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ABSTRACT

Exploiting Reconfigurable Antennas in Communication Systems

with Delay-Sensitive Applications. (December 2011)

Eman Mahmoud Hammad, B.S., University of Jordan

Chair of Advisory Committee: Jean-Francois Chamberland

Wireless communication systems continue to face the challenge of time varying qual-

ity of the underlying communication channel. When a slow fading channel goes into

a deep fade, the corresponding communication system might face successive decod-

ing failures at the destination, and for delay-sensitive communication systems, this

amounts to delays that are not desired. In such situations, it becomes a priority

to get out of the deep fades. Many techniques and approaches are already avail-

able in the literature to counteract fading effects. This work is motivated by recent

advances in fast reconfigurable antennas, which provide new means to change the

statistical profile of fading channels, and hence reduce the probability of prolonged

fades. Fast reconfigurable antennas are poised to improve overall performance, espe-

cially for delay-sensitive traffic in slow-fading environments. This potential enhanced

performance motivates this study of the queueing behavior of point-to-point commu-

nication systems with reconfigurable antennas. We focus on finite-state channels with

memory, and we analyze the queueing behavior of the wireless communication system

over erasure channels, for a traditional system versus a reconfigurable antenna im-

plementation. We provide numerical results for situations where using reconfigurable

antennas yield substantial performance gains in terms of throughput, delay and buffer

overflow.
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CHAPTER I

INTRODUCTION

Wireless communication technologies and mobile applications are constantly gaining

in popularity. As a consequence, the evolving demands and expectations of mobile

users are reaching challenging levels in terms of data rate and delay requirements.

This puts increasing pressure on an already strained cellular infrastructure, with its

limited spectral bandwidth and costly hardware upgrades. Delay-sensitive services

such as voice over internet protocol (VoIP), video conferencing, mobile gaming; and

advanced video-aided applications like telepresence, video surveillance, e-healthcare

can impose strict delivery requirements on the associated traffic flow. These re-

strictions must be accounted for while designing the components of the underlying

communication system. A major challenge for digital communication over wireless

channels is the constantly changing quality of physical connections. When a slow

fading channel deteriorates and slips into a deep fade, the corresponding communica-

tion system must confront the eminent prospects of successive decoding failures and

undue delay. In such a scenario, it becomes crucial to rapidly get the communication

link out of the deep fade.

Several techniques have been proposed in the past to overcome or ease the adverse

effects of fading [1, 2]. These approaches include time diversity and interleaving, space

diversity and space-time codes, cooperation and multitone signaling.

Space diversity can be leveraged at the transmitter and receiver to counter-

act fading by averaging the signal over multiple independent paths, particularly in

multiple-input multiple-output (MIMO) systems [3, 4]. Adaptive coding-modulation

The journal model is IEEE Transactions on Automatic Control.
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techniques that respond to the status of the wireless channel have also been pro-

posed [5, 6]. We emphasize that there is a natural tension between diversity and

throughput. This phenomenon is typically studied in an asymptotic setting, and it is

commonly known as the diversity-multiplexing tradeoff.

Diversity approaches can lead to substantial gains in performance. A similar fun-

damental tradeoff between multiplexing gain, diversity and delay has been identified

and studied in several contexts. Still, many contributions on the benefits of diversity

overlook the queueing aspect of the problem, which is especially important in the

context of delay-sensitive applications.

In this thesis, we consider reconfigurable antennas as a possibly new strategy to

counteract the effects of fading on wireless communication. We are especially inter-

ested in delay-sensitive applications. From an abstract point of view, our approach

takes advantage of channel diversity at the physical layer by increasing the number

of virtual channel realizations from the source to the destination. This added flexi-

bility comes at a price: the reconfiguration process takes time and can invalidate the

transmission of symbols for a pre-determined time interval.

Reconfigurable antenna technologies are collectively emerging as a viable option

for smart phones, mobile hotspots, and portable computers [7, 8, 9, 10, 11]. This

class of antennas can be employed in a number of ways to enhance the connectivity

profile and robustness of wireless communication channels. These antennas create new

and promising opportunities for the engineering of superior communication schemes.

Such antennas are designed to intentionally and reversibly alter the character of their

performance-governing electromagnetic fields. As a result, they are able to modify the

directional and polarization properties of their radiation patterns and thereby change

the spatiotemporal characteristics of the communication channels they induce.

Beyond the basic properties of reconfigurable antennas, it is interesting to note
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that the manipulations of radiation patterns can be automated through rapid feedback

and triggered by events such as deep fades and successive decoding failures [12, 13,

14, 15]. This enables the implementation of closed-loop systems with the cognitive

ability to seamlessly adapt to evolving electromagnetic environments and interference

conditions. The capacity to provide these features in (near) real time is primarily

determined by the speed and complexity of the reconfiguration mechanisms used to

facilitate electromagnetic agility within the reconfigurable antenna structures. This

points to the potential benefits of a configuration change and, also, to the downtime

associated with each transformation event.

Although reconfigurable antennas have been and continue to be the subject of

concerted research efforts in the antennas and propagation community, a detailed

analysis of their repercussions on the foundations of wireless communications is still

lacking. Key to the widespread adoption of such technologies, aside from small-scale

implementations, is provable gains in terms of capacity, delay-throughput profile and

network connectivity [16, 17]. Herein, we seeks to better understand the impact

of adaptive antennas on the queued performance of communication systems at a

fundamental level.

Fast reconfigurable antennas can be employed to establish ancillary virtual links

between two devices. As the quality of the current channel degrades, it may become

advantageous to transition to an alternate antenna state and, consequently, to another

channel realization. This added flexibility at the physical layer is likely to boost the

perceived performance of delay-sensitive applications over channels with memory.

Indeed, several studies document the fact that channel variations are particularly

detrimental to delay-constrained communications [18, 5, 19, 6]. Channel memory

further exacerbates this situation, as it increases the propensity for prolonged deep

fades [20, 21]. Having the capability to jump to a different virtual channel seems an
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Fig. 1. A conceptual diagram of a reconfigurable antenna showing the switching and

virtual channels.

attractive option in these circumstances. Fig. 1 shows a diagram that illustrates the

concept of virtual channels induced by a reconfigurable antenna.

To uncover the benefits of reconfigurable antennas in the context of delay-sensitive

communications, we leverage several results that have appeared in the literature.

First, we adopt a class of models for channels with memory similar to the finite-

state channel model proposed by Gilbert and Elliott [22, 23]. The delay-sensitive

aspect of the problem is captured through a queueing formulation whose solution is

obtained, partly, by applying techniques originally developed by Neuts [24, 25, 26].

The conceptual bridge between the physical layer and the queued system is provided

by error-correcting codes and the availability of feedback. The framework to be pre-

sented later parallels some of the previous work performed by Parag et al. [21]. The

incorporation of reconfigurable antennas into the problem setting and the insights

obtained through our analysis are novel. This sheds new light on the potential ben-
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efits of adaptive antenna systems and their application to delay-sensitive traffic over

wireless channels.

A. Problem Statement

We consider a point-to-point wireless communication system that support delay-

sensitive applications; these applications are subject to stringent service constraints.

The communication channel at the physical layer is modeled as a finite-state chan-

nel with memory. We assume that the transmitter possesses partial channel-state

information and that it can be equipped with reconfigurable antennas. Moreover, we

postulate that the encoder utilizes a random coding scheme. Furthermore, packet

receptions are acknowledged through reliable feedback. This communication link is

poised to support delay-sensitive applications, with a soft queueing constraint. We

wish to quantify and analyze the performance gains associated with the reconfigurable

system compared to the traditional implementation.

B. Thesis Structure

The remainder of this document is organized as follows. Chapter II provides a survey

of important results and challenges associated with delay-sensitive communication,

with special attention to analysis techniques and available tools. These tools will be

used to build, study and ultimately solve our proposed research problem. The system

components, along with a mathematical abstraction for reconfigurable antennas, are

described in Chapter III. Two modes of operation are considered, a classical system

with a static antenna structure and an adaptive implementation with the ability to

reconfigure its RF front-end. The operation of these two competing alternatives is

characterized in Chapter IV, where we examine their respective queueing behaviors.
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This gives rise to several performance criteria including throughput, mean waiting

time and the probability of the queue exceeding a certain threshold. Pertinent nu-

merical examples are provided in Chapter V, followed by concluding remarks.
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CHAPTER II

BACKGROUND

The time-variations in channel quality associated with wireless environments form a

major challenge for mobile devices that seek to establish reliable, rapid connections.

These fluctuations are intrinsic to wireless communications and are attributable to

the movement of mobile devices as well as dynamic changes in their surroundings.

In contrast to attenuation, which can be accurately estimated and controlled, fading

is particularly detrimental to delay-sensitive applications. Indeed, a fast fluctuation

profile can result in a significant probability that a communication channel experiences

a deep fade.

A. Fading Channels

From a physical point of view, fading is caused by the constructive or destructive

superposition of multiple copies of a same signal that travels through various paths.

This process depends heavily on environmental conditions and can affect the received

signal strength as well as the phase of the signal [1]. Furthermore, when a mobile

device is in motion, there can be a shift in the central frequency of the waveform, as

observed at the destination; this condition is known as the doppler effect. We review

below a number of definitions pertinent to our future discussion.

• Multipath: This term refers to the arrival of multiple copies of a transmitted

signal at the receiver displaced with respect to one another in time and spatial

orientation. This phenomenon is a consequence of the presence of reflecting

objects and scatterers in wireless environments. The misalignment in phase

and amplitude of the different paths causes fluctuations in the overall strength
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of the received signal, which leads to fading [1].

• Coherence Bandwidth: When the spectral bandwidth of the transmitted

signal is large, disjoint intervals of the spectrum may experience unequal fade

levels. In this case, the resulting channel is said to feature frequency-selective

fading. The range of frequencies over which the channel can be considered

approximately flat is called the coherence bandwidth, Bc [27].

• Doppler Shift: This is the apparent shift in frequency of a signal due to the

transmitter and/or receiver moving. It is typically expressed by the relation

fd = υ
λ

cos θ, where υ denotes the receiver velocity toward the transmitter, λ

is the carrier wavelength, and θ is the angle of arrival of the received signal

relative to the direction of motion [27].

• Coherence Time: This quantity captures how fast a channel is changing over

time. Mathematically, the coherence time, Tc, is a statistical measure of the

duration over which the channel impulse response remains essentially invariant.

The amplitude of the received signal within this time interval is strongly corre-

lated. Generally speaking, the coherence time is inversely proportional to the

Doppler spread, Tc ∝ 1
fm

[1].

B. Finite-State Markov Modeling of Fading Channels

Finite-state communication channels with memory have been the subject of studies

for several decades, and can be traced in the work by Shannon in 1957[28].

Many extensions have been considered since their initial introduction. Notable

developments to finite-state channels include seminal contributions by Gilbert and

Elliott. Gilbert presented a two-state Markov channel model in which the input-
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output relationship depends on the current state of the channel [22]. Elliott later

expanded this model by incorporating a larger class of error profiles; this enhanced

model was originally employed to analyze the performance of error-correcting codes

over bursty channels [23]. The combined efforts of Gilbert and Elliott led to the famed

Gilbert-Elliott channel, shown in Fig. 2.

Fig. 2. A finite-state channel with memory. A two states model known as the

Gilbert-Elliott channel.

In its abstract form, the channel has two states, a good state G and a bad state

B. The probability that a bit is received faithfully at the destination depends on

the state of the channel, and can be expressed as a conditional crossover probability.

The instantaneous error probability is a measure of channel quality. Furthermore, the

evolution of the channel over time forms a Markov chain. The transition probabilities

between the states determine the stationary distribution of the chain and also capture

channel memory.

The Gilbert-Elliott channel model can be modified to include more states. The

extra degrees of freedom associated with additional states result in a more intricate

abstraction and can, in certain circumstances, improve model accuracy. Collectively,
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these channels are termed finite-state channels with memory. This class of channel

models has successfully been applied to wireless communication links in the past [29,

18, 30].

An important quality behind finite-state channels with memory is that they often

yield mathematically tractable formulations and accurate results. Indeed, the vast

literature on Markov chains can be applied to problems in wireless communication

when an appropriate channel structure is selected. In many situations, Markov models

lead to insightful analytical solutions rather than numerical results obtained through

simulations; this is exemplified below.

The work of Wang and Moayeri provides an explicit relation between a statistical

fading description, Clark’s model for Rayleigh fading, and a finite-state channel with

memory [29]. The methodology described in their paper first partitions the received

signal-to-noise ratio (SNR) into disjoint intervals, every interval representing a distinct

channel state.

The marginal probability of error, conditioned on the prescribed interval, is then

used as the designated crossover probability for the Markov state. This mapping can

be refined by simply adding states to the Markov model. Transition probabilities of

the Markov model are then estimated based on up-crossing rates. Modifications to

this approach are possible [31]. For instance, in certain circumstances, only adjacent

state transition are admitted. This may depend on the modulation scheme employed,

the power budget and the spectral profile of a wireless environment.

The memory order of a Markov model may refer to how many previous states

affect the selection of the next state. In a first-order Markov model, the selection of

state Ci given Ci−1 is independent of anterior channel history. First-order finite-state

channels with memory are found to be accurate for reasonably slow fading, with a

normalized fading rate fdTs ≤ 0.01, where fd is the maximum Doppler shift and
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Ts is the symbol period. This conclusion is rather intuitive since, for a slow fading

channel, knowledge of preceding states would offer little additional information. In

such scenarios, the most recent state captures the essence of time dependency. In the

intermediate fading regime, higher-order Markov models can lead to better accuracy.

Finite-state channels with memory are used in several applications. They form a

powerful abstraction for modeling communication channel with error bursts. They

can be used to assess how correlation over time affects the capacity of communication

channels. Furthermore, they are suitable to analyze the queueing performance of

communication links. Finally, they are amenable to the simulation of complex systems

through Markov Chain Monte Carlo methods.

C. Matrix Geometric Method

The matrix geometric method, is a technique originally developed by Neuts [25] to

derive the stationary distribution of queued systems with repetitive structures. For

instance, this technique can be applied to queueing processes with phase-type service.

In such situations, the state space of the whole system can be divided into lev-

els [25, 26]. The entries of the corresponding transition probability matrix can be

grouped into finite submatrices and, based on this structure, the evolution of the

queued system displays an elegant symmetry.

Since the matrix geometric method is inherently a numerical procedure, it is

frequently used to find the desired distribution when a closed-form solution is hard

to obtain.

The matrix geometric method can also be applied to study certain communica-

tion systems with random arrivals and changing channel conditions. In this latter

scenario, the system state may reduce to a discrete-time quasi-birth-death process.
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The states of a quasi-birth-death process can typically be arranged as

S = {(i, q)|0 ≤ i, 0 ≤ q ≤ m},

where i identifies the current jump rates of the process, and q represents the number

of elements in the system. With a proper ordering of the states, one can recognize

a block structure in the transition probability matrix of the aggregate system. The

resulting submatrices specify the transition probabilities among levels and they can

be further divided into two groups: an irregular set subject to boundary conditions

and repetitive blocks with a regular structure.

1. Quasi-Birth-Death Process

We label boundary blocks using C and we employ A to represent regular components.

Suppose that the Markov system is stable and assume that transitions are only pos-

sible among adjacent states. Furthermore, assume that transitions probabilities for

non-zero levels possess a repetitive structure. Then, without loss of generality, the

probability transition matrix of the discrete-time quasi-birth-death process can be

written in block form as

T =



C1 C0 0 0 · · ·

A2 A1 A0 0 · · ·

0 A2 A1 A0 · · ·

0 0 A0 A2 · · ·
...

...
...

...
. . .


. (2.1)

The states {(1, q), (2, q), . . . , (n, q)} are known as the qth level of the chain. Let

πq =

[
π(1, q) π(2, q) · · · π(n, q)

]
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be the stationary distribution associated with the qth level and, similarly, let

π =

[
π1 π2 · · ·

]
denote the invariant distribution of the entire system. We know from the Chapman-

Kolmogorov equations that πT = π. One possible approach to calculate the station-

ary distribution π numerically is to use the matrix geometric method.

Theorem C.1 (Neuts [25]) Consider a positive recurrent, irreducible Markov chain

on a countable state space with transition probabilities given by (2.1). Let matrix U be

defined such that the (c, d) entry is the probability that, starting from state (1, c), the

Markov chain first re-enters level one by visiting (1, d) and does so without visiting

any state at level zero. The substochastic matrix U may be computed as the limit,

starting from U1 = A1, of the sequence defined by

Uj+1 = A1 + A0 (I−Uj)
−1A2. (2.2)

Let matrix T̃ be given by

T̃ =

 C1 C0

A2 A1 + RA2

 (2.3)

where R = A0 (I−U)−1. Then, T̃ is a stochastic matrix associated with a finite and

irreducible Markov chain. If we denote the invariant distribution associated with T̃

by [π̃0 π̃1], then the stationary distribution associated with T can be expressed as

π0 =
π̃0

(π̃0 + π̃1(I−R)−1)1

πq =
π̃1R

q−1

(π̃0 + π̃1(I−R)−1)1

(2.4)

where q ≥ 1.
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We emphasize that, in finding a solution to the matrix equation

πqA1 = πq−1A0 + πqA1 + πq+1A2,

the form of the embedded Markov structure and, specifically, its block partitioning are

far more important than the precise values of each submatrix. Key to our eventual

analysis is to reduce the queueing problem we wish to study to the discrete-time,

quasi-birth-death structure shown above.
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CHAPTER III

SYSTEM MODEL

The overall system model that we use consists of a transmit buffer, an arrival process

and a departure process, error correcting codes, and a physical channel model. We

assume perfect channel state information at the source and, also, the availability of

instantaneous feedback from destination to the transmitter. For the sake of simplic-

ity, we focus on the information flow from the source to the destination. A similar

analysis can be applied to the reverse link, if needed. To obtain pertinent measures

for delay-sensitive communications, we study system performance using a queueing

formulation. The queue state is governed by both arrivals and departures. Moreover,

the evolution of the queue is modeled as a discrete-time stochastic process, which is

synchronized with codeword transmissions. In particular, we assume that during each

codeword cycle, a data packet arrives at the source with probability γ, independently

of other time instances. In our model, the number of information bits per data packet,

denoted by L, is random and possesses a geometric distribution with parameter ρ.

Below, we describe the service models for both a system utilizing a reconfigurable

antenna and a traditional implementation.

A. Traditional Implementation

We refer to a system that employs a static antenna as a traditional implementation.

Our channel model for a wireless communication system with a fixed antenna is based

on several possible modes of operation, which we denote by C = {c1, . . . , ck}. The

evolution of the channel over time forms a homogeneous Markov process, with a

probability transition matrix B, which we write as
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B =



b11 b12 · · · b1k

b21 b22 · · · b2k
...

...
. . .

...

bk1 bk2 · · · bkk


. (3.1)

Above, bij represents the probability that the Markov chain transitions from state i to

state j in one time step. The quality of the channel, conditioned on a specific state,

is expressed in terms of a bit erasure probability. When the channel is in state i,

a symbol sent by the transmitter is erased with probability εi or, equivalently, the

symbol is observed at the destination with probability 1− εi. The elements of C are

indexed in such a way that i < j implies εi ≥ εj. In words, if i < j, then channel

state cj is more reliable than channel state ci. When this finite-state channel can take

only two possible values, it is known as a Gilbert-Elliott erasure channel [22, 23]. A

graphical representation of the Gilbert-Elliott erasure channel is shown in Fig. 3.

The system we envision employs error-control coding to counteract the adverse

effects of channel uncertainty. Arriving packets at the source are sliced into data

segments, each containing K information bits. Data segments are then encoded and

transmitted as codewords of fixed length N to the destination. As per our channel

model, individual symbols may be received at the destination or erased depending on

the realization of the finite-state channel. Decoding is executed on a per codeword

basis, and is attempted on a regular interval. An important quantity in our impending

analysis is the distribution of the number of erasures per codeword, conditioned on

the state of the channel at the onset of the transmission. There exist various strategies

to compute such distributions. One possible approach is to first find the distribution

of the channel states and then compute the conditional distribution on the number

of erasures [32]. Alternatively, we can employ matrix generating functions with with
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Fig. 3. A finite-state channel with memory is used to model the operation of a wireless

link at the bit level. For illustrative purposes, the channel is depicted with only

two states, a form known as the Gilbert-Elliott erasure channel.

polynomial entries to derive these quantities [33].

At this point, it suffices to point out that

Pr(E = e, CN+1 = cj|C1 = ci) (3.2)

can be computed efficiently. Throughout, Cn represents the state of the channel at

time n, and E denotes the number of erasures within a block.

We consider a system where every codebook is created using a random binary

parity-check matrix H of size (N − K) × N . The admissible codewords are the

elements of the nullspace of H. Decoding at the receiver is executed using a maximum

likelihood decision rule. The probability of decoding failure, conditioned on e erasures,

is given by

Pf(N −K, e) = 1−
e−1∏
i=0

(
1− 2i−(N−K)

)
(3.3)
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where N is the code length and K designates the number of information bits per

codeword [34]. Accounting for channel states, the conditional probability of decoding

failure at the destination, which we represent by Pdf(cj; ci), is given by

Pdf(cj; ci) =
N∑
e=0

Pf(N −K, e) Pr (E = e, CN+1 = cj|C1 = ci) .

Similarly, the conditional probability of decoding success, labeled Pds(cj; ci), can be

written as

Pds(cj; ci) =
N∑
e=0

(1− Pf(N −K, e)) Pr (E = e, CN+1 = cj|C1 = ci) .

Hence, combining (3.2) and (3.3), we obtain the probability of transitioning to state

cj with or without decoding successfully, conditioned on the channel starting in state

ci. Collectively, these probabilities underly the evolution of the queued system.

To conform with our encoding scheme, a data packet of length L must be divided

into M = dL/Ke segments, each of size K. The ending segment of a packet is zero-

padded, if needed. Note that M is also a geometric random variable, albeit with

parameter

ρr =
K∑
`=1

(1− ρ)`−1ρ = 1− (1− ρ)K . (3.4)

These segments are successively encoded into codewords of length N and sent over

the finite-state channel. Upon successful decoding, the destination acknowledges

reception of the information and the corresponding segment is discarded from the

source buffer. On the other hand, when transmission fails, the source is notified. The

leading data segment is then immediately re-encoded and transmitted once again

over the wireless channel. This process continues until successful reception of the

codeword.

The number of packets awaiting transmission is selected as the state of the queue.
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This perspective reflects our inclination towards delay-sensitive communications. We

stress that, in our framework, a packet departs from the queue if a codeword is

decoded successfully at the destination and the received segment is the last parcel of

information of the lead packet. When these two conditions are met, the lead packet

is discarded from the queue.

We use Qs to identify the state of the queue at discrete-time s. Although the

stochastic process {Qs} does not possess the Markov property, it can be shown that

the queue length and the channel state at the onset of a codeword cycle, jointly

designated by Ys = (CsN+1, Qs), form a Markov chain [21].

The transition probabilities of this Markov chain can be calculated as follows.

Suppose that the queue is non-empty, i.e., Ys = (ci, q) where q > 0. Owing to our

problem definition, the admissible values for Qs+1 are {q−1, q, q+1}. Several factors

can affect the evolution of the queue over time: the arrival of a new packet, the

successful decoding of a codeword and whether or not this latter codeword is the last

segment of a data packet. The only scenario that leads to a decrease in the queue is

having no arrival and one packet departure. Recall that a packet departure occurs

when a codeword is successfully decoded and the corresponding segment is the last

parcel of information of the lead data packet. This yields

µij = Pr(Ys+1 = (cj, q − 1)|Ys = (ci, q))

= (1− γ)Pds(cj; ci)ρr.

For the queue length to remain at a same level, departures and arrivals must be

balanced. In particular, there can be either no departure and no arrival, or one
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departure and one arrival,

κij = Pr(Ys+1 = (cj, q)|Ys = (ci, q))

= (1− γ) (Pdf(cj; ci) + Pds(cj; ci)(1− ρr)) + γPds(cj; ci)ρr.

Finally, the queue increases whenever a packet arrives and no departure occurs,

λij = Pr(Ys+1 = (cj, q + 1)|Ys = (ci, q))

= γ (Pdf(cj; ci) + Pds(cj; ci)(1− ρr)) .

When the queue is empty, Qs = 0, similar arguments apply, except that there can be

no departures,

κ0ij = Pr(Ys+1 = (cj, 0)|Ys = (ci, 0))

= (1− γ) Pr(C(s+1)N+1 = cj|CsN+1 = ci)

λ0ij = Pr(Ys+1 = (cj, 1)|Ys = (ci, 0))

= γ Pr(C(s+1)N+1 = cj|CsN+1 = ci).

Possible transitions for a non-empty queue at level q are depicted in Fig. 4. Again,

for simplicity, the diagram assumes a two-state channel at the physical layer.

B. Reconfigurable Antenna Implementation

Although a series of carefully designed experiments in anechoic chambers have been

reported previously in the literature on reconfigurable antenna systems [12, 8, 9],

establishing accurate mathematical models for particular implementations can be a

daunting task. Given that this is a preliminary investigation on the topic, we make

simplifying assumptions that are somewhat favorable to RF-agile devices. The ratio-

nal behind this reasoning is to gain insight without risking to prematurely discard a

promising technology that may eventually lead to significant gains. We postulate that
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Fig. 4. Possible transitions with partial labeling for a queued system built upon a

two-state channel model and operating using a fixed antenna configuration.

Self-transitions are intentionally omitted.

reconfigurable antennas have a large number of possible configurations, and we as-

sume that the wireless channels induced by these configurations are independent from

one another. This is more likely to apply to situations where devices are embedded in

rich scattering environments. A direct implication of these two hypotheses is that a

wireless device equipped with a reconfigurable antenna can always elect to switch to

a different virtual channel. Furthermore, once this transformation is accomplished,

the probability that the wireless channel occupies a particular state becomes equal to

the stationary probability of this same state.

A second aspect of reconfigurable antenna systems that warrants attention is

the latency of the morphing process. The time necessary to execute an antenna

reconfiguration depends heavily on the physics underlying the process. Applicable

technologies relevant to our present investigation include electronic switches, micro-
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electromechanical systems (MEMS) and microfluidic devices. Collectively, these mis-

cellaneous techniques embody a range of options in terms of latency, efficiency and

power consumption. They also offer fundamentally different mechanisms that can

provide measurable tradeoffs between speed, power handling, linearity and overall

complexity. Moreover, they each feature a compact form factor suitable for mobile

devices. Based on the state-of-the-art for these mechanisms, it is reasonable to assume

that reconfiguration latency is no greater than a typical codeword cycle (on the order

of 4.615 ms). In our analysis, we assume that triggering an antenna reconfiguration

event results in the loss of one codeword transmission opportunity. No segment can

be decoded at this time and, as such, there cannot be a departure from the queue.

This is the price to pay for the opportunity to access a fresh channel realization.

We consider static control policies for antenna handling that are based solely

on channel state. Furthermore, we look at hierarchical structures: if cj is deemed

deficient enough to initiate a channel reconfiguration, then ci will also trigger a re-

configuration whenever i < j. Implicit to such control policies is the presence of

channel state information at the source. This construction, again, favors adaptive

systems. More pragmatic schemes would have to employ state estimates or trigger a

reconfiguration based on the number of successive failed decoding attempts. Still, our

simplified framework is a logical starting point; if an adaptive system fails to produce

significant gains when side information is available, there is no need to study more

intricate formulations.

When the channel state is judged satisfactory, no reconfiguration takes place and

the transition probabilities defined in Section A apply. On the other hand, when a

system reconfiguration is initiated, the transition probabilities simply become

µ̃ij = Pr(Ys+1 = (cj, q − 1)|Ys = (ci, q)) = 0
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κ̃ij = Pr(Ys+1 = (cj, q)|Ys = (ci, q)) = (1− γ)pC(j)

λ̃ij = Pr(Ys+1 = (cj, q + 1)|Ys = (ci, q)) = γpC(j),

where pC(·) is the marginal probability mass function on the channel states. We

emphasize that the transition probabilities are completely determined by the latter

probability mass function and the likeliness of a packet arrival, and they do not

depend on the coding scheme. Also, we have

κ̃0ij = (1− γ)pC(j)

λ̃0ij = γpC(j)

whenever a reconfiguration event is sparked from an empty queue.

Fig. 5 presents a level-transition diagram for a two-state channel where an an-

tenna reconfiguration is prompted. This takes place every time the channel lies in

the most inauspicious state at the onset of a codeword cycle.

It may be instructive to compare this graph with Fig. 4, whose labels embody

the operation of a communication system with a static/fixed antenna structure.

This completes our description of the two queued systems, with and without

reconfigurable antenna structures. In both cases, the state space for the discrete-

time packetized system is C × N0. Each implementation will be stable provided

that the average arrival rate is less than its expected service rate. When this is the

case, the underlying Markov chain is positive recurrent and it admits a stationary

distribution [35]. Next, we we examine stability conditions more closely and we

provide means to compute invariant distributions. This is performed by linking the

mathematical formulation of our problem to classical queueing results.
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Fig. 5. In this diagram, the two-state antenna system evolves unaltered while in state

(c2, q); whereas an antenna reconfiguration is initiated whenever the system

enters state (c1, q). The reconfiguration process alters the transition probability

of the system, as designated by the tildes.
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CHAPTER IV

QUEUEING BEHAVIOR

As we have developed the system model for the traditional and the reconfigurable

antenna implementations, we further analyze the system model with queueing tools

to obtain performance measures that will facilitate a quantitative comparison between

the two implementations, using numerical analysis, that would follow in chapter V

We first examine arrival and service rates. Recalling that a new data packet

arrives at the source at time s with probability γ. The number of bits in every packet

is a geometric random variable with parameter ρ, and hence, the number of segments

contained in any packet is a geometric random variable with parameter ρr, as defined

in (3.4). Thus, the expected arrival rate in segments per block is given by

γE [M ] =
γ

ρr
.

The expected service rate depends on the communication scheme employed. In

the traditional implementation with fixed antennas configuration, the evolution of

the wireless channel is unaltered at the codeword boundaries. That is we realize the

channel distribution for every N consequential usages of the channel and that is the

codeword length, and this realization corresponds to the BN matrix. Then we sum

over the different states of the channel multiplied by the corresponding probability

of successfully decoding at the destination Pds. Thus we can express the throughput,

which is the expected service rate, in segments per block as

∑
i∈C

∑
j∈C

Pds(cj; ci)pC(ci) (4.1)
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where pC(·) is the stationary channel distribution associated with matrix

BN =



b
(N)
11 b

(N)
12 · · · b

(N)
1k

b
(N)
21 b

(N)
22 · · · b

(N)
2k

...
...

. . .
...

b
(N)
k1 b

(N)
k2 · · · b

(N)
kk


. (4.2)

We stress that, since B is assumed irreducible and aperiodic, its invariant distribution

pC(·) exists and is unique [36]. This distribution is also invariant for probability

transition matrix BN , which justifies its use in (4.1).

Now we turn to the reconfigurable antennas case. First to obtain the probability

transition matrix for the adaptive architecture with reconfigurable antennas. Let

C† = {`, . . . , k} represent the collection of channel states judged suitable for data

transmission. Then, necessarily, the set C \ C† contains all the channel states for

which an antenna reconfiguration control command is issued. With this partitioning,

we gather that the probability transition matrix for the channel state at the onset of

a codeword cycle is

B̃(N) =



pC(1) pC(2) · · · pC(k)

...
...

. . .
...

pC(1) pC(2) · · · pC(k)

b
(N)
`1 b

(N)
`2 · · · b

(N)
`k

...
...

. . .
...

b
(N)
k1 b

(N)
k2 · · · b

(N)
kk


. (4.3)

We point out that matrix entry b
(N)
ij is implicitly defined in (4.2). Given that successful

decoding is only possible when a codeword is sent, we can write the throughput for
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the adaptive system as ∑
i∈C†

∑
j∈C

Pds(cj; ci)p̃C(ci),

where p̃C(·) is the invariant distribution associated with probability transition matrix

B̃(N).

When the average arrival rate is strictly less than the expected service rate,

Foster’s criteria guarantees that the corresponding Markov chain is positive recur-

rent [35, p. 167]. It is important to point out that channel memory and channel

quality can greatly influence the expected service rate of a communication system.

This is illustrated through numerical examples in the next chapter.

The channel state and the queue length at the onset of a codeword cycle, Ys =

(CsN+1, Qs), jointly form a stochastic process with a countably infinite state space.

A natural ordering for its elements is the following,

(c1, 0), . . . , (ck, 0)(c1, 1), . . . , (ck, 1)(c1, 2), . . .

Collectively, the subset of states

{(c1, q), . . . , (ck, q)}

is known as the qth level of the chain. Using this ordering and the level abstraction,

we introduce a probability transition operator T for aggregate chain {Ys},

T =



C1 C2 0 0 · · ·

A0 A1 A2 0 · · ·

0 A0 A1 A2 · · ·

0 0 A0 A1 · · ·
...

...
...

...
. . .


. (4.4)
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For the fixed antenna configuration case, the submatrices A0,A1,A2 are given by

A0 =


µ11 · · · µ1k

...
. . .

...

µk1 · · · µkk

 A1 =


κ11 · · · κ1k
...

. . .
...

κk1 · · · κkk



A2 =


λ11 · · · λ1k
...

. . .
...

λk1 · · · λkk

 .
When the queue is empty, the block transitions are governed by

C1 =


κ011 · · · κ01k
...

. . .
...

κ0k1 · · · κ0kk

 C2 =


λ011 · · · λ01k
...

. . .
...

λ0k1 · · · λ0kk

 .
Similar definitions apply for systems with reconfigurable antennas; the appropriate

entries are simply replaced by their homologs,

µ̃ij, κ̃ij, λ̃ij, κ̃
0
ij and λ̃0ij.

In both cases, with and without adaptation, the corresponding Markov chains belong

to the class of random processes with repetitive structures [25]. One can find the

stationary distribution associated with T by inspecting the substochastic matrix U

whose entry uij denotes the probability that, starting from state (1, ci), the Markov

chain Ys first re-enters level one through (1, cj) and does so without visiting any state

at level zero. A probabilistic path-counting argument leads to Proposition .1.

Proposition .1 Define U1 = A1. The iterative expression

Um+1 = A1 + A2 (I−Um)−1A0
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is well-defined for all m ∈ N; its limit exists and

lim
m→∞

Um = U.

Let π represent the invariant distribution of the augmented Markov chain, and

denote the subcomponents associated with level q by πq,

πq = (Pr(Y = (c1, q)), . . . ,Pr(Y = (ck, q))) .

Proposition .2 Define R = A2(I −U)−1 and recall that the entries of π are non-

negative and sum up to one. The invariant distribution induced by T is entirely

determined through the following relations,

[
π0 π1

] C1 C2

A0 A1 + RA0

 =

[
π0 π1

]
(4.5)

and πq = π1R
q−1 for q ≥ 1.

Propositions .1 & .2 provide an algorithmic blueprint to compute the stationary

distribution of the augmented Markov chain: obtain U through repeated iterations;

compute R and form irreducible and aperiodic probability transition matrix C1 C2

A0 A1 + RA0

 ;

find its invariant distribution; append missing values of π using πq = π1R
q−1 and

normalize.

Once the stationary distribution is acquired, we can compute several performance

criteria of interest. We examine the average delay, the probability that the queue

length exceeds a certain threshold and the decay rate of the queue occupancy. First,
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we note that the expected queue length is given by

∞∑
q=0

qπq · 1 = π1

(
∞∑
q=1

qRq−1

)
· 1, (4.6)

where 1 is a column vector of all ones. Using Little’s formula, we deduce that the

mean waiting time in the queue is simply (4.6) divided by expected arrival rate γ.

The decay rate of the queue occupancy can be written as

lim
τ→∞

1

τ
log Pr(Q ≥ τ) = log %(R), (4.7)

where %(R) is the spectral radius of R; and its complementary cumulative distribution

function is determined by the finite sum

Pr(Q > τ) = 1−
bτc∑
q=0

πq · 1.

Next, we will use these performance criteria to show that time-dependencies in the

underlying physical channel can adversely affect the behavior of a queued system.

Moreover, having the ability to reconfigure an antenna structure at appropriate mo-

ments can help mitigate the undesirable effects of channel memory.
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CHAPTER V

NUMERICAL RESULTS, SIMULATION, DISCUSSION AND CONCLUSIONS

A. Numerical Analysis and Results

We emphasis that the methodology introduced earlier applies to general finite-state

erasure channels with memory, yet our numerical study focuses on the Gilbert-Elliott

model depicted in Fig. 3. This model has received a fair amount of attention in the

literature. It captures many of the features associated with wireless environments

such as uncertainty, fading and channel memory. Still, this class of channels remains

mathematically manageable due to its relative simplicity. Overall, the Gilbert-Elliott

model provides valuable insights about the operation of wireless communication sys-

tems without being overly intricate, which gives ground for its adoption. This is

especially relevant for a first characterization of the potential benefits associated with

reconfigurable antenna structures.

1. Fixed vs. Reconfigurable Antenna Implementation

The choice of a hierarchical control policy for the Gilbert-Elliott channel with side

information is straightforward. The only non-trivial candidate is the adaptive policy

where the source triggers an antenna reconfiguration whenever the state of the channel

is c1 at the onset of a codeword transmission. The performance of this adaptive scheme

is compared with the operation of a static system where the antenna structure is fixed

and codewords are sent at every opportunity.

For the Gilbert-Elliott channel model, the stochastic matrix B reduces to

B =

 b11 b12

b21 b22


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and has two degrees of freedom. One possible way to portray these degrees of freedom

is to talk about the stationary probabilities of the states,

Pr(C = c1) =
b21

b12 + b21
Pr(C = c2) =

b12
b12 + b21

,

and channel memory; this is the approach we use throughout. The memory of a

Gilbert-Elliott channel can be expressed at the symbol level using 1 − b12 − b21. An

equivalent way to characterize memory is to consider changes at the codeword level,

1− b(N)
12 − b

(N)
21 = (1− b12 − b21)N ∈ [0, 1). (5.1)

It is typically more insightful to plot results using the latter scaling and, as such, this

is the unit we employ in our figures. Additional system parameters are selected to

approximate the operation of a GSM communication link. The block length is set

to N = 114. New packets arrive at the source with probability γ = 0.20, and their

expected length is ρ−1 = 195 bits. Based on a 4.615 ms codeword cycle, this yields a

lightly loaded connection at roughly 8.45 kbps; these are realistic numbers for digital

telephony.

We assess the performance of our competing systems when operating over erasure

channels with an erasure probability equal to 20 percent. We first explore the impact

of channel memory on overall performance. We study a channel model with b12 = 4b21,

ε1 = 0.5 and ε2 = 0.125. Channel correlation over time is varied progressively from

the memoryless case to a very slow fading profile. Note that the value of K is

throughput optimized for every parameter set and system implementation, leading to

a fair comparison between schemes.

Fig. 6 displays maximum throughput in bits per channel use as a function of the

memory coefficient defined in (5.1).

When channel memory is small, the communication system with a fixed antenna
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Fig. 6. The throughput of a traditional communication system is compared to that

of a competing implementation with a reconfigurable antenna. As channel

memory increases, the performance of the reconfigurable system surpasses the

maximum service rate of the traditional implementation.

structure performs better. In particular, if the mixing time of the Gilbert-Elliott

channel is shorter than a codeword transmission cycle, then reconfiguration offers

little rewards. It is therefore more profitable to send codewords constantly. On the

other hand, as the memory coefficient approaches one, the channel can get stuck

in a bad fade for a prolonged period of time. This phenomenon almost certainly

guarantees decoding failure at the next attempt; hence, it encourages the RF front-

end to trigger a reconfiguration and seek a more auspicious channel realization. The

crossover point in Fig. 6 is approximately 0.28. Interestingly, at this crossover point,
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the expected sojourn time in state c1 is approximately 113 bits, which is 1/b12, which

is very close to the actual block length.

Similar curves can be generated for other parameter sets. Each of these curves

identifies a crossover point in terms of channel memory and erasure probability where

the throughput of the adaptive system overtakes the expected service rate of the tradi-

tional implementation. Plotting these points delineates the boundary of two regions,

one where a static system with a fixed antenna structure performs better and a second

region where the reconfigurable implementation delivers enhanced performance. This

is illustrated in Fig. 7.

We can immediately see from this figure that channel correlation over time favors

reconfigurable antenna systems. Also, experiencing vastly different channel qualities

over the various fade levels benefits adaptive systems. Altogether, the capabilities of

reconfigurable antennas seem better suited to harsh wireless environments.

We supplement the preceding results by investigating the performance of the

two competing systems in relation to mean waiting time. This latter criterion is

appropriate for lightly loaded connections and delay-sensitive applications such as

mobile telephony and video conferencing. Again, we maintain the average rate of bit

erasure at 20 percent, and we set the conditional probabilities of erasure to ε1 = 0.5

and ε2 = 0.125. As before, we vary the channel memory coefficient to first produce

a memoryless process followed by increasingly correlated erasure sequences. Fig. 8

plots the mean waiting time at the source as a function of memory.

The crossover point where the switching system with a reconfigurable antenna

structure overtakes the static implementation is approximately the same as in the

case of throughput. In fact, preliminary results indicate that similar behavior can

be observed for various parameter sets and different optimization criteria including

mean waiting time, asymptotic decay rate in queue occupancy and threshold violation



35

probability, Fig. 9 shows our results for the threshold violation probability.

This robustness may be attributable to the simplicity of the Gilbert-Elliott model

and may not hold for more complex channel models. This warrants further research,

but lies outside the scope of this article. In practice, this suggests that good perfor-

mance can be achieved with RF-agile antenna structures by identifying regions where

reconfiguration should take place. The system can then estimate the current state of

the channel and decide, according to its local map, whether or not a reconfiguration

event should be triggered.

2. Fixed with Side Information

For fair comparison between a fixed antenna and a reconfigurable antenna that uti-

lizes channel state information, we provide a simple study of the queueing behavior

of a fixed antenna implementation that is provided with channel state information.

For Such a system we assume that channel state information is available at the trans-

mitter on the onset of a codeword, hence the transmitter can adaptively optimize

performance by changing the code rate. We will consider the throughput metric,

referring back to the equation of throughput,

∑
j

Pds(Cj, Ci)

This equation implicitly depends on the code rate. If the channel is good the trans-

mitter can adaptively use a higher code rate, and visa versa. We thus denote the

code rate as a function of the channel state and we use the notation K(Ci). The

probability of decoding failure is expressed as follows

N∑
e=0

Pf(N −K(Ci), e) Pr (E = e, CN+1 = Cj|Ci = C1) .
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We next examine throughput in bits per channel use, for a two channel realization,

as in the Gilbert-Elliott case, using above notation and assumptions

K∗(C1) = argmax
K(C1)

K(C1)
∑
j

∑
e

(1− Pf(N −K(C1), e)) Pr (E = e, CN+1 = Cj|Ci = C1)

K∗(C2) = argmax
K(C2)

K(C2)
∑
j

∑
e

(1− Pf(N −K(C2), e)) Pr (E = e, CN+1 = Cj|Ci = C2)

Then throughput for fixed antenna system with channel state information side infor-

mation can be expressed as

pC(C1).K
∗(C1) + pC(C2).K

∗(C2)

Fig. 10 shows throughput of three systems, traditional fixed antenna, traditional

fixed antenna with side channel sate information at the transmitter, and reconfig-

urable antenna. As shown in the figure, the performance of the traditional system

with side channel state information naturally shows better performance than the tra-

ditional system that is not powered by the side information. Still the reconfigurable

antenna shows enhanced performance in the high memory region. And that expected

as the reconfigurable antenna system posses more degrees of freedom.

Next we explore the change in crossover region, between the traditional and

reconfigurable antenna, and the traditional and fixed with side channel state infor-

mation. Fig. 11 shows the region boundaries for the two crossover regions. From

the figure, it can be concluded that a reconfigurable antenna implementation delivers

better throughput over a wider range of system parameters; high channel memory

values and erasure probabilities.
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3. n-State Channel Simulation

As our work builds on the realization of the wireless communication channel as a

finite-state Markov Model, we attempt to simulate some of the above results. As

we have already summarized in second chapter, finite-state channel models can be

constructed from statistical fading models such as the Clark’s model for Rayleigh

fading channels. The equations to derive the finite-state Markov model parameters

from the Rayleigh model have been derived by Wang and Moayeri [29].

The Signal-to-Noise range is partitioned into equiprobable regions, then given

system parameters such as the Doppler shift and transmission rate, the probability

transition matrix and the error probabilities associated with the each state discrete

memoryless channel are calculated.

We design our Monte Carlo simulation for the threshold violation probability

performance metric, and first we explore the behavior of the finite-state channel

model under this metric for different number of states. Here the threshold value is

set to τ = 12, fading model doppler shift is varied over the range [1, 100](Hz), and

transmission rate is set at 1000. Queueing parameters are set as, arrival rate γ = 0.2,

N = 114, ρ = 1/L and L = 1000. Fig. 12 shows the simulations results for number of

finite states of the channel 2, 3, 4, 5, 6, 7, 8, 16, from which we notice that as number

of states increased we obtain a more rich realization of the performance plot, which

exhibits that when in a deep fade at high channel memory, corresponding to low

Doppler shifts, is likely to stay in deep fade.

B. Conclusions

This preliminary study offers supporting evidence to the claim that reconfigurable

antenna structures can improve the performance of communication systems signifi-
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cantly. For the reconfiguration process to be beneficial, the potential rewards of a

reconfiguration event must offset the costs of a loss of codeword transmission oppor-

tunity. Two conditions appear to influence this balance. The coherence time of the

physical channel must be on the order of the codeword cycle or longer. Furthermore,

the quality of the channel must vary significantly over the different fade levels. Slow

fading channels appear to be great prospects for reconfigurable antenna systems with

adaptive control policies.

Future studies should address practical issues such as channel estimation and

decision rule based on limited information. Once side information becomes available

at the transmitter, rate adaptation and power control can be employed in conjunc-

tion with reconfigurable antenna structures. Extending the queueing formulation to

account for these techniques is an interesting goal. Also, the postulate that virtual

channels are independent from one another should be explored through empirical

measurements. A strong positive correlation among virtual channels would reduce

the expected returns of a reconfiguration event. These are promising avenues of fu-

ture research that may broaden the application potential of reconfigurable antennas

and help improve the performance of wireless communication systems.
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Reconfigurable

Fixed

Fig. 7. System parameters determine which implementation delivers better through-

put, the static system with a fixed antenna structure (Static) or the switching

scheme with reconfigurable antennas (Switch). Correlation and fade differen-

tiation are advantageous to the RF-agile switching scheme. In this figure, the

probability of erasure is set at 0.20 and ε2 = (1− ε1)/4.



40

Fig. 8. Mean waiting times for traditional and switching systems are plotted as func-

tions of channel memory; a smaller waiting time is desirable. When the channel

is weakly correlated over time, the system with a fixed antenna configuration

performs better. On the other hand, in slow fading scenarios, the adaptive im-

plementation with a reconfigurable antenna structure becomes advantageous.
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Fig. 9. Threshold violation probability of a traditional communication system is com-

pared to that of a competing implementation with a reconfigurable antenna.

We seek a lower threshold violation probability. As channel memory increases,

the performance of adaptive systems with reconfigurable system surpasses that

of the traditional systems.
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Fig. 10. The throughput of a traditional communication system that is provided with

side information about channel state is compared to that of a competing imple-

mentation with a reconfigurable antenna and to a traditional system without

the side information, As channel memory increases, the performance of the

reconfigurable system surpasses the maximum service rate of the traditional

implementation with side channel state information.
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Fig. 11. We employ system parameters to study the change in crossover boundary re-

gion, for both the reconfigurable antenna and traditional fixed antenna with

side channel state information, each plot illustrate the crossover boundary

for the competing scheme with the traditional fixed antenna implementa-

tion. Correlation and fade differentiation are advantageous to the RF-agile

switching scheme. In this figure, the probability of erasure is set at 0.20 and

ε2 = (1− ε1)/4.
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Fig. 12. A Finite-State Markov model is constructed based on a Rayleigh fading model,

as the number of states in the Markov model is increased, we gain a more rich

realization of the channel that is more descriptive. Figure shows Monte Carlo

simulation results for threshold violation probability performance metric, for

number of states NS ∈ 2, 3, 4, 5, 6, 7, 8, 16.
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