h
(η − ξ)(η − ξ)t = O(ϵ2, ϵµ2) (3.3)

u ′
t + u ′ · ∇u ′ + g∇η =

−h
3

∇ηtt −
h

6
∇ξtt +O(ϵ2, ϵµ2) (3.4)

ξt + d∇ · u + u · ∇ξ − 1

d
ξξt = O(ϵ2, ϵµ2) (3.5)

u t + u · ∇u + g(1− r)∇ξ + gr∇η = −rh
2
∇ηtt −

(
d

3
+ r

h

2

)
∇ξtt +O(ϵ2, ϵµ2)

(3.6)

In the frequency-domain approach, it is assumed that the nonlinear evolution of
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wave spectrum is due to resonant triad interactions and non-resonant terms would be

neglected. However, the time domain approach does not make any distinction between

these interactions. Such differences can lead to discrepancies between the results of

the two approaches (Kaihatu & Kirby, 1995). In the present problem, a surface

wave train is propagating in x direction and two interfacial waves are propagating in

opposite directions and primarily along ±y axis. The first step in the frquency domain

formulation is to assume that variables are periodic in time. Therefore, the variables

are expanded in the Fourier series with fundamental frequencies ωs, denoting the base

frequency in surface wave spectrum, and ωi1 and ωi2 denoting the base frequency of

interfacial wave trains 1 and 2, respectively. From parametric study in the previous

chapter, it is concluded that the two trains of interfacial waves are identical and thus

ωi1 = ωi2. This distinction is made only to clarify the possible triads of interaction.

The equations are transformed by assuming the following forms for the variables,

η =
N ′∑
n′=1

η̂sn(x,y)
2

ein
′ωst +

N1∑
n1=1

η̂in1(x,y)
2

ein1ωi1t +
N2∑
n2=1

η̂in2(x,y)
2

ein2ωi2t + c.c. (3.7)

ξ =
N ′∑
n′=1

ξ̂sn(x,y)
2

ein
′ωst +

N1∑
n1=1

ξ̂in1(x,y)
2

ein1ωi1t +
N2∑
n2=1

ξ̂in2(x,y)
2

ein2ωi2t + c.c. (3.8)

u =
N ′∑
n′=1

û sn(x,y)
2

ein
′ωst +

N1∑
n1=1

û in1(x,y)
2

ein1ωi1t +
N2∑
n2=1

û in2(x,y)
2

ein2ωi2t + c.c.

(3.9)

u ′ =
N ′∑
n′=1

û ′
sn(x,y)
2

ein
′ωst +

N1∑
n1=1

û ′
in1(x,y)

2
ein1ωi1t +

N2∑
n2=1

û ′
in2(x,y)

2
ein2ωi2t + c.c.

(3.10)

where N ′, N1 and N2 are the total number of harmonics in surface wave spectrum

and interfacial wave spectra 1 and 2 respectively. The amplitudes, η̂, ξ̂, û and û ′ are

complex magnitudes and c.c. denotes complex conjugates. The terms proportional

to e−in
′wst represent the contribution of nth harmonic of the surface wave spectrum

on the velocity fields, the surface and interface displacements. Similarly, the terms
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proportional to e−in1wi1t and e−in2wi2t, respectively show the representation of inter-

facial waves 1 and 2 in the motion field. As mentioned, the interfacial waves are

identical and thus, in the following calculations, n is used to represent both n1 and

n2. By substituting these expansions in the above system, the couplings between the

harmonics due to nonlinear interactions are revealed.

C. Resonant triad interaction

Resonant interactions occur due to the nonlinear coupling in equations (2.30)-(2.33).

The use of resonant triads will result in factoring out the time periodic terms and

gives sets of equations for the Fourier coefficients in equations (3.7)-(3.10) which are

essentially the evolution equations of the harmonics.

In the present chapter, the nonlinear interactions due to near-resonance condition

between the triad of surface (or interface) harmonics, as discussed in Section (II-E),

is generalized to several harmonics forming a spectrum. The quadratic nonlinearity

couples the harmonics in the spectra in form of triads. For instance, a surface wave

can be assumed to have the following form,

ηs = a(X)eiψn + a∗(X)e−iψn (3.11)

where a is the complex amplitude and is a function of large spatial scale X, and

ψ = k · x− ωt is the phase function. Complex conjugate of the amplitude is denoted

by a∗. With this definition, the quadratic terms in the equation (3.3) will give rise to

the terms proportional to the following components,

alame
i(ψl+ψm) (3.12)

ala
∗
me

i(ψl−ψm) (3.13)

a∗l ame
i(−ψl+ψm) (3.14)



75

a∗l a
∗
me

i(−ψl−ψm) (3.15)

And thus, a particular component in the free surface wave train oscillating with phase

ψn, can be forced if two other arbitrary harmonics l, andm, satisfy any of the following

conditions,

ψn = ψl + ψm (3.16)

ψn = ψl − ψm (3.17)

ψn = −ψl + ψm (3.18)

ψn = −ψl − ψm (3.19)

(3.20)

The above equations result in kinematic resonance condition between triads,

ωn = ωl + ωm (3.21)

ωn = ωl − ωm (3.22)

ωn = −ωl + ωm (3.23)

ωn = −ωl − ωm (3.24)

The same relationships hold between vector wave numbers but in near-resonant

condition; as discussed in Section (II-E), there will be an incremental difference be-

tween the wave numbers, as an example:

kn − kl − km = δk (3.25)

The same discussion applies for the nonlinear terms involving the velocities and

interface displacements. The exact resonance between the frequencies allows for fac-

toring out of the time dependence.
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D. Time-harmonic equations

Equations (3.7)-(3.10) are inserted in the governing equations and the concept of

resonant triads are used to obtain time-harmonic equations for spatial evolution of

waves. It is more convenient to obtain the equations in terms of free surface and inter-

face displacements. The velocities are related to derivatives of surface and interface

displacements through first order momentum equations as,

û ′
sn =

−ig
n′ωs

∇η̂sn +O(ϵ, µ2) (3.26)

û ′
inp =

−ig
npωip

∇η̂inp +O(ϵ, µ2) (3.27)

ûsn =
−ig
n′ωs

∇ [(1− r)ξsn + rηsn] +O(ϵ, µ2) (3.28)

û inp =
−ig
n′ωip

∇ [(1− r)ξinp + rηinp] +O(ϵ, µ2) (3.29)

where p = 1, 2 denotes the two distinct interfacial wave trains. These relationships are

used to substitute surface and interface displacements for velocities in the nonlinear

terms. The nonlinear terms, forcing the n′th harmonic in surface wave train or the

nth harmonic in interfacial wave train can be written as follows,

[ηs(ηs)t]n′ =
−iωsn′

8

n′−1∑
l′=1

ηs,l′ηs,n′−l′ + 2η∗s,l′ηs,n′+l′

 (3.30)

(us · ∇us)n′ =
−g2

8ω2
s

n′−1∑
l′=1

1

l′(n′ − l′)
(∇ηs,l′ · ∇∇ηs,n′−l′ +∇ηs,n′−l′ · ∇∇ηs,l′)

+
g2

4ω2
s

N ′−n′∑
l′=1

1

l′(n′ + l′)
∇η∗s,l′ · ∇∇ηs,n′+l′ +∇ηs,n′+l′ · ∇∇η∗s,l′

 (3.31)

(u ′
s · ∇ηs)n′ =

−ign′

8ωs

n′−1∑
l′=1

1

l′(l′ − n′)
∇ηs,l′ · ∇ηs,n′−l′

+
ign′

4ωs

N ′−n′∑
l′=1

1

l′(l′ + n′)
∇η∗s,l′ · ∇ηs,n′+l′

 (3.32)
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The nonlinear terms involving interfacial wave amplitude and /or lower layer velocity

are derived similarly. These terms become important in near-resonant interactions.

However, it is recalled that there is coupling due to exact resonance between each

surface wave harmonic and two interfacial harmonics through equation (2.34). For

interface wave 2, these coupling are written as follows,

[ηs(ξi1)t]n2 =
in2ωi2

4
ηs,l′ξi1,l′−n2 (3.33)

[ξi1(ηs)t]n2 =
−in2ωi2

2
ηs,l′ξi1,l′−n2 (3.34)

(u ′
s · ∇ξi1)n2 =

−ig
4l′ωs

∇ηs,l′ · ∇ξi1,l′−n2 (3.35)

(us · ∇ξi1)n2 =
−igr
4l′ωs

∇ηs,l′ · ∇ξi1,l′−n2 (3.36)

Nonlinear terms for interface wave 1 are obtained similarly. Substituting the ex-

pansions (3.7)-(3.10) in (3.3)-(3.6) and using above equations for nonlinear terms,

the transformed continuity and momentum equations are obtained. By cross dif-

ferentiation of the continuity and momentum equations in each layer, the velocities

are eliminated and the time periodic equations for ηs,n′ , ηi,n, ξs,n′ , ξi,n are obtained.

Combining upper layer continuity and momentum equations gives,

n′2ω2
s(ηs,n′ − ξs,n′)−G′

n∇2ηs,n′ +
h2

6
n′2ω2

s∇2ξs,n′ =

−gn′2

4

n′−1∑
l′=1

∇ηs,l′ · ∇ηs,n′−l′

l′(n′ − l′)
− 2

N ′−n′∑
l′=1

∇η∗s,l′ · ∇ηs,n′+l′

l′(n′ + l′)

+
n′2ω2

s

4h

n′−1∑
l′=1

ηs,l′ηs,n′−l′ + 2
N ′−n′∑
l′=1

η∗s,l′ηs,n′+l′ − hξi,l1ξi,n′−l1

−
g2h

4ω2
s

n′−1∑
l′=1

1

l′(n′ − l′)
∇ · (∇ηs,l′ · ∇(∇ηs,n′−l′) +∇ηs,n′−l′ · ∇(∇ηs,l′))

−
g2h

2ω2
s

N ′−n′∑
l′=1

1

l′(n′ + l′)
∇ ·

(
∇η∗s,l′ · ∇(∇ηs,n′+l′) +∇ηs,n′+l′ · ∇(∇η∗s,l′)

) (3.37)

n2ω2
i (ηi,n − ξi,n)−Gn∇2ηi,n +

h2

6
n2ω2

i∇2ξi,n =
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−n2ω2
i

h

[
1

2
ηs,l′ξi,l′−n′ − 1

4

(
n−1∑
l=1

ξi,lξi,n−l + 2
N−n∑
l=1

ξ∗i,lξi,n+l

)]
+

g

4
∇ηs,n · ∇ξ∗i,n (3.38)

where G′
n = gh− n′2ω2

sh
2

3
, and similarly Gn = gh− n2ω2

sh
2

3
. Combination of lower layer

momentum and continuity equations results in,

n′2ω2
sξs,n′ − rd

(
g − h

2
n′2ω2

s

)
∇2ηs,n′ − d

[
g(1− r)− (

d

3
+
rh

2
n′2ω2

s)

]
∇2ξs,n′ =

g2r2d

4ω2
s

n′−1∑
l′=1

1

l′(n′ − l′)
∇ · (∇ηs,l′ · ∇∇ηs,n′−l′ +∇ηs,n′−l′ · ∇∇ηs,l′)

−
g2r2d

2ω2
s

N ′−n′∑
l′=1

1

l′(n′ + l′)
∇ ·

(
∇η∗s,l′ · ∇∇ηs,n′+l′ +∇ηs,n′+l′ · ∇∇η∗s,l′

)−
2g2(1− r)2d

n′2ω2
s

∇ · (∇ξi,l1 · ∇∇ξi,m2)− g(1− r)(∇ξi,l1 · ∇ξi,m2) +

n′2ω2
s

4d
(ξi,l1ξi,m2) (3.39)

n2ω2
i ξi,n − rd

(
g − h

2
n2ω2

i

)
∇2ηi,n − d

[
g(1− r)− (

d

3
+
rh

2
)n2ω2

i

]
∇2ξi,n =

−g(1− r)2d

4n2ω2
i

[
n−1∑
l=1

1

l(n− l)
∇ · (∇ξi,l · ∇∇ξi,n−l +∇ξi,n−l · ∇∇ηi,l)

]
+

g(1− r)2d

2ω2
i

[
N−n∑
l=1

1

l(n+ l)
∇ ·

(
∇ξ∗i,l · ∇∇ξi,n+l +∇ξi,n+l · ∇∇ξ∗i,l

)]
−

gn2(1− r)

4

[
n−1∑
l=1

1

l(n− l)
∇ξi,l · ∇ξi,n−l − 2

N−n∑
l=1

1

l(n+ l)
∇ξ∗i,l · ∇ξi,n+l

]
+

g2r(1− r)d

4n2ω2
∇ · [∇ξ∗i2 · ∇∇ηs,l′ · ∇∇ξ∗i2] +

n2ω2

4d

[
n−1∑
l=1

ξi,lξi,n−l + 2
N−n∑
l=1

ξ∗i,lξi,n+l

]
(3.40)

The above set of equations give the transformed surface and interface displacements.

The order of truncation of above equations is the same as the governing equations

and equal to O(ϵ2, ϵµ2). The equations are elliptic. Therefore, boundary conditions

in the entire domain should be known to solve them which is generally not possible
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in open ocean. Furthermore, the discretization of the domain needs to be sufficiently

fine which results in high computational demands. The parabolic approximation,

discussed in the next section, can ease these modeling issues.

E. Parabolic approximation

The parabolic approximation transforms the elliptic boundary value problem to a

parabolic initial value problem (Radder, 1979; Lozano & Liu, 1980). The parabolic

system requires only the information on lateral boundaries and the initial value and

thus, is suitable for studying the propagation of waves in an open coast. The method

has the limitation of small angle of approach and thus is most useful in weakly-two

dimensional problems. However, this limitation does not violate the conditions of our

study. The results from the instability analysis in previous chapter indicates that the

direction of generated interfacial waves is almost normal to the direction of the surface

wave and furthermore, as mentioned earlier in the chapter, is almost independent of

the surface wave frequency. Therefore, a surface wave train can generate two nearly

unidirectional oblique interfacial wave trains. The interfacial wave trains will propa-

gate in a symmetric direction with respect to the surface wave. Consequently, if the

surface wave spectrum is primarily propagating in +x direction, the interfacial waves

will primarily propagate in ±y direction. Based on weakly two-dimensional nature of

each wave train, parabolic approximation can be used for the surface spectrum in x

and for interface wave spectrum in y,

ηsn = Asn(x)e
in′ksx (3.41)

ξinp = Binp(x, y)e
inpkipy (3.42)
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where Asn(x) and Bin(x, y) are complex amplitudes and slowly varying function of

space. The direction of propagation of surface wave is set as x axis and for simplifying

the problem, we assume the water depth is constant. With this assumption, the

interfacial waves propagate with a small angle relative to y axis. To account for this

weak two dimensional behavior, the fast varying term (oscillation) of the interfacial

waves is assumed to be a function of y and the slow varying component of the wave

(Bin) is assumed to be a function of both x and y. Therefore, the interfacial waves

are primarily propagating along y axis but can have evolution along x axis. The

parabolic approximation is applied on the derivatives and the terms are ordered in

advance using (similar to Liu et al., 1985):

∂sAsn
∂xs

≈ ∂sBinp

∂ys
≈ O(ϵs) (3.43)

∂sBinp

∂xs
≈ O(ϵs/2) (3.44)

where s = 1, 2. One consequence of having the phase as a function of only one

direction is that the fast varying part of the solution is only retained in the phase

accumulation in that direction (y for the interfacial wave, and x for surface wave).

Orderings (3.43) and (3.44) allow for retention of higher order derivatives of interfa-

cial wave amplitudes in x direction to mimic their wave-like variation along this axis.

In addition, this ordering results in elimination of derivatives in the nonlinear terms.

Substituting (3.41) and (3.42) in equations (3.38)-(3.40) and applying above approx-

imations gives the parabolic models. The upper layer continuity equation gives,

p1Asn + p2Bsn + p3(Asn)x + p4(Bsn)x =

Q1

n′−1∑
l′=1

As,l′As,n′−l′ + 2
N ′−n′∑
l′=1

A∗
s,l′As,n′+l′

+Q2B
2
il (3.45)
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where

p1 = n′2ω2
s +G′

nk
2
sn (3.46)

p2 = −n′2ω2
s(1 +

k2snh
2

6
) (3.47)

p3 = −2iG′
nksn (3.48)

p4 = i
h2

3
n′2ω2

sk
2
sn (3.49)

Q1 =
k2s
4
(gn′2 +

α2
sn

′2

h
− g2h

α2
s

) (3.50)

Q2 =
n′2α2

sk
2
s

4
(3.51)

The transformed momentum equation in the upper layer is,

p5Ain + p6Bin + p7(Ain)y + p8(Bin)y + p9(Ain)xx + p10(Bin)xx =

Q3

[
n−1∑
l=1

Bi,lBi,n−l + 2
N−n∑
l=1

B∗
i,lBi,n+l

]
+Q4AslB

∗
im (3.52)

where

p5 = (n2ω2
i +Gnk

2
in) (3.53)

p6 = −n2ω2
i (1 +

k2inh
2

6
) (3.54)

p7 = −2iGnkin (3.55)

p8 = i
h2

3
n2ω2

i k
2
in (3.56)

p9 = −Gn (3.57)

p10 =
h2

6
n2ω2

i (3.58)

Q3 = −n
2α2

i k
2
i

4h
(3.59)

Q4 =
n2α2

i k
2
i

2h
− g

8
n2k2s,l′ (3.60)
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Similarly, parabolic version of lower layer continuity equation will be,

p11Asn + p12Bsn + p13(Asn)x + p14(Bsn)x =

Q5

n′−1∑
l′=1

As,l′As,n′−l′ + 2
N ′−n′∑
l′=1

A∗
s,l′As,n′+l′

+Q6B
2
il (3.61)

where

p11 = rdk2sn(g −
h

2
n′2ω2

s) (3.62)

p12 = n′2ω2
s

(
1− k2snd[

d

3
+
rh

2
]

)
+ k2sngd(1− r) (3.63)

p13 = −2irdksn(g −
h

2
n′2ω2

s) (3.64)

p14 = −2idksn

(
g[1− r]− [

d

3
+
rh

2
]n′2ω2

s

)
(3.65)

Q5 =
g2r2dn′2k2s

4α2
s

(3.66)

Q6 = n′2k
2
s

2

(
1− k2i

2k2ix

)[
−gd(1− r)2

α2
s

(
1− k2i

2k2ix

)
+ g(1− r)

]
+

n′2α2
sk

2
s

4d
(3.67)

And finally, equation (3.40) gives,

p15Ain + p16Bin + p17(Ain)y + p18(Bin)y + p19(Ain)xx + p20(Bin)xx =

Q7

[
n−1∑
l=1

Bi,lBi,n−l + 2
N−n∑
l=1

B∗
i,lBi,n+l

]
+Q8AslB

∗
im (3.68)

where

p15 = rdk2in(g −
h

2
n2ω2

i ) (3.69)

p16 = n2ω2
i

(
1− k2ind[

d

3
+
rh

2
]

)
+ k2ingd(1− r) (3.70)

p17 = 2irdkin(g −
h

2
n′2ω2

i ) (3.71)

p18 = −2idkin

(
g[1− r]− [

d

3
+
rh

2
]n2ω2

i

)
(3.72)
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p19 = −rd
(
g − h

2
n2ω2

i

)
(3.73)

p20 = −d
(
g[1− r]− [

d

3
+
rh

2
]n2ω2

i

)
(3.74)

Q7 =
k2i
4

[
−gd(1− r)2

α2
i

− g(1− r)2n2 +
n2α2

i

d

]
(3.75)

Q8 =
g2rd(1− r)n2

2α2
i

k2il,x (3.76)

Equations (3.45) and (3.61) can be further combined to obtain a single parabolic

equation for evolution of surface wave amplitude (Asn). Similarly, combining equa-

tions (3.52) and (3.68) gives the evolution equation of interfacial wave amplitude

(Bin),

λ1Asn + λ2(Asn)x = R1

n′−1∑
l′=1

As,l′As,n′−l′ + 2
N ′−n′∑
l′=1

A∗
s,l′As,n′+l′

+R2B
2
il

(3.77)

λ3Bin + λ4(Bin)y + λ5(Bin)xx =

R3

[
n−1∑
l=1

Bi,lBi,n−l + 2
N−n∑
l=1

B∗
i,lBi,n+l

]
+R4AslB

∗
i,l′−n (3.78)

where

λ1 = p1 −
p2
p12

p11 (3.79)

λ2 = p3 −
p2
p12

p13 − (p4 −
p2
p12

)
p11
p12

p14 (3.80)

λ3 = p6 −
p5
p15

p16 (3.81)

λ4 = p8 −
p5
p15

p18 − (p7 −
p5
p15

p17)
p16
p15

(3.82)

λ5 = p10 −
p5
p15

p20 − (p9 −
p5
p15

p19)
p16
p15

(3.83)

R1 = Q1 −
p2
p12

Q5 (3.84)

R2 = Q2 −
p2
p12

Q6 (3.85)
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R3 = Q3 −
p5
p15

Q7 (3.86)

R4 = Q4 −
p5
p15

Q8 (3.87)

(3.88)

Based on approaches in previous investigation to model the two-dimensional

parabolic equations, it is suggested to model the present parabolic equations using

Crank-Nicholson scheme. The scheme has second order accuracy in x and y and is

unconditionally stable. The finite difference model obtained will be similar to the KP

model in Liu et al. (1985) where the numerical scheme is given in detail (albeit for a

single layer).

A two-layer dispersion relation is provided by Pond & Pickard (1983) for ∆ρ <<

1: [
ω2 − gktanh(kh+ kd)

] [
ω2 − ∆ρgk

ρ′cothkh+ ρcothkd

]
= 0 (3.89)

By comparing the roots from this equation with the quartic two-layer dispersion rela-

tion (Lamb, 1932), it is found that the above relationship provides very good estimates

of surface and interfacial roots in the range of parameters studied here. Using this

equation in the non-dispersive limit, kh ≈ kd << O(1), the surface and interfacial

wave numbers and frequencies can be written in terms of the base frequencies at

surface and interface respectively,

ksn = n′ks, kin = nki (3.90)

Base wave number and frequencies are the lowest mode in the spectra, and using

the above expressions, the wave numbers for the harmonics are written in terms of

the base wave number. Furthermore, base wavenumbers, ks and ki, can obtained as
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functions of the base wave frequencies as:

ks =
ωs√

g(h+ d)
, ki = ωi

√
ρ′d+ ρh

∆ρghd
(3.91)

The above expressions can be used to exchange wave numbers and frequencies.

It is instructive to look into the relationship between primary surface wave, As,

and its signature on the interface, Bs, and also the relationship between primary

interfacial wave, Bi, and its surface signature, Ai. From the linear theory, the rela-

tionship between the primary waves and their signatures are readily obtained in long

wave limit:

b

a
= 1 +

k2h2

2
− gk2h

ω2

(
1 +

k2h2

6

)
(3.92)

Using the dispersion relation (3.89), the expression for the surface and interfacial

wave signatures is obtained as follows,

bs
as

≈ O(
d

H
) +O(µ2),

bi
ai

≈ O(
ρ′ + ρh

d

∆ρ
) +O(µ2) (3.93)

From above equations, its is evident that the amplitude of the signature wave depends

on the magnitude of the primary wave and physical parameters. The amplitude of

the interface signature of the surface wave depends primarily on the depth ratio and

the magnitude of the surface signature of the interfacial wave mainly is a function

of stratification. In ocean environment the stratification is weak and thus, the sur-

face signature of the interfacial wave will be significantly smaller than the primary

interfacial wave. In addition, if the lower layer is significantly thinner than the total

fluid depth (e.g. a thin layer of fluidized mud), the interface signature of the surface

wave will be considerably smaller than the primary surface wave. From (3.93), and

by obtaining the evolution of primary surface and interfacial waves. The evolution of

their signature can be obtained at the first order.
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F. Summary

Based on the two-layer Boussinesq equation derived in Chapter (2), a frequency do-

main model is derived for spatial evolution of long surface and interfacial waves. In

this approach, the variables are assumed to be periodic in time and the concept of

resonant triads is used. As a result, a time-harmonic elliptic model for the spatial

evolution of the waves in a two-layer system is derived. Based on the weak two-

dimensiality of surface and interfacial wave trains, parabolic approximation was used

to alleviate the computational demands and restrictions of the boundary condition

requirements in the original elliptic model.
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CHAPTER IV

CONCLUSIONS

A. Summary

In this dissertation, nonlinear interactions between long gravity waves in a two-layer

fluid are studied. The previous studies on surface-interface wave interactions either

used deep water (Stokes) scaling and thus were limited to intermediate-deep waters,

or investigated the problem in very shallow waters (non-dispersive limit). We extend

the study to shallow-intermediate depth were waves are in weakly dispersive domain,

derive and verify a formulation to study the waves, and analyze the system for dynam-

ics of subharmonic generation of a pair of oblique interfacial waves due to resonant

interaction with a monochromatic surface wave in shallow water. In addition, we

expand the problem to include a triad of surface wave which exchange energy due to

near-resonance condition and also are in coupling with their corresponding interfacial

wave pairs. The near-resonant interactions between unidirectional interfacial wave

harmonics are also accounted for. Therefore, unlike previous studies that isolated a

triad of waves (one surface and two interface), we expand the 3 wave problem to 9

waves to include near-resonant interactions. Finally, a formulation for spatial evo-

lution of a surface wave spectrum in interaction with two oblique interfacial wave

spectra is derived in frequency domain.

In Chapter (2), a two-dimensional Boussinesq-type model for propagation of

weakly-dispersive waves in a two fluid system is derived. The fluid layers are as-

sumed to be inviscid and incompressible with potential flow. The model is verified

as the assumptions of slow varying bottom and shallow lower layer are applied to the

model by Choi & Camassa (1996), their equations reduce to the model presented in
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this study. Then the resonant interaction between surface and interfacial waves, as a

generation mechanism for long interfacial waves, is studied. A second order pertur-

bation approach is applied and temporal evolution equations of the interacting waves

amplitudes are derived. In the intermediate-deep water, the instability coefficients

are extremely lengthy and complicated, whereas by using depth-averaged velocities

in Boussinesq equations, the interaction coefficient has been greatly simplified. In

addition, the damping effect of the viscosity, due to presence of a weakly viscous

lower layer, is added to the evolution equations. By considering the nonlinear energy

transfer from the surface mode to interfacial modes and adding the viscous decay in

the evolution of the interfacial waves, we have considered an additional indirect mech-

anism of surface wave attenuation which was usually neglected in previous studies.

Furthermore, a numerical parametric study is carried out to study the influence of

important parameters namely directional angle, viscosity of the lower layer, surface

wave amplitude and frequency, thickness of the top layer and density difference on

the growth rate of the interfacial waves (2.72). In the typical for the parametric study

we use H = 1m, d = 0.2m, r = 1/1.08, T = 7s, a(0) = 0.01m, and b(0) = 0.001m.

The maximum growth rate of interfacial waves occurs when θ = 84◦ (Figure 6).

In the absence of strong interfacial shear in weakly viscous layers, viscosity only sup-

presses the generation of interfacial waves. Damping rate is an increasing function

of viscosity (figure 10). Interfacial growth rate increases with surface wave frequency

until it reaches a maximum in shallow water range and decreases thereafter. Similar

behavior is predicted for interfacial damping rate. Furthermore, it appears that the

damping rate of surface is not significantly sensitive to the surface wave frequency

(Figure 13). Stratification increases both the growth and damping rate of the in-

terfacial waves. However, the sensitivity of the growth and damping rate to density

difference decreases in large density differences. In contrast to this result, in inter-
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mediate depth, the theory predicts that the growth rate is a decreasing function of

density ratio (1/r) (Jamali, 1998, e.g.). As the thickness of the top layer increases

to comprise higher ratio of the total water depth, the growth rate of the interfacial

waves decreases until h/H ≃ 0.80. Surface wave attenuation rate is a mild decreasing

function of top layer thickness. Except for the density ratio, as mentioned above,

the results of the analysis are in qualitative agreement of the previous work of Hill &

Foda (1998) and Jamali (1998) which studied the waves in intermediate depth.

As mentioned, harmonics of surface (or interfacial) waves can form triads of non-

linear interaction if they satisfy kinematic conditions of near-resonance. Therefore,

to generalize the study of nonlinear interactions in shallow water, we consider an

interacting triad of waves on surface. According to the results in section (II-B), each

surface wave generates two oblique subharmonic interfacial waves and thus, a system

of 9 waves forms. The interfacial harmonics are also in shallow water range and are

thereby in near-resonance condition. A system of 9 evolution equations is derived

and the evolution of the waves under variation of different parameters is studied. It

is concluded that as the number of waves in the system increases, the behavior of

interacting waves changes significantly. In almost all the cases, surface waves 1 and

3 show initial oscillatory behavior while surface wave 2 exhibits initial growth. The

growth of surface wave 2 is increased when the density difference is reduced (Figure

29). The three interfacial waves show growth after about t = 1700s. The introduc-

tion of the interfacial waves in the interaction results in the significant change in the

pattern and phase of the surface waves. In contrast to the 3 wave problem, in the

9 wave system, the interfacial waves growth is a decreasing function of density ratio

(Figure 30). Variation of waves with depth ratio is also examined. The growth rate of

surface wave 2 is maximum when the interface is closer to the interface (Figure 31).

In agreement with the 3 wave problem, interfacial waves 1 and 2 exhibit the largest
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growth rate when the interface is closest to the surface (Figure 32). In contrast, b3 has

the maximum growth rate at h/H = 0.7. Unlike previous cases, if ωs3 is increased,

surface wave 3 shows initial growth. Surface wave 2 has the largest growth rate at

the largest ωs3 (Figure 33). All the interfacial waves show the largest growth rate

with the lowest frequency, ωs3 = 0.15, but they gain largest long term amplitude and

variations with ωs3 = 0.3 (Figure 34).

In Chapter (3), based on the derived two-layer Boussinesq equation, a frequency

domain model is formulated for spatial evolution of time-harmonic interacting surface

and interfacial wave trains. Frequency domain formulation facilitates the investiga-

tion of evolution of waves due to nonlinear interactions. The derived time-harmonic

model is elliptic and thus, its modeling requires fine grid resolution and also has to

have defined boundary conditions apriori. Based on the weak two-dimensial nature of

surface and interfacial wave trains, the parabolic approximation is used. This approx-

imation alleviates the computational demands as well as restrictions of the boundary

condition in the original elliptic model. The derived model can be used to model the

propagation of the interacting surface and interfacial wave trains.

B. Recommendations

In the interaction analysis, we do not account for complications in the field type

conditions. An example is the sea bed modulation in large time and space scales

which can result in shoaling and breaking of both surface and interfacial waves.

The study of long-term behavior of waves requires inclusion of higher order non-

linearity in the system. In addition, highly nonlinear waves are common in coastal

areas and thus, a higher order nonlinear model can capture wave with larger ampli-

tudes.
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In the analysis, the effect of viscosity is limited to damping and is reflected in

the evolution equations of waves. such treatment of viscous effects is justifiable when

the the system is weakly viscous. However, in highly viscous media, the destabilizing

effect of viscosity as a result of shear stress at the interface should also be considered.

Although in the two-layer Boussinesq equations we considered mildly varying

bathymetry, in modeling the equations in frequency domain we assumed constant

depth. The study can be generalized to include evolution of waves due to varying

bathymetry.
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